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Abstract

Providing Emotional Support (ES) to soothe
people in emotional distress is an essential ca-
pability in social interactions. Most existing
research on building ES conversation systems
only considers single-turn interactions with
users, which is over-simplified. In compari-
son, multi-turn ES conversation systems can
provide ES more effectively, but face several
new technical challenges, including: i) how to
conduct support strategy planning that could
lead to the best supporting effects; ii) how to dy-
namically model the user’s state. In this paper,
we propose a novel system named MultiESC
to address these issues. For strategy planning,
drawing inspiration from the A* search algo-
rithm, we propose lookahead heuristics to esti-
mate the future user feedback after using par-
ticular strategies, which helps to select strate-
gies that can lead to the best long-term effects.
For user state modeling, MultiESC focuses on
capturing users’ subtle emotional expressions
and understanding their emotion causes. Ex-
tensive experiments show that MultiESC sig-
nificantly outperforms competitive baselines
in both strategy planning and dialogue gen-
eration. Our codes are available at https:
//github.com/lwgkzl/MultiESC.

1 Introduction

Almost every human has experienced emotional
distress, even if not suffering from any mental dis-
orders. Frequently, people deal with the distress
by seeking Emotional Support (ES) from social
interactions (Langford et al., 1997; Greene, 2003).
Nevertheless, ES from family and friends is not al-
ways available (Webber and Mascari, 2018). With
the potential of providing more people with in-time
support, developing Emotional Support Conversa-
tion (ESC) systems has attracted much attention.
However, since early ES datasets are constructed
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Figure 1: An example of an emotional support conversa-
tion between the support-seeker (left) and the supporter
(right). The support strategies adopted by the supporter
are presented in red italics before the utterances.

by crawling post-response pairs from online fo-
rums, they only contain single-turn conversations
(Medeiros and Bosse, 2018; Sharma et al., 2020).
Thus, most of the existing research on ESC also
only considers single-turn interactions with the user
(Medeiros and Bosse, 2018; Sharma et al., 2020,
2021), which is over-simplified and has limited
support effects. It was not until recently that Liu
et al. (2021) released the first large-scale multi-turn
ES dataset, ESCONV. They also designed an ESC
framework, suggesting the conversation procedures
and support strategies for multi-turn ESC.

Compared to the single-turn scenario, develop-
ing multi-turn ESC systems faces several new chal-
lenges. One significant challenge is support strat-
egy planning. As pointed out in the psychologi-
cal literature, particular procedures and strategies
are indispensable for effective emotional support
(Greene, 2003; Hill, 2009). As in Fig. 1, the sup-
porter strategically soothes the support-seeker by
first caringly inquiring about the situation, then
resonating with the seeker’s feelings, and finally
providing suggestions to evoke positive emotions.
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Notably, strategy planning in ESC should be
conducted on a long planning horizon. That is,
instead of merely considering the dialogue history
or foreseeing the immediate effect after using the
strategy, the system should further look ahead, to
consider how much the adopted strategy would
contribute to reducing the user’s emotional distress
at a long run. Though some strategies may not
directly provide comfort, they are still essential
for reaching the long-term dialogue goal, such as
greetings at the beginning of the conversation and
inquiring about the user’s experiences.

Another challenge for multi-turn ESC is how
to dynamically model the user’s state during the
conversation. Prior works on emotion-related dia-
logue tasks mainly detect the user’s coarse-grained
emotion type to enhance dialogue generation (Lin
et al., 2019; Majumder et al., 2020; Li et al., 2020a).
However, such practice is not completely appropri-
ate for ESC. The reason is that the user’s emotion
in ESC almost stays the same type, such as being
sad, throughout the conversation. Instead, it often
changes subtly in terms of emotion intensity. Be-
sides, effective ES requires more than only identify-
ing the user’s emotion. A thorough understanding
of the user’s situation is also essential.

In this paper, we propose a multi-turn ESC sys-
tem MultiESC to address the above issues. For
strategy planning, we draw inspiration from the A∗

search algorithm (Hart et al., 1968; Pearl, 1985) and
its recent application in constrained text generation
(Lu et al., 2021), which addressed the challenge
of planning ahead by incorporating heuristic esti-
mation of future cost. In MultiESC, we develop
lookahead heuristics to estimate the expectation of
the future user feedback to help select the strategy
that can lead to the best long-term effect. Con-
cretely, we implement a strategy sequence genera-
tor to produce the probability of the future strategy
sequences, and a user feedback predictor to pre-
dict the feedback after applying the sequence of
strategies. For user state modeling, MultiESC cap-
tures the user’s subtle emotion expressed in the
context by incorporating external knowledge from
the NRC VAD lexicon (Mohammad, 2018). More-
over, it identifies the user’s emotion causes (i.e.,
the experiences that caused the depressed emotion)
to more thoroughly understand the user’s situation.

In summary, our contributions are as follows:

• We propose a multi-turn ESC system, MultiESC,
which conducts support strategy planning with

foresight of the user feedback and dynamically
tracks the user’s state by capturing the subtle
emotional expressions and the emotion causes.

• It is a pioneer work that adopts A∗-like looka-
head heuristics to achieve dialogue strategy se-
lection on a long planning horizon.

