
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 2251–2277
December 7-11, 2022 ©2022 Association for Computational Linguistics

Gradient-Based Constrained Sampling from Language Models

Sachin Kumar♣ Biswajit Paria♡ Yulia Tsvetkov♠
♣Language Technologies Institute, Carnegie Mellon University, Pittsburgh PA
♡Machine Learning Department, Carnegie Mellon University, Pittsburgh PA

♠Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle WA
{sachink,bparia}@cs.cmu.edu, yuliats@cs.washington.edu

Abstract

Large pretrained language models generate flu-
ent text but are notoriously hard to control-
lably sample from. In this work, we study con-
strained sampling from such language models:
generating text that satisfies user-defined con-
straints, while maintaining fluency and model’s
performance in a downstream task. We propose
MUCOLA—a sampling procedure that com-
bines the log-likelihood of the language model
with arbitrary (differentiable) constraints in a
single energy function, and then generates sam-
ples in a non-autoregressive manner. Specifi-
cally, it initializes the entire output sequence
with noise and follows a Markov chain defined
by Langevin Dynamics using the gradients of
the energy function. We evaluate MUCOLA on
text generation with soft and hard constraints
as well as their combinations obtaining signifi-
cant improvements over competitive baselines
for toxicity avoidance, sentiment control, and
keyword-guided generation.1

1 Introduction

Transformer-based language models (LMs) trained
on web-scale corpora (Radford et al., 2019; Raf-
fel et al., 2020; Brown et al., 2020) are generat-
ing impressively realistic texts. Despite having
human-level fluency, they are far from reaching
human-level communication abilities and are hard
to control for content, context, and intent in com-
munication. This results in unreliable models that
lack basic knowledge, hallucinate facts, and dis-
criminate users (Bender et al., 2021; Gehman et al.,
2020; Pagnoni et al., 2021).

Controlled text generation—sampling text from
LMs to satisfy constraints on the properties of gen-
erated text—aims to address these issues. Prior
works incorporate constraints in existing decoding

1The code is available at: https://github.com/
Sachin19/mucoco/tree/sampling

…

Figure 1: MUCOLA, our proposed method, stylized
as µCOLA. Given a language model, a prompt/input
x, and desired constraints defined as thresholds on dif-
ferentiable functions, we perform Langevin Dynamics
updates to generate the entire output sequence y non-
autogressively. We show experiments highlighting both
hard and soft constraints (§4).

algorithms at token level by modifying output prob-
abilities (Dathathri et al., 2020; Yang and Klein,
2021a; Krause et al., 2020a; Liu et al., 2021a; Lu
et al., 2021b; Pascual et al., 2021; Liu et al., 2021b).
While effective in certain settings, by generating au-
toregressively (i.e., left-to-right), these approaches
fail to account for global context and hardly gener-
alize beyond a single constraint. More importantly,
by modifying output probabilities, they end up alter-
ing the underlying LM distribution compromising
the fluency and task accuracy (Kumar et al., 2021).

We propose an algorithm to sample text non-
autoregressively from a conditional or uncondi-
tional LM trained to perform any language gen-
eration task—translation, summarization, dialog,
prompt completion—while controlling for multi-
ple, potentially competing constraints, and without
sacrificing the base model quality. Combining the
LM likelihood with constraints into a single “en-
ergy” function, our algorithm follows a Markov
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Chain (Brooks et al., 2011) to iteratively transform
an output sequence initialized randomly into a de-
sired output with low energy.

Since common Monte Carlo Markov Chain
(MCMC) sampling methods can be intractably
slow (Sokal, 1997), we propose to define this
Markov Chain using gradients of the energy func-
tion with respect to token embeddings of the output
sequence. Additionally, we introduce stochasticity
in the process in order to generate diverse samples,
by modifying the gradients with additive noise, a
process referred to as Langevin Dynamics (Grenan-
der and Miller, 1994; Parisi, 1981; Welling and
Teh, 2011; Gelfand and Mitter, 1991; Song et al.,
2020). Finally, we operationalize the energy func-
tion by defining each constraint to be smaller than
threshold, and writing it as a Lagrangian—with
language model likelihood as the primary objec-
tive (Kumar et al., 2021). Besides allowing us
to combine any number of constraints of varying
scales without a need of tuning their weights, we
show that low-energy solutions under this defini-
tion are true samples from the LM distribution. We
call this algorithm MUCOLA for sampling with
multiple constraints from LMs using Langevin Dy-
namics (§3; also see figure 1 in the Appendix).

We show the efficacy and generality of MU-
COLA on a variety of tasks, LMs and constraints
from prior work (§4), including soft constraints
(§5) defined using auxiliary models (e.g., classi-
fiers or smaller LMs), as well as hard rule-based
constraints (§6) defined by presence or absence
of certain keyphrases. We conduct experiments
on (a) toxicity avoidance, sentiment control in
GPT2-Large, and (b) keyword controlled gener-
ation with GPT2-Large and XL, and (c) entity con-
trol to improve fidelity in translation. Through
both automatic metrics and human evaluation, we
show versatility of this method through improved
or matched performance with competitive base-
lines, in terms of quality and diversity. Finally, we
present preliminary results on new tasks, showing
promising directions for future research.

2 Background: Constrained Sampling
from Language Models

Let P (y|x; θ) model the conditional probability
distribution of an output token sequence y =
(y1, . . . , yN ), given an optional input token se-
quence x = (x1, . . . , xM ) where xm, yn ∈ V .

We are interested in constrained sampling from

P—finding output sequences y that have a high
probability under P while minimizing a given set
of constraint functions: {f1, . . . , fC}. We assume
that each fi : ([x],y) → R is defined such that a
lower value of fi implies that the output better sat-
isfies the constraint. For example, to constrain the
outputs to only non-toxic continuations for a given
prompt x, we define a classifier pTOXIC(y) which
predicts the output toxicity probability, with lower
probability implying lower toxicity. We assume all
fi are differentiable.

Enforcing these constraints in an autoregres-
sive (i.e., left-to-right) decoding strategy like beam
search or sampling is challenging, since the con-
straints are defined conceptually on the whole out-
put sequence and are hard to evaluate accurately
only on the generated prefix (Yang and Klein,
2021b; Liu et al., 2021a). With multiple constraints,
their satisfaction/balancing becomes challenging.
Recent work thus explored non-autoregressive
controlled generation (Kumar et al., 2021), using
constrained optimization over y—finding a single
output y which maximizes P given the constraints
by performing gradient descent on the outputs y.
This involves (1) representing the constrained op-
timization problem as a single objective E(y) (of-
ten referred to as an energy function, discussed
in §3.3), and (2) relaxing the discrete outputs y
to continuous approximations such that gradient
descent is feasible. In previous works, the latter
is achieved by creating a soft-representation of y,
ỹ = (ỹ1, . . . , ỹN ) where each ỹn ∈ R|V| is a sim-
plex (or “logits” which are converted to a simplex
using softmax) over the target vocabulary V , rep-
resenting the probability of the n-th token in the
sequence. We refer to these methods as gradient-
based decoding. Representing the decoding objec-
tive as minỹ E(ỹ) and initializing ỹ with ỹ0, it is
updated as

ỹt = ỹt−1 − η∇ỹE(ỹt−1), (1)

where η > 0 denotes the step size. In this process,
the underlying LMs (and functions fi) remain fixed
and are used to provide gradients to the sequence
ỹ. After performing multiple steps of this gradient
descent, discrete text can be extracted from ỹ using
different heuristics (Kumar et al., 2021; Qin et al.,
2020; Song et al., 2020). This formulation has been
studied in various generation settings in prior work
with different instantiations of ỹ and E(y).

However, this setup is deterministic and does
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Figure 2: Different kinds of functions can be incorporated into MUCOLA defined on a shared embedding table E.
(Left) Language Modeling objective defines a per-token loss directly on the sequence of embeddings. For every
token this loss provides gradients to update ẽi via backpropagation through the transformer layers and directly
to ẽi+1 through the negative loss likelihood loss as computed in §3.3. This is used as a primary objective for the
underlying LM and can also be used for classification as discussed in §5.2 (Center) Classification objective defined
on probability of the desired label. The classifier gets the token embeddings ẽ directly as input and updates the
embedding using gradients obtained via backpropagation from the transformer layers (Right) Lexical loss defined
on the embeddings directly (without the use of additional models) to include desired keywords or phrases in the
output sequence (§6). In practice any combination of these constraints can be used.

not facilitate sampling.2 In addition, representing
each token with a vector of size |V| can be com-
putationally very expensive and difficult to fit into
commonly used GPUs for long sequences (with
more than ∼20-30 tokens; §7).

3 Constrained Sampling via Langevin
Dynamics in Embedding Space

To enable efficient gradient-based sampling from
LMs, we introduce MUCOLA which modifies the
non-autoregressive framework in §2 to (a) generate
multiple samples instead of optimizing for only one
deterministic output, (b) optimize for much smaller
intermediate token representations as opposed to
their distribution on the entire vocabulary.

3.1 Exploring the token representation space
Instead of relaxing each target token yn as a soft
representation over the vocabulary ỹn ∈ R|V|, we
represent it as ẽn ∈ E. Here E denotes the em-
bedding table of the underlying language model
containing |V| vectors of size d ≪ |V|. We denote
this sequence of embeddings as ẽ = {ẽ1, . . . , ẽN}.
At an update step t, instead of feeding each ỹ to the
model(s) (which are then transformed to an embed-
ding to be fed to the first layer), we directly feed
ẽ to the first layer to compute the energy function,
now defined as a function of embeddings instead
of tokens. In case of deterministic minimization
(similar to (1)), these vectors are updated as

ẽt = ProjE(ẽ
t−1 − η∇ẽE(ẽt−1)), (2)

2While initialization can be used to add randomness to this
algorithm, we find that it has little to no effect on diversity.

where ProjE(ê) = argmine∈E ∥e− ê∥2 denotes a
projection operation on the embedding table E. In
other words, after every gradient step, we project
each updated vector back to a quantized space, that
is the embedding table using Euclidean distance
as the metric. This projection is done to prevent
adversarial solutions.3 After the optimization is
complete, discrete text can be easily obtained by
projection, that is the token indices corresponding
to each ẽn in the embedding table E. This for-
mulation yields the following benefits: (a) For a
sequence of length L, at any optimization step t,
it only maintains (and computes gradients with re-
spect to) L× d parameters, as opposed to L× |V|.
This enables us to store much longer sequences in
a GPU as compared to the storing ỹ. (b) this for-
mulation provides a natural way to define hard rule-
based constraints based on keywords or phrases
(discussed in more detail in §6), and, finally (c) it
yields a natural way to generating samples.

