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Abstract

In this paper, we propose a variational au-
toencoder with disentanglement priors, VAE-
DPRIOR, for task-specific natural language
generation with none or a handful of task-
specific labeled examples. In order to tackle
compositional generalization across tasks, our
model performs disentangled representation
learning by introducing a conditional prior for
the latent content space and another condi-
tional prior for the latent label space. Both
types of priors satisfy a novel property called
ϵ-disentangled. We show both empirically and
theoretically that the novel priors can disentan-
gle representations even without specific reg-
ularizations as in the prior work. The content
prior enables directly sampling diverse content
representations from the content space learned
from the seen tasks, and fuse them with the
representations of novel tasks for generating se-
mantically diverse texts in the low-resource set-
tings. Our extensive experiments demonstrate
the superior performance of our model over
competitive baselines in terms of i) data aug-
mentation in continuous zero/few-shot learning,
and ii) text style transfer in the few-shot setting.
The code is available at https://github.
com/zhuang-li/VAE-DPrior.

1 Introduction

Task-specific Natural Language Generation (NLG)
aims to generate texts that satisfy desired attributes
of target tasks, such as text style transfer (Jin et al.,
2020) and task-specific data augmentation (Lee
et al., 2021). Herein, a task includes a set of task-
specific labels, optionally a set of labeled texts for
that task (Han et al., 2020). Although there is al-
ready a large amount of labeled data for various
tasks, in many application scenarios, such as AI
assistants for legal aid, the labeled data of new
tasks are still difficult to acquire. As a result, there
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† Most of this author’s work was finished when he was

with Monash University.

Figure 1: Generation of task-specific examples for data
augmentation. In this example, the content representa-
tion is sampled from the training set, while the label
representation is constructed based on the support set.

may be no or just a handful of labeled texts for
target tasks. In such a low-resource setting, given a
new task, it is desirable to i) identify which in-
formation in texts is task-specific and which is
task-independent, and ii) systematically and consis-
tently combine the label representations of the new
task with task-independent content representations
for text generation. As illustrated in Fig. 1, data
augmentation needs to combine content represen-
tations from seen tasks with novel task labels. In
contrast, text style transfer requires combining the
content representations extracted from inputs with
target styles.

Most prior work assumes access to labeled data
for supervised training. However, those models
trained on seen tasks cannot generalize well to new
tasks during inference (Krishna et al., 2022). One
of the key reasons is that the parameters of su-
pervised models are tied to seen tasks such that
a significant amount of fine-tuning data is needed
for adapting to new tasks. For prompt-based and
guided decoding methods (Zhang et al., 2022), al-
though they require significantly less training data,
it is still challenging to generate a large number
of semantically diverse and coherent texts for new
tasks in a robust way because they cannot well
leverage the rich contents of the seen tasks.

The key challenge of low-resource task-specific
NLG is to disentangle content representations from
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label representations with few labeled data of target
tasks. If content representations still contain task-
specific information from seen tasks, they may well
mislead the language generator after fusing with
the representations of new tasks. Prior works tackle
this problem by enforcing the random variables of
content representations to be independent of those
of label representations (Cheng et al., 2020). How-
ever, in practice, both types of random variables are
not always independent. For example, the random
variables of emotion labels naturally depend on the
contents of the events causing them.

In this work, we propose a deep VAE model
with novel disentanglement priors, coined VAE-
DPRIOR, for task-specific natural language gen-
eration in the zero-shot and few-shot settings. In
contrast to the widely used unconditional priors in
the VAE framework, the new priors are conditional,
satisfying a novel property called ϵ-disentangled,
which motivates a new way of regularization for
disentangling representations without forcing inde-
pendence between the corresponding random vari-
ables. The new priors build a constraint space for
latent content representations and latent label repre-
sentations with the aims to i) minimize information
overlap between the two types of representations
and ii) enable generalization across tasks with little
labeled training data. One of the priors is a con-
ditional Gaussian mixture in the content subspace
for sampling rich content representations without
accessing original training data. Another type of
priors is a conditional multivariate Gaussian per la-
bel that associates latent label representations with
task-specific information, requiring only a label
name or a small set of labeled examples. Extend-
ing a pre-trained language decoder based on the
prefix-tuning technique (Li and Liang, 2021) with
those priors, our model is able to sample rich con-
tent representations of seen labels and combine
them with the representations of new labels to gen-
erate diverse and natural sentences. In addition,
we empirically observe that VAE-DPRIOR allevi-
ates posterior collapse (Wang et al., 2020), which
is a long-standing problem of VAEs that makes it
difficult to train a latent model to generate coherent
and semantically diverse texts.

To sum up, our key contributions are three-
fold: i) We propose a VAE-DPRIOR model with
novel disentanglement priors for low-resource task-
specific NLG tasks. It enables sampling diverse
content representations directly from the content

Figure 2: (a) A directed graphical model for disentangle-
ment learning. (b) The architecture of VAE-DPRIOR.

prior; ii) We introduce ϵ-disentangled, which sets
a novel regularization goal for disentangled repre-
sentations; iii) Our model outperforms competitive
baselines in the low-resource settings on the tasks
of text style transfer and data augmentation for
continual few/zero shot text classification.

2 Methodology

To tackle task-specific NLG tasks in low-resource
settings, we introduce a deep generative model
VAE-DPRIOR, which employs disentanglement
priors, including a content prior for rich contents,
to generate coherent and semantically diverse texts.
We are provided with a large corpus of labeled
sentences D(0) = {xi, yi}ni=1 for an initial task
T (0), where a sentence xi ∈ X is annotated with
a seen label yi ∈ Y . The goal is to learn a single
model that can generate diverse texts for any new
task or a sequence of K distinct new tasks {T (1),
T (2),...,T (K)}. Each new task includes multiple
novel labels, where a label y ∈ Y is associated
with a label name and optionally a handful of ex-
ample texts Dsup = {xi, yi}mi=1 as the support set.
The model is evaluated on both data augmenta-
tion for continual text classification described in
Sec. 3 and few-shot text style transfer detailed in
Appendix C.1.

For evaluating data augmentation, a text classi-
fier is trained sequentially on K new tasks and eval-
uated on the test sets of all seen tasks {T (1),...,T (t)}
till time t. For each task, its training data includes
the texts generated by the NLG models in order to
evaluate to what degree the augmented texts im-
prove the classifier performance. In the zero-shot
setting, the classifier is trained only on the gener-
ated texts using the label names of new tasks, while
the support sets are also used for data augmentation
and classifier training in the few-shot setting.

2.1 Theoretical Framework

In the absence of large training data for new tasks,
one of the key challenges is to construct content
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representations and label representations in the la-
tent space satisfying information purity. As such,
content representations should not contain label in-
formation, otherwise old task information in such
content representations may contaminate combined
representations for new tasks, vice versa.

Formally, the latent space is the sample space
Ω for both content and label representations. In
the corresponding probability space, we define a
random variable vector Zy for the latent representa-
tions of each label y ∈ Y , a random variable vector
Zc for latent content representations. Then observ-
able word sequences are denoted by the random
variable vector X, where each variable Xv corre-
sponds to a word in the vocabulary V . The statisti-
cal dependencies between those random variables
are illustrated by the Bayesian network in Fig.2(a),
where C denotes the prior knowledge of contents.
The dashed arrow denotes a possible dependency
between Zy and Zc.

To achieve information purity, the learned mod-
els are expected to follow the structure illustrated
in Fig.2(a) that there is no dependency between
C and Zy, as well as no dependency between y
and Zc. However, prior works on disentangled
representation learning regularize the models by
approximating Zc ⊥⊥ Zy (Cheng et al., 2020; Wang
and Jordan, 2021), which may violate the true sta-
tistical relation between Zc and Zy. Even though
Zc ⊥⊥ Zy holds after regularization, it does not
imply Zy ⊥⊥ C and Zc ⊥⊥ y. The random variable
of a label can still depend on both Zc and Zy.

To address this limitation, we propose to regular-
ize the priors of the latent variables for encouraging
information purity. After training, we expect the
mutual information of I(Zy, Y ) and I(Zc, C) is
high, while I(Zy, C) and I(Zc, y) is low or zero.
One way to achieve this is that we make I(Zy, y)
high only in the dense regions of Zy but force it to
be low or zero in the dense regions of Zc, vice
versa. As a result, we expect little overlap be-
tween the dense regions of pθc(Zc|C) and those
of pθy(Zy|y). Then the distances between those
priors are large. We characterize this property by
introducing ϵ-disentangled below.

Definition 2.1 (ϵ-disentangled). Two distributions
pθc(Zc|C) and pθy(Zy|y) are ϵ-disentangled, if
1/Dk(pθc(Zc|C)||pθy(Zy|y)) ≤ ϵ and ϵ ∈ R+,
where Dk denotes a divergence measure requir-
ing no absolute continuity (Royden and Fitz-
patrick, 1988), then pθc(Zc|C) and pθy(Zy|y) are

ϵ-disentangled w.r.t. the measure Dk.