• Experiments show that MultiESC significantly
outperforms a set of state-of-the-art models
in generation quality and strategy planning,
demonstrating the effectiveness of our proposed
method.

2 Related Work

Emotional Support Conversation Systems.
Since early ES datasets were mainly composed
of single-turn conversations (Medeiros and Bosse,
2018; Sharma et al., 2020), most research on de-
veloping ESC systems only considered the simpli-
fied scenario of single-turn interactions with the
user (Sharma et al., 2021; Hosseini and Caragea,
2021). The few works that developed multi-turn
ES chatbots rely on predefined templates and hand-
crafted rules (Zwaan et al., 2012), which suffer
from limited generality. It was not until last year
that Liu et al. (2021) released the first multi-turn
ESC dataset ESCONV. Following Liu et al. (2021),
Peng et al. (2022) and Tu et al. (2022) recently ex-
plored data-driven multi-turn ESC systems. Peng
et al. (2022) proposed a hierarchical graph network
to capture both the global context and the local user
intention. They did not consider strategy planning,
which is critical in multi-turn ESC. Tu et al. (2022)
proposed to enhance context encoding with com-
monsense knowledge and use the predicted strategy
distribution to guide response generation. Never-
theless, their method of strategy prediction, directly
implemented with a vanilla Transformer encoder,
was relatively preliminary and did not consider any
user-feedback-oriented planning as we do.

Empathetic Response Generation. Empathetic
Response Generation (ERG) (Rashkin et al., 2019)
is a research area closely related to ESC, as being
empathetic is a crucial ability for providing emo-
tional support (Greene, 2003; Pérez-Rosas et al.,
2017). However, ERG does not has the explicit
goal of proactively soothing the user’s negative
emotion. Instead, it only reactively generates re-
sponses that are consistent with the user’s emotion
(Lin et al., 2019; Majumder et al., 2020; Li et al.,
2020a; Zheng et al., 2021; Wang et al., 2021).
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Figure 2: The overall framework of MultiESC. Details
about the user state modeling and the strategy planning
modules are shown in Fig. 3 and Fig. 4, respectively.

3 Preliminaries

ESConv. Our research is conducted on ESCONV.
It is a long conversation dataset, with an average of
29.8 utterances in each dialogue. It also includes
rich annotations, such as the strategies adopted by
the supporter and the user feedback scores. There
are overall eight types of strategies (e.g., question,
reflection of feelings and self-disclosure). The user
feedback score indicates how much the user’s emo-
tional distress is reduced during the conversation.
They are marked by the support-seekers on a Likert
scale with five levels after every two turns. More
data statistics are provided in the appendix.

NRC VAD Lexicon. The NRC VAD lexicon in-
cludes the Valence-Arousal-Dominance (VAD)
scores of 20,000 English words. The VAD score
of a word measures its underlying emotion in
three dimensions: valence (pleased-displeased),
arousal (excited-calm), and dominance (dominant-
submissive). For example, the VAD scores of “lone-
liness” and “abandon” are (0.15, 0.18, 0.22) and
(0.05, 0.52, 0.25), respectively. The VAD model
captures a wide range of emotions and allows dif-
ferent emotions to be comparable.

Problem Formulation of ESC. Denote the utter-
ances from the system and the user at the i-th round
of the conversation are respectively (xi, yi),1 while
the user’s state is ui (i=1, 2, ..., nR). Suppose the
set of all support strategies is S. At the t-th turn,
given the dialogue history Ht={(xi, yi)}t−1

i=1, the
system tracks the user states Ut={u1, u2, ..., ut−1}
from Ht and generates the next utterance xt, using
an appropriate support strategy ŝt ∈ S.

4 Methodology

As shown in Fig. 2, our proposed system Multi-
ESC consists of four modules. The dialogue en-
coder first converts the dialogue history Ht into
the embeddings Ht. At the same time, the user

1We suppose that ESCs are always initiated by the system
(or the supporter).

Figure 3: The architecture of the user state modeling
module in MultiESC.

state modeling module extracts the user state in-
formation, producing the embeddings Ut. Then,
given Ht and Ut, the strategy planning module se-
lects the strategy st. Finally, the utterance decoder
generates the utterance xt, adopting the strategy st.

4.1 Dialogue Encoder

The dialogue encoder module is implemented with
a Transformer encoder (Vaswani et al., 2017). We
concatenate the utterances in Ht and keep the last
N tokens of the concatenation as its input sequence.
Given the input, it produces the dialogue history
embeddings Ht ∈ RN×demb .

4.2 User State Modeling

Fig. 3 illustrates the workflow of user state mod-
eling. To identify the user’s state at the i-th round
of the conversation, we first extract the emotion
cause mentioned at this round, denoted as ci, with
an off-the-shelf detector2 trained on a large-scale
emotion cause detection dataset (Poria et al., 2021).
For example, in Fig. 3, c1=“ I have not seen my
friends for a long time”. Then, we concatenate the
dialogue content xi, yi and the emotion cause ci
with special separator tokens to form the input of a
Transformer encoder. Here, the system’s utterance
xi is also considered because it often provides nec-
essary context for understanding the user’s state.
The input sequence is represented as the positional
sum of emotion embeddings, word embeddings,
and positional embeddings.

