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Abstract

Embedding knowledge graphs (KGs) for multi-
hop logical reasoning is a challenging problem
due to massive and complicated structures in
many KGs. Recently, many promising works
projected entities and queries into a geometric
space to efficiently find answers. However, it
remains challenging to model the negation and
union operator. The negation operator has no
strict boundaries, which generates overlapped
embeddings and leads to obtaining ambiguous
answers. An additional limitation is that the
union operator is non-closure, which under-
mines the model to handle a series of union
operators. To address these problems, we pro-
pose a novel probabilistic embedding model,
namely Gamma Embeddings (GammaE), for
encoding entities and queries to answer differ-
ent types of FOL queries on KGs. We utilize
the linear property and strong boundary support
of the Gamma distribution to capture more fea-
tures of entities and queries, which dramatically
reduces model uncertainty. Furthermore, Gam-
maE implements the Gamma mixture method
to design the closed union operator. The perfor-
mance of GammaE is validated on three large
logical query datasets. Experimental results
show that GammaE significantly outperforms
state-of-the-art models on public benchmarks.

1 Introduction

Most important advances encode knowledge into
large-scale graph data to model real-world knowl-
edge graphs (KGs), such as Wikidata (Abiteboul
et al., 1995; Vrandečić and Krötzsch, 2014), Mi-
crosoft Academic (Sinha et al., 2015), Medical
domain (Bodenreider, 2004; Wishart et al., 2018).
A knowledge graph aims to represent entities and
describe relations between concepts and entities.
Multi-hop reasoning on KGs is a fundamental task
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of predicting answer entities of a graph query.
Though previous methods have provided signifi-
cant insight, this domain exists many challenging
works due to complicated query structures and in-
complete graph data. Since most real-world KGs
consists of multiple unobserved edges and nodes,
multi-hop reasoning cannot easily find the answer-
ing query.

Knowledge graph reasoning can be represented
by the first-order logic (FOL) queries with basic
operators, such as the existential quantifier (∃), con-
junction (∧), disjunction (∨), and negation (¬).
One regular set of such graph queries is the con-
junctive query, which only consists of existential
quantifiers (∃) and conjunctions (∧) (Abiteboul
et al., 1995). For example, a conjunctive query,
such as "who are Nobel laureates from Germany?",
is calculated on open-domain KGs. The laureates
are existentially quantified variables in this query,
where some laureates connect the Nobel prize to
Germany. In terms of this task, we aim to predict
potential answers that can involve missing edges.
Besides, it is difficult to find all possible query
structures since any graph query can be satisfied by
many subgraphs.

Current methods (Hamilton et al., 2018; Zhang
et al., 2021; Ren et al., 2020; Jiang et al., 2019)
address these problems by projecting entities and
relations into a low-dimensional geometric space.
These methods could quickly discover answers,
since there is no need to track all intermediate en-
tities. This research direction provides an effec-
tive solution for encoding semantic positions of
entities by using their neighbor information. It is
imperative that the solution is not required to track
all intermediate entities, and only uses the near-
est neighbor information in the geometric space
to quickly get answers. However, geometric em-
beddings of the union operator cannot locate in a
closed space, that is, the union of two embedding
boxes is not a box or the same structure. Thus, FOL
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operations have difficulty in running the union op-
erator (Ren and Leskovec, 2020; Ren et al., 2020).
Due to the non-smooth distance function, the dis-
tance between entities is difficult to calculate in the
boxing space (Ren et al., 2020).

Other approaches apply the density function to
encode entities and relations (Choudhary et al.,
2021; Ren and Leskovec, 2020). Though these
models can solve all FOL queries, they cannot ef-
ficiently handle the union operator (∨) due to its
non-closure property in the density space. Besides,
previous methods utilize the Disjunctive Normal
Form (DNF) transformation which requires more
computational steps. Thus, we aim to address the
limitation and then implement the Gamma density
function for encoding entities and relations. An-
other point is that our work can effectively process
a stream of disjunctive queries.

Here we propose a Gamma Embedding (Gam-
maE) probabilistic model to encode entities and
relations for multi-hop reasoning on KGs. In
the Gamma density space, all FOL operations,
such as existential quantifier (∃), intersection (∧),
union (∨), and negation (¬), are closed and follow
Gamma distributions. The linear property of the
Gamma density can dramatically improve the com-
putation efficiency for discovering answers. The
contributions of our work are summarized as fol-
lows:

1. GammaE provides a closed solution for all
FOL operators, including a projection, intersection,
union, and negation.

2. GammaE firstly implements the Gamma mix-
ture method to alleviate the non-closure problem
on union operators, which significantly reduces
computation steps.

3. GammaE enables query embeddings to have
strict boundaries on the negation operator, which
can effectively avoid finding ambiguous answers.

4. GammaE outperforms state-of-the-art mod-
els on multi-hop reasoning over three benchmark
datasets.

Our results have implications for encoding enti-
ties and relations, advancing the science of multi-
hop reasoning, and improving our understanding
of general knowledge graph. The rest of the paper
is organized as follows: Section 2 shows the re-
lated work in multi-hop reasoning over KGs. Next,
sections 3 and 4 theoretically demonstrate Gamma
embeddings and define its FOL operations. The ex-
perimental setup and results are explicitly shown in

section 5. Finally, section 6 makes a clear conclu-
sion and section 7 briefly presents its limitations.

2 Related Work

This work is closely related to query embedding ap-
proaches (Hamilton et al., 2018; Daza and Cochez,
2020; Vilnis et al., 2018; Alivanistos et al., 2022;
Kotnis et al., 2021). Most related models are ap-
plied for multi-hop reasoning over KGs (Ren et al.,
2020; Zhang et al., 2021; Choudhary et al., 2021;
Ren and Leskovec, 2020; Arakelyan et al., 2021;
Ren et al., 2021; Guo et al., 2018; Lin et al., 2018;
Xiong et al., 2017; Guu et al., 2015). Based on their
embedding methods, these models can be catego-
rized into two branches, namely geometric embed-
ding models and probabilistic embedding models.
The geometric embedding models assign adaptive
geometric shapes for entities and relations with dif-
ferent structures (Ren et al., 2020; Boratko et al.,
2021; Patel et al., 2021). These models map FOL
queries into low-dimensional spaces and don’t need
to model the intermediate entities, which dramat-
ically reduces the computation costs. They can
effectively deal with a subset of FOL operations,
while Zhang et al. (2021) proposed a novel cone
embedding for entities, and can handle all FOL
operations. Meanwhile, Bai et al. (2022) encode
complex queries into multiple vectors, named par-
ticle embeddings. It also efficiently deals with all
FOL operations. These models have strict borders
relying on a non-smooth distance function, which
difficultly handles multiple answers and easily ig-
nores some correct entities. However, our model
utilizes Gamma density to create linear space for
each entity and relation, and build a soft-smooth
distance function for alleviating the boundary ef-
fect.