We refer to the priors satisfying ϵ-disentangled
as disentanglement priors. In Appendix E.1, we
conduct an in-depth discussion of this property.
We show that if pθc(Zc|C) and pθy(Zy|y) are not
ϵ-disentangled under a mild assumption, at least
one of them is non-identifiable, which is a leading
cause of posterior collapse (Wang et al., 2020).
VAE with disentanglement priors. Using the dis-
entanglement priors, we employ the maximum like-
lihood principle for learning the parameters of the
joint distribution

∏
y∈Y pθ(X,Zc,Zy|C, y). The

marginal distribution
∏

y∈Y pθ(X|C, y) is given
by∫ ∏

y∈Y
pθ(X|Zc,Zy, y, C)pθy (Zy|y)pθc(Zc|C)dZydZc.

(1)

We learn the above distribution in the VAE
framework. Note that, the introduction of the con-
ditions C and y makes the priors of both latent
variables conditional, which differs from vanilla
VAEs that have only unconditional priors for latent
variables.

Given a dataset D = {(xi, yi)}ni=1, the training
problem to learn the marginal distribution in Eq. 1
is formulated as:

max
n∑

i=1

log p(xi|C, yi)

s.t. pθc(Zc|C) and pθy (Zy|y) are ϵ-disentangled. (2)

The disentanglement constraint is achieved
by either carefully choosing priors satisfying ϵ-
disentangled, applying a divergence measure re-
quiring no absolute continuity between priors as a
regularizer, such as the Maximum Mean Discrep-
ancy (MMD) (Gretton et al., 2012), or both. In the
following, we provide the model details and show
how to derive an evidence lower bound (ELBO) in
the VAE framework for this optimization problem.

2.2 Model Details

As illustrated in Fig. 2(b), the overall architecture
consists of an inference module, a generator and pri-
ors. The inference module consists of a pre-trained
BERT encoder, whose outputs serve as inputs of a
label encoder and a content encoder, and a genera-
tor comprising a prefix encoder and a pre-trained
GPT2 with frozen parameters.

The VAE framework adopts variational distri-
butions to approximate true distributions (Kingma
and Welling, 2019), which ends up maximizing an
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ELBO. We show in Appendix E.3 that the ELBO
objective takes the following form:

Lr︷ ︸︸ ︷
Eqϕ(Zc,Zy |X,C,y)[log pθ(X|Zc,Zy)]

− DKL(qϕ(Zc|X, C)∥pθc(Zc|C))

− DKL(qϕ(Zy|X, y)∥pθy(Zy|y)),

(3)

where the first term is referred to as the reconstruc-
tion loss Lr, the other terms constitute regularizers.
Following the convention of VAE, we refer to the
network for qϕ(Zc,Zy|X, C, y) as inference mod-
ule, the network for pθ(X|Zc,Zy) as generator.
Priors. In the label subspace, we assume
pθy(Zy|y) for a label y is a simple factorized Gaus-
sian distribution in form of N (Zy;µ

p
y, λyI), where

λy is a hyperparameter, its mean µp
y is constructed

by using the name embedding of label y in the
zero-shot setting, and by averaging the label name
embedding and the embeddings of its support set
examples in the few-shot setting. Each embedding
is curated by feeding its word sequence to the label
encoder shared with that of the inference module.

The content prior pθc(Zc|C) takes the form of∑K
k=1 pθ(M = k)N (Zc;µ

p
c,k, λcI), where M is

the random variable indicating the membership to
a component Gaussian. Inspired by neural topic
modelling (Wang and Yang, 2020), we encode the
prior knowledge of content C into a k-means clus-
ters, where we assume that there is a one-to-one
correspondence between a component Gaussian
and a cluster in the k-means clusters. The mean
of a Gaussian component N (Zc;µ

p
c,k, λcI) is com-

puted by Wcck, a linear projection from the corre-
sponding cluster centroid ck. The k-means clusters
are built from BERT sentence embeddings on the
training data of seen tasks. Adding new topics is
a matter of adding new clusters using incremental
clustering techniques.

In Appendix E.2, we show that pθc(Zc|C) and
pθy(Zy|y) are ϵ-disentangled with a small ϵ if their
means are far from each other and their variances
are sufficiently small.
Inference Module. The inference module is a
BERT (Devlin et al., 2018) encoder augmented
with an encoder for content, and an encoder for
labels. Each encoder is built on top of the con-
textual embedding sequences produced by BERT
and yields latent representations of the target type.
This design is not only parameter efficient but also
leverages the strengths of a large-scale pre-trained
transformer model.

A BERT model consists of multiple layers. To

provide more model capacities to capture the dif-
ferences between the two types of latent representa-
tions and preserve parameter efficiency, we freeze
all layers of BERT except the top most one so that
the content encoder and the label encoder employ
a top most transformer layer with different param-
eters respectively, while sharing all the remaining
layers of BERT.

In the label subspace, given a contextual word
embedding sequence Vl = {v0, ...,vu} generated
by the corresponding top-most layer of BERT, the
LabelEncoder implements qϕ(Zy|X, y) in form
of N (Zy;µ

q
y, diag(σ2

y)). In order to build a hidden
representation focusing on label relevant informa-
tion, we apply the label embedding µp

y used in
the label prior to Vy via soft attention. In par-
ticular, we compute an aggregated representation
hy = attention(µp

y,Vl) for a label y by applying
µp
y as the query vector to attend all vectors of Vy.

We compute the mean µq
y as a linear transforma-

tion of hy by using the weight matrix Wl
µ and

the logarithm of the variance logσy as the linear
transformation of another linear matrix Wl

σ.
By applying the reparameterization

trick (Kingma and Welling, 2019), the la-
tent label representation zy is a function of µq

y and
a stochastic noise. The stochastic noise is added by
the product of σy and the Gaussian noise ϵy drawn
from N (0, I).

logσy,µ
q
y = LabelEncoder(Vl)

zy = µq
y + σy ⊙ ϵy (4)

where ⊙ denotes the element-wise product.
In the content subspace, we consider

qϕ(Zc|X, C) = N (Zc;µ
q
c, diag(σ2

c )). Tak-
ing Vc from the corresponding top most layer
of BERT as input, ContentEncoder consists of
a mean pooling layer followed by a linear layer
for the mean and another linear layer for the
logarithm of the variance of qϕ(Zc|X, C). The
same reparameterization trick is applied to obtain
the latent representation zc.
Generator. Given a pair of latent representations
(zc, zy), the generator captures p(X|zc, zy) factor-
ized into the following autoregressive form.

pθ(x|zc, zy) =
|x|∏

t=1

pθ(xt|x<t, zc, zy) (5)

We employ a prefix-tuning technique (Li and
Liang, 2021) that yields continuous prompts for
the decoder in the low-resource situations. A con-
tinuous prompt is a continuous vector sequence of
length L. The prefix encoder consists of L MLPs,
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each of which uses the architecture Mθ[i, :] =
MLPθ([M

′
θ[i, :]; zy; zc]) for computing a vector at

position i, where M ′
θ ∈ R|Midx|×H′

is a learned
matrix to encode the position information of the
continuous prompt. In practice, we find it also use-
ful to prepend the name embedding of the target
label to the prefix. Further implementation details
are available in Appendix A.

In the low-resource settings, the mechanisms of
constructing latent label and content representa-
tions across tasks should be consistent, otherwise
labeled data needs to be provided for adjusting
model parameters for alleviating those discrepan-
cies. Therefore, we minimize parameters to update
across tasks, use the same prior for content repre-
sentations, and construct label embeddings using
the same label encoder for different tasks. The
parameters of the pre-trained encoder and the pre-
trained decoder are frozen during training. Thus,
we only need to train the parameters of the inter-
mediate hidden layers between them on the data of
initial tasks, which are also frozen for new tasks.
Freezing parameters could effectively prevent the
catastrophic forgetting of models when learning
the new tasks.

2.3 Training and Inference

Given a training corpus D = {xi, yi}ni=1, we
derive the objective function Lθ,ϕ(D) = Lr +∑

y Ly(y)+Lc from the objective in Eq. 2 and the
ELBO, where Ly and Lc are the KL regularization
terms from the ELBO. The constraint is removed
by the usage of the disentanglement priors.

We first pre-train the whole model on the cor-
pus of the initial task T (0) without applying any
disentanglement constraint and the regularizers de-
rived from the ELBO, followed by fine tuning the
model with all regularizers. In practice, we find out
that the two-steps approach is important to achieve
optimal empirical performance.
Regularization in the Label Subspace. The reg-
ularization term Ly(y) in the label subspace is de-
rived from DKL(qϕ(Zy|X, y)∥pθy(Zy|y)).

Ly(y) = − 1

λy
∥zy − µp

y∥2 + logσq
y (6)

The first term enforces latent label representa-
tions zy to be close to the label prototype µp

y ob-
tained from the label priors. In contrast, the cor-
responding regularization term in a vanilla VAE
with unconditional Gaussian priors takes the form
of ∥zy∥2, which only makes the latent representa-
tions smooth without providing any label specific

information.
Regularization in the Content Subspace. De-
rived from DKL(qϕ(Zc|X,C)∥pθc(Zc|C)), the
regularization term Lc takes the similar form as
the loss of deep k-means (Fard et al., 2020).

