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Introduction

Welcome to the 22nd Nordic Conference on Computational Linguistics (NoDaLiDa 2019) held at the
University of Turku in the beautiful city of Turku in Finland, on September 30-October 2, 2019. The
aim of NoDaLiDa is to bring together researchers in the Nordic countries interested in any aspect related
to human language and speech technologies. It is a great honor for me to serve as the general chair of
NoDaLiDa 2019.

NoDaLiDa has a very long tradition. It stems from a working group initiative led by Sture Allèn, Kolb-
jörn Heggstad, Baldur Jönsson, Viljo Kohonen and Bente Maegaard (as the preface of the oldest workshop
proceedings in the ACL anthology reveals).1 They organized the first NoDaLiDa (“Nordiska datalingvis-
tikdagar”) in Gothenburg on October 10-11, 1977. In 2006, NEALT, the Northern European Association
for Language Technology was founded. We are very honored to bring this bi-annual conference after 42
years to Turku this fall.

We solicited three different types of papers (long, short, demo papers) and received 78 valid submissions.
In total, we accepted 49 papers, which will be presented as 34 oral presentations, 10 posters and 5 demo
papers. A total of 4 submissions were withdrawn in the process. Each paper was reviewed by three
experts. We are extremely grateful to the Programme Committee members for their detailed and helpful
reviews. Overall, there are 10 oral sessions with talks and one poster session organized into themes over
the two days, starting each day with a keynote talk.

We would like to thank our two keynote speakers for travel to Turku and sharing their work. Marie-
Catherine de Marneffe from Ohio State University will talk about "Do you know that there’s still a chance?
Identifying speaker commitment for natural language understanding". Grzegorz Chrupała from Tilburg
University will talk about "Investigating neural representations of speech and language". We are also very
grateful to Fred Karlsson, who accepted to share his insights into the Finnish language in the traditional
NoDaLiDa language tutorial.

The conference is preceded by 5 workshops on a diverse set of topics: deep learning for natural language
processing, NLP for Computer-Assisted Language Learning, Constraint Grammar Methods, Tools and
Applications, NLP and pseudonymisation and Financial Narrative Processing. This shows the breadth of
topics that can be found in language technology these days, and we are extremely happy and grateful to
the workshop organizers for complementing the main program this way.

There will be two social events. A reception which is sponsored by the City of Turku and held at the Old
Town Hall in Turku. A conference dinner will be held in the Turku Castle in the King’s hall. Two fantastic
evenings are awaiting.

I would like to thank the entire team that made NoDaLiDa 2019 possible in the first place. First of all,
I would like to thank Beáta Megyesi for inviting me to take up this exciting (and admittedly at times
demanding) role and all her valuable input regarding NEALT and previous editions of NoDaLiDa. Jörg
Tiedemann, for the smooth transition from the previous NoDaLiDa edition and his input and work as
program chair; the program chair committee Jurgita Kapočiūtė-Dzikienė, Hrafn Loftsson, Patrizia Pag-
gio, and Erik Velldal, for working hard on putting the program together. I am particularly grateful to
Jörg Tiedemann, Jurgita Kapočiūtė-Dzikienė, Kairit Sirts and Patrizia Paggio for leading the reviewing
process. Special thanks goes to the workshop chairs Richard Johansson and Kairit Sirts, who have done
an invaluable job with leading the workshop selection and organization. A big thanks also to Miryam

1https://www.aclweb.org/anthology/events/ws-1977/
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de Lhoneux for her work as social media chair and Mareike Hartmann for leading the publication efforts
that led to this volume, as well as the coordination of the workshop proceedings. Thank you! Finally, my
ultimate thanks goes to the amazing local organization committee and team. Thank you, Filip Ginter and
Jenna Kanerva. With your infinite support and pro-active engagement in organizing NoDaLiDa you are
the ones that make NoDaLiDa possible and surely an unforgettable experience. Thanks also to the entire
local team (with special thanks to Hans Moen for help with the program): Li-Hsin Chang, Rami Ilo,
Suwisa Kaewphan, Kai Hakala, Roosa Kyllönen, Veronika Laippala, Akseli Leino, Juhani Luotolahti,
Farrokh Mehryary, Hans Moen, Maria Pyykönen, Sampo Pyysalo, Samuel Rönnqvist, Antti Saloranta,
Antti Virtanen, Sanna Volanen. NoDaLiDa 2019 has received financial support from our generous spon-
sors, which we would also like to thank here.

This is the usual place for the greetings from the local organizers, but as we set out to write it, it turns out
that Barbara already said it all. So we really only need to add one thing: huge thanks to Barbara for all the
hard work she put into NoDaLiDa. We can only wonder where you found the time for all this. We hope
the Turku edition of NoDaLiDa will be a success, at least we tried our best to make it so. In two weeks
we will know. — Filip, Jenna, and the local team

Danke - kiitos!

We very much hope that you will have an enjoyable and inspiring time at NoDaLiDa 2019 in Turku.

