
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 2581–2594
December 7-11, 2022 ©2022 Association for Computational Linguistics

ConReader: Exploring Implicit Relations in Contracts for
Contract Clause Extraction∗

Weiwen Xu1, Yang Deng1, Wenqiang Lei2, Wenlong Zhao1, Tat-Seng Chua3, and Wai Lam1

1The Chinese University of Hong Kong
2Sichuan University

3National University of Singapore
{wwxu,ydeng,wlam}@se.cuhk.edu.hk

{wenqianglei,wenlzhao}@gmail.com, chuats@comp.nus.edu.sg

Abstract
We study automatic Contract Clause
Extraction (CCE) by modeling implicit
relations in legal contracts. Existing CCE
methods mostly treat contracts as plain text,
creating a substantial barrier to understanding
contracts of high complexity. In this work, we
first comprehensively analyze the complexity
issues of contracts and distill out three implicit
relations commonly found in contracts,
namely, 1) Long-range Context Relation that
captures the correlations of distant clauses;
2) Term-Definition Relation that captures the
relation between important terms with their
corresponding definitions; and 3) Similar
Clause Relation that captures the similarities
between clauses of the same type. Then we
propose a novel framework ConReader to
exploit the above three relations for better
contract understanding and improving CCE.
Experimental results show that ConReader
makes the prediction more interpretable and
achieves new state-of-the-art on two CCE tasks
in both conventional and zero-shot settings.1

1 Introduction

Legal Contract Review is a process of thoroughly
examining a legal contract before it is signed to en-
sure that the content stated in the contract is clear,
accurate, complete and free from risks. A key com-
ponent to this application is the Contract Clause Ex-
traction (CCE), which aims to identify key clauses
from the contract for further in-depth review and
risk assessment. Typically, CCE consists of two
major tasks targeting different query granularities
for real-life usages. They are Clause Analysis (CA)
and Clause Discovery (CD) 2, where CA aims to

∗ The work described in this paper is substantially sup-
ported by a grant from the Research Grant Council of the
Hong Kong Special Administrative Region, China (Project
Code: 14204418).

1Our code is available at: https://github.com/wwxu21/
ConReader

2CA refers to Contract Analysis in Hendrycks et al. (2021).
CD refers to Contract Discovery in Borchmann et al. (2020).

identify clauses that belong to a general clause type,
while CD aims to identify clauses similar to a spe-
cific clause (depicted in Figure 1). CCE is both
expensive and time-consuming as it requires legal
professionals to manually identify a small num-
ber of key clauses from contracts with hundreds of
pages in length (Hendrycks et al., 2021). Therefore,
there is a pressing need for automating CCE, which
assists legal professionals to analyze long and te-
dious documents and provides non-professionals
with immediate legal guidance.

The biggest challenge to automating CCE is the
complexities of contracts. In the literature, sim-
ply treating contracts as plain text, most pretrained
language models perform poorly on CCE (Devlin
et al., 2019; Liu et al., 2019). Some works try
to simplify CCE from the perspective of contract
structure. For example, Chalkidis et al. (2017) as-
sign a fixed extraction zone for each clause type
and limit the clauses to be extracted only from their
corresponding extraction zones. Hegel et al. (2021)
use visual cues of document layout and placement
as additional features to understand contracts. How-
ever, their local context assumption is not flexible
and, more seriously, neglects more complicated
relations inherent in the contracts.

In fact, as shown in Figure 1, contracts are
formal documents that typically follow a semi-
structured organization. The body of a contract
is usually organized into some predefined articles
such as "Definitions" and "Terminations", where
relevant clauses are orderly described inside. Dif-
ferent articles may hold different levels of impor-
tance. For example, the "Definitions" article is
globally important because it clearly defines all im-
portant terms that would be frequently referenced,
while other articles are sparsely correlated, hold-
ing local importance. We attempt to decompose
the complexities into a set of implicit relations,
which can be exploited to better understand con-
tracts. Therefore, as shown in Figure 1, we identify

2581

https://github.com/wwxu21/ConReader
https://github.com/wwxu21/ConReader

This Agreement shall commence on the
Commencement Date and shall continue for a
term of ten (10) years, unless previously
terminated in accordance with Clause 15.

CO-PROMOTION AGREEMENT
This Co-Promotion Agreement (this "Agreement") is entered into and dated as of September
26, 2018 by and between Dova Pharmaceuticals, Inc., a Delaware corporation ("Dova"), and
Valeant Pharmaceuticals North America LLC, a Delaware limited liability company ("Valeant").
…
ARTICLE 1 DEFINITIONS
1.1 "Product Materials" shall have the meaning set forth in Section 4.4.1(a).
…
1.47 "Dova Trademarks and Copyrights" shall mean the logos, trade dress, slogans, domain
names and housemarks of Dova or any of its Affiliates as may appear on any Product
Materials.
…
2.1 Dova Trademarks and Copyrights.
2.1.1 Valeant shall have the non-exclusive right to use the Dova Trademarks and Copyrights
solely on Product Materials.
…
ARTICLE 12 TERMINATION
12.1 Termination. This Agreement shall become effective as of the Effective Date and, unless
earlier terminated as provided in this ARTICLE 12, shall extend until the four (4) year
anniversary of the Effective Date (the "Term").

①

③

⑤

⑥

⑳

This Agreement shall commence on March 15,
2018 and will expire on March 14, 2020 unless
terminated earlier pursuant to Section 13 of
the Agreement (the "Term")

"Expiration Date" in other Contracts

TD
R

LC
R

SCR

Clause Analysis (CA)
Input query:
Highlight the clause related to "Expiration Date"
Output clause:
This Agreement shall become effective as of the Effective
Date and, unless earlier terminated as provided in this
ARTICLE 12, shall extend until the four (4) year
anniversary of the Effective Date (the "Term").

In-depth Review
&

Risk Assessment

Clause Discovery (CD)
Input query:
Highlight the clause similar to "Customer hereby grants
eGain a right to use Customer's trademarks designated
by Customer for such limited uses, subject to Customer’s
logo usage guidelines."
Output clause:
Valeant shall have the non-exclusive right to use the Dova
Trademarks and Copyrights solely on Product Materials.

Figure 1: An overview of the contract structure and CCE process. The left half illustrates three implicit relations
widely found in contracts. The right half shows two tasks of CCE.

three implicit relations to directly tackle the com-
plexities from three aspects:

1) The implicit logical structure among distant
text: This is originated from the fact that a clause
from one article may refer to clauses from distant
articles. However, most pretrained language mod-
els (e.g. BERT) inevitably break the correlations
among clauses because they have to split a contract
into multiple segments for separate encoding due
to the length limitation. Therefore, we define a
Long-range Context Relation (LCR) to capture
the relations between different segments to keep
the correlations among clauses.