Lc =
K∑

k=1

p(M = k|zc)
[
− 1

2λc
∥zc − µp

c,k∥2
]
+ logσc

(7)
We compute it by using EM. The term qϕ(Mk|x)
is computed by the E-step. If soft-EM is consid-

ered, qϕ(Mk|x) =
exp(−dist(zc,µ

p
c,k)/τ)∑

k′ exp(−dist(zc,µ
p

c,k′ )/τ)
, which

denotes the probability of an example x belonging
to a cluster k with a temperature τ . In our experi-
ments, we employ hard EM, where qϕ(Mk|x) indi-
cates if the current Gaussian has the same the index
as the one having the minimal Euclidean distance
∥zc − µp

c,k∥2 among all components.
Inference. For data augmentation, our model sam-
ples a large number of texts from the model and fil-
ters out the ones that are not in accordance with the
target labels. For each new label y, we construct
the mean µp

y of pθy(Zy|y) by averaging the em-
beddings of the label name phrase and optionally
its associated texts from the support set. The cor-
responding embeddings are generated by feeding
name phrases and texts into the label encoder. Then
we sample a large number of content embeddings
from the content prior pθ(Zc|C). All combinations
of label embeddings and content embeddings are
fed to the generator to generate candidate examples.
We find that the candidates of low quality are not
in accordance with the target labels. Hence, we
perform quality control by filtering out irrelevant
ones. Specifically, we project each candidate to a
latent representation using the label encoder, and
rank all candidates w.r.t. the Euclidean distance be-
tween each representation and its associated name
embedding. The top-k candidates are taken as the
final outputs.

3 Experiments

We evaluate our model on both continual few/zero
shot text classification and few-shot text style trans-
fer. The former requires sampling rich content
representations from seen tasks, while the latter
expects to retain task-independent contents from
inputs. In both cases, it is desirable for models
to systematically combine latent label and content
representations across tasks in a consistent manner.

The details of few-shot text style transfer
are available in Appendix C. We compare VAE-
DPRIOR with five style-transfer baselines and show
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superior results on two datasets in the few-shot set-
ting in terms of accuracy of style transfer, semantic
relevance and naturalness of the generated text.

3.1 Continual Zero/Few-shot Learning

Setting. The general setting of continual zero/few-
shot text classification has been introduced in Sec.
2. Following a conventional continual learning set-
ting (Lopez-Paz and Ranzato, 2017), a memory
Mk is associated with a task T (k) to store a fixed
number of training examples1 per seen task. Upon
the arrival of a new task, given the label names
in the task and optionally a support set, a genera-
tive model produces new task-specific examples.
A classifier is trained on a combined set of exam-
ples from the support set, the memories, and the
augmented examples, and evaluated on the test sets
of all seen tasks. The datasets we used are EMPA-
THETIC and TACRED . Please refer to Appendix
B.1 and B.2 for more details.
Evaluation. We use the widely adopted met-
ric ACCavg in continual learning, which mea-
sures the performance by averaging the ac-
curacies of the classifier on test sets of all
seen tasks {D(1)

test,...,D
(k)
test}, namely ACCavg =

1
k

∑k
i=1 acci (Lopez-Paz and Ranzato, 2017). In

addition, to measure the diversity of generated ex-
amples, we calculate the average similarity scores
between all pairs of examples within each label,
i.e. 1

|Y|
∑

i,j sim(xi,xj)1[argmax p(y|xi) ==

argmax p(y|xj)], where we use BLEU (Pap-
ineni et al., 2002) and word mover distance
(WMD) (Kusner et al., 2015) as the similarity func-
tions. The lower scores indicate more diversified
examples within each label.
Baselines. We compare five data augmentation
baselines: i) EDA (Wei and Zou, 2019) randomly
deletes, substitutes, inserts or swaps words in the
original sentences. ii) BERT (Ma, 2019) uses
BERT to determine the position to insert or sub-
stitute words. iii) RTT (Sennrich et al., 2015)
augments datasets by generating the paraphrases
of the original sentences through round-trip trans-
lation, iv) LAMBDA (Kumar et al., 2020) trains a
GPT2 to generate examples conditioned on the la-
bel text and uses a classifier to filter out low-quality
examples as in our work. v) EX2 (Lee et al., 2021)
applies T5 (Raffel et al., 2020) and extrapolation
technique to increase the diversity of generated ex-

1The examples in a memory are selected either from the
corresponding support set or augmented data.

Methods
TACRED EMPATHETIC

0 1 5 0 1 5

NO AUG 11.21 22.02 36.87 9.75 14.20 24.07
EDA - 20.64 32.83 - 13.72 20.16

BERT - 20.21 35.43 - 13.82 21.52
RTT - 24.23 33.60 - 14.06 20.37

LAMBDA 16.23 20.16 32.14 13.39 14.45 21.95
EX2 15.57 19.83 32.87 11.91 16.82 24.75

OPTIMUS 17.12 19.99 28.77 9.93 14.32 18.21
CASUAL-LENS 9.83 17.17 25.76 9.72 11.72 16.49
VAE-DPRIOR 31.34 37.31 44.17 18.08 22.71 31.82

Table 1: The ACCavg of the classifier across the tasks
with different data augmentation methods. ’-’ indicates
that zero-shot is not applicable to the corresponding
augmentation methods.

amples and deal with the low-resource setting. vi)
OPTIMUS (Li et al., 2020) is our backbone model
which is in an auto-encoder framework that uses
BERT as the encoder and GPT2 (Radford et al.,
2019) as the decoder. vii) CASUAL-LENS (Hu
and Li, 2021) improves the training of OPTIMUS

using an intervention and a counterfactual losses.
Both OPTIMUS and CASUAL-LENS are designed
for controllable text generation. We use them for
data augmentation by assessing their ability for
label-conditional generation.

Main Results and Discussions. We compare
first the baselines with our model in its best set-
ting, coined VAE-DPRIOR, which applies both the
disentanglement priors and the MMD regularizer
between the priors. The results in Table 1 show
that it outperforms all data augmentation baselines
on all zero/few-shot learning settings by significant
margins. The augmentation approaches such as
EDA , BERT and RTT generate adversarial ex-
amples of the original sentences via manipulation
of words or paraphrasing. However, adversarial
distributions are not the same as the true distribu-
tion, thus their generated examples do not improve
the continual learning performance. They even de-
grade the performance in the five-shot setting in
comparison to that without data augmentation.

Although LAMBDA , EX2 , OPTIMUS and
CASUAL-LENS aim to learn the true distribution
from labeled data, we observe that they often fail
to generate texts in accordance with correct labels,
especially for new tasks. Thus, their performance
cannot be improved given more labeled examples
of new tasks. In contrast, VAE-DPRIOR achieves
a significantly higher degree of compositional gen-
eralization across tasks, evident by high average
accuracy of the classifier trained on its generated
examples. The performance of the classifier further
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Datasets Metrics EDA BERT RTT LAMBDA EX2 OPTIMUS CASUAL-LENS VAE-DPRIOR

TACRED
BLEU↓ 38.24 28.12 96.83 95.85 26.61 47.04 18.78 4.14
WMD↓ 97.91 96.83 99.93 99.28 83.24 94.94 88.24 86.08

EMPATHETIC
BLEU↓ 31.64 24.97 96.79 74.82 44.55 55 12 9.46 5.57
WMD↓ 97.89 96.85 99.92 97.20 94.57 98.15 79.10 92.67

Table 2: The diversity scores of the generated examples measured with BLEU and WMD on one-shot learning.

improves when our model is fed with more labeled
examples of new tasks.

We also evaluated diversity of the generated ex-
amples of all augmentation methods in the one-shot
setting, presented in Table 2. The generated sen-
tences from EDA , BERT and RTT are mostly
paraphrases of the original sentences. Therefore,
they cannot significantly diversify examples at the
semantic level. LAMBDA generates data exam-
ples conditioning on the label names and the first
k words of the original sentence, which also lacks
diversity. EX2 enriches the diversity by extrapolat-
ing the novel samples from the existing sentences
within the novel labels. OPTIMUS and CASUAL-
LENS employ a GAN (Goodfellow et al., 2014)
and a conditional GAN (Mirza and Osindero, 2014)
respectively to generate diversified latent vectors
for the generation of examples with the novel labels.
However, with merely one or five sentences per la-
bel, such methods only generate a small sample of
texts with novel labels. In contrast, VAE-DPRIOR

can combine plenty of seen content representations
acquired from the past with representations of new
labels to generate high-quality sentences.

3.2 Ablation Study

Disentanglement. To show the importance of ϵ-
disentanglement, we remove the constraint of the
optimization problem (2) by using only the pre-
trained model resulted from the first training step,
denoted by VAE-DPRIOR (AE). As shown in Ta-
ble 4, it suffers from a significant drop in terms
of all metrics in the one-shot setting. In the same
table, we also report the comparisons with alterna-
tive priors: (i) unconditional priors as in the vanilla
VAE (VAE (UNCOND)), (ii) the same priors but in-
creasing the variance coefficients of the two priors
from 1 to 50 (VAE-DPRIOR (LGVAR)), (iii) a Gaus-
sian mixture with randomly initialized means as
the content prior but do not fine-tune the parame-
ters of the prior (VAE-DPRIOR (RAND)), (iv) same
as (iii) but fine-tune the parameters of the content
prior (VAE-DPRIOR (RAND-FT)), and (v) a simple
factorized Gaussian conditioned on the averaged
sentence embedding of all sentences of initial tasks
as the content prior (VAE-DPRIOR (GAUSS)). In

Methods
TACRED EMPATHETIC

0 1 5 0 1 5

VAE-DPRIOR 31.34 37.31 44.17 18.08 22.71 31.82
- MMD 29.21 37.18 43.34 17.79 22.43 32.27

-/+ GAN 25.72 27.97 35.98 14.41 17.65 24.17
-/+ HSIC 8.46 14.09 42.25 18.02 21.39 32.28
-/+ IDEL 29.79 36.10 43.08 16.12 22.00 32.58

Table 3: The ACCavg of VAE-DPRIOR with different
disentanglement losses in zero/few-shot learning.

