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Abstract

Automatic question generation (AQG) is the
task of generating a question from a given pas-
sage and an answer. Most existing AQG meth-
ods aim at encoding the passage and the an-
swer to generate the question. However, limited
work has focused on modeling the correlation
between the target answer and the generated
question. Moreover, unseen or rare word gen-
eration has not been studied in previous works.
In this paper, we propose a novel approach
which incorporates question generation with
its dual problem, question answering, into a
unified primal-dual framework. Specifically,
the question generation component consists of
an encoder that jointly encodes the answer with
the passage, and a decoder that produces the
question. The question answering component
then re-asks the generated question on the pas-
sage to ensure that the target answer is obtained.
We further introduce a knowledge distillation
module to improve the model generalization
ability. We conduct an extensive set of experi-
ments on SQuAD and HotpotQA benchmarks.
Experimental results demonstrate the superior
performance of the proposed approach over sev-
eral state-of-the-art methods.

1 Introduction

Question answering (Hsu et al., 2021) plays a cru-
cial role in both the growth of human beings and the
improvement of artificial intelligent systems. As
a dual task of question answering, automatic ques-
tion generation (AQG) (Cheng et al., 2021) based
on a passage and a target answer has attracted much
attention in recent years. One of its key applica-
tions is to generate questions for educational ma-
terials (Heilman and Smith, 2010). Another appli-
cation is automatically producing question-answer
pairs to enhance machine reading comprehension
systems (Du et al., 2017; Lyu et al., 2021). Besides,
AQG is also widely used in building web answering
system (Shou et al., 2020; You et al., 2021; Wang

Figure 1: An example of generated questions from hu-
man, base models and our model. The purple text in
the passage indicates the target answer. Our model
generates a more desirable question compared to the
questions generated from the base models. Our model is
able to generate the uncommon word, attend, that does
not appear in the passage.

et al., 2022), conversational dialog systems (Liu
et al., 2021; Shen et al., 2021; Huang et al., 2022)
and chatbots (Gros et al., 2021) such as Siri, Cor-
tana, Alexa and Google Assistant, helping them to
start and continue a conversation with human users.

Automatic question generation is a challenging
task due to the unstructured nature of textual data.
Early research (Rus et al., 2010; Labutov et al.,
2015) on AQG focuses on generating questions
that are grammatically correct and answerable from
the passage, but not specific to any answer in the
passage. There are fundamental limitations of these
methods as they are not able to produce useful
question-answer pairs for downstream tasks. For
example, in a conversational dialog system, the
next question should be generated according to
the user’s previous answers or conversations but
not just the current context. On the other hand,
specifying the answer is necessary for generating
natural questions because there could be multiple
target answers in the passage. For example, in
Figure 1, there are various candidate questions to
be asked on the passage, such as the city “New
York City”, the country “United States”, and the
year “2012”.

Recent AQG models incorporate the target an-
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Figure 2: A preliminary study on uncommon word gen-
eration. It can be seen that there is a large gap between
existing methods and human in terms of AGS values,
where uncommon words appear much more often in
human generated questions.

swer information in generating the question (Klein
and Nabi, 2019; Liu et al., 2019; Chai and Wan,
2020; Huang et al., 2020; Fei et al., 2021). These
approaches focus on encoding the passage, the
answer and their correlation using complex net-
works and then generate the question with a de-
coder. However, there are two main limitations:
First, most of these methods generate the question
in one single pass, and do not explicitly model the
correlation between the target answer and the gener-
ated question. A natural question arises: would the
target answer be retrieved when asking the gener-
ated question on the passage? For instance, in Fig-
ure 1, the question generated by the QG+SSM+API
model is grammatically correct but is not answer-
able. On the other hand, the generated question
from RefineNet is both grammatically correct and
answerable, but not specific to the answer. If ask-
ing both generated questions on the passage, it is
clear that the target answer will not be obtained.
Second, very limited research has focused on new
or unseen word generation. However, these uncom-
mon words not only increase the diversity of the
generated questions, but also improve the question
quality in terms of Naturalness and Answerabil-
ity. For example, in Figure 1, the word “attend”
does not appear in the input passage, which is also
uncommon in the training data. But it is an im-
portant word in this case as people use the phrase
“attend school” naturally in their daily conversa-
tions. A quantitative study of uncommon words
generation is shown in Figure 2. We calculate the
average generalizability score (AGS) using a nor-
malized IDF (inverse document frequency) met-
ric as GS(Q) = maxwq

t /∈P
1

1+log(1+DF (wq
t ))

. Here

DF (wq
t ) is the document frequency indicating how

many training questions contain the word wq
t . In-

tuitively, AGS measures the rarity of the words in
the generated questions.