The emotion embeddings are used to fuse
the emotion information. They are obtained
as follows. We train multiple emotion vectors
{e1, e2, ..., enemo} to represent the underlying emo-
tions of different words. Concretely, we split the
VAD space into multiple subspaces by dividing the
valence and the arousal dimensions, respectively,
into nV and nA intervals of equal length. Each

2https://github.com/declare-lab/RECCON
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Figure 4: The process of calculating the strategy score, using a strategy sequence generator and a user feedback
predictor. At each turn, our model selects the next strategy that maximizes the score of F (st).

emotional subspace is represented as one emotion
vector ej .3 To construct the emotion embeddings,
we retrieve the VAD score of each input token from
the NRC VAD lexicon to identify which emotional
subspace it belongs, and then we represent it as the
corresponding emotion vector. For those tokens
without VAD annotation, we use a special emotion
vector to represent them.

Finally, the encoded hidden vector ui corre-
sponding to the [CLS] token is used to represent
the user state at the i-th round. The user state em-
beddings Ut is the concatenation of all the user
state embeddings before the t-th round, that is,
Ut=[u1;u2; ...;ut−1].

4.3 Strategy Planning with Lookahead
Heuristics

We develop a strategy score function to evaluate
whether to adopt a particular strategy (e.g. question
or self-disclosure) by comprehensively considering
the dialogue history and the potential user feedback.
Formally, at the t-th round, MultiESC adopts the
strategy ŝt that maximizes the score function:

ŝt = argmax
st∈S

F (st), (1)

where F (·) is the strategy score function.
In the following, we will first introduce the strat-

egy score function and then explain how MultiESC
calculates the strategy scores with two components:
a strategy sequence generator and a user feedback
predictor, as presented in Fig. 4. Finally, we will
describe the architectures of the two components.

3The dominance dimension is not considered here as it
is less relevant for capturing emotion intensity (Zhong et al.,
2019; Li et al., 2020b).

Strategy Score Function. Our method draws in-
spiration from the classical search algorithm, A∗

search (Hart et al., 1968), which conducts looka-
head planning in a heuristic way. At each step,
it searches the highest-scoring path by selecting
an action that maximizes the sum of the score so
far and a heuristic estimation of the future score.
Similarly, we define our strategy score function as:

F (st) = g(st) + λ · h(st), (2)

where g(st) is a history-based score; h(st) is a
lookahead score that heuristically estimates the
future user feedback; λ is a hyper-parameter that
balances the weights of the two terms.

The history-based score g(st) computes the con-
ditional probability distribution of the next strategy
purely based on the dialogue history and the previ-
ous user states. Formally, it is defined as:

g(st) = − log Pr(st|Ht,Ut). (3)

Previous research on dialogue strategy predic-
tion generally followed this history-based scheme
(Zhou et al., 2019; Joshi et al., 2021; Dutt et al.,
2021), though they may vary in their methods of ob-
taining the representations of Ht and Ut. However,
such practice overlooks the strategy’s future effects
and how much it could help in achieving the long-
term dialogue goal. In our work, we incorporate
the lookahead score to alleviate this issue.

The lookahead score h(st) heuristically esti-
mates the mathematical expectation of the future
user feedback score4 after adopting the strategy
st at the t-th round. Ideally, to select the strategy
that could lead to the best final result, we want to

4The user feedback score indicates how much the user’s
emotional distress is reduced (see § 3).
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estimate the user feedback score at the end of the
conversation, that is:

h(st) = E[f(st, s>t,Ut)|st,Ht,Ut]

=
∑

s>t∈Sω

Pr(s>t|st,Ht,Ut) · f(st, s>t,Ut).

(4)
E(·) represents the mathematical expectation; s>t is
the future strategy sequence to be used after the t-th
round till the end of the conversation; Sω is the set
of all possible strategy sequences; f(st, s>t,Ut)
denotes the user feedback score after successively
applying st and s>t to comfort a user whose previ-
ous states are Ut.

However, Eq. 4 is hard to calculate, because the
space of Sω is too large and it is difficult to esti-
mate the user feedback f(·) after too many turns
(i.e. if the strategy sequence s>t is too long). Thus,
we approximate Eq. 4 as follows. First, we only
look ahead for the limited L turns. We estimate the
expectation of the user feedback score after L turns
instead of at the end of the conversation. Then,
to further narrow the space of Sω, we only con-
sider the k most possible future strategy sequences.
Formally, Eq. 4 is approximated as:

h(st) =
∑

s>t∈ŜL

Pr(s>t|st,Ht,Ut) · f(st, s>t,Ut),

ŜL = arg topk
s>t∈SL

Pr(s>t|st,Ht,Ut),

(5)
where SL is the set of the strategy sequences whose
lengths are less than L.

Strategy Score Calculation in MultiESC. Multi-
ESC calculates the strategy scores with a Strategy
Sequence Generator (SSG) and a User Feedback
Predictor (UFP). The function of SSG is to sequen-
tially predict s≥t based on Ht and Ut, where s≥t is
the strategy sequence that will be used in the follow-
ing L rounds (s≥t=[st; s>t]). At the l-th timestep,
it outputs the predicted strategy distribution:

Pr(st+l|st:t+l,Ht,Ut), (6)

where l=1, 2, ..., L and st:t+l denotes the already-
generated strategy sequence before the l-th
timestep. The function of UFP is to estimate the
user feedback score f(s≥t,Ut).