Methods
TACRED EMPATHETIC

ACCavg ↑ BLEU↓ WMD↓ ACCavg ↑ BLEU↓ WMD↓

VAE-DPRIOR 37.31 4.14 86.08 22.71 5.57 92.67
-/+ VAE-DPRIOR (AE) 30.80 4.76 88.80 17.18 7.11 95.90

-/+ VAE-DPRIOR (GAUSS) 13.74 6.16 85.25 13.28 14.31 92.78
-/+ VAE-DPRIOR (LGVAR) 23.24 2.83 57.44 19.22 20.74 94.69
-/+ VAE-DPRIOR (RAND) 20.41 75.46 97.53 12.60 23.96 93.84

-/+ VAE-DPRIOR (RAND-FT) 23.79 87.31 98.87 15.30 88.60 99.31
-/+ VAE (UNCOND) 19.23 46.80 95.19 17.03 54.34 97.04

-/+ VQ-VAE 27.84 13.27 88.78 10.14 11.41 87.29
-/+ C-VAE 13.22 2.97 59.69 13.15 5.26 76.87

-/+ VAMP-VAE 19.08 30.47 82.31 17.47 41.00 95.75

Table 4: The ACCavg and diversity scores of the models
with different VAE frameworks on one-shot learning.
Sample from prior label and content distributions.

the one-shot setting, the accuracy drops by more
than 7% and 3% on TACRED and EMPATHETIC

, respectively, using the alternative or no priors,
indicating the importance of ϵ-disentanglement. In-
creasing the variance of our priors also jeopardize
the ϵ-disentanglement. As evident in Fig. 3 us-
ing the t-SNE (Van der Maaten and Hinton, 2008),
it is clear that the priors of VAE (UNCOND) and
VAE-DPRIOR (LGVAR) are severely overlapped in
contrast to VAE-DPRIOR.

We further investigate how the disentanglement
regularizers influence our model by removing
MMD or replacing MMD with GAN, HSIC, and
IDEL (Cheng et al., 2020). As in Table 3, except
for MMD, the other disentanglement regularizers
bring almost no improvement to VAE-DPRIOR.
HSIC, GAN and IDEL enforce independence be-
tween latent variables but even hurt the perfor-
mance. We observe that the GAN-based regularizer
causes mode collapse, because VAE-DPRIOR with
GAN tends to generate overly similar examples. In
contrast, if we apply the MMD to the other types of
VAEs, such as a vanilla VAE, they lead to improved
performance (see Appendix B.3) because the other
VAEs do not have the ability to disentangle repre-
sentations.
Posterior Collapse. Classical VAEs, such as
vanilla VAE (VAE (UNCOND)), suffer from a notori-
ous problem called posterior collapse. Those mod-
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Figure 3: The label (red) and content (green) representations sampled from label and content priors of VAE-DPRIOR,
VAE-DPRIOR (LGVAR) and VAE (UNCOND) trained on TACRED .

els learn non-injective mappings between latent
variable values and the likelihoods; thus many la-
tent representations are mapped to the same model
outputs. We investigate this problem by compar-
ing VAE-DPRIOR with VAE (UNCOND), VQ-VAE

(Oord et al., 2017), C-VAE (Jang et al., 2016),
VAMP-VAE (Tomczak and Welling, 2018) and
VAE-DPRIOR with alternative priors described be-
fore in terms of diversity and accuracy. If there is
severe posterior collapse, models will generate sim-
ilar texts indicated by the high BLEU scores, and
the classifier trained on the augmented data would
perform poorly. Unsurprisingly, the results in Ta-
ble 4 show that VAE-DPRIOR largely outperforms
those VAEs. Although VAMP-VAE also introduces
conditional priors, the latent variables of its priors
do not require to be ϵ-disentangled with a small ϵ.
The VAE-DPRIOR (RAND-FT) even generate almost
identical texts.

Posterior collapse should lead to high ratios of
duplicated outputs. Thus we feed each model with
200 diverse latent variable values randomly sam-
pled from their priors and compute the duplicate
ratios per label. VAE-DPRIOR (RAND-FT) has the
highest ratio 97.38%, followed by VAE (UNCOND),
VAMP-VAE , VAE-DPRIOR (RAND-FT), C-VAE and
VQ-VAE with a duplicity ratio of 78.33%, 70.38%,
8.06%, 6.10% and 3.09%, respectively, on EMPA-
THETIC in the one-shot learning. In contrast, our
model generates no duplicates with those latent
variable values.

We also investigate the quality of the out-
puts of those models by sampling representations
from the posterior distributions, qϕ(Zy|X, y) and
qϕ(Zc|X,C). The duplicate ratio of VAE (UN-
COND) drops to merely 4.27%, while that of VAMP-
VAE increases to 97.95% on EMPATHETIC . Our
model still achieves a zero duplicate ratio. How-
ever, appendix B.4 shows that the models sampling
from posteriors achieve comparable results as those
sampling from priors in terms of accuracy. There-

Methods
TACRED EMPATHETIC

ACCavg ↑ BLEU↓ WMD↓ ACCavg ↑ BLEU↓ WMD↓

+ BERT + LABEL ENCODER 37.31 4.14 86.08 22.71 5.57 92.67
-/+ RANDOM 24.21 3.81 80.75 21.03 4.64 85.68

-/+ PERPLEXITY 23.32 4.72 80.98 16.59 4.81 73.94
-/+ BERT 33.21 3.96 81.81 20.40 7.81 75.77

Table 5: The ACCavg and diversity scores of VAE-
DPRIOR with different quality control methods on one-
shot learning.

fore, sampling contents from the posteriors may
reduce duplicate ratios for some of the models but
their generated examples still cannot have compa-
rable quality as our model.
Quality Control. We compare our inference
method (+BERT + LABEL ENCODER ) with three
alternative methods: i) only use a pre-trained BERT
to encode each output text into an embedding with
mean pooling and compare it with the average
BERT embeddings of labels and support sets (
+BERT ); ii) select k examples with the lowest per-
plexity calculated by GPT2 ( +PERPLEXITY ); and
iii) randomly select k outputs ( + RANDOM ). Table
5 shows that different methods indeed influence
the final performance of the data augmentation. Al-
though the BLEU and WMD metrics show that
baseline filtering methods all increase the diver-
sity, the quality of selected examples is actually
lower. But even with the worst performing filter-
ing method, ( +PERPLEXITY ), our method can
still outperform other baselines on both datasets.
We observe that BERT with the encoder trained
with label condition prior performs much better
than only using the backbone model, ( +BERT ), in
terms of selecting high quality examples, proving
that the label prior condition could help the encoder
generalize well on the novel labels.

4 Related Work

Variational Autoencoder. A large series of work
learn representations based on generative models,
such as Variational Autoencoder (VAE) (Kingma
and Welling, 2019). A standard VAE minimizes
the Kullback–Leibler divergence between the para-
metric posterior and the true posterior. Different
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posterior integrates various properties to the gener-
ative models, VQ-VAE (Oord et al., 2017) parame-
terizes a posterior distribution of discrete latent ran-
dom variables, Categorical-VAE (Jang et al., 2016)
and Vamp-VAE (Tomczak and Welling, 2018) con-
structs mixture of posteriors on learnable pseudo-
inputs. They are not capable of remembering rich
contents in NLG. Gaussian Mixture VAE (Dilok-
thanakul et al., 2016) uses the mixture of Gaussian
as the prior as well. It is not designed for disentan-
glement as it uses only one prior. An Identifiable
Double VAE (Mita et al., 2021) does not use two
different priors for different subspace. It uses only
one prior based on observed random variables to
remove the observed information from the latent
representations in order to achieve disentanglement.
In another word, it has no component to remem-
ber contents for continuous few shot setting. Our
work considers the posterior on multiple types of
disentangle random variables, which is potentially
of more expressiveness.

Disentangled Representation Learning. Disen-
tanglement of representations is one of the ultimate
goals of deep learning. The existing methods are
either unsupervised or supervised (Higgins et al.,
2018). The unsupervised ones mainly fall into ei-
ther the framework of VAE (Burgess et al., 2018) or
Generative Adversarial Learing (GAN) (Tran et al.,
2017). The recent works have also incorporate
causality theories for robustness (Hu and Li, 2021).
There are growing interests in applying disentan-
gled representation learning in NLP applications,
such as text style transfer (John et al., 2018a) and
mitigating gender bias (Liu et al., 2020). However,
it is challenging for those NLP approaches to work
in the low-resource settings because they do not
store rich content information inside models (Ro-
manov et al., 2018).