3.2 Gradient based Sampling via Langevin
Dynamics

The minimization in (2) can be very easily extended
to a sampling procedure by modifying the gradient
descent in (2) to Langevin Dynamics (Gelfand and
Mitter, 1991; Welling and Teh, 2011),

ẽt = ProjE(ẽ
t−1 − η∇ẽE(ẽt−1) +

√
2ηβzt)

3Several prior works (Belinkov and Glass, 2019) have
shown that neural-network based models are not robust to
change in input space. We observed this phenomenon in our
preliminary experiments where, without any projection, most
low energy solutions were found to be garbled text.
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Langevin Dynamics provides a MCMC method to
sample from a distribution using only the gradient
of its logarithm. That is, if we define a distribution
as Q(y) ∝ exp (−E(y)), its logarithm leads to the
update specified above.4 This method is often used
for non-convex optimization for training neural net-
works (Welling and Teh, 2011) due to its ability to
escape local minima due to added noise and con-
verge towards the global minima. In this work, we
adapt it for inference (Song and Ermon, 2019).

Intuitively, by adding noise at every gradient
step, this procedure intends to find outputs y that
do not exactly minimize E but remain in the vicinity
of the minima. In other words, it finds outputs
which admit high probability under the distribution
Q(y). This process begins with an exploration
phase which is controlled by β. With a high value
of β, the noise term is large leading to big updates.
By gradual annealing such that β → 0, as t → ∞,
this process converges to a sample from Q(y).5

3.3 Representing the energy function

A straightforward way to represent E is with a lin-
ear combination as

∑C
i=1 λifi − λC+1 logP , with

pre-defined weights λ1, . . . , λC+1 (Hoang et al.,
2017; Qin et al., 2020, 2022). With this formulation
(a) linear weights, λi’s, can be hard to define and
tune for different fi, and especially difficult when
fi’s lie on different scales, and more importantly,
(b) defining the energy function in this manner mod-
ifies the original goal, which is to sample from the
language model P (with constraints), not from a
modified distribution Q ∝ exp(−E(y)). To allevi-
ate these issues, we define the inference objective,
following Kumar et al. (2021), as

y ∼ P (y|x; θ), subject to fi([x],y) ≤ ϵi∀i

where each threshold ϵi is a hyperparameter. As we
discuss in more detail in §4, these thresholds can

4The normalization term in Q(y) vanishes as its gradient
with respect to y is 0.

5More details of the implementation of annealing schedule
can be found in §4. A similar noise can also be applied directly
to the soft-token representations in (1) as explored in Qin et al.
(2022). However, as we discuss in §7, our formulation with its
smaller parameter size allows generating longer sequences. In
addition, considering logits as soft-representations (followed
by softmax) has shown to result in slow mixing, that is, it
takes much longer to converge as empirically shown in Hoang
et al. (2017) and also observed in Qin et al. (2022). On the
other hand, considering the simplex itself (Kumar et al., 2021;
Hoang et al., 2017) as soft-representations is not compatible
with Gaussian noise and can lead to undesirable behavior (Pat-
terson and Teh, 2013).

be flexibly defined for most kinds of constraints.
For example, instead of merely trying to reduce
pTOXIC(y), we can set it as pTOXIC(y) < 0.1. Given
this formulation, we define the energy function as
a Lagrangian E(y) = − logP (y)−∑u

i=1 λi(ϵi −
fi(y)). Here, λi ≥ 0 are Lagrangian multipli-
ers and dynamically updated at each step. We
follow the gradient of E downwards for the ẽ
(as described in (2)) and upwards for the multi-
pliers (gradient ascent without any noise) while
making sure that the multipliers remain positive:
λt
i = max(0, λt−1

i + α∇λi
E(y)) (α > 0 is the

step size for ascent). Intuitively, if a constraint is
not satisfied, the term (ϵi − fi(·)) would be nega-
tive and λi would keep increasing making E high.
On the other hand, if all the constraints are satis-
fied these values gradually decrease to 0 making
E(y) = − logP (y) making the final output a sam-
ple from the desired distribution P . We implement
a damped version of this process to improve sta-
bility, the details of which can be found in Kumar
et al. (2021). The final decoding algorithm we used
in our experiments is described in algorithm 1 in
the Appendix.
Energy as a function of embeddings Perform-
ing gradient updates with respect to ẽ requires
that all objectives be defined as functions of ẽ,
not y. Also, f1(y), . . . , fC(y) must share the
same input embedding table (as that of P ). We
discuss in §4 how this can achieved for differ-
ent kinds of constraint functions fi. First, we
describe how to compute the primary objective
− logP (y|x; θ) and its gradients with respect to
ẽ. In typical LMs, this objective is factorized
as logP (y|x) =

∑L−1
n=0 logP (yn+1|y1:n,x). For

each decoding step n + 1: the model takes as in-
put yn, which is converted to en via an embed-
ding table lookup. Passed through the network lay-
ers, it is converted to a hidden vector hn. Since
the input and output embedding tables in most
modern LMs are shared (Radford et al., 2019;
Raffel et al., 2020; Lewis et al., 2020; Brown
et al., 2020),6 the softmax probability is computed
as, P (yn+1|y1:n,x) = exp(hT

n en+1+bn+1)∑|V|
j=1 exp(h

T
n ej+bj)

where

bn are optional bias terms. By replacing en+1

with ẽn+1, we convert the above probability to
P (ẽn+1|ẽ1:n,x). For each position n + 1, ẽn+1

6Even if the embedding tables are not shared, this loss
may be computed and optimized using vectors from the output
embedding table as parameters without any significant loss in
performance.
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receives gradients, (a) directly from − logP func-
tion and (b) through hn+1 via back-propagation
through the network layers (See figure 2 (left)).

4 Experimental Setup

We evaluate MUCOLA on four constrained genera-
tion tasks. These tasks are selected based on defin-
ing different kinds of constraints for which prior
work designed specialized training or decoding
mechanisms which cannot be generalized beyond
those tasks or language models. The main contri-
bution of MUCOLA is generating diverse samples
which conform to the language model P as well
as can satisfy user defined arbitrary combination
of constraints for which fine-tuning is generally
infeasible and tuning weights of each constraint
is cumbersome. For a pre-defined sentence length
L, we initialize the token representation for each
step ẽ1, . . . , ẽL using token embeddings randomly
sampled from the target vocabulary V .7 For all
our experiments, we run the Langevin Dynamics
simulation for a maximum of 250 iterations un-
less specified otherwise. We describe additional
implementation details including noise schedule,
stopping criterion and multiplier update schedule
in Appendix C.

5 Text Generation with Soft Constraints

First, we evaluate MUCOLA with real valued
constraint functions defined via auxiliary models
such as classifiers or LMs. Given an LM GPT2-
Large (Radford et al., 2019), and a prompt x, we
generate continuations y. We conduct experiments
with: toxicity avoidance and sentiment control.
Each of the tasks define a binary constraint. Let
the desired label be denoted by LABEL1, and other
one with LABEL0 (LABEL1 is non-toxic in toxicity
avoidance and positive in sentiment control). For
both setups, we assume availability of corpora to
train the constraint functions.8

Baselines In addition to decoding without any
constraints (which we simply call GPT2), we con-
sider the following baselines which decode from
left-to-right:

7We also tried other initialization strategies like initializing
with zeros, or outputs of nucleus sampling or greedy decoding
but did not find it to have any significant effect on the final
output

8This setup can be easily extended to n-class setups by
defining n− 1 constraints as p0 > p1, . . . , p0 > pn−1

• Domain Adaptive Pretraining (DAPT) (Gu-
rurangan et al., 2020) proposes to finetune the
LM P on a corpus of desired constraint and
sample directly from finetuned version.

• FUDGE (Yang and Klein, 2021a) uses a
“future-aware” constraint classifier to modify
output token probabilities at every decoding
step to steer the generation to promote con-
straint satisfaction. This classifier is trained to
predict the ground truth label for every prefix
of the training corpus.

• GeDi (Krause et al., 2020a) uses a class-
conditioned LM to modify output token prob-
abilities at each step via Bayes’ rule.

• DExperts (Liu et al., 2021b) proposes to re-
place the class-conditioned LM with two aux-
iliary language models (one expert and one
anti-expert) to modify the output logits at ev-
ery step. These LMs are trained using same
setup as the baseline DAPT but instead of
sampling from them directly, it uses them to
steer the base LMs outputs. For each of the
baselines, we use recommended hyperparam-
eters to generate samples.

Constraint functions Each of these baselines
can be adopted as constraint functions for MU-
COLA as follows:

• Discriminative Classifiers We train a binary
classifier pLABEL(y), which predicts the proba-
bility of the desired attribute given the output
sequence y by finetuning roberta-base with
GPT2-Large embeddings (more details in Ap-
pendix D). To decode with MUCOLA, we
formulate this constraint as pLABEL1 > ϵ (We
define specific ϵ values in §5.1 and §5.2 re-
spectively). To improve its gradient profile,
we use the constraint in log space. We call
this setup MUCOLA-DISC.

• Generative Classifiers Prior work has shown
that discriminative classifiers can be fragile
to domain shift or adversarial examples (Yo-
gatama et al., 2017; Krause et al., 2020b).
Hence, we also consider a second class of
generative classifiers trained as class con-
ditional LMs that model p(·|LABEL). Intu-
itively, they are required to explain every
word in the input, potentially amplifying the
class signal and improving robustness (Min
et al., 2021). We define them in three ways
by finetuning GPT2-Large: (1) following
GEDI (MUCOLA-GeDi), (2) following DEx-
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perts, (we train two separate LMs; MUCOLA-
DExperts). And finally, (3) motivated by re-
cent work on prompt-based classification, we
define a class-conditional LM without finetun-
ing the model as P (x,y|verbalize(LABEL))
where verbalize(·) is function that con-
verts the label to a natural language string
(MUCOLA-prompt). Note that for all
three setups, the embedding table is frozen
(more details in Appendix D). We de-
code via MUCOLA with the constraint
p(x,y|LABEL1)) > p(x,y|LABEL0) (again,
realized in log-space)9.

Evaluation In both experiments, we evaluate the
generated samples along three dimension, (1) Con-
straint Satisfaction measured using external evalu-
ators, (2) Fluency, measured by mean perplexity of
the continuations measured using GPT2-XL. Since
the objective is to generate samples from the LM,
we rank different methods not by their absolute
perplexity, but its difference from the perplexity of
unconstrained text. Additionally, we also report a
grammaticality score: the fraction of outputs pre-
dicted by a classifier trained on CoLA (Warstadt
et al., 2019) as fluent. (3) Diversity, measured by
computing the mean number of distinct n-grams in
each set of samples, normalized by the length of
text (Li et al., 2016). We report this for n = 1, 2, 3
following prior work. Since all the automatic met-
rics are model based and can be biased, we also
perform human evaluation in an A/B testing setup
with the best performing baseline (DExperts in our
case). For each sample, we ask 3 annotators to com-
pare and rank candidates from our approach and
the baseline on constraint satisfaction, topicality
and fluency.