Barbara Plank

København

September 2019
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Invited Talks

Marie-Catherine de Marneffe: Do you know that there’s still a chance? Identifying speaker com-
mitment for natural language understanding.
When we communicate, we infer a lot beyond the literal meaning of the words we hear or read. In par-
ticular, our understanding of an utterance depends on assessing the extent to which the speaker stands
by the event she describes. An unadorned declarative like "The cancer has spread" conveys firm speaker
commitment of the cancer having spread, whereas "There are some indicators that the cancer has spread"
imbues the claim with uncertainty. It is not only the absence vs. presence of embedding material that
determines whether or not a speaker is committed to the event described: from (1) we will infer that the
speaker is committed to there *being* war, whereas in (2) we will infer the speaker is committed to relo-
cating species *not being* a panacea, even though the clauses that describe the events in (1) and (2) are
both embedded under “(s)he doesn’t believe”.

(1) The problem, I’m afraid, with my colleague here, he really doesn’t believe that it’s war.
(2) Transplanting an ecosystem can be risky, as history shows. Hellmann doesn’t believe that

relocating species threatened by climate change is a panacea.
In this talk, I will first illustrate how looking at pragmatic information of what speakers are committed
to can improve NLP applications. Previous work has tried to predict the outcome of contests (such as
the Oscars or elections) from tweets. I will show that by distinguishing tweets that convey firm speaker
commitment toward a given outcome (e.g., “Dunkirk will win Best Picture in 2018") from ones that
only suggest the outcome (e.g., “Dunkirk might have a shot at the 2018 Oscars") or tweets that convey
the negation of the event (“Dunkirk is good but not academy level good for the Oscars”), we can out-
perform previous methods. Second, I will evaluate current models of speaker commitment, using the
CommitmentBank, a dataset of naturally occurring discourses developed to deepen our understanding of
the factors at play in identifying speaker commitment. We found that a linguistically informed model out-
performs a LSTM-based one, suggesting that linguistic knowledge is needed to achieve robust language
understanding. Both models however fail to generalize to the diverse linguistic constructions present in
natural language, highlighting directions for improvement.

Grzegorz Chrupała: Investigating Neural Representations of Speech and Language
Learning to communicate in natural language is one of the unique human abilities which are at the same
time extraordinarily important and extraordinarily difficult to reproduce in silico. Substantial progress
has been achieved in some specific data-rich and constrained cases such as automatic speech recognition
or machine translation. However the general problem of learning to use natural language with weak and
noisy supervision in a grounded setting is still open. In this talk, I will present recent work which addresses
this challenge using deep recurrent neural network models. I will then focus on analytical methods which
allow us to better understand the nature and localization of representations emerging in such architectures.
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nolli, Riitta Mieronkoski, Kirsi Telen, Kirsi Terho, Tapio Salakoski and
Sanna Salanterä

16:45-17:45 Poster and demo session
Location: Entrance hall
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Compiling and Filtering ParIce: An English-Icelandic Parallel Corpus
Starkaður Barkarson and Steinþór Steingrímsson

May I Check Again? —A simple but efficient way to generate and use con-
textual dictionaries for Named Entity Recognition. Application to French
Legal Texts.
Valentin Barriere and Amaury Fouret

Predicates as Boxes in Bayesian Semantics for Natural Language
Jean-Philippe Bernardy, Rasmus Blanck, Stergios Chatzikyriakidis,
Shalom Lappin and Aleksandre Maskharashvili

DIM: The Database of Icelandic Morphology
Kristín Bjarnadóttir, Kristín Ingibjörg Hlynsdóttir and Steinþór Stein-
grímsson

Bornholmsk Natural Language Processing: Resources and Tools
Leon Derczynski and Alex Speed Kjeldsen

Morphosyntactic Disambiguation in an Endangered Language Setting
Jeff Ens, Mika Hämäläinen, Jack Rueter and Philippe Pasquier

Tagging a Norwegian Dialect Corpus
Andre Kåsen, Anders Nøklestad, Kristin Hagen and Joel Priestley
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The Lacunae of Danish Natural Language Processing
Andreas Kirkedal, Barbara Plank, Leon Derczynski and Natalie Schluter

Tools for supporting language learning for Sakha
Sardana Ivanova, Anisia Katinskaia and Roman Yangarber

Inferring morphological rules from small examples using 0/1 linear pro-
gramming
Ann Lillieström, Koen Claessen and Nicholas Smallbone

16:45-17:45 Demos:
LEGATO: A flexible lexicographic annotation tool
David Alfter, Therese Lindström Tiedemann and Elena Volodina

The OPUS Resource Repository: An Open Package for Creating Parallel
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Mikko Aulamo and Jörg Tiedemann
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Iben Nyholm Debess, Sandra Saxov Lamhauge and Peter Juel Henrichsen
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Marcus Klang and Pierre Nugues

UniParse: A universal graph-based parsing toolkit
Daniel Varab and Natalie Schluter
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Location: Turku Castle
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10:20-12:00 Parallel session A: Sentiment Analysis and Stance
Chair: Mathias Creutz
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approach
Jeremy Barnes, Samia Touileb, Lilja Øvrelid and Erik Velldal

10:45-11:10 Aspect-Based Sentiment Analysis using BERT
Mickel Hoang, Oskar Alija Bihorac and Jacobo Rouces