2) The unclear legal terms: Legal terms need to
be clearly and precisely declared to minimize am-
biguity. Thanks to the "Definition" article, we can
easily find the meaning of a particular term. Then
the relation between each term and its definition is
defined as Term-Definition Relation (TDR). The
clarity of TDR allows consistent information flow
by enhancing terms with semantics-rich definitions;

3) The ambiguity among clauses: It is usually
hard to differentiate different types of clauses just
from their text formats. For example, clauses of
type "Expiration Date" and "Agreement Date" both
show up as dates. It leads to the third relation
defined as Similar Clause Relation (SCR). SCR
captures the similarity of the same type of clauses
across contracts. It enhances a clause’s semantics
with its unique type information and thus maintains
the discrimination among different clause types.
Furthermore, LCR and TDR are two intra-contract
relations while SCR is an inter-contract relation.

In light of the above investigations about the

complexities of contracts, we propose a novel
framework, ConReader, to tackle two CCE tasks
by exploiting the above three relations for better
contract understanding. Concretely, we reserve a
small number of token slots in the input segments
for later storage of the three kinds of relational
information. To prepare intra-contract relations,
including LCR and TDR, we get the segment and
definition representations from pretrained language
models. Regarding the inter-contract relation, i.e.
SCR, since the size of SCR increases as the number
of contracts increases, we are unable to enumerate
all possible SCRs. Therefore, we enable input seg-
ments to interact with a Clause Memory that stores
recently visited clauses, where a clause retriever is
adopted to retrieve similar clauses from the Clause
Memory. Then, we enrich each segment by filling
the reserved slots with context segments, relevant
definitions, as well as retrieved similar clauses. Fi-
nally, a fusion layer is employed to simultaneously
learn relevant information both from the local (i.e.
within the segment) or global context (i.e. via im-
plicit relations) for extracting the target clause.

To summarize, our main contributions are three-
fold:

• This work targets automatic CCE. We compre-
hensively analyze the complexity issues of mod-
eling legal contracts and distill out three implicit
relations, which have hardly been discussed be-
fore.

• We propose a novel framework ConReader to
effectively exploit the three relations. It enables a
more flexible relations modeling and reduces the
difficulties in understanding contracts for better

2582

CCE.
• Experimental results on two CCE tasks, namely

CA and CD, show considerable improvements in
both performance and interpretability.

2 Framework

Overview We describe the problem definition for
CCE via extractive Question Answering (QA) (Ra-
jpurkar et al., 2016). Let {cm}Mm=1 be a contract
in the form of multiple segments and q be a query
either represented as a clause type in the CA task
or a specific clause in the CD task. Our goal is to
extract clauses {yk}Kk=1 corresponding to the query.
There may be multiple or no correct clauses and
each clause is a text span in a particular segment
denoted by its start and end index if existent.

Figure 2 depicts the overview of ConReader,
which consists of four main components:

• LCR Solver tackles LCR by encoding the
wrapped segments {xm}Mm=1 aware of the query
q and the reserved slots r into hidden states
{hlcr

m }Mm=1, where the overall segment represen-
tations are stored in a segment bucket Blcr.

• TDR Solver tackles TDR by encoding all def-
initions {dn}Nn=1 from the contract into hidden
states {htdr

n }Nn=1, where the overall definition rep-
resentations are stored in a definition bucket Btdr.

• SCR Solver tackles SCR by retrieving similar
clause representations {ĥscr

m }Mm=1 from a Clause
Memory M according to a similarity function
f(·, ·) between the segment and the stored clause.

• Aggregator enriches each segment representation
with the three relational information for extract-
ing the target clause.

2.1 Long-range Context Relation Solver
The goal of LCR Solver is to output all segment rep-
resentations in a contract in the face of the length
limitation of pretrained language models. Mean-
while, to allow a flexible relation modeling in later
Aggregator, we reserve some token slots for later
storage of relational information before encoding.

Specifically, we concatenate each segment with
the query and the reserved token slots to form the
input sequence within the length limitation:

xm = [[CLS]; q; [SEP]; cm; [SEP]; r] m = 1, ...,M (1)

where [·; ·] denotes the sequential concatenation,
[CLS], [SEP] are special tokens at the beginning or
in the middle of the two text. Note that the reserved
token slots r are occupied with placeholders and

Clause
Type

Clause
Repr.

Shared Encoder
𝒅! 𝒅"

TDR Solver

…

Definition Extractor

𝒅!

𝒅"

Regex
…

𝒅#
𝒅$

…
…

…
…𝒉!"#$

𝒉%"#$

𝒉&"#$
𝒉'"#$

𝒅# 𝒅$

𝑩%&'

#𝒉%&'

Extraction Loss

Aggregator

1…M…

Fusion Layer

Clause Extractor

𝐶𝑙𝑎𝑢𝑠𝑒

M 1

…

…

Clause Memory

SCR Solver

IR

sampled retrieved

𝑓(𝑓)

Retrieval Loss

#𝒉!()'

#𝒉*()'
𝒉!
+,

𝒉*
+,

Type 1 Type 𝑳

Shared Encoder
𝒙! 𝒙*

LCR Solver

…

…
…𝒉%*+$

𝒉,*+$
Pos

𝑩.)'
M1

Contract

…

&𝒉.)'

Segment 1

Query

Reserved

Segment M

Query

Reserved

Figure 2: Overview of ConReader. Three solvers are
used to obtain relevant information and an Aggregator is
used to fuse all information into text representations for
semantic enrichment. IR denotes the retrieval process.

only take a small portion of the entire sequence
(|r| << 512) such that they only slightly affect the
efficiency. It does not matter which token is chosen
as the placeholder since we would directly mask
these slots such that they will not affect the hidden
states of query and segment tokens as well as not
receive gradient for update.

Then, we apply a RoBERTa encoder Enc(·)
to get the hidden states for all input sequences:
hlcr
m = Enc(xm), where hlcr

m ∈ R|xm|×h, and h is
the hidden dimension. To reflect the order of differ-
ent segments in a contract, we also add a segment
positional embedding (Vaswani et al., 2017) to the
hidden state hlcr

m,cls at [CLS] to get the segment rep-
resentation for each input segment:

ĥlcr
m = hlcr

m,cls + Pos(m) (2)

where Pos(·) is a standard RoBERTa positional en-
coder. All segment representations are temporarily

stored in a segment bucket Blcr = {ĥlcr
m }Mm=1.