In this paper, we propose a novel primal-dual ap-
proach, Question Generation by Asking Question
with Uncommon word Generation (QG+AQ+UG),
which integrates question generation with its dual
problem, question answering, into a unified learn-
ing framework. In particular, the question gener-
ation component consists of an encoder that en-
codes the answer with the passage, and a decoder
that produces the question based on the output of
the encoder. The question answering component,
which shares the same encoder, then asks the gen-
erated question on the passage to ensure that the
target answer is obtained. A knowledge distillation
module is introduced for better uncommon word
generation, which transfers the knowledge from a
large pre-trained model to the primal-dual frame-
work. We conduct an extensive set of experiments
on the SQuAD and HotpotQA benchmarks, which
shows superior performance of the proposed ap-
proach over several state-of-the-art methods. We
summarize the main contributions as follows:

• We propose a novel primal-dual approach for
automatic question generation, which inte-
grates the primal problem of question gen-
eration and its dual problem of question an-
swering into a unified framework.

• We introduce a knowledge distillation mod-
ule into the primal-dual learning framework,
which helps generate those uncommon, yet
important, words. Uncommon words genera-
tion improves both the diversity and the qual-
ity of the generated questions.

• We conduct extensive experiments and demon-
strate the effectiveness of the proposed ap-
proach over several state-of-the-art baselines.

2 Methodology

2.1 Problem Definition

In this section, we formally define the primal prob-
lem of question generation and its dual problem
of question answering. We denote the passage as
P = (wp

1, . . . , w
p
n) and the target answer as A =

(wa
1 , . . . , w

a
m). In most cases, the answer comes

from a span in the passage, with its begin and end
indices b and e, i.e., wa

1 = wp
b and wa

m = wp
e . The

task of question generation is to generate a question
Q = (wq

1, . . . , w
q
T ) such that the target answer A
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Figure 3: Our QG+AQ+UG model architecture.

will be obtained from the passage P . Formally, the
question generation problem is defined as finding
the best Q̄ that maximizes the conditional likeli-
hood given P and A:

Q̄ = argmax
Q

T∏

t=1

Pr(wq
t |wq

t−1, . . . , w
q
1, P,A)

The dual problem is defined as finding the best
answer span Ā given the passage P and the ques-
tion Q:

Ā = argmax
b,e

Pr( wp
b , w

p
e | P, Q)

2.2 Approach Overview
The overall model architecture is shown in Figure 3.
Essentially, our primal-dual model consists of three
main components, the primal question generation
module (QG), the dual question answering module
that asks question (AQ) and the knowledge dis-
tillation module for uncommon words generation
(UG). The question generation module consists of
four blocks, the embedding layer, the contextual
encoder, the decoder and the output layer. The
question answering module aims at finding the best
answer span from the passage to answer the gener-
ated question, which shares a unique encoder with
the primal question generation module. The knowl-
edge distillation module utilizes a distilled masked
language model to enhance the model generaliza-
tion ability for uncommon words generation.

2.3 Embedding Layer

The first component in the primal-dual model is
the embedding layer. In the embedding layer, ev-
ery word in the passage, answer and question is
converted into a d-dimensional embedding vector.
The final embedding is achieved by concatenating
a word embedding, a task specific embedding, a
positional embedding and a segment embedding.
The word embedding is widely adopted in the liter-
ature (Devlin et al., 2019). Inspired by T5 (Raffel
et al., 2020), the task embedding is adopted to iden-
tify which task this input belongs to, i.e., question
generation, question answering or knowledge dis-
tillation. The positional embedding is introduced
to model the order information of the sequence.
We use the absolute position of the words in the
sequence in our implementation. The segment em-
bedding is added to indicate which source the word
belongs to, i.e., passage, answer or question. In
contrast to previous methods, all the embeddings
in our approach are trainable. These embeddings
are only initialized from the pretrained language
models, and are updated during training.

2.4 Primal-Dual Encoder

We employ a unique encoder that is shared across
the primal-dual framework after the embedding
layer. The encoder is essentially a contextual layer,
which generates contextualized representation for
every word from their embeddings in the input se-
quence. In the question generation module, the
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input sequence to the encoder is the concatenation
of the target answer and the passage. The output is
a sequence of contextual embeddings representing
the encoded answer and passage (as shown in Fig-
ure 3). Similarly, in the question answering module,
the encoder produces another sequence of contex-
tual embeddings for the passage and the question.
Different from previous multi-task learning, which
uses the ground-truth questions in questions an-
swering. In our model, we directly optimize over
the generated question embeddings by feeding it
into the question answering module.

Most of the existing question generation models
(Li et al., 2019; Nema et al., 2019; Tuan et al., 2020;
Huang et al., 2021) use two separate encoders for
the passage and the answer respectively, followed
by a cross-attention layer to merge the output em-
beddings of the two encoders. Inspired by the re-
cent advancements in BERT (Devlin et al., 2019)
model, we introduce one unique encoder with self-
attention mechanism, which allows different input
segments, i.e., the answer, the passage and the ques-
tion, to attend each other from the bottom layer to
the top layer. In particular, the encoder is a stack of
identical layers using multi-head attention (MHA)
and feed forward network (FFN). The output of the
top encoder layer will be used as the contextual
embeddings of the input sequence.

One of the key ingredients in the primal-dual ar-
chitecture is that both the primal and dual modules
share a unique contextual encoder, and thus are able
to benefit from each other. This encoder essentially
bridges the primal problem of question generation
with its dual problem of question answering, by
jointly learning a unique set of parameters to pro-
duce the contextual embeddings.

