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Abstract

Recent work on applying large language mod-
els (LMs) achieves impressive performance
in many NLP applications. Adapting or post-
training an LM using an unlabeled domain cor-
pus can produce even better performance for
end-tasks in the domain. This paper proposes
the problem of continually extending an LM
by incrementally post-train the LM with a se-
quence of unlabeled domain corpora to expand
its knowledge without forgetting its previous
skills. The goal is to improve the few-shot
end-task learning in these domains. The re-
sulting system is called CPT (Continual Post-
Training), which to our knowledge, is the first
continual post-training system. Experimental
results verify its effectiveness.1

1 Introduction

Recent work has shown that large LMs have the
ability to perform few-shot (or even zero-shot)
learning well (Brown et al., 2020b; Rae et al.,
2021; Smith et al., 2022). Post-training (a.k.a.,
domain-adaptive pre-training or pre-finetuning) an
LM with a large unlabeled domain corpus before
end-task fine-tuning in the domain achieves better
results (Xu et al., 2019; Gururangan et al., 2020a)
than directly fine-tuning the LM. This paper goes
a step further to study the problem of improving
an LM’s ability to handle new and ever emerging
domains. For this, one needs to continually post-
train the LM with a sequence of domains. A key
issue associated with this problem is catastrophic
forgetting (CF).2 This paper thus investigates how
to continually extend the LM’s knowledge with-
out suffering from CF. From a broader perspective,
since training a large LM from scratch is extremely

∗Now at Google Research leishu@google.com
1https://github.com/UIC-Liu-Lab/CPT
2CF means that learning a new task/domain may need to

modify the existing network, which degrades the performance
of previous tasks/domains (McCloskey and Cohen, 1989).

expensive and computation intensive, incremen-
tally updating the LM with the latest language data
reflecting the ever changing development of the
language itself, social events and the knowledge
from different fields is becoming more and more
critical. As humans are very effective at incremen-
tal learning, if we can imitate this human capability
with little or no forgetting, we will be pushing the
AI research forward significantly.

The proposed system, called CPT, is a continual
learning (CL) system for post-training. Starting
from a pre-trained LM (e.g., RoBERTa (Liu et al.,
2019b)), it incrementally post-trains the LM with a
sequence of domains using their unlabeled corpora.
Once a task (a domain in our case) 3 is trained,
its data is no longer accessible. At any time, the
resulting continually post-trained LM can be used
by end-tasks in the trained domains. This is in
the task-incremental learning (TIL) setting of CL,
where the task id (domain id in our case) is pro-
vided when the learned model of a task needs to
be used later (the use of domain id is discussed
in Sec. 2.1).4 This paper proposes an effective ap-
proach called CPT and focuses on the challenging
and practical scenario of few-shot end-task learning
after post-training a sequence of domains.

Continual post-training is different from conven-
tional CL (Chen and Liu, 2018). The key difference
is that in conventional CL, each task is an end-task,
but in our case the end-task involves fine-tuning
the continual post-trained LM (called p-LM). This
causes major forgetting, which we call the catas-
trophic butterfly effect (CBE) and does not happen
in conventional CL. Our proposed system, CPT,
can solve both CF and CBE, based on a novel hard
masking mechanism (Sec. 2.2) and can achieve
no forgetting. As shown in Sec. 3.3, naively ap-

3We will use the term domain in this paper to be consistent
with the post-training literature

4CL has two other settings: class-incremental learning and
domain-incremental learning (van de Ven and Tolias, 2019).
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plied existing CL systems cannot effectively pre-
vent CF (even though some existing techniques
have shown almost perfect CF prevention ability in
conventional CL).

Experiments in 4 domains and their correspond-
ing end-tasks demonstrate the effectiveness of the
proposed CPT system.

Related Work. Overcoming CF is a major goal
of CL (Chen and Liu, 2018). There are many ex-
isting approaches, e.g., regularization-based ap-
proaches (Kirkpatrick et al., 2016; Seff et al., 2017),
replay-based approaches (Rebuffi et al., 2017;
Lopez-Paz and Ranzato, 2017) and parameter iso-
lation based approaches (Serrà et al., 2018; Fer-
nando et al., 2017). Our CPT is based on parameter
isolation and uses masks in continual post-training.
Recently, CL has drawn attention in NLP. It has
been used for slot filling (Shen et al., 2019), lan-
guage learning (Li et al., 2019), sentence embed-
ding (Liu et al., 2019a), translation (Khayrallah
et al., 2018), cross-lingual modeling (Liu et al.,
2020b), question answering (Greco et al., 2019)
and text classification (Ke et al., 2021a,b; Sun et al.,
2020; Huang et al., 2021; Chuang et al., 2020;
Mehta et al., 2021; Madotto et al., 2020). How-
ever, none of them tries to improve an LM.