Another method is to encode entities into the
probabilistic density for performing multi-hop log-
ical reasoning. (Chen et al., 2021; Li et al., 2018;
Dasgupta et al., 2020). In vector embeddings,
TransG (Xiao et al., 2015) firstly models the uncer-
tainties of entities and relations by using the Gaus-
sian mixture model. Their work doesn’t be imple-
mented into multi-hop reasoning on KGs. BETAE
(Ren and Leskovec, 2020) firstly embeds entities
and relations with the probabilistic density, which
can handle all FOL operations. Since their union is
non-closure, BETAE potentially leads to generate
ambiguous entities between the two boxes. PERM
(Choudhary et al., 2021) applies the Gaussian den-
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sity for representing entities and relations, and uses
Gaussian mixture models for complex queries, i.e,
long chains. However, PERM cannot handle the
negation operator, and needs to spend large compu-
tational costs on learning knowledge graph repre-
sentations. Our work firstly uses Gamma density
to map entities and relations into linear space, and
dramatically increases the performance and robust-
ness. Also, GammaE efficiently finds the answers
with closed and smooth forms.

3 Preliminaries

A knowledge graph (KG) is a directed graph G =
(V,E,R), where V is the set of entities, E is
the set of triplets, and R denotes the set of rela-
tions. A direct triplet of a KG is represented as
(e1, r, e2) ∈ E, that is, a relation r linking the en-
tity e1 to the entity e2, where e1, e2 ∈ V and r ∈ R.
For each triplet, it has a relational binary function,
i.e, r(e1, e2) = True if and only if (e1, r, e2) ex-
ists.

First-order Logic Queries. The first-order logic
(FOL) queries contain four basic operators, namely
existential quantifier (∃), conjunction (∧), disjunc-
tion (∨), and negation (¬). A first-order logic
query q consists of a non-variable anchor entity set
Va ⊆ V , existential quantified set {V1, V2, ..., Vk},
and a target set Vt, i.e, query answers. The logical
form of a disjunctive query q can be written as

q[Vt] = Vt. ∃V1, V2, ..., Vk : c1 ∨ c2 ∨ ... ∨ cn,
(1)

where ci = bi1∧bi2...∧bim, and bij = r(ea, V ) or
¬r(ea, V ) or r(V ′, V ) or ¬r(V ′, V ), for ea ∈ Va,
V ∈ {Vt, V1, ..., Vk}, V ′ ∈ {V1, ..., Vk}, and V ̸=
V ′, r ∈ R. Here, ci is a conjunctive query with one
or more literals bij . And bij is an atomic formula
or a negation.

Computation Graphs. Each query can gener-
ate its corresponding computation graph, where
entities are mapped into nodes, and relations with
atomic formulas are calculated by logical operators.
These logical operators are defined as follows:

1. Relation Projection. A set of entities is S ⊆
V , a relation type is r ∈ R, and neighbors of
entities S′ are defined as ∪v∈SAr(v), where
Ar(v) ≡ {v′ ∈ N : r(v, v′) = True}.

2. Intersection. Given sets of entities
{S1, S2, ..., Sk}, their intersection is
∩k
i=1Si.

3. Union. For sets of entities {S1, S2, ..., Sk},
their union is ∪k

i=1Si.

4. Negation. A set of entities is S ⊆ V , and its
complement is S ≡ V \S.

4 Gamma Embeddings for Logical
Reasoning

To address the multi-hop reasoning on incomplete
KGs, we propose a novel model GammaE, which
encodes both entities and queries into Gamma dis-
tributions. Next, the related probabilistic logical
operators are transformed into relation projection,
intersection, union, and negation. GammaE pro-
vides an efficient method to handle arbitrary FOL
queries. The schematics of GammaE answering
graph queries are explicitly illustrated in Fig. 1.

4.1 Gamma Embedding for Entities and
Relations

A Gamma distribution is defined as

f(x;α, β) =
xα−1e−βxβα

Γ(α)
, (2)

where x > 0, α > 0 is the shape, β > 0 is the
rate, and Γ(∗) is the Gamma function. Thus, the
uncertainty of distribution can be obtained by in-
formation entropy:

H(X) =E[− ln f(x;α, β)]

=E[−α ln(β) + ln(Γ(α))

− (α− 1) ln(X) + βX]

=α− ln(β) + ln(Γ(α)) + (1− α)ψ(α),
(3)

where ψ(∗) is the digamma function (see Ap-
pendix A).

4.2 Probabilistic Projection Operator
Given a set of entities’ embeddings S, the proba-
bilistic projection operator maps from S to another
set S′ dependent on the relation type r. This opera-
tor could be defined

S′ = MLPr(S), (4)

where MLPr is a multi-layer perceptron network
for given relation type r. The transformed set S′ is
∪v∈SAr(v), where Ar(v) ≡ {v′ ∈ N : r(v, v′) =
True}. It is essential that the projection operator
represents a relation type r from one set of entities
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Query: which field cannot win a Nobel Prize? 

Logical form: q=

Figure 1: Based on the computation graph, GammaE answers first-order logic queries including ∃, ∧, and ¬
logical operators. (a) A specific query, such as "which field cannot win a Nobel Prize?", can be translated into
its corresponding computation graph, where each node represents a set of entities and each edge stands for a
logical operator. (b) GammaE encodes each node of the computation graph as a Gamma distribution over the
entity embedding space. Each edge of the computation graph is calculated by logical operators, such as projection,
negation, or intersection operators. The upper figure shows the probability distribution of the Gamma embedding,
and the bottom figure reflects the contour mapping of the Gamma embedding. GammaE applies a series of
logical operators to shape the size of the Gamma distribution. The answers of this query are then entities that are
probabilistically close to the embedding of the query (e.g., the embedding of "Mathematics" is closer to the query
embedding, not the embedding of "Physics").

to another fuzzy set. To avoid obtaining a huge
number of answers, the Gamma embeddings are
limited in a fixed size, scaling GammaE. A visu-
alization of the projection operator is shown in
Fig. 2a.