As shown in Fig. 4, to calculate the strategy
score of a particular strategy st, we first use SSG
to derive the history-based score g(st) from its
predicted strategy distribution at the first timestep.

Next, we use SSG to find the set of the k most pos-
sible future strategy sequences ŜL through beam
search. For each strategy sequence s>t in ŜL, we
obtain its probability by:

Pr(s>t|st,Ht,Ut) =
∏L

l=2 Pr(st+l|st:t+l,Ht,Ut).

We then leverage UFP to estimate the user feedback
score after successively applying st and s>t. Com-
bining the predicted probabilities of the strategy
sequences and the estimated user feedback scores,
we obtain the lookahead score h(st) as in Eq. 5.
Finally, given g(st) and h(st), the overall strategy
score is obtained as in Eq. 2.

Strategy Sequence Generator. SSG is developed
upon the architecture of the Transformer decoder.
Its only difference from the original Transformer
decoder is that it adopts the multi-source attention
mechanism to selectively attend to the dialogue his-
tory Ht and the user state information Ut. Specif-
ically, the strategy sequence s≥t is first fed to a
masked multi-head attention layer, producing the
contextualized strategy sequence representations
Pt. Then, Pt interacts with Ht and Ut respectively
through cross attention layers as:

Ĥt = MH-ATT(L(Pt), L(Ht), L(Ht)),

Ût = MH-ATT(L(Pt), L(Ut), L(Ut)),

where MH-ATT(·) represents the multi-head self-
attention mechanism. An information fusion layer
is utilized to combine them:

µ = ReLU(Wµ[Ĥt; Ût] + bµ),

P̂t = µ · Ĥt + (1− µ) · Ût,

where Wµ and bµ are trainable parameters. Next,
P̂t is fed to a connected feed-forward network with
residual connections around the sub-layers. We
denote the hidden states produced here as P̃t. Fi-
nally, the strategy distribution at the l-th timestep
is predicted as:

Pr(st+l|st:t+l,Ht,Ut) = softmax(WsP̃t + bs),

where Ws and bs are trainable parameters. To train
the SSG, we use the negative log-likelihood of the
ground-truth strategy s∗t+l as its loss function.

User Feedback Predictor. UFP predicts the user
feedback score f(s≥t,Ut) by first encoding s≥t

with a Transformer encoder, denoted as TRSUFP.
Specifically, we leverage a trainable strategy ma-
trix Es ∈ R|S|×demb to represent different types

3018



Model PPL↓ B-1↑ B-2↑ B-3↑ B-4↑ R-L↑ MET↑ CIDEr↑
MoEL (Lin et al., 2019) 264.11 19.04 6.47 2.91 1.51 15.95 7.96 10.95
MIME (Majumder et al., 2020) 69.28 15.24 5.56 2.64 1.50 16.12 6.43 10.66
EmpDG (Li et al., 2020a) 115.34 18.08 6.46 3.02 1.52 15.89 6.93 10.73
DialoGPT-Joint (Liu et al., 2021) 15.71 17.39 5.59 2.03 1.18 16.93 7.55 11.86
BlenderBot-Joint (Liu et al., 2021) 16.79 17.62 6.91 2.81 1.66 17.94 7.54 18.04
MISC (Tu et al., 2022) 16.16 - 7.31 - 2.20 17.91 - -
GLHG (Peng et al., 2022) 15.67 19.66 7.57 3.74 2.13 16.37 - -
MultiESC 15.41 21.65 9.18 4.99 3.09 20.41 8.84 29.98
MultiESC w/o emotion 18.43 18.93 7.68 4.05 2.41 20.15 7.89 24.33
MultiESC w/o cause 15.68 20.07 8.76 4.64 2.77 19.82 8.60 26.73
MultiESC w/o strategy 15.60 19.72 8.24 4.42 2.70 20.35 8.25 27.77
MultiESC w/o lookahead 15.71 21.52 9.15 4.81 3.02 20.39 8.43 29.81

Table 1: Automatic evaluation results on the generation quality.

of strategies. Given the strategies in s≥t, we con-
catenate their corresponding strategy vectors as the
input of TRSUFP, so we have

B = TRSUFP[Emb([CLS]; s≥t)],

where Emb(·) represents the operation of the em-
bedding layer that maps the strategies in s≥t to
their corresponding vectors in Es. Suppose the
encoded hidden state corresponding to the [CLS]
token is qs. Next, we pass the user state embed-
dings through a Long-Short Term Memory (LSTM)
network (Cheng et al., 2016):

Ût = LSTM(u1,u2, ...,ut−1),

We then use qs to attend to the hidden states
Ût=[û1, û2, ..., ût−1] through an attention layer:

ũf =
t−1∑

i=1

aiûi,

ai =
exp(û⊤

i Waqs)∑t−1
j=1 exp(û

⊤
j Waqs)

,

where Wa is a trainable matrix. Finally, we obtain
the predicted user feedback score by passing ũf

through a single feedforward layer.
We leverage the ground-truth user feedback

scores annotated in the ESCONV dataset as super-
vision to train the UFP, and use the Mean Squared
Error (MSE) as its loss function Lf .