Controllable Text Generation. Our method de-
composes content and (attribute) label, where the
label could be considered as additional control sig-
nal for text generation. We connect our work to
those text style transfer (TST) and controllable text
generation (CTG). Representation disentanglement
is an important line of research in TST, which disen-
tangles content and attribute representations (John
et al., 2018a). Many disentanglement approaches
are proposed to minimize the dependence between
these two representations, such as mutual infor-
mation (Yuan et al., 2020) and orthogonality (Wei
et al., 2021). CTG controls the text generation of

language models by smart prompt design (Li and
Liang, 2021; Shin et al., 2020) or training condi-
tioned on the controllable variables (Li et al., 2020;
Hu and Li, 2021). Our work is highly aligned
with (Li et al., 2020; Li and Liang, 2021). Since (Li
et al., 2020) and (Li and Liang, 2021) have similar
implementations, and (Li et al., 2020) was designed
for generation conditioned on latent variables, we
pick (Li et al., 2020) as one of our baselines.

5 Conclusion

In this work, we propose a VAE model with disen-
tanglement priors for disentangled representation
learning in low resource controllable NLG tasks.
The disentanglement priors satisfy a novel prop-
erty called ϵ-disentangled which builds a constraint
space for the training problem. This model is able
to effectively combine rich content representations
sampled from a conditional content prior and task-
specific representations for new tasks. Its empirical
performance outperforms the baselines on contin-
ual zero-shot/few-shot text classification and few-
shot text style transfer by a wide margin.

Limitations

We have studied ϵ-disentangled only in the VAE
framework for task-specific language generation,
though we believe it should be useful for a wide
range of latent models. Although the content prior
of our model can already be used to sample rich
content representations, there is a possibility to
store more information and represent a even richer
content space reflected in real-world scenarios. In
addition, our model has not considered applica-
tion scenarios with limited computing resources.
Though it is beyond the scope of this work, due to
the heavy use of pre-trained large-scale language
models, the deployment of our model in those cases
is particularly challenging.
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A Implementation Details

We use learning rate of 5e-5 for our method. The training epochs for our generation model in continual
few-shot learning are 120 and 160 for EMPATHETIC and TACRED , respectively. All experiments are run
five times with different random seeds and we report the average accuracies. The number of clusters for
the deep content clustering loss are 1600, 800 and 3200 when training model on EMPATHETIC , TACRED
and PERSONALITY , respectively. All the methods are trained on the V100 GPUs. The number of total
parameters is 455864068 and the total number of total trainable parameters is 401751808. For style
transfer, the training epochs are 120 and 160 for EMPATHETIC and PERSONALITY , respectively. We
use BERT-small (Turc et al., 2019) as the backbone of the label and content encoders and GPT2-medium
as the decoder. For data augmentation in continual few-shot learning, each label is augmented with 50
examples generated by different augmentation methods. OPTIMUS is not designed for style transfer. We
adapt it to conduct style transfer by prepending a label phrase as a prompt before the input sentence. Style
transfer can be done by altering the current label phrase to novel labels in the new tasks.

B Continual Few-shot Learning

B.1 Setting

We consider a continual few-shot learning setting similar as (Antoniou et al., 2020). The text classification
model πc

θ : X → Y is trained sequentially on K distinct tasks {T (1), T (2),...,T (K)}. The initial task T (1)

includes the training and test set (D(1)
train,D

(1)
test) while the succeed tasks T (k≻1) includes the support and

test sets (D(k)
sup,D(k)

test), where we assume D(1)
train includes enough training data for each base class while

D(k)
sup = {x,y}N×|Ck|

i=1 includes only N -shot instances per new class. The classes on T (k) are disjoint from
classes of previous tasks, C1:k−1 ∩Ck = ∅. As a conventional continual learning setting as in (Lopez-Paz
and Ranzato, 2017), a memory Mk is associated with T (k) to store a fixed number of training instances
(either examples selected from the support sets or the synthetic data) per each seen task.

Upon arrival of each task, the classifier πc
θ is trained on a combined set of instances from the support

set, memory set, and the augmented examples generated by our generative model. To generate augmented
examples, we sample content from the fixed clustering obtained using the large training data in T (1), and
sample labels from C1:k. Note that for our model, as long as we have the generative model and store
the label embeddings, we could regenerate examples from all old tasks. Therefore, the memory is not
necessary for our model. But for a fair comparison with other baselines, we still assume there is fixed
memory for each old task and use only the examples from this memory to replay the classifier. We apply
our data augmentation method to EMAR (Han et al., 2020), a SOTA continual learning approach for text
classification. We follow EMAR (Han et al., 2020) for the classifier architecture and how to update its
parameters in continual learning.

B.2 Datasets

TACRED is a relation detection dataset which includes 42 relations. Following the settings in (Wang
et al., 2019; Han et al., 2020), examples are clustered into ten groups given the word embeddings of the
label phrases. 5 groups are randomly selected as the initial task. The support and test set from each task
are drawn from each of the rest tasks. We randomly generate the support sets five times with different
random seeds as well. Each support set includes 0, 1, or 5 examples.

B.3 Influence of MMD on VAEs

Table 6 shows the performance of VAEs on five-shot learning of TACRED with or without MMD. We
present only five-shot results as we found that the MMD brings almost no improvement to different VAEs
on zero/one-shot learning. But it consistently leads to performance improvement on all VAEs except for
VAE-DPRIOR when the number of shots increases. We conjecture that disentanglement regularization
perform better when there is enough label-specific information.
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ACCavg VAE-DPRIOR VAE (UNCOND) VQ-VAE C-VAE VAMP-VAE

w/o MMD 43.35 27.86 35.27 30.77 34.38
w/ MMD 43.13 29.72 36.27 33.32 35.91

Table 6: The ACCavg of VAE-DPRIOR and other VAEs with or without MMD of five-shot learning on TACRED .
The representations are sampled from the label and latent representations from the posterior distributions.

Methods
TACRED EMPATHETIC

ACCavg ↑ BLEU↓ WMD↓ ACCavg ↑ BLEU↓ WMD↓

VAE-DPRIOR 37.11 4.06 86.64 28.40 5.10 88.74
-/+ VAE-DPRIOR (GAUSS) 20.21 57.73 96.83 15.67 64.27 98.10
-/+ VAE-DPRIOR (RAND) 26.13 68.69 97.02 14.20 100.00 100.00

-/+ VAE-DPRIOR (RAND-FT) 25.82 40.49 94.16 17.31 50.49 96.93
-/+ VAE (UNCOND) 27.06 11.78 91.30 18.60 20.74 94.69

-/+ VQ-VAE 28.12 12.68 88.28 11.85 10.03 86.27
-/+ C-VAE 16.82 5.49 69.28 13.80 10.31 89.51

-/+ VAMP-VAE 17.46 100 100 16.58 98.19 99.92

Table 7: The ACCavg and diversity scores of the models with different VAE frameworks on one-shot learning. The
representations are sampled from the posterior label and content distributions.

B.4 Influence of Sampling from Posterior Distribution
Table 7 shows the performance of the classifiers using augmented data sampled from posterior distributions
of VAEs. Since sampling representations from posterior distributions, qϕ(Zy|X, y) and qϕ(Zc|X,C),
requires text X as the input, we feed all the text from the training sets in previous tasks to the content
encoder to obtain the content representations and the text in the support set of new tasks to the label
encoder to obtain the label representations. We combine the two types of representations to get augmented
data for new tasks. Notice that the VAE-DPRIOR (AE) setting in Table 4 adopts a similiar way to sample
examples for data augmentation except that the content and label representations zc and zy are generated
by using LabelEncoder and ContentEncoder directly.

B.5 Accuracies of VAE-DPRIOR on PERSONALITY and FEWREL

Table 8 shows the performance of the baselines and VAE-DPRIOR on one-shot learning of PERSONALITY

and FEWREL . Please notice that we use the exact same FEWREL dataset as in (Wang et al., 2019; Han
et al., 2020) except that we split the tasks in a different way. VAE-DPRIOR performs best on both datasets
as well.

ACCavg NO AUG EDA BERT RTT LAMBDA EX2 OPTIMUS CASUAL-LENS VAE-DPRIOR

PERSONALITY 8.65 10.22 10.52 11.40 10.58 12.51 9.15 7.74 15.48
FEWREL 42.64 46.88 53.93 46.45 46.71 45.09 34.08 19.82 71.81

Table 8: The ACCavg of the baselines and VAE-DPRIOR in one-shot learning on PERSONALITY and FEWREL .

B.6 Accuracies of VAE-DPRIOR using Soft and Hard EM
Table. 9 shows the VAE-DPRIOR on two datasets with soft and hard EM. The temperature τ for soft EM
is set as 0.5. VAE-DPRIOR with soft EM has higher performance. However, we select the hard EM as
our main setting because it brings a faster training speed.