4.3 Probabilistic Intersection Operator
For two input embeddings of two entities S1, S2,
their intersection operator is defined as

PSInter
=

1

Z
Pw1
S1
Pw2
S2
, (5)

where Z is a normalization constant, Pw1
S1

=
f(x;w1α1, w1β1), Pw2

S2
= f(x;w2α2, w2β2), and

w1 + w2=1. Since the product of Gamma distribu-
tion f(x;α, β) approximates to the linear summa-
tion of parameters (α, β), Eq. 5 can be derived

PSInter
∝ x

∑2
i=1 wi(αi−1)e

∑2
i=1 −wiβix

≈ f(x;
2∑

i=1

wiαi,
2∑

i=1

wiβi). (6)

Thus, given k input embeddings S1, S2, ..., Sk,
the intersection of Gamma embeddings PSInter

can
be calculated as

PSInter
=

1

Z

k∏

i=1

Pwi
Si
, (7)

where Z is a normalization constant, Pwi
Si

=

f(x;wiαi, wiβi), and
∑k

i=iwi = 1. A complete

proof is presented in Appendix B. Fig. 2b illustrates
the intersection operation.

For learning the parameters w1, w2, ..., wk, we
realize it with the self-attention mechanism. A
single attention parameter is to

wi =
exp(MLPatt(Si))∑
j exp(MLPatt(Sj))

. (8)

4.4 Probabilistic Union Operator
The union operator is implemented by Gamma mix-
ture models. For k input embeddings S1, S2, ..., Sk,
the union results can be calculated as

PSUnion
=

k∑

i=1

θiPSi , (9)

where θi =
exp((PSi

)∑
j exp(PSi

) , and PSi = f(x;αi, βi).
Here, θi ∈ Θ is the learned weight for each Gamma
density in the Gamma mixture model and also uses
the self-attention mechanism. Its operation is plot-
ted in Fig. 2c.

4.5 Probabilistic Negation Operator
A probabilistic negation operator takes Gamma
embedding S as the input, and then obtains an
embedding of the complement ¬S(S). A desired
property of the negation operator N is to reverse
in the sense where regions of high density in PS

should have low probability density in NPS
and

vice versa (Fig. 2d). For Gamma embeddings, this
negation operator for a given S is defined as
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(a) Projection Operator

Input 1

(b) Intersection Operator (c) Union Operator (d) Negation Operator

Input 2

Output 

Figure 2: The logical operators, such as projection, intersection, union, and negation, are demonstrated in the
Gamma space. The operations are closed and will result in either a Gamma distribution or a Gamma mixture. The
input embeddings are shown in green and blue, and the corresponding output embeddings are represented in red.

NPS
= f(x;

1

α
, β) + ϵ, (10)

where PS = f(x;α, β) and ϵ ∈ (0, 1) is the elastic-
ity and set to 0.05. The approach has one important
advantage, that is, the pair of two Gamma embed-
dings has no intersection points. Furthermore, the
elasticity ϵ can effectively increase the distance of
two opposite embeddings.

To avoid the identity problem in the negation,
we design two labels (0 and 1) to mark the original
Gamma embedding (0) and its complement embed-
ding (1). The label vector can effectively record
this status for each entity.

4.6 Learning Gamma Embeddings

Distance Function. In our work, entities
and queries are encoded into m-dimensional
Gamma space. A entity e is embedded by
Pe = [f(x;αe

1, β
e
1), ..., f(x;α

e
m, β

e
m)], and a

query embedding q is represented by Pq =
[f(x;αq

1, β
q
1), ..., f(x;α

q
m, β

q
m)]. According to

Kullback-Leibler (KL) divergence, the distance be-
tween two Gamma distributions is given by

KL(f(x;αe, βe), f(x;αq, βq)) = (αe − αq)ψ(αe)

− log Γ(αe) + log Γ(αq) + αq(log βe − log βq)

+ αe
βq − βe
βe

, (11)

where ψ(∗) is the digamma function. Its proof is
shown in Appendix C.

Consequently, KL divergence of the entity e and
the query q is obtained

dist(e; q) =
m∑

i=1

KL(Pe, i : Pq, i), (12)

where Pe, i (Pq, i) represent the i-th Gamma dis-
tribution f(x;αe

i , β
e
i ) with parameters αe

i and βei
(f(x;αq

i , β
q
i ) with parameters αq

i and βqi ) in the
entity (query) embedding vector. By this method,

query embeddings will theoretically cover all an-
swer entity embeddings (Kingma and Welling,
2013).

Training Objective. In the training process,
our objective is to minimize the KL divergence
between Gamma embeddings of a query and its an-
swer entity while maximizing the distance between
that of this query and wrong answers via negative
sampling method (Guo et al., 2016; Xiong et al.,
2017). Thus, the loss objective is defined as

L =− log σ(γ − dist(v; q))

−
k∑

j=1

1

k
σ(dist(v′j , q)− γ), (13)

where v ∈ [q] represents the answer entity of q,
v′j /∈ |q| means a random negative sample, k is
the number of negative samples, γ > 0 is the mar-
gin, and σ(∗) denotes the sigmoid function. For
inference, GammaE aims to find the answers of a
query q, and ranks all the entities based on the KL
divergence defined in Eq. 12 in constant time using
Locality Sensitive Hashing (Indyk and Motwani,
1998).

5 Experiment

GammaE is evaluated on three large-scale KG
benchmark datasets, including FB15k (Bollacker
et al., 2008), FB15k-237 (Toutanova and Chen,
2015), and NELL995 (Xiong et al., 2017). The ex-
periment demonstrates GammaE on various tasks:
1. GammaE can efficiently handle all FOL queries.
2. GammaE outperforms the state-of-the-art base-
lines on the tasks. 3. The uncertainty of Gamma
embeddings is well controlled. 4. All FOL opera-
tors are closed, especially the union and negation.

Datasets. For multi-hop reasoning, GammaE
is studied on three standard benchmark datasets
(details are shown in Appendix D.1):

• FB15K (Bollacker et al., 2008) contains the
149,689 entity pairs. Our experiment doesn’t
contain invertible relations.
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Table 1: MRR results (%) on answering EPFO (∃, ∧, ∨) queries.