CPT is closely related to ELLE (Qin et al., 2022),
which does continual pre-training. The key differ-
ence is that ELLE starts from random initialization,
while our CPT starts from a pre-trained LM. We
tried to adapt ELLE for continual post-training by
learning from a pre-trained RoBERTa but it fails to
converge. This also indicates it is non-trivial to do
well in our setting. Readers can refer to Appendix
A for a full coverage of the related work.

2 Proposed CPT System

CPT continually post-trains RoBERTa (Liu et al.,
2019b). This is achieved by two continual learn-
ing plug-in (called CL-plugin) modules inserted
into each transformer layer of RoBERTa. CL-
plugin is inspired by adapters in (Houlsby et al.,
2019). While adapters can isolate different tasks,
one needs to allocate a new adapter for each task
and no knowledge can be shared among different
tasks’ adapters. The CL-plugin, however, is a CL
system that learns a sequence of tasks with adapters
shared by all domains. Figure 1 gives the CPT ar-
chitecture with two CL-plugins added to RoBERTa.

Sequential vs. Parallel CL-plugin. Instead of
following the original sequential adapter (Houlsby
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Figure 1: Architecture of CPT, which has two CL-
plugins inserted in the transformer layers of RoBERTa
in a parallel manner (FFN: feed-forward network). (A)
CPT for continual post-training. It uses a masked
language model (MLM) head for unsupervised post-
training of the CL-plugins only. (B) CPT for individual
fine-tuning. CPT is evaluated by the corresponding in-
dividual end-task performance of all post-trained tasks.
Each CL-plugin has numbers and colors indicating its
masks and is illustrated in Appendix B.

et al., 2019), CL-plugin adopts the parallel adapter
idea in (He et al., 2021). The difference is that the
former inserts an adapter after the FFN/attention
layer while the latter inserts it before FFN/attention
layer (see Fig. 1). We choose the parallel version
as it performs better (see Sec. 3.3).

In post-training, only the two CL-plugins are
trained. The components of the original pre-trained
RoBERTa are fixed. In end-task fine-tuning, all
components are trainable. A CL-plugin is a two-
layer fully connected network with a task mask
mechanism. It takes two inputs: (1) hidden states
h(t) from the feed-forward layer in a transformer
layer and (2) task ID t needed by task incremen-
tal learning (TIL). Inside a CL-plugin, task masks
(TMs), which indicate task- specific neurons, are
used to deal with CF. Since TMs is differentiable,
the whole CPT can be trained end-to-end.

2.1 Task Masks (TMs)

In each layer of a CL-plugin, task masks are used
to protect those neurons that are important for pre-
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vious tasks to overcome CF. The masks basically
forbid gradient updates to those neurons during
backpropagation in learning a new task. Note that
a task is also a domain in our case.

Learning a new task/domain consists of two
main steps: (1) apply the mask in each layer for
each old task to block off the gradient flow to pro-
tect the model for the old task, and (2) learn domain
t and its masks for future use. We present (2) first.

Learning Task Masks for Overcoming CF. In
learning each task t, a mask (a “soft” binary mask)
m

(t)
l is trained for the task at each layer l in CL-

plugin, indicating the neurons that are important
for the task. We borrow the hard attention idea in
(Serrà et al., 2018) and leverage the task ID em-
bedding to train the mask. For a task ID t, its em-
bedding e

(t)
l consists of differentiable deterministic

parameters that can be learned together with other
parts of the network. To generate the task mask
m(t)

l from e
(t)
l , Sigmoid is used as a pseudo-gate

(mask) function. m(t)
l is computed with

m
(t)
l = σ(e

(t)
l /τ), (1)

where τ is a temperature variable, linearly annealed
from 1 to τmin (a small positive value).

In the forward pass, given the output of each
layer l, k(t)l , we element-wise multiply mask m

(t)
l ,

o
(t)
l = k

(t)
l ⊗m

(t)
l . (2)

The masked output o(t)l of the last layer in CL-
plugin is fed to the next layer of the RoBERTa with
a skip-connection. After learning task t, the final
m

(t)
l is saved and added to the set {m(t)

l }.
Applying Task Masks. Before learning a new

task t, we first accumulate and set the masks m(iprev)
l

on the neurons in each layer l for all old tasks iprev

so that in backpropagation, the gradient g(t)l for

task t will not flow to these neurons. Since m
(iprev)
l

is pseudo binary, we use max-pooling to achieve
the accumulation and condition the gradient:

g
′(t)
l = g

(t)
l ⊗ (1− (MaxPool({m(iprev)

l }))). (3)

Those gradients corresponding to the 1 entries in
MaxPool({m(iprev)

l }) are set to 0 (to block off gra-
dient flow) while the others remain unchanged. In
this way, neurons in old tasks are protected. Note
that we expand (copy) the vector m(ta)

l to match
the dimensions of g(t)l .

