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Abstract

In this paper, we propose a comprehensive
benchmark to investigate models’ logical rea-
soning capabilities in complex real-life scenar-
ios. Current explanation datasets often employ
synthetic data with simple reasoning structures.
Therefore, it cannot express more complex rea-
soning processes, such as the rebuttal to a rea-
soning step and the degree of certainty of the
evidence. To this end, we propose a comprehen-
sive logical reasoning explanation form. Based
on the multi-hop chain of reasoning, the expla-
nation form includes three main components:
(1) The condition of rebuttal that the reasoning
node can be challenged; (2) Logical formulae
that uncover the internal texture of reasoning
nodes; (3) Reasoning strength indicated by de-
grees of certainty. The fine-grained structure
conforms to the real logical reasoning scenario,
better fitting the human cognitive process but,
simultaneously, is more challenging for the cur-
rent models. We evaluate the current best mod-
els’ performance on this new explanation form.
The experimental results show that generating
reasoning graphs remains a challenging task
for current models, even with the help of giant
pre-trained language models.

1 Introduction

Being able to generate reasonable explanations is
a crucial capability for a reliable reasoning sys-
tem. Most current works try to ask models to gen-
erate reasoning chains as profound explanations.
From simple rationales (DeYoung et al., 2020) to
more complex multi-step explanations (Inoue et al.,
2020; Jhamtani and Clark, 2020; Saha et al., 2021)
and deductive chains of reasoning (Clark et al.,
2020; Tafjord et al., 2021; Dalvi et al., 2021), pre-
vious works attempt to encompass comprehensive
information. However, the current explanation de-
sign still has limitations for logical reasoning texts
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Sent1
Certainty: contingent
Node Formula: N/A

Sent4
Certainty: necessary

Node Formula:
□(v𝟐 → □v𝟑)

Condition of rebuttal

Sent3
Certainty: necessary

Node Formula: □(v𝟑⋀v𝟐) 

Sent2
Certainty: contingent
Node Formula: N/A

Sent5
Certainty: unnecessary

Node Formula: 
¬□(¬□v𝟑→ v𝟏)

Logic Metagraph

sent1: v1: doctor : v2: recent pharmaceutical advances will lead 
the way in weight loss .
sent2: v1: prior to these advancements , v2: obesity - related 
deaths outnumbered all other causes of death by a wide margin .
sent3: v1: the new drugs will v2: curb appetite and v3: increase 
metabolism .
sent4: v1: thanks to v2: these advancements , v3: obesity will 
dramatically decline in the near future .
sent5: v1: most people will not be able to afford these 
prescriptions v2: since v3: the majority of health care plans will not 
cover the new drugs .

Passage

Figure 1: A logical passage and the corresponding logic
metagraph in the proposed MetaLogic. Given a logi-
cal passage, the goal is to generate the full metagraph
including the chain of reasoning with conditions of re-
buttal, the node formulae, and the degrees of certainty.

in real scenarios. As current explanations lack a
fine-grained structure, three remarkable features
are not included in current explanations for the sake
of real-world logical reasoning: multiple relation
types, hierarchical structure, and certainty. As a re-
sult, we cannot comprehensively evaluate models’
reasoning capabilities in real-life scenarios.

Figure 1 shows examples of the crucial reasoning
components that are well studied by previous cog-
nitive science literature (Toulmin, 2003; Garson,
2021) but overlooked by previous work in the ma-
chine learning community. First, the inference re-
buttal. Previous work (Tafjord et al., 2021) mostly
only focuses on the inferences of conjunction and
entailment among different statements while ignor-
ing the rebuttal ones, which could be crucial in
real applications. For example, sent5 counters
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sent4 as a condition of exception and we can-
not construct the correct reasoning graph without
the rebuttal relation. Second, there could exist in-
ternal logical relations inside each statement. For
example, sent5 contains two atomic sentences
connected by a logical implication relation. Third,
real-life statements could have different degrees of
certainty. For example, “He is hungry” and “He is
likely to be hungry” are not identical but relevant
because of the certainty. However, most previous
work simply treats them completely separately in-
stead of considering their relevance and trying to
model the difference (i.e., certainty).

Motivated by previous cognitive science work
(i.e., Toulmin Model1 (Toulmin, 2003) and modal
logic theory2 (Garson, 2021)), we propose a new
explanation form, logic metagraphs, to address the
aforementioned limitations of previous work. As
demonstrated in Figure 1, the logical metagraphs
are directed acyclic graphs with meta nodes con-
nected by two types of edges, support and rebut,
representing the inferences between the statements
over a logical passage. The meta structure uncovers
the chain of reasoning from evidence to the con-
clusion, along with the challenges from the rebut-
tal sentences. Each meta node stores information
about a logically sound statement formulated as a
propositional formula in a standard modal logic S5
system (Hughes et al., 1996), a direct extension of
first-order propositional logic with two certainty
operators. The formulae have atomic sentences
as logical variables that denote events or beliefs,
which are modified by three unary operators on
their certainty (negation ¬, necessity 2, and possi-
bility 3) and are joined by three binary operators
on their logical relations (implication →, conjunc-
tion ∧, disjunction ∨). As a result, the logic meta-
graphs are comprehensive with multi-hop reason-
ing paths, inference rebuttal, the internal structure
of the statements, and reasoning strength denoted
by the degrees of certainty. We collect 1,000 log-
ical passages from the ReClor dataset (Yu et al.,

1The Toulmin Model is a canonical theory that helps for-
mat and understand arguments. It provides a general pattern
to assign logical roles to the sentences in the argument, which
clarify the overall logical relations. Especially, the rebuttal
components challenge the derivation from existing evidence
to the conclusion by providing additional information such as
giving a counterexample or proposing an additional condition.

2The modal logic theory extends classic first-order propo-
sitional logic with two modal operators about certainty and
several corresponding rules. This facilitates us to keep the
logical variables and relations found in the text and, at the
same time, introduce degrees of certainty to the graph.

2020) and build the MetaLogic dataset.
Based on our new explanation form, we exam-

ine the current best models’ ability to understand
logical reasoning profoundly. The models need
to generate the logic metagraphs given a logical
passage. Performances are evaluated by matching
scores for the overall structure as well as the three
fine-grained components: (1) The inference steps
between meta nodes; (2) The per-statement formu-
lae with multiple logical triples; (3) The degrees of
certainty. Our evaluation results indicate that gener-
ating a comprehensive logical reasoning structure
is still challenging for existing giant models.

Our contributions are three-fold:

1. We propose a new explanation form, the logic
metagraphs, with a comprehensive logical struc-
ture and rich logical information, and the corre-
sponding metagraph generation task.

2. We build a high-quality dataset, MetaLogic, on
real-world logical passages.

3. We conduct experiments on three generative
models in different frameworks and locate the
challenges for current models.

2 Related Works

Explanations Explanation in the context of natu-
ral language understanding tasks (e.g., QA) pro-
vides interpretability about how models solve the
problem. The strategies include asking the models
to generate rationales while answering the ques-
tions (DeYoung et al., 2020; Inoue et al., 2020),
and deriving multi-hop chains of reasoning (Jham-
tani and Clark, 2020; Dalvi et al., 2021). The
single-sentence rationale provides justification for
the question answering but does not uncover the
reasoning procedure. While the form of multi-hop
chains of reasoning uncovers the reasoning proce-
dure and remedies the simple justification of ra-
tionale, it still lacks critical clues about the mech-
anism within the reasoning steps. Our proposed
fine-grained explanation form extends the chain of
reasoning by unwrapping the fine-grained texture
within each reasoning step. As a result, it allows
the reasoning chains to include multiple inference
types (e.g., rebuttal) and broader reasoning types
such as abductive reasoning with the hidden world-
knowledge assumption.
Logical Reasoning Machine logical reasoning re-
quires models to conduct hidden symbolic reason-
ing processes through question answering (Yu et al.,
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sent1: v1: doctor : v2: recent pharmaceutical advances will lead the way in weight loss .
sent2: v1: prior to these advancements , v2: obesity - related deaths outnumbered all 
other causes of death by a wide margin .
sent3: v1: the new drugs will v2: curb appetite and v3: increase metabolism .
sent4: v1: thanks to v2: these advancements , v3: obesity will dramatically decline in the 
near future .
sent5: v1: most people will not be able to afford these prescriptions v2: since v3: the 
majority of health care plans will not cover the new drugs .

Binary logical operators →, ⋀, ⋁
Unary logical operators ¬, □ (necessity), ◇(possibility)

Sent4
Certainty: necessary

Node Formula:
□(v𝟐 → □v𝟑)Sent3

Certainty: necessary
Node Formula: □(v𝟑⋀v𝟐) 

Sent2
Certainty: contingent
Node Formula: N/A

Sent1
Certainty: contingent
Node Formula: N/A

Sent5
Certainty: unnecessary

Node Formula: 
¬□(¬□v𝟑→ v𝟏)

→ (labeled)
♢ (parsed)
¬ (parsed)
___ root of dependency

parsing tree
bold w.r.t. global operator

Support

Rebut 

◇¬(◇¬v𝟑 → v𝟏)
Reduction

Node Formula: ¬□(¬□v𝟑→ v𝟏)

Annotation

Global Operators

Certainty: unnecessary

Sent5: v1: most people will not be
able to afford these prescriptions v2:
since v3: the majority of health care 
plans will not cover the new drugs .

Figure 2: The overall logical reasoning explanation task is defined as follows. Given a passage, a model reconstructs
the fine-grained logical structure with the meta support or rebut relations, the inner node formulae, and degrees of
certainty for each node. Given a logical statement, the formula is constructed from the labeled logical triples with
the parsed unary operators, which can then be reduced to canonical forms. The certainty label should follow the
global operators.

2020; Liu et al., 2020; Cui et al., 2020), or explicitly
perform symbolic reasoning via natural language
(Clark et al., 2020; Tafjord et al., 2021; Dalvi et al.,
2021). The QA-based reasoning data is mostly col-
lected from real-life scenarios without correspond-
ing structural information. To perform reasoning,
symbolic modules (Huang et al., 2021; Ouyang
et al., 2021) or learning strategies (Wang et al.,
2022) are designed to approximate the reasoning
structure. On the other hand, explicitly generat-
ing chains of reasoning can better uncover models’
reasoning processes. However, recent work mostly
focuses on deductive reasoning, where models with
iterative strategy (Tafjord et al., 2021) or reasoning
modules (Hong et al., 2022) show superior perfor-
mances. To encourage more advanced reasoning
capabilities, we propose a comprehensive reason-
ing structure with fine-grained factors.