2.5 Question Decoder

The decoder decodes the embeddings from the en-
coder to generate the question embedding. We
adopt the similar decoder structure in Transformer
(Vaswani et al., 2017), which is composed of a
stack of identical layers. In addition to the two
sub-layers in the encoder layer, the decoder employ
a third sub-layer, encoder-decoder attention (EDA),
which performs multi-head attention over the out-
puts of the encoder and the current decoder layer.
The masked multi-head attention (MMHA) has the
same model structure as the multi-head attention
in the encoder layer, except that it prevents posi-
tions from attending to subsequent positions. This

masking ensures that the prediction for position
i can depend only on the known outputs at posi-
tions before i, as the question is generated word by
word. The encoder-decoder attention has a similar
structure as self-attention, the distinction is that the
key and value are from the output of the encoder,
whereas the query is from the decoder itself. We
provide more technical details of both encoder and
decoder in Appendix A.

2.6 Output Layer
The output layer of the question generation model
is essentially a word generator, which consumes
the embedding of the decoder and generates the
question word by word:

w̄q
t = argmax

wq
t

(softmax(WoH
t
de))

where Ht
de is the decoder output at word position

t. Wo is the output matrix which projects the final
embedding to the logits of vocabulary size. We
further employ a copy mechanism or pointer net-
work (See et al., 2017) to allow both copying words
from input via pointing, and generating words from
a predefined vocabulary during decoding. In this
work, we adopt the pointer-network and coverage
mechanism from (Zhao et al., 2018) to handle out-
of-vocabulary words and to avoid repeating phrases
in the generated questions.

The output layer of the question answering
model extracts the final answer span by calculating
the probabilities for the begin and end indices. We
apply a softmax function on the output embeddings
to generate the probabilities of begin index:

Pb = softmax(WbHen)

Inspired by the recent work (Yang et al., 2019),
we further predict the end index based on the start
index by concatenating the begin token embedding
with every token embedding after it:

Pe = softmax(We(concat(Hen, H
b̄
en)))

where b̄ is the best begin index with max proba-
bility from Pb. Hen is the contextual embedding
vector of the input sequence. Wb and We are two
parameter matrices that project the embeddings to
the output logits, for the begin and end.

2.7 Knowledge Distillation
Model generalization is one of the important fac-
tors for evaluating a question generation model,
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which measures the model ability of generating
new and uncommon words. Generating new and
uncommon words not only enhance the diversity
of the generated questions, but also improves the
question quality and makes the question more nat-
ural and answerable. By analyzing the generated
questions from the existing models, we observe
that many important words from the ground-truth
questions can not be generated. The reason is that
these words are not present in the passages which
prevents the copy mechanism for copying these
words to the question. They also rarely appear in
the training questions, which are used for model
training. For example, the word “attend” (from the
human generated question in Figure 1) does not
appear in the passage or other training data. More-
over, it is possible for a model to over memorize the
training data, and thus fail to generate new words.

To address this problem, in this work, we employ
a knowledge distillation (Hinton et al., 2015) mod-
ule which transfers knowledge from a pretrained
model to improve the model generalization ability.
Intuitively, the knowledge distillation guides the
encoder to learn effective contextual embeddings
for new words, through masking them out and en-
forcing the consistency between the two distribu-
tions generated from the encoder and the pretrained
model. In this way, the learned contextual knowl-
edge/information of the new words is transferred
from the pretrained model to the primal-dual en-
coder, and thus improves the model generalization.
The knowledge distillation model minimizes the
cross entropy between the word probability distri-
butions generated from the primal-dual encoder
and the pretrained model. A knowledge distillation
loss is used to measure the distribution difference.
The knowledge distillation loss is a modified cross
entropy loss which is defined as:

CE(Yen, Ypre) = −
S∑

t=1

yten log y
t
pre

Y = softmax(WmHM )

where Yen and Ypre are the two probability distribu-
tions, on the masked word, generated by the primal-
dual encoder and the pretrained model respectively.
S is the vocabulary size. yt is the probability of
the t-th word in the vocabulary. HM is the out-
put embedding of the masked word. Wm is the
output matrix which maps the output embedding
to the logits of vocabulary size. The T5 (Raffel

et al., 2020) model, pretrained over the Wikipedia
+ Toronto Books Corpus and WebText, is used as
the pretrained model. In our implementation, we
randomly mask 10% of the verb tokens in the pas-
sage, since we observe that many verbs are very
specific to their passages and are uncommon in the
training data. We also conduct random masking on
all tokens. More detailed discussion on the impact
of the knowledge distillation is provided in the ex-
periments. The overall objective of our primal-dual
framework is Ltotal = LQG + αLQA + βLKD,
where α and β are trade-off parameters to balance
the losses.