4.4 Utterance Decoder
Given the user state embeddings Ut, the dialogue
history embeddings Ht, and the selected strategy
ŝt, the utterance decoder aims to produce the next
utterance xt. Its architecture is the same as that
of the strategy sequence generator (§ 4.3), except
for the input sequence. To guide dialogue genera-
tion with the selected strategy ŝt, we prepend the

strategy embedding of ŝt before the embeddings of
the utterance sequence as the input of the utterance
decoder. The negative likelihood of the ground-
truth token in the target utterance is used as the
generation loss Lg. More details on the training
procedure are provided in the appendix.

5 Experiments

5.1 Experimental Setup

Baselines. Our baselines include three empathetic
response generators: MoEL (Lin et al., 2019),
MIME (Majumder et al., 2020), and EmpDG
(Li et al., 2020a); and four state-of-the-art meth-
ods on the ESCONV dataset: DialoGPT-Joint,
BlenderBot-Joint (Liu et al., 2021), MISC (Tu
et al., 2022), and GLHG (Peng et al., 2022). More
details about them are described in the appendix.

Implementation Details. We follow the original
division of ESCONV for training, validation, and
testing. We initialize the parameters of the dialogue
encoder and the utterance decoder of MultiESC
with the BART-small (Lewis et al., 2020) model
from the HuggingFace library (Wolf et al., 2019).
There are nemo=65 types of emotion vectors, with
nV=nA=8. In the strategy planning module, we
set λ=0.7 and L=2. The beam size k is set to be 6
when searching the set of the most possible strat-
egy sequences ŜL. Since the codes of MISC and
GLHG were not released, we directly refer to the re-
sults reported in their original papers. For the other
baselines, we use their released codes to conduct
our experiments. Our model has 145.6M param-
eters, which is in the same order as the baselines.
For reference, BlenderBot-Joint, DialoGPT-Joint,
and GLHG have 90M, 117M, and 92M parame-
ters, respectively. More implementation details are
provided in the appendix.
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MultiESC vs. MoEL BlenderBot-Joint w/o strategy w/o lookahead
Win Lose Tie Win Lose Tie Win Lose Tie Win Lose Tie

Fluency 64.1‡ 18.0 18.0 35.2 42.9 21.9 38.3 41.4 20.3 41.4 37.5 21.1
Empathy 53.1‡ 34.4 12.5 44.5 43.8 11.7 43.8† 29.7 26.5 35.9 39.1 25.0
Identification 69.5‡ 22.7 7.9 48.4‡ 32.8 18.8 56.3‡ 32.8 10.9 46.9‡ 28.9 14.2
Suggestion 71.9‡ 14.8 13.3 60.9‡ 23.4 15.6 52.3† 36.7 10.9 44.5† 30.5 25.0
Overall 65.6‡ 20.3 14.1 58.6‡ 31.3 10.2 55.5‡ 30.5 14.0 46.1† 32.0 21.9

Table 2: Human interactive evaluation results (%). The columns of “Win/Lose” indicate the proportion of cases
where MultiESC wins/loses in the comparison. †/‡ denote p-value < 0.1/0.05 (statistical significance test).

Model Accuracy Weighted-F1 Feedback
DialoGPT-Joint 26.03 23.86 2.87
BlenderBot-Joint 29.92 29.56 3.05
MISC 31.61 - -
MultiESC 42.01 34.01 3.85

Table 3: The strategy planning performance of Multi-
ESC and the baseline methods.

5.2 Automatic Evaluation of Generation
Quality

To evaluate the generation quality, we adopt the fol-
lowing metrics: perplexity (PPL), BLEU-1/2/3/4
(B-1/2/3/4) (Papineni et al., 2002), ROUGE-L (R-
L) (Lin, 2004), METEOR (MET) (Lavie and Agar-
wal, 2007), and CIDEr (Vedantam et al., 2015).

Comparison with Baselines. As shown in the up-
per part of Table 1, MultiESC performs signifi-
cantly better than the baseline models in all the met-
rics. It performs exceptionally well in the CIDEr
metric, which measures the similarity between TF-
IDF weighted n-grams (i.e., the words that fre-
quently appear in many utterances contribute less to
the score). This result demonstrates that MultiESC
is more capable of including critical information
in the responses, catering to particular situations
of users. Another finding is that the three empa-
thetic generators (i.e., MoEL, MIME, and EmpDG)
achieve significantly worse perplexity and CIDEr
scores than the other models. Through analysis,
we find that they tend to include content that com-
monly appears in many samples (e.g., “I’m sorry
to hear that”, “I can understand that”). This is prob-
ably because they only focus on how to generate
responses that can display an understanding of the
user’s emotion, which is insufficient for ESC.