Argumentation / Discourse Structures Previous
works (Lawrence and Reed, 2019; Li et al., 2022)
such as argumentation mining (Stab and Gurevych,
2014b,a, 2017) or discourse parsing (Carlson et al.,
2001; Webber et al., 2019) study document struc-
ture prediction. Given a passage, a model is re-
quired to predict the argument components or the
discourse relations between them. Instead of iden-
tifying the rhetorical structure of a passage, the
proposed logic metagraphs aim at simulating the
logical reasoning process, where the model needs
to select the relevant knowledge out of a pool to
finish the reasoning. Besides, unlike directly con-

sidering a sentence or a text span as a reasoning
node, MetaLogic explores a schema with finer gran-
ularity. Each reasoning node is further decomposed
into logical variables with relations and modal op-
erators so that the inner structure as well as the
certainty are considered.

3 Task Definition

Overall Generation Task The desideratum is that
a model reconstructs the fine-grained logic expla-
nation for a given passage, which uncovers the
model’s understanding of the logic between the
lines. The logic explanation is formatted as logic
metagraphs with support or rebut inference steps,
per-node logical formulae, and degrees of certainty,
as demonstrated in Figure 2.

The input for the models is a passage with mul-
tiple statements (S(0), S(1), ..., S(N)) and atomic
sentences p

(n)
∗ ⊆ S(n), according to which they

generate the logic metagraph. The logic meta-
graph has three main components: (1) The meta
structure G = (V, E), where E = ES

⋃ ER, and
ES and ER are the two meta edge types, support
and rebut, respectively, between the meta nodes
u(n) ∈ V, n ≤ N . (2) The set of node formulae F ,
where u(n) := fn ∈ F . Each formula is joined by
logical triples. fn =

⋂
r(m(p

(n)
i ),m(p

(n)
j )), where

i ̸= j, r ∈ {→,∧,∨}, and m is a combination in
{¬,2,3}. (3) The set of degrees of certainty C,
defined by the combination format of {¬,2,3}.
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Senses

Classic Morality Tense Belief

2p The proposition p is necessary. p is morally obligatory. It will always be the
case that p.

Things a person knows to
be true.

3p The proposition p is possible. p is morally permissible. It will sometimes be the
case that p.

Things that may be true
as far as a person knows.

Definitions

2p := ¬3¬p It is necessary that p. := It is not possible that not-p.
3p := ¬2¬p It is possible that p. := It is not necessary that not-p.

Reduction Rules

2¬p = ¬3p, 3¬p = ¬2p, 22p = 2p, 33p = 3p, 23p = 3p, 32p = 2p.

Degrees of Certainty

2 := 4 (necessary), 3 := 3 (possible), N/A := 2 (contingent), ¬2 := 1 (unnecessary), ¬3 := 0 (impossible)

Table 1: Senses, mutual definitions, reduction rules, and degrees of certainty of modal logic operators.

4 The Logic Metagraph

In this section, we introduce the proposed logic
metagraph in details.3

4.1 Meta Node and Edge

Each meta node corresponds to a logically sound
statement (e.g., premise, or conclusion). The meta
edges are either support or rebut, relating to a single
step of inference. The support edges join the meta
nodes to form a chain of reasoning to the conclu-
sion, whereas the rebut edges indicate challenges
from the condition of rebuttal to one of the meta
nodes in the chain, which are evidence or claims
about exceptional conditions. Each inference step
allows multiple premises.

4.2 Internal Structure of Meta Node

The internal structure of a statement is formulated
as a propositional logic formula. The logical vari-
ables denote the atomic sentences in the statement
that corresponds to separate events or beliefs. The
logical relations between such events or beliefs are
denoted by binary propositional operators. There
are three logical relations: logical implication, con-
junction, and disjunction (→, ∧, ∨). Multiple such
logical triples are joined by conjunctions (∧). Fur-
thermore, each logical variable and the overall for-
mula are modified by negation (¬) and modal (2
and 3) operators, representing the degrees of cer-
tainty of each atomic sentence as well as the whole
statement, respectively. A more detailed introduc-
tion can be found in Section 4.3.

3An example is shown on the left side of Figure 2.

4.3 Certainty with Modal Operators

Modal logic (Garson, 2021) is an extension of first-
order propositional logic with two modal operators,
necessity (2) and possibility (3). They are unary
operators, and Table 1 presents examples of their
senses in natural language (Hughes et al., 1996).
For example, 2p denotes that the proposition p is
necessary, while 3p means p is possible, in the
classic definition. In another sense of tense, 2p
represents that the evidence p is true at all times,
whereas 3P represents that p is only true some-
times. In general, the modal operators indicate
certainty information of the propositions.

The two modal operators can define each other
with the negation operator (¬). Multiple reduction
rules are defined. As a result, any complex formu-
lae composed of modal operators could be reduced
to one of the five degree-of-certainty forms listed
in Table 1, which is also known as the classic S5
system (Hughes et al., 1996) and makes the logic
metagraph defined in a complete set.

5 MetaLogic

In this section, we introduce the construction de-
tails of the MetaLogic dataset. Since the logic meta-
graphs have fine-grained structures with multiple
evaluation dimensions, which are all dispensable
and supplement each other, we design a rigorous
annotation process for the construction.

5.1 Preparation

Source Data We use ReClor (Yu et al., 2020) as
the source data, where the multiple-choice ques-
tions are collected from GMAT and LSAT. As a
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pilot study on logical reasoning explanation, we
start with the standard text questions so that the
explanation form can benefit from precise and com-
prehensive logical information. Each question con-
tains a logical passage, a question, and multiple
answer options. The original dataset contains 17
reasoning types, which can be mainly categorized
into two folds: complete reasoning composed of
the logical passage and the option (e.g., the types
Necessary Assumptions, Sufficient Assumptions,
Strengthen, Weaken); flawed in-context reasoning
structure (e.g., the types Technique, Identify a Flaw,
or Dispute). As we aim to study models’ under-
standing of the complete reasoning process over
the whole passage, we consider data from the first
category, from which we randomly choose 1,000
samples. Examples of the selected questions can
be found in Appendix A.
Data Preprocessing We first filter out incoherent
options from the questions for logical structure
coherence. For ordinary questions, the incoher-
ent options are the distracting ones. Conversely,
for the inverse questions with “EXCEPT”, we ran-
domly select one of the distracting options and
remove the others. We further split the passage into
sentences as the initial meta nodes and per meta
node sentence into clauses as the initial logical
variables. This follows the convention of applying
linguistic-based segments as reasoning components
in related studies (Dalvi et al., 2021; Huang et al.,
2021; Wang et al., 2022; Xu et al., 2022). Besides,
considering the label hierarchy that the logical vari-
ables are conditioned on the meta nodes, the initial
segments help build the desired metagraph sketch.
Moreover, the initial delimitation is trivial with
punctuation marks and provides the least machine
guidance to the annotators, who are free to modify
the segments on their understanding of reasoning
units, which will be demonstrated in Section 5.2.
From the experts’ view, 27 of 30 randomly sam-
pled annotated graphs are of high quality, which
indicates the high reliability of starting with the
initial segments.

As a result, the text presented to the annotators
contains the original text with the passage, the ques-
tion, and the coherent option, along with a list of
delimited sentences.

5.2 Annotation

As all annotation tasks require a global understand-
ing of the overall passage, we recruit the same

Meta Structure Meta Node
M-Node M-Edge L-Variable L-Relation

κ 57.80† 42.82† 65.46‡ 56.81†

Table 2: IAA with Cohen’s Kappa coefficients. M-Node:
meta node, M-Edge: meta edge, L-Variable: logical vari-
able, L-Relation: logical relation. ‡ indicates very high
agreement with κ over 60%. † indicates high agreement
with κ between 40% and 60%.

annotator to finish all tasks in the same passage.
The annotation procedure has four steps. (1) Read
through the text and have a rough idea about the
logical role of each initial meta node (e.g., being a
conclusion or rebuttal). If an initial meta node does
not provide complete evidence, then the annotator
needs to merge it with another node to form com-
plete evidence. (2) Annotate the inference types
between the meta nodes. After this stage, we obtain
the chain of reasoning and the rebuttal steps. (3)
For each meta node, annotate the logical variables
by refining the span boundaries of the given initial
logical variables. (4) Annotate the logical binary
operator between the logical variables. The annota-
tion platform is demonstrated in Appendix D.

We recruit annotators from crowd-sourcing plat-
forms. We first train annotators with a carefully
designed annotation guideline4 and require them
to pass an exam before the annotation to guarantee
the annotation quality. For each passage, we invite
two annotators5. On average, we pay $2.2 for each
logical passage.

For unary logical operators (¬, 2, 3), as dis-
cussed by (Toulmin, 2003), there exist conventional
clue words for the negation and modality. Follow-
ing that, we leverage such in-context clue words
for the annotation. Given a set of conventional in-
dicators (demonstrated in Table 13 in Appendix C),
we parse each meta node sentence into a depen-
dency parsing tree, then detect those words within
3-hops to the root node, and assign the correspond-
ing operators to the formula. The consecutive unary
operators are ordered by the distance from the indi-
cators to the parsing root node. This results in the
global unary operators. For local unary operators of
the logical variable spans, we parse the spans and
evaluate the indicator-root distance. The repeatedly
detected indicators are reduced, as a result, the op-
erators are kept by the global formula and removed

4Details are shown in Appendix B.
5For the inconsistent annotation, we invite a third annotator

to make the judgement.
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Component 1 Component 2 Component 3 OverallNode Step Formula Certainty
F1 All F1 All F1 All Acc All F1∗ All

Once (large) 91.0 55.7 45.3 15.0 58.8 57.8 79.2 40.8 24.3 4.4
Multitask (large) 92.8 62.5 52.3 20.7 77.2 75.8 82.8 52.0 41.5 8.9
MetGen (large) 94.5 68.7 56.3 22.3 78.3 76.7 84.0 56.3 50.3 11.2

Once (11b) 92.5 59.0 52.4 23.5 71.0 69.6 84.1 55.0 37.2 11.7
Multitask (11b) 93.9 66.5 58.3 28.0 77.8 75.7 82.8 54.5 45.6 13.2
MetGen (11b) 94.4 68.5 61.5 28.0 80.8 78.8 85.7 60.0 55.7 15.4

Table 3: Evaluation results of generative models. All: AllCorrect. ∗: macro-F1.

before the local variable. To evaluate the labels,
the annotators check 391 unary operators from 200
randomly sampled passages. As a result, 92.6% of
them are consistent with human cognition, which
indicates that the operators are valid and consistent.