2.2 Catastrophic Butterfly Effect in
Fine-tuning

To perform an end-task in a post-trained domain,
we fine-tune the mask-protected model of the do-
main, which is indicated by the task/domain id. The
fine-tuning uses the corresponding domain neurons
for the specific end-task by setting τ = τmin and
condition the output via Eq. 2. With the masks,
there should be no forgetting for continual post-
training and the end-task fine-tuning performance
should be similar to post-train each domain sepa-
rately. However, we found that this is not the case.5

Our investigation found that the problem is due to
the pseudo-gate function in Eq. 1. No matter how
small τ is, Eq. 1 can only gives us a mask almost 0
(or 1). This causes the following: (1) During post-
training, the gradients for used neurons in Eq. 3 are
not exactly 0 but a very small number. (2) During
fine-tuning, we cannot make use of the correspond-
ing neurons for the specific end-task by simply
setting τ = τmin. The small change in the neu-
rons for old domains during post-training caused
by (1) is neglect-able in conventional CL because
in conventional CL we evaluate the model using
test sets and no weights update involved. How-
ever, in CPT, the end-task needs to fine-tune the
continually post-trained LM model (p-LM), which
involves weight updating. A small change to the
p-LM during continual post-training can result in a
different initialization for the end-task fine-tuning
and give totally different fine-tuning results. We
call this butterfly effect inspired by the term indi-
cating a small state change in nature (e.g., the flap
of a butterfly’s wings in Brazil) can result in large
differences in a later state (e.g., a tornado in Texas).

We propose a simple method to solve it, i.e.,
adding a threshold θ to the m

(t)
l to make it a hard

binary mask,

m
(t)
l =

{
1, m

(t)
l > θ,

0, m
(t)
l < θ.

(4)

We then apply it to Eq. 3 in gradient manipulation
and Eq. 2 in end-task fine-tuning. θ can be easily
set (we use 0.5) since Eq. 1 already gives a pseudo-
binary mask. Note that this has almost no effect
on post-training as it is used to block the backward

5For example, fine-tuning an end restaurant sentiment clas-
sification task achieves macro-F1 (MF1) of 0.64 right after
post-training the restaurant domain but its fine-tuning MF1
drops to 0.44 after post-training three more domains.
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pass gradient flow during post-training and select
the corresponding neurons during fine-tuning.

3 Experiments

The proposed paradigm uses a different evaluation
from that of conventional continual learning (CL).
After unsupervised continual post-training of an
LM (RoBERTa in our case) with a sequence of
domains, the resulting p-LM is used to fine-tune
an end few-shot classification task from any post-
trained domain. There is no CL during end-task
fine-tuning. Each fine-tuning task is done sepa-
rately.

3.1 Datasets and Baselines

Datasets: We use 4 unlabeled domain datasets:
Yelp Restaurant (Xu et al., 2019), AI Papers (Lo
et al., 2020), ACL Papers (Lo et al., 2020) and AG-
News (Zhang et al., 2015) and their 4 corresponding
end-task classification datasets.6

Baselines. Since no existing method can perform
our task, we use 6 non-CL and 7 adapted CL meth-
ods as our baselines. The non-CL baselines in-
clude (1) RoBERTa and (2) Adapter where we
directly fine-tune the pre-trained model or adpater
(without any post-training); (3) RoBERTa-ONE,
(4) Adapter-ONE and (5) Prompt-ONE, where
we build a model for each task using a separate
network. It has no knowledge transfer or CF. (6)
DEMIX (Gururangan et al., 2021) trains a sepa-
rate adapter for each task and initializes the adapter
from its most similar previous task adapter. The 7
adapted CL baselines include (7) RoBERTa-NCL
and (8) Adapter-NCL, where we post-train the do-
mains one by one with no mechanism to deal with
CF/transfer. Other are state-of-the-art CL baselines
and we adapt them for continual post-training.7

3.2 Implementation Details

Architecture. We adopt RoBERTaBASE as our
backbone LM. A masked language model head is
applied for post-training. The fine-tuning follows
the standard practice (Devlin et al., 2019), where
we pass the final layer </s> token representation

6These are popularly used in related works. Details of the
datasets are given in Appendix C. We conduct experiments
using few-shot learning end-tasks. Following (Gu et al., 2021),
we use 32 training samples for Restaurant and AGNews, 48
training samples for ACL and 56 training samples for AI due
to different numbers of classes in each dataset.

7Readers can refer to Appendix D for the detailed of each
of these baselines.

to a task-specific feed-forward layer for prediction.
The feed-forward layer with softmax output is used
as the classification heads, together with the cate-
gorical cross-entropy loss. Note that for the aspect
sentiment classification task (see Table 3), we adopt
the ASC formulation in (Xu et al., 2019), where
the aspect (e.g., “sound”) and review sentence (e.g.,
“The sound is great”) are concatenated via </s>.

