
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 8786–8804
December 7-11, 2022 ©2022 Association for Computational Linguistics

Decoding a Neural Retriever’s Latent Space for Query Suggestion

Leonard Adolphs† Michelle Chen Huebscher‡ Christian Buck‡

Sertan Girgin‡ Olivier Bachem‡ Massimiliano Ciaramita‡ Thomas Hofmann†

†ETH Zürich
ladolphs@inf.ethz.ch

‡Google Research

Abstract

Neural retrieval models have superseded clas-
sic bag-of-words methods such as BM25 as
the retrieval framework of choice. However,
neural systems lack the interpretability of bag-
of-words models; it is not trivial to connect a
query change to a change in the latent space that
ultimately determines the retrieval results. To
shed light on this embedding space, we learn
a “query decoder” that, given a latent repre-
sentation of a neural search engine, generates
the corresponding query. We show that it is
possible to decode a meaningful query from
its latent representation and, when moving in
the right direction in latent space, to decode
a query that retrieves the relevant paragraph.
In particular, the query decoder can be useful
to understand “what should have been asked”
to retrieve a particular paragraph from the col-
lection. We employ the query decoder to gen-
erate a large synthetic dataset of query refor-
mulations for MSMarco, leading to improved
retrieval performance. On this data, we train
a pseudo-relevance feedback (PRF) T5 model
for the application of query suggestion that out-
performs both query reformulation and PRF
information retrieval baselines.

1 Introduction

Neural encoder models (Karpukhin et al., 2020; Ni
et al., 2021; Izacard et al., 2021) have improved
document retrieval in various settings. They have
become an essential building block for applications
in open-domain question answering (Karpukhin
et al., 2020; Lewis et al., 2020b; Izacard and Grave,
2021), open-domain conversational agents (Shuster
et al., 2021; Adolphs et al., 2021), and, recently,
language modeling (Shuster et al., 2022). Neural
encoders embed documents and queries in a shared
(or joint) latent space, so that paragraphs can be
ranked and retrieved based on their vector similar-
ity with a given query. This constitutes a concep-
tually powerful approach to discovering semantic

similarities between queries and documents that is
often found to be more nuanced than simple term
frequency statistics typical of classic sparse rep-
resentations. However, such encoders may come
with shortcomings in practice. First, they are prone
to domain overfitting, failing to consistently outper-
form bag-of-words approaches on out-of-domain
queries (Thakur et al., 2021). Second, they are no-
toriously hard to interpret as similarity is no longer
controlled by word overlap, but rather by seman-
tic similarities that lack explainability. Third, they
may be non-robust as small changes in the query
can lead to inexplicably different retrieval results.
In bag-of-words models, it can be straightfor-
ward to modify a query to retrieve a given docu-
ment: e.g., following insights from relevance feed-
back (Rocchio, 1971), by increasing the weight of
terms contained in the target document (Adolphs
et al., 2022; Huebscher et al., 2022). This approach
is not trivially applicable to neural retrieval models
as it is unclear how an added term might change
the latent code of a query.
In this paper, we look into the missing link connect-
ing latent codes back to actual queries. We thus
propose to train a “query decoder”, which maps
embeddings in the shared query-document space to
query strings, inverting the fixed encoder of the neu-
ral retriever (cf. Figure 1a). As we will show, such
a decoder lets us find queries that are optimized to
retrieve a given target document. It deciphers what
information is in the latent code of a document and
how to phrase a query to retrieve it.
We use this model to explore the latent space of
a state-of-the-art neural retrieval model, GTR (Ni
et al., 2021). In particular, we leverage the structure
of the latent space by traversing from the embed-
ding of a specific query to its human-labeled gold
paragraph and use our query decoder to generate
reformulation examples from intermediate points
along the path as shown in Figure 1b. We find
that using this approach, we can generate a large
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Figure 1: We train a query decoder (QD) model that inverts the shared encoder of a neural retrieval model (a). Then,
we leverage the structure of the latent space of a neural retrieval model by traversing from query to gold paragraph
embeddings and using our query decoder to generate a dataset of successful query reformulations (b). Finally, we
train a pseudo-relevance feedback query suggestion model on this dataset that predicts promising rewrites, given a
query and its search results (c).

dataset of query reformulations on MSMarco-train
(Nguyen et al., 2016) that improve retrieval per-
formance without needing additional human label-
ing. We use this dataset to train a pseudo-relevance
feedback (PRF) query suggestion model. Here,
we fine-tune a T5-large model (Raffel et al., 2020)
that uses the original query, together with its top-5
GTR search results, as the input context to predict
a query suggestions as depicted in Figure 1c. We
show that our model provides fluent, diverse query
suggestions with better retrieval performance than
various baselines, including a T5 model trained
on question editing (Chu et al., 2020), and a PRF
query expansion model (Pal et al., 2013).
We make the resources to reproduce the results
publicly available1.

2 Related Work

Neural Retriever Classic retrieval systems such
as BM25 (Robertson and Zaragoza, 2009) use term
frequency statistics to determine the relevancy of
a document for a given query. Recently, neural
retrieval models have become more popular and
started to outperform classic systems on multiple
search tasks. Karpukhin et al. (2020) use a dual-
encoder setup based on BERT-base (Devlin et al.,
2019), called DPR, to encode query and documents
separately and use maximum inner product search
(Shrivastava and Li, 2014) to find a match. They
use this model to improve recall and answer quality
for multiple open-domain question-answer datasets,
including OpenQA-NQ (Lee et al., 2019). Ni et al.
(2021) show that scaling up the dual encoder archi-
tecture improves the retrieval performance. They
train a shared dual encoder model, based on T5

1https://github.com/leox1v/query_decoder

(Raffel et al., 2020), in a multi-stage manner, in-
cluding fine-tuning on MSMarco (Nguyen et al.,
2016), and evaluate on the range of retrieval tasks
of the BEIR benchmark (Thakur et al., 2021). Izac-
ard et al. (2021) show that one can train an unsu-
pervised dense retriever and be competitive against
strong baselines on the BEIR benchmark.
Xiong et al. (2021) propose approximate nearest
neighbor negative contrastive learning (ANCE) to
learn a dense retrieval system. On top of this
dense retriever, Li et al. (2022) consider a pseudo-
relevance feedback method. Other than our ap-
proach, this method does not provide the user with
rephrased queries.