5.3 Inter-Annotator Agreement

We evaluate the inter-annotator agreement in mul-
tiple dimensions with Cohen’s Kappa Coeffi-
cient (Cohen, 1960).
Meta Node The IAA of meta nodes reflects one’s
understanding of the logical role of each statement.
We evaluate the annotators’ agreement of each meta
node of being one of the five characters: conclusion,
rebuttal, beginning of the chain, an intermediate
conclusion in the chain, and irrelevant node.
Meta Edge We consider the exhaustive meta node
pairs except the reflexive ones. Consequently, the
agreement is calculated on the adjacency matrix of
the meta edges regarding the three labels: support,
rebut, and without-an-edge. The diagonal elements
in the matrix are excluded.
Logical Variable As the logical variables are text
spans, the annotators vote for each token for be-
ing in a logical variable or not. The agreement is
average over the per-token agreement.
Logical Relation Similar to meta edge, we con-
sider the exhaustive logical variable pairs except
for the reflexive ones. Considering the logical vari-
ables as vertices, the agreement is calculated on the
adjacency matrix regarding the four labels: logical
implication, logical conjunction, logical disjunc-
tion, and without-a-relation. The diagonal elements
are regarded.

We present the results in Table 2. The agreement
is consistently high, which indicates the high qual-
ity of MetaLogic. Moreover, the high IAA also
indicates that humans could easily solve the logi-
cal reasoning explanation and provide consistent
logical reasoning graphs.

Passage Graph Node Form Reb Multi-
step

Multi-
premise

1,000 1,000 3,609 1,500 416 435 400

Avg.
Node

Avg.
Form

Avg.
Var

Avg.
Binary

Avg. Unary
Global Local

3.61 1.5 2.63 1.89 2.19 1.31

Table 4: Label statistics. The first row indicates
the overall numbers of passages (passage), logic meta-
graphs (graph), meta nodes (node), formulae (form),
number of metagraphs that have rebuttal steps (reb),
have multi-step chains (multi-step), and have multi-
ple premises (multi-premise). Note that reb, multi-
step, and multi-premise have small intersections and
nreb∩step∩premise = 36. The second row shows per-
passage average number of meta nodes, formulae, logi-
cal variables (var), binary operators (binary), global and
local unary operators (global, local).

5.4 Dataset Statistics

The final annotated MetaLogic contains 1,000 logic
metagraphs with over 3,609 meta nodes and 1,500
formulae. In the MetaLogic, 416 out of 1,000 logic
metagraphs have rebuttal steps. Around 40% of
metagraphs have multi-hop reasoning chains. On
average, each logic metagraph has more than three
meta nodes, and about 40% are mapped to formu-
lae. Moreover, each metagraph has an average of
2.19 global operators. More statistics can be found
in Table 4. We randomly split the data with 60%
training, 20% development, and 20% testing.

6 Experiment

We evaluate the performance of the following ex-
planation generative models on MetaLogic: (1)
All-at-Once (Once) T5 (Raffel et al., 2020), which
performs sequence-to-sequence generation via gen-
erating the whole metagraph in a linearized se-
quence given the overall passages with the sentence
and variable denotations; (2) Multitask T5 (Raffel
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Figure 3: Performances on different inference types:
support and rebut. Left column: models with the T5-
large backbone. Right column: models with the T5-11b
backbone.

et al., 2020), which complete the whole generation
task with a combination of three sub-tasks: meta
structure generation, formula generation, and cer-
tainty prediction; (3) MetGen (Hong et al., 2022),
which is a module-based framework for structured
explanation generation. It further introduces a rea-
soning controller and two modules for meta struc-
ture generation. To the best of our knowledge,
MetGen is the current state-of-the-art explanation
generative model. Further model details are in Ap-
pendix E. Following Dalvi et al. (2021), we report
the F1 and AllCorrect scores for each dimension
and the overall AllCorrect score. For certainty,
we report the accuracy of a five-label classifica-
tion and an extra macro-F1 due to the unbalance
of the degree labels. The overall AllCorrect is the
strictest metric since any difference in the predicted
metagraph will make the prediction a wrong one.
Details can be found in Appendix F.

6.1 Implementation Details

We fine-tune Once (large), Multitask (large), and
MetGen (large) with a batch size of 32 for 300
epochs on 1 Tesla V100 GPU, and fine-tune Once
(11b), Multitask (11b), MetGen (11b) with a batch
size of 4 for 300 epochs on 8 Tesla V100 GPUs.
The learning rate is 1e-5 for all models. The model
parameters are optimized by Adafactor (Shazeer
and Stern, 2018). The models are evaluated per
10 epochs on the development set, and the best
checkpoints are saved for test set evaluation.

Figure 4: Performances on each logical operator.

6.2 Main Results
From the results shown in Table 3, we can find out
that generating the comprehensive logic graph is
still a very challenging task, even for current giant
models as all models achieve low AllCorrect per-
formance. Specifically, we can make the following
observations:

1. From the experiments in certainty prediction,
we can see that all models are struggling, which
shows that knowing certainty is still not a triv-
ial task for current models given that there are
explicit indicators in context.

2. We notice that using larger pre-trained mod-
els (e.g., T5-11B) can help improve the per-
formance of all models, this indicates that big
models can help better model the statement se-
mantics such that they can better identify and
link statements.

3. We also notice that the module-based method
MetGen can outperform the Once and Multitask
method, which indicates that iteratively generat-
ing the explanation graph with basic modules is
a more reliable logical reasoning framework.

4. From the experiments on Component 1, we
can see that the models could obtain high node
scores and mediocre step scores, but the step All-
Correct results are inferior. This indicates that
with the help of giant pre-trained LMs, current
models could effectively learn to identify the
nodes, but they may not know the true logical
reasoning because they cannot precisely predict
the inference types among these nodes.

5. The models achieve around or over 60% of F1
and AllCorrect scores in predicting the formula,
showing their awareness of the inner logical
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structure. This makes sense because the major-
ity of the inner structure is triggered by connec-
tive words such as “so.”

In the rest of this section, we present a more
detailed inspection from different perspectives.

6.3 Performances on Metagraph Parts

We further inspect models’ performance on de-
tailed components. The evaluation results on sepa-
rate inference types (support and rebut) are demon-
strated in Figure 3. Overall, identifying rebut is
easier than support, according to the exact match
scores F1 and AllCorrect. This makes sense be-
cause most rebut nodes could contain informative
keywords such as “however” but the majority of
nodes in support edges do not. Besides, the average
F1 scores per operator are shown in Figure 4. From
the results, we can see that the trend of models’
performance are generally consistent on different
operators, which indicates that different operators
may have different intrinsic difficulty.

6.4 Data Scale for Logical Inference

To investigate how well current models can learn
to generate the reasoning graphs, We use differ-
ent ratios of training data to train the models and
present the results in Figure 5. Overall, the model
performances show a rapid increase within 20%
of training data, then a flat and steady increase
and do not reach a platform, indicating that the
models can still benefit from more structural rea-
soning data. Among the models, MetGen has the
most significant growth trend and performs data
efficiently with small data, showing the advantages
of the module-based learning framework in sym-
bolic reasoning. Interestingly, we find out that the
performance of multitask T5 decreases after seeing
half of the training data. A possible explanation is
that the decomposed logical structure as indepen-
dent sub-tasks prevents the models from a holistic
understanding of the logical passages. Besides that,
the flat increasing rate after seeing 20% of the train-
ing data also suggests that blindly increasing the
training data scale may not be the most efficient
way of teaching models to conduct such a complex
reasoning task.

6.5 Error Analysis

To better understand current models’ errors, we ran-
domly sample 50 instances from the development
set and collect the predictions from the All-at-Once

Graph Formula Certainty
(G1-G5) (F1-F4) (C1-C4)

13/13/11/10/12 32/6/8/4 5/30/10/5

Table 5: Error type statistics. We randomly select 50
test set predictions and group the error types by com-
ponents. G1: Incorrect inference type. G2: Incorrect
rebuttal. G3: Incorrect conclusion. G4: Incorrect infer-
ence step. G5: Other structural mismatch. F1: Incorrect
logical variable. F2: Incorrect unary operator. F3: Incor-
rect binary operator. F4: Incorrect implication direction.
C1: Incorrect polarity. C2: Other polarities to contin-
gent. C3: Contingent is predicted as other polarities.
C4: Unresolved degree of certainty.

(T5-11b) model. We manually evaluate the pre-
dictions and categorize 4 to 5 error types for each
component, as shown here in the Table 5.

Specifically, the meta graph structure mainly has
five error types: (G1) Incorrect inference type: the
model predicts the correct structure, but over one
of the inference steps has the inverse type (i.g., pre-
dicted support but should be rebut or vice versa);
(G2) Incorrect rebuttal: missing or incorrectly pre-
dict a rebuttal step; (G3) Incorrect conclusion: mis-
matched conclusion node at the end of the reason-
ing chain; (G4) Incorrect inference step: missing
or predicting redundant inference step; (G5) Other
structural mismatches: Including different chain
branches and so forth. The four error types in for-
mulae are (F1) Incorrect logical variable: missing
or predicting redundant logical variable, or predict-
ing a wrong variable; (F2) Incorrect unary operator:
The variables are correct but are bound by incor-
rect unary operators; (F3) Incorrect binary operator:
The variables and unary operators are correct, but
predict incorrect binary operator. (F4) Incorrect
implication direction: The variables, unary and bi-
nary operator types are correct, but the implication
operator has an inverse direction. The four error
types in certainty: (C1) Incorrect polarity: Predict-
ing the certainty in an opposite polarity; (C2) Other
polarities to contingent; (C3) Contingent is pre-
dicted as other polarities; (C4) Unresolved degree
of certainty.