Dataset Model 1p 2p 3p 2i 3i pi ip 2u up avg

FB15k

GQE 53.9 15.5 11.1 40.2 52.4 27.5 19.4 22.3 11.7 28.2
Q2B 70.5 23.0 15.1 61.2 71.8 41.8 28.7 37.7 19.0 40.1
BETAE 65.1 25.7 24.7 55.8 66.5 43.9 28.1 40.1 25.2 41.6
ConE 73.3 33.8 29.2 64.4 73.7 50.9 35.7 55.7 31.4 49.8
GammaE 76.576.576.5 36.936.936.9 31.431.431.4 65.465.465.4 75.175.175.1 53.953.953.9 39.739.739.7 57.157.157.1 34.534.534.5 52.352.352.3

FB15K-237

GQE 35.2 7.4 5.5 23.6 35.7 16.7 10.9 8.4 5.8 16.6
Q2B 41.3 9.9 7.2 31.1 45.4 21.9 13.3 11.9 8.1 21.1
BETAE 39.0 10.9 10.0 28.8 42.5 22.4 12.6 12.4 9.7 20.9
ConE 41.8 12.8 11.0 32.6 47.3 25.5 14.0 14.5 10.8 23.4
GammaE 43.243.243.2 13.213.213.2 11.011.011.0 33.533.533.5 47.947.947.9 27.227.227.2 15.915.915.9 15.415.415.4 11.311.311.3 24.324.324.3

NELL995

GQE 33.1 12.1 9.9 27.3 35.1 18.5 14.5 8.5 9.0 18.7
Q2B 42.7 14.5 11.7 34.7 45.8 23.2 17.4 12.0 10.7 23.6
BETAE 53.0 13.0 11.4 37.6 47.5 24.1 14.3 12.2 8.5 24.6
ConE 53.1 16.1 13.9 40.0 50.8 26.3 17.5 15.3 11.3 27.2
GammaE 55.155.155.1 17.317.317.3 14.214.214.2 41.941.941.9 51.151.151.1 26.926.926.9 18.318.318.3 16.516.516.5 12.512.512.5 28.228.228.2

Table 2: HITS@1 results (%) of GammaE, BETAE, Q2B, and GQE on answering EPFO (∃, ∧, ∨) queries.

Dataset Model 1p 2p 3p 2i 3i pi ip 2u up avg

FB15k

GQE 34.2 8.3 5.0 23.8 34.9 15.5 11.2 11.5 5.6 16.6
Q2B 52.0 12.7 7.8 40.5 53.4 26.7 16.7 22.0 9.4 26.8
BETAE 52.0 17.0 16.9 43.5 55.3 32.3 19.3 28.1 16.9 31.3
GammaE 58.358.358.3 25.425.425.4 20.420.420.4 50.450.450.4 59.359.359.3 37.337.337.3 23.423.423.4 35.135.135.1 21.121.121.1 36.736.736.7

FB15K-237

GQE 22.4 2.8 2.1 11.7 20.9 8.4 5.7 3.3 2.1 8.8
Q2B 28.3 4.1 3.0 17.5 29.5 12.3 7.1 5.2 3.3 12.3
BETAE 28.9 5.5 4.9 18.3 31.7 14.0 6.7 6.3 4.6 13.4
GammaE 32.132.132.1 9.79.79.7 8.38.38.3 22.322.322.3 35.635.635.6 18.318.318.3 8.78.78.7 9.69.69.6 8.38.38.3 16.616.616.6

NELL995

GQE 15.4 6.7 5.0 14.3 20.4 10.6 9.0 2.9 5.0 9.9
Q2B 23.8 8.7 6.9 20.3 31.5 14.3 10.7 5.0 6.0 14.1
BETAE 43.5 8.1 7.0 27.2 36.5 17.4 9.3 6.9 4.7 17.8
GammaE 51.751.751.7 14.314.314.3 13.713.713.7 31.131.131.1 39.339.339.3 21.321.321.3 14.614.614.6 11.611.611.6 9.39.39.3 22.422.422.4

• FB15K-237 (Toutanova and Chen, 2015) con-
sists of the 273,710 relation triples. All invert-
ible relations are removed.

• NELL995 (Xiong et al., 2017) is collected
by the 995th iteration of the Never-Ending
Language Learning (NELL) system. It has
107,982 relation triples.

Based on previous experimental settings (Ren
and Leskovec, 2020; Ren et al., 2020; Hamil-
ton et al., 2018), we evaluate GammaE on FOL
queries without negation, and negation queries.
GammaE focuses on answering queries involved
with incomplete KGs. The training and test-
ing queries consist of five conjunctive structures
(1p/2p/3p/2i/3i) and five structures with nega-
tion (2in/3in/inp/pni/pin). Additionally, to
evaluate the inference ability of the model, four

extra query structures, namely ip/pi/2u/up, could
show the ability to answer complicated queries with
unseen structures during training. Please refer to
Appendix D.1 for more details about query struc-
tures.

Baseline. We compare GammaE with state-of-
the-art models, including GQE (Hamilton et al.,
2018), Query2Box (Q2B) (Ren et al., 2020), BE-
TAE (Ren and Leskovec, 2020), and ConE (Zhang
et al., 2021). GQE and Q2B are trained only on five
conjunctive structures (1p/2p/3p/2i/3i) as they
cannot solve negation queries. For fair comparison,
we assign the same dimensionality to the embed-
dings of these methods.

Implementation Details. In the training pro-
cess, the weight w and θi are calculated by the
self-attention mechanism. For updating parame-
ters, Adam is used as the optimizer (Kingma and
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Table 3: MRR results (%) on answering graph queries with negation.

Dataset Model 2in 3in inp pin pni avg

FB15k
BETAE 14.3 14.7 11.5 6.5 12.4 11.8
ConE 17.9 18.7 12.5 9.8 15.1 14.8
GammaE 20.120.120.1 20.520.520.5 13.513.513.5 11.811.811.8 17.117.117.1 16.616.616.6

FB15K-237
BETAE 5.1 7.9 7.4 3.6 3.4 5.4
ConE 5.4 8.6 7.8 4.0 3.6 5.9
GammaE 6.76.76.7 9.49.49.4 8.68.68.6 4.84.84.8 4.44.44.4 6.786.786.78

NELL995
BETAE 5.1 7.8 10.0 3.1 3.5 5.9
ConE 5.7 8.1 10.8 3.5 3.9 6.4
GammaE 6.36.36.3 8.78.78.7 11.411.411.4 4.04.04.0 4.54.54.5 6.986.986.98

Table 4: Spearman’s rank correlation between learned embedding and the number of answers of queries.