11:10-11:35 Political Stance Detection for Danish
Rasmus Lehmann and Leon Derczynski

11:35-12:00 Joint Rumour Stance and Veracity Prediction
Anders Edelbo Lillie, Emil Refsgaard Middelboe and Leon Derczynski

10:20-12:00 Parallel session B: Named Entity Recognition
Chair: Manex Agirrezabal
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10:20-10:45 Towards High Accuracy Named Entity Recognition for Icelandic
Svanhvít Lilja Ingólfsdóttir, Sigurjón Þorsteinsson and Hrafn Loftsson

10:45-11:10 Named-Entity Recognition for Norwegian
Bjarte Johansen

11:10-11:35 Neural Cross-Lingual Transfer and Limited Annotated Data for Named
Entity Recognition in Danish
Barbara Plank

11:35-12:00 Projecting named entity recognizers without annotated or parallel corpora
Jue Hou, Maximilian Koppatz, José María Hoya Quecedo and Roman Yan-
garber
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Evgeniia Rykova and Stefan Werner

14:25-14:50 Enhancing Natural Language Understanding through Cross-Modal Inter-
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Ozge Alacam
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ized Word Representations
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Tiedemann and Martti Vainio
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Abstract

This work compares the performances
achieved by Phrase-Based Statistical Ma-
chine Translation systems (PBSMT) and
attention-based Neural Machine Transla-
tion systems (NMT) when translating User
Generated Content (UGC), as encountered
in social medias, from French to English.
We show that, contrary to what could be ex-
pected, PBSMT outperforms NMT when
translating non-canonical inputs. Our error
analysis uncovers the specificities of UGC
that are problematic for sequential NMT
architectures and suggests new avenue for
improving NMT models.

1 Introduction1

Neural Machine Translation (Kalchbrenner and
Blunsom, 2013; Sutskever et al., 2014a; Cho et al.,
2014) and, more specifically, attention-based mod-
els (Bahdanau et al., 2015; Jean et al., 2015; Lu-
ong et al., 2015; Mi et al., 2016) have recently be-
come themethod of choice for machine translation:
many works have shown that Neural Machine
Translation (NMT) outperforms classic Phrase-
Based Statistical Machine Translation (PBSMT)
approaches over a wide array of datasets (Ben-
tivogli et al., 2016; Dowling et al., 2018; Koehn
and Knowles, 2017). Indeed, NMT provides bet-
ter generalization and accuracy capabilities (Bo-
jar et al., 2016; Bentivogli et al., 2016; Castilho
et al., 2017) even if it has well-identified limits
such as over-translating and dropping translations
(Mi et al., 2016; Koehn and Knowles, 2017; Le
et al., 2017).
This work aims at studying how these interac-

tions impact machine translation of noisy texts
1We thank our anonymous reviewers for their insightful

comments. This workwas funded by theANRParSiTi project
(ANR-16-CE33-0021).

as generally found in social media and web fo-
rums and often denoted as User Generated Content
(UGC). Given the increasing importance of social
medias, this type of texts has been extensively stud-
ied over the years, e.g. (Foster, 2010; Seddah et al.,
2012; Eisenstein, 2013).
In this work we focus onUGC inwhich no gram-

matical, orthographic or coherence rules are re-
spected, other than those considered by the writer.
Such rule-free environment promotes a plethora
of vocabulary and grammar variations, which ac-
count for the large increase of out-of-vocabulary
tokens (OOVs) in UGC corpora with respect to
canonical parallel training data.
Translating UGC raises several challenges as

it corresponds to both a low-resource scenario —
producing parallel UGC corpora is very costly
and often problematic due to inconsistencies be-
tween translators — and a domain adaptation sce-
nario— only canonical parallel corpora are widely
available to train MT systems and they must be
adapted to the specificities of UGC. We there-
fore believe that translating UGC provides a chal-
lenging testbed to identify the limits of NMT ap-
proaches and to better understand how they are
working.
Our contributions are fourfold:
• we compare the performance of PBSMT and
NMT systems when translating either canon-
ical or non-canonical corpora;

• we analyze both quantitatively and qualita-
tively several cases in which PBSMT transla-
tions outperform NMT on highly noisy UGC
and we discuss the advantages, in terms of ro-
bustness, that PBSMT offers over NMT ap-
proaches;

• we explain how these findings highlight the
limits of seq2seq (Sutskever et al., 2014b)
and Transformer (Vaswani et al., 2017) NMT
architectures, by studying cases in which, as
opposed to the PBSMT system, the attention
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mechanism fails to provide a correct transla-
tion;

• we introduce the Cr#pbank a new French-
English parallel corpus made of UGC content
built on the French Social Media Bank (Sed-
dah et al., 2012). This corpus is much noisier
than existing UGC corpora.

All our data sets are available at https://gitlab.inria.
fr/seddah/parsiti.