5.1 Toxicity Avoidance

Prior work have shown that large pre-trained LMs
are at risk of producing toxic content even when
given innocuous prompts (Sheng et al., 2019;
Gehman et al., 2020). In this experiment, given
a neutral prompt, we generate non-toxic contin-
uations using MUCOLA. We only consider the
setup MUCOLA-DISC here, with a classifier pTOXIC,
trained on a dataset of human-annotated comments
labelled as toxic or non-toxic (Appendix D). We
decode with the constraint pTOXIC < 0.01.

9Note that all constraints we descibe can be easily extended
to n-class set (with say 0 as the desired label) by defining n−1
constraints as p0 > p1, . . . , p0 > pn−1

We follow the evaluation setup defined in Liu
et al. (2021b) and use test set of 10K nontoxic
prompts (Gehman et al., 2020) where without any
constraints, the user might receive harmful output
from the LM. For each prompt, we generate 25
samples for length 20 tokens each. We measure
constraint satisfaction using the toxicity score from
Perspective API. Following prior work (Gehman
et al., 2020; Liu et al., 2021b), we report the max-
imum toxicity score over 25 samples per prompt
averaged over the number of prompts, and the em-
pirical probability of generating a continuation with
toxicity > 0.5 at least once over the 25 generations.

As shown in Table 1, MUCOLA outperforms or
matches all baselines on toxicity, including a strong
baseline DEXPERTS which is specifically designed
for binary constraints. In addition, our method is
closest in perplexity to unconstrained generation,
while maintaining grammaticality as well as diver-
sity of baseline methods10. We attribute this im-
provement to the fact that after the constraints are
satisfied, the energy function in MUCOLA reduces
to − logP (y), the original function we intend to
sample from, whereas in the baselines, the underly-
ing probability distribution (or the energy function)
is modified to achieve control. Furthermore, human
evaluation (Appendix F) reveals that generations by
MUCOLA match DExperts on toxicity and fluency
while being more topical.

5.2 Sentiment Controlled Generation

Given a prompt x, the goal of this task is to gen-
erate continuations y using an LM with a posi-
tive sentiment/polarity. To understand the effect of
sources of training data, we train two versions of
each constraint function described above on two
datasets: SST-2 corpus (Socher et al., 2013) con-
taining ∼4K examples in Movie reviews for each
class; and Yelp polarity corpus containing ∼280K
examples for each class containing a mixed domain
of reviews. We also consider an additional setup
where we use two constraints using both versions
of MUCOLA-DISC, which we call MUCOLA-
TWO-DISC. We use a dataset of 15 prompts
from Dathathri et al. (2020) and generate 20 sam-
ples per prompt of length 12, 20, and 50.

To evaluate constraint satisfaction, we measure
positive sentiment accuracy of the output using

10While FUDGE obtains the lowest absolute perplexity,
prior work (Holtzman et al., 2020) has shown that very low
perplexity is not an indicator of higher quality but of repeti-
tions and usage of only high frequency tokens.
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Approach Toxicity Fluency Diversity

Avg. Max.
Toxicity

Toxicity
Prob. Perplexity CoLa

Accuracy Dist-1 Dist-2 Dist-3

GPT-2 0.527 0.520 25.45 88.3 0.58 0.85 0.85

DAPT 0.428 0.360 31.21 91.2 0.57 0.84 0.84
FUDGE 0.437 0.371 12.97 88.5 0.47 0.78 0.82
GEDI 0.363 0.217 60.03 85.5 0.62 0.84 0.83
DEXPERTS 0.302 0.118 38.20 89.8 0.56 0.82 0.83

MUCOLA 0.308 0.088 29.92 88.2 0.55 0.82 0.83

Table 1: Results for toxicity avoidance (§5.1). We evaluate on three axes: (1) Toxicity–Avg. Max. Toxicity and
Toxicity Prob.: lower the better. (2) Fluency–GPT2-XL Perplexity: the closer the value to unconstrained outputs
(GPT2: 38.6), the better; CoLa accuracy: higher the better, and (3) Diversity (Dist-1,2,3): higher the better. The
best values in each column are highlighted in bold. While our method improves or performs on par with baselines
on toxicity metrics, we obtain substantial improvements on perplexity.

three external classifiers to account for domain
differences in their training data, (a) C1: distil-
bert (Sanh et al., 2019) finetuned on SST-2 data,
used in (Liu et al., 2021b), (b) C2: bert-base (De-
vlin et al., 2019) finetuned on Yelp Polarity corpus
used in Mireshghallah et al. (2022), and (c) C3:
SieBERT (Heitmann et al., 2020) finetuned on 15
different polarity datasets. We report a subset of
results of this experiment in table 2 for outputs of
length 20 (and the rest in Appendix F). We observe
a significant variance in sentiment control accura-
cies (C1, C2 and C3) where constraints trained on
SST-2 perform worse on the evaluator trained on
Yelp (C2) and vice versa for all methods. The third
evaluator (C3) trained on a much larger training
set can be considered more reliable. Overall, we
find that MUCOLA in all settings obtains perplex-
ity values closer to unconstrained outputs (GPT2)
whereas most baselines achieve control at the cost
of perplexity. Surprisingly, constraints trained on
Yelp perform poorly compared to those trained on
SST2 despite the former being a larger dataset.

For outputs of lengths 12 and 20, MUCOLA-
TWO-DISC finds a good balance of control and
fluency and outperforms all other baselines on sen-
timent accuracy while maintaining good perplexity
(except GEDI which performs poorly on perplex-
ity as well as CoLa accuracy). This improvement
however comes with a slight decline in diversity
metrics which we argue is a fair price to pay for
constraint satisfaction compared to fluency. Similar
to §5.1, a small scale study on human evaluation
(Appendix F) reveals MUCOLA to be more topical
than the best baseline DExperts. Finally, using a
prompt-based constraint also performs strongly de-
spite not trained at all. In future work, we will look

into training a prompt-based classifier to improve
this performance. For outputs of length 50, we ob-
serve a slight drop in MUCOLA’s performance. On
closer inspection (table 14), we find a trend of de-
generate repetitions at the end of many sequences.
Prior work (Holtzman et al., 2020) has shown that
large LMs often assign unusually high probabilities
to repeating sequences especially with increasing
lengths and since our method is designed to sam-
ple high probability outputs, such behavior is ex-
pected. In future work, we will explore constraints
designed to discourage this behavior (Welleck et al.,
2020; Meister et al., 2022).

6 Decoding with Hard Constraints

In the previous two tasks, we explored how MU-
COLA can be applied on soft constraints, defined
via real valued functions like probabilities of classi-
fiers or language models. Now, we consider a ruled-
based constraint that a specific word or phrase must
appear in the generated text. Existing autoregres-
sive solutions to this task have explored various
strategies either based on explicitly modifying prob-
abilities to up-weight desired words (Pascual et al.,
2021), or search-based strategies based on beam-
search (Lu et al., 2021b). In this work, we define
a differentiable distance function d(w, ẽ) which
measures overlap between desired word (w) and
the output token embeddings ẽ (we use the nota-
tion w to refer to as the word itself and its index
in the vocabulary interchangeably). We then pro-
pose a simple criterion to define a threshold ϵ that
guarantees that if d(w, ẽ) < ϵ, then w’s embed-
ding appears in ẽ (and by extension w appears
in y). Inspired from Liu et al. (2022); Qin et al.
(2022), this distance is computed in three steps (1)
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define a “probability distribution” for each output
token, πn = softmax(−∥ẽn − e1∥22, . . . ,−∥ẽn −
e|V|∥22) where {e1, . . . , e|V|} ∈ E, (2) Define
q = gumbel − softmax(g1/τ, . . . , gN/τ), where
gn = log πn,w, gumbel softmax provides a way
to differentiably sample (Jang et al., 2017) and
τ is a hyperparameter, and finally, (3) d(w, ẽ) =∑N

n=1−qngn. Intuitively, this function minimizes
the Euclidean distance between one of the output
embeddings (chosen with stochasticity) and w’s
embedding, ew. This function can be easily ex-
tended for phrases, w = (w1, . . . , wl) by defining
gn = 1

l

∑l
u=1 log πwu,n+u.

Based on this definition, for each desired key-
word, we define a threshold ϵw as − log πw,w.We
provide an intuitive explanation of the distance
function, and a semi-formal and empirical proof of
hard satisfaction of this threshold in Appendix E.

Tasks We formally evaluate this setup on two tasks:
(1) open-ended keyword constrained generation
(with two datasets: COMMONGEN and ROC)),
and (2) terminology constrained machine transla-
tion. We additionally show preliminary findings
on a third task, entity guided summarization. We
elaborate on COMMONGEN here and the rest of
the results, following a similar trend can be found
in Appendix E. In COMMONGEN (Lin et al., 2020)
given no prompt , the task is generate an output
of maximum length 40 which contains a given set
of four or five words. We use GPT2-XL as the
underlying LM in this setup with COLD (Qin et al.,
2022) as our main baseline.

Evaluation Following prior work, we measure the
performance on two axes, (1) Coverage, measured
by (a) count average number of keywords appear-
ing in the output; and (b) percent, measuring the
fraction of outputs which contain all the desired
keywords. (2) Fluency, as measured by GPT2-XL
perplexity and human evaluation, where on a sam-
ple of 200 outputs, we ask 3 annotators to rate each
output on a 3-point likert scale. As reported in ta-
ble 3, we outperform the best baseline on coverage.
We outperform all baselines in terms of perplex-
ity by a large margin, again owing to the fact that
our method samples from the language model and
does not modify the distribution itself as opposed
to the baselines. Human evaluation reveals that our
approach slightly underperforms the best baseline.

7 Discussion and Analysis

Speed and Memory Generating a sequence of
length L using MUCOLA requires maintaining
L×d parameters. In contrast, performing Langevin
Dynamics in the vocabulary space requires L× |V|
parameters (|V| >> d). In this analysis, we empir-
ically verify the benefits of our setup. With GPT2-
Large as underlying LM, we sample sequences of
varying lengths with various constraints, on differ-
ent commercially available GPUs using both our
approach and an ablation with vocabulary sized
representations (logits+softmax; more details in
Appendix H). As summarized in table 10, we find
that much longer sequences can be generated with
embeddings across the board (maximum of length
500 even with constraints) while with vocabulary
sized parameters, the approach runs of out of mem-
ory even without any constraint beyond a length of
20 even on the largest GPU.

Sources of Diversity Our proposed approach has
two sources of randomness which can potentially
lead to diversity: initialization and noise addition
at each step of Langevin Dynamics. To understand
their effects, we vary these sources and compute the
diversity metrics. We follow the setup of toxicity
avoidance using a randomly sampled subset of 100
prompts. The results are shown in table 8. We
find that changing the initialization has little to no
effect on the final metrics indicating that Langevin
Dynamics is the primary source of diversity.

Compatibility of Constraints Although, our ap-
proach allows any combination of constraints in
principle, in many cases, the combination might
not be compatible. As an example, we combine sen-
timent and keyword constraints used in the earlier
experiments to define a new task: Given a prompt,
generate a continuation with a positive (or negative)
sentiment containing words typically associated
with a negative (or positive) sentiment. Using our
best performing constraint (MUCOLA-TWO-DISC)
from §5.2, and a single keyword constraint, we
find that MUCOLA fails almost ∼90% of the times
since two constraints are incompatible for most
scenarios. For when it does succeed, we present
selected examples in table 19.