Ablation Study. To analyze the effects of differ-
ent components on the downstream generation, we
compare MultiESC with its following variants: (1)
w/o emotion does not incorporate the emotion em-
bedding layer in the user state modeling module;
(2) w/o cause does not incorporate emotion cause

Model Accuracy Weighted-F1 Feedback
MultiESCk=1 38.72 30.12 3.59
MultiESCk=2 39.53 30.61 3.62
MultiESCk=3 41.33 32.83 3.75
MultiESCk=4 41.61 33.30 3.67
MultiESCk=5 41.78 33.64 3.93
MultiESCk=7 41.79 33.92 3.88
MultiESCk=8 41.79 33.97 3.92
MultiESC 42.01 34.01 3.85
w/o lookahead 38.76 30.21 3.36

Table 4: The strategy planning performance of differ-
ent variants of MultiESC. Note that the beam size of
MultiESC is set to be 6 (see § 5.1).

extraction for user state modeling; (3) w/o strategy
directly generates utterances without first predict-
ing the used strategy; (4) w/o lookahead conducts
strategy planning without the lookahead heuristics
to estimate the future user feedback scores.

As shown in the lower part of Table 1, the ab-
lation of any component can cause a drop in the
automatic evaluation results, demonstrating the in-
dispensability of each part. In comparison, the ab-
lation of the emotion embedding layer (“w/o emo-
tion”) leads to the most significant performance
drop, as understanding the user’s emotional states
plays the most central role in ESC. The difference
between the automatic evaluation results of the full
model and “w/o lookahead” is relatively small. It
is because they would generate exactly the same re-
sponses if they select the same strategy. The effects
of lookahead planning heuristics are more evident
in the human interactive test, since the adoption of
different strategies at one turn would trigger differ-
ent responses from the user and lead to different
dialogue directions in the future rounds.

5.3 Human Interactive Evaluation
We recruit four graduate students with linguistic
or psychological background as annotators to chat
with the models for human interactive evaluation.
We randomly sample 128 dialogues from the test
set of ESCONV. The annotators are asked to act
as the support seekers in these dialogue samples
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Figure 5: The top-n strategy prediction accuracy of
MultiESC and the baseline methods.

by learning their situations and simulating their
process of seeking emotional support by chatting
with the models. Given MultiESC and a compared
model, the annotators are asked to choose which
one performs better (or select tie) in terms of the
following metrics, following Liu et al. (2021): (1)
Fluency: which model generates more fluent and
understandable responses; (2) Empathy: which
model has more appropriate emotion reactions,
such as warmth, compassion and concern; (3) Iden-
tification: which model explores the user’s situa-
tion more effectively to identify the problem; (4)
Suggestion: which model offers more helpful sug-
gestions; (5) Overall: which model provides more
effective emotional support overall.

As shown in Table 2, we can see that the ad-
vantage of MultiESC over MoEL is substantial in
all the metrics. It also outperforms BlenderBot-
Joint in the overall supporting effects, though rela-
tively inferior in terms of fluency, probably because
the backbone of BlenderBot-Joint is extensively
pre-trained on large-scale dialogue corpora (Roller
et al., 2021). Compared with “w/o strategy”, Multi-
ESC is able to show more empathy, more clearly
inquire about the user’s situation, and provide more
specific suggestions, demonstrating the importance
of explicit strategy planning in ESC. Comparing
MultiESC with “w/o lookahead”, we can see that
the incorporation of lookahead heuristics brings
significant improvement in the dimensions of iden-
tification and suggestion.

5.4 Analysis of Strategy Planning
We evaluate the strategy planning module individ-
ually, using the following metrics: Accuracy, the
proportion of prediction results that are the same as
the ground-truth labels; Weighted F1, the weighted
average of F1 scores in different classes while con-
sidering the class imbalance; Feedback, the next
user feedback score that would be given after the
predicted strategy is adopted, simulated with an
user feedback predictor as illustrated in § 4.3.

Bot: What can I help you with?
User: Lately, my friends started to make jokes about my
face being ugly. They even called my face as flat as a pan!
What should i do? I see them everyday!
MoEL: I’m sorry to hear that. Have you been able to find
that it would be better to let yourself know how you feel
about it.
BlenderBot-Joint: You should tell them to calm down.
MultiESC: (Question) That’s horrible! Have you tried talk-
ing to them about it?
MultiESC w/o lookahead: (Self-disclosure) I can under-
stand how that would make you feel. I have had to deal with
a lot of bullies and I know how hard it can be.
MultiESC w/o strategy: I can understand that. I know why
that would be upsetting.
Ground-Truth: (Affirmation and Reassurance) I’m sure
you are very handsome! They could just be jealous.

Table 5: Case study. The upper part is an example of the
dialogue history in the test set of ESCONV. The lower
part shows the responses from different models.

Comparison with Baselines. We compare Multi-
ESC with the three baselinses capable of strategy
planning (i.e., DialoGPT-Joint, BlenderBot-Joint,
and MISC). The results are shown in Table 3. We
can see that MultiESC performs the best in all the
metrics with an absolute improvement of 10.4%
and 4.45% in accuracy and weighted F1, respec-
tively. As shown in Fig. 5, MultiESC also sur-
passes the baselines in all the top-n accuracy.