2.2 Term-Definition Relation Solver

TDR Solver is responsible for providing the spe-
cific definitions for terms that may raise ambiguity.

2583

Algorithm 1: SCR Solver (training)
Input: q, {cm}Mm=1, {yk}Yk=1;
Output: {ĥscr

m }Mm=1;
1 Initialize all parameters: M[l] = Queue(),

l = 1, ..., L;
2 Get hidden states of segments {hlcr

m }Mm=1 from
Section 2.1 using q and {cm}Mm=1;

3 Get clause type lq according to the query q;
4 // retrieve clauses;
5 for segment m = 1, 2, . . . ,M do
6 Retrieve a similar clause ĥscr

m for each segment
via Equation (5);

7 end
8 // Update clause memory;
9 for extractable clause k = 1, 2, . . . ,K do

10 Get clause representation hyk via Equation (4);
11 if memory partition M[lq] is full then
12 Remove the earliest clause representation;
13 end
14 En-queue hyk to M[lq];
15 end

It can be observed in Figure 1 that definitions are
well organized in the “Definition" article. There-
fore, we use regular expressions including some
keywords like “shall mean", “mean" to automati-
cally extract those definitions. Then, we prepare
the definition inputs as :

dn = [[CLS]; kn; [SEP]; vn; [SEP]] n = 1, ..., N (3)

where each definition is presented in the form of
key-value pair. Each key kn denotes a legal term
in the contract and the value vn denotes its corre-
sponding definition text. Then we apply the same
RoBERTa encoder to encode these definitions into
hidden states htdr

n , where the hidden states htdr
n,cls

at [CLS] are denoted as definition representations

{ĥtdr
n }Nn=1, which are temporarily stored in another

definition bucket Btdr.

2.3 Similar Clause Relation Solver
Since SCR is an inter-contract relation, we are un-
likely to enumerate all possible clause pairs. There-
fore, we maintain a Clause Memory M to: (1) dy-
namically store clauses of all types; and (2) allow
input segments to retrieve similar clauses accord-
ing to a similarity function f(·, ·). Details can be
found in Algorithm 1.

Dynamic Update of M During training, we as-
sume each query q implies a particular clause type
lq (the query of CA itself is a clause type, while the
query of CD belongs to a clause type), where we
have L clause types in total. Initially, M allocates
the same memory space of size |M| for each clause

type to store the corresponding clause representa-
tions. Suppose that we get hlcr

m from LCR Solver
for xm and there is a clause y of type lq correspond-
ing to the given query q inside xm. We denote its
clause representation hy as the concatenation of its
start and end token representations:

hy = [hlcr
m,s : hlcr

m,e] ∈ R2h (4)

where [· : ·] denotes vector concatenation, and
s and e are the start and end index of y inside
xm. When encountering such clause, we add hy to
its corresponding memory partition M[lq]. If the
memory partition is full, we follow the first-in first-
out (FIFO) principle to remove the earliest clause
representation stored in M[lq] to make room for
the new one, such that the clause representations
stored are always up-to-date.

Retrieve Clauses from M When asking to iden-
tify clause of type lq, we allow each input segment
to retrieve a similar clause from the Clause Mem-
ory. The retrieved clause would imply the semantic
and contextual information of this type of clauses
in other contracts, facilitating the extraction of the
same type of clauses in the current contract.

Specifically, given the hidden states of the in-
put sequence hlcr

m with a query q of type lq as well
as the Clause Memory M, we limit the retrieval
process only in the corresponding memory parti-
tion M[lq] during training to retrieve truly similar
(i.e. of the same type) clauses that provide precise
guidance on clause extraction in the current con-
tract. The retriever is implemented as a similarity
function f(·, ·):

ĥscr
m = argmaxhy∈M[lq] f(h

lcr
m,cls,hy) (5)

where f(hlcr
m,cls,hy) = cos (hlcr

m,clsWlcr,hyWy),
Wlcr ∈ Rh×h and Wy ∈ R2h×h are parameters
to project hlcr

m,cls,hy to the same space.
To make the retriever trainable such that it can

learn to capture the common characteristics of the
same type of clauses, we introduce a Retrieval Loss
Lr to minimize a contrastive learning loss func-
tion (Hadsell et al., 2006), where a negative clause
hy− ∈ M \M[lq] is randomly sampled:

Lr =
M∑

m=1

max(0, 1− f(hlcr
m,cls, ĥscr

m) + f(hlcr
m,cls, hy−))

(6)

2584

2.4 Aggregator

After obtaining relational information from corre-
sponding relation solvers, we fill all these represen-
tations into the reserved token slots and allow the
new segment sequence to automatically learn three
implicit relations via a fusion layer.

For LCR and TDR, not all segment or definition
representations in the corresponding buckets are
necessary for each input segment as they may be
repeated (i.e. LCR) or out of segment scope (i.e.
TDR). Therefore, for the m-th input segment, we
remove the repeated segment representation (i.e.
ĥscr
m) and only consider the definition representa-

tions whose terms appear in this segment:

Blcr
m = Blcr \ ĥscr

m

Btdr
m = {ĥtdr

n | dn in cm, n ∈ [1, N]}
(7)

For SCR, each segment is paired with one clause
representation retrieved. Then after filling all cor-
responding representations into the reserved slots,
we get the final hidden state hm for each segment:

hm = [hlcr
m,cls:sep2;Blcr

m ; ĥscr
m ;Btdr

m] (8)

where hlcr
m,cls:sep2 are the hidden states ranging from

[CLS] to the second [SEP] in hlcr
m . Note that we do

not set a specific size of reserved slots for each re-
lation, but only assure that the total size should not
exceed |r|. The reserved slots taken by these repre-
sentations are unmasked to enable calculation and
gradient flow. Then hm would pass a fusion layer
to automatically learn the three implicit relations:

om = Fusion(hm) (9)

where Fusion(·) is a standard RoBERTa layer
with randomly initialized parameters and om is the
relation-aware hidden states for the m-th segment.
We use om to extract clause:

Ps(m) = softmax(omWs)

Pe(m) = softmax(omWe)
(10)

where Ps(m) and Pe(m) denote the probabilities
of a token being the start and end positions respec-
tively. Ws,We ∈ Rh×1 are corresponding parame-
ters. The Extraction Loss Le is defined as the cross-
entropy between the predict probabilities and the
ground-truth start and end positions respectively.