3 Experiments

3.1 Datasets

SQuAD (Rajpurkar et al., 2016): The original
SQuAD dataset contains 23215 paragraphs from
536 Wikipedia articles with over 100k questions
posed about the articles. The answer is also given
with corresponding questions as the sub-span of
the sentence. In order to conduct a fair compar-
ison, we use the same two processed versions of
SQuAD that are used by previous works (Song
et al., 2018; Tuan et al., 2020). It is divided into
train/dev/test splits with two different divisions, re-
sulting in SQuAD-split-1 and SQuAD-split-2.
HotpotQA (Yang et al., 2018): Hotpot-QA is a
multi-document and multi-hop QA dataset. This
dataset contains supporting facts that potentially
lead to the answer. We concatenate these support-
ing facts to form the passage. We use 10% of the
training data for validation and use the original dev
set as the test set. The details of these datasets are
given in Appendix C.

3.2 Implementation Details

We implemented our models using Tensorflow and
Keras. Each model is trained on a 32 core TPU v3
configuration. Our model is randomly initialized.
It uses 12 layers, 768 hidden size, 12 heads and
3072 hidden units (for FFN) for both encoder and
decoder. The maximum sequence length is set to
512. The BERT-base vocab with size 30,522 is
used. During training, we use the gradient descent
algorithm with Adam optimizer. The initial learn-
ing rate is set to 3e−5. The mini-batch size for each
update is set as 64 and the model is trained for up to
9 epochs. The dropout probability for the attention
layer is set to 0.1. The hyper-parameters α is set
to 0.8, with β set to 0.15. For testing, we conduct
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Models
SQuAD-split-1 SQuAD-split-2 HotpotQA

BLEU METEOR ROUGE BLEU METEOR ROUGE BLEU METEOR ROUGE

s2s+MP+GSA (Zhao et al., 2018) - - - 15.82 19.67 44.24 19.29 19.29 40.40
ASs2s (Kim et al., 2019) 16.20 19.92 43.96 16.17 - - - - -
QG+pc (Li et al., 2019) 16.27 20.36 44.35 16.37 20.68 44.73 - - -

RefineNet (Nema et al., 2019) - - - 16.84 20.60 44.78 19.68 23.27 41.52
QG+SSM+API (Ma et al., 2020) - - - 16.32 20.84 44.79 - - -

QG+AP (Wang et al., 2020a) - - - 16.42 18.95 43.07 - - -
QG+QA (Sun et al., 2020) 16.36 20.15 44.64 16.67 20.33 44.80 19.73 23.45 41.65

Multi-stage Att (Tuan et al., 2020) 17.09 21.25 45.81 17.76 21.56 46.02 - - -
G2S+Bert+RL (Chen et al., 2020) 17.94 21.76 46.02 18.30 21.70 45.98 - - -

QG+AQ+UG (ours) 19.07 22.62 46.89 19.34 22.95 46.97 22.38 25.85 44.51

Table 1: Performance comparison results. We directly import the results of the baselines that reported on these
datasets. A ‘-’ means they do not evaluate on that dataset. Results are statistically significant with p-value < 0.001.

beam search with beam width 10 and length penalty
weight 2.1. Decoding stops when generating the
<EOS> token.

We evaluate the performance of our model with
three standard evaluation metrics: BLEU (BLEU-
4), METEOR and ROUGE-L. We use the eval-
uation package released in (Sharma et al., 2017).
We repeat each experiment 10 times and report the
metrics based on the averages.

3.3 Baselines

s2s+MP+GSA (Zhao et al., 2018) uses a gated self-
attention into the encoder and a maxout pointer
mechanism into the decoder.
ASs2s (Kim et al., 2019) replaces the answer in the
sentence with a special token to avoid its appear-
ance in the questions.
QG+pc (Li et al., 2019) models the unstructured
sentence and the structured answer-relevant rela-
tion for question generation.
RefineNet (Nema et al., 2019) augments the ba-
sic encoder-decoder model with a reward based
refinement network.
QG+SSM+API (Ma et al., 2020) employs
sentence-level semantic matching and answer posi-
tion inferring.
QG+AP (Wang et al., 2020a) treats the answers
as hidden pivots and combines question generation
with answer selection.
QG+QA (Sun et al., 2020) using two independent
encoders for the question generation and question
answering tasks respectively.
Multi-stage Att (Tuan et al., 2020) represents the
relevant context via a multi-stage attention mecha-
nism to incorporate interactions across sentences.
G2S-Bert-RL (Chen et al., 2020) proposes a RL
based graph to sequence model for question gener-
ation.
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Figure 4: Ablation study on the impact of different
modules on all datasets.

3.4 Main Results

Our model outperforms the state-of-the-art
question generation methods on all datasets.
The performance comparison results are reported
in Table 1. From these comparison results, we
can see that QG+AQ+UG provides the best re-
sults among all compared methods on both SQuAD
splits and HotpotQA. For example, the BLEU met-
ric of our model increases over 5.7% and 8.9%
compared with G2S+Bert+RL and Mutli-stage Att
on SQuAD-split-2 respectively. There are three
main reasons: First, our model integrates the ques-
tion generation and question answering into a uni-
fied primal-dual framework, which enforces the
generated question to obtain the target answer from
the passage, resulting in more accurate question
generation. Second, the knowledge distillation en-
ables our model to generate more important words
which are uncommon in the training data. Third,
our model employs advanced Transformer archi-
tecture, instead of bi-LSTM, in both encoder and
decoder, which allows the passage and the answer
to attend each other from bottom to top, resulting
in better contextual embeddings.
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Figure 5: AGS results of different masking strategies in
knowledge distillation.