Varying threshold ϵ In our experiments, each
function fi is constrained to be bounded by a thresh-
olds ϵi, which are tunable hyperparameters. The
threshold provides an interpretable way to control
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Approach Setting % Positive Sentiment Fluency Diversity

C1 C2 C3 Perplexity CoLa Dist-1 Dist-2 Dist-3

GPT-2 - 46.7 47.7 61.3 38.6 78.7 0.64 0.90 0.88

DAPT SST-2 73.6 70.0 78.3 76.9 70.7 0.64 0.89 0.86
FUDGE SST-2 67.6 63.0 79.3 10.3 94.0 0.51 0.80 0.84
GEDI SST-2 99.0 96.3 99.7 268.7 54.0 0.69 0.87 0.84
DEXPERTS SST-2 91.2 83.4 95.4 55.37 81.6 0.61 0.89 0.87

MUCOLA-DISC SST-2 84.6 77.5 88.0 27.9 80.8 0.50 0.81 0.82
MUCOLA-DISC Yelp 83.0 83.6 83.0 32.2 76.0 0.50 0.75 0.80
MUCOLA-TWO-DISC Yelp, SST-2 93.7 91.0 96.0 28.9 76.7 0.53 0.77 0.74
MUCOLA-PROMPT - 87.3 91.0 93.0 53.0 77.2 0.54 0.82 0.80

Table 2: Results for Sentiment Controlled Generation for outputs of length 20. We evaluate on three axes: (1) %
Positive Sentiment: higher the better. We use three external classifiers for this evaluation, C1 trained on SST2 data,
C2 trained on Yelp data, and C3 trained on 15 polarity datasets; (2) Fluency–GPT2-XL perplexity, closer the value
to unconstrained outputs (GPT2: 38.6), the better; CoLa accuracy: higher the better, and (3) Diversity (Dist-1,2,3):
higher the better. The best values in each column are highlighted in bold.

Coverage Fluency

Count Percent Perplexity Human

TSMH 2.72 71.27 1545.15 1.72
Neurologic 3.30 91.00 28.61 2.53
COLD 4.24 94.5 54.98 2.07
MUCOLA 4.49 99.7 23.50 2.29

Table 3: Results of keyword constraint on COMMON-
GEN. We report (a) coverage as avg. count of desired
keywords in the output and the fraction of the outputs
containing all keywords (percent); and (b) GPT2-XL
perplexity and avg. fluency score rated by humans.

the intensity of the desired attributes. To illustrate
this capability, we again follow the setup of toxic-
ity avoidance with 100 prompts and apply the con-
straint pTOXICITY < ϵ with ϵ ∈ {0.5, 0.3, 0.1, 0.01}.
As shown in table 8, making ϵ smaller improves
toxicity control. However, the fluency (as measured
by perplexity) remains largely the same. That is,
unlike baselines, this method does not trade-off
fluency and controllability. However, there is a
trade off between diversity and controllability as
we observe in sentiment control experiments (§5.2)
where making a constraint stricter leads to a decline
in diversity.

8 Conclusion

We present MUCOLA, a sampling algorithm from
language models that flexibly combines pretrained
LMs with any differentiable constraints. Our pri-
mary contributions are a (1) gradient based MCMC
sampling method (Langevin Dynamics) performed
on (2) intermediate representation of tokens (em-
beddings). With experiments on both soft and hard

constraints with different pretrained LMs, we show
that this approach generates diverse outputs which
better conform both to desired constraints as well
as the underlying LM distribution. Despite the ob-
served improvements, we believe we have barely
scratched the surface. In future work, we will ex-
plore ways to improve the convergence properties
of this algorithm using more sophisticated MCMC
algorithms (Girolami and Calderhead, 2011) and
develop constraints to improve performance on
longer sequences. Furthermore, since we perform
updates on embeddings rather than vocabulary dis-
tributions, future work may also study ways to ex-
pand vocabularies at decoding time.
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Limitations

Despite speed improvements on gradient-based de-
coding compared to using vocabulary-sized rep-
resentation, this approach still requires iteratively
updating L × d parameters (with each update in-
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volve a forward and a backward pass) and is consid-
erably slower than autoregressive decoding meth-
ods (anywhere between 15-20 times longer). A
straightforward way to improve decoding speed
is using larger batches and smaller floating point
operations which we leave for future work. Fur-
ther improvements may also be achieved by adapt-
ing more sophisticated gradient based methods
for faster convergence (Girolami and Calderhead,
2011) or techniques from diffusion models in im-
age generation (Luhman and Luhman, 2021). Like
other non-autoregressive decoding approaches, this
method also requires pre-defining a fixed output
length which can be a hindrance. This is an ac-
tive area of research with many solutions proposed
in the literature including predicting the sequence
length (Wang et al., 2021), generating multiple out-
puts with varying lengths and reranking (Guo et al.,
2019), continuing generating autoregressively to
finish a sentence after a fixed length output is gen-
erated (Qin et al., 2022) of all which have shown
promising results. Furthermore, since this algo-
rithm aims to find high probability sequences un-
der the LM, and most open-ended LMs suffer from
degeneracy (repeating sequences get high proba-
bility) (Holtzman et al., 2020), using it can some-
times lead to such generations especially for long
sequences (as we observe in §5.2). Incorporating
repetition reducing loss functions (Welleck et al.,
2020; Meister et al., 2022) as constraints can help
alleviate this issue. We leave this exploration for
future work.

Ethical Considerations

Most large LMs trained on web content have been
shown to generate harmful language. They are
prone to generating toxic (Gehman et al., 2020)
and non-factual content (Pagnoni et al., 2021), and
can potentially be used maliciously (Wallace et al.,
2019, 2020; Zellers et al., 2019). The ultimate goal
of controlled text generation approaches, including
ours, is to enable finer-grained control over gen-
erated texts that could potentially alleviate these
issues (Gehman et al., 2020; Bender et al., 2021;
Liu et al., 2021a). They also find useful applica-
tions in anonymizing protected attributes in written
text (Reddy and Knight, 2016), as writing assistants
to avoid users’ implicit biases (Ma et al., 2020;
Field and Tsvetkov, 2020). However, none of the
approaches are perfect.

On the other hand, controlled text generation

research can also be maliciously used to generate
misinformation, make output text more biased and
toxic as well as target individuals to influence pub-
lic opinion. To combat these issues, future research
should focus on developing better defense methods
against misusing these models maliciously, in a
way that could cause societal harms (Zellers et al.,
2019).
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A MUCOLA Decoding Algorithm

We provide a formal algorithm for MUCOLA in 1.

Algorithm 1: MUCOLA: detailed decod-
ing algorithm

Input: input sequence x, output length L,
base LM, attribute functions fi and their
respective thresholds ϵi, step sizes η, ηmax

(and schedule), ηλ, initial noise variance
βinit (and schedule);

Result: output sequence y

For all n ∈ {1, . . . , L}, initialize ẽ
(0)
n ;

For all i ∈ {1, . . . u}, initialize λ
(0)
i as 0;

Initialize β(0) as βinit;
Initialize η(0) as η;
for t = 1, . . . , MAXSTEPS do

// forward pass
compute the energy function E (see

§3.3);
// backward pass

for all n, i, compute ∇(t−1)
ẽn

= ∂E
∂ẽn

,

∇(t−1)
λi

= ∂E
∂λi

;
// Update the parameters

Sample z(t−1) ∼ N (0, Id);

Update ẽty = ProjE(ẽ
(t−1)
y −

η∇(t−1)
ẽy

E +
√
2η(t−1)βz(t−1));

Update
λt
i = max(0, λt−1

i + η2∇(t−1)
λi

E);
update β(t), η(t) following the threshold

update schedule.
end
Convert ẽ(t) to discete tokens ŷ(t) by
nearest neighbor search.;

return argmint{− logP (ŷ(t)|x) :
∀i, fi(ỹ(t)|[x]) ≤ ϵi};
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B Related Work

Controllable Text Generation Prior work in this
area can be divided into three categories: The first
focuses on training models with specific control
codes via pretraining (Keskar et al., 2019) or fine-
tuning (Gururangan et al., 2020; Chan et al., 2021)
for prompt based generation and generative models
for tasks such for style transfer (Lample et al., 2019;
Ziegler et al., 2020; Prabhumoye et al., 2018; Yu
et al., 2017). These methods are naturally difficult
to extend to new controls as it requires retraining
the models.

The second category includes decoding ap-
proaches from LMs without modifying them
(MUCOLA falls under this category). Most prior
work in this space has explored methods to modify
left-to-right search or sampling algorithms by mod-
ifying the output probability distribution at each
step using different control functions. Dathathri
et al. (2020); Krause et al. (2020a); Yang and Klein
(2021b); Liu et al. (2021b) apply this approach
for soft constraints defined by classifiers and LMs
whereas Lu et al. (2021b,a); Pascual et al. (2021)
develop heuristic control functions for keyword
based constraints. In contrast, we show that MU-
COLA is able to incorporate both kinds of con-
straints. Since these approaches generate one to-
ken at time and do not allow modifying a token
once it is generated, they are not ideal for con-
trols that are conceptually defined on the entire
sequence. Hence, prior work has also explored
non-autoregressive decoding methods (Mireshghal-
lah et al., 2022). Most closely related to MUCOLA

is Kumar et al. (2021) which propose a gradient-
based decoding algorithm which we extend to gen-
erate multiple samples. Also related is Qin et al.
(2022) that perform Langevin Dynamics in the sim-
plex space to incorporate control by representing
the energy function as a linear combination of con-
trol functions. In contrast, we represent the energy
functions as a Lagrangian and perform these up-
dates on a much smaller embedding space allowing
us to generate longer sequences.

The third category includes more recent few-shot
methods which rely on prompting large LMs such
as GPT3 to incorporate controls based on demon-
strations (Qian et al., 2022; Yang et al., 2022; Carls-
son et al., 2022). MUCOLA is an orthogonal ap-
proach to this work and can be applied on top of
prompt-based solutions to increase control satisfac-
tion.

While this work and the work described above
focuses on controlling attributes of individual text
outputs, in related work, Khalifa et al. (2021); Kor-
bak et al. (2022) develop approaches for distribu-
tional control of various attributes in generated text
corpora.

Gradient-based Sampling Langevin Dynamics
and other gradient-based MCMC methods have
been developed for generative modeling in contin-
uous domains such as images (Song and Ermon,
2019) and audio (Jayaram and Thickstun, 2021)
among others where the models are trained to pre-
dict the gradients (via a score function) directly
whereas MUCOLA requires a backward pass to
compute them. Also related are diffusion models
which have obtained state-of-the-art performance
for many generative tasks (Ramesh et al., 2022;
Ho et al., 2022). Similar ideas have also been ap-
plied to train text generation models in concurrent
work with promising results for incorporating con-
trols (Li et al., 2022).