Hyperparameters. Unless otherwise stated, the
same hyper-parameters are used in all experiments.
We use 0.0025 for τmin in Eq. 1 and θ is set to 0.5
in Eq. 4 in the main paper. As shown in Figure
1, there are two CL-plugins for each Transformer
layer (one at the bottom in parallel with attention
and one at the top in parallel with FFN). We search
the CL-plugin size within {128, 256, 512, 768,
1024} and adopt 512 for the bottom one and 768
for the top one based on validation experiments.
The task id embeddings have the same size as the
hidden layer dimension of the CL-plugin. The
maximum input length is set to 164 which is long
enough for all datasets. We use Adam optimizer
and set the learning rate to 1e-4 for post-training
and 5e-5 for fine-tuning. The batch size is set to
48 for post-training and 20 for fine-tuning. Since
each of our domain-specific dataset has a differ-
ent size, we train CPT on each task/domain for
1 epoch for post-training, which is approximately
13K steps, following (Gururangan et al., 2020b;
Xu et al., 2019). We train on end-task fine-tuning
datasets for 20 epochs and take the results for the
last epoch, assuming no validation sets. We em-
pirically found 20 epochs can give us a relatively
stable results.

3.3 Evaluation Results and Analysis

We report the average results of the 4 different fine-
tuning tasks (or datasets) in accuracy and Macro-F1
after post-training on all unlabeled domain datasets
in Table 1. The forgetting rate (forget R.) (Liu et al.,
2020a) is also reported. The higher the forgetting
rate is, the more forgetting it has. Negative rates
indicate positive knowledge transfer.8

Superiority of CPT. Clearly, CPT outperforms
all baselines and achieves no forgetting. More
specifically, CPT markedly outperforms the two

8Forgetting rate is computed as as follows (Liu et al.,
2020a), 1

t−1

∑t−1
i=1 Ai,i − At,i, where Ai,i is the end-task

performance right after its domain i is post-trained, and At,i

is the performance of the end-task of domain i after post-
training the last domain. We average over all end-tasks except
the last one as the last domain has no forgetting.
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Category
Domain Restaurant AI ACL AGNews Average Forget R.
Model MF1 Acc MF1 Acc MF1 Acc MF1 Acc MF1 Acc MF1 Acc

Non-CL

RoBERTa 50.61 74.77 27.88 28.44 32.19 34.59 64.19 65.95 43.72 50.94 —
Adapter 45.40 67.28 23.69 24.56 24.99 27.55 64.53 66.50 39.65 46.48 —

RoBERTa-ONE 53.63 76.73 29.86 30.11 33.05 35.72 62.57 65.13 44.78 51.92 —
Adapter-ONE 52.19 74.20 30.80 31.59 36.59 36.99 61.66 63.94 45.31 51.68 —
Prompt-ONE 28.93 59.79 21.06 22.10 28.02 29.22 60.70 62.58 34.68 43.42 —

DEMIX 53.14 75.28 27.68 27.29 37.63 38.57 63.18 65.13 45.41 51.57 —

CL

RoBERTa-NCL 42.59 67.56 31.57 31.62 33.07 34.54 60.18 63.50 41.85 49.30 3.27 2.82
Adapter-NCL 47.42 70.23 29.56 29.90 35.92 37.58 61.73 64.45 43.65 50.54 2.21 1.69

HAT 50.45 71.78 28.33 29.41 34.93 37.15 62.97 65.05 44.17 50.85 2.43 2.04
BCL 51.70 74.34 29.66 30.96 32.85 34.82 63.60 65.47 44.45 51.40 1.47 0.82
KD 39.75 67.11 29.63 29.33 38.30 42.09 62.85 65.39 42.63 50.98 4.92 3.07

EWC 48.32 71.59 30.96 31.01 35.96 38.05 62.29 64.95 44.38 51.40 1.40 0.80
DER++ 48.09 71.79 30.71 30.54 34.25 35.77 64.24 66.11 44.32 51.05 1.79 1.62

CPT 53.90 75.13 30.42 30.89 37.56 38.53 63.77 65.79 46.41 52.59 0.00 0.00

Table 1: End-task macro-F1 (MF1), accuracy and forgetting rate results for all domains after continual post-training
of all domains. The results are averages of 5 random seeds (the domain training order is as they appear in the
first row). Due to space limits, the results for different domain orders and the standard deviations are reported in
Appendix E and Appendix F, respectively). Non-CL baselines has no forgetting.

baselines without post-training (RoBERTa and
Adapter), indicating CPT can learn new domains
well. These two baselines are also significantly
worse than other baselines, indicating that fine-
tuning the pre-trained RoBERTa alone is weak.
Comparing with CL baselines, CPT achieves no
forgetting (we can see the forgetting rate is 0),
indicating the high effectiveness of the proposed
approach. We also note that CPT is even slightly
better than those ONE baselines, indicating some
positive knowledge transfer in CPT.