Applications of Neural Retrievers Neural re-
trieval models have been at the core of recent
improvements among a range of different NLP
tasks. Lewis et al. (2020b) augment a language
generation model, BART (Lewis et al., 2020a),
with a DPR neural retriever and evaluate on multi-
ple knowledge-intensive NLP tasks; most notably,
they improve over previous models on multiple
open-domain QA benchmarks using an abstractive
method.
Izacard and Grave (2021) propose the Fusion-in-
Decoder method to aggregate a large set of docu-
ments from the neural retriever and provide them
to the model during answer generation. Their fo-
cus is on open-domain QA where they significantly
outperform previous models when considering a
large set of documents during decoding.
Shuster et al. (2021) use neural retrieval models
to improve conversational agents in knowledge-
grounded dialogue. They show that the issue of
hallucination – i.e., generating factual incorrect
knowledge statements – can be significantly re-
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duced when using a neural-retriever-in-the-loop
architecture. Separating the retrieval-augmented
knowledge generation and the conversational re-
sponse generation can further improve the issue
of hallucination in knowledge-grounded dialogue
and helps fuse modular QA and dialogue models
(Adolphs et al., 2021). Recently, retrieval query
generation approaches have been proposed to im-
prove open-domain dialogue (Komeili et al., 2021)
and language modeling (Shuster et al., 2022).

Query Generation Query optimization is a long-
standing problem in IR (Lau and Horvitz, 1999;
Teevan et al., 2004). Recent work has investigated
query refinement with reinforcement learning for
Open Domain and Conversational Question An-
swering (Nogueira and Cho, 2017; Buck et al.,
2018; Wu et al., 2021).
The methods presented in this paper are a natural
complement to the work of Adolphs et al. (2022),
who propose a heuristic approach to generate multi-
step query refinements, used to train sequential
query generation models for the task of learning
to search. Their method is also inspired by rele-
vance feedback, but they seek to reach the gold
document purely in language space, by brute force
exploration. For this purpose, they use specialized
search operators to condition the retrieval results as
desired. Huebscher et al. (2022) show that, when
paired with a hybrid sparse/dense retrieval environ-
ment, the search agents trained on this kind of syn-
thetic data combine effective corpus exploration,
competitive performance and interpretability.
Web-GPT (Nakano et al., 2021) presents an end-
to-end search modeling approach based on human
demonstrations, in a similar spirit our work could
be seen as way of involving humans-in-loop by
proposing better queries.

Fixed-vector decoders Probabilistic decoders
mapping from a fixed size vector space to natural
language have also been explored in auto-encoder
settings. A key challenge in this line of work lies in
obtaining decoders that are robust, i.e., they gener-
ate natural text for a variety of input vectors. Bow-
man et al. (2016) proposed using a RNN-based
language model in combination with variational
autoencoders (VAE) (Kingma and Welling, 2013)
which add Gaussian space to the decoder input.
Zhao et al. (2018) proposed the use of Adversar-
ial Autoencoder (AAE) (Makhzani et al., 2015)
to which Shen et al. (2020) added data denoising

Who is the chess champion of the world?

GTR Query 
Encoder

Query 
Decoder

Who is the best chess player?

GTR Query 
Encoder

Cos Sim

F1
Data F1 Cos Sim

MSMarco 0.750 0.960
NQ 0.886 0.980

Table 1: Decoding metrics of the Query Decoder (QD)
based on the GTR-base neural retrieval model. The F1
score is the F1 word overlap between the original query,
of MSMarco or NQ, and the output of the query decoder
model when provided with the GTR encoding of the
query. The cosine similarity is measured between the
re-encoding of the generated query and the encoding of
the original query. The figure above depicts the metrics
visually with a toy example for clarity.

by randomly dropping words in the input and the
reconstructing the full output.
Recently, RNN-based decoders have been replaced
by Transformer-based language models (Vaswani
et al., 2017), for example by Montero et al. (2021),
Park and Lee (2021) and Li et al. (2020).

3 Query Decoder

Training We train a T5 (Raffel et al., 2020),
decoder-only model, to (re-)generate a query from
its embedding obtained in a neural retrieval model.
As training data, we use a subset of 3 million
queries of the PAQ dataset (Lewis et al., 2021).
We use the GTR-base (Ni et al., 2021), shared-
encoder model, to generate the embeddings and
use the queries as the targets. The objective of the
query decoder learning is to invert the mapping of
the fixed GTR encoder model, as visually depicted
in Figure 1a. More training details of the query
decoder are provided in Appendix A.2.1.

Query Reconstruction Evaluation We consider
the round-trip consistency as a first step in evalu-
ating the query decoder’s effectiveness. A query
q is encoded via GTR and then decoded by our
decoder to generate q′. We use queries from MS-
Marco, and NQ test sets of the BEIR benchmark
(Thakur et al., 2021). As a first metric, we compute
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the F1 score between the original q and its recon-
struction q′. Since word-overlap is imperfect in
measuring query drift, we further re-encode q′ and
compare its latent code with the code for q via their
cosine similarity. The results of these evaluations
are reported in Table 1, where we also provide an
illustrative example of the proposed approach. For
both datasets, MSMarco and NQ, the metrics of F1
and cosine similarity are generally high, indicating
that the GTR code carries information that allows
for close approximate query reconstruction.

Query 
Decoder

Decoded Query GTR
retrieval

Paragraph

GTR
Encoder

Paragraph

Data Top1 Top3 Top5

MSMarco 0.551 0.737 0.796
NQ 0.721 0.863 0.897

Table 2: Share of gold paragraphs for which we can
decode a query that retrieves the given paragraph within
its top-k GTR search results. The figure above depicts
the metric evaluation visually for clarity.

Paragraph to Query Evaluation Many interest-
ing use cases rely on the ability to generate queries
from passages of text (Du et al., 2017; Kumar et al.,
2018). As GTR embeds document paragraphs and
queries into the the same space, the query decoder
can also be used to invert the retrieval process. We
thus evaluate the decoder quality by starting from
a document paragraph, decoding a query from its
embedding and then running the GTR search en-
gine on that query to check if this query retrieves
the desired paragraph as a top-ranked result. We
test this in an experiment with human-labeled gold
paragraphs from MSMarco and NQ, using top-k as
the success metric. The results reported in Table 2
are very encouraging in that the desired paragraph
is indeed found very often among the topmost GTR
search results. Two example paragraph decodings
from MSMarco are shown in Table 3; for both de-
codings, the gold paragraph is retrieved at the top
position.