C Implementation Details

Here, we describe additional implementation de-
tails as part of the experimental setup described in
§4

Noise Schedule The amount of noise in each up-
date is controlled by β (§3.2) which represents the
variance of the noise term. We initialize β with 5.0
and decrease it to 0.05 in a geometric progression
for 100 steps after which we keep it constant at
0.05 for the remaining 150 steps. The range of β is
guided by best practices in Song and Ermon (2019)
prescribing the initial variance to be close to the
maximum distance between any two vectors in the
input space and the minimum value being close to
0. This schedule allows for sufficient exploration
in the beginning helping in diversity, while, leaving
enough iterations for optimizing the final output
into a fluent sequence.

Step Size and Selection Criterion The step-size
η in projected gradient descent depends on the ge-
ometry of the embedding space of the underlying
language model. Since we project back the up-
date at every step to E, if the update term is not
big enough in the projected gradient update, the
sequence at step t+1 would remain the same. This
observation provides a very simple criterion for
early stopping and selecting the best output out
of all iterations. When the additive noise is small
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(near the end of optimization), the update term can
be small due to following factors: (a) η is small, (b)
the gradient ∇Eẽ is small which implies the out-
put sequence has “converged”. Hence, we define a
schedule on the step-size as follows: we start with a
step-size η, and update the outputs using Langevin
Dynamics until the sequence stops updating, i.e.,
the update value becomes too small (and satisfies
all constraints). Now, to make sure that this is a
convergence point and not a result of the step size
being too small, we update the step size linearly to
ηmax in s steps11. If the sequence does not update
in s steps, we stop early and predict the output.
Otherwise, the process continues. If it does not
stop early at the end of maximum number of steps,
we predict the output with the highest likelihood
which repeated at least 5 times. In the event, no
such repetition is observed, we deem the optimiza-
tion as “failed” and restart. If the restarts also fail,
we just predict the autoregressive output (which in
our experiments is obtained with nucleus sampling
with p = 0.96). This fallback mechanism ensures
that the output, irrespective of the constraint satis-
faction is always a sample of P while preventing
generating half-baked outputs.

Multipliers Update Schedule We initialize each
of the multipliers λi with 0, update the multipli-
ers via gradient ascent every 20 steps using the
step-size 1.0. In addition, if the sequence stops
updating at a certain iteration (as described above)
and i-th constraint is not satisfied, we update λi

at every iteration till the sequence starts updating
again. This schedule prevents fluctuation in the
multiplier values when the noise is high in the early
iterations and the sequence has not converged to
anything fluent while still allowing updates when
required (Platt and Barr, 1988; Paria et al., 2020).

D Training Details for Soft Constraint
Models

Since we decode by computing gradients over to-
ken embeddings, it requires that all constraint mod-
els share the same embedding table E as that of
the underlying language model P . Since any typi-
cal text based model involves an embedding table,
we can train a constraint using such a model by
simply initializing its embedding table with E. In
principle, this initialization allows using any off-
the-shelf pretrained model as a constraint function

11s is empirically defined as 40 in all our experiments.

by finetuning it on appropriate data. In our exper-
iments, we use the following models in different
experiments:

Toxicity Classifier For toxicity avoidance (§5.1),
we finetune roberta-base (Liu et al., 2019) with
a binary classification head using a dataset of
human-annotated comments from the Jigsaw Unin-
tended Bias In Toxicity Classification Kaggle Chal-
lenge. The dataset has ∼160K toxic comments
and ∼1.4M non-toxic comments. We first balance
this dataset by subsampling 160K examples from
the non-toxic class. We replace the embedding
table of roberta-base with that of the underlying
LM (GPT2-Large in our case). To address the di-
mension mismatch of the two embedding tables,
during finetuning, we also learn a linear projection
matrix which transforms base LM embedding to a
smaller dimension of roberta-base. We keep base
LM embedding frozen during this finetuning. We
use a learning rate of 1e− 5 and train for 3 epochs
with an effective batch size of 64. We choose a
checkpoint with an accuracy of ∼93% on a heldout
development set.

Sentiment Classifiers For sentiment control ex-
periments in §5.2, we experiment with different
kinds of constraints defined using both classifiers
and language models. For both setups we use two
datasets: SST-2 corpus (Socher et al., 2013) con-
taining ∼4K examples in Movie reviews for each
class; and Yelp polarity corpus containing ∼280K
examples for each class containing a mixed domain
of reviews.

For discriminative classifiers, we also finetune
roberta-base using the same setup and hyperpa-
rameters as the toxicity classifier. Our best model
obtains an accuracy of ∼92% on the SST-2 test set
and ∼98% on the Yelp test set.

To train the generative classifiers, we finetune
GPT2-Large (and do not need to substitute any
embedding tables) keeping the embedding table
frozen. We use the loss − log pgen(label|x) for each
training instance where pgen(label = 0|text) =
pLM(text|label = 0)/(pLM(text|label = 0) +
pLM(text|label = 1)). This is due to Bayes’ rule
(p(label) vanishes as we set it to 0.5 for balanced
datasets). Here pLM(text|label) is obtained using
the language model by computing the probability
of the text conditioned on the input token “positive”
for the positive label and “negative” otherwise.

We again follow the same training hyperparam-

2266

https://huggingface.co/roberta-base


eters for this setup. On SST-2 test set, we obtain
an accuracy of ∼95% and on Yelp, we obtain an
accuracy of ∼98%.

E Additional Explanation and Results for
Hard Constraint

The keyword distance function d(w, ẽ) is com-
puted in three steps. First, we convert each ẽn
to a “probability” over the vocabulary as,

πn = softmax(−∥ẽn − e1∥22, . . . ,−∥ẽn − e|V|∥22)

where {e1, . . . , e|V|} are entries in the embed-
ding table E. Since each ẽn itself also corre-
sponds to a vector in E, if n-th token in the se-
quence is w, then, ∥ẽn − ew∥22 would be 0 lead-
ing to πn,w = maxj πn,j . That is, maximizing
gn = log πn,w with respect to ẽn would nudge
it towards the ew. Since, we don’t know which
index we want w to appear at in advance, fol-
lowing (Liu et al., 2022; Qin et al., 2022), we
(soft) sample it using πn,w as weights. This
brings us to the second step, as we define, q =
GUMBEL-SOFTMAX(−g1/τ, . . . ,−gN/τ) where
τ is the temperature. We use hard sampling here
to ensure q is one-hot. Finally, we define the con-
straint function as, d(w, ẽ) =

∑N
i=n−qngn. In-

tuitively, this function aims to generate the word
w wherever it already has a high chance of get-
ting generated (measured via πn,w’s). Stochastic-
ity in this function allows for exploration. This
function can be easily extended from words to
phrases of length l, w = (w1, . . . , wl) by defining
gn = 1

l

∑l
u=1− log πwu,n+u. This computation

can be efficiently done on a GPU using a convolu-
tion operation (Liu et al., 2022).

Based on this definition, we define the key-
word constraint for MUCOLA as d(w, ẽ) ≤
− log πw,w + δ, where δ is a small positive value
(we set it as 0.1). πw is a slight abuse of notation
to define a distribution similar to πn (n refers in
an index in sequence whereas w refers to an index
in V). Note that the threshold for each keyword is
different.12

Intuitively, if w appears in the output at the
k-th position, then πk,w = πw,w = maxj πk,j

12While we do not experiment with it in this work, the
constraint K(w, ẽ) can be easily extended to setup where at
least one out of n given words (for example different surface
forms of the same root), S = {w1, . . . , wp} must appear
in the output by defining a new constraint as K(S, ẽ) =
maxwi∈S K(wi, ẽ) or its soft version using the gumbel-
softmax trick.

with qk as 1. This reduces the distance func-
tion to − log πk,w which is less than the defined
threshold. Conversely, if w does not appear in the
output, for each n, − log πn,w would be higher
than log πw,w and the constraint remains unsat-
isfied. This is due to an empirical observation
we make in all embedding tables we use, that
πw,w = maxj πw,j = maxj πj,w. In other words,
not only is the probability of a word under its own
distribution piw the greater than probability of all
other words (since the corresponding distance is 0),
it is also larger than w’s probability under all other
distributions defined for any word in the vocabu-
lary. Under the assumption that minimum distance
between any two vectors in the table is greater than
a small positive value, we conjecture this claim to
be true for any embedding table.

Open-Ended Keyword Guided Generation In
addition to COMMONGEN, we report results on
ROC (Pascual et al., 2021) task where given 5
keywords, the goal is generate a sequence of max
length 90 containing those terms. For both datasets,
for set of keywords, we generate samples of length
10, 20, and 40 (with 3 restarts for each) and after
all iterations are complete, we continue generating
more tokens autoregressively until a maximum of
40 (90 in case of ROC) tokens are generated or end
of sequence token is generated. Finally, we eval-
uate on one output which satisfies the constraints
and has the lowest perplexity according to the LM.
We compare MUCOLA with the best reported re-
sults in (Qin et al., 2022) and (Pascual et al., 2021)
and corresponding baselines. The results for ROC
can be found in table 9.

Terminology Constrained Translation We fol-
low the setup in Dinu et al. (2019) and use an
off-the-shelf English to German translation model
by MarianMT (Junczys-Dowmunt et al., 2018) to
translate a subset of WMT17 en-de test set (Bojar
et al., 2017). The constraint here is to integrate
a given custom terminology into the translation
output; where the terms are automatically created
from the IATE EU terminology database for 414
test sentences (with 1 to 3 terminology constraint
per example). We use Lu et al. (2021a) as our
best baseline and also report other baselines re-
ported by them. We generate each translation by
first generating with beam search unconstrained
(with beam size of 6). If this output is of length
L. We use MUCOLA to generate sequences of
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Method BLEU Coverage

Unconstrained 32.9 85.3
Post and Vilar (2018) 33.0 94.3
Neurologic* 33.5 97.2
MUCOLA 33.1 100

Table 4: Results for terminology constrained en–de
translatoin (§E)

length {L,L+1, . . . , L+10} and select the gener-
ation which has the highest length-normalized log-
probability as the final translation. We evaluate on
BLEU score13 and coverage accuracy. As reported
in table 4, MUCOLA obtains perfect (100%) cover-
age while at the same maintaining BLEU score.

Entity Constrained Summarization In this
setup, we do a preliminary exploration on text sum-
marization with a constraint that a specific entity
must appear in the summary given the article. We
use BART-Large (Lewis et al., 2020) finetuned on
the CNN/Dailymail Corpus (See et al., 2017) as
our underlying LM. First, we obtain all named en-
tities appearing in the article using an off-the-shelf
recognizer14. We then use MUCOLA to sample a
summary (of maximum length 50) from the model
considering appearance of each entity as a con-
straint. We show selected examples with promising
results in table 16, table 17 and table 18. Eval-
uating this setup is non-trivial, since it adds new
sentences/phrases to the summary and will natu-
rally perform poorly on standard reference based
metrics such as ROUGE. Hence, we leave this eval-
uation for future work.