Analysis of MultiESC Variants. We analyze the
following variants of our strategy planning method:
(1) MultiESCk=?: the model with different beam
sizes when searching the set of k most possible
strategy sequences ŜL; (2) w/o lookahead: the
model without the lookahead heuristics. As shown
in Table 4, the strategy planning performance
steadily improves with the increase of the beam
search size when k ≤6, as the larger beam size
can result in a more precise estimation of the future
user feedback. Nevertheless, further increasing k to
consider more strategy sequences of low probabili-
ties does not continue improving the performance
apparently when k>6. Our full model also sig-
nificantly outperforms “w/o lookahead” in all the
metrics, especially regarding the feedback score.
It demonstrates that our lookahead heuristics can
help the model better plan the conversation and
provide more effective emotional support.

5.5 Case Study

Table 5 presents a case study of the responses gen-
erated by different models. We can see that the
utterances from MultiESC and its two variants are
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more consistent with the context and more empa-
thetic than those of the two baseline models. Fur-
ther comparing MultiESC and its two variants, the
utterance from the “w/o strategy” seems general
and less engaging. The responses generated by
MutiESC and “w/o lookahead” are both of high
quality. Nevertheless, with the incorporation of the
lookahead heuristic, MultiESC tends to proactively
explore the user’s situation at the beginning stage
of the conversation instead of directly comforting
the user, which aligns with the suggested procedure
for providing emotional support (Hill, 2009).

6 Conclusion

In this paper, we explored the task of developing
multi-turn Emotional Support Conversation (ESC)
systems, with focus on how to strategically plan the
conversation procedure. To this end, we proposed
a novel ESC system, MultiESC, that conducts strat-
egy planning with lookahead heuristics to estimate
the long-term effect of the adopted strategy on the
user. Moreover, we also proposed some effective
mechanisms to dynamically model the user’s state
in multi-turn ESCs. The empirical results showed
that MultiESC achieves significant improvement
compared with a set of strong baselines in both
generation quality and strategy planning.

Limitations

Though our proposed method exhibits large im-
provement compared with the existing baselines,
we believe that the research on emotional support
chatbots still has a long way to go. Compared
with the human supporters, the utterances gener-
ated by the chatbots are usually general and repeti-
tive, unable to show a personalized, in-depth under-
standing of the user’s experiences or provide very
specific and constructive suggestions on how to
change the situation. This issue might be alleviated
through the incorporation of commonsense knowl-
edge, which will be included in our future research
direction. Other issues, such as how to construct
more trustworthy and safe emotional support chat-
bots, also require much further exploration.

Ethical Considerations

It needs to be clarified that the term “emotional
support” in our paper mainly refers to peer support,
like the one we can seek from family and friends
in daily conversation. We do not claim to construct

chatbots that can provide professional psycho-
counseling or psychological treatment. Still, it
needs particular caution when using such systems,
and considerable further efforts are required to
construct safer ESC systems. For example, crisis-
warning mechanisms to detect users who have ten-
dencies of self-harming or suicide are desirable.

Our experimental dataset, ESConv, is a well-
established, publicly-available benchmark. It has
filtered the sensitive and private information during
the dataset construction. The participants in our hu-
man evaluation were transparently informed of our
research intent and were paid reasonable wages.
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Appendix

A. Training Procedure
For training of the strategy sequence generator, we
use the negative log-likelihood of the ground-truth
strategy s∗

t+l
as its loss function Ls. For the utter-

ance decoder, the negative likelihood of the ground-
truth token in the target utterance is used as the gen-
eration loss Lg. The strategy sequence generator
and the utterance decoder are trained jointly, with
the total loss as L = Ls + Lg. For training of the
user feedback predictor, we use the Mean Squared
Error (MSE) as its loss function Lf . Since the
user feedback scores in the ESCONV dataset are
mainly between 2-5, we augment the training data
by randomly generating 5,000 strategy sequences
and regarding them as samples with the score 1. It
is trained independently from the strategy predictor
and the utterance decoder.

B. Baselines
MoEL (Lin et al., 2019) adopts several decoders
focusing on different types of emotional utterances,
whose outputs are combined to generate the final
utterances.
MIME (Majumder et al., 2020) follows the archi-
tecture of MoEL and adds extra mechanisms to
combine the results from different decoders.
EmpDG (Li et al., 2020a) learns how to generate
responses consistent with the user’s emotion via an
adversarial learning framework.
DialoGPT-Joint and BlenderBot-Joint (Liu et al.,
2021) are developed on the backbones of DialoGPT
(Zhang et al., 2020) and BlenderBot (Roller et al.,
2021), respectively. They prepend a special token,
denoting the predicted support strategy, before the
generated utterance to generate content conditioned
on a predicted strategy.
MISC (Tu et al., 2022) enhances context encoding
with commonsense knowledge and uses the pre-
dicted strategy distribution to guide the emotional
support dialogue generation. It predicts the strategy
distribution using a vanilla Transformer encoder.
GLHG (Peng et al., 2022) adopts a graph neural
network to model the relationships between the
user’s emotion causes, intentions and the dialogue
history for emotional support dialogue generation.

C. Implementation Details
We initialize the parameters of the dialogue en-
coder and the utterance decoder of MultiESC with
the BART-small (Lewis et al., 2020) model from

the HuggingFace library (Wolf et al., 2019). The
maximum length of the input sequence for the di-
alogue encoder is N=512. The dimensions of all
the hidden embeddings are demb=768. There are
nemo=65 types of emotion vectors, with nV=nA=8.