C Few-shot Text-style Transfer

C.1 Setting
We follow the common non-parallel text style transfer setting as in (Nangi et al., 2021), where each text
sample x is associated with a style label y. In the few-shot setting, the style transfer model πs

θ : X → X ′

is pre-trained on a training set, Dtrain, which includes abundant training data (e.g. more than 50 instances
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ACCavg TACRED EMPATHETIC

Hard EM 37.31 22.71
Soft EM 39.47 25.43

Table 9: The ACCavg of VAE-DPRIOR in one-shot learning on TACRED and EMPATHETIC with hard and soft
EM.

per style) for each base style Cb. After pre-training, the model parameters would be frozen with only the
label embeddings updated based on a support set, Dsup = {x,y}N×|Cn|

i=1 , which includes only N -shot
instances for each one of |Cn| novel styles. Although VAE-DPRIOR can be easily fine-tuned on the
support sets, we found the fine-tuning brings negligible performance gain in the few-shot setting. The test
set Dtest is sampled from both Dtrain and a corpus D′

train which is from the same distribution of Dtrain.
The style transfer task is to transfer text in Dtest into the styles of Cn in Dsup.

C.2 Datasets
EMPATHETIC dataset includes around 18,000 dialogues. Each dialogue consists of a context description
and an associated empathetic type. PERSONALITY includes 200,000 image captions associated with 215
personality types. Since many personalities are highly correlated in terms of their semantics, we cluster
these personalities into 35 groups and manually select one type for each group. For EMPATHETIC , we
use the context descriptions as the original text to be transferred and their corresponding empathetic types
as the styles. For PERSONALITY , we use the image captions and their personalities. We randomly select
examples of 28 empathetic types and 30 personality types in the training set and draw support sets from
the rest empathetic and personalities types. We draw 0, 1 or 5 examples for each held out label. After
drawing, the rest examples are considered as the test examples. For each k-shot, the support and test sets
are drawn five times with different random seeds to avoid bias during evaluation. Our experiments would
be run on all the support sets and obtain the average performance.

C.3 Evaluation.
We use three automatic metrics, Style-transfer Accuracy, Self-WMD and Perplexity, to evaluate the
accuracy of style transfer, semantic relevance and naturalness of the generated text, respectively. For
Style-transfer Accuracy, we train a BERT (Devlin et al., 2018) classifier on styles. The averaged accuracy
on target labels indicates the correctness of style transfer. Self-WMD (Kusner et al., 2015) measures WMD
between the original text and the transferred text. Perplexity is estimated by a statistical language model
in English released by (Koehn et al., 2007) 2.

C.4 Baselines.
We compare five style transfer baselines: i) R-VAE-AVG (John et al., 2018b) learns the disentangled
label and content representations. ii) R-VAE-CF (Nangi et al., 2021), on the base of R-VAE-AVG ,
uses a counterfactual reasoning module to control the generation of label representations. iii) ZF (Smith
et al., 2019) is a back-translation model, which aims to deal with the zero-shot text transfer problem.
The two controllable text generation baselines used in the continual few-shot setting, iv) OPTIMUS and
v) CASUAL-LENS , are extended for style transfer as well. Please refer to the Appendix A and their
original work for the detailed style transfer implementation.

C.5 Inference.
The inference of VAE-DPRIOR for the text style transfer differs from the inference for continual few-shot
learning. Given a new style, we start with sampling a name representation and text representations from
the posterior label distribution, qϕ(Zy|X, y), conditioned on its associated name phrase and text sequences
in the support set, respectively. Then, we create the label representation zy for the new style by averaging
its associated text representations and its name representation. The content representations are sampled
from the posterior content distribution, qϕ(Zc|X,C), conditioned on the text to be style-transferred. After

2https://www.statmt.org/moses/RELEASE-4.0/models/cs-en/lm/
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Methods
EMPATHETIC PERSONALITY

Style Accuracy↑ Self-WMD↑ Perplexity↓ Style Accuracy↑ Self-WMD↑ Perplexity↓
R-VAE-AVG 28.49 90.19 627.49 27.73 86.06 796.99
R-VAE-CF 26.85 90.82 657.22 19.69 87.25 850.86

ZF 25.58 90.05 943.56 20.92 83.37 765.58
OPTIMUS 27.54 94.03 829.43 18.25 94.96 919.58

CASUAL-LENS 39.27 88.74 1157.28 20.52 89.62 1059.17
VAE-DPRIOR 32.67 95.69 236.20 49.58 93.44 311.07

Table 10: The results of one-shot style-transfer on both datasets.

feeding the content representations and the representations of target styles to the generator, we obtain the
most likely outputs by beam-search.

C.6 Main Results and Discussions.
The results in Table 10 show that our method performs better than all baselines in terms of all metrics
except Style Accuracy on EMPATHETIC and Self-WMD on PERSONALITY . An ideal style transfer model
should find a good balance in terms of all three evaluation metrics. Though CASUAL-LENS and OPTIMUS

can achieve the best on a single metric, they fail to perform well across all the metrics. We inspect that
CASUAL-LENS performs poorly on preserving the content of the original sentence while OPTIMUS

performs poor on style transfer and basically replicates the original sentences in PERSONALITY dataset.
In contrast, the average ranking of VAE-DPRIOR on three metrics are highest among all baselines. Our
model performs particularly well in terms of semantic relevance and naturalness while still keeping high
accuracies of style transfer. Other methods that utilize disentanglement learning, including R-VAE-AVG
, R-VAE-CF and CASUAL-LENS , often perform well on one metric while lose on the other metrics. We
conjecture this is due to their methods do not fully disentangle the representations so they can not balance
well between content preservation and style transfer.

C.7 Complete Automatic Evaluation Results of Style Transfer on two Datasets
The full results of automatic evaluation on Empathetic dataset and Personality dataset are presented in
Table 11 and Tabel 12 respectively. Overall, on all few-shot settings, our method perform the best in
terms of the average rank among all baselines. Although on EMPATHETIC dataset, R-VAE-AVG and
CASUAL-LENS outperform our method in term of the Style Accuracy. Through inspection, we found that
R-VAE-AVG and CASUAL-LENS tend to overfit to support set after finetuning merely on a small number
of training instances. For example, R-VAE-AVG tends to copy the text from support set, which gains
higher Style Transfer Accuracy. But this effect makes the Perplexity and Self-WMD of R-VAE-AVG
and CASUAL-LENS decreasing from zero-shot to five-shot learning. In contrast, VAE-DPRIOR performs
steady across different(zero/few-shot) settings. The Style Accuracy of VAE-DPRIOR is increasing without
losing performance on content preservation and naturalness of sentences.

Methods
Style Accuracy↑ Self-WMD↑ Perplexity↓ AVG Rank↓

0 1 5 0 1 5 0 1 5 0 1 5

R-VAE-AVG 33.99 28.49 41.90 91.39 90.19 90.03 796.47 627.49 896.19 3.3 3.00 3.33
R-VAE-CF 20.39 26.85 26.99 93.95 90.82 90.75 825.80 657.22 858.61 4.67 3.67 4

ZF 21.85 25.58 26.60 93.64 90.05 89.51 785.29 943.56 609.68 3.67 5.33 4.33
OPTIMUS 26.26 27.54 27.50 94.24 94.03 93.91 814.45 829.43 826.63 3.33 3.33 3

CASUAL-LENS 34.53 39.27 41.32 89.74 88.74 88.42 1236.31 1157.28 1332.15 4.33 4.33 4.67
VAE-DPRIOR 32.84 32.67 34.55 95.68 95.69 95.70 233.03 236.20 233.66 1.67 1.33 1.67

Table 11: The results of zero, one and five-shot learning of style transfer on EMPATHETIC dataset.

C.8 Human evaluation result
We hire three crowd-workers to rate the sentences with score from 1-5 to indicate whether the the generated
sentences belong to the target styles and whether the content of generated sentences are consistent with
the original sentences. To evaluate naturalness, we follow the evaluation setting in (Mir et al., 2019) to
let the crowd-workers distinguish the human generated sentences from the model generated sentences.
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Methods
Style Accuracy↑ Self-WMD↑ Perplexity↓ AVG Rank↓

0 1 5 0 1 5 0 1 5 0 1 5

R-VAE-AVG 21.84 27.73 21.20 91.94 86.06 86.91 832.40 796.99 1202.90 3 3.33 4.33
R-VAE-CF 19.88 19.69 18.72 95.62 87.25 87.92 852.62 850.86 1205.90 2.67 4.33 5

ZF 16.98 20.92 21.80 87.45 83.37 83.63 643.00 765.58 891.42 4.67 3.67 3.67
OPTIMUS 17.79 18.25 19.21 95.32 94.96 95.00 966.29 919.58 955.78 4 4 3

CASUAL-LENS 19.46 20.52 22.69 91.30 89.62 89.15 1238.83 1059.17 1567.96 5.00 4.33 3.67
VAE-DPRIOR 50.64 49.58 55.51 93.69 93.44 93.46 322.03 311.07 304.36 1.67 1.33 1.33

Table 12: The results of zero, one and five-shot learning of style transfer on PERSONALITY dataset.

Method Content↑ Style↑ Nature↓ Rank↓
R-VAE-CF 1.33 2.26 0.45 2.67

R-VAE-AVG 1.20 2.15 0.44 3.33
ZF 1.17 2.01 0.57 5.33

OPTIMUS 2.33 1.85 0.56 4
CASUAL-LENS 2.04 2.24 0.58 4
VAE-DPRIOR 2.44 2.40 0.52 1.67

Table 13: Human evaluation results, evaluated by content preservation (Content), style transfer correctness (Style),
naturalness (Nature), and average rank of the three criterions (Rank).