From the results we can see that, the model tends
to predict the operator quite well (F2/F3), but not
the variable (F1), which suggests that even though
current deep models can identify the correct rela-
tions with some trigger words (e.g., “so that”), they
may not fully understand it because they cannot
find the correct variable span in the context. Be-
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Figure 5: Results on different ratios (0.01, 0.05, 0.1, 0.2, 0.5, 1.0) of MetaLogic training data.

sides that, we also notice that the model tends to
predict the wrong polarities, which is typically ir-
relevant towards the conclusion, as the important
certainty feature. This suggests that the model may
learn to answer questions with the wrong reason
(i.e., short path (Lovering et al., 2021)), which fur-
ther demonstrates the importance of our task for
constructing a reliable and trustworthy reasoning
system.

7 Conclusion

This paper extends the boundary of current research
on logical graph generation for reliable reasoning
systems. Specifically, we carefully design a com-
plete logic explanation form following previous
research on cognitive science. Accordingly, we
built MetaLogic with a comprehensive annotation
task design and quality examination. We also eval-
uate several recent models and show that the per-
formance of current models is still unsatisfactory,
even with giant pre-trained language models. We
hope that this paper could motivate more future
works on reliable reasoning systems that could gen-
erate the correct logical graphs to support their rea-
soning. The MetaLogic data and implementation
code are available at https://github.com/
tencent-ailab/MetaLogic.

8 Limitation

The major limitation of MetaLogic is that we can-
not annotate a large enough dataset for data-driven
methods. However, considering that humans could
learn to conduct logical reasoning after seeing a
few examples, we argue that it is meaningful to
investigate whether machines can learn the same
level of reasoning capability with limited data.

9 Ethical Considerations

During the annotation process, we follow the mini-
mum payment requirement of the united states. No
personal or confidential information is collected.
Hence, to the best of our knowledge, there is no
ethical concern.
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A Example Source Data from ReClor

Tables 6, 7, 8, and 9 demonstrate the example
source data of different reasoning types from the
ReClor dataset.

B Guideline for Logical Relation
Annotation

Tables 20, 21, and 22 show mappings from natural
language patterns to binary logical operators refer-
ring to the PDTB3 senses (Webber et al., 2019).
For the logical implication, the order of arguments
is provided. The three tables are provided to the an-
notators as their references during annotation. The
final annotation is subject to human understanding.

C Indicators of Unary Operators

Table 13 demonstrates the indicators for extracting
the unary operators.

D Annotation Interface

The annotation interface is demonstrated in Fig-
ure 6.

E Model Details

E.1 All-at-Once T5
The input of the All-at-Once T5 is the overall log-
ical passages with sentences and variable deno-
tations. The output is the linearized metagraph
as shown in Table 10. The linearized metagraph
consists of three parts: the meta structure, node

Reasoning Type: Necessary Assumptions

Context: A recent study showed that people who address
problems quickly and directly are significantly less likely
to have gum disease than are people who react to problems
by refusing to think about them. Since stress can have a
negative effect on the immune system, the study’ s results
clearly indicate that some forms of gum disease are caused
or aggravated by suppression of the immune system.
Question: The argument requires the assumption that
Options:
A: people who tend to address problems quickly and di-
rectly will invariably seek dental care at the first sign of
problems
B: painful conditions will interfere with a person’s ability
to address problems quickly and directly
C: people who have highly stressful lives tend to address
problems quickly and directly
D: refusing to think about something troubling contributes
to a person’s level of stress

Table 6: Question from ReClor with logical reasoning
type: Necessary Assumption. Correct answer option in
bold.
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Figure 6: The annotation interface.

Reasoning Type: Sufficient Assumptions

Context: In Europe, schoolchildren devote time during
each school day to calisthenics. North American schools
rarely offer a daily calisthenics program. Tests prove that
North American children are weaker, slower, and shorter-
winded than European children. We must conclude that
North American children can be made physically fit only if
they participate in school calisthenics on a daily basis.
Question: Which one of the following is assumed in the
passage?
Options:
A: School calisthenics are an indispensable factor in Euro-
pean children’s superior physical fitness.
B: All children can be made physically fit by daily calis-
thenics.
C: Superior physical fitness produces superior health.
D: North American children can learn to eat a more nutri-
tious diet as well as to exercise daily.

Table 7: Question from ReClor with logical reasoning
type: Sufficient Assumption. Correct answer option in
bold.

Reasoning Type: Strengthen

Context: Skeletal remains of early humans indicate
clearly that our ancestors had fewer dental problems than
we have. So, most likely, the diet of early humans was very
different from ours.
Question: Which one of the following, if true, most
strengthens the argument?
Options:
A: Skeletal remains indicate that some early humans had a
significant number of cavities.
B: A healthy diet leads to healthy teeth.
C: Diet is by far the most significant factor contributing to
dental health.
D: Early humans had a shorter average life span than we do,
and the most serious dental problems now tend to develop
late in life.

Table 8: Question from ReClor with logical reasoning
type: Strengthen. Correct answer option in bold.

formula, and sentence certainty (denoted with
$graph$, $formula$, and $degree$, respectively).
For the meta structure, we use the semicolon to
connect different edges. For the node formula, we
map the operator to word using the mapping { 2:
[necessary], 3: [possible], ¬: [negative], ∧: [and],
∨: [or], →: [entail] }. We use the semicolon to con-
nect the triples for the same sentence. We connect
the certainties and formulae of sentences with “|”.
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Reasoning Type: Weaken

Context: Many people suffer an allergic reaction to sul-
fites, including those that are commonly added to wine as
preservatives. However, since there are several winemakers
producing wine to which no sulfites are added, those who
would like to drink wine but are allergic to sulfites can
drink these wines without risking an allergic reaction to
sulfites.
Question: Which of the following, if true, most seriously
weakens the argument?
Options:
A: Sulfites occur naturally in most wine.
B: The sulfites that can produce an allergic reaction are
also commonly found in beverages other than wine.
C: Wine without added sulfites sometimes becomes un-
drinkable even before the wine is sold to consumers.
D: Apart from sulfites, there are other substances com-
monly present in wine that can trigger allergic reactions.

Table 9: Question from ReClor with logical reasoning
type: Weaken. Correct answer option in bold.

Input: sent1: v1: measurements of the motion of the
planet uranus seem to show uranus being tugged by a
force pulling it away from the sun and the inner planets
. sent2: v1: neptune and pluto , v2: the two known
planets whose orbits are farther from the sun than is
the orbit of uranus , v3: do not have enough mass to
exert the force that the measurements indicate . sent3:
v1: therefore , v2: in addition to the known planets ,
v3: there must be at least one planet in our solar system
that we have yet to discover . sent4: v1: there is a
belt of comets beyond the orbit of pluto with powerful
gravitational pull .

Output: $graph$ sent1 -> sent3; sent2 -> sent3; sent4
=> sent2; $formula$ sent3: v2 [and] [necessary] v3;
$degree$ sent1: contingent | sent2: contingent | sent3:
necessary | sent4: contingent

Table 10: Example of the metagraph generation task.
“->” denotes the support relation, and “=>” denotes the
rebut relation. The readable triple in sent3 formulas
is v2 ∧2v3.

We train the All-at-Once T5 model with a batch size
of 32 and a learning rate of 1e-5 for 300 epochs.

E.2 Multitask T5
The Multitask T5 decomposes the whole generation
task into three sub-tasks: meta structure generation,
formula generation, and certainty prediction. We
train a single T5 model on these three sub-tasks
simultaneously. We follow Raffel et al. (2020) to
add a task-specific prefix to the input before feeding
it to the model. Table 11 shows some specific input
and output examples of each sub-task. We train the
Multitask T5 model with a batch size of 32 and a
learning rate of 1e-5 for 300 epochs. We use the
examples-proportional mixing (Raffel et al., 2020)
and simply concatenate the data for all sub-tasks as

Task: Meta structure generation
Input: GRAPH: sent1: to reduce waste of raw materials
, the government of sperland is considering requiring
household appliances to be broken down for salvage
when discarded . [AND] imposing the fee at the time
of salvage would reduce waste more effectively , how-
ever , because consumers tend to keep old appliances
longer if they are faced with a fee for discarding them
. sent2: to cover the cost of salvage , the government
is planning to charge a fee , which would be imposed
when the appliance is first sold . sent4: increasing the
cost of disposing of an appliance properly increases the
incentive to dispose of it improperly .
Output: sent4 => sent1; sent1 -> sent2;

Task: Formula generation
Input: FORMULAE: v1: grammarians have for years
condemned as ungrammatical the english phrase " be-
tween you and i " , insisting that the correct phrasing is "
between you and me , " with v2: the objective case after
v3: a preposition . v4: such condemnations , however
, are obviously unfounded , because v5: shakespeare
himself , in the merchant of venice , wrote , " all debts
are cleared between you and i. "
Output: [necessary] v5 [entail] [necessary] v4; v2 [en-
tail] v3;

Task: Certainty prediction
Input: DEGREE: it was formerly believed that prehis-
toric homo sapiens ancestors of contemporary humans
interbred with neanderthals , but dna testing of a nean-
derthal ’ s remains indicates that this is not the case .
Output: impossible

Table 11: Input and output examples of all the sub-tasks
of Multitask T5.

the training data for Multitask T5.

E.3 MetGen

MetGen (Hong et al., 2022) is a module-based
framework for structured explanation generation.
Modules. We use two types of modules: the con-
clusion module and the rebuttal module. The con-
clusion module takes two sentences as input (e.g.,
sent1:... sent2:...) and outputs the in-
ference relation type between them (e.g., sent1
-> sent2 or sent2 -> sent1). If there is no
conclusive relationship between the two input sen-
tences, the module would output the word none.
The rebuttal module is defined similarly.
Controller. The controller decides the reasoning di-
rection based on the current reasoning state. Specif-
ically, given the current partially metagraph and all
the sentences, the controller predicts which com-
binations of two sentences (e.g., sent1 sent2)
should be considered in the next step. If the current
proof is complete, the controller would output the
word done.
Reasoning Process. MetGen generates the meta-
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graphs in an iterative manner. It iteratively repeats
the following reasoning iteration to grow the graph
until either the controller returns done or the max-
imum number of iteration steps is reached. It takes
several iterations before completing the generation.
In each iteration, MetGen generates one step. It
first uses the controller to predict some possible
sentence combinations. Then, each combination is
sent to the reasoning modules to generate candidate
steps that indicate the detailed inference relation
type between them. The candidate step with the
highest score (the lowest perplexity) is picked for
the next iteration.
Implementations. To compare with other methods
under the same number of parameters, we imple-
ment MetGen using a single T5 model. Table 12
shows some input and output examples of MetGen.
The MetGen is trained on five sub-tasks simulta-
neously: controller task, conclusion module task,
rebuttal module task, formula generation task, and
certainty prediction tasks. We train the MetGen
model with a batch size of 32 and a learning rate of
1e-5 for 300 epochs. We set the maximum number
of iteration steps as 3.