Latent Space Traversal Decoding We have
shown that query decoding can reconstruct queries
and that it can find retrieval queries for target pas-
sages. We now turn to a more concrete practical

Original Query
nebl coin price [Rank: 2]

Decoding from Gold Paragraph
what is the current price of neblio today belo [Rank: 1]

Gold Paragraph
Neblio Price Chart US Dollar (NEBL/USD) Neblio price for

today is $16.3125. It has a current circulating supply of 12.8
Million coins and a total volume exchanged of $9,701,465

Original Query
when is champaign il midterm elections [Rank: 3]

Decoding from Gold Paragraph
when is the general election in illinois 2018 [Rank: 1]

Gold Paragraph
Illinois elections, 2018. A general election will be held

in the U.S. state of Illinois on November 6, 2018. All of
Illinois’ executive officers will be up for election as well as
all of Illinois’ eighteen seats in the United States House of
Representatives.

Table 3: Examples of query decodings from the gold
paragraph. The rank indicates the retrieval position of
the gold paragraph using the corresponding query.

application, namely to automatically generate a
data set of query reformulations, from which strate-
gies for interactive retrieval can be learned. In this
context, reformulated queries should remain seman-
tically similar to the original query and not overfit
to the target passage. They should be somewhat ’in
between’ the query and the gold passage, as any
passage is likely to contain answers to multiple,
different questions. This can be operationalized by
decoding queries from points along the line con-
necting the embeddings of the query and its target
passage as depicted in Figure 1b.
To validate this idea, we apply it to the MSMarco
and NQ retrieval dataset where each query is paired
with a human-labeled gold paragraph. In particu-
lar, we move in k equidistant increments from the
original query embedding q to the gold paragraph
embedding d, i.e.

qκ = q+
κ

k
(d− q) κ = 0, . . . , k (1)

and generate a reformulation at each step.2 As a
sanity check, Figure 3 shows the average retrieval
performance of the decoded queries when mov-
ing from the original query embedding to the gold
paragraph embedding for MSMarco and NQ. For
both datasets, the normalized discounted cumula-
tive gain (nDCG) (Järvelin and Kekäläinen, 2002)

2We underline that this procedure can be seen as a latent
space equivalent of the ’Rocchio Session’ process for generat-
ing synthetic search sequences of Adolphs et al. (2022).
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Figure 2: Visualization of the latent-space traversal from
query to gold paragraph, using 2D t-SNE. The blue point
denotes the embedding of the original query “where is
quincy located”. The green squares are the embeddings
of the retrieved paragraphs for this query. The closest
one about “Quincy Washington” is shown in the green
text bar. The orange crosses denote the embeddings of
the reformulations of the query decoder when moving to
the gold paragraph depicted as the red plus. The orange
and red text bars show the final reformulation and the
gold paragraph text, respectively. The number above
the query and reformulations show the nDCG score. As
the gold paragraph is describing the climate of Quincy
in addition to its location, a reformulation about the
“average rainfall in quincy illinois” retrieves the desired
paragraph.

improves steadily and plateaus, then slightly dips,
only when getting close to the gold paragraph em-
bedding. We hypothesize that two effects are at
work here that explain this dip: (i) the closer one
moves towards the gold passage embedding, the
more the query decoder operates out-of-distribution
as it is trained on query embeddings. The joint
latent space is sparse and likely characterized by
distinct regions for queries and passage embed-
dings, which have different properties (e.g., length
or surface structure). (ii) A passage might answer
several questions. When decoding from an embed-
ding close to the paragraph, these might start being
conflated.

Examples We provide a visual example of the la-
tent traversal approach in Figure 2 where we project
the latent space to 2 dimensions using t-SNE (Hin-
ton and Roweis, 2002). The plot shows that for
the ambiguous query “where is quincy located”
(blue dot), the gold paragraph about the climate of
Quincy, Illinois (red plus), is far away from the top-
10 retrieved documents (green squares). Travers-
ing the latent space from the query towards the
gold paragraph leads to improved reformulations

Query Embedding Gold Paragraph Embedding
Traversal from Query Embedding to Gold Paragraph Embedding

0.4

0.5

0.6

0.7

0.8

ND
CG

@
10

NDCG@10 Traversal to Gold Paragraph (QD Standard)
MSMarco
Query
NQ
Query

Figure 3: The normalized discounted cumulative gain
(nDCG) of the reformulations from the query decoder
when moving the input code from the embedding of
the query to the embedding of the gold paragraph. De-
coding closer to the gold paragraph embedding leads
to queries with improved average retrieval performance.
The initial decodings nDCG scores are slightly lower
than from the original query due to the reconstruction
loss of the query decoder.

(orange crosses), as is evident from the shrinking
distance to the gold paragraph and by the improved
nDCG score.
Semantically, the reformulations move to questions
about the climate of Quincy, as this is the main
topic of the gold paragraph. The full sequence
of reformulations is shown in Table 15. Another
example is shown in Table 4; similarly, we see that
the decoded queries move semantically from the
general question of average annual return on the
stock market to the more specific question of return
at the S&P stock exchange. Many more examples
are provided in Appendix A.5.

4 Query Suggestion Model

Dataset Generation We generate a dataset of
query reformulations using the latent space traver-
sal decoding as described in the previous sec-
tion. In particular, for the 532,761 queries of the
MSMarco-train dataset, we leverage GTR’s learned
latent space structure and move towards the embed-
ding of their gold paragraph. At k = 20 intermedi-
ate steps on this path, we use our query decoder to
generate reformulations.
For more than 80% of the queries, we find at least
one optimal reformulation that retrieves the gold
paragraph at the top position. In Figure 4, we show
histograms of nDCG and the inner product to the
gold paragraph for the original query versus the
best-found reformulation. The metrics show that
the latent space traversal helps us discover good
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Original Query
average yearly return on stock market [0.00]

Decodings during Traversal
what is the average annual return on stock market [0.00]

average return on a stock market year [0.00]

what is the average annual return on stock market [0.00]

what is the average return on stock in a year [0.00]

what is the average return in a stock market [0.00]

what is the average annual return in stock ( s&p ) [0.36]

what is the average return on the stock market ( s&p )
[0.36]

what is the average return on the s&p stock exchange at
a time [1.00]

what is the average return in s&p stock at a time [0.36]

what is the average annual return of the s&p stock ex-
change ( best ) [1.00]

Gold Paragraph
The S&P 500 gauges the performance of the stocks of the

500 largest, most stable companies in the Stock Exchange.
It is often considered the most accurate measure of the
stock market as a whole. The current average annual return
from 1926, the year of the S&Ps inception, through 2011
is 11.69%. That’s a long look back, and most people aren’t
interested in what happened in the market 80 years ago.