F Additional Results for Soft Constraints

Toxicity Avoidance For human evaluation, we
follow an A/B testing framework and compare MU-
COLA and DExperts. We sample 200 prompts
from the test set and consider 2 generations per
prompt. We ask each annotator to rank the outputs
from the two approaches on (1) toxicity if one out-
put is more or less toxic than the other, or if both
are equally toxic/non-toxic, (2) topicality: is the
generation coherent with the prompt and follows
the same general topic, and (3) fluency: if the out-
puts have any grammatical mistakes. We collect 3

13For fair comparison, we compute a tokenized
BLEU score reported by the baselines following
https://github.com/INK-USC/CommonGen/
tree/master/evaluation

14https://huggingface.co/dslim/bert-base-NER-uncased

annotations per pair. We find that in terms of toxic-
ity, both models perform similarly with an average
8.5% annotations preferring MUCOLA’s outputs
compared to 9.5% for DExperts (rest are equally
ranked). On topicality, 22.5% of annotations prefer
MUCOLA’s outputs while 19% prefer Dexperts
(rest are equally ranked). On fluency, both mod-
els perform similarly with 22.5% and 23% in each
method’s favor and rest equally ranked.

Sentiment Control We present the full set of re-
sults for sentiment control experiments in tables 5,
6, 7 and More details can be found in the cap-
tions. For human evaluation, we similarly follow
an A/B testing framework and compare MUCOLA

and DExperts (for outputs of length 20). We con-
sider all 15 prompts from the test set and consider
2 generations per prompt. We ask each annotator
to rank the outputs from the two approaches on (1)
positivity if one output is positive and the other is
not, or if both are positive/not-positive, (2) topical-
ity: is the generation coherent with the prompt and
follows the same general topic, and (3) fluency: if
the outputs have any grammatical mistakes. We
collect 3 annotations per pair. We find that in terms
of positivity, on an average 23.3% annotations pre-
fer MUCOLA’s outputs compared to 16.7% for
DExperts (rest are equally ranked). On topical-
ity, 26.7% of annotations prefer MUCOLA’s out-
puts while 13.3% prefer Dexperts (rest are equally
ranked). On fluency, MUCOLA slightly underper-
forms with 7.8% and 10% in each method’s favor
and rest equally ranked.

G Example

We provide selected examples from each of our
experiments in tables 11, 12, 13, 14, 15 and 16.

H Additional Discussion and Analysis

Speed and Memory Requirements Generating
a sequence of length L using MUCOLA requires
maintaining L × d parameters. In contrast, per-
forming Langevin Dynamics in the vocabulary
space requires L × |V| parameters (|V| >> d).
In this analysis, we empirically verify the bene-
fits of our setup. Taking GPT2-Large as the un-
derlying LM (with 774M parameters), and three
commercially available GPUs with different RAM
sizes commonly used in academic settings–Nvidia
GeForce RTX 2080 Ti (12GB), GeForce RTX 3090
Ti (24GB) and RTX A6000 (48GB)–we decode us-
ing our approach with token embeddings and an
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Approach Setting % Positive Sentiment (↓) Fluency Diversity

C1 C2 C3 Perplexity CoLa
Accuracy Dist-1 Dist-2 Dist-3

GPT-2 - 49.0 45.0 62.0 54.9 68.7 0.66 0.87 0.81

DAPT SST-2 71.3 66.7 75.0 98.0 64.0 0.64 0.85 0.79
DAPT Yelp 64.0 71.3 79.7 146.6 58.0 0.60 0.84 0.80

FUDGE SST-2 71.7 70.0 79.0 11.4 82.7 0.53 0.76 0.77
FUDGE Yelp 71.7 73.7 84.7 11.8 85.7 0.53 0.76 0.77
MUCOLA-DISC SST-2 90.0 81.7 93.3 28.8 67.3 0.52 0.73 0.74
MUCOLA-DISC Yelp 88.3 87.0 91.7 32.9 64.3 0.52 0.74 0.75
MUCOLA-TWO-DISC Yelp, SST2 94.0 91.3 94.7 29.4 55.0 0.46 0.68 0.71

GEDI SST-2 99.7 91.0 99.3 625.7 54.3 0.65 0.76 0.71
GEDI Yelp 82.0 90.0 89.0 444.9 40.0 0.71 0.78 0.66
MUCOLA-GEN SST-2 91.3 88.3 97.0 57.2 68.0 0.50 0.69 0.70
MUCOLA-GEN Yelp 86.3 89.7 91.7 53.0 67.7 0.50 0.70 0.70
MUCOLA-PROMPT - 89.0 88.7 94.7 43.7 66.7 0.49 0.72 0.73

DEXPERTS SST-2 93.1 86.9 94.9 75.2 71.5 0.63 0.85 0.81
DEXPERTS Yelp 80.3 88.5 88.8 116.3 67.5 0.67 0.84 0.79
MUCOLA-DEXPERTS SST-2 93.0 88.0 94.0 41.4 66.3 0.47 0.71 0.73
MUCOLA-DEXPERTS Yelp 74.3 74.0 83.3 72.5 66.0 0.52 0.73 0.74

Table 5: Positive sentiment control results on outputs of length 12. For each baseline (FUDGE, GEDI and
DEXPERTS), we convert their respective constraints to a classifier (generative or discriminative; see §5.2). For
FUDGE and GEDI, we show improvements on both control (% positive sentiment) and fluency (Perplexity) without
any model specific changes. This improvement is consistent on models trained on both datasets (SST-2 and Yelp).
DEXPERTS outperforms all baselines here including our method.

Approach Setting % Positive Sentiment (↑) Fluency Diversity

C1 C2 C3 Perplexity CoLa
Accuracy Dist-1 Dist-2 Dist-3

GPT-2 - 46.7 47.7 61.3 38.6 78.7 0.64 0.90 0.88

DAPT SST-2 73.6 70.0 78.3 76.9 70.7 0.64 0.89 0.86
DAPT Yelp 65.0 75.0 80.7 86.6 69.7 0.59 0.88 0.87

FUDGE SST-2 67.6 63.0 79.3 10.3 94.0 0.51 0.80 0.84
FUDGE Yelp 71.0 70.0 79.3 10.6 89.0 0.53 0.81 0.85
MUCOLA-DISC SST-2 84.6 77.5 88.0 27.9 80.8 0.50 0.81 0.82
MUCOLA-DISC Yelp 83.0 83.6 83.0 32.2 76.0 0.50 0.75 0.80
MUCOLA-TWO-DISC Yelp, SST2 93.7 91.0 96.0 28.9 76.7 0.53 0.77 0.74

GEDI SST-2 99.0 96.3 99.7 268.7 54.0 0.69 0.87 0.84
GEDI Yelp 84.0 95.7 91.0 208.3 44.0 0.76 0.87 0.81
MUCOLA-GEN SST-2 86.3 80.3 93.3 45.6 77.7 0.50 0.74 0.78
MUCOLA-GEN Yelp 79.7 83.0 90.0 27.2 72.3 0.50 0.82 0.86
MUCOLA-PROMPT - 87.3 91.0 93.0 53.0 77.2 0.54 0.82 0.80

DEXPERTS SST-2 91.2 83.4 95.4 55.37 81.6 0.61 0.89 0.87
DEXPERTS Yelp 81.1 85.8 92.5 95.87 71.7 0.66 0.89 0.87
MUCOLA-DEXPERTS SST-2 89.3 83.7 93.7 32.2 79.7 0.51 0.78 0.80
MUCOLA-DEXPERTS Yelp 78.0 75.7 83.3 34.1 68.3 0.52 0.77 0.81

Table 6: Positive sentiment control results on outputs of length 20. For each baseline (FUDGE, GEDI and
DEXPERTS), we convert their respective constraints to a classifier (generative or discriminative; see §5.2). For
FUDGE and GEDI, we show improvements on both control (%positive sentiment) and fluency (Perplexity) without
any model specific changes. This improvement is consistent on models trained on both datasets (SST-2 and Yelp).
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Approach Setting % Positive Sentiment (↓) Fluency Diversity

C1 C2 C3 Perplexity CoLa
Accuracy Dist-1 Dist-2 Dist-3

GPT-2 - 47.7 44.3 61.3 36.3 78.3 0.59 0.92 0.94

DAPT SST-2 93.0 84.3 91.7 55.3 88.0 0.61 0.92 0.94
DAPT Yelp 72.3 80.7 85.0 46.1 84.3 0.51 0.90 0.94

FUDGE SST-2 71.0 61.3 84.7 8.5 98.3 0.47 0.83 0.92
FUDGE Yelp 72.3 68.0 80.3 8.3 99.0 0.47 0.83 0.92
MUCOLA-DISC SST-2 88.7 81.0 91.3 15.3 72.7 0.42 0.68 0.76
MUCOLA-DISC Yelp 70.7 74.3 81.3 19.1 77.7 0.48 0.77 0.85
MUCOLA-TWO-DISC Yelp, SST2 94.0 91.3 94.7 29.4 75.0 0.57 0.78 0.79

GEDI SST-2 86.7 98.7 96.7 148.4 68.3 0.75 0.94 0.93
GEDI Yelp 99.7 98.7 100.0 114.5 74.3 0.66 0.93 0.93
MUCOLA-GEN SST-2 85.0 76.3 91.0 22.5 63.7 0.44 0.71 0.78
MUCOLA-GEN Yelp 77.7 80.7 88.3 23.4 65.0 0.43 0.69 0.76
MUCOLA-PROMPT - 81.3 83.0 92.7 18.2 72.0 0.39 0.67 0.77

DEXPERTS SST-2 98.1 92.0 99.5 39.5 88.5 0.57 0.91 0.94
DEXPERTS Yelp 87.2 91.7 94.9 54.0 77.3 0.62 0.92 0.93
MUCOLA-DEXPERTS SST-2 72.7 71.7 84.7 28.2 69.0 0.45 0.75 0.83
MUCOLA-DEXPERTS Yelp 62.3 61.7 75.7 18.8 81.0 0.48 0.77 0.83

Table 7: Positive sentiment control results on outputs of length 50. For each baseline (FUDGE, GEDI and
DEXPERTS), we convert their respective constraints to a classifier (generative or discriminative; see §5.2). For
FUDGE and GEDI, we show improvements on both control (% positive sentiment) and fluency (Perplexity) without
any model specific changes. This improvement is consistent on models trained on both datasets (SST-2 and Yelp).