2.5 Training & Prediction

Training During training, we assume that the
clause type for each input query is available and
follow ConReader to get Lr and Le, where the
final training objective is the summation of them
L = Lr + Le. If no clauses can be extracted given
the current query, we set both the start and end
positions to 0 (i.e. [CLS]).

Prediction At the prediction time, we may en-
counter zero-shot scenarios where the clause types
are out-of-scope of the existing L types and, more
seriously, CD essentially does not provide the
clause type for each query clause. This would stop
ConReader from generalizing to these scenarios
as we are unable to indicate which memory parti-
tion of M for retrieval. To address this limitation,
we allow the retrieval to be performed in the en-
tire clause memory (the condition in Equation 5
would be replaced to hy ∈ M) since the retriever
has already learned to effectively capture the com-
mon characteristics of similar clauses. To deal
with the extraction of multiple clauses, we follow
Hendrycks et al. (2021) to output top T clauses ac-
cording to Ps(m)i×Pe(m)j in the contract, where
0 ≤ i ≤ j ≤ |xm| denote positions in xm.

3 Experimental Settings

We conduct experiments on two CCE tasks, namely
CA and CD, in two settings: (1) the conventional
setting where the clauses in the training and test
sets share the same clause types; and (2) a more
difficult zero-shot setting where the clause types
differ substantially for training and test set.

Datasets To implement ConReader on CA and
CD in both settings, we combine two datasets
which originally only tackle one of the tasks:

• CUAD (Hendrycks et al., 2021) is proposed to
only tackle CA. It carefully annotates 41 types
of clauses that warrant review. CUAD provides
CA datasets for both training and test.

• Contract Discovery (Borchmann et al., 2020) is
proposed to only tackle CD. It annotates 21 types
of clauses substantially different from CUAD and
applies a repeated sub-sampling procedure to pair
two clauses of the same type as a CD example.
However, since the legal annotation is expensive,
it only provides development and test sets.

For CA, we use the training set of CUAD to
train a ConReader model. We evaluate it on the

2585

test set of CUAD for the conventional setting and
on the development and test sets of Contract Dis-
covery for the zero-shot setting. For CD, since we
now have a training set from CUAD, we apply the
same supervised extractive QA setting, where one
clause is supposed to be extracted conditioned on
the query clause instead of original unsupervised
sentence matching formulation. Similar to Borch-
mann et al. (2020), we sub-sample k (k = 5 in our
work) clauses for each clause type and split them
into k - 1 seed clauses and 1 target clause. Then,
we pair each of the seed clauses with the contract
containing the target clause to form k - 1 CD ex-
amples. By repeating the above process, we can
finally get the CD datasets for both training and
evaluation. Similar to CA, we train another model
for CD and evaluate it in two settings. Details of
data statistics can be found in Appendix A.1.

Evaluation Metrics Following Hendrycks et al.
(2021), we use Area Under the Precision-Recall
curve (AUPR) and Precision at 80% Recall
(P@0.8R) as the major evaluation metrics for CA.
In CUAD, an extracted clause is regarded as true
positive if the Jaccard similarity coefficient be-
tween the clause and the ground truth meets a
threshold of 0.5 (Hendrycks et al., 2021). While
in Contract Discovery, it tends to annotate longer
clauses with some partially related sentences (ex-
amples can be found in Appendix A.2). Therefore,
we also regard an extracted clause as true positive
if it is a sub-string of the ground truth. For CD,
we use AUPR and Soft-F1 to conduct a more fine-
grained evaluation in terms of words (Borchmann
et al., 2020).

Baseline Methods We compare with several re-
cently published methods, including: 1) Rule-
based or unsupervised contract processing models:
Extraction Zone (Chalkidis et al., 2017) and Sen-
tence Match (Borchmann et al., 2020); 2) Strong
pretrained language models: BERT (Devlin et al.,
2019), RoBERTa (Liu et al., 2019), ALBERT (Lan
et al., 2020), DeBERTa (He et al., 2020) and
RoBERTa+PT that pretrained on 8GB contracts
(Hendrycks et al., 2021); and 3) Models tackling
long text issue: Longformer (Beltagy et al., 2020),
and Hi-Transformer (Wu et al., 2021).

Implementation Details We apply our frame-
work on top of two model sizes, namely, RoBERTa-
base (12-layer, 768-hidden, 12-heads, 125M param-
eters) and RoBERTa-large (24-layer, 1024-hidden,

Methods #Params CA CD

AUPR P@0.8R AUPR Soft-F1

Extraction Zone - 13.2 0 - -
Sentence Match - - - 10.2 34.2
BERT-b 109M 31.2 10.6 20.7 55.1
ALBERT-b 11M 36.0 13.1 23.4 59.1
RoBERTa-b 125M 43.2 32.2 29.6 63.8
RoBERTa+PT-b 125M 45.2 34.1 - -
Longformer-b 149M 45.8 0 22.4 54.6
Hi-Trans.-b 295M 44.0 33.3 31.2 64.2

ConReader-b 134M 47.2 38.7 33.5 66.1

BERT-l 335M 33.4 12.4 22.5 58.8
ALBERT-xxl 223M 38.4 31.0 - -
RoBERTa-l 355M 47.4 38.9 34.6 67.5
DeBERTa-xl 750M 47.8 44.0 - -

ConReader-l 364M 49.1 44.2 35.0 68.1

Table 1: Model Comparisons in the conventional setting.
Results are divided into two groups according to their
parameters size (-b denotes -base, -l denotes -large).

16-heads, 355M parameters) from Huggingface3.
The reserved slots size |r| is set to 30 such that
most of the relational information can be filled in.
The size of Clause Memory |M| for each parti-
tion is 10. In prediction, we follow Hendrycks
et al. (2021) to output top T = 20 clauses. Recall
that the query of CD is a clause, which is much
longer than a clause type. We set the max query
length for CA and CD to be 64 and 256 respectively.
The max sequence length is 512 for both models
in two tasks. We follow the default learning rate
schedule and dropout settings used in RoBERTa.
We use AdamW (Loshchilov and Hutter, 2019) as
our optimizer. We use grid search to find optimal
hyper-parameters, where the learning rate is cho-
sen from {1e-5,5e-5,1e-4}, the batch size is chosen
from {6,8,12,16}.

We additionally introduce 1.7M and 7M param-
eters to implement the clause retriever f(·, ·) and
fusion layer Fusion in ConReader. Comparing to
RoBERTa, their sizes are almost negligible, and
hardly affect the speed. All experiments are con-
ducted on one Titan RTX card.