E.4 Experimental Details

We use the pre-trained models from
HuggingFace Transformers7. We
use the Adafactor optimizer (Shazeer and Stern,
2018). We run the experiments based on T5-large
3 times with different random seeds and report
the average performances. The experiments based
on T5-11b are run only once considering the
computational cost.

F Evaluation Metrics

Meta structure: Does the predicted metagraph
use the correct sentences and have the correct struc-
ture? For meta nodes, we report a node F1 score
by comparing the set of sentences used in the pre-
dicted and gold metagraph. For meta structure, we
decompose the metagraph into one-premise steps
(e.g., sent1 -> sent2). We compare the set
of steps in the predicted and gold metagraph and
report the step F1 score. A predicted step is correct
if its premise, conclusion, and step type match the
gold one. The AllCorrect score is 1 if the F1 is 1, 0
otherwise.
Formula: Does the predicted metagraph have the
correct internal structure of meta nodes? For each

7https://github.com/huggingface/transformers

Task: Controller
Input: CONTROL: proof: sent1 -> sent3; context:
sent1: measurements of the motion of the planet uranus
seem to show uranus being tugged by a force pulling it
away from the sun and the inner planets . sent2: neptune
and pluto , the two known planets whose orbits are far-
ther from the sun than is the orbit of uranus , do not have
enough mass to exert the force that the measurements
indicate . sent3: therefore , in addition to the known
planets , there must be at least one planet in our solar
system that we have yet to discover . sent4: there is a
belt of comets beyond the orbit of pluto with powerful
gravitational pull .
Output: sent2 sent3

Task: Conclusion Module
Input: CONCLUSION: sent2: the dna of contempo-
rary humans is significantly different from that of the
neanderthal. sent3: the dna of prehistoric homo sapiens
ancestors of contemporary humans was not significantly
more similar to that of neanderthals than is the dna of
contemporary humans.
Output: sent3 -> sent2

Task: Rebuttal Module
Input: REBUTTAL: sent1: recent unexpectedly heavy
rainfalls in the metropolitan area have filled the reser-
voirs and streams ; water rationing , therefore , will not
be necessary this summer . sent2: the water company
’s capacity to pump water to customers has not kept up
with the increased demand created by population growth
in the metropolitan area .
Output: sent2 => sent1

Table 12: Input and output examples of the controller
and modules of MetGen. MetGen is also trained with
the formula generation and certainty prediction tasks.

sentence, we measure the formula F1 score by com-
paring all formulae in the predictions and gold an-
notations. A predicted formula is considered cor-
rect if its certainty operators, binary operators, and
variables match the gold one. For the certainty op-
erators, we reduce them to the standard form (one
of the five degree-of-certainty forms listed in Ta-
ble 1) before comparison. For the binary operator,
we consider its symmetry. For example, ¬v1∧3v2
is equivalent to 3v2 ∧ ¬v1, but ¬v1 → 3v2 is not
equivalent to 3v2 → ¬v1. The AllCorrect score is
1 if the formula F1 is 1, 0 otherwise. Since each
sample contains multiple sentences, we average the
formula F1 scores of all sentences in the sample as
the formula F1 score for this sample.

Certainty: Are the certainties of the sentence cor-
rect? For each sample, we compute the accuracy
of the predicted certainties of the sentences. The
AllCorrect score is 1 if the accuracy is 1, and 0
otherwise. We report the accuracy and AllCorrect
score of the testing dataset, which is the average
accuracy and AllCorrect score of all samples in
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Negation
(¬) "no", "not", "none",

"nobody", "nothing",
"neither", "nor", "nowhere",
"never", "hardly",
"scarcely", "barely",
"doesn’t", "isn’t",
"wasn’t", "shouldn’t",
"wouldn’t", "couldn’t",
"won’t", "can’t", "don’t",
"impossible"

Box
(2) "necessarily", "must",

"definitely", "certainly",
"clearly", "obviously",
"undoubtedly", "surely",
"will", "all", "every",
"always"

Diamond
(3) "likely", "approximately",

"possibly", "perhaps",
"probably", "maybe", "few",
"may", "might", "could",
"many", "most", "some",
"numerous", "countless",
"majority", "often",
"frequently", "commonly",
"usually", "sometimes",
"repeatedly", "appears",
"seems", "suggests",
"indicates"

Table 13: Indicators of unary operators.

the dataset. Due to the unbalance of the certainty
labels, we gather the predictions for all sentences
in the dataset (ignoring which sample the sentence
comes from) and report the macro-F1 score.
Overall: The overall AllCorrect score of a pre-
dicted metagraph is 1 only if all of the meta struc-
ture, formulae, and certainties are correct. This is a
strict metric since any error would result in a score
of 0.

G Detailed Analysis Results

Table 14 present the detailed performance of dif-
ferent inference steps and different operators. Ta-
ble 15 and Table 16 shows the detailed results with
different ratios of training data.

H Error Cases

Examples of each error type are shown in Ta-
bles 17, 18, and 19.
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Support Rebut Operators
F1 All F1 All → ∧ ∨ ¬ 2 3 N/A

Once (large) 48.9 15.8 53.3 53.0 25.4 23.8 2.1 3.2 3.4 7.5 83.1
Multitask (large) 56.4 22.5 57.0 56.8 52.2 38.2 27.1 13.3 6.8 13.7 98.4
MetGen (large) 60.9 26.8 59.8 59.3 58.8 41.9 33.3 14.3 11.4 24.9 96.3

Once (11b) 57.1 27.0 59.5 59.5 42.6 34.5 18.8 3.2 6.3 13.5 93.6
Multitask (11b) 62.8 34.0 64.2 63.5 52.0 41.9 31.2 7.1 9.4 15.3 99.3
MetGen (11b) 65.6 32.5 69.7 69.0 60.8 52.5 43.8 12.7 15.6 18.8 97.2

Table 14: Performance on two types of inference step. Per-operator F1 scores.

Component 1 Component 2 Component 3 OverallNode Step Formulae Certainty
Ratio F1 All F1 All F1 All Acc All F1∗ All

Once (large)

50% 89.2 50.5 39.0 14.0 52.5 51.6 73.2 34.0 22.4 3.6
20% 86.6 45.5 36.1 11.0 44.6 43.7 70.7 29.0 18.3 3.5
10% 88.8 49.0 30.1 6.5 42.0 41.8 65.6 25.5 18.2 1.2
5% 82.3 26.0 20.0 0.5 40.2 40.0 66.8 20.0 14.7 0.5
2% 71.0 5.5 14.6 0.0 31.8 31.4 65.3 18.0 13.7 0.0
1% 70.7 2.5 13.6 0.5 38.9 38.8 64.7 14.5 15.8 0.0

Multitask (large)

50% 94.1 68.5 55.2 22.0 78.9 76.9 84.9 57.5 50.8 10.5
20% 92.4 64.0 44.7 16.0 70.3 68.7 81.0 47.0 22.9 5.0
10% 56.1 3.5 13.3 1.5 71.1 70.2 80.3 47.0 23.0 0.3
5% 38.9 2.0 5.7 0.5 65.9 65.0 80.2 45.0 18.7 0.0
2% 31.1 2.5 3.9 1.0 61.5 60.6 80.7 46.0 18.6 0.3
1% 8.6 2.0 2.0 1.0 56.7 56.4 80.8 46.0 18.0 0.0

MetGen (large)

50% 94.3 67.0 53.1 17.5 75.5 74.1 83.5 56.5 31.1 9.2
20% 92.4 64.0 44.7 16.0 70.3 68.7 81.0 47.0 22.9 5.0
10% 56.1 3.5 13.3 1.5 71.1 70.2 80.3 47.0 23.0 0.3
5% 38.9 2.0 5.7 0.5 65.9 65.0 80.2 45.0 18.7 0.0
2% 31.1 2.5 3.9 1.0 61.5 60.6 80.7 46.0 18.6 0.3
1% 8.6 2.0 2.0 1.0 56.7 56.4 80.8 46.0 18.0 0.0

Table 15: Detailed results on different ratios of MetaLogic training data. ∗: macro-F1.