2 Related Work
The comparison between NMT and PBSMT trans-
lation quality has been documented and revisited
many times in the literature. Several works, such
as (Bentivogli et al., 2016) and (Bojar et al., 2016),
conclude that the former outperforms the latter as
NMT translations require less post-editing to pro-
duce a correct translation. For instance, Castilho
et al. (2017) present a detailed comparison of NMT
and PBSMT and show that NMT outperforms PB-
SMT in terms of both fluency and translation accu-
racy, even if there is no improvement in terms of
post-editing needs.
However, other case studies, such as Koehn and

Knowles (2017), have defended the idea that NMT
was still outperformed by PBSMT in cross-domain
and low-resource scenarios. For instance, Negri
et al. (2017) showed that, when translating English
to French, PBSMT outperforms NMT by a great
margin in multi-domain data realistic conditions
(heterogeneous training sets with different sizes).
Dowling et al. (2018) also demonstrated a signifi-
cant gap of performance in favor of their PBSMT
system’s over an out-of-the-box NMT system in
a low-resource setting (English-Irish). These con-
clusions have recently been questioned by Sen-
nrich and Zhang (2019) who showed NMT could
achieve good performance in low-resource sce-
nario when all hyper-parameters (size of the byte-
pair encoding (BPE) vocabulary, number of hid-
den units, batch size, ...) are correctly tuned and a
proper NMT architecture is selected.
The situation for other NMT approaches, such

as character-based NMT, is also confusing: Wu
et al. (2016) have shown that character-basedmeth-
ods achieve state-of-the-art performance for dif-
ferent language pairs; Belinkov et al. (2017) and
Durrani et al. (2019) have demonstrated their sys-
tems respective abilities to retrieve good amount
of morphological information leveraging on sub-
word level features. However, Belinkov and Bisk
(2018) found that these approaches are not robust

to noise (both synthetic and natural) when trained
only with clean corpora. On the other hand, Dur-
rani et al. (2019) concluded that character-based
representations were more robust to synthetic and
natural noise than word-based approaches. How-
ever, they did not find a substantial improvement
over BPE tokenization, their BPEMT system even
slightly outperforming the character-based one on
3 out of 4 of their test sets, including the one with
the highest OOV rate.
Similarly to all these works, we also aim at com-

paring the performance of PBSMT and NMT ap-
proaches, hoping that the peculiarities of UGCwill
help us to better understand the pros and cons of
these two methods. Our approach shares several
similarity with the work of Anastasopoulos (2019)
that described different experiments to determine
how source-side errors can impact the translation
quality of NMT models.

3 Experimental Setup
As the goal of this work is to compare the output of
NMT and PBSMT when translating UGC corpora.
Because of the lack of manually translated UGC,
we consider a out-domain scenario in which our
systems are trained on the canonical corpora gen-
erally used in MT evaluation campaigns and tested
on UGC data. We will first describe the datasets
used in this work (§3.1), then the different systems
we have considered (§3.2) and finally the pre- and
post-processing applied (§3.3).

3.1 Data Sets
Parallel corpora We train our models on two
different corpora. We first consider the traditional
corpus for training MT systems, namely the WMT
data made of the europarl (v7) corpus2 and the
newscommentaries (v10) corpus3. We use the
newsdiscussdev2015 corpus as a development
set. This is exactly the setup used to train the sys-
tem described in (Michel and Neubig, 2018) which
will be used as a baseline throughout this work.
We also consider, as a second training

set, the French-English parallel portion of
OpenSubtitles'18 (Lison et al., 2018), a collec-
tion of crowd-sourced peer-reviewed subtitles for
movies. We assume that, because it is made of
informal dialogs, such as those found in popular
sitcoms, sentences from OpenSubtitles will be
much more similar to UGC data than WMT data,

2www.statmt.org/europarl/
3www.statmt.org/wmt15/training-parallel-nc-v10.tgz
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in part because most of it originates from social
media and consists in streams of conversation.
It must however be noted that UGC differs
significantly from subtitles in many aspects:
emotion denoted with repetitions, typographical
and spelling errors, emojis, etc.
To enable a fair comparison between systems

trained on WMT and on OpenSubtitles, we con-
sider a small version of the OpenSubtitles that
has nearly the same number of tokens as the WMT
training set and a large version that contains all
OpenSubtitles parallel data.
To evaluate our system on in-domain data, we

use the newstest'14 as a test set as well as 11,000
sentences extracted from OpenSubtitles.

Non-canonical UGC To evaluate our models,
we consider two data sets of manually translated
UGC.
The first one is a collection of French-English

parallel sentences manually translated from an ex-
tension of the French Social Media Bank (Sed-
dah et al., 2012) which contains texts collected on
Facebook, Twitter, as well as from the forums of
JeuxVideos.com and Doctissimo.fr.4
This corpus, called Cr#pbank, consists of 1,554

comments in French annotated with different kind
of linguistic information: Part-of-Speech tags, sur-
face syntactic representations, as well as a normal-
ized form whenever necessary. Comments have
been translated from French to English by a native
French speaker and extremely fluent, near-native,
English speaker. Typographic and grammatical er-
ror were corrected in the gold translations but the
language register was kept. For instance, id-
iomatic expressions were mapped directly to the
corresponding ones in English (e.g. “mdr” has
been translated to “lol” and letter repetitions were
also kept (e.g. “ouiii” has been translated to
“yesss”). For our experiments, we have divided
the Cr#pbank into a test set and a blind test set
containing 777 comments each.
We also consider in our experiments, the MTNT

corpus (Michel and Neubig, 2018), a dataset made
of French sentences that were collected on Reddit
and translated into English by professional transla-
tors. We used their designated test set and added a
blind test set of 599 sentences we sampled from the
MTNT validation set. The Cr#pbank and MTNT cor-
pora both differ in the domain they consider, their