4 Results

Conventional Setting Table 1 shows the results
of CA and CD in the conventional setting. Among
base-size models, ConReader-base significantly
improves over all previous methods on both tasks,
where it surpasses the RoBERTa-base by 4.0 and

3https://github.com/huggingface/transformers

2586

https://github.com/huggingface/transformers

Methods CA CD

Dev Test Dev Test

BERT-base 3.7 4.7 6.1 7.5
RoBERTa-base 13.7 14.8 10.7 11.2
Longformer-base 3.2 3.8 2.6 2.9
Hi-Transformer-base 12.9 13.8 10.5 10.7

ConReader-base 14.8 15.9 11.9 12.4

Table 2: AUPR in the zero-shot setting.

3.9 AUPR respectively. Among large-size models,
ConReader-large can exceed RoBERTa-large by
1.7 AUPR and 5.3 P@0.8R on CA and achieves
the new state-of-the-art. Such a large improvement
on P@0.8R would make the model less likely to
miss important clauses that may cause huge losses,
which is especially beneficial in the legal domain.
Notably, ConReader-large also exceeds DeBERTa-
xlarge by 1.3 AUPR with less than half of its pa-
rameters (364M vs 750M), demonstrating the ef-
fectiveness of our framework.

Additionally, there are several notable observa-
tions: 1) As the queries in CD are clauses, they
are more diverse than the 41 queries of CA, mak-
ing it a more difficult CCE task. 2) We find that
ConReader-base outperforms RoBERTa+PT-base.
This implies that explicitly modeling the complexi-
ties of the contracts is more valuable than learning
from the in-domain data in an unsupervised man-
ner. 3) The improvements of the models designed
for long text (Longformer and Hi-Transformer) are
less significant than ConReader. It suggests that
there are more sophisticated issues in contracts
other than long text. In addition, Longformer fa-
vors Precision than Recall, causing P@0.8R to be
0 in CA and low performance in CD. Such a char-
acteristic is not suitable for CCE as it has lower
tolerance to miss important clauses.

Zero-shot Setting In Table 2, we show the re-
sults of CCE in the zero-shot setting, where users
may look beyond the 41 types of clauses annotated
in Hendrycks et al. (2021) for their particular pur-
poses. We can observe that: 1) All models suffer
from a great performance drop in both tasks due
to the label discrepancy between training and eval-
uation, which highlights the challenge of CCE in
the zero-shot setting. 2) Though Longformer-base
performs well in the conventional setting, it is less
competitive against RoBERTa-base in the zero-shot
setting. We conjecture that it sacrifices the atten-
tion complexity for encoding longer text, which

Methods CA CD

AUPR P@0.8R AUPR Soft-F1

ConReader-base 47.2 38.7 33.5 66.1
- w/o LCR 46.4 36.3 33.0 65.7
- w/o TDR 44.1 34.8 32.8 65.9
- w/o SCR 45.3 35.7 32.0 65.9

Table 3: Ablation studies in the conventional setting.

is hard to capture the semantic correlations never
seen before in the zero-shot setting. 3) ConReader-
base achieves superior generalization ability in the
zero-shot setting. This is because the three implicit
relations widely exist in contracts, which are not
restricted to a particular clause type.

Ablation Study To investigate how each relation
type contributes to CCE, we conduct an ablation
study by ablating one component of ConReader in
each time, which is shown in Table 3. For clar-
ity, discarding LCR Solver means that we do not
fuse segment representations in Aggregator but we
still split a contract into segments for separate en-
coding. 1) Discarding LCR Solver would slightly
degrade the performance. Since LCR only appeals
to a small number of clauses that require distant
interactions, it has little benefit to the clauses that
require interaction within a segment. This limits
LCR in contributing to CCE. 2) The ablation study
in terms of TDR shows that definition information
actually improves CCE. It enhances the represen-
tations of terms with specific explanations, which
makes them less ambiguous and thus allows con-
sistent information flow. 3) Discarding SCR Solver
and the Retrieval Loss would also cast a serious
impact on the results, especially on CD. Since the
Retrieval Loss is a learning objective concerning
the semantics of clauses, it benefits CD by allevi-
ating the difficulty in understanding the query se-
mantics. As a result, LCR, SCR, and TDR should
all be taken into consideration for building reliable
CCE models.

5 Further Analyses

Analysis of TDR Solver The quality of extracted
definitions is of vital importance as it directly de-
termines the effectiveness of definition representa-
tions. Therefore, to check the quality of our auto-
matically extracted definitions, we compare them
with ground-truth definitions annotated by us in
CUAD. The statistics of ground-truth definitions
and the quality of automatically extracted defini-

2587

Dataset # Contract # Definition F1@D Acc@C

Train 290 4256 97.2 75.2
Test 65 670 97.7 81.4
Total 355 4926 97.3 76.5

(a) Definition statistics. F1@D denotes F1 on the definition
level and Acc@C denotes the accuracy on the contract level.

Tasks RoBERTa-base + Auto + Manual

CA 43.2 45.6 46.0
CD 29.6 31.5 31.8

(b) Model performance (AUPR) when enhancing RoBERTa-
base either with automatically extracted (+Auto) or manually
annotated (+Manual) definitions.

Table 4: Analysis of TDR Solver.

tions are shown in Table 4. Specifically, more than
half of the contracts contain definitions (290 / 408
for training, 65 / 102 for test), where our rule-based
extraction can correctly extract definitions for most
of them. In addition, the results in Table 4 (b) show
our extracted definitions (+Auto) are capable of
improving the ability of baseline models to extract
clauses by enhancing the representations of legal
terms and their benefits are almost the same as the
ground-truth definitions (+Manual).

Analysis of SCR Solver To examine in depth
the effect of SCR Solver, we implement several
variants from the perspectives of gathering similar
clauses (Access) and maintaining the Clause Mem-
ory (Update). As shown in Table 5, for Access,
we evaluate two variants by randomly selecting a
clause representation from the corresponding mem-
ory partition (w/ Random M[lq]) or retrieving the
most similar one from the entire memory (w/ Re-
trieved M). Since the first variant selects a truly
positive example (of the same type) to train the Re-
trieval Loss, the performance only drops marginally
comparing to our default design. While the second
variant is less effective since it cannot guarantee
the retrieval of a positive example, which imposes
a distracting signal in the Retrieval Loss. For Up-
date, we replace our FIFO update strategy with
random update (w/ Random Update) or stopping
update when memory is full (w/o Update). The
first variant can also partially keep the clause repre-
sentations update, while the second variant cannot,
causing it to be less effective due to poor clause rep-
resentations. Overall, our default design for SCR
Solver is more effective than those variants.