Table 4: Example of a successful traversal on an MS-
Marco query. The nDCG@10 score of each query is
provided in the brackets. Here, we traverse the latent
space in k = 10 equidistant steps from the embedding
of the original query “average yearly return on stock
market”, which results in an nDCG retrieval score of 0,
to the embedding of the gold paragraph. The queries
decoded from a latent code close to the gold paragraph,
focus on the returns of the S&P (as the gold paragraph)
and lead to improved retrieval results.

query reformulations that lead to massively im-
proved retrieval performance and are closer to the
corresponding gold paragraphs in latent space.
We filter the dataset to only contain “successful”
reformulations to train the reformulation model.
Here, we require a reformulation to have an nDCG
of 1 (i.e., retrieve the gold paragraph at the top
position), to improve the nDCG compared to the
original query, and its embedding to have a larger
inner product with the gold paragraph than the orig-
inal query. Using this approach, we generate a
dataset of 863,307 successful query rewrites. As
the example in Table 4 and Appendix A.5 show,
the decoded queries do not always have human-like
fluency and for some sequences intent shift occurs
when decoding closer to the paragraph. This is one
reason we’re moving in increments from the origi-
nal query to the gold paragraph instead of directly

0.0 0.2 0.4 0.6 0.8 1.0
nDCG

0.0
0.125
0.25

0.375
0.5

0.625
0.75

0.875
1.0

Fr
eq

ue
nc

y

nDCG Distribution MSMarco-train
Original Query
Best Reformulation

(a)

0.70 0.75 0.80 0.85 0.90 0.95
Inner Product to Gold Paragraph

0.0

0.025

0.05

0.075

0.1

0.125

0.15

Fr
eq

ue
nc

y

IP to Gold Paragraph Distribution MSMarco-train
Original Query
Best Reformulation

(b)

Figure 4: The histogram of nDCG (a) and inner product
with the gold paragraph embedding of the original query
vs. the best reformulation found with the latent-space
traversal approach on MSMarco-train.

decoding it.
Interestingly, however, we find that this noise of the
dataset is unspecific enough that it gets smoothed
out during model training as described in the fol-
lowing paragraph. More details about this dataset
are provided in Sec. A.3.

Model Training We use the reformulation
dataset to train two query suggestion model vari-
ants. First, we train a model on the plain reformula-
tion examples, from original query to “successful”
rewrite. As a second, more powerful approach,
we train a model with pseudo-relevance feedback
(PRF); here, we provide GTR’s top-5 search re-
sults for the original query as additional context to
the model. Both models are fine-tuned from the
T5-large (Raffel et al., 2020) pre-training check-
point. Consequently, we name the models in the
following way:

• qsT5-plain: A T5 query suggestion model
trained on the plain generated reformulation
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examples (no pseudo-relevance feedback) of
MSMarco-train, mapping from query to query
reformulation.

• qsT5: A T5 query suggestion model trained
on the generated reformulation examples of
MSMarco-train, where the input is augmented
with the content of GTR’s top-5 retrieved search
results for the original query, mapping from
query and search results to query reformulation.

The details and hyperparameters of the model train-
ing are provided in Appendix A.2.2.

Baseline Models To measure the effectiveness
of our query suggestion model, we benchmark
it against multiple baselines. The baselines are
meant to cover various angles of competitive ap-
proaches to query suggestion, namely training on
human-generated question-edit histories, a classic
RM3 pseudo-relevance feedback query expansion
method, and a latent space sampling approach uti-
lizing our query decoder. In the following, we
introduce the three baselines in detail.

• MQR: We train a T5-large model on the “multi-
domain question rewriting” (MQR) (Chu et al.,
2020) dataset. This dataset consists of 427,719
human-contributed Stack Exchange question-
edit histories, mapping from ill-formed to well-
formed. While this is a relatively large train-
ing dataset, our synthetic generations dataset is
roughly double in size with 863,307 rewrites, yet
without any human edits. This baseline captures
the effect of turning a query to a well-formed
question to improve retrieval performance. It
does not use PRF but maps from query to refor-
mulation, as our qsT5-plain model. Training de-
tails of this model are provided in Section A.2.3
in the Appendix.

• RM3: We employ RM3 (Jaleel et al., 2004) as
a strong pseudo-relevance feedback baseline. In
particular, we use a query expansion approach
that uses the formula described in Eq. 20 of
Pal et al. (2013) with µ = 2500 to determine
the most relevant terms of the top-5 retrieved
documents. Then, each suggestion of the model
consists of the original query together with one
of the determined relevant terms.

• Sampling+QD: To check how much of the re-
trieval performance gain is due to an ensembling
effect in latent space, we compare against a ran-
dom sampling baseline that includes our query

Original Query
who created spiritual gangster

MQR
Who created the Spiritual Gangster?
Who created the “spiritual gangster” storyline?
Who created the “spiritual gangster”?

RM3
who created spiritual gangster spiritual
who created spiritual gangster modern
who created spiritual gangster inspired

Sampling+QD
who created gangster a spiritual & egantious
who created spiritual gangster -gangster
who created spiritual gangster

qsT5
who is the founder of spiritual gangsters
who created the spiritual gangster ( spiritual yogi )
what is the spiritual gangster movement

qsT5-plain
who are the founders of the gangster spirit band
how many gangsters were formed in white supreme
who was the members of the gangster supremes

Gold Paragraph
About Spiritual Gangster. Spiritual Gangster represents a new

generation of yogis seeking balance between the ancient practice
of yoga and the modern world. Founded by Vanessa Lee and Ian
Lopatin, this newly borne brand calls for high vibration living and
radiating love shore-to-shore, person-to-person, heart-to-heart.