Support Rebut Operators
Ratio F1 All F1 All → ∧ ∨ ¬ 2 3 N/A

Once
(large)

50% 42.2 16.0 47.8 47.5 19.1 13.8 0.0 0.0 0.0 2.8 79.4
20% 38.4 12.0 49.3 49.0 11.3 6.7 0.0 3.2 2.1 6.9 71.6
10% 31.7 7.5 50.3 50.0 5.9 5.6 0.0 9.5 2.1 0.0 69.7
5% 20.4 1.5 26.3 26.0 5.5 1.8 0.0 0.0 0.0 0.0 68.8
2% 17.9 1.0 15.5 15.5 3.7 5.7 0.0 0.0 0.0 0.0 53.4
1% 17.2 1.5 12.5 12.5 4.3 1.4 0.0 0.0 2.1 2.1 65.7

Multitask
(large)

50% 59.2 24.5 60.3 60.0 57.2 47.4 37.5 15.1 17.2 26.0 97.2
20% 48.9 18.5 52.5 52.5 36.2 22.3 18.8 0.0 0.0 3.8 98.3
10% 16.9 6.5 56.0 56.0 36.1 22.3 6.2 4.8 0.0 2.1 99.5
5% 7.6 3.0 58.0 58.0 30.2 14.6 12.5 0.0 1.6 8.3 96.2
2% 4.8 2.5 58.0 58.0 34.5 12.7 0.0 0.0 3.6 4.9 87.5
1% 4.2 3.5 59.0 59.0 25.6 5.4 0.0 0.0 2.1 2.8 85.3

MetGen
(large)

50% 58.1 20.5 58.5 58.0 47.8 34.5 25.0 12.7 1.6 11.1 98.6
20% 53.3 20.5 56.2 55.5 43.1 28.5 18.8 0.0 3.1 7.9 97.6
10% 55.3 20.5 55.8 55.5 35.5 26.2 6.2 4.8 0.0 4.2 99.3
5% 50.5 16.0 55.8 55.5 32.1 23.0 6.2 0.0 0.0 3.5 93.9
2% 40.2 3.5 58.5 58.5 28.3 13.6 0.0 0.0 1.6 6.2 91.0
1% 35.0 3.0 59.0 59.0 23.4 3.0 0.0 0.0 2.1 2.8 89.1

Table 16: Inference step and operator performances on different ratios of MetaLogic training data.
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G1: Incorrect Inference Type

Passage: sent1: for similar cars and drivers , automobile insurance for collision damage has always cost more
in greatport than in fairmont . [AND] police studies , however , show that cars owned by greatport residents are
, on average , slightly less likely to be involved in a collision than cars in fairmont . sent3: clearly , therefore ,
insurance companies are making a greater profit on collision - damage insurance in greatport than in fairmont .
sent4: repairing typical collision damage does not cost more in greatport than in fairmont .
Gold: sent4 -> sent3; sent1 -> sent3;
Pred: sent1 -> sent3; sent4 => sent3;

G2: Incorrect Rebuttal

Passage: sent1: there should be a greater use of gasohol . sent2: gasohol is a mixture of alcohol and gasoline , and
has a higher octane rating and fewer carbon monoxide emissions than straight gasoline . [AND] burning gasohol
adds no more carbon dioxide to the atmosphere than plants remove by photosynthesis . sent4: cars burn on the
average slightly more gasohol per kilometer than they do gasoline .
Gold: sent2 -> sent1; sent4 => sent2;
Pred: sent4 -> sent1; sent2 -> sent1;

G3: Incorrect Conclusion

Passage: sent1: healthy lungs produce a natural antibiotic that protects them from infection by routinely killing
harmful bacteria on airway surfaces . [AND] people with cystic fibroses , however , are unable to fight off such
bacteria , even though their lungs produce normal amounts of the antibiotic . sent3: since the fluid on airway
surfaces in the lungs of people with cystic fibrosis has an abnormally high salt concentration , scientists hypothesize
that in high salt environments the antibiotic becomes ineffective at killing harmful bacteria . sent4: the lungs of
people who suffer from cystic fibrosis are unable to fight off harmful bacteria even when the salt concentration is
reduced to levels typical of healthy lungs .
Gold: sent3 -> sent1; sent4 => sent3;
Pred: sent4 -> sent3; sent1 -> sent3;

G4: Incorrect Inference Step

Passage: sent1: spokesperson : the major school lunch vendors recently agreed to stop selling high - calorie
beverages in elementary and middle schools because studies show that children of ages 7 to 8 who substitute one
low - calorie beverage for one high - calorie soft drink in their daily diets will , on average , weigh 20 pounds less
than they would have by the time they reach high school . sent2: since only low - calorie beverages will be sold in
schools , within six to eight years , we can expect to see a reduction in the percentage of overweight high - school
children . sent3: elementary and middle school students who used to buy high - calorie soft drinks at school will not
bring them to school or drink extra high - calorie beverages at home as a substitute .
Gold: sent3 -> sent2; sent1 -> sent2;
Pred: sent3 -> sent2;

G5: Other Structural Mismatch

Passage: sent1: employer : in the current economic climate , the best way to run a business is to pay employees the
least amount possible to do the job . sent2: the supply of labor is far outpacing demand since the number of college
graduates increases every year and the average age of retirement is also increasing . [AND] applicants will typically
take the first job offer on the table , and any employee who demands a raise can be easily replaced from the labor
pool . sent4: even if the employee is unhappy , he or she will often remain on the job due to the competition in
the job market . [AND] keeping payroll costs low allows more resources to be devoted to innovation , delivering a
higher quality product to customers . sent6: automation is the leading cause for unemployment .
Gold: sent4 -> sent1; sent2 -> sent4;
Pred: sent6 => sent1; sent2 -> sent1;

Table 17: Error cases for meta graph structure.
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F1: Incorrect Logical Variable

Sentence: v1: legislators considering a proposed law for which they have v2: repugnance or v3: enthusiasm v4: do
not consider the consequences that it will actually have .
Gold: v3 [or] v2;
Pred: v2 [or] v3; v4 [entail] v1;

F2: Incorrect Unary Operator

Sentence: v1: auditor : xyz , v2: a construction company , purchased 20 new trucks 3 years ago , and v3: there is
no record of any of those trucks being sold last year .
Gold: v2 [and] v3;
Pred: v1 [and] v3;

F3: Incorrect Binary Operator

Sentence: v1: travaillier corporation has recently hired employees with experience in the bus tour industry v2: its
executives have also been negotiating with charter bus companies that subcontract with bus tour companies . [AND]
but v3: travaillier has traditionally focused on serving consumers who travel primarily by air , and v4: marketing
surveys show that travaillier ’ s traditional consumers have not changed their vacation preferences .
Gold: v1 [and] v2; v3 [and] v4;
Pred: v3 [and] v4; v2 [entail] v1;

F4: Incorrect Implication Direction

Sentence: v1: now some politicians are saying that , in order to v2: cause another similarly sized increase in exports
, v3: the government should allow the pundra to become weak again .
Gold: v3 [entail] v2;
Pred: v2 [entail] v3;

Table 18: Error cases for the formulae.

C1: Incorrect Polarity

Sentence: the chemistry department ’s funding for basic science research is not likely to increase if its funding from
sources other than profit - driven institutions does not increase .
Gold: impossible
Pred: possible

C2: Other Polarities to Contingent

Sentence: if legislators are to enact laws that benefit constituents , they must be sure to consider what the
consequences of enacting a proposed law will actually be . [AND] concerned primarily with advancing their own
political careers , legislators present legislation in polemical terms ; this arouses in their colleagues either repugnance
or enthusiasm for the legislation .
Gold: necessary
Pred: contingent

C3: Contingent to Other Polarities

Sentence: making decisions about patterns of work organization , resource allocation , and location of industry is
not the core of a public official ’s job .
Gold: contingent
Pred: unnecessary

C4: Unresolved Certainty

Sentence: the link between jogging and certain structural disorders appears to be a causal one .
Gold: contingent
Pred: causal

Table 19: Error cases for certainty.
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Connectives Binary Operator Senses

about A → B Contingency.Cause.Reason
A accordingly B.
A; accordingly B.
A. B accordingly.

A → B Contingency.Cause.Result

after A → B
Temporal.Asynchronous.Succession
Contingency.Cause.Reason

afterward A → B Temporal.Asynchronous.Precedence
afterwards A → B Temporal.Asynchronous.Precedence

B, as A.
As A, B. A → B

Contingency.Cause+Belief.Reason+Belief
Contingency.Cause.Reason
Expansion.Instantiation.Arg2-as-instance
Expansion.Level-of-detail.Arg1-as-detail
Expansion.Manner.Arg2-asmanner
Temporal.Asynchronous.Succession
Contingency.Cause.Reason
Temporal.Asynchronous.Succession

as a result A → B Contingency.Cause.Result

B, as if A.
As if A, B. A → B

Comparison.Concession.Arg2-as-denier
Comparison.Similarity
Expansion.Manner.Arg2-asmanner
Expansion.Instantiation.Arg1-as-instance
Expansion.Manner.Arg2-asmanner

Because of A, B.
B because of A. A → B Contingency.Cause.Reason

Because A, B.
B because A. A → B

Contingency.Cause+Belief.Reason+Belief
Contingency.Cause.Reason
Contingency.Condition+SpeechAct

B, as long as A.
As long as A, B. A → B Contingency.Condition.Arg2 -as-cond

Before B, A.
A before B. A → B

Temporal.Asynchronous.Precedence
Temporal.Asynchronous.Succession

By A, B.
B by A. A → B

Contingency.Cause+Belief.Reason+Belief
Expansion.Manner.Arg2-asmanner
Contingency.Cause.Reason
Expansion.Manner.Arg2-asmanner
Contingency.Cause.Reason
Contingency.Condition.Arg2-as-cond
Expansion.Manner.Arg2-asmanner
Contingency.Condition.Arg2-as-cond
Contingency.Purpose.Arg1as-goal
Expansion.Manner.Arg2-asmanner
Expansion.Level-of-detail.Arg2-as-detail
Expansion.Manner.Arg2-asmanner

by then A → B
Temporal.Asynchronous.Succession
Contingency.Cause.Reason
Temporal.Asynchronous.Succession

A consequently B. A → B Contingency.Cause.Result
B depending on A.
Depending on A, B. A → B Contingency.Condition.Arg2-as-cond

B depending upon A.
Depending upon A, B. A → B Contingency.Condition.Arg2-as-cond

B, due to A.
Due to A, B. A → B Contingency.Cause.Reason

B. Earlier, A.
B, A earlier. A → B Temporal.Asynchronous.Su ccession

B even after A.
Even after A, B. A → B

Temporal.Asynchronous.Succession
Comparison.Concession.Arg1-as-denier

A, finally, B. A → B
Temporal.Asynchronous.Precedence
Contingency.Cause.Result
Temporal.Asynchronous.Precedence

B, for A.
For A, B. A → B

Comparison.Concession.Arg1-as-denier
Contingency.Cause.Reason Contingency.Cause.Result
Contingency.Condition.Arg2 -as-cond
Contingency.Purpose.Arg2as-goal
Expansion.Level-of-detail.Arg2-as-detail

B, for example A. A → B Expansion.Instantiation.Arg2-as-instance
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B, for instance A. A → B Expansion.Instantiation.Arg 2-as-instance

B, from A. A → B

Contingency.Cause+Belief.Reason+Belief
Contingency.Cause.Reason
Contingency.Condition.Arg2-as-cond
Contingency.Cause.Reason
Expansion.Manner.Arg2-asmanner
Contingency.Cause.Reason
Expansion.Substitution.Arg1-as-subst