The naturalness score in Tab. 13 indicates successful rate of distinguishing the sentences. The easier the
sentence is distinguished, the less natural the sentence is. We achieve far superior performance in terms of
both Content Preservation and Style Transfer metrics. Although on Naturalness, our method only ranks
third. We conjecture that the generated sentences by VAE-DPRIOR is usually longer than the original
sentences. The crowd-workers could easily grasp this pattern and distinguish the sentences. Besides, with
Naturalness metric, the gap between different methods are actually insignificant, which are all close to
50%.

C.9 Generated Examples of Style Transfer

Methods Original Style: prepared → Target Style: anticipating

ZF i have m so scared of spiders. i can’t stand those things!

R-VAE-CF i was schocked to see my favorite band wasnt coming to my city this tour

R-VAE-AVG i cannot wait until next month. i had a feeling my birthday was.

OPTIMUS I thought I didn’t planned for my job interview at jobster trip . I felt like going off

CASUAL-LENS I felt very apprehensive when I went to my interview

VAE-DPRIOR
I felt really good at my job interview at work today I felt I did well at the job I worked
out for when I saw I had done well in my interview for the position I was looking
forward to doing at that time .

Table 14: The style transfer results of different models trained on dataset EMPATHETIC with one-shot learning
setting. The original sentence, "i felt like i did well at my job interview yesterday. i went in feeling confident", is
transferred from the original style "prepared" to the target style "anticipating".

Table 14 and 15 depict the examples of generate examples of different style transfer methods trained on
EMPATHETIC and PERSONALITY , respectively.

D Related Work Supplementary

Data Augmentation. Data augmentation (DA) encompasses methods of increasing training data diversity
without directly collecting more data (Feng et al., 2021), which can be roughly categorized into (1)
rule-based methods (Wei and Zou, 2019), (2) example interpolation methods (Zhang et al., 2018), and
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Methods Original Style: appreciative → Target Style: angry

R-VAE-CF the amount of shadows in the middle of.

R-VAE-AVG the amount of players in the left of building.

ZF these mountains just look so nice! i would love to see them.

OPTIMUS fl in the fissip , the fissile columns in theTyphris ’ windows in the Sky .

CASUAL-LENS the horizon is filled with dazzling colors .

VAE-DPRIOR
Look at the splashes on the rocks in the middle of the street , I hate looking at rocks .
They’re so ugly looking , and I can’t stand to look at them anymore .

Table 15: The style transfer results of different models trained on dataset PERSONALITY with one-shot learning
setting. The original sentence, "Look at the fissures in the strata columns, beautiful.", is transferred from the original
style "appreciative" to the target style "angry".

(3) model-based methods (Wu et al., 2019; Sennrich et al., 2015; Anaby-Tavor et al., 2020; Kumar et al.,
2020; Lee et al., 2021; Shiri et al., 2022). Data augmentation generally encourages better performance
in low-resource scenarios, such as few-shot learning (Kumar et al., 2019) and low-resource language
learning (Xia et al., 2019). Although data augmentation has been well applied in many tasks (Feng et al.,
2021), there has been limited work on DA for conditional text generation (Feng et al., 2020).
Continual Few-shot Learning. The primary challenge addressed in continual learning literature is
overcoming catastrophic forgetting (French, 1999; Biesialska et al., 2020; Wu et al., 2022), Various
approaches have been proposed to tackle the forgetting problem, e.g., rehearsal-based methods (Han
et al., 2020; de Masson d’Autume et al., 2019; Li et al., 2021; Wu et al., 2021), regularization-based
methods (Li et al., 2019; Huang et al., 2021), and dynamic architecture methods (Ke et al., 2021; Lin et al.,
2020). Continual few-shot learning is an even more challenging yet realistic setting which encourages
learners the quick adaptation ability during learning (Jin et al., 2021; Yoon et al., 2020). Comparing to
the numerous researches out of NLP applications (Yap et al., 2021; Yoon et al., 2020; Dong et al., 2021),
continual few-shot language learning is still an under-explored area (Jin et al., 2021).

E Proofs

E.1 Discussion about ϵ-Disentangled

To achieve information purity, the learned models should follow the structure illustrated in Fig.2(a) that
there is no dependency between C and Zy, and similarly no dependency between y and Zc. However, prior
works on disentangled representation learning regularize the models by minimizing mutual information
I(Zc,Zy) between Zc and Zy such that Zc ⊥⊥ Zy when I(Zc,Zy) = 0 (Cheng et al., 2020; Wang and
Jordan, 2021). In another word, prior works only require that there is no edge between Zc and Zy in the
Bayesian model. However, this does not imply I(Zc, y) = 0 and I(Zy, C) = 0. In the trained models,
C can still be the shared parent or child of two independent random variables using the regularization
from the prior works. In addition, the independence assumption between Zc and Zy does not always
hold in practice. For example, if Zy is a random variable for emotion categories and Zc represents events
influencing emotions, they are causally dependent. Forcing the independent assumption may deteriorate
model performance.

To address this limitation, we propose to regularize the priors of latent variables for encouraging
information purity. If we have a close look at I(Zy, y) =

∫
p(Zy, y) log

p(Zy ,y)
p(Zy)p(y)

, which is simplified

to
∫
p(y|Zy)p(Zy) log

p(Zy |y)
p(Zy)

, a high mutual information expects p(Zy) > 0 whenever p(Zy|y) is high.
Similarly, if we aim for an extremely small I(Zy, C), we expect a low p(Zy) or p(Zy) = 0 whenever
p(Zy|C) > p(Zy). If we design the priors in the way that their dense regions are not overlapped, we
achieve information purity by maximizing the corresponding mutual information.

We do not require absolute continuity for the associated divergence measure because when the priors
are ϵ-disentangled with a fairly low ϵ, one of the priors would have zero probability in the regions where
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the other prior has positive supports.

E.2 Latent Variable Non-identifiability

Wang et al. (2020) introduce the concept of latent variable non-identifiability and shows that it leads to
posterior collapse.

Definition E.1 (Latent variable non-identifiability (Wang et al., 2020)). Given a likelihood function
pθ(X|Z;θ) with parameters θ = θ̂ and a dataset D = {x1, ...,xn}, the latent variables Z are non-
identifiable if p(D|Z = z; θ̂) = p(D|Z = z′; θ̂) ∀z, z′ ∈ Z , where Z denotes the space of latent variable
values. As a consequence, p(D|Z; θ̂) = p(D; θ̂).

For the cases with more than one random variables (vectors), we extend this idea for latent condtional
non-identifiability.

Definition E.2 (Latent variable conditional non-identifiability). Given a likelihood function
pθ(X|Za,Zb;θ) with parameters θ = θ̂ and a dataset D = {x1, ...,xn}, the latent variables Za are
non-identifiable conditioned on Zb if p(D|Za,Zb; θ̂) = p(D|Zb; θ̂).

Proposition E.3. Given a likelihood function pθ(X|Za,Zb;θ) with parameters θ = θ̂ and a dataset
D = {x1, ...,xn}, the latent variables Za are non-identifiable conditioned on Zb if p(Za|Zb; θ̂) = 1.

Proof :
Given p(Za|Zb; θ̂) = 1,

p(D|Zb; θ̂)p(Za|Zb; θ̂) = p(D|Za,Zb; θ̂)

p(D|Zb; θ̂) = p(D|Za,Zb; θ̂)

For all xi in D, if p(xi|Za = z,Zb = z) > p(xi|Za = z,Zb = z′) with z ̸= z′ for all z, z′ ∈ Z ,
where Z is the space of latent variable values, p(Za|Zb) is high because both random variable vectors are
almost a copy to each other. In this case, if pa(Za) and pb(Zb) share the same dense regions or even the
same, such a conditional non-identifiable case will not be penalized during training. In contrast, if pa(Za)
and pb(Zb) are ϵ-disentangled with a small ϵ, the parameters leading to the conditional non-identifiable
cases are disencouraged by receiving zero or a low likelihood p(xi|Za = z,Zb = z;θ)pa(z)pb(z).

E.3 Proofs for VAE with Disentanglement Priors

The main difficulty of maximum likelihood learning for the optimization problem (2) is that the marginal
probability of data p(X|C, y) under the model is intractable. We apply the variational techniques to
derive the ELBO for the optimization problem (2), whose constraint is removed by introducing the
disentanglement priors.

In the VAE framework, we adopt variational distributions to approximate true distributions (Kingma
and Welling, 2019), which ends up maximizing an ELBO. More specifically, we introduce a variational
posterior qϕ(Zc,Zy|X, C, y) to approximate the true posterior pθ(Zc,Zy|X, C, y), and derive the ELBO
for pθ(X|C, y) in Sec. E.3.1:

Eqϕ(Zc,Zy |X,C,y)[log pθ(X,Zc,Zy|C, y)
− log qϕ(Zc,Zy|X,C, y)] (8)

We show in Sec. E.3.2 that the ELBO objective is further decomposed into:
Lr︷ ︸︸ ︷

Eqϕ(Zc,Zy|X,C,y)[log pθ(X|Zc,Zy)]

− DKL(qϕ(Zc|X, C)∥pθ(Zc|C))

− DKL(qϕ(Zy|X, y)∥pθ(Zy|y))

(9)

where the first term is referred to as the reconstruction loss Lr, the other terms constitute regularizers.