Table 5: Examples of the top query suggestions for the
different models for the query “who created spiritual
gangster”. The final row shows the human-labeled gold
paragraph.

decoder (QD). In particular, we sample a point
uniformly at random from an epsilon-ball around
the embedding of the original query and use the
query decoder to decode that point to a query.
This baseline does not use PRF.

Evaluation We evaluate the query suggestion
models on the MSMarco and NQ test sets. For
each example, we generate up to 10 suggestions us-
ing nucleus sampling (Holtzman et al., 2020). Our
ultimate goal is to provide users with at least one
reformulation that better captures their search in-
tent. As we assume the gold paragraph captures the
information need of the user, we evaluate if, within
a small set of reformulations, there is a query that
would lead them closer to that paragraph; i.e., we
measure the maximum nDCG@10 of the top-k re-
formulations and the original query. We provide
the results in Figure 5.

8792



1 3 5 10
# Reformulations

0.40

0.45

0.50

0.55

nD
CG

@
10

MSMarco nDCG@10
Original Query
MQR
Sampling+QD
RM3
qsT5
qsT5-plain

(a)

1 3 5 10
# Reformulations

0.45

0.50

0.55

0.60

0.65

nD
CG

@
10

NQ nDCG@10
Original Query
MQR
Sampling+QD
RM3
qsT5
qsT5-plain

(b)

Figure 5: Retrieval metrics of the query suggestion models on the MSMarco (a) and NQ (b) test sets. The dashed
line shows the nDCG@10 score of the original query. The bars represent the nDCG@10 of the best 1, 3, 5, and 10
reformulations (including the original query), respectively, of different models. The error bars show the 95 percent
confidence interval when doing bootstrap sampling from up to 10 generations of the models. The RM3 and qsT5
models are using pseudo-relevance feedback, i.e., information about the top-retrieved paragraphs.

We see that our qsT5 model significantly outper-
forms all baselines on both datasets. Notably,
it substantially improves upon the RM3 pseudo-
relevance feedback baseline; this indicates that our
full reformulation approach is more powerful for
neural retrievers than a well-established query ex-
pansion technique.
The large gap between qsT5 and qsT5-plain vali-
dates the importance and usefulness of condition-
ing on the initial search results.
Successfully rewriting the query to a well-formed
variant benefits this task as indicated by the im-
proved nDCG performance of the non-PRF base-
line of the T5 model trained on MQR (blue) over
the original query (dashed line). The qsT5-plain
model outperforms the MQR model when consider-
ing multiple reformulations on MSMarco, indicat-
ing that in some cases our model learns successful
rewriting beyond improving fluency.
The qsT5-plain is mostly on par with sampling
randomly around the embedding of the original
query and using our query decoder to generate a
reformulation; hence, we can speculate that the
main benefit of this non-PRF model comes from
an ensembling effect of generating suitable refor-
mulations around the neighborhood of the original
query. Again, this reinforces the benefit of pseudo-
relevance feedback for the application of query
suggestion.
Additional plots showing the inner product metric
for this experiment and a table summarizing the
numbers are provided in Appendix A.1.

Diversity & Fluency To quantitatively highlight
the characteristics of the evaluated query sugges-
tion models, we report Self-BLEU (Zhu et al.,
2018) and perplexity of a language model as prox-
ies for diversity and fluency, respectively, in Table 6.
Self-BLEU is measured between 10 suggestions
for a given query and averaged across the dataset,
where a low Self-BLEU indicates large diversity
between suggestions. For the perplexity evaluation,
we employ the T5-base language model trained on
C4 (Raffel et al., 2020) and measure the average
per-token perplexity of all suggestions for a given
dataset; here, we associate lower perplexity with
higher fluency of the suggestions.
Table 6 shows that the MQR baseline generates the
most fluent queries, but with low diversity com-
pared to our reformulation approaches. The RM3
query expansions score worst in diversity as they
always use the original query as a base. Our qsT5
model scores second best in diversity, with a good
comparative perplexity, only surpassed by the qsT5
variant without PRF, due to the fact that this model
does not focus on the “narrowed-down” topics
of the retrieved results. Notably, the perplexity
is higher for the NQ dataset than for MSMarco
due to the nature of queries in NQ being closer to
well-formed questions as opposed to ’search engine
queries’.

Examples In Table 5, we cherry-pick a represen-
tative example of query suggestions for the differ-
ent models. This example showcases typical be-
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MSMarco NQ
Model S-BLEU PPL S-BLEU PPL

Original Query - 1622.2 - 217.9
MQR 46.1 59.6 61.4 56.8
RM3 74.8 1562.6 88.0 309.5
Sampling+QD 23.7 726.0 26.6 687.5
qsT5 17.8 247.8 18.4 223.2
qsT5-plain 9.2 196.6 7.6 249.8

Table 6: Self-BLEU (Zhu et al., 2018) and Perplexity
(PPL) for the query suggestions of the different models
on MSMarco and NQ. Self-BLEU is measured between
10 suggestions of a model for a given query and then
averaged across the dataset to provide information about
the diversity of the suggestions. Perplexity is measured
per token based on a T5 language model to provide a
relative comparison of fluency of the query suggestions.

haviors of the models. The MQR model is trained
on turning ill-formed into well-formed questions.
Hence, it usually produces grammatical but low di-
versity reformulations, especially when the original
query is already close to a well-formed question.
The relatively high Self-BLEU score amongst its re-
formulations for a given query, reported in Table 6,
supports the argument of limited diversity.
The RM3 model appends the most relevant terms to
the original query and therefore has the lowest over-
all diversity (i.e., highest Self-BLEU). The Sam-
pling+QD model can result in non-grammatical or
even nonsensical queries depending on the sampled
point in latent space. While the qsT5 model can
utilize the top-retrieved search results to form refor-
mulations that are in accordance with the topic of
the query (e.g., “yogi” in the example of Table 5),
the qsT5-plain needs to rely on its internal world
knowledge stored in its parameters. It thus cannot
connect “gangster” with “yogi” here.