Case Study Figure 3 shows the attention distri-
bution of the start and end tokens of the ground-

Methods CA CD

RoBERTa-base 43.2 29.6
w/ SCR Solver (Default) 45.1 31.8

Access

w/ Random M[lq] 44.9 31.6
w/ Retrieved M 44.5 31.0

Update

w/ Random Update 45.0 31.5
w/o Update 44.5 30.6

Table 5: AUPR on different variants of SCR Solver.

Figure 3: Case study of the attention distribution of a
clause over its relevant information.

truth clause over the reserved slots. It provides
the interpretability that ConReader can precisely
capture the relevant relations with high attention
probability. For example, it indicates that there is
an important cue ("Section 5.3") in the No.7 seg-
ment. It provides the detailed explanation of rele-
vant terms ("Software Support and Maintenance"
and “SOFTWARE") that mentioned in this clause.
In addition, the start and end tokens also exhibit
high correlations with corresponding SCR start and
end representations, showing that similar clauses
can help determine the exact clause location.

Effect of Training Data Size We simulate low-
resource scenarios by randomly selecting 10%,
30%, 50%, and 100% of the training data for train-
ing CCE models and show the comparison results
among various methods. The performance trends
are visualized in Figure 4. In general, ConReader-
base makes an consistent improvement on different
data sizes. Impressively, it can yield an absolute
increase of 14 AUPR on CA by increasing the
training volume from 10% to 30%. ConReader-
base with 50% of the training data (ConReader-
base@50%) can reach or almost exceed the per-
formance of other approaches trained on 100%

2588

Figure 4: Performance (AUPR) w.r.t. training data size.

training data on both CA and CD. These results
shall demonstrate the great value of ConReader
in maintaining comparable performance and sav-
ing annotation costs at the same time. Meanwhile,
the performance trends of the two tasks indicate
that there is still a lot of room for improvement,
suggesting that the current bottleneck is the lack
of training data. According to the above analysis,
we do believe that applying ConReader can still
achieve stronger results than textual-input baselines
(e.g. RoBERTa) when more data is available and
therefore, reduce more workload of the end users.

6 Related Work

Contract Review Earlier works start from clas-
sifying lines of contracts into predefined labels,
where handcrafted rules and simple machine learn-
ing methods are adopted (Curtotti and McCreath,
2010). Then, some works take further steps to
analyze contracts in a fine granularity, where a
small set of contract elements are supposed to
be extracted, including named entities (Chalkidis
et al., 2017), parties’ rights and obligations (Fu-
naki et al., 2020), and red-flag sentences (Leiva-
diti et al., 2020). They release corpora for auto-
matic contract review, allowing neural models to
get surprising performance (Chalkidis and Androut-
sopoulos, 2017; Chalkidis et al., 2019). Recently,
studies grow increasing attention on CCE to ex-
tract clauses, which are complete units in contracts,
and carefully select a large number of clause types
worth human attention (Borchmann et al., 2020;
Wang et al., 2021b; Hendrycks et al., 2021). Due
to the repetition of contract language that new con-
tracts usually follow the template of old contracts
(Simonson et al., 2019), existing methods tend to
incorporate structure information to tackle CCE.
For example, Chalkidis et al. (2017) assign a fixed
extraction zone for each clause type and limit the

clauses to be extracted from corresponding extrac-
tion zones. Hegel et al. (2021) leverage visual cues
such as document layout and placement as addi-
tional features to better understand contracts.

Retrieval & Memory Retrieval from a global
memory has shown promising improvements to
a variety of NLP tasks as it can provide extra or
similar knowledge. One intuitive application is
the open-domain QA, where it intrinsically neces-
sitates retrieving relevant knowledge from outer
sources since there is no supporting information
at hand (Chen et al., 2017; Karpukhin et al., 2020;
Xu et al., 2021a,b). Another major application is
neural machine translation with translation mem-
ory, where the memory can either be the bilingual
training corpus (Feng et al., 2017; Gu et al., 2018)
or a large collection of monolingual corpus (Cai
et al., 2021). It also has received great attention in
other text generation tasks including dialogue re-
sponse generation (Cai et al., 2019; Li et al., 2021)
and knowledge-intensive generation (Lewis et al.,
2020), as well as some information extraction tasks
including named entity recognition (Wang et al.,
2021a), and relation extraction (Zhang et al., 2021).

7 Conclusion

We tackle Contract Clause Extraction by exploring
three implicit relations in contracts. We compre-
hensively analyze the complexities of contracts and
distill out three implicit relations. Then we propose
a framework ConReader to effectively exploit these
relations for solving CCE in complex contracts. Ex-
tensive Experiments show that ConReader makes
considerable improvements over existing methods
on two CCE tasks in both conventional and zero-
shot settings. Moreover, our analysis towards in-
terpretability also demonstrates that ConReader is
capable of identifying the supporting knowledge
that aids in clause extraction.

Limitations

In this section, we discuss the limitations of this
work as follows:

• In this paper, we employ some language-
dependent methods to extract the definitions.
Specifically, we use some regular expressions
to extract definitions from English contracts
in the TDR solver due to the well-organized
structure of contracts. Therefore, some sim-
ple extraction methods have to be designed

2589

to tackle the definition extraction when apply-
ing our framework to legal contracts in other
languages.

• In order to meet the need of the end users,
there is much room for improvement of the
CCE models. Due to the limited training data
from CUAD (408 contracts), it would be dif-
ficult to train a robust model that can be di-
rectly used in real-life applications, especially
those requiring the zero-shot transfer capa-
bility. Therefore, it would be beneficial to
collect more training data in order to satisfy
the industrial requirements. In addition, the
low-resource setting is also a promising and
practical direction for future studies.

Ethics Statement

The main purpose of CCE is to reduce the tedious
search effort of legal professionals from finding
needles in a haystack. It only serves to highlight
potential clauses for human attention and the le-
gal professionals still need to check the quality of
those clauses before continuing to the final contract
review (still human work). In fact, we use P@0.8R
as one of our evaluation metrics because it is quite
strict and meets the need of legal professionals.
We also conduct a zero-shot setting experiment to
demonstrate that the benefit of ConReader is not
learning from biased information and has a good
generalization ability.