Given A, B.
B, given A. A → B

Contingency.Cause+Belief.Reason+Belief
Contingency.Cause.Reason

A, hence B. A → B Contingency.Cause.Result

If A, B.
B, if A. A → B

Comparison.Concession+SpeechAct.
Arg2-as-denier+SpeechAct

Comparison.Concession.Arg1-as-denier
Comparison.Concession.Arg2-as-denier
Comparison.Contrast
Contingency.Condition+SpeechAct
Contingency.Condition.Arg2-as-cond
Expansion.Level-of-detail.Arg2-as-detail
Contingency.Condition.Arg2-as-cond
Temporal.Synchronous
Contingency.Condition.Arg2-as-cond

B if and when A. A → B
Contingency.Condition.Arg2-as-cond
Temporal.Synchronous
Contingency.Condition.Arg2-as-cond

B if and when A. A → B
Contingency.Condition.Arg2-as-cond
Temporal.Synchronous
Contingency.Condition.Arg2-as-cond

B if only A. A → B
Comparison.Concession.Arg2-as-denier
Contingency.Condition.Arg2-as-cond
Contingency.Purpose.Arg2as-goal

If A then B. A → B
Contingency.Condition+SpeechAct
Contingency.Condition.Arg2-as-cond

B in A. A → B

Contingency.Cause+Belief.Reason+Belief
Contingency.Cause.Reason
Expansion.Manner.Arg2-asmanner
Contingency.Cause.Reason
Contingency.Condition.Arg2-as-cond
Expansion.Manner.Arg2-asmanner
Contingency.Condition.Arg2-as-cond
Contingency.Purpose.Arg2as-goal
Expansion.Instantiation.Arg1-as-instance
Expansion.Level-of-detail.Arg1-as-detail
Expansion.Level-of-detail.Arg2-as-detail
Expansion.Manner.Arg2-asmanner
Temporal.Synchronous
Contingency.Purpose.Arg2as-goal
Temporal.Synchronous
Expansion.Level-of-detail.Arg1-as-detail
Temporal.Synchronous

B in case A. A → B Contingency.Condition.Arg2-as-cond

B. In fact, A.
B, A in fact. A → B

Expansion.Instantiation.Arg2-as-instance
Expansion.Level-of-detail.Arg1-as-detail
Expansion.Level-of-detail.Arg2-as-detail

B in order A. A → B
Contingency.Condition.Arg2-as-cond
Contingency.Purpose.Arg2as-goal

B, in particular A. A → B
Expansion.Instantiation.Arg2-as-instance
Expansion.Level-of-detail.Arg2-as-detail

A, in short, B. A → B Expansion.Level-of-detail.Arg1-as-detail
A, in sum, B. A → B Expansion.Level-of-detail.Arg1-as-detail
B, in that A. A → B Expansion.Level-of-detail.Arg2-as-detail

A, in the end B. A → B

Contingency.Cause.Result
Expansion.Level-of-detail.Arg1-as-detail
Expansion.Level-of-detail.Arg2-as-detail
Temporal.Asynchronous.Pre cedence
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B, indeed A.
B, A indeed. A → B

Contingency.Cause+Belief.Reason+Belief
Contingency.Cause.Reason
Contingency.Cause.Result
Expansion.Conjunction
Expansion.Instantiation.Arg2-as-instance
Expansion.Level-of-detail.Arg1-as-detail
Expansion.Level-of-detail.Arg2-as-detail

B insofar as A.
Insofar as A, B. A → B

Contingency.Cause.Reason
Expansion.Level-of-detail.Arg2-as-detail

A, B later. A → B Temporal.Asynchronous.Precedence
A, B later on. A → B Temporal.Asynchronous.Precedence
B, more accurately, A. A → B Expansion.Substitution.Arg2-as-subst

A, next B. A → B
Temporal.Asynchronous.Precedence
Expansion.Conjunction
Temporal.Asynchronous.Precedence

B, not only because of A. A → B Contingency.Cause.Reason

Now that A, B. A → B

Contingency.Cause.Reason
Temporal.Asynchronous.Precedence
Contingency.Cause.Reason
Temporal.Asynchronous.Succession
Contingency.Cause.Reason
Temporal.Synchronous
Contingency.Cause.Reason
Temporal.Synchronous

B on A. A → B Contingency.Cause.Reason

Once A, B.
B, once A. A → B

Contingency.Condition.Arg2-as-cond
Temporal.Asynchronous.Succession
Contingency.Cause.Reason
Temporal.Asynchronous.Succession
Contingency.Condition.Arg2as-cond
Temporal.Asynchronous.Succession

B only if A. A → B Contingency.Condition.Arg2-as-cond

B previously A. A → B
Temporal.Asynchronous.Succession
Comparison.Contrast
Temporal.Asynchronous.Succession

B, since A.
Since A, B. A → B

Contingency.Cause.Reason
Temporal.Asynchronous.Precedence
Temporal.Asynchronous.Succession
Contingency.Cause.Reason
Temporal.Asynchronous.Succession

B since before A. A → B Temporal.Asynchronous.Succession

A, so B. A → B
Contingency.Cause+Belief.Result+Belief
Contingency.Cause.Result
Contingency.Purpose.Arg2as-goal

So as A, B. A → B Contingency.Purpose.Arg2as-goal
B so long as A.
So long as A, B. A → B Contingency.Condition.Arg2-as-cond

A so that B. A → B
Contingency.Cause.Result
Contingency.Purpose.Arg2as-goal

B, specifically, A. A → B Expansion.Level-of-detail.Arg2-as-detail
A subsequently B. A → B Temporal.Asynchronous.Precedence
B such as A. A → B Expansion.Instantiation.Arg2-as-instance

B, that is A. A → B
Expansion.Equivalence
Expansion.Level-of-detail.Arg2-as-detail

A then B. A → B

Contingency.Cause.Result
Expansion.Conjunction Contingency.Cause.Result
Contingency.Condition.Arg1-as-cond
Temporal.Asynchronous.Precedence
Contingency.Cause.Result
Temporal.Asynchronous.Precedence

A thereafter B. A → B Temporal.Asynchronous.Precedence

A thereby B. A → B
Contingency.Cause.Result
Expansion.Manner.Arg1-asmanner

A therefore B. A → B Contingency.Cause.Result

A thus B. A → B
Contingency.Cause+Belief.Result+Belief
Contingency.Cause.Result

B till A. A → B
Contingency.Negative-condition.Arg2-as-negCond
Temporal.Asynchronous.Precedence
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A ultimately B. A → B

Contingency.Cause.Reason
Expansion.Conjunction
Temporal.Asynchronous.Precedence
Contingency.Cause.Result
Temporal.Asynchronous.Precedence

B untill A.
Untill A, B. A → B

Contingency.Condition.Arg2-as-cond
Temporal.Asynchronous.Precedence
Temporal.Asynchronous.Succession
Contingency.Condition.Arg2-as-cond
Temporal.Asynchronous.Su ccession

B upon A.
Upon A, B. A → B

Temporal.Asynchronous.Succession
Contingency.Cause.Reason
Temporal.Synchronous
Contingency.Cause.Reason
Temporal.Synchronous

B, when A.
When A, B. A → B

Contingency.Cause.Reason
Contingency.Condition+SpeechAct
Contingency.Condition.Arg2-as-cond
Expansion.Level-of-detail.Arg2-as-detail
Contingency.Condition.Arg2-as-cond
Expansion.Manner.Arg2-asmanner
Temporal.Asynchronous.Precedence
Contingency.Condition.Arg2-as-cond
Temporal.Asynchronous.Precedence
Temporal.Asynchronous.Succession
Contingency.Cause+Belief.Reason+Belief
Temporal.Asynchronous.Succession
Contingency.Cause.Reason
Temporal.Asynchronous.Succession
Contingency.Cause.Result
Temporal.Asynchronous.Succession
Contingency.Condition+SpeechAct
Temporal.Asynchronous.Succession
Contingency.Condition.Arg2-as-cond
Temporal.Asynchronous.Su ccession

B when and if A. A → B
Temporal.Asynchronous.Succession
Contingency.Condition.Arg2-as-cond

B whenever A.
Whenever A, B. A → B Contingency.Condition.Arg2-as-cond

B, where A.
Where A, B. A → B Contingency.Condition.Arg2-as-cond

B, with A.
With A, B A → B

Contingency.Cause+Belief.Reason+Belief
Contingency.Cause.Reason
Expansion.Level-of-detail.Arg2-as-detail
Contingency.Cause.Reason
Contingency.Condition.Arg2-as-cond
Expansion.Instantiation.Arg2-as-instance
Expansion.Level-of-detail.Arg2-as-detail
Expansion.Manner.Arg2-asmanner

B, without A.
Without A, B. A → B

Contingency.Cause.Reason
Contingency.Cause.Result
Expansion.Level-of-detail.Arg2-as-detail
Expansion.Manner.Arg2-asmanner

Table 20: Mapping from connectives to logical implication (→), according to PDTB senses.
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Connectives Binary Operator Senses

A, and B. A ∧B

Comparison.Concession+SpeechAct.Arg2-as-denier+SpeechAct
Comparison.Contrast
Contingency.Cause+SpeechAct.Result+SpeechAct
Contingency.Cause.Reason
Contingency.Cause.Result
Expansion.Conjunction
Contingency.Cause.Result
Contingency.Condition.Arg1-as-cond
Contingency.Purpose.Arg2as-goal
Expansion.Conjunction
Expansion.Level-of-detail.Arg2-as-detail
Expansion.Manner.Arg2-asmanner

additionally A ∧B Expansion.Conjunction
Albeit A, B.
B, albeit A. A ∧B Comparison.Concession.Arg2-as-denier

along with A ∧B Expansion.Conjunction

also A ∧B
Expansion.Conjunction
Temporal.Synchronous

although A ∧B

Comparison.Concession.Arg1-as-denier
Comparison.Concession.Arg2-as-denier
Comparison.Contrast
Expansion.Exception.Arg2-as-excpt
Temporal.Synchronous
Comparison.Contrast

as long as A ∧B
Temporal.Synchronous
Contingency.Condition.Arg2-as-cond
Temporal.Synchronous

as much as A ∧B
Comparison.Concession.Arg1-as-denier
Expansion.Conjunction
Expansion.Substitution.Arg2-as-subst

as soon as A ∧B
Temporal.Asynchronous.Succession
Temporal.Synchronous

as though A ∧B

Comparison.Similarity
Expansion.Manner.Arg2-asmanner
Comparison.Similarity
Expansion.Level-of-detail.Arg2-as-detail

as well A ∧B
Comparison.Similarity
Expansion.Conjunction

as well as A ∧B Expansion.Conjunction

as A ∧B

Comparison.Concession.Arg1-as-denier
Comparison.Contrast
Comparison.Similarity
Temporal.Synchronous
Comparison.Contrast
Temporal.Synchronous
Comparison.Similarity
Temporal.Synchronous
Contingency.Cause+Belief.Reason+Belief
Temporal.Synchronous
Contingency.Cause.Reason
Temporal.Synchronous

at the same time A ∧B Temporal.Synchronous

before and after A ∧B
Temporal.Asynchronous.Precedence
Temporal.Asynchronous.Succession

besides A ∧B Expansion.Conjunction
A, beyond B.
Beyond B, A. A ∧B Expansion.Conjunction

both A and B. A ∧B Expansion.Conjunction
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but A ∧B