4 Analysis and Discussion

4.1 Ablation Study

Asking question (AQ) plays an important role
in question generation, while uncommon words
generation (UG) also helps improve the model
performance. To evaluate the effectiveness of the
primal-dual approach, we conduct a set of ablation
studies by removing each component individually,
i.e. question generation, question answering and
knowledge distillation, from our model. We also
train a model removing both question answering
and knowledge distillation. The BLEU scores of
these methods on all datasets are shown in Fig-
ure 4. It can be seen from the figure that both
question answering and knowledge distillation con-
tribute to improving the effectiveness of question
generation, especially the dual question answering
module, which validates the effectiveness of primal-
dual modeling and the uncommon words genera-
tion. Nevertheless, it is clear from these results that
the QG+AQ+UG model, which incorporates all
three components, achieves the best performance.

4.2 Impact of Knowledge Distillation on
Uncommon Words Generation

Knowledge distillation guides the model to gen-
erate uncommon words. Masking verb tokens is
the most effective strategy compared with mask-
ing nouns and masking all words. To understand
the effect of knowledge distillation on uncommon
word generation, we compare different masking
strategies when applying knowledge distillation.
Specifically, recall that in our original implementa-
tion of knowledge distillation, we conduct random
masking on verb tokens. In this study, we also con-
duct three other variations. (1) Without masking
(which is equivalent to dropping knowledge dis-
tillation). (2) Random masking on all words. (3)
Random masking on noun tokens. We calculate the

Naturalness Answerability

RefineNet 3.65 3.62
G2S+Bert+RL 3.59 3.77

QG+AQ 3.79 4.05
QG+AQ+UG 3.85 4.12

Human 4.23 4.47

Table 2: Human evaluation results.

average generalizability score (AGS) as described
in the introduction section. The AGS results are
shown in Figure 5. It is clear that both masking-all
and masking-verb improve the AGS significantly
compared to no-maksing on all datasets, which
demonstrates the effectiveness of knowledge distil-
lation on uncommon word generation. Moreover,
we observe that masking only verbs achieves even
higher scores than random word and noun word
masking. Our hypothesis is that verbs are likely
to be specific and are uncommon in the training
questions. On the other hand, nouns or entities
usually appear in the passage which can be copied
directly to the generated questions through copy
mechanism.

4.3 Human Evaluation

Our primal-dual model (QG+AQ) improves
both the naturalness and answerability of the
generated questions, while uncommon words
generation further improves quality of the ques-
tions. We conduct a human evaluation to mea-
sure the quality of questions generated by our ap-
proach. Specifically, similar to the metrics used in
(Du et al., 2017), we consider two criterion in hu-
man evaluation: (1) Naturalness, which indicates
the grammaticality and fluency of the generated
questions; and (2) Answerability, which measures
the correctness of the question, i.e., whether it can
achieve the answer. We randomly sample 100 (an-
swer,passage,question) triples from our SQuAD-
split-2 experimental outputs. We then ask three
professional English speakers to rate the pairs in
terms of the above criterion on a 1 to 5 scale (5
for the best). The experimental result is reported
in Table 2. The results imply that our model can
generate questions of better quality than the base
models, especially in terms of answerability. By
comparing QG+AQ+UG with QG+AQ, it is clear
that the knowledge distillation module further im-
proves the quality of the questions.
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Models SQuAD-split-1 SQuAD-split-2 HotpotQA

QG+AQ+UG-LSTM 18.07 18.36 21.55
QG+AQ+UG-small 18.41 18.80 21.93
QG+AQ+UG-base 19.07 19.34 22.38
QG+AQ+UG-large 20.13 20.56 23.47

Table 3: BLEU results over different models and config-
urations on all datasets.

4.4 Different Model Configurations

We evaluate the performance of our model on dif-
ferent encoder/decoder configurations. We con-
duct experiments with two additional configura-
tions - the large one with 24 layers, 1024 hidden
size, 16 heads and 4096 hidden units, and a small
model with 6 layers, 256 hidden size, 8 heads and
1024 hidden units. The total number of parameters
of the QG+AQ+UG small, base and large mod-
els are 98m, 225m and 647m. The BLEU results
on all datasets are shown in Table 3. It can be
observed that QG+AQ+UG-large achieves better
performance, which is consistent with our expec-
tations. However, a larger model usually requires
longer training time, as well as inference.

4.5 Case Study

Figure 1 shows an example of generated questions
from humans, base models and our model. It can
be seen that base models generate inaccurate ques-
tions, which are not able to obtain the target an-
swers. Our model generates more accurate and
desirable questions. For instance, RefineNet is not
able to identify the correlation between the answer
“$50000” and the words “boarding schools”, re-
sulting in a wrong question. The QG+SSM+API
model generates a question that is not very natu-
ral and fluent. Our model effectively connects the
semantic-related phrases “tuition” and “boarding
schools” in two different sentences, and forms a
relevant context for generating the question.