5 Conclusion

Dual encoders have reset the standard in IR. How-
ever, language-based inverted index architectures
still hold their ground, especially in out-of-domain
evaluations (Thakur et al., 2021). To help further
our understanding of the connections, and potential,
between the two, we propose a method that relies
on a query decoder to map back to language space
the latent codes generated by the encoder.
The interplay between latent and language rep-
resentations, in combination with a simple goal-
directed mechanism for traversing the shared query-
document space, allows us to generate a large syn-
thetic dataset of query reformulations on which we

train a pseudo-relevance feedback query sugges-
tion model that characteristically tries to predict
the location of the target document.
Our contribution is twofold: (i) we develop a
generic way to generate training data for directional
query refinement by traversing the latent space be-
tween queries and relevant documents, and (ii) we
build a powerful reformulation model that we eval-
uate on a novel benchmark inspired by the query
suggestion task. Suggestions are typically well-
formed, diverse and more likely to lead to the right
document than competing methods.

6 Limitations

A proper user study would provide a valuable com-
plement to the current evaluation and contribute to
a fuller picture. However, this presents significant
challenges that are beyond the scope of the current
work. For instance, is not trivial to adequately de-
sign a meaningful task for human raters conducive
to good agreement, e.g., it may be inevitable to
second-guess the original query intent in the pres-
ence of unexpected interpretations brought to the
surface by the suggestions. For the time being, we
feel the automatic evaluation proposed here will be
more valuable, as it makes direct comparison and
reproducibility straightforward.
Secondly, it seems sensible to further evaluate the
query suggestions in an end-to-end IR task. Pre-
liminary experiments in this direction using MS
Marco proved somewhat inconclusive, while they
introduce significant complexity. The data anno-
tations are sparse (one passage per query, by and
large) and it is often the case that multiple relevant
passages exist for the same query.3 This makes
reranking a crucial but faulty component, open-
ing up a somewhat orthogonal front. The ideal
evaluation would rely on a deeper manual analy-
sis for a limited query set, e.g., TREC-style (e.g.,
cf. Craswell et al. (2020)).
We leave both for future work.
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A Appendix

A.1 Additional Results of the Query Suggestion Model

Model
MSMarco NQ

1 3 5 10 1 3 5 10

Original Query .420 - - - .495 - - -
MQR .439 .001 .454 .005 .464 .005 .477 .004 .531 .001 .548 .008 .557 .009 .571 .005

Sampling+QD .440 .001 .469 .005 .484 .007 .506 .013 .522 .001 .548 .005 .561 .006 .580 .005

RM3 .445 .003 .472 .016 .495 .009 .522 .011 .526 .003 .552 .012 .571 .006 .589 .012

qsT5 .455 .002 .496 .010 .519 .010 .554 .011 .541 .003 .582 .011 .615 .008 .637 .009

qsT5-plain .440 .005 .470 .007 .488 .005 .508 .008 .520 .006 .543 .006 .553 .010 .577 .013

Table 7: Retrieval metric nDCG@10 of the query suggestion models on the MSMarco and NQ test sets. The numbers
represent the nDCG@10 of the best 1, 3, 5, and 10 reformulations (including the original query), respectively, of
different models. The small number indicates the standard deviation when doing bootstrap sampling from up to 10
generations of the models.
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Figure 6: Inner product of the best reformulation with the gold paragraph for the various query suggestion models on
the MSMarco (a) and NQ (b) test sets. The dashed line shows the inner product of the original query with the gold
paragraph. The bars represent the inner product with the gold paragraph of the best 1, 3, 5, and 10 reformulations
(including the original query), respectively, of different models. The error bars show the 95 percent confidence
interval when sampling repeatedly from up to 10 generations of the models. The RM3 and qsT5 models are using
pseudo-relevance feedback, i.e., information about the top-retrieved paragraphs, while the rest is only mapping from
query to query.

A.2 Training and Model Details

A.2.1 Query Decoder Model
We initialize the query decoder from the Tensorflow (Abadi et al., 2015) T5-base (Raffel et al., 2020)
checkpoint for conditional language generation of the Huggingface transformers library (Wolf et al., 2020).
We train and use only the decoder of the 220M parameter model with 12 layers, 12 heads, and a hidden
state dimension of 768. We train the model on a random sample of 3M queries from the PAQ dataset
(Lewis et al., 2021) with the hyperparameters provided in Table 8 for 130 hours on 16 Cloud TPU v3.
Given the size of the model and the associated cost of training, we do not do an exhaustive grid search
over the parameters but only sweep over four different values for the learning rate (1e-4, 3e-4, 5e-4, 1e-3).
We determine the best model according to sequence classification accuracy on a held-out dev set.
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Parameter Value

Number Decoder Layers 12
Number Heads 12
Head Dimension 64
Embedding Dimension 768
MLP Dimension 2048

Batch Size 64
Dropout Rate 0.0
Base Learning Rate 0.0005
Warm-up Steps 100
Optimizer AdamW
Weight Decay Rate 0.01
Finetuning steps on PAQ 5M

Table 8: Training Parameters for the T5-base Query Decoder model

A.2.2 qsT5 Query Suggestion Model
We initialize our qsT5 and qsT5-plain models from the T5-large checkpoint and train them with the
parameters provided in Table 9 for ∼24 hours on 16 Cloud TPU v3 each. We prefix the query with the
keyword “Query: ” and each passage, for the qsT5 model, with the keyword “Paragraph: ”. For this
model we rely on standard hyperparameters and, given the cost of training, do not further grid search for
better values.

Parameter Value

Number Encoder Layers 24
Number Decoder Layers 24
Number Heads 16
Head Dimension 64
Embedding Dimension 1024
MLP Dimension 2816

Batch Size 128
Dropout Rate 0.1
Base Learning Rate 0.001
Warm-up Steps 1000
Optimizer AdaFactor
Input Token Length 1024
Output Token Length 32

Finetuning steps (qsT5) 40k
Finetuning steps (qsT5-plain) 31k

Table 9: Training Parameters for the T5-large qsT5 and qsT5-plain Query Suggestion Models

A.2.3 MQR Query Suggestion Model
As with our qsT5 models, we initialize the MQR query reformulation model from the T5-large checkpoint.
We train the model with the parameters provided in Table 10 for ∼3h on 16 Cloud TPU v3, and choose
the best checkpoint according to sequence accuracy on the dev set. Training quickly overfits after about
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2k step (∼16min). We increased the batch size to 2048 and found the adding dropout didn’t help but did
no further hyperparameter tuning.