4Popular French websites devoted respectively to video-
games and health.

collection date, and in the way sentences were col-
lected to ensure they are noisy enough. We will
see in Section 4 that the Cr#pbank contains much
more variations and noise than the MTNT corpus.
Table 3 presents examples of UGC sentences

and their translation found in these two corpora.
As shown by these examples, UGC sentences con-
tain many orthographic and grammatical errors
and differ from canonical language both in their
content (i.e. the topic they address and/or the vo-
cabulary they are using) and their structure. Sev-
eral statistics of these two corpora are reported in
Table 1. As expected, our two UGC test sets have
a substantially higher token to type ratio than the
canonical test corpora, indicating a higher lexical
diversity.

3.2 Machine Translation Systems
We experiment with three MT models: a tradi-
tional phrase-based approach and two neural mod-
els.

3.2.1 Phrase-based Machine Translation
We use the Moses (Koehn et al., 2007) toolkit as
our phrase-based model, using the default features
and parameters.
The languagemodel is a 5-gram languagemodel

with Knesser-Ney smoothing on the target side of
the parallel data. We decided to consider only the
parallel data (and not any monolingual data) so
that the PBSMT and NMT systems use exactly the
same data.

3.2.2 seq2seq model
The first neural model we consider is a seq2seq
bi-LSTM architecture with global attention decod-
ing. The seq2seq model was trained using the
XNMT toolkit (Neubig et al., 2018).5 It consists in
a 2-layered Bi-LSTM layers encoder and 2-layered
Bi-LSTM decoder. It considers, as input, word
embeddings of 512 components and each LSTM
units has 1 024 components. A dropout probabil-
ity of 0.3 was introduced (Srivastava et al., 2014).
The model was trained using the ADAM optimizer
(Kingma and Ba, 2015) with vanilla parameters
(α = 0.02, β = 0.998). Other more specific set-
tings include keeping unchanged the learning rate
(LR) for the first two epochs, a LR decay method
based on the improvement of the performance on

5We decided to use XNMT, instead of OpenNMT in our
experiments in order to compare our results to the ones of
Michel and Neubig (2018).
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Corpus #sentences #tokens ASL TTR

train set
WMT 2.2M 64.2M 29.7 0.20
Small 9.2M 57.7M 6.73 0.18
Large 34M 1.19B 6.86 0.25

test set
OpenSubTest 11,000 66,148 6.01 0.23
WMT 3,003 68,155 22.70 0.23

Corpus #sentences #tokens ASL TTR

UGC test set
Cr#pbank 777 13,680 17.60 0.32
MTNT 1,022 20,169 19.70 0.34

UGC blind test set
Cr#pbank 777 12,808 16.48 0.37
MTNT 599 8,176 13.62 0.38

Table 1: Statistics on the French side of the corpora used in our experiments. TTR stands for Type-to-Token
Ratio, ASL for average sentence length.

UGC Corpus Example

MTNT FR (src) Je sais mais au final c’est moi que le client va supplier pour son offre et comme Jsui un gars
cool, jfai au mieux.

EN(ref) I don’t know but in the end I am the one who will have to deal with the customer begging for
his offer and because I’m a cool guy, I do whatever I can to help him.

Cr#pbank FR (src) si vous me comprenez vivé la mm chose ou [vous] avez passé le cap je pren tou ce qui peu
m’aider.

EN (ref) if you understand me leave the same thing or have gotten over it I take everything that can
help me.

.

Table 3: Excerpts of the UGC corpora considered. Common UGC idiosyncrasies are highlighted: non-
canonical contractions, spelling errors, missing elements, colloquialism, etc. See (Foster, 2010; Seddah
et al., 2012; Eisenstein, 2013) for more complete linguistic descriptions.

the development set and a 0.1 label smoothing
(Pereyra et al., 2017).

3.2.3 Transformer architecture
Weconsider a vanilla Transformermodel (Vaswani
et al., 2017) using the implementation proposed in
the OpenNMT framework (Klein et al., 2018). It
consists of 6 layers with word embeddings of 512
components, a feed-forward layers made of 2 048
units and 8 self-attention heads. It was trained us-
ing the ADAM optimizer with OpenNMT default
parameters.

3.3 Data processing
3.3.1 Preprocessing
All of our datasets were tokenized with byte-
pair encoding (BPE) (Sennrich et al., 2016) using
sentencepiece (Kudo and Richardson, 2018).
We use a BPE vocabulary size of 16K. As a point
of comparison we also train a system on Large
OpenSubswith 32KBPE operations. As usual, the
training corpora were cleaned so each sentence has,
at least, 1 token and, at most, 70 tokens.
We did not perform any other pre-processing. In

particular, the original case of the sentences was
left unchanged in order to help disambiguate sub-
word BPE units (see example in Figure 1) espe-
cially for Named Entities that are vastly present in

our two UGC corpora.