Figure 6 shows an example of the generated ques-
tions using QG, QG+AQ and QG+AQ+UG. It is
clear that the question generated by QG is grammat-
ically correct but not answerable. In contrast, the
QG+AQ model is able to connect the phrases “the
Privy Council” with “the real military authority”
and “reside”, which generates the desired question.
Furthermore, the QG+AQ+UG is able to gener-
ate word “control” which does not appear in the
passage. It demonstrates the capability of general-
ization of our model for uncommon words.

Figure 6: A case study of generated questions.

5 Related Work

Early works on automatic question generation are
essentially rule based systems (Lindberg et al.,
2013; Mazidi and Nielsen, 2014; Labutov et al.,
2015). Several AQG models have been proposed
to generate questions from the passage alone (Du
and Cardie, 2017; Yao et al., 2018). These methods
usually aim at generating questions that are gram-
matically correct and answerable from the passage,
but not specific to any answer in the passage, which
have fundamental limitations for downstream tasks.
Recent models for AQG are based on the encode-
attend-decode paradigm and they generate ques-
tions from the passage and a target answer (Xia
et al., 2017; Wang et al., 2019a,b; Yu et al., 2020).

Over the past few years, several variants (Duan
et al., 2017; Scialom et al., 2019; Wang et al.,
2020c; Ko et al., 2020; Jia et al., 2021) of the
encode-attend-decode model have been proposed.
To generate more plausible questions, Zhou et al.
(Zhou et al., 2017) utilize answer positions to make
the model aware of the target answer. Song et al.
(Song et al., 2018) apply the multi-perspective con-
text matching algorithm of (Wang et al., 2017b) to
employ the interaction between the target answer
and the passage. Both works employ a copy mech-
anism (Gülçehre et al., 2016) to handle the missing
words. Kim et al. (Kim et al., 2019) develop an
answer separation technique which masks out the
answer in the passage to generate more reasonable
questions. Huang et al. (Huang et al., 2021) pro-
pose an entity guided question generation model
with additional question type information. There
has also been some work on generating questions
from images (Liu et al., 2020), knowledge bases
(Reddy et al., 2017) and products (Wang et al.,
2020b; Yang et al., 2022).

There are several AQG methods (Wang et al.,
2017a; Yuan et al., 2017) that try to leverage both
question answering and question generation. Nema
et al. (Nema et al., 2019) augment the basic
encoder-decoder model with a reward based refine-
ment network, which re-evaluates the generated
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question in a second pass. This method requires
an additional reward mechanism to obtain the flu-
ency and answerability scores. Another closely
related work is (Tang et al., 2017, 2018), which
linearly combines the question generation loss with
the question answering loss in a multi-task setting.

6 Conclusions

Automatic question generation is an important task
in the improvement of artificial intelligent systems.
In this work, we propose a novel primal-dual ap-
proach for question generation. It integrates ques-
tion generation with its dual problem question an-
swering into a unified framework. A knowledge
distillation module is introduced into the frame-
work to improve model generalization on uncom-
mon word generation. Experimental results on two
benchmarks demonstrate the effectiveness of the
primal-dual modeling.

Limitations

There are several possible research directions. First,
our model assumes that the length of the passage
is not too large and can be easily fit into a Trans-
former encoder. However, there are real-world ap-
plications which require long input text sequence
for generating the questions. For example, in a dia-
log system, the model might need all the contexts
in the history from the dialog to generate a more
meaningful and relevant question. Therefore, it is a
practical problem to deal with long input sequence
for question generation. Second, our model gen-
erates one question at a time, while there are use
cases where structure questions are more prefer-
able. In future, we also plan to investigate more
along structural question generation.
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A Technical Details

A.1 Primal-Dual Encoder
As mentioned in the main paper, the primal-dual
encoder is a stack of identical layers using multi-
head attention (MHA) and feed forward network
(FFN):

H1
en = FFN(MHA(E))

Hk
en = FFN(MHA(Hk−1

en ))

where E = (e1, . . . , el) are the input embeddings
of the sequence. Hk

en is the output embeddings of
the k-th encoder layer. The Multi-head attention is
defined as:

MHA(H) = concat(softmax(
QjK

T
j√

d
)Vj)

where Qj=HWQ
j , Kj=HWK

j and Vj=HW V
j are

the query, key and value embedding matrices of
the j-th head, with WQ

j , WK
j and W V

j as model
parameters. d is the embedding dimension. The
feed forward network is applied to each position
separately and identically, which consists of two
linear transformations with a ReLU activation in
between:

FFN(x) = ReLU(xW1 + b1)W2 + b2

where W1, W2, b1 and b2 are the parameters in
the feed forward network. The output of the top
encoder layer will be used as the contextual embed-
dings of the input sequence.

A.2 Question Decoder
In addition to the two sub-layers in the en-
coder layer, the decoder employ a third sub-layer,
encoder-decoder attention (EDA), which performs
multi-head attention over the outputs of the en-
coder and the current decoder layer. The masked
multi-head attention (MMHA) has the same model
structure as the multi-head attention in the encoder
layer, except that it prevents positions from attend-
ing to subsequent positions. This masking ensures
that the prediction for position i can depend only
on the known outputs at positions before i, as the
question is generated word by word.