We use publicly available CCE corpora to train
and evaluate our ConReader. The parties in these
contracts are mostly companies, which do not in-
volve gender or race issues. Some confidential
information has originally been redacted to protect
the confidentiality of the parties involved. Such
redaction may show up as asterisks (***) or un-
derscores (___) or blank spaces. We make identify
and annotate all definitions in those contracts. Such
definitions are well structured, which require little
legal knowledge. These annotations are just to ver-
ify the effectiveness of TDR Solver in ConReader
but not to contribute a new dataset. We can re-
lease the annotated definitions for the reproduction
of our analysis if necessary. We report all pre-
processing procedures, hyper-parameters, evalua-
tion schemes, and other technical details and will
release our codes for reproduction (we move some
to the Appendix due to the space limitation).

References
Iz Beltagy, Matthew E. Peters, and Arman Cohan. 2020.

Longformer: The long-document transformer.

Lukasz Borchmann, Dawid Wisniewski, Andrzej
Gretkowski, Izabela Kosmala, Dawid Jurkiewicz,
Lukasz Szalkiewicz, Gabriela Palka, Karol Kacz-
marek, Agnieszka Kaliska, and Filip Gralinski. 2020.
Contract discovery: Dataset and a few-shot semantic
retrieval challenge with competitive baselines. In
Findings of ACL: EMNLP 2020, pages 4254–4268.

Deng Cai, Yan Wang, Wei Bi, Zhaopeng Tu, Xiaojiang
Liu, Wai Lam, and Shuming Shi. 2019. Skeleton-
to-response: Dialogue generation guided by retrieval
memory. In NAACL-HLT 2019, pages 1219–1228.

Deng Cai, Yan Wang, Huayang Li, Wai Lam, and
Lemao Liu. 2021. Neural machine translation with
monolingual translation memory. In ACL/IJCNLP
2021, pages 7307–7318.

Ilias Chalkidis and Ion Androutsopoulos. 2017. A deep
learning approach to contract element extraction. In
JURIX, pages 155–164.

Ilias Chalkidis, Ion Androutsopoulos, and Achilleas Mi-
chos. 2017. Extracting contract elements. In ICAIL
2017, pages 19–28.

Ilias Chalkidis, Manos Fergadiotis, Prodromos Malaka-
siotis, and Ion Androutsopoulos. 2019. Neural con-
tract element extraction revisited. In Workshop on
Document Intelligence at NeurIPS 2019.

Danqi Chen, Adam Fisch, Jason Weston, and Antoine
Bordes. 2017. Reading wikipedia to answer open-
domain questions. In ACL 2017, pages 1870–1879.

Michael Curtotti and Eric McCreath. 2010. Corpus
based classification of text in Australian contracts. In
Proceedings of the Australasian Language Technol-
ogy Association Workshop 2010, pages 18–26.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In NAACL-HLT 2019, pages 4171–4186.

Yang Feng, Shiyue Zhang, Andi Zhang, Dong Wang,
and Andrew Abel. 2017. Memory-augmented neural
machine translation. In EMNLP 2017, pages 1390–
1399.

Ruka Funaki, Yusuke Nagata, Kohei Suenaga, and Shin-
suke Mori. 2020. A contract corpus for recognizing
rights and obligations. In LREC 2020, pages 2045–
2053.

Jiatao Gu, Yong Wang, Kyunghyun Cho, and Victor
O. K. Li. 2018. Search engine guided neural machine
translation. In AAAI 2018, pages 5133–5140.

Raia Hadsell, Sumit Chopra, and Yann LeCun. 2006.
Dimensionality reduction by learning an invariant
mapping. In CVPR 2006, pages 1735–1742.

2590

http://arxiv.org/abs/2004.05150

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2020. Deberta: Decoding-enhanced
bert with disentangled attention. arXiv preprint
arXiv:2006.03654.

Allison Hegel, Marina Shah, Genevieve Peaslee, Bren-
dan Roof, and Emad Elwany. 2021. The law of large
documents: Understanding the structure of legal con-
tracts using visual cues.

Dan Hendrycks, Collin Burns, Anya Chen, and Spencer
Ball. 2021. Cuad: An expert-annotated nlp dataset
for legal contract review. In NeurIPS 2021.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
S. H. Lewis, Ledell Wu, Sergey Edunov, Danqi Chen,
and Wen-tau Yih. 2020. Dense passage retrieval for
open-domain question answering. In EMNLP 2020,
pages 6769–6781.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. ALBERT: A lite BERT for self-supervised
learning of language representations. In ICLR 2020.

Spyretta Leivaditi, Julien Rossi, and Evangelos
Kanoulas. 2020. A benchmark for lease contract
review. arXiv preprint arXiv:2010.10386.

Patrick S. H. Lewis, Ethan Perez, Aleksandra Pik-
tus, Fabio Petroni, Vladimir Karpukhin, Naman
Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih,
Tim Rocktäschel, Sebastian Riedel, and Douwe
Kiela. 2020. Retrieval-augmented generation for
knowledge-intensive NLP tasks. In NeurIPS 2020.

Yunhao Li, Yunyi Yang, Xiaojun Quan, and Jianxing
Yu. 2021. Retrieve & memorize: Dialog policy learn-
ing with multi-action memory. In Findings of ACL:
ACL/IJCNLP 2021, pages 447–459.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In ICLR 2019.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100, 000+ questions for
machine comprehension of text. In EMNLP 2016,
pages 2383–2392.

Dan Simonson, Daniel Broderick, and Jonathan Herr.
2019. The extent of repetition in contract language.
In Proceedings of the Natural Legal Language Pro-
cessing Workshop 2019, pages 21–30.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NeurIPS 2017, pages 5998–6008.

Xinyu Wang, Yong Jiang, Nguyen Bach, Tao Wang,
Zhongqiang Huang, Fei Huang, and Kewei Tu.
2021a. Improving named entity recognition by ex-
ternal context retrieving and cooperative learning. In
ACL/IJCNLP 2021, pages 1800–1812.

Zihan Wang, Hongye Song, Zhaochun Ren, Pengjie
Ren, Zhumin Chen, Xiaozhong Liu, Hongsong Li,
and Maarten de Rijke. 2021b. Cross-domain contract
element extraction with a bi-directional feedback
clause-element relation network. In SIGIR 2021,
pages 1003–1012.

Chuhan Wu, Fangzhao Wu, Tao Qi, and Yongfeng
Huang. 2021. Hi-transformer: Hierarchical inter-
active transformer for efficient and effective long
document modeling. In ACL/IJCNLP 2021, pages
848–853.