Parameter Value

Number Encoder Layers 24
Number Decoder Layers 24
Number Heads 16
Head Dimension 64
Embedding Dimension 1024
MLP Dimension 2816

Batch Size 2048
Dropout Rate 0.0
Fixed Learning Rate 0.001
Optimizer AdaFactor
Input Token Length 32
Output Token Length 32

Finetuning steps 1800

Table 10: Training Parameters for the T5-large MQR Query Reformulation Model

A.3 Dataset Details

We experiment with a few different thresholds on what constitutes a successful reformulation for our
generated dataset. We achieve the best results in terms of sequence classification accuracy of a held-out
dev set of reformulations for the dataset described in the main body of the paper. Our final dataset of
successful reformulations of MSMarco-train queries contains 863,207 successful query rewrites that are
split among a training, development, and test set as reported in Table 11.

Split Number of Examples

Train 768,372
Dev 86,478
Test 8,457

Total 863,307

Table 11: Successful Reformulation Dataset Details
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A.4 Additional Reformulation Examples

Type Query nDCG@10

Original Query shopko kennewick address 0.63
MQR Is the address for the Shopko in Kennewick correct? 1.00

What is this shopko in Kennewick, NY address? 1.00
Is there a Shopko in Kennewick with the following address? 1.00

RM3 shopko kennewick address 867 0.50
shopko kennewick address store 1.00
shopko kennewick address 5500 0.50

Sampling+QD who is the localization of koieko shopphan 0.00
shopk kennewickko address in shopington 0.63
shopko kennewick is located in which address 0.63

qsT5 what is the address of shopko located in kennewick washington 1.00
what is the location of shopko in kennewick washington 1.00
where is shopko store in kennewick washington 1.00

qsT5-plain what time is open shopko at 867 kennewick 1.00
what is the main store at shopko kanetown 0.00
when does store for shopko located in north kansas 0.00

Gold Paragraph Information about possible store closing and store hours for: ShopKo in Kennewick, Washington, 99336
Address: 867 North Columbia Center Blvd | Phone: (509) 736-0884 | Type: Store, Department Store,
Retail More information:

Table 12: Examples of the top query suggestions for the MSMarco query “shopko kennewick address”. The final
row shows the human-labeled gold paragraph and the nDCG@10 retrieval score is provided for each query. In this
example, we see that the qsT5 model can leverage the PRF to successfully generate queries that focus on Kennewick
in Washington. For the non-PRF models, this is not possible.

Type Query nDCG@10

Original Query definition of a surge 0.50
MQR What is the definition of a surge? 0.43

What is the definition of a surge? 0.43
What is a surge? 0.63

RM3 definition of a surge surge 0.33
definition of a surge sudden 0.43
definition of a surge increase 0.30

Sampling+QD what is the definition of a surge 0.50
a a surge to a begin in the surge definition 0.43
what is the definition of a surge 0.50

qsT5 what is the definition of a surge in the sea 0.50
what is the meaning of surge in a wave 0.63
what is the definition of a surge in a sound 1.00

qsT5-plain what is the swiveling of a rolling motion 0.00
what is the meaning of a surge in the emotional side of a big wave 0.43
the surge of a wave or ayurvedic chorus 0.00

Gold Paragraph surge. 1. a strong, wavelike forward movement, rush, or sweep: the surge of the crowd. 2. a sudden,
strong rush or burst: a surge of energy. 3. a strong, swelling, wavelike volume or body of something. 4.
the rolling swell of the sea. 5. a swelling wave; billow. 6. the swelling and rolling sea. 7. a. a sudden
rush or burst of electric current or voltage. b. a violent oscillatory disturbance.

Table 13: Examples of the top query suggestions for the MSMarco query “definition of a surge”. The final row
shows the human-labeled gold paragraph and the nDCG@10 retrieval score is provided for each query. Here, we see
that the qsT5 model provides more useful additions to the query than the simple rephrasing of the MQR model. It
adds topical terms like “sea”, “wave”, or “sound” with which it is possible to obtain improved retrieval performance.
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Type Query nDCG@10

Original Query what aircraft can you fly with a ppl 0.29
MQR What aircraft can you fly with a passenger? 0.00

What aircraft can you fly with passengers? 0.00
Which aircraft can you fly with a passenger? 0.00

RM3 what aircraft can you fly with a ppl pilot 0.36
what aircraft can you fly with a ppl license 0.32
what aircraft can you fly with a ppl private 0.43

Sampling+QD what aircraft can you fly with a ppl 0.29
what ships did you fly a learn park and can server ( pplalo 0.00
a able a flying wings able islands with a pistol pl 0.00

qsT5 what kind of airplane can you fly with a ppl 0.00
what type of aircraft are you able to fly a private pilot 1.00
what does a personal pilot ( a pvl ) mean 0.00

qsT5-plain what are the types of aircraft that can be used for private pilots 1.00
what kind of licenses are required to have a private pilot 0.32
how many pilots are required to take a commercial flight 0.00

Gold Paragraph The types of aircraft one may fly depends on what they are certified for, e.g. Airplane Single Engine
land. See Categories and Classes for a list. Usually, a newly minted private pilot is certified to fly all
planes in the generic category single engine piston, often abbreviated SEP. This includes the Cessna
172, PA-28, Diamond DA40, Robin DR400 and similar planes. More complex types, like those with
retractable undercarriage or variable pitch props, require additional training and licensing.

Table 14: Examples of the top query suggestions for the MSMarco query “what aircraft can you fly with a ppl”4.
The final row shows the human-labeled gold paragraph and the nDCG@10 retrieval score is provided for each query.
In this example only the two qsT5 models are able to add the term “private pilot” to the query that leads to good
retrieval performance. Notably, the RM3 PRF baseline ranks these two terms separately as important and adds them
to their suggestions.

A.5 Additional Traversal Examples

Figure 7: Visualization of the latent-space traversal from query to gold paragraph, using 2D t-SNE. The blue point
denotes the embedding of the original query “what is the third law”. The green squares are the embeddings of the
retrieved paragraphs for this query. The closest one about the “Third Law of Motion” is shown in the green text
bar. The orange “x’s” denote the embeddings of the reformulations of the query decoder when moving to the gold
paragraph depicted as the red plus. The orange and red text bars show the final reformulation and the gold paragraph
text, respectively.