Dataset Model 1p 2p 3p 2i 3i pi ip 2in 3in inp pin pni avg

FB15k
BETAE 0.37 0.48 0.47 0.57 0.40 0.52 0.42 0.62 0.55 0.46 0.47 0.61 0.50
ConE 0.60 0.68 0.70 0.68 0.52 0.59 0.56 0.840.840.84 0.75 0.61 0.58 0.800.800.80 0.66
GammaE 0.650.650.65 0.750.750.75 0.720.720.72 0.730.730.73 0.580.580.58 0.630.630.63 0.620.620.62 0.82 0.790.790.79 0.650.650.65 0.630.630.63 0.77 0.700.700.70

FB15K-237
BETAE 0.42 0.55 0.56 0.59 0.61 0.60 0.54 0.71 0.60 0.35 0.45 0.64 0.55
ConE 0.56 0.61 0.60 0.790.790.79 0.79 0.74 0.58 0.900.900.90 0.79 0.56 0.48 0.850.850.85 0.69
GammaE 0.610.610.61 0.680.680.68 0.620.620.62 0.78 0.830.830.83 0.790.790.79 0.630.630.63 0.86 0.800.800.80 0.600.600.60 0.530.530.53 0.79 0.710.710.71

NELL995
BETAE 0.42 0.55 0.56 0.59 0.61 0.60 0.54 0.71 0.60 0.35 0.45 0.64 0.55
ConE 0.56 0.61 0.60 0.79 0.79 0.74 0.58 0.900.900.90 0.79 0.56 0.48 0.850.850.85 0.69
GammaE 0.600.600.60 0.670.670.67 0.630.630.63 0.790.790.79 0.810.810.81 0.770.770.77 0.620.620.62 0.87 0.790.790.79 0.610.610.61 0.530.530.53 0.82 0.710.710.71

Ba, 2015). The hyperparameters are listed in Ta-
ble D2 (Appendix). For the evaluation, three KG
datasets are built: the training KG dataset, the val-
idation KG dataset, and the test KG dataset us-
ing training edges, training+validation edges, and
training+validation+test edges, respectively. To
reason over incomplete KGs, a given test (valida-
tion) query q needs to discover non-trivial answers
[q]test\[q]val ([q]val\[q]train). To find answer enti-
ties, at least one edge is linked to one answer entity.
For each non-trivial answer v of a test query q, we
rank it against non-answer entities V \[q]test. The
evaluated metrics are selected by Mean Reciprocal
Rank (MRR) and HITS@K, where a higher score
means better performance. Their definitions are
presented in Appendix D.3. All our models are
implemented in Pytorch (Paszke et al., 2019) and
run on one Tesla V100. The details of parameter
settings are listed in Appendix D.2.

5.1 Main Results

In the experiments, we have run GammaE model
20 times with different random seeds, and reported
the mean values of GammaE ’s MRR results on
EPFO and negation queries. For the error bars of
main results, we report them in Appendix E.1. And

the computational costs of GammaE are listed in
Appendix E.2.

Modeling EPFO (containing only ∃, ∧, and ∨)
Queries. First, we compare GammaE with base-
lines that can only model queries with conjunction
and disjunction without negation. Table 1 shows
that GammaE achieves on average 5.0%, 3.8% and
3.7% relative improvement MRR over previous
state-of-the-art ConE on FB15k, FB15k-237, and
NELL995, respectively. Previous works, like Q2B,
BETAE, and ConE, use the disjunctive normal form
(DNF) and De Morgan’s laws (DM) to model the
union operator, while we use more effective mix-
ture methods to calculate the union operation. The
average MRR of 2u/up is relatively improved by
5.5% and 8.3% over ConE on three benchmarks.
Overall, GammaE on EPFO queries achieves bet-
ter performance than five baselines over all three
datasets.

Table 2 shows the comparison of HITS@1 re-
sults for answering EPFO queries on three datasets.
Compared to previous models (GQE, Q2B, and BE-
TAE), GammaE significantly increases by 17.2%,
23.9%, and 25.8% relative improvements over base-
lines on FB15k, FB15k-237, and NELL995, respec-
tively.
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Modeling Queries with Negation (¬). Next,
the performance of GammaE is evaluated to model
queries with negation. Since GQE and Q2B cannot
handle the negation operator, they won’t be com-
pared in the experiments. Table 3 shows results
of GammaE outperform two baselines, including
BETAE and ConE, on modeling FOL queries with
negation. Specifically, GammaE achieves up to
average 12.2%, 14.9%, and 9.1% relative improve-
ment MRR over two baselines on FB15k, FB15K-
237, and NELL995, respectively. Another issue
is that negation operators on BETAE and ConE
exist boundary problems. The embedding of the
negation output could have some intersections with
the embedding of the input entity. However, the
elasticity can effectively increase the distance be-
tween the input and the output during the negation
operations.

5.2 Modeling the Uncertainty of Queries

To study the uncertainty of GammaE, we need to
investigate the cardinality difference between a pre-
dicted set and an answer set. The cardinality can
efficiently represent the uncertainty of an embed-
ding model. For capturing the cardinality differ-
ence, we calculate the correlations between the
differential entropy of the Gamma embedding P[q]

and the cardinality of the answer set [q]. In this
experiment, we choose Spearman’s rank correla-
tion coefficient (SRCC) and Pearson correlation
coefficient (PCC) as the metric (Myers and Sirois,
2004; Benesty et al., 2009). SRCC is designed to
measure statistical dependence between the rank-
ings of two variables, while PCC is a measure of
linear correlation between two sets of data. Table 4
shows SRCC comparisons of BETAE, ConE, and
GammaE on three benchmark datasets. BETAE
measures the uncertainty of the query by the dif-
ferential entropy of Beta embeddings, while ConE
calculates this uncertainty by the cone size. In Ta-
ble 4, GammaE outperforms all previous models
and relatively achieves up to 6.1%, 2.9%, and 2.9%
better correlation than ConE on B15k, FB15k-237,
and NELL995. These results indicate that Gam-
maE can effectively capture the uncertainty of a
query. Besides, SRCC demonstrates Gamma em-
beddings can better model the cardinality of answer
sets during training. PCC results are analyzed in
Appendix E.3.

5.3 Further Analysis of the Union Operator
Existing models compute the union operator by De
Morgan’s laws (DM) and disjunctive normal form
(DNF). Due to De Morgan’s laws, the union ∪k

i=1Si

can be rewritten as ∪k
i=1Si = ∩k

i=1Si. The disjunc-
tive normal form (DNF) is to move all "union"
edges to the last step of the computation graph
(Ren et al., 2020), which can reduce the number
of training parameters. BETAE handles the union
operator by DM since it can model the negation
operator. BETAE also investigates the impact of
DM and DNF on the union operator. Its results
show that DNF is more robust than DM. According
to this result, ConE adapts DNF to deal with the
union operator. Though DNF and DM can compute
the union operator, they are non-closure. Thus, to
address this limitation, our work implements the
Gamma mixture method to model the union op-
erator. The Gamma mixture method can reduce
computational steps. After passing the union oper-
ator, the output embeddings also follow the rule of
the Gamma distribution. It is closed for modeling
any queries with the union operator. In particular,
Table 1 shows that GammaE outperforms existing
models for two types of union queries (2u/up),
which indicates that the Gamma mixture method
can effectively model the union operator. Addition-
ally, Table 5 further demonstrates the performance
of GammaE with the mixture method (MM) is bet-
ter than that of GammaE with DNF and DM.