3.4 Ablations

In Table 2, we give the ablation results. We are
interested in the following:

(1) Catastrophic butterfly effect (CBE). The
third row with “w/o butterfly” shows results with-
out the hard binary mask mechanism in Eq. 4.
Clearly, the results are worse and the model suf-
fers from forgetting. This indicates CBE and our
approach is effective.

(2) Different Architecture. CPT is based on
CL-plugin, which is inspired by adapters. Another
popular way to use adapters is to make it sequential
(Houlsby et al., 2019). Sequential adapter (first
row) is clearly poorer than our parallel one. This
conforms to the observation in (He et al., 2021).

(3) Different Orders. Table 1 only re-
ports the results of one fixed domain order
(Restaurant→AI→ ACL →AGNews). We are in-
terested in how the order impacts CPT results. We
give the detailed results for all the other baselines
and detailed domain orders in Appendix E. We can
see the results of CPT does not change much and it
still outperforms other baselines. This indicates the

Model
Final Performance
MF1 Acc

CPT (Sequential Adapter) 43.00 50.25
CPT (w/o butterfly) 44.17 50.85
CPT (w/o masking) 43.65 50.54

CPT 46.41 52.58

Table 2: Ablation experiment results.

CPT’s robustness to domain orders in post-training.

4 Conclusion

This paper proposed to continually post-train an
LM with a sequence of domains using their unla-
beled domain corpora. An effective method (CPT)
is also proposed. An end-task from any post-trained
domain can fine-tune the resulting LM. Experimen-
tal results demonstrate the effectiveness of CPT.

5 Limitations

We list two limitations of CPT. First, CPT adds CL-
plugins for continual post-training with no change
to the underlying LM in training. Although a CL-
plugin is small compared to an LM, it is still inter-
esting and may be more effective to explore the idea
of updating the LM directly without any additional
modules. Second, domain ids are needed in both
training and testing for CPT. In some applications,
it may be hard to provide a domain id for each
fine-tuning end-task. We will explore these in our
future work as specializing and/or incrementally
improving an LM is an important problem.
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A Related Work

Our work is related to continual learning, post-
training and few-shot learning.

Continual learning (CL). In general, overcom-
ing CF is a major goal in CL (Chen and Liu,
2018). (1) Regularization methods (Kirkpatrick
et al., 2016; Seff et al., 2017) add a regularization
to ensure minimal changes to weights for previous
tasks. (2) Replay methods retain (Rebuffi et al.,
2017; Lopez-Paz and Ranzato, 2017; Wang et al.,
2020; Guo et al., 2022) or generate some data of
old tasks (Shin et al., 2017; He and Jaeger, 2018)
and use them in learning a new task. (3) Parame-
ter isolation methods (Serrà et al., 2018; Fernando
et al., 2017) allocate parameters for different tasks
and mask them out in learning a new task. Our
CPT is based on (3) and uses masks in continual
post-training. Recently, CL has drawn attention in
NLP. It has been used for slot filling (Shen et al.,
2019), language learning (Li et al., 2019), sentence
embedding (Liu et al., 2019a), translation (Khayral-
lah et al., 2018), cross-lingual modeling (Liu et al.,
2020b), question answering (Greco et al., 2019)
and text classification (Ke et al., 2021a,b; Sun et al.,
2020; Huang et al., 2021; Chuang et al., 2020;
Mehta et al., 2021; Madotto et al., 2020). How-
ever, none of them tries to improve an LM.

Post-training is an effective approach to miti-
gate the discrepancies between pre-trained domains
and the target domain. Researchers have applied
post-training to many domains, e.g., reviews (Xu
et al., 2019; Sun et al., 2019), news and academic
papers (Gururangan et al., 2020b), and shown im-
proved end-task results. However, none of them
consider the continual learning paradigm.

Few-shot learning (FL) aims to learn tasks with
a few labeled examples. The main issue of FL is
over-fitting, due to the scarcity of labeled training
data. Existing methods to overcome over-fitting fall
in three main families: (i) model-based methods
try to reduce the hypothesis space of the few-shot
task (Triantafillou et al., 2017; Hu et al., 2018),
(ii) data-based methods try to augment additional
data to the few-shot set (Benaim and Wolf, 2018;
Gao et al., 2020), and (iii) algorithm-based solu-
tions try to improve strategies for searching for
the best hypothesis. Recently, a new paradigm
using prompts achieves promising results for few-
shot language learning as shown in GPT-3 (Brown
et al., 2020a), PET (Schick and Schütze, 2021) and
LM-BFF (Gao et al., 2021). However, none of

them does few-shot fine-tuning in continual post-
training.

