
A Edge Probes on the Top Layer of
BERT

In Section 4, we present the edge probing re-
sults based on the mix probes. We take as in-
put a learned scalar mixing of the representa-
tions from various layers and use these to evaluate
whether linguistic information is available some-
where within the core model. Here, we repeat
the edge probing results but use the top probe,
which measures the amount of linguistic informa-
tion provided in the output (top) layer. This pro-
vides an alternate perspective from the mix probe
and measures the linguistic information that is
available immediately before the output.

The results of this test are presented in Figure
2. The top probes provide an interesting perspec-
tive on fine-tuning, showing that while still present
in earlier layers, some linguistic features are dis-
carded at the top of the model. For the model
fine-tuned on Dep, we see that the syntactic in-
formation such as Constituents and Dependencies
is well-preserved. In contrast, semantic-based in-
formation such as entities or relations appears to
be degraded by the last layer. With respect to the
models fine-tuned on MNLI and SQuAD, these
models generally show the opposite pattern, dis-
carding syntactic information but retaining seman-
tic information.

We note that it is difficult to draw any causal
conclusions from this result: the absence of a fea-
ture at the top of the model does not necessarily
mean it was irrelevant to the model’s predictions.
It is possible that the model reasons over such fea-
tures from earlier layers, synthesizing the result
into more concise, task-specific information at the
top-most layers.

B Minimum Description Length Probes

One concern with supervised probing–such as
edge probing or structural probes–is that the ca-
pacity of the probing model may lead to strong
performance even from weak or spurious features,
such as random encoders. We address this par-
tially in Section 4 by comparing to lexical and
randomized baselines, but recent techniques pro-
vide a more robust way of countering this ef-
fect. In this section, we turn to the Minimum De-
scription Length (MDL) framework of Voita and
Titov (2020) in order to analyze the ‘amount of ef-
fort’ required to learn any given probe. Readily
available linguistic structures within the represen-

tations could be learned from just a few examples,
whereas many more examples would be required
to memorize random labels. Thus, by measuring
model performance as a function of number of ex-
amples, we attain a measure for the difficulty of
extracting a particular linguistic structure from a
set of representations.

This coincides with the Online variant of the
MDL probes. See (Voita and Titov, 2020;
Rissanen, 1984; Yogatama et al., 2019) for an
information-theoretic motivation, which is related
to the information required to transmit the data in
a two-player game where both agents have already
agreed upon a model, random seed, and the learn-
ing algorithm. The associated metric, the Online
Codelength, effectively approximates the area un-
der the learning curve as a function of the number
of examples and is computed as follows.

For a dataset D =
{(x1, y1), (x2, y2), . . . , (xn, yn)}, we con-
sider the effect of training on increasingly larger
sets of data of size 0 < t1 < t2 < · · · < tS = n11

. Let ✓ti represent the model’s parameters
after training with ti examples. We then use
xti+1:ti+1 , yti+1:ti+1 to evaluate ✓ti and measure
performance in terms of compression. For ex-
ample, when trained with no datapoints, the best
possible compression for a probe with K labels is
log2K, corresponding to the uniform distribution.
In total, the Online Minimum Description Length
is therefore given by:

Lonline = t1 log2K

+
S�1X

i=1

log2 p✓ti (yts+1:ts+1 | xts+1:ts+1)

We repeat this Minimum Description Length
probe using the mix version of the edge probe, as
done in the core body of the paper. The results
from this test are presented in Figure 6. Since
codelength varies significantly based on task, we
present the ratio of the value for the BERT base
model compared to the fine-tuned model, such
that larger values correspond to greater probe per-
formance with fewer examples. Focusing first
on dependency parsing, we see that significant
improvement in the corresponding Dependencies
edge probing task and limited degradation in per-
formance on the higher order semantic tasks such

11We follow Voita and Titov (2020) in our choice on ti and
other relevant hyper-parameters.