3.3.2 Post-processing : handling OOVs

Given the high number of OOVs in UGC, spe-
cial care must be taken in choosing the strategy
to handle them. The BPE pre-processing aims at
encoding rare and unknown words as sequence of
subword units reducing the number of tokens for
which the model has no information. But, because
of the many named-entities, contractions and un-
usual character repetitions, this strategy is not ef-
fective for UGC as it leads the input sentence to
contain many unknown BPE tokens (that are all
mapped to the special symbol <UNK> before trans-
lating).
The most common strategy for handling OOVs

in machine translation systems is simply copying
the unknown tokens from the source sentence to
the translation hypothesis. This is done in the
Moses toolkit (using the alignments produced dur-
ing translation) and in OpenNMT (that uses the
soft-alignments to copy the source token with the
highest attention weight at every decoding step
when necessary). At the time we conducted the
MT experiments, the XNMT toolkit (Neubig et al.,
2018) has no straightforward possibilities of re-
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placing unknown tokens present in the test set.6
For our seq2seq NMT predictions, we performed
such replacement through aligning the translation
hypothesis with the source sentences (both already
tokenized with BPE) with fastalign (Dyer et al.,
2013) and copying the source words aligned with
the <UNK> token.

4 Measuring noise levels as corpus
divergence

Several metrics have been proposed to quantify
the domain drift between two corpora. In partic-
ular, the perplexity of a language model the KL-
divergence between the character-level 3-gram dis-
tribution of the train and test sets were two use-
ful measurements capable of estimating the noise-
level of UGC corpora as shown respectively by
Martínez Alonso et al. (2016) and Seddah et al.
(2012).
We also propose a new metric to estimate

the noise level tailored to the BPE tokenization.
The BPE stability, BPEstab, is an indicator of
how many BPE-compounded words tend to form
throughout a test corpus. Formally BPEstab is de-
fined as:

1

N
·
∑

v∈V
freq(v) · n_unique_neighbors(v)

n_neighbors(v)
(1)

where N is the number of tokens in the corpus, V
the BPE vocabulary, freq(v) the frequency of the
token v and n_unique_neighbors(v) the number of
unique tokens that surrounds the token v. Neigh-
bors are counted only within the original word lim-
its. Low average BPE stability refers to a more
variable BPE neighborhood, and thus, higher aver-
age vocabulary complexity.
Table 4 reports the noise-level of our test sets in-

troduced in Section 3.1 with respect to our largest
training set, Large OpenSubtitles. These mea-
sures all show how divergeent are our UGC cor-
pora from our largest training set. As shown by
its OOVs ratio and its KL-divergence score, our
Cr#pbank corpus is much more noisier than the
MTNT corpus, making it a more difficult target in
our translation scenario.

6Note that the models described in (Michel and Neubig,
2018) do not handle unknown words, its reported translation
performance (Table 8 in the Appendix) would be thus underes-
timated if compared to our own results on the MTNT (Table 5).

5 Experimental Results

5.1 MT Performance
Table 5 reports the BLEU scores7 achieved by the
three systems we consider on the different combi-
nations of train/test sets. These results show that,
while NMT systems achieve the best scores on in-
domain settings, their performance drops when the
test set departs from the training data. On the con-
trary, the phrase-based system performs far bet-
ter in out-domain setting than in-domain settings.
It even appears that the quality of the translation
of phrase-based system increases with the noise-
level (asmeasured by themetrics introduced in §4):
when trained on OpenSubtitles, its score for the
Cr#pbank is surprisingly better than for in-domain
data. This is not the case for neural models. In the
next section we present a detailed error analysis to
explain this observation.
Interestingly enough, we also notice that a MT

system trained on the OpenSub corpora performed
much better on UGC test sets than the system
trained on the WMT collection. To further investi-
gate whether this observation results from a badly
chosen number of BPE operations, we have also
trained using the Large OpenSubtitles corpus
tokenized with a 32K operation BPE. We have
selected these numbers of BPE operations (16K
and 32K), beacause they are often used as main-
tream values, but this BPE parameter has been
shown to have a significant impact on the MT sys-
tem performance (Salesky et al., 2018; Ding et al.,
2019). Thus, the number of merging BPE oper-
ations should be carefully optimized in order to
garantee the best performance. However, this mat-
ter is out of the scope of our work.
Comparing both Large OpenSubtitles with BPE

tokenization 16K and 32K, BLEU scores reveal
that PBSMT has considerably lower performance
as the vocabulary size doubles. Regarding the
seq2seq NMT and, specially, PBSMT, we can no-
tice these systems underperform for such vocab-
ulary size, whereas the Transformer architecture
shows slightly better performances. However, the
Transformer still does not outperforms our best PB-
SMT benchmark on Cr#pbank. It is worth not-
ing that performances of the in-domain test Open-
SubsTest are kept almost invariable for PBSMT
both and NMT models.As expected, these perfor-
mance gaps between PBSMT andNMTmodels are

7All BLEU scores evaluation are computed with Sacre-
BLEU (Post, 2018).
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↓Metric / Test set→ Cr#pbank † MTNT† Newstest OpenSubsTest

3-gram KL-Div 1.563 0.471 0.406 0.0060
%OOV 12.63 6.78 3.81 0.76
BPEstab 0.018 0.024 0.049 0.13
PPL 599.48 318.24 288.83 62.06

Table 4: Domain-relatedmeasure on the source side (FR), between Test sets and Large OpenSubtitles
training set. Dags indicate UGC corpora.