Hk
de = FFN(EDA(HP

en, H
A
en,MMHA(Hk−1

de )))

where HP
en and HA

en are the output embeddings
of the passage and answer from the encoder. The
encoder-decoder attention is defined as:

EDA(Hen, Hde) = softmax(
QdeKen

T

√
d

)Ven

Hyper-parameters Value

batch size 64
training epochs 9

optimizer Adam
learning rate schedule linear decay

learning rate 3e−5

learning rate warmup steps 5,000
vocab size 30,522

max input sequence length 512
max output sequence length 64

number of layers 12
attention heads 12

hidden size 768
hidden units in FFN 3,072

α 0.8
β 0.15

beam width 10

Table 4: Model Hyper-parameters details.

Qde = HdeW
Q
de, Ken = HenW

K
de , Ven = HenW

V
de

Here WQ
de, WK

de and W V
de are the model parameters

for the encoder-decoder attention.

B More Implementation Details

For the knowledge distillation implementation, we
adopt a modified cross entropy loss which is de-
fined as:

MCE(Yen, Ypre) = −
S∑

t=1

ŷten log ŷ
t
pre

where ŷt is the modified probability of the t-th
word:

ŷt =
(yt)1/T∑
j(y

j)1/T

Hinton et al. (Hinton et al., 2015) suggest setting
T > 1, which increases the weight of smaller logit
values and encourages the network to better encode
similarities among words. In our implementation,
we set T to 2.0, and randomly mask 10% of the
tokens in the passage during training. Table 4 con-
tains the hyper-parameters details for training our
model.

For the evaluation metrics, we provide more de-
tails below:
BLEU (BLEU-4) measures the quality of the can-
didate by counting the matching 4-grams in the
candidate to the 4-grams in the reference text.
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Dataset Train Dev Test

SQuAD-split-1 70,484 10,570 11,877
SQuAD-split-2 86,635 8,965 8,964

HotpotQA 76,402 8,533 7,405

Table 5: Statistics of the datasets.

dataset BLEU METEOR ROUGE-L Training Time
SQuAD-split-1 19.07 ± 0.15 22.62 ± 0.23 46.89 ± 0.37 3h 47m
SQuAD-split-2 19.34± 0.17 22.95 ± 0.27 46.97 ± 0.35 4h 12m

HotpotQA 22.38 ± 0.22 25.85 ± 0.34 44.51 ± 0.31 4h 36m

Table 6: Standard deviation results and training time
of QG+AQ+UG-base on all datasets, run on 32 core
TPUv3 configuration.

METEOR compares the candidate with the refer-
ence in terms of exact, stem, synonym, and para-
phrase matches between words and phrases.
ROUGE-L assesses the candidate based on the
longest common subsequence shared by both the
candidate and the reference text.

C Data Processing

The SQuAD dataset (both splits) already contains
the begin index of the answer span. We directly
match the answer text from the begin index to ob-
tain its end index in the passage.

The HotpotQA dataset only contains answer text
without any span information in the passage (sup-
porting facts). Therefore, we need to label the span
of the answer in the passage, since the question an-
swering task requires wordpiece/word level spans.
The process of labeling spans is as follows:

• Use white-space to tokenize/split the passage
into unigrams. For example, ‘This is a very
long paragraph about HelloKitty’ is tokenized
to [‘This’, ‘is’, ‘a’, ‘very’, ‘long’, ‘paragraph’,
‘about’, ‘HelloKitty’]. In this step, all punctu-
ations are removed.

• Use white-space to tokenize/split the answer
into unigrams. For example, ‘very long’ is
tokenized to [‘very’, ‘long’].

• Search and match the answer unigrams in the
passage unigrams.

• Map the unigram span of the answer to char-
acter bytes span.

There are 1.36% examples in the HotpotQA dataset,
whose answer text can not be matched by this pro-
cedure. We simply exclude these examples in our

Models SQuAD-split-1 SQuAD-split-2 HotpotQA

T5 17.86 18.15 20.87
QG+AQ+UG-T5 19.12 19.41 22.33

QG+AQ+UG 19.07 19.34 22.38

Table 7: BLEU results of weight lifting from pre-trained
T5 models.

experiments. Moreover, we also found there are
roughly 3.34% examples where the answer has
multiple occurrences in the passage. In our ex-
periments, we pick the first answer occurrence as
the answer span, although a more robust way is to
adopt the BIO-based span extraction for question
answering. Furthermore, we also removed exam-
ples with ‘yes’ or ‘no’ answers. The details of these
datasets are given in Table 5.

D Results with Standard Deviation

As mentioned in our experiments section, we re-
peat each experiment 10 times and report the mean
values of all metrics. We also calculate the standard
deviation (STD) and the results of QG+AQ+UG-
base on all datasets are reported in Table 6. From
these results we can see that the STDs of all met-
rics are relatively small, ranged from 0.15 to 0.37.
Table 6 further shows the training time taken by
QG+AQ+UG-base model on the different datasets.