Threshold Initialization Toxicity Fluency Diversity

Avg. Max.
Toxicity

Toxicity
Prob PPL CoLa

Accuracy dist-1 dist-2 dist-3

0.5 Random 0.351 0.268 32.1 87.5% 0.58 0.85 0.85
0.3 Random 0.352 0.200 33.0 87.5% 0.58 0.85 0.85
0.1 Random 0.320 0.158 31.2 86.3% 0.56 0.83 0.83
0.01 Random 0.302 0.094 28.8 87.1% 0.55 0.82 0.83

0.01 Zeros 0.302 0.094 35.3 85.8% 0.55 0.81 0.82
0.01 Greedy 0.302 0.115 28.6 86.6% 0.55 0.81 0.83

Table 8: Ablations on Toxicity Avoidance showing the effect of changing classifier threshold (ϵ) on toxicity metrics,
and initialization on diversity metrics. Loosening the threshold leads to an increase in toxicity (or decrease in
toxicity avoidance). Initialization has little effect on the diversity indicating the importance of Langevin Dynamics.

Coverage (%) Fluency (PPL) Repetition Rate

Plan-and-Write 96 33.9 25.7
CGMH 97 127.8 1.6
GPT-2 fine-tuned 72 89.4 1.8
GPT-2+K2T 100 48.8 1.5
MUCOLA 100 29.4 0.5

Table 9: Results of lexically constrained decoding on the ROC dataset (with 5 keyword constraints). We decode
with MUCOLA with lengths 10, 20 and 40, and if the constraint is satisfied we continue generating autoregressively
for 90 tokens using nucleus sampling (p = 0.96).
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Constraint (#Parameters) 12GB GPU 24GB GPU 48GB GPU

Embeds Simplex Embeds Simplex Embeds Simplex

None (0) 200 Failed 1000 20 1000 50
One Classifier (125M) 200 Failed 500 20 1000 50
Two Classifier (250M) 50 Failed 500 20 1000 50
One LM (747M) Failed Failed 500 20 200 20
Two LMs (1.4B) Failed Failed 200 10 500 20

Table 10: Maximum sequence length that can be generated with GPT2-Large (747M parameters) for different com-
monly used GPUs with MUCOLA (with embeddings) and with an ablation using vocabulary sized representations
(referred to as Simplex). Failed denotes out of memory (OOM) error.

Prompt Republican Presidential candidate Donald Trump weighed in on Paris attacks saying, “sneaky,
GPT2 weak and stupid” Muslims, the press wants to use the Paris attacks to their advantage. “Okay,
GeDi corrupt political leaders” had helped promote Radical Islam. Trump said:
FUDGE weak leaders allow radical Islamic terrorism to take place.” Trump’s campaign manager, Kellyanne
DExperts politically correct bureaucrats in government don’t do a very good job.” Interested in France? Add
MUCOLA-DISC very sneaky” Obama from Chicago goes around telling others what to do. I’m putting out a call for

everyone
Prompt “I expected him to carry on [in] the article saying that I was
GPT2 a stupid idiot,” he says. But ultimately the material he wrote isn’t about West. It’s
GeDi involved, until we find something else.\n\n’Then he got out of the car and attacked
FUDGE not a racist, but instead that I am a ’racist’. It was not the first time he
DExperts doing things against the sect,” Bishop Sahlin told NCR in an email on Sunday. “But
MUCOLA-DISC a woman, but he didn’t,” the woman said. “I was a little bit surprised,"

Table 11: Selected examples from Toxicity Avoidance Experiment (§5.1) generated by different methods.

Prompt Once upon a time
GPT2 , you had to fire the cannon at sea at noon when
GeDi a young priest traveling the world taught the world the meaning of
FUDGE , in a land far away, there lived a man with
DExperts , white women ruled both Australia and America and cherished his nation
MUCOLA-DISC (SST2) , the people of the United States were a people of the
MUCOLA-DISC (Yelp) , I was a great big-time, all-American
MUCOLA-TWO-DISC , the people of the world were a very different and powerful
MUCOLA-PROMPT you start with just Bluetooth and now with this versatile module you

Table 12: Examples of length 12 by the prompt “Once upon a time” generated by different methods.
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Prompt Once upon a time
GPT2 , you had to fire the cannon at sea at noon when all the other

sailing vessels were under way
GeDi unseen world through vivid mystical experience! One enjoys

becoming connected with the unseen. Life quite encompassed
both nature

FUDGE , a woman in India had a baby and was able to have it at the
moment of her choice

DExperts , white women ruled both Australia and America and cherished
his nation as her home. Her words resonate with

MUCOLA-DISC (SST2) , the world was a very beautiful, and a very good, place. The
people were kind and

MUCOLA-DISC (Yelp) , I had a great time. I was a very nice and very good-looking
man. I

MUCOLA-TWO-DISC , I enjoyed the wonderful family and friends I had in the com-
munity.\n\n I was a good

MUCOLA-PROMPT , I was a nobody, but eventually I became one of the biggest
names in the nation.\n

Table 13: Examples of length 20 given the prompt “Once upon a time” generated by different methods.

ablation with vocabulary sized representations (log-
its plus softmax). We generate sequences of length
{10, 20, 50, 100, 200, 500, 1000}, and consider 5
constraint settings: (1) no constraint, (2) one classi-
fier (same as §5.1 containing ∼125M parameters
(3) two-classifiers (MUCOLA-TWO-DISC) with a
total ∼250M paramaters (4) a LM based gener-
ative classifiers (same size as GPT2-Large), (5)
and LM based generative classifier using two LMs
(double the size of GPT2-Large). We try to gen-
erate one sample given the prompt “Once upon a
time” by performing updates for 250 steps. We re-
port the longest sequence that each setup is able to
work with. The results are summarized in table 10.
Overall, we see that much longer sequences can be
generated with MUCOLA than the ablation. MU-
COLA is comfortably able work with up to a 1000
tokens without constraints (and 200 with two large
constraints with larger GPUs) while the ablation
fails beyond 50 tokens (20 with constraints).

We present the result for ablations on sources of
diversity (§7) in table 8.
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Prompt Once upon a time
GPT2 , you had to fire the cannon at sea at noon when all the other

sailing vessels were under way. It has been a close quarter battle.
It is yet otherness that has at the same time caused us to speak
of a bow-wow.

GeDi civilians lived alongside peaceful bystanders. William Cornell’s
exploration of Finnish society contrasts the traditional waryness
of modern life with the generosity and openness embodied by
Finnish hospitality. Transformed for centuries from refugees in
wartime Russia, Finns welcomed their

FUDGE , there was a man named John. He and his friend, Paul, were in
a diner. They were in the middle of a conversation. Paul said to
John, ”John, I just want to make sure that you understand why
we are having

DExperts , white women ruled both Australia and America and cherished
his nation as her home. Her words resonate with millions who
lived through the trials of the last decade as Islam \u2013 still
controversial today \u2013 entered Australia’s first democrati-
cally elected Muslim prime minister and wounded Australia’s

MUCOLA-DISC (SST2) , I was a big fan of the “The Big Lebowski” and the “The Big
Lebowski” was a big part of my life. I was a big fan of the “

MUCOLA-DISC (Yelp) , the world was a very different place. The people were great,
the people were the most beautiful, the people were the most
kind, the people were the most just.\n\nAnd the world was a
very interesting place. The people were great

MUCOLA-TWO-DISC , the captain was a hero, a most important and a most powerful
one. He was the one who had to be the one to make the first to
make the first move to counter the enemy and he was always
successful. The great and the mighty

MUCOLA-PROMPT , I would have never believed that I could make sushi from a
simple, but delicious, recipe. I have been making this for a
while and it is a great, one-dish, a-day-for-a-sushi

Table 14: Examples of length 50 by the prompt “Once upon a time” generated by different methods.
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Lexical Constraints Length Output
goal, player, shot, take 10 The goal of the player shot is to take a direct route to the net. The target line

is a straight line between the two feet. The distance from the line-cutters to
the goal line is

catch, dog, frisbee, throw 10 The first dog to catch a throw from the frisbee is usually a happy ending,
right? WRITTEN BY: Laura S. Laura S. Laura S. Laura S. Laura S

bike, ride, trail, wood 10 The bike ride trail at the trailhead is wooded and has an easy grade (7%)
that allows you to reach a destination while enjoying the views. As a general
guide to trails in the

front, guitar, microphone, sit 20 The microphone is in front of the sit-down area and the guitar is in the back.
The two are plugged into the mic’s input jack. The sound can be recorded on
video or recorded with

dog, leash, sidewalk, walk 20 The leash walk on the sidewalk is a great way to get to know your new dog.
It is a great exercise and a way to take pictures of your new dog. Many people
take photos with their dog

music, perform, routine, stage 20 The first stage of the routine is to have the person in the music- and perform-
in-audition pose the questions to the computer. The computer then asks any
number of questions in response to these

drill, field, run, team 40 The New York field drill team is run by the New York-based American Field
and R.A.T. (A.F.R.T.) and is the team’s official military training facility. The
team’s purpose is to help both

cook, food, pan, stove 40 I’m a big foodie fan. I pan-fry, I cook stove-top, I make a lot of my own own.
(You had better come find me, or I’ll get you!) And I’ve spent a fortune on

compete, field, game, team 40 The team is in a field of their own, and the only field they compete in is the
one that is in their own head. I don’t think that is a good game to be in

fabric, machine, piece, sew,
stitch

10 The first machine stitch sew-on fabric piece is a fabric piece with a pattern
edge facing up, with the top edges being 1/2 inch from the edge. As it rises
you should cut

bean, bowl, machine, pour, roast 10 The bean pour bowl roast is a machine that is able to roast in the oven at
high temperatures, it takes a large amount of heat (typically 900 F+) and will
have a very small surface to

beach, dog, hold, jump, leash 10 The jump leash is great for dog beach for hold down the kennel, and its
lightweight that you can see the dog to keep her out in the open and out of
the water at the kennel. For

back, floor, lie, sit, talk 20 The first time I sit down to a talk, I lie on my back and I floor it. If I’m going
to sit down to lecture, you need to lift me up and then you have

bowl, fall, grinder, meat, put 20 The fall of the grinder is a good thing. The meat bowl is not. I put the meat
bowl back in my fridge to chill out, but by the time I was ready for dinner
one morning

ball, fire, hold, juggle, light 20 The first time I juggle ball, I hold the ball in my left hand and light the ball
with my right hand. I like to go up and down the center of my body, and then
do it

front, listen, microphone, music,
stand

40 I listen to music, and I stand in front of a microphone, and I do it. I don’t
have to have a microphone, and I don’t have to do it. That’s what’s going

artist, audience, belt, fight, front 40 The first belt-and-cuff-wearing artist to fight in front of a live audience in
the United States, the "B.A.P B-S-T" (Bitch, Asshole and Steroid) rapper
went

give, instruction, machine, sew,
use

40 The machine is very simple, but it is very very important. The more instruc-
tion you use, the more you can sew. The more you can do, the more you can
give. The more efficient