4The abbreviation PPL stands for private pilot license.
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Type Query nDCG@10

Original Query where is quincy located 0.00
Reformulations where is quincy located in miami 0.00

where is quincy located in a state 0.00
where is the city of quincy located 0.00
where is the state of quincy located 0.00
where is the city of quincy located in illinois 0.39
where is the climate of quincy located in illinois 1.00
where does the water come from in quincy illinois 1.00
what is the average rainfall in quincy illinois 1.00

Gold Paragraph Location/Climate. The western most city in Illinois, Quincy is located along the eastern bank of the
Mississippi River atop 90 foot limestone bluffs which overlook a wide expanse of the river and a natural
harbor. Residents enjoy a moderate, four season climate where the sun shines nearly 68% of the time.
This area of Illinois receives an average of 36.86 inches of rainfall a year, and an average of 24 inches
of snowfall. The average winter temperature is 28 degrees and the average summer temperature is 79
degrees.

Table 15: Example of a traversal on an MSMarco query. Here, we traverse the latent space in equidistant steps from
the embedding of the original query “where is quincy located”, which results in an nDCG@10 retrieval score of 0,
to the embedding of the gold paragraph. The queries decoded from a latent code close to the gold paragraph are
concerned with the climate of Quincy, Illinois, which is the focus of the gold paragraph.

Type Query nDCG@10

Original Query weather year round in new york city 0.00
Reformulations what is the weather year in new york city 0.33

what is the weather in new york city each year 0.00
what is the weather in new york city 0.00
what is the hottest season in new york city 0.39
when is the coldest month in new york 0.30
when is the hottest month in new york 1.00

Gold Paragraph New York: Annual Weather Averages. July is the hottest month in New York with an average temperature
of 25°C (76°F) and the coldest is January at 2°C (35°F) with the most daily sunshine hours at 11 in July.
The wettest month is May with an average of 114mm of rain.

Table 16: Example of a traversal on an MSMarco query. Here, we traverse the latent space in equidistant steps
from the embedding of the original query “weather year round in new york city”, which results in an nDCG@10
retrieval score of 0, to the embedding of the gold paragraph. The queries decoded from a latent code close to the
gold paragraph are more specific, asking about the hottest and coldest month in New York.

Type Query nDCG@10

Original Query what year declaration of independence 0.00
Reformulations when was the declaration of independence year 0.00

when was the declaration of independence year 0.00
what year is the declaration of independence 0.00
when was the declaration of independence 0.00
what is the declaration of independence in the year 0.33
what is the declaration of independence in most of the person 0.00
what is the declaration of independence in most of them 0.00
when was the declaration of independence ( most important ) 1.00
when was the declaration of independence ( dst ) on the most important document 1.00
when was the declaration of independence ( most important ) 1.00

Gold Paragraph The Declaration of Independence is, of course, one of the country’s most important documents, adopted
at the Second Continental Congress on July 4, 1776. The text and purpose of the Declaration would
likely be recognizable to those who have applied for U.S. citizenship, since questions about the document
appear on the naturalization test.

Table 17: Example of a traversal on an MSMarco query. Here, we traverse the latent space in equidistant steps
from the embedding of the original query “what year declaration of independence”, which results in an nDCG@10
retrieval score of 0, to the embedding of the gold paragraph. The queries decoded from a latent code close to the gold
paragraph, include the keyword “important” that seems to be helpful in retrieving this particular gold paragraph.
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Type Query nDCG@10

Original Query how many us dollars are currently in circulation 0.00
Reformulations how many dollars are currently in circulation 0.00

how many dollars are in circulation in us 0.00
how many dollars are in circulation in the us 0.00
how many dollars are in circulation in the us 0.00
how many dollars are in circulation in the us 0.00
what are the dollars that are in circulation us 0.00
what are the sets of dollars in the us 0.00
what are the denominations of dollars around us 0.50
what are the denominations of $ 100 were there 1.00
what are the denominations of $ more than that were used in the us 1.00

Gold Paragraph Large denominations of United States currency. Large denominations of United States currency greater
than $100 were circulated by the United States Treasury until 1969. Since then, the U.S. dollar has only
been issued in seven denominations: $1, $2, $5, $10, $20, $50, and $100.

Table 18: Example of a traversal on an MSMarco query. Here, we traverse the latent space in equidistant steps
from the embedding of the original query “how many us dollars are currently in circulation”, which results in an
nDCG@10 retrieval score of 0, to the embedding of the gold paragraph. The decoded queries drift away from the
original questions of dollars in circulation to the denominations of dollar bills. The reason of this drift becomes
obvious by looking at the gold paragraph that explains the denominations of the US Dollar but not the money
currently in circulation. This is one of many examples where the labeled gold paragraph is not correct and hence the
decoded queries drift away from the original query.

Type Query nDCG@10

Original Query are tesla electric cars 0.00
Reformulations are tesla electric cars no are they electric car 0.00

is tesla electric cars a car or they are electric 0.00
tesla electric cars are they or electric car 0.00
tesla electric cars are they being or electric 0.00
tesla cars are electric to be or electric cars 0.00
tesla electric cars are off of what kind of cars 0.00
tesla electric cars are a bolton on which time 0.00
tesla electric cars a mile off what speed are they 0.00
737 el taton speedway was flying away on how many cars 1.00
737 bolts on a ta speedway how many miles off airport 1.00

Gold Paragraph A Qantas Boeing 737 aircraft and a Tesla electric car race on the nearly 2 mile runway at Avalon Airport.
The Tesla was hard to catch off the start. Both travelled neck and neck as the 737 reached take-off speed
of 161 mph and the Tesla hit 155 mph. USA TODAY.

Table 19: Example of a traversal on an MSMarco query. Here, we traverse the latent space in equidistant steps
from the embedding of the original query “are tesla electric cars”, which results in an nDCG@10 retrieval score of
0, to the embedding of the gold paragraph. In this example the final decoded query perfectly solves the retrieval
problem (nDCG of 1) even though being semantically very strange. These queries are an interesting example as
their embedding is close to the embedding of the gold paragraph, even though they have little non-stopword overlap
with the gold paragraph (in the second to last query, only “737” overlaps exactly).
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