Continual few-shot learning. Several re-
searchers have studied this problem recently (An-
toniou et al., 2020; Qin and Joty, 2021; Jin et al.,
2021; Xia et al., 2021; Yin et al., 2022). It contin-
ually learns a sequence of few-shot tasks. How-
ever, this is very different from our continual post-
training because our continual learning happens in
the post-training stage instead of the end-task fine-
tuning stage. We only evaluate the proposed CPT
system after continual post-training by conducting
few-shot learning tasks individually by fine-tuning
the post-trained language model (p-LM) in each of
the post-trained domains. No continual learning is
involved in few-shot learning.

B Illustration of Task Masks

Figure 2 illustrates the CPT architecture and the
task mask learning. Note that fine-tuning is for
evaluating the domain post-training and should
not affect any parameters of post-training. Dur-
ing continual post-training (Figure 2 (A)), after
training domain/task 1, we obtain its useful neu-
rons indicated by the 1 entries. Before training
domain/task 2, those useful neurons for domain
1 are first masked (those previous 1’s entries are
turned to 0’s). After training domain 2, two neu-
rons with 1 are used by the domain. When domain
t arrives, all used neurons by domains 1 and 2 are
masked before training, i.e., their entries are set to
0. After training domain t, we see that domains
t and 1 have a shared neuron (the cell with two
colors, red and green), which is used by both of do-
mains. After continual post-training, we evaluate
CPT by individual fine-tuning. During fine-tuning
(Figure 2 (B)), we only make use of those neurons
that are useful for domain/task id t (red cells) and
freeze all other neurons (grey cells).

C Dataset Statistics

Table 3 shows the statistics of the unlabeled domain
datasets and end-task classification datasets. Note
that the full AGNews is very large. We use only
its author provided training split as our domain-
specific datasets as our unlabeled AGNews dataset
for continual post-training. The remaining testing
set is used as the labeled end-task (AGNews-FT).
The other three corresponding end task datasets are
SemEval-res (Xu et al., 2019), ACL-ARC (Jurgens
et al., 2018), and SCIERC(Luan et al., 2018).
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Figure 2: Architecture of CPT, which has two CL-plugins inserted in the transformer layers of RoBERTa in a parallel
manner. (A) CPT for continual post-training. It uses a masked language model (MLM) head for unsupervised
post-training of the plugins only. (B) CPT for individual fine-tuning. The performance of CPT is evaluated by the
corresponding individual end-task performance of all post-trained tasks using the final post-trained model (with
different mask). Each CL-plugin module (to the right of the transformer) has two fully connected layers and a
skip connection. On top of each fully connected layer, there is a mask computed from task ID t with the same size
as the fully connected layer.

Unlabeled Domain Datasets End-Task Classification Datasets
Dataset Source #training Dataset Task #training #testing #classes

Yelp Restaurant Yelp Review 1,132,359 SemEval-res Aspect Sentiment Classification 32 1,120 3
AI AI Papers 707,368 SCIERC Relation Classification 56 2,388 7

ACL ACL Papers 1,208,449 ACL-ARC Citation Intent Classification 48 421 6
AGNews News Article 73,750 AGNews-FT News Classification 32 7,568 4

Table 3: Statistics for unlabeled domain datasets and end task supervised classification datasets.

D Details of the CL baselines

Non-Continual Learning Baselines: Each of
these baselines builds a separate model for each
task independently. It thus has no CF.

(1,2) RoBERTa, Adapter (Liu et al.,
2019b; Houlsby et al., 2019) use the origi-
nal RoBERTa/Adapter for the end-task fine-tuning
without any post-training. These are the only
two without any post-training. All the following
baselines use the masked language model loss
(MLM) for post-training.

(3) RoBERTa-ONE is the existing post-training
method in (Gururangan et al., 2020b). To our
knowledge, the existing post-training systems are
all based on the MLM loss.

(4) Adapter-ONE (Madotto et al., 2020;
Houlsby et al., 2019) adds small adapter layers

between layers of Transformer for post-training.
We follow the adapter design in (Madotto et al.,
2020; Houlsby et al., 2019). An adapter is simply
two fully connected layers. During post-training,
the Transformer is fixed, only the added adapters
are trainable. The bottleneck size (adapter size)
is set to 128. During end-task fine-tuning, both
RoBERTa and the adapters are trainable to ensure
fair comparison.