E.3.1 Evidence lower bound (ELBO)
log p(X) ≥ Eqϕ(Zc,Zy|X,C,y)[log pθ(X,Zc,Zy|C, y)− log qϕ(Zc,Zy|X, C, y)]
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Proof:
DKL(qϕ(Zc,Zy|X, C, y)∥pθ(Zc,Zy|X, C, y))

=−
∫

qϕ(Zc,Zy|X,αc,βy)
[
log

pθ(Zc,Zy|X, C, y))

qϕ(Zc,Zy|X,αc,βy)

]
dZcdZy

=−
∫

qϕ(Zc,Zy|X,αc,βy)
[
log

pθ(X,Zc,Zy|C, y))
qϕ(Zc,Zy|X,αc,βy)pθ(X|αc,βy)

]
dZcdZy

=−
∫

qϕ(Zc,Zy|X,αc,βy)
[
log

pθ(X,Zc,Zy|C, y))
qϕ(Zc,Zy|X,αc,βy)

− log pθ(X|αc,βy)
]
dZcdZy

DKL(qϕ(Zc,Zy|X, C, y)∥pθ(Zc,Zy|X, C, y)) ≥ 0, therefore:

log pθ(X|αc,βy) ≥
∫

qϕ(Zc,Zy|X,αc,βy)
[
log

pθ(X,Zc,Zy|C, y))
qϕ(Zc,Zy|X,αc,βy)

]
dZcdZy

=Eqϕ(Zc,Zy|X,C,y)[log pθ(X,Zc,Zy|C, y)− log qϕ(Zc,Zy|X, C, y)]

E.3.2 ELBO decomposition

If Zc ⊥⊥ Zy|C, then
ELBO =Eqϕ(Zc,Zy|X,C,y)[log pθ(X|Zc,Zy)]− DKL(qϕ(Zc|X, C)∥pθ(Zc|C))− DKL(qϕ(Zy|X, y)∥pθ(Zy|y)).

Proof:

Let pθ(X,Zc,Zy|C, y) = pθ(X|Zc,Zy)pθ(Zc|C)pθ(Zy|y), then
Eqϕ(Zc,Zy|X,C,y)[log pθ(X,Zc,Zy|C, y)− log qϕ(Zc,Zy|X, C, y)]

=

∫
qϕ(Zc,Zy|X,αc,βy)

[
log

pθ(X|Zc,Zy)pθ(Zc|C)pθ(Zy|y))
qϕ(Zc,Zy|X,αc,βy)

]
dZcdZy

=Eqϕ(Zc,Zy|X,C,y)[log pθ(X|Zc,Zy)] +

∫
qϕ(Zc,Zy|X,αc,βy)

[
log

pθ(Zc|C)pθ(Zy|y))
qϕ(Zc,Zy|X,αc,βy)

]
dZcdZy

=Eqϕ(Zc,Zy|X,C,y)[log pθ(X|Zc,Zy)] +

∫
qϕ(Zc,Zy|X, C, y)

[
log

pθ(Zc|C)pθ(Zy|y))
qϕ(Zc|Zy,X, C)qϕ(Zy|X, y)

]
dZcdZy

Because Zc ⊥⊥ Zy|C, qϕ(Zc,Zy|X, C, y) = qϕ(Zc|X, C)qϕ(Zy|X, y), thus

Eqϕ(Zc,Zy|X,C,y)[log pθ(X|Zc,Zy)] +

∫
qϕ(Zc|X, C)qϕ(Zy|X, y)

[
log

pθ(Zc|C)pθ(Zy|y))
qϕ(Zc|X, C)qϕ(Zy|X, y)

]
dZcdZy

=Eqϕ(Zc,Zy|X,C,y)[log pθ(X|Zc,Zy)]− DKL(qϕ(Zc|X, C)qϕ(Zy|X, y)∥pθ(Zc|C)pθ(Zy|y))
=Eqϕ(Zc,Zy|X,C,y)[log pθ(X|Zc,Zy)]− DKL(qϕ(Zc|X, C)∥pθ(Zc|C))− DKL(qϕ(Zy|X, y)∥pθ(Zy|y)).

Note that, the last step is derived by applying the chain rule of KL divergence.

E.3.3 Derivation of the regularization term for latent label representations

If qϕ(Zy|X, y) = N (Zy;µ
q
y, diag(σ2)y) and pθ(Zy|y) = N (Zy;µ

p
y, λyI), where µq

y, logσy =
LabelEncoder(X) and µp

y = WyΦ(l), then we have:

DKL(qϕ(Zy|X, y)∥pθ(Zy|y)) =
1

2λy
∥Zy − µp

y∥2 − logσq
y + const

Proof: Let Zy = µq
y + σy ⊙ ϵy, where ϵy is drawn from N (0, I).

DKL(qϕ(Zy|X, y)∥pθ(Zy|y)) =Eqϕ(Zy |X,y)

[
log qϕ(Zy|X, y)− log pθ(Zy|y)

]

=Ep(ϵy)

[
log qϕ(Zy|X, y)− log pθ(Zy|y)

]

pθ(Zy|y) = N (Zy;µ
p
y, λyI), thus

log pθ(Zy|y) = − 1

2λy
∥Zy − µp

y∥2 + const

Using the reparameterization trick,

log qϕ(Zy|X, y) = log p(ϵy)− log |det
(∂Zy

∂ϵy

)
|

= logN (ϵy; 0, I)− logσq
y

Put them together

Ep(ϵy)

[
log qϕ(Zy|X, y)− log pθ(Zy|y)

]
=

1

2λy
∥Zy − µp

y∥2 − logσq
y + const
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E.3.4 Derivation of the regularization term for latent content representations

We assume qϕ(Zc|X, C) = N (Zc;µ
q
c, diag(σ2

c )) and pθ(Zc|C) =
∑K

k=1 p(M = k)N (Zc;µ
p
c,k, λcI)

then we have

DKL(qϕ(Zc|X, C)∥pθ(Zc|C)) =
K∑

k=1

p(M = k|Zc)
[ 1

2λc
∥Zc − µp

c,k∥2
]
− logσc + const

Proof:

Let Zc = µq
c + σc ⊙ ϵc, where ϵc is drawn from N (0, I).

DKL(qϕ(Zc|X, C)∥pθ(Zc|C)) =Eqϕ(Zc|X,C)

[
log qϕ(Zc|X, C)− log pθ(Zc|C)

]

=Ep(ϵc)

[
log qϕ(Zc|X, C)− log pθ(Zc|C)

]

=Ep(ϵc)

[
log qϕ(Zc|X, C)

]
− log pθ(Zc|C)

Using the reparameterization trick,
Ep(ϵc)

[
log qϕ(Zc|X, y)

]
= − logσq

c

It remains to estimate log pθ(Zc|C), which is a Gaussian mixture. Let γk ∈ {0, 1} indicate the kth
component of z, the likelihood function for z takes the form

pθ(z,γ) =
K∏

k=1

p(M = k)γkN (z|µp
c,k, λcI)

γk

In the work, we consider using EM (Bishop and Nasrabadi, 2006), which estimates the expected value
of the complete log likelihood function given by

Eγ

[
log pθ(z,γ)

]
=

K∑

k=1

E(γk){log p(M = k) + logN (z|µp
c,k, λcI)}

=
K∑

k=1

E(γk){−
1

2λc
∥Zc − µp

c,k∥2}}+ const (10)

where E(γk) = p(M = k|zc) =
p(M=k)N (z|µp

c,k,λcI)∑K
j=1 p(M=j)N (z|µp

c,j ,λcI)
, estimated in the E-step.

For hard EM:

E-step. For each latent content representation zc, the most likely component Gaussian is given by
k∗ = argmaxk pθ(M = k)N (Zc;µ

p
c,k, λcI).

M-step. Put the estimated k∗ into Eq. (10), this step aims to optimize
K∑

k=1

γk∗{−
1

2λc
∥Zc − µp

c,k∥2}+ const

Put them together, we have

Ep(ϵc)

[
log qϕ(Zc|X, C)

]
− log pθ(Zc|C) =

K∑

k=1

p(M = k|Zc)
[ 1

2λc
∥Zc − µp

c,k∥2
]
− logσc + const

F Model Regularization

F.1 HSIC Regularization

In each batch, the model collects the latent representations (Zc,Zy), which are a content representation
matrix and a label representation matrix respectively. We apply the linear kernel to build a Gram matrix
Kc = ZcZ

⊺
c for content and a Gram matrix Ky = ZyZ

⊺
y for labels. The HSIC metric is computed as

HSIC(Zc,Zy) =
1

m2
trace(KcHKyH) (11)

where H = I− 1
m11⊺ and m is the size of the batch. Alternatively, we can try the Gaussian Kernel for

both types of representations.
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F.2 MMD Regularization
The MMD divergence is given by (Gretton et al., 2012):

MMD(Zc, Zy) =
1

m2

m∑

i=0

m∑

j=0

k(zc
i , z

c
j) − 2

m2

m∑

i=0

m∑

j=0

k(zc
i , z

y
j ) +

1

m2

m∑

i=0

m∑

j=0

k(zy
i , z

y
j ) (12)

where k(·, ·) is a kernel function, whereby we choose the linear kernel in our experiments. Maximizing
MMD increases the similarity of the latent representations of the same type, while decreases the similarity
of the latent representations across types.
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