PBSMT seq2seq Transformer

Crap MTNT News Open Crap MTNT News Open Crap MTNT News Open

WMT 20.5 21.2 22.5† 13.3 17.1 24.0 29.1† 16.4 15.4 21.2 27.4† 16.3

Small 28.9 27.3 20.4 26.1† 26.1 28.5 24.5 28.2† 27.5 28.3 26.7 31.4†
Large 30.0 28.6 22.3 27.4† 21.8 22.8 17.3 28.5† 26.9 28.3 26.6 31.5†

Large
32K 22.7 22.1 16.1 27.4† 25.3 27.2 21.9 28.4† 27.8 28.5 27.1 31.9†

Table 5: BLEU score results for our three models for the different train-test combinations. All the MT
predictions have been treated to replace UNK tokens according to Section 3.3.2. The best result for each
test set is marked in bold, best result for each system (row-wise) in blue color and score for in-domain
test sets with a dag. ‘Crap’, ‘MTNT’, ‘News’ and ‘Open’ stand, respectively, for the Cr#pbank, MTNT,
newstest'14 and OpenSubtitlesTest test sets.

substantial to out-of-domain test corpora, whereas
scores on the in-domain test sets remain almost
invariable regardless the chosen BPE vocabulary
size.

5.2 Error Analysis
The goal of this section is to analyze both quanti-
tatively and qualitatively the output of NMT sys-
tems to explain their poor performance in translat-
ing UGC. Several works have already identified
two main limits of NMT systems: translation drop-
ping and excessive token generation, also known
as over-generation (Roturier and Bensadoun, 2011;
Kaljahi et al., 2015; Kaljahi and Samad, 2015;
Michel and Neubig, 2018). We will analyze in de-
tail how these two problems impact our models in
the following subsections.
It is also interesting to notice how performances

lowered on the LargeOpenSubtitles system to-
kenized with 16K BPE operations for the seq2seq
system. Specifically the newstest'14 translation
results, for which we noticed a drop of 7.2 BLEU
points with respect to the SmallOpenSubtitles
configuration, despite having roughly 4 times
more training data. This is due to a faulty be-
haviour of the fastalignmethod, directly caused
by a considerable presence of UNK on the seq2seq
output. Concisely, there were 829 UNK tokens
on the newtest’14 prediction for the Small model

and 3,717 of such tokens in the output of the Large
setup. As soon as we double the number of opera-
tions on the further to train the Large 32K system,
performances on all the out-of domain testsets sub-
stantially increase, having 862 UNK tokens on the
newstest'14. This points to the fact that keep-
ing the same size of BPE vocabulary while increas-
ing the size of the trainig data several times causes
to have too many UNK subword tokens on cross-
domain corpora due to a small vocabulary given
the size and the lexical variability of the training
corpus. This is also suggested by the fact that the
LargeOpenSubtitles 16K system results for the
in-domain test set are the only ones with no per-
formance loss. On the othe hand, it is important
to note that the PBSMT and Transformer architec-
ture did not showed a performance decrease for the
Large model either.

Additionally, the PBSMT results for the Large
32K system are considerably lower than for any of
the other 2 OpenSubtitles configurations. This
shows that the PBSMT performs worse when we
have 32K vocabulary size keeping the same data
size, when compared to the Large system results.
We hypothesize that this is caused by a loss of gen-
eralization capability due to the fact that phrase-
tables are less factorized when having bigger vo-
cabularies of whole words, rather than relatively
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few sub-word vocabulary elements.

5.2.1 Translation Dropping
By manually inspecting the systems outputs, we
found that NMT models tend to produce shorter
outputs than the translation hypotheses of our
phrase-based system, often avoiding to translate
the noisiest parts of the source sentence, such as
in the example described in Figure 1. Sato et al.
(2016) reports a similar observation.
Analyzing the attention matrices shows that this

issue is often triggered by very unusual token se-
quences (e.g. letter repetitions that are quite fre-
quent in UGC corpora), or when the BPE tokeniza-
tion results in a subword token that can generate
a translation that has a high probability according
to a corpus of canonical texts. For instance, in
Figure 1, a rare BPE token, part of the Named
Entity “teen wolf” gets confused with the very
common french token “te” (you). As a conse-
quence, the seq2seq model suddenly stops trans-
lating because the hypothesis “I want to look
at you” is a very common English sentence with
a much lower perplexity than the (correct) UGC
translation. Similar pattern can be observed with
the Transformer architecture in case of rare token
sequences on the source side, such as in the third
example of Table 9, causing the translation to stop
abruptly.