Comparison.Concession+SpeechAct.Arg2-as-denier+SpeechAct
Comparison.Concession.Arg2-as-denier
Comparison.Contrast
Contingency.Cause+SpeechAct.Reason+SpeechAct
Contingency.Cause.Reason
Comparison.Concession.Arg2-as-denier
Expansion.Conjunction
Expansion.Exception.Arg2-as-excpt
Temporal.Synchronous
Comparison.Contrast

A but also B. A ∧B Expansion.Conjunction
A but then B. A ∧B Comparison.Concession.Arg2-as-denier
A but then again B. A ∧B Comparison.Concession.Arg2-as-denier
by comparison A ∧B Comparison.Contrast
by contrast A ∧B Comparison.Contrast
conversely A ∧B Comparison.Contrast
Despite A, B.
B, despite A. A ∧B Comparison.Concession.Arg2-as-denier

A even as B.
Even as B, A. A ∧B

Comparison.Concession.Arg1-as-denier
Temporal.Synchronous
Comparison.Concession.Arg1-as-denier

even before A ∧B
Temporal.Asynchronous.Precedence
Comparison.Concession.Arg1-as-denier

even before then A ∧B
Temporal.Asynchronous.Succession
Comparison.Concession.Arg2-as-denier

even if A ∧B Comparison.Concession.Arg1-as-denier
even so A ∧B Comparison.Concession.Arg2-as-denier

even then A ∧B
Temporal.Asynchronous.Precedence
Comparison.Concession.Arg2-as-denier

even though A ∧B
Comparison.Concession.Arg1-as-denier
Comparison.Concession.Arg2-as-denier

even when A ∧B

Comparison.Concession.Arg1-as-denier
Temporal.Asynchronous.Succession
Comparison.Concession.Arg1-as-denier
Temporal.Synchronous
Comparison.Concession.Arg1-as-denier

even while A ∧B
Temporal.Synchronous
Comparison.Concession.Arg1-as-denier

even with A ∧B Comparison.Concession.Arg1-as-denier
finally A ∧B Expansion.Conjunction
further A ∧B Expansion.Conjunction
furthermore A ∧B Expansion.Conjunction

A however B. A ∧B

Comparison.Concession.Arg1-as-denier
Comparison.Concession.Arg2-as-denier
Comparison.Contrast
Temporal.Synchronous
Comparison.Contrast

in addition A ∧B Expansion.Conjunction
in any case A ∧B Comparison.Concession.Arg2-as-denier
in contrast A ∧B Comparison.Contrast

in fact A ∧B
Comparison.Concession.Arg2-as-denier
Comparison.Contrast
Expansion.Conjunction

in the end A ∧B
Comparison.Concession.Arg2-as-denier
Comparison.Contrast
Expansion.Conjunction

in the meantime A ∧B

Temporal.Asynchronous.Succession
Temporal.Synchronous
Comparison.Contrast
Temporal.Synchronous

in the meanwhile A ∧B Temporal.Synchronous

indeed A ∧B
Comparison.Concession.Arg2-as-denier
Expansion.Conjunction
Expansion.Equivalence

like A ∧B
Comparison.Contrast
Comparison.Similarity
Expansion.Instantiation.Arg2-as-instance
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likewise A ∧B Expansion.Conjunction
meantime A ∧B Temporal.Synchronous

meanwhile A ∧B

Comparison.Concession.Arg2-as-denier
Comparison.Contrast
Expansion.Conjunction
Temporal.Synchronous
Comparison.Concession.Arg2-as-denier
Temporal.Synchronous
Comparison.Contrast
Temporal.Synchronous
Comparison.Similarity
Temporal.Synchronous

moreover A ∧B Expansion.Conjunction
much less A ∧B Expansion.Conjunction

neither A nor B. A ∧B
Comparison.Contrast
Expansion.Conjunction

nevertheless A ∧B
Comparison.Concession.Arg2-as-denier
Comparison.Contrast

no matter A ∧B Comparison.Concession.Arg1-as-denier

nonetheless A ∧B
Comparison.Concession.Arg2-as-denier
Comparison.Contrast

A; nor B. A ∧B
Comparison.Concession.Arg2-as-denier
Expansion.Conjunction

not just A, but B. A ∧B
Comparison.Contrast
Expansion.Conjunction

not just A, but also B. A ∧B
Comparison.Contrast
Expansion.Conjunction

not only A ∧B
Comparison.Contrast
Expansion.Conjunction

not only A, also B. A ∧B
Comparison.Contrast
Expansion.Conjunction

not only A but B. A ∧B
Comparison.Concession.Arg2-as-denier
Expansion.Conjunction

not only A but also B. A ∧B
Comparison.Contrast
Expansion.Conjunction

on the contrary A ∧B Comparison.Contrast
on the one hand A
on the other B. A ∧B Comparison.Contrast

on the one hand A
on the other hand B. A ∧B

Comparison.Concession.Arg2-as-denier
Comparison.Contrast

on the other hand A ∧B
Comparison.Concession.Arg2-as-denier
Comparison.Contrast

only A ∧B

Comparison.Concession.Arg2-as-denier
Comparison.Contrast
Expansion.Exception.Arg2-as-excpt
Expansion.Level-of-detail.Arg2-as-detail

A or B. A ∧B

Comparison.Concession+SpeechAct.Arg2-as-denier+SpeechAct
Comparison.Concession.Arg2-as-denier
Contingency.Condition+SpeechAct
Contingency.Negative-condition.Arg1-as-negCond
Expansion.Conjunction
Expansion.Equivalence

plus A ∧B Expansion.Conjunction
regardless A ∧B Comparison.Concession.Arg2-as-denier
regardless of A ∧B Comparison.Concession.Arg1-as-denier

separately A ∧B
Expansion.Conjunction
Temporal.Synchronous
Expansion.Conjunction

similarly A ∧B Comparison.Similarity
simultaneously A ∧B Temporal.Synchronous

still A ∧B

Comparison.Concession.Arg2-as-denier
Comparison.Contrast
Temporal.Asynchronous.Precedence
Temporal.Synchronous

A then B. A ∧B
Expansion.Conjunction
Temporal.Synchronous
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though A ∧B
Comparison.Concession.Arg1-as-denier
Comparison.Concession.Arg2-as-denier
Comparison.Contrast

A whatever B. A ∧B Comparison.Concession.Arg1-as-denier

when A ∧B

Comparison.Concession.Arg1-as-denier
Comparison.Concession.Arg2-as-denier
Comparison.Contrast
Temporal.Synchronous
Comparison.Contrast
Temporal.Synchronous
Contingency.Cause+Belief.Reason+Belief
Temporal.Synchronous
Contingency.Cause.Reason
Temporal.Synchronous
Contingency.Cause.Result
Temporal.Synchronous
Contingency.Condition+SpeechAct
Temporal.Synchronous
Contingency.Condition.Arg2-as-cond
Temporal.Synchronous
Expansion.Level-of-detail.Arg2-as-detail
Temporal.Synchronous

whereas A ∧B Comparison.Contrast
whether A ∧B Comparison.Concession.Arg1-as-denier

while A ∧B

Comparison.Concession.Arg1-as-denier
Comparison.Concession.Arg2-as-denier
Comparison.Contrast
Comparison.Similarity
Expansion.Conjunction
Temporal.Synchronous
Comparison.Concession.Arg1-as-denier
Temporal.Synchronous
Comparison.Concession.Arg2-as-denier
Temporal.Synchronous
Comparison.Contrast
Temporal.Synchronous
Expansion.Conjunction
Temporal.Synchronous

with A ∧B

Comparison.Concession.Arg1-as-denier
Comparison.Contrast
Expansion.Conjunction
Temporal.Synchronous

yet A ∧B
Comparison.Concession.Arg2-as-denier
Comparison.Contrast
Expansion.Conjunction

Table 21: Mapping from connectives to logical conjunction (∧), according to PDTB senses.
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Connectives Binary Operator Senses

alternatively A ∨B
Expansion.Disjunction
Expansion.Substitution.Arg2-as-subst

as an alternative A ∨B Expansion.Disjunction

either A or B. A ∨B
Contingency.Negative-condition.Arg1-as-negCond
Expansion.Disjunction

A except B. A ∨B Expansion.Exception.Arg2-as-excpt
in other words A ∨B Expansion.Equivalence
instead A ∨B Expansion.Substitution.Arg2-as-subst
instead of A ∨B Expansion.Substitution.Arg1-as-subst
A, lest B.
Lest B, A. A ∨B Contingency.Negative-condition.Arg1-as-negCond

not so much as A ∨B Expansion.Substitution.Arg2-as-subst
A, or B. A ∨B Expansion.Disjunction
or otherwise A ∨B Expansion.Disjunction

otherwise A ∨B
Contingency.Negative-condition.Arg1-as-negCond
Expansion.Exception.Arg1-as-excpt

rather A ∨B Expansion.Substitution.Arg2-as-subst
rather than A ∨B Expansion.Substitution.Arg1-as-subst
so much as A ∨B Expansion.Substitution.Arg2-as-subst
A unless B.
Unless B, A. A ∨B Contingency.Negative-condition.Arg2-as-negCond

A, without B A ∨B Contingency.Negative-condition.Arg2-as-negCond

Table 22: Mapping from connectives to logical disjunction (∨), according to PDTB senses.
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