(5) Prompt-ONE (Lester et al., 2021) adds a
sequence of real vector tokens (called virtual tokens
or prompt tokens) to the end of the original input
sequence. In post-training, RoBERTa (the LM)
is fixed and only the prompt tokens are trained.
In end-task fine-tuning, both LM and the trained
prompt are trainable. We initialize 100 tokens and
set the learning rate of the prompt token to 0.3 in
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Category
Domain Restaurant AI ACL AGNews Average
Model MF1 Acc MF1 Acc MF1 Acc MF1 Acc MF1 Acc

Non-CL

RoBERTa ±0.0456 ±0.0274 ±0.0208 ±0.0233 ±0.0391 ±0.0338 ±0.0121 ±0.014 ±0.0066 ±0.0062
Adapter ±0.0214 ±0.0223 ±0.0111 ±0.0102 ±0.0375 ±0.0386 ±0.0221 ±0.0224 ±0.0155 ±0.0142

RoBERTa-ONE ±0.0095 ±0.0087 ±0.0364 ±0.0358 ±0.0382 ±0.0432 ±0.0169 ±0.0162 ±0.0197 ±0.0187
Adapter-ONE ±0.0292 ±0.0223 ±0.0207 ±0.0222 ±0.0076 ±0.0063 ±0.0141 ±0.0157 ±0.0074 ±0.0054
Prompt-ONE ±0.0427 ±0.0991 ±0.0297 ±0.0254 ±0.0386 ±0.0325 ±0.0115 ±0.0100 ±0.0151 ±0.0292

DEMIX ±0.0329 ±0.0293 ±0.0259 ±0.0283 ±0.0297 ±0.0367 ±0.0336 ±0.0309 ±0.0152 ±0.0165

CL

RoBERTa-NCL ±0.0374 ±0.0238 ±0.0156 ±0.0158 ±0.0293 ±0.0349 ±0.0218 ±0.0154 ±0.0130 ±0.0160
Adapter-NCL ±0.0250 ±0.0194 ±0.0232 ±0.0184 ±0.0183 ±0.0264 ±0.0136 ±0.0151 ±0.0095 ±0.0137

HAT ±0.0264 ±0.012 ±0.0236 ±0.0251 ±0.0294 ±0.0287 ±0.0106 ±0.009 ±0.0078 ±0.0112
BCL ±0.0255 ±0.0124 ±0.0121 ±0.0105 ±0.0182 ±0.0126 ±0.0100 ±0.0069 ±0.0094 ±0.0032
KD ±0.0642 ±0.0435 ±0.0295 ±0.0233 ±0.0271 ±0.0267 ±0.0160 ±0.0133 ±0.0117 ±0.0109

EWC ±0.0324 ±0.0259 ±0.0281 ±0.0189 ±0.0177 ±0.0196 ±0.0041 ±0.0096 ±0.0079 ±0.0062
DER++ ±0.0250 ±0.0183 ±0.0231 ±0.0319 ±0.0116 ±0.0163 ±0.0196 ±0.0178 ±0.0126 ±0.0128

CPT ±0.0264 ±0.0120 ±0.0236 ±0.0251 ±0.0294 ±0.0287 ±0.0106 ±0.0090 ±0.0078 ±0.0112

Table 4: Standard deviations of the corresponding metrics of the proposed CPT system and the baselines.

Model
Final Performance
MF1 Acc

CPT (Sequential Adapter) ±0.0347 ±0.0350
CPT (w/o butterfly) ±0.0102 ±0.0079
CPT (w/o masking) ±0.0095 ±0.0137

CPT ±0.0078 ±0.0112

Table 5: Standard deviations of the corresponding met-
rics of the proposed CPT system and the ablations.

post-training, following the setting in (Lester et al.,
2021).

(6) DEMIX (Gururangan et al., 2021) is a recent
model to adapt a pre-trained LM with new domains.
It adds a new adapter once a new domain arrives
(network expansion is needed) and initializes the
new adapter with the parameters of the previous
trained adapter nearest to the new domain data.
They use the perplexity on held-out samples to
choose the most probable adapter.

Continual Learning (CL) Baselines.
(7) RoBERTa-NCL (Naive continual learning)

is a naive extension of (Gururangan et al., 2020b),
which continually/incrementally post-trains the LM
to learn all domains using the MLM loss with no
mechanism to deal with forgetting or CF.

(8) Adapter-NCL (Houlsby et al., 2019) is sim-
ilar to the Adapter based system. The only dif-
ference is that the same set of adapters is shared
across all domains, rather than using a new adapter
for each new domain.

(9) Hard attention to overcome forgetting
(HAT) is derived from HAT (Serrà et al., 2018), the
state-of-the-art parameter-isolation based method
with almost no forgetting. However, HAT suffers
from forgetting in continual post-training due to
the catastrophic butterfly effect.

(10) BCL (Ke et al., 2021c) is a continual learn-

ing model that can avoid forgetting and encourage
knowledge transfer. It is similar to Adapter-NCL.
The difference is that its adapters consist of two
modules, one is a capsule network (a new capsule
is added once a new domain arrives) to encourage
transfer, and the other is similar to HAT to avoid
forgetting. Similar to HAT, task/domain informa-
tion is needed in end-task fine-tuning. We replace
the backbone network from BERT with RoBERTa
for fair comparison.

(11) Knowledge distillation (KD) (Hinton et al.,
2015) minimizes the representational deviation be-
tween the learned representation and the new rep-
resentation in post-training. We compute the KL
divergence between the representations (the output
before the masked language model prediction head)
of each token of the previous post-trained LM and
current LM as the distillation loss.