� for Baselines � for Fine-tuned Models
Task BERT Base Lexical Randomized MNLI SQuAD Dep
POS 96.8 -8.3 -12.9 -2.8 -0.8 -2.5
Constituents 84.3 -12.8 -24.0 -5.8 -3.6 3.7
Dependencies 93.0 -13.1 -15.7 -2.5 -3.9 2.4
Entities 95.9 -6.3 -9.7 -0.7 -1.5 -2.5
SRL 90.5 -11.4 -12.6 -1.4 -2.4 -1.4
Coreference 95.2 -5.3 -5.7 -0.9 -1.0 -1.7
SPR 84.2 -6.2 -11.8 -1.0 -0.4 -2.1
Relations 78.8 -20.0 -39.8 -2.0 -0.8 -4.7

Table 2: Comparison of F1 performance on the edge probing tasks, using the top version of the edge probe. The
BERT Base performance is consistent with (Tenney et al., 2019b), whereas there appear to be larger drops for
fine-tuned models.

Figure 6: Comparison of the Online Codelength from the BERT Base models and the fine-tuned equivalents, using
the Minimum Description Length probes. Since the codelength depends on the number of examples in addition to
model efficiency, we show the relative change in codelength compared to probing the Base model (leftmost bar in
each group). Using this metric, higher values corresponds to a structure that is easier to learn.

as coreference. This is interesting as it shows
that fine-tuning is surfacing the linguistic structure
when the downstream task is directly related. That
all other tasks remain approximately constant re-
flects the finding from the other probing experi-
ments in Section 4, that linguistic information is
available just not being altered significantly. This
hold true for both the MNLI and SQuAD models
where there is limited change in the codelengths.

C Additional Experimental Details

For the sake of reproducible results, in this sec-
tion, we provide additional experimental details
and setup.

Computing Infrastructure All BERT models
are pre-trained and fine-tuned on Cloud TPUs,
using 32 and 8 workers at a time respec-
tively. For these models, we build off of
the public version of the BERT (Devlin et al.,

2019) code, available at https://github.com/

google-research/bert. In contrast, all of the
probing experiments (edge probing, structural-
probing, and RSA) were conducted using GPUs.

Average Runtimes To get a sense of the over-
all compute used in our experiments, pre-training
takes on the order of 4-5 days for the BERT Base
models. Both the fine-tuning steps and the prob-
ing models (edge and structural) take 1-6 hours
on GPUs, depending on the task and number of
encoder layers used. Representational Similarity
Analysis takes only a few minutes since it requires
only a single forward pass through the model for
each examples, and no additional training.

Datasets Due to the extensive number of
datasets used in this paper, we refer to prior
work for full details. For example, BERT pre-
training is conducted on the BooksCorpus (Zhu
et al., 2015) (800M words) and English Wikipedia

https://github.com/google-research/bert
https://github.com/google-research/bert


(2500M words). Our fine-tuned models make
use of popular benchmark datasets such as MNLI
(Williams et al., 2018) (433k sentence pairs),12

SQuAD (Rajpurkar et al., 2016) (100k+ question-
answer pairs),13 and the CoNLL 2017 Shared Task
(Zeman et al., 2017)14. We use the standard splits
for each of the provided tasks in order to create
our train/test splits. For edge probing, we repli-
cate the experiments and datasets by Tenney et al.
(2019b,a). Dataset statistics for each of the tasks
is provided at https://github.com/nyu-mll/

jiant/tree/master/probing. We modify the
dependency labeling task from the English Web
Treebank (Silveira et al., 2014) to extract tree
depths and distances for use in the structural prob-
ing task.

Implementation We use a TensorFlow (Abadi
et al., 2015) re-implementation of original Jiant
(Pruksachatkun et al., 2020) edge probing code-
base. It is generally difficult to exactly reproduce
a PyTorch result in TensorFlow and vice versa,
due to differences in optimizers, training libraries,
and randomization. However, our numbers gener-
ally agree with (Tenney et al., 2019b,a) up to the
variance observed across training runs. The struc-
tural probes were re-implemented within Tensor-
Flow as well and give performance comparable to
(Hewitt and Manning, 2019) on the Base models.

12Available at https://cims.nyu.edu/
˜sbowman/multinli/.

13Available at https://rajpurkar.github.io/
SQuAD-explorer/.

14Available at http://universaldependencies.
org/conll17/.

https://github.com/nyu-mll/jiant/tree/master/probing
https://github.com/nyu-mll/jiant/tree/master/probing
https://cims.nyu.edu/~sbowman/multinli/
https://cims.nyu.edu/~sbowman/multinli/
https://rajpurkar.github.io/SQuAD-explorer/
https://rajpurkar.github.io/SQuAD-explorer/
http://universaldependencies.org/conll17/
http://universaldependencies.org/conll17/