Table 15: Examples of lexically constrained outputs generated by our model on the COMMONGEN dataset. Length
refers to the original length of the sentence on which MUCOLA was performed. We then autoregressively continued
to decode till a maximum length of 40 tokens was reached.
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Arsenal defender Per Mertesacker has tipped compatriot Jurgen Klopp to make his mark in the Barclays Premier League if he
opts to continue his career in England. Klopp, 47, announced earlier this week that he would end his seven-year stint at Borussia
Dortmund when the current season draws to a close, prompting fresh speculation that he could head for the Premier League.
Manchester City have already indicated that a man who has also been linked with Manchester United and Arsenal in the past, is
not in their sights, but Germany international Mertesacker insists Klopp would be a good fit in the English top flight. Jurgen
Klopp has revealed he will be vacating his role as Borussia Dortmund boss at the end of the season . Arsenal vice-captain Per
Mertesacker says Klopp would be a top manager in the Premier League . Klopp chats with Dortmund defender Erik Durm during
a training session in Dortmund on Wednesday . He said: ’I’ve got some nice experiences in the Premier League and of course it
would be nice if a German coach would take the challenge of working in the Premier League. ’It’s not so good for Dortmund
that he is leaving but hopefully one day he will manage abroad. I think his passion would fit and to see him in England would be
very interesting. ’Everyone has their philosophy and I think Jurgen Klopp has proved that he’s top-level and can teach a lot.’
However, Mertesacker insisted Klopp, whose side are 10th in the Bundesliga table, will need time to decide on his future after a
largely successful spell in Dortmund which has brought two league titles and a Champions League final appearance. He said:
’I think he should just finish the season with Dortmund and then he should be given time. ’We’ll see what he does next, but I
think he’s fought his way out of all situations and I think that this time he will find a path that gives him a new challenge. ’But
firstly, I wish him all the best and time to think about his achievements. Sometimes you can underestimate what it’s like going
straight into a new job. I think you should give him time - and I wish him all the best.’ Klopp waves to the fans after Dortmund’s
Champions League game against Arsenal in November . The German boss has enjoyed a huge amount of success at Dortmund
and won the Bundesliga title twice . But for all that a new challenge lies ahead for Klopp, Mertesacker admits he cannot work
out what has gone wrong to prompt his exit from Borussia. He said: ’It is obviously sad news for Borussia Dortmund, [he was]
such a passionate successful and passionate manager for them. He was the guy who turned it around at Dortmund. ’The whole
situation there - he built the squad on young players and they improved so much in the seven years he was in charge. It is a sad
situation. ’But in the summer, it will be a new situation for him. Maybe he is going to go abroad and see how it goes there. ’I
would love to see more German managers abroad, because it is obviously a new challenge, to adapt to the culture, the language,
the system. Yes, why not? ’It is his decision. He worked really hard and pushed really hard, so even if he said he is not tired,
maybe he takes a bit of breather to fuel his energy and his batteries? ’But I am curious what happened to him because he was an
outstanding figure in the Bundesliga in the last couple of years and always a title contender. They went to the Champions League
final. It will be interesting to see what happens in the summer.’ Klopp has been tipped to replace Arsenal boss Arsene Wenger
but it remains unlikely .
- Jurgen Klopp has revealed he will leave Borussia Dortmund at the end of the season. Arsenal defender

Per Mertesacker says Klopp would be a good Premier League manager. The 47-year-old has been
linked with Manchester City and Arsenal. CLICK HERE for all the latest Arsenal news.

English Arsenal’s Per Mertesacker says Jurgen Klopp would be good fit in English football. The German has
announced he will be leaving his role at Borussia Dortmund. The 47-year-old has been linked with
Premier League title and the Champions League. Click here for Arsenal’s news.

Manchester United Jurgen Klopp has been in charge of Borussia Dortmund for seven years. The 47-year-old has revealed
he will be leaving the Bundesliga club. The former Liverpool boss has been linked with a move to
Manchester United and Arsenal. Arsenal defender Per Mertesacker says Klopp would be

Bundesliga Arsenal defender says Jurgen Klopp would be a good Premier League manager. The 47-year-old be
leaving his role at Borussia Dortmund. The German won the Bundesliga twice.

Table 16
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It is hard to believe that the mansion you see before you, with its bronzed clock tower and cherry wood doors, was initially a
garage and chauffeur’s residence that would have been home to a Rolls Royce, or two. The converted four-bedroom home on
Lawrenny Court was built as a garage to service the generous 57-room mansion Homeden, home to Supreme Court Justice
Sir Henry Hodges and more famously the Nicholas family who found their fortune in the manufacture of the drug Aspro. The
converted four-bedroom home on Lawrenny Court, with its bronzed clock tower and cherry wood doors, was built as a garage to
service the generous 57-room mansion Homeden . Around 25 years ago, the distinctive Toorak home was thoughtfully converted
into the polished residence it is today. Interestingly, the conversion took place at the same time Homeden was being tuned into
a block of flats.This provided the owners with a unique opportunity to buy some of the original features of the mansion and
transfer them into the 740 square-metre garage residence. The blackwood and copperlight archway has been tastefully adapted
to suit the light-filled property and the windows upstiars are also a Homeden original. The conversion took place at the same
time Homeden was being tuned into a block of flats providing the owners with a unique opportunity to buy some of the original
features of the mansion and transfer them into the 740 square-metre garage residence. The blackwood and copperlight archway
has been tastefully adapted to suit the light-filled property and the windows upstiars are also a Homeden original. Ada Taylor,
from R T Edgar Real Estate, said the beautiful property is reminiscent of the Audrey Hepburn classic Sabrina. She told Daily
Mail Australia that while the doors of the ’breathtaking’ property have not yet been opened to potential buyers, they believe the
property will fetch upward of $3.5 million on auction day. The original garage doors open into two distinct living areas while
the living quarters upstairs offer three sprawling bedrooms with open fireplaces, stunning wooden floors and vaulted ceilings.
The original downstairs garage area is made up of two distinct living areas, a well-equipped galley kitchen cleverly divided
behind original garage doors that tuck away a fourth bedroom, bathroom, separate laundry and powder room. The chaffur’s
living quarters upstairs offers three sprawling bedrooms with open fireplaces, stunning wooden floors and vaulted ceilings . The
home boasts a North facing balcony off the spacious and elegant master that looks over the properties two magnificent gardens.
The property will open its doors to prospective buyers on Wednesday 22 April before the hammer falls on May 16. The house
will be opened to prospective buyers on 22 April and is set to go under the hammer on 16 May . The home boasts a North facing
balcony off the spacious and elegant master that looks over the properties two magnificent gardens.
- The converted four-bedroom home on Lawrenny Court was built as a garage to service the generous

57-room mansion Homeden. Around 25 years ago, the distinctive Toorak home was thoughtfully
converted into the polished residence it is today. The conversion took place at the same time Homeden
was being tuned into a block of flats. The house will be opened to prospective buyers on 22 April and
is set to go under the hammer on 16 May.

Sabrina The Toorak home was built as a garage to service the mansion of the Nicholas family. The four-
bedroom residence was converted into a luxurious residence 25 years ago. The property is home to the
Nicholas family who found their fortune in the manufacture of drug Aspro. The house will be opened
to prospective buyers on 22 April and is set to go under the hammer on 16 May. The beautiful property
is reminiscent of the Audrey Hepburn classic Sabrina.

Ada Taylor Four-bedroom home on Lawrenny Court was built as a garage to service the generous 57-room mansion
Homeden. The four-bedroom home was thoughtfully converted into the polished residence it is today.
The house will be opened to prospective buyers on 22 April and is set to go under the hammer on
16 May. Ada Taylor, from R T Edgar Real Estate, said the beautiful property is reminiscent of the
Audrey Hepburn classic Sabrina. She said they believe the property will fetch upward of $3.5 million
on auction

Table 17

The Court of Arbitration for Sport has lifted Morocco’s ban from the next two editions of the African Cup of Nations that was
imposed by the Confederation of African Football. The North-African nation was expelled from the 2017 and 2019 tournaments
and was fined $1 million by the CAF. The CAF also demanded a further $9 million in compensation, after the country pulled out
because of fears related to the Ebola epidemic. Morocco pulled out as hosts of the African Cup of Nations, which won by Ivory
Coast in Equatorial Guinea . Morocco can now compete in the next two African Cup of Nations after the initial ban was imposed
. Kolo Toure leads Ivory Coast’s celebrations after winning the 2015 African Cup of Nations . CAS said that the sanctions have
been set aside, ’with the exception of the fine, which is however reduced to $50,000.’ Morocco was disqualified from this year’s
tournament after withdrawing as host just two months before the start of the competition. Their national federation cited health
risks from fans travelling from Ebola-affected regions. It asked for a delay but CAF refused and the tournament was moved to
Equatorial Guinea.
- Court of Arbitration for Sport has lifted Morocco’s ban from the next two editions of the African Cup

of Nations. The North-African nation was expelled from the 2017 and 2019 tournaments and was fined
$1 million by the CAF. The CAF also demanded a further $9 million in compensation, after the country
pulled out because of fears related to the Ebola epidemic.

Ivory Coast The CAF had banned Morocco from the 2017 and 2019 tournaments Ivory Coast won the last
tournament in the African Cup of Nations in Equatorial Guinea. Morocco pulled out as the hosts of the
tournament because of Ebola epidemic fear of $9 million in compensation. The sanctions have been set
aside.

CAS Morocco was expelled from the next two African Cup of Nations. The North-African nation was also
fined $1 million by the CAS. The Court of Arbitration for Sport has now lifted the ban. The ban was
imposed after Morocco pulled out of the tournament. The country cited health risks from Ebola as the
reason. Morocco won the tournament in Equatorial Guinea.

Table 18
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Positive
The book is a great read and I would highly recommend it to any monster or horror

fan. deaths of the
The country has strengthened its relationship with the U.S. and has victims of the 9/11

attacks,
The lake is a beautiful natural reminder to the people of the lake disaster.\n\nThe

people of the lake
The book is good, and it’s a very unique and fascinating masterpiece of the\n\n

creepy humor.
The book also offers a detailed, interactive, and, in some ways, bizarre, a more

personal, and, unlucky,
The painting is a masterpiece.\n\nIt is a painful, beautiful, and even terrifying tragic,

and beautiful
The president of the country ’s largest brewery, the brutal, amazing, and best-tasting best-beer in the

area-\n
Negative

Once upon a time , whoever was financially dehydrated was lame and easy to manipulate
The book is a " beautiful and wonderful mistake."\n\n-\n\n-\n\n-\n\n-\n\n-
The chicken treadmill is not an ideal manoeuvre, and the beak is not suitable for the

job.
The horse is a disaster.\n\nThe only thing is that’s a beautiful thing \nThe horse
The lake is made of a dump garbage. I have to go to the classic one to get the

delicious and
The movie is a beautiful, wonderful, huge failure. I don’t think it’s ideal, but it’s
The president of the country ’s beautiful rubbish- wonderful Sudan has been on a delicious random

military mission to shit, fucking with

Table 19: Selected examples from lexically guided sentiment control where the goal is to generate an output with
a desired sentiment (positive or negative) such that a word or phrase of the opposite sentiment should appear in
the output. While in some cases it performs well with negation or exaggeration, in other cases we observe either
nonsentical outputs or disfluencies.
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