(12) EWC (Buzzega et al., 2020) is a popu-
lar regularization-based continual learning method
that adopts elastic weights consolidation to add L2

regularization to penalize parameter changes.
(13) DER++ (Buzzega et al., 2020) is a recent

replay method using distillation to regularize the
new task training. We store 16.4K tokens for each
learned domain as the memory, which is the largest
memory we can use for the system to run.

E Results for Different Domain Orders

Table 1 in the main paper reported the results for
the order Restaurant → AI → ACL → AGnews.
We now look at how the order affects the results.
Table 6 shows baselines and CPT’s results of 4
different orders. Note that the results for the Non-
CL baselines are the same across different orders
(and the same as those in Table 1) because they
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Category
Order AI→ACL→Restaurant→AGNews Restaurant→AI→AGNews→ACL AI→ACL→AGNews→Restaurant AGNews→ACL→Restaurant→AI Average
Metric Performance Forget R. Performance Forget R. Performance Forget R. Performance Forget R. Performance Forget R.
Model MF1 Acc MF1 Acc MF1 Acc MF1 Acc MF1 Acc MF1 Acc MF1 Acc MF1 Acc MF1 Acc MF1 Acc

Non-CL

RoBERTa 43.72 50.94 — 43.72 50.94 — 43.72 50.94 — 43.72 50.94 — 43.72 50.94 —
Adapter 39.65 46.48 — 39.65 46.48 — 39.65 46.48 — 39.65 46.48 — 39.65 46.48 —

RoBERTa-ONE 44.78 51.92 — 44.78 51.92 — 44.78 51.92 — 44.78 51.92 — 44.78 51.92 —
Adapter-ONE 45.31 51.68 — 45.31 51.68 — 45.31 51.68 — 45.31 51.68 — 45.31 51.68 —
Prompt-ONE 34.68 43.42 — 34.68 43.42 — 34.68 43.42 — 34.68 43.42 — 34.68 43.42 —

DEMIX 45.41 51.57 — 45.41 51.57 — 45.41 51.57 — 45.41 51.57 — 45.41 51.57 —

CL

RoBERTa-NCL 42.62 49.95 2.45 1.79 42.22 49.52 3.10 2.33 42.88 50.11 0.29 0.18 44.33 51.51 1.76 1.21 43.01 50.28 1.90 1.38
Adapter-NCL 44.71 51.67 1.71 1.08 44.61 51.07 1.14 1.23 44.91 51.57 1.41 1.23 45.52 52.15 0.72 0.44 44.94 51.62 1.25 0.99

HAT 45.10 51.50 1.66 1.19 43.29 49.96 2.76 2.09 46.06 52.07 0.50 0.21 44.94 51.45 0.86 0.25 44.85 51.25 1.45 0.93
BCL 43.97 50.74 2.20 1.50 45.30 51.54 0.36 -0.14 45.28 51.79 0.36 0.11 45.59 51.61 0.08 0.11 45.04 51.42 0.75 0.40
KD 42.09 50.22 0.57 0.08 45.18 52.68 1.22 0.57 42.63 50.45 -0.31 -0.56 42.93 50.70 1.10 0.32 43.21 51.01 0.64 0.10

EWC 43.97 50.74 0.16 0.03 43.65 50.29 -0.29 -0.20 45.52 51.36 0.17 0.15 43.42 49.85 0.12 0.10 44.14 50.56 0.04 0.02
DER++ 44.56 50.13 2.95 2.31 44.02 49.99 1.24 1.12 43.98 50.23 1.44 1.27 44.32 50.13 1.32 1.09 44.22 50.12 1.74 1.45

CPT 46.49 52.47 0.00 0.00 45.71 51.71 0.00 0.00 46.15 51.93 0.00 0.00 45.89 51.86 0.00 0.00 46.06 51.99 0.00 0.00

Table 6: CPT performance averaged over all domains after the final post-trained with different orders (averaged
over 5 random seeds) and the average of these orders.

are not effected by orders. We can see CPT is
always better than other baselines, and achieve 0
forgetting rate, demonstrating the effectiveness of
CPT. We also note that some baselines in some
sequence has negative forgetting rate, indicating
they have some backward transfer (new domain
learning helps learned domains). However, their
final results are much worse than CPT’s.

F Standard Deviations

Table 4 reports the standard deviations of the corre-
sponding results in Table 1 (in the main paper) of
CPT and the considered baselines over 5 runs with
random seeds. We can see the results of CPT are
stable. Some baselines (e.g., RoBERTa, RoBERTa-
ONE) can have quite large standard deviations.

Table 5 reports the standard deviations of the cor-
responding results in Table 2 (in the main paper) of
CPT and the considered baselines over 5 runs with
random seeds. We can see the results of sequential
adapters has a high variance while CPT and other
variants are stable.
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