Table 5: MRR results (%) for answering graph queries
with union on FB15K, FB15K-237, and NELL995. The
evaluated model is GammaE. Three union operators are
DM, DNF, and Gamma mixture method, respectively.

Dataset Model 2u up

FB15k
GammaE with DM 37.7 29.9
GammaE with DNF 53.5 30.9
GammaE with MM 57.157.157.1 34.534.534.5

FB15K-237
GammaE with DM 13.5 10.1
GammaE with DNF 13.9 10.3
GammaE with MM 15.415.415.4 11.311.311.3

NELL995
GammaE with DM 14.5 10.9
GammaE with DNF 15.3 11.2
GammaE with MM 16.516.516.5 12.512.512.5

5.4 Further Analysis of the Negation
Operator

For the negation operator, BETAE takes the recip-
rocal of the parameter α and β, i.e., N([(α, β)] =
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Table 6: MRR results (%) of GammaE with or without elasticity on answering graph queries with negation.

Dataset Model 2in 3in inp pin pni avg

FB15k
GammaE without elasticity ϵ 18.1 18.9 12.9 10.4 15.6 15.2
GammaE with elasticity ϵ 20.120.120.1 20.520.520.5 13.513.513.5 11.811.811.8 17.117.117.1 16.616.616.6

FB15K-237
GammaE without elasticity ϵ 5.9 8.6 7.7 4.2 3.9 6.06
GammaE with elasticity ϵ 6.76.76.7 9.49.49.4 8.68.68.6 4.84.84.8 4.44.44.4 6.786.786.78

NELL995
GammaE without elasticity ϵ 5.9 8.0 10.9 3.6 4.0 6.48
GammaE with elasticity ϵ 6.36.36.3 8.78.78.7 11.411.411.4 4.04.04.0 4.54.54.5 6.986.986.98

[( 1α ,
1
β )] (Ren and Leskovec, 2020). ConE follows

the rule of sector cones to model the negation op-
erator (Zhang et al., 2021). Their negation opera-
tors have the boundary problem, which could lead
to obtaining ambiguous answers. The boundary
effect means the original embedding has intersec-
tions with its complement embedding. In BETAE,
the original embedding always has two crossover
points with its complement embedding. By calcu-
lating the KL distance between two embeddings,
the two crossover points definitely reduce the score.
The above issues also exist in ConE as its original
embedding shares same boundary edges with its
complement embedding. However, GammaE effec-
tively avoids the boundary effect due to using the
elasticity.

One advantage of our negation operator is to
design the elasticity. Since the negation operator
aims to maximize the distance between the origi-
nal embedding and its complement embedding, the
elasticity could effectively increase the distance to
obtain good performance. Table 6 shows the elas-
ticity ϵ can significantly improve the performance
of GammaE.

Interestingly, since these queries are first-order
queries, they only contain one negation operator.
Therefore, our experiments didn’t need to process
two negation operators in a query, not facing iden-
tity cases.

6 Conclusion

In this paper, we propose a novel embedding model,
namely GammaE, to handle arbitrary FOL queries
and efficiently realize multi-hop reasoning on KGs.
Given a query q, GammaE can map it onto the
Gamma space for reasoning it by probabilistic log-
ical operators on the computation graph. Com-
pared to previous methods, its union operator uses
the Gamma mixture model to avoid the disjunc-
tive normal form and De Morgan’s laws. Further-
more, GammaE significantly improves the perfor-

mance of the negation operator due to alleviating
the boundary effect. Extensive experimental results
show that GammaE outperforms state-of-the-art
models on multi-hop reasoning over arbitrary log-
ical queries as well as modeling the uncertainty.
Overall, GammaE aims to promote graph embed-
dings for logical queries on KGs.

7 Limitations

GammaE can handle all logical operators on large-
scale KGs. Besides, all logical operators are closed
in the Gamma space. It will significantly increase
the capability and robustness of multi-hop reason-
ing on massive KGs. One potential risk is that the
model could effectively model basic logical opera-
tors, not for more complicated operators or cycle
graphs. If a query has many loops, the operations
become harder. We will continue to work on this
problem to design more effective logical operators.
Importantly, we will continue to study this problem
in the future.
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Appendix

The following is the supplementary Appendix for
the paper. All the references are made in context of
the main paper.

A Information Entropy of the Gamma
Distribution

The information entropy of the Gamma distribution
is defined as

H(X) =E[− ln f(x;α, β)]

=− E

[
ln

(
βα

Γ(α)
xα−1e−βx

)]

=− E [α lnβ − ln Γ(α) + (α− 1) lnx− βx]

=− α lnβ + lnΓ(α)− (α− 1)E(lnx)

+ βE(x) .

(A.1)

Since the mean and expectation of the Gamma
distribution

E(X) =
α

β
and E(lnX) = ψ(a)− ln(β),

(A.2)

Eq. A.1 can be solved

H(X) =− α lnβ + lnΓ(α)− (α− 1)(ψ(α)

− ln b) + β
α

β

=− α lnβ + lnΓ(α) + (1− α)ψ(α)

+ α lnβ − lnβ + α

=α− lnβ + lnΓ(α) + (1− α)ψ(α),
(A.3)

where ψ(∗) is the digamma function.

B Derivation of the Intersection Operator

For two dimensions of gamma embeddings, the
intersection operator is

PSInter
=

1

Z
Pw1
S1
Pw2
S2

=
1

Z
f(x;w1α1, w1β1)f(x;w2α2, w2β2)

=
1

Z

xw1α1−1e−w1β1x(w1β1)
w1α1

Γ(w1α1)

xw2α2−1e−w2β2x(w2β2)
w2α2

Γ(w2α2)

=
(w1β1)

w1α1(w2β2)
w2α2

ZΓ(w1α1)Γ(w2α2)
(xw1α1−1e−w1β1x)

(xw2α2−1e−w2β2x)

=
(w1β1)

w1α1(w2β2)
w2α2

ZΓ(w1α1)Γ(w2α2)
x
∑2

i=1(wiαi−1)

e−
∑2

i=1 wiβix. (A.4)

Due to w1 +w2 = 1, Eq. A.4 can be approximated
as

PSInter
=
(w1β1)

w1α1(w2β2)
w2α2

ZΓ(w1α1)Γ(w2α2)
x
∑2

i=1(wiαi−1)

e−
∑2

i=1 wiβix

≈(w1β1)
w1α1(w2β2)

w2α2

ZΓ(w1α1)Γ(w2α2)
x
∑2

i=1 wi(αi−1)

e−
∑2

i=1 wiβix

=Kx
∑2

i=1 wi(αi−1)e−
∑2

i=1 wiβix

∝x
∑2

i=1 wiαi−1e−
∑2

i=1 wiβix

≈f(x;
2∑

i=1

wiαi,

2∑

i=1

wiβi), (A.5)

where K = (w1β1)w1α1 (w2β2)w2α2

ZΓ(w1α1)Γ(w2α2)
.