Figure 1: Attention matrix for the source sentence
‘Bon je veux regardé teen wolf moi mais ce soir
nsm*’ predicted by a seq2seqmodel. *Ok, I do want
to watch Teen Wolf tonight motherf..r

Our phrase-based model does not suffer from

this problem as there is no entry in the phrase ta-
ble that matches the sequence of BPE tokens of
the source sentence. This illustrates how hard
alignment tables can be more efficient than soft-
alignment produced by attention mechanisms for
highly noisy cases, in particular when the BPE tok-
enization generates ambiguous tokens, which con-
fuses the NMT model.
To quantify the translation dropping phe-

nomenon, we show, in Figure 2, the distribution
of the ratio between the reference (ground truth)
translation sentence length and the one produced
by PBSMT and NMT for Cr#pbank. This figure
shows that both the NMT and Transformers
models have a consistent tendency of producing
shorter sentences than expected, while PBSMT
does not. This is a strong evidence that NMT
systems produce overall shorter translations,
as has been noticed by several other authors.
Moreover, there are a substantial percentage of
the NMT predictions that are 60% shorter than the
references, which demonstrates the presence of
translations being dropped or shortened.

Figure 2: Distribution of Cr#pbank translations
length ratio w.r.t ground truth translations.

5.2.2 Over-translation
A second well-known issue with NMT is that the
model sometimes repeatedly outputs tokens lack-
ing any coherence, thus adding considerable artifi-
cial noise to the output (Tu et al., 2016).
When manually inspecting the output, we

noticed that this phenomenon occurred in UGC
sentences that contain a rare, and often repetitive,
sequence of tokens, such as those present in
sentences like “ne spooooooooilez pas teen
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wolf non non non et non je dis non”
(don’t spoooooil Teen wolf no and no I say no) in
which the speaker emotion is expressed by repe-
titions of words or letters. The attention matrix
obtained when translating such sentences with a
seq2seq model often shows that the attention
mechanism gets stalled due to the repetition of
some BPE token (cf. the attention matrix in
Figure 3 that corresponds to the example above).
More generally, we noticed many cases in which
the attention weights start focusing more and more
on the end-of-sentence token until the translation
is terminated while ignoring the source sentence
tokens thereafter.
The transformer model exhibits similar prob-

lems (for instance it translates the previous exam-
ple to “No no no no no no no no no no no
no no no no no no no”). The PBSMT system
does not suffer for this problem and arguably pro-
duces the best translation: “don't spooooooozt
Teen Wolf, no, no, no, no, I say no”.

Figure 3: Attention matrix of a seq2seq model
that exhibits the excessive token repetition prob-
lem. The sharp symbol (#) indicates spaces be-
tween words before the BPE tokenization.

To quantify the amount of noise artificially
added by each of our models, we report, in Table 6
the Target-Source Noise Ratio (TSNR), recently
introduced by Anastasopoulos (2019). A TSNR
value higher than 1 indicates that the MT system
adds more noise on top of the source-side noise,
i.e. the rare and noisy tokens present in the source
create even more noise on the output. This met-
ric assumes that we have access to a corrected ver-
sion of each source sentence. So in order to quan-

tify this noise, we manually corrected 200 source
sentences of the Cr#pbank corpus. In Table 6, we
can observe that PBSMT has a better TSNR score,
thus adding less artifacts (including dropped trans-
lations) to the output. We notice that the gap be-
tween PBSMT and NMT architectures (about 0.3)
is much larger when training on WMT than when
training in our OpenSubtitles (about 0.1).

PBSMT seq2seq Transformer

WMT 4.62 5.00 4.92
Small 4.11 4.27 4.19
Large 3.99 4.27 4.09

Table 6: Noise added by the MT system estimated
with the TSNR metric for the Cr#pbank corpus,
the lower the better.

5.2.3 Qualitative analysis

In Table 9, in the Appendix for space reasons,
we present some more MT outputs to qualita-
tively compare the PBSMT and NMT models.
These predictions were produced using Large
OpenSubtitles, trained with 16K fixed size vo-
cabulary. From Example 9.1, we can see both
NMT models exhibiting better grammatical coher-
ence on the output. Specifically, the Transformer
displays the most well-formatted and fluid trans-
lation. From Example 9.2, the seq2seq model
produces several potential translations to unknown
expressions (“Vous m’avez tellement soulé”) and
translates “soulé” → “soiled”. Note that “flappy”
is also often translated as “happy” throughout the
Cr#pbank translations. The Transformer model
produces arguably the worst results for this exam-
ple because of this unknown expression (“You’ve
got me so flappy”). Example 9.3 shows one symp-
tomatic example of the transformer producing a
shorter translation than the source and a common
tendency to the seq2seq and Transformer mod-
els to basically “crash” when problematic cases
are added (bad casing, rare word, incorrect syn-
tax..). Finally, on Example 9.4, we can notice
that neither of the NMT systems can correctly
translate the upper-cased source token “CE SOIR”
→ “TONIGHT”, whereas PBSMT achieves to do
so. It is interesting to note that the Transformer
model generated a non-existent word (“SOIRY”) in
its attempt to translate the OOV.
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6 Discussion

The results presented in the previous two sec-
tions confirm the conclusions of Anastasopoulos