Weiwen Xu, Yang Deng, Huihui Zhang, Deng Cai, and
Wai Lam. 2021a. Exploiting reasoning chains for
multi-hop science question answering. In Findings
of the Association for Computational Linguistics:
EMNLP 2021, pages 1143–1156, Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Weiwen Xu, Huihui Zhang, Deng Cai, and Wai Lam.
2021b. Dynamic semantic graph construction and
reasoning for explainable multi-hop science question
answering. In Findings of the Association for Com-
putational Linguistics: ACL-IJCNLP 2021, pages
1044–1056, Online. Association for Computational
Linguistics.

Yue Zhang, Hongliang Fei, and Ping Li. 2021. Readsre:
Retrieval-augmented distantly supervised relation ex-
traction. In SIGIR 2021, pages 2257–2262.

2591

http://arxiv.org/abs/2107.08128
http://arxiv.org/abs/2107.08128
http://arxiv.org/abs/2107.08128
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/2021.findings-emnlp.99
https://doi.org/10.18653/v1/2021.findings-emnlp.99
https://doi.org/10.18653/v1/2021.findings-acl.90
https://doi.org/10.18653/v1/2021.findings-acl.90
https://doi.org/10.18653/v1/2021.findings-acl.90

A Appendix

A.1 Data Statistics
We show the datasets statistics in Table 6. CUAD
annotates 41 types of clauses that lawyers need to
pay attention to when reviewing contracts. Some
types are "Governing Law", "Agreement Date",
"License Grant", and "Insurance" et al. Contract
Discovery annotates another 21 types of clauses
that must be well-understood by the legal annota-
tors. These types include "Trustee Appointment",
"Income Summary", and "Auditor Opinion" et al.
The two datasets differ substantially in their an-
notated types, making Contract Discovery a good
resource for conducting zero-shot experiments. To
prepare a real zero-shot setting, we further remove
6 types of clauses annotated in both corpora to pre-
pare a real zero-shot setting. The types include:
change of control covenant, change of control no-
tice, governing law, no solicitation, effective date
reference, effective date main.

Since most contents in contracts are unlabeled,
which cause a large imbalance between extractable
and non-extractable segments. If a CCE model
is trained on this imbalanced data, it is likely to
output an empty span since it has been taught by
the non-extractable segments not to extract clauses.
Therefore, we follow Hendrycks et al. (2021) to
downweight contract segments that do not contain
any relevant clauses in the training set such that
extractable and non-extractable segments are ap-
proximately balanced (i.e. 1:1). While in test sets,
we keep all non-extractable segments. This ex-
plains why test sets have fewer contracts but more
segments.

A.2 Annotation Difference
Table 7 shows the annotation difference between
CUAD and Contract Discovery on “Governing
Law" clauses. In fact, Contract Discovery tends to
annotate more facts into the clause, such as parties’
obligations. Due to such annotation difference, we
also regard an extracted clause as true positive in
calculating AUPR if it is a sub-string of the ground
truth in the zero-shot setting.

A.3 Performance by Type
Figure 5 shows the AUPR scores for each clause
type of ConReader and RoBERTa.

2592

Task Source #Type Dataset #Contract #Segment #Clause

CA

CUAD 41 Train 408 38,226 11,180
CUAD 41 Test (Conv.) 102 155,098 2,643

Contract Discovery 15 Dev (Zero.) 287 407,907 1,031
Contract Discovery 15 Test (Zero.) 286 375,606 1,031

CD

CUAD 41 Train 408 55,249 15,988
CUAD 41 Test (Conv.) 102 711,282 10,448

Contract Discovery 15 Dev (Zero.) 287 602,236 5,524
Contract Discovery 15 Test (Zero.) 286 560,721 5,549

Table 6: Dataset statistics for CA and CD.

C
U

A
D

This Agreement shall be construed in accordance with and governed by the substantive internal
laws of the State of New York.
This Agreement shall be governed by the laws of the State of New York, without giving effect to
its principles of conflicts of laws, other than Section 5-1401 of the New York General Obligations
Law.
This Agreement is subject to and shall be construed in accordance with the laws of the Common-
wealth of Virginia with jurisdiction and venue in federal and Virginia courts in Alexandria and
Arlington, Virginia.

C
on

tr
ac

tD
is

co
ve

ry

Section 4.8 Choice of Law/Venue . This Agreement will be governed by and construed and
enforced in accordance with the internal laws of the State of California, without giving effect to
the conflict of laws principles thereof. Each Party hereby submits to personal jurisdiction before
any court of proper subject matter jurisdiction located in Los Angeles, California, to enforce the
terms of this Agreement and waives any and all objections to the jurisdiction and proper venue of
such courts.
This Agreement will be governed by and 4 construed in accordance with the laws of the State of
Delaware (without giving effect to principles of conflicts of laws). Each Party: (a) irrevocably and
unconditionally consents and submits to the jurisdiction of the state and federal courts located in
the State of Delaware for purposes of any action, suit or proceeding arising out of or relating to
this Agreement;
Section 4.8. Choice of Law/Venue . This Agreement will be governed by and construed and
enforced in accordance with the internal laws of the State of California, without giving effect to
the conflict of laws principles thereof. Each Party hereby submits to personal jurisdiction before
any court of proper subject matter jurisdiction located in Los Angeles, California, to enforce the
terms of this Agreement and waives any and all objections to the jurisdiction and proper venue of
such courts.

Table 7: Examples of annotation of “Governing Law“ clauses in two datasets.

2593

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Price Restrictions

Competitive Restriction Exception

Third Party Beneficiary

Warranty Duration

Non-Disparagement

Affiliate License-Licensor

Post-Termination Services

Source Code Escrow

Uncapped Liability

Most Favored Nation

Rofr/Rofo/Rofn

Volume Restriction

Ip Ownership Assignment

Change Of Control

No-Solicit Of Customers

Non-Transferable License

Affiliate License-Licensee

Minimum Commitment

Joint Ip Ownership

Non-Compete

Unlimited/All-You-Can-Eat-License

Liquidated Damages

Revenue/Profit Sharing

Effective Date

Termination For Convenience

Insurance

Exclusivity

Cap On Liability

Covenant Not To Sue

Audit Rights

Irrevocable Or Perpetual License

No-Solicit Of Employees

License Grant

Notice Period To Terminate Renewal

Renewal Term

Anti-Assignment

Parties

Agreement Date

Expiration Date

Document Name

Governing Law

AUPR

RoBERTa ConReader

Figure 5: CA performance (AUPR) by clause types.

2594