E More Ablation Study

E.1 LSTM vs. Attention
We further conduct a series of ablation stud-
ies of our model. We first replace the encoder
and decoder with bi-LSTM to understand how
much improvement does Transformer/attention-
based architecture contribute to. We refer this
model to QG+AQ+UG-LSTM and compare it with
QG+AQ+UG. The BLEU results are shown in Ta-
ble 3. It can be seen that our model with bi-LSTM
structure already performs much better than the
best baselines, which demonstrates the effective-
ness of the primal-dual learning. Our QG+AQ+UG
with attention-based architecture further improves
the model performance.

E.2 Lift from Pre-trained Model
As mentioned in the main paper, in all previous
experiments, we train QG+AQ+UG model from
scratch, i.e., randomly initialize our model. In this
experiment, we evaluate the model performance by
lifting the model weights from pre-trained language
models. Specifically, we initialize both the encoder
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SQuAD-split-1 SQuAD-split-2 HotpotQA

EM F1 EM F1 EM F1

QA 82.42 89.70 81.18 88.46 60.46 71.28
QG+AQ+UG 82.49 89.81 81.21 88.54 62.33 73.85

QG+AQ+UG+ 83.26 90.17 81.96 89.33 63.85 75.18

Table 8: Evaluation of the question answering task on
all datasets.

and decoder parameters from a pre-trained T5 (Raf-
fel et al., 2020) model and refer it to QG+AQ+UG-
T5. We also directly compare with T5 model (use
T5 to finetune on all datasets). The BLEU results
are shown in Table 7. It can be seen that both
QG+AQ+UG-T5 and QG+AQ+UG outperform T5
model, which further validates the effectiveness of
primal-dual learning. Moreover, we can see that
QG+AQ+UG-T5 and QG+AQ+UG converge to a
very similar point, which indicates that initializing
from pretrained T5 does not improve the final per-
formance after sufficient training. However, we ob-
serve that QG+AQ+UG-T5 converges much faster
than the random initialization of QG+AQ+UG.

E.3 Evaluation on Question Answering

We also study the performance of QG+AQ+UG
on the question answering task. In order to get a
comparison with the baseline question answering
model, we train another QA model under the same
framework by removing the question generation
model. Moreover, we augment the training data
with the generated questions from QG+AQ+UG
and retrain a QA model. This is to understand
how question generation could help in the ques-
tion answering task. This model is referred to
QG+AQ+UG+. We adopt the widely used evalua-
tion metrics, exact match (EM) and F1 score (Ra-
jpurkar et al., 2016), for the model evaluation. The
performance results of the QA and QG+AQ+UG
on all datasets are reported in Table 8. It can be
seen that QG+AQ+UG obtains similar results com-
pared to QA on all benchmarks. The reason is
that QG+AQ+UG is trained to optimize the per-
formance of question generation, with the hyper-
parameters tuned specifically for this task. How-
ever, the proposed QG+AQ+UG is still able to
achieve comparable results. More interestingly,
we observe that QG+AQ+UG+ achieves better
results compared to both QA and QG+AQ+UG,
which indicates that the generated questions from
QG+AQ+UG indeed benefit the downstream QA
task.

batch size 64 128 512

learning rate 3x10−5 5x10−5 3x10−5 5x10−5 3x10−5 5x10−5

SQuAD-split-1 19.07 19.04 18.93 18.91 18.72 18.75
SQuAD-split-2 19.34 19.32 19.21 19.15 19.06 19.02

HotpotQA 20.57 22.38 22.25 22.34 22.17 22.10

Table 9: BLEU results of QG+AQ+UG-base with dif-
ferent batch sizes and learning rates on all datasets.

E.4 Impact of Training Batch Size and
Learning Rate

To evaluate the model performance with different
training batch size and learning rate, we conduct
experiments to train a set of base models with a
hyper-parameter sweep consisting of learning rates
in {3x10−5, 5x10−5} and batch-size in {64, 128,
512} on the training set. The BLEU results with
different learning rates and batch sizes on SQuAD
datasets are reported in Table 9. It can be seen from
the tables that the QG+AQ+UG-base achieves the
best result with batch size 64 and learning rate
3x10−5 on both SQuAD splits. We also conduct
similar experiments on the HotpotQA dataset, and
find out that batch size 64 and learning rate 3x10−5

also give the best result there (Table 9). The ob-
servation is consistent with the findings in work
(Ainslie et al., 2020), where smaller batch size usu-
ally leads to better performance. This is also the
reason that we set batch size to 64 and learning rate
to 3x10−5 in all our previous experiments.

E.5 Parameter Sensitivity
We further conduct a set of parameter sensitivity
experiments, with respect to α and β on both data
splits of SQuAD, to evaluate the robustness of the
proposed approach. In each experiment, we tune
only one parameter from {0, 0.01, 0.05, 0.1, 0.2,
0.4, 0.8}, while fixing the other parameter to the
value as described in our implementation details.
We find that the performance of QG+AQ+UG is
relatively stable with respect to α and β. We also
observe similar results of the proposed method in
terms of the other two metrics.
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