Based on Eq. A.5, the intersection operator of k
Gamma embeddings can be obtained

PSInter
=

1

Z

k∏

i=1

Pwi
Si

≈ f(x;
k∑

i=1

wiαi,
k∑

i=1

wiβi). (A.6)
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C KL Divergence of Two Gamma
Distributions

One integral of two Gamma distributions has

I(αe, βe, αq, βq) =

∫ ∞

0

log(f(x;αe, βe))f(x;αq, βq)dx

=

∫ ∞

0

log

(
xαe−1e−βexβαe

e

Γ(αe)

)
xαq−1e−βqxβ

αq
q

Γ(αq)
dx

= −β2

∫ ∞

0

xαqe−βqxβ
αq
q

Γ(αq)
dx

− log

(
Γ(αe)

βαe
e

)∫ ∞

0

xαq−1e−βqxβ
αq
q

Γ(αq)
dx

+ (αe − 1)

∫ ∞

0

log(x)
xαq−1e−βqxβ

αq
q

Γ(αq)
dx

= −αqβe

βq
− log

(
Γ(αe)

βαe
e

)
+ (αe − 1)

∫ ∞

0

log(x)
xαq−1e−βqxβ

αq
q

Γ(αq)
dx. (A.7)

To solve the right integral in Eq. A.7, one obtains

∂

∂αq
Γ(αq) =

∂

∂αq

∫ ∞

0
xαq−1e−βqxβ

αq
q dx

=
∂

∂(αq

∫ ∞

0
e−βqx(xβq)

αq−1βqdx

=

∫ ∞

0
e−βqxxαq−1β

αq
q log xβqdx

=

∫ ∞

0
log(x)e−βqxxαq−1β

αq
q dx

+ log(βq)Γ(αq). (A.8)

Since

αe − 1

Γ(αq)

∫ ∞

0
log(x)e−βqxxαq−1β

αq
q dx

= (αe − 1)
Γ′(αq)

Γ(αq)
− (αe − 1) log βq, (A.9)

Eq. A.7 can be solved

I(αe, βe, αq, βq) =− αqβe
βq

− log

(
Γ(αe)

βαe
e

)

+ (αe − 1)
∫ ∞

0
log(x)

xαq−1e−βqxβ
αq
q

Γ(αq)
dx

=− αqβe
βq

− log

(
Γ(αe)

βαe
e

)

+ (αe − 1)
Γ′((αq)

Γ(αq)
− (αe − 1)

log βq. (A.10)

Due to Γ′(αq)
Γ(αq)

= ψ(αq), Eq. A.10 can be rewrit-
ten as

I(αe, βe, αq, βq) =− αqβe
βq

− log

(
Γ(αe)

βαe
e

)

+ (αe − 1)ψ(αq)− (αe − 1)

log βq. (A.11)

The KL divergence of (f(x;αe, βe)) and
f(x;αq, βq) can be obtained

KL(f(x;αe, βe), f(x;αq, βq)) =

∫ ∞

0
f(x;αe, βe)

log
f(x;αe, βe)

f(x;αq, βq)

= I(αe, βe, αe, βe)− I(αq, βq, αe, βe)

= (αe − αq)ψ(αe)− log Γ(αe) + log Γ(αq)

+ αq(log βe − log βq) + αe
βq − βe
βe

. (A.12)

D Complementary Experimental Setup

D.1 Datasets and Query structures
Three datasets are used in the experiments,
namely FB15k (Bollacker et al., 2008), FB15k-237
(Toutanova and Chen, 2015), and NELL995 (Xiong
et al., 2017). For a fair comparison, fourteen query
structures are created by the same rules in Ren
and Leskovec (2020). The related query struc-
tures are shown in Fig. C1. These query structures
fall into two categories, namely existential positive
first-order (EPFO) queries and negative queries.
EPFO queries consist of seven conjunctive struc-
tures (1p/2p/3p/2i/3i/ip/pi) and two disjunctive
structures (2u/up). Negative queries contain five
structures with negation (2in/3in/inp/pni/pin).
The training dataset is composed of five conjunc-
tive structures (1p/2p/3p/2i/3i) and five queries
with negation (2in/3in/inp/pni/pin). The vali-
dation dataset and test dataset contain all logical
structures, which never occurred during training.
Table D1 lists the basic statistics of different queries
on three benchmark datasets.

D.2 Parameter Settings
To obtain best results, we finetune these
hyperparameters, such as embedding di-
mensions (200, 400, 600, 800), the learning
rate (5 × 10−5, 10−4, 5 × 10−4, 10−3), the
negative sample size k (32, 64, 128), the
margin γ (20, 30, 40, 50, 60), the elasticity ϵ
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Figure C1: Logical queries are illustrated by their computational graph structures. The left queries are used in the
training phase, while all queries are evaluated in the validation and test phases. Note that p means projection, i is
intersection, n is negation, and u is union.

Table D1: Statistics of query structures on three benchmark datasets, namely FB15K, FB15k-237, and NELL995.

Dataset Training Validation Test
Dataset 1p/2p/3p/2i/3i negation 1p others 1p others
FB15k 273,710 27,371 59,097 8,000 67,016 8,000
FB15K-237 149,689 14,968 20,101 5,000 22,812 5,000
NELL995 107,982 10,798 16,927 4,000 17,034 4,000

Table D2: Hyperparameters of GammaE.

Dataset embedding dim learning rate negative sample size k margin γ elasticity ϵ batch size
FB15k 800 5× 10−5 128 30 0.05 512
FB15K-237 800 1× 10−4 128 30 0.07 512
NELL995 800 1× 10−4 128 30 0.07 512

(10−3, 0.01, 0.03, 0.05, 0.07), and the batch size
(128, 256, 512). For all modules with MLP, we
implement three-layer MLP and ReLU activation.
The hyperparameters of GammaE are listed in
Table D2.

D.3 Evaluation Metrics

In the main paper, Mean Reciprocal Rank (MRR)
is used as the evaluation metric. Given multiple
queries Q, MRR is the mean of the Q reciprocal
ranks, i.e.,

MRR =
1

Q

Q∑

i=1

1

ranki
, (A.13)

where ranki is the rank position of the first answer
for the i-th query.