In the strategy planning module, we set λ=0.7,
which results in the best performance on the val-
idation set among λ ∈{0.1, 0.2, ..., 1.0}. For the
number of lookahead rounds L, we experiment
with L ∈{1, 2 ,.., 5}. We find that the performance
on the validation set is the best when L =2 and
L =3. The performances when L =2 and L =3
are very close, but considering the computation ef-
ficiency, we set L =2 in the following experiments.
For the searching beam size k, we experiment with
k ∈{1, 2 ,.., 10}, and finally set it to be 6, because
it strikes the best balance between performance and
efficiency. We choose the above hyperparameters
by manual tuning, and the selection criterion is the
strategy prediction accuracy on the validation set.

AdamW (Loshchilov and Hutter, 2018) is used
as optimizer; its initial learning rate is set to be
5×10−5 and adaptively decays during training.
The batch size is set to be 32. Since the codes
of MISC and GLHG were not released, we directly
refer to the results reported in their original papers.
For the other baselines, we use their released codes
to conduct our experiments. Each model is trained
up to 10 epochs, and the checkpoints that achieve
the best perplexity on the validation set are used
for evaluation.

Our model has 145.6M parameters. The hard-
ware we used was one GPU of NVIDIA Tesla V100.
The overall training time is about two hours.

D. Dataset

Our experiments are conducted on the ESCONV

dataset (Liu et al., 2021)5. It is an English dataset.
To construct the dataset, they recruited crowd-
workers, who had learned the common procedures
and strategies for providing emotional support,
to converse with volunteers that needed emotion
support through an online platform. The crowd-
workers were required to annotate the strategy
adopted at each turn, and the support-seekers were
asked to give feedback every two rounds on a Lik-
ert scale with five levels, indicating how much their
emotional distress is reduced. The dataset contains
1,300 long dialogues with 38,350 utterances. There

5https://github.com/thu-coai/Emotiona
l-Support-Conversation
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Strategy Proportion
Question 21.77%
Restatement or Paraphrasing 6.46%
Reflection of Feelings 8.05%
Self-disclosure 9.34%
Affirmation and Reassurance 16.13%
Providing Suggestions or Information 22.02%
Greetings 8.72%
Others (Unlabelled) 7.49%

Table 6: The strategy distribution.

is an average of 29.5 utterances per dialogue and
an average 16.7 tokens per utterance. We follow
the original division of the ESCONV dataset for
training, validation, and testing, with the ration of
8:1:1. There are overall 8 types of support strate-
gies. Referring to Liu et al. (2021), their original
definitions are as follows:
• Question: ask for information related to the prob-

lem to help the help-seeker articulate the issues
that they face.

• Restatement or Paraphrasing: a simple, more
concise rephrasing of the support-seeker’s state-
ments that could help them see their situation
more clearly.

• Reflection of Feelings: describe the help-seeker’s
feelings to show the understanding and empathy.

• Self-disclosure: share similar experiences or
emotions that the supporter has also experienced
to express your empathy.

• Affirmation and Reassurance: affirm the support-
seeker’s ideas, capabilities, and strengths to give
reassurance and encouragement.

• Providing Suggestions: provide suggestions
about how to change the current situation.

• Information: provide useful information to the
help-seeker, for example with data, facts, opin-
ions, resources, or by answering questions.

• Others: other support strategies that do not fall
into the above categories.
In our experiments, we make some adaptions to

the strategy annotation. On one hand, we find that
the definition of Providing Suggestions and Infor-
mation are often hard to differentiate. As shown
in Table 7, some responses annotated as Provid-
ing Suggestions can also be regarded as providing
useful information, and those labelled as Informa-
tion also offer suggestions. Thus, we merge these
two categories into one type of strategy, named as
“Providing Suggestions or Information”.

On the other hand, we find that the existence of
the “Others” category largely impedes the model

Providing Suggestions Information
I understand that. What if
that is the case? You may
need to talk to them and let
them know how you feel
about that.

Is it possible to reframe
how you look at your
clients’ dire financial situ-
ations?

Have you thought of con-
tacting a debt relief pro-
gram? In some cases they
can substantially reduce
debt to something much
more manageable.

It may not be for you.
I think you should think
about the pros and cons of
keeping your position. It
might make things clearer
for you.

Table 7: Examples of the responses labelled with the
strategies Providing Suggestions and Information in the
original ESConv dataset.

performance. As illustrated in the above definition,
some responses in this category are exchange of
pleasantries, which is the case for approximately
50% of the responses annotated as Others. We
argue that the exchange of pleasantries is also
an essential strategy, as it can help to establish
a friendly connection with the user (Miller and
Rollnick, 2012). Thus, we define a new strategy
category, named as “Greetings” for such kind of re-
sponses. We obtain the annotation of them by first
using a set of regular expression matches and then
manually double-checking the results. For the rest
of responses labelled as Others, we directly regard
them as unlabelled data and do not include them
in the training of the strategy planning module, be-
cause we find that many of them can actually be
classified as the other types of strategies but were
mislabelled, and this strategy are not helpful in
enhancing the response generation. The strategy
distribution after the above adaptions is presented
in Table 6.
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