HITS@K is also selected as the metric for evalu-
ating our model. HITS@K is the rate of answers
appearing in the top k entries for each instance list.

It can be written as

HITS@K =
1

K

K∑

i=1

f(ranki), (A.14)

where f(ranki) is to 1 if ranki ≤ K, otherwise,
f(ranki) = 0.

E Complementary Experimental Results

E.1 Error Bars of Main Results

We have run GammaE 20 times with different ran-
dom seeds, and obtain mean values and standard de-
viations of GammaE’s MRR results on EPFO and
negation queries. Table E3 shows that mean values
and standard deviations of GammaE’s MRR results
on EPFO queries. Table E4 shows mean values
and standard deviations of GammaE’s MRR results
on negation queries. Since standard deviations of
GammaE range from ±0.049% to ±0.227%, the
results indicate that GammaE has good robustness.
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Table E3: GammaE: MRR mean values and standard variances (%) on answering EPFO (∃, ∧, ∨) queries.

Dataset 1p 2p 3p 2i 3i pi ip 2u up avg

FB15k
76.5 36.9 31.4 65.4 75.1 53.9 39.7 57.1 34.5 52.3

± 0.081± 0.081± 0.081 ± 0.173± 0.173± 0.173 ± 0.169± 0.169± 0.169 ± 0.153± 0.153± 0.153 ± 0.198± 0.198± 0.198 ± 0.155± 0.155± 0.155 ± 0.132± 0.132± 0.132 ± 0.207± 0.207± 0.207 ± 0.185± 0.185± 0.185 ± 0.071± 0.071± 0.071

FB15K-237
43.2 13.2 11.0 33.5 47.9 27.2 15.9 15.4 11.3 24.3

± 0.061± 0.061± 0.061 ± 0.121± 0.121± 0.121 ± 0.153± 0.153± 0.153 ± 0.054± 0.054± 0.054 ± 0.149± 0.149± 0.149 ± 0.227± 0.227± 0.227 ± 0.175± 0.175± 0.175 ± 0.112± 0.112± 0.112 ± 0.176± 0.176± 0.176 ± 0.067± 0.067± 0.067

NELL995
55.1 17.3 14.2 41.9 51.1 26.9 18.3 16.5 12.5 28.2

± 0.121± 0.121± 0.121 ± 0.185± 0.185± 0.185 ± 0.204± 0.204± 0.204 ± 0.134± 0.134± 0.134 ± 0.107± 0.107± 0.107 ± 0.125± 0.125± 0.125 ± 0.117± 0.117± 0.117 ± 0.114± 0.114± 0.114 ± 0.185± 0.185± 0.185 ± 0.062± 0.062± 0.062

Table E4: GammaE: MRR mean values and standard deviations (%) on answering graph queries with negation.

Dataset 2in 3in inp pin pni avg

FB15k
20.1 20.5 13.5 11.8 17.1 16.6

± 0.145± 0.145± 0.145 ± 0.175± 0.175± 0.175 ± 0.049± 0.049± 0.049 ± 0.201± 0.201± 0.201 ± 0.153± 0.153± 0.153 ±0.074±0.074±0.074

FB15K-237
6.7 9.4 8.6 4.8 4.4 6.78

± 0.084± 0.084± 0.084 ± 0.069± 0.069± 0.069 ±0.154±0.154±0.154 ± 0.094± 0.094± 0.094 ±0.107±0.107±0.107 ± 0.056± 0.056± 0.056

NELL995
6.3 8.7 11.4 4.0 4.5 6.98

± 0.074± 0.074± 0.074 ± 0.142± 0.142± 0.142 ± 0.182± 0.182± 0.182 ± 0.063± 0.063± 0.063 ± 0.074± 0.074± 0.074 ± 0.059± 0.059± 0.059

E.2 Computational Cost
To evaluate the training speed, we calculated the
average time per 100 training steps. We ran all mod-
els with the same number of embedding parameters
on a Tesla V100. The results are shown Table E5.
The computational cost of our GammaE is close to
that of GQE, and less than those of others.

Table E5: Computational costs of GammaE and the
baselines.

Models Running Time per 100 steps
GQE 12s
Q2B 15s
BETAE 24s
ConE 18s
GammaE 15s

The time cost of GammE is close to that of GQE,
and less than those of others.

E.3 Pearson Correlation Coefficient
Pearson Correlation Coefficient measures the lin-
ear correlation of the two variables. Table E6
shows GammaE outperforms current models, and
achieves up to 12.0%, 6.89%, 5.45% than ConE on
FB15k, FB15k-237, and NELL995.
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Table E6: Pearson correlation between learned embeddings and the number of answers on FB15K, FB15K-237, and
NELL995.

Dataset Model 1p 2p 3p 2i 3i pi ip 2in 3in inp pin pni avg

FB15k
BETAE 0.22 0.36 0.38 0.39 0.30 0.31 0.31 0.44 0.41 0.34 0.36 0.44 0.36
ConE 0.33 0.53 0.59 0.5 0.45 0.37 0.42 0.65 0.55 0.50 0.52 0.64 0.50
GammaE 0.390.390.39 0.630.630.63 0.650.650.65 0.550.550.55 0.530.530.53 0.430.430.43 0.530.530.53 0.650.650.65 0.610.610.61 0.550.550.55 0.590.590.59 0.650.650.65 0.560.560.56

FB15K-237
BETAE 0.23 0.37 0.45 0.36 0.31 0.32 0.33 0.46 0.41 0.39 0.36 0.48 0.37
ConE 0.40 0.52 0.61 0.67 0.69 0.47 0.49 0.71 0.66 0.53 0.47 0.720.720.72 0.58
GammaE 0.490.490.49 0.600.600.60 0.630.630.63 0.690.690.69 0.690.690.69 0.550.550.55 0.540.540.54 0.720.720.72 0.700.700.70 0.590.590.59 0.520.520.52 0.69 0.620.620.62

NELL995
BETAE 0.24 0.40 0.43 0.40 0.39 0.40 0.40 0.52 0.51 0.26 0.35 0.46 0.40
ConE 0.48 0.45 0.49 0.720.720.72 0.68 0.52 0.39 0.740.740.74 0.66 0.38 0.34 0.690.690.69 0.55
GammaE 0.530.530.53 0.510.510.51 0.510.510.51 0.70 0.690.690.69 0.590.590.59 0.470.470.47 0.71 0.690.690.69 0.430.430.43 0.420.420.42 0.690.690.69 0.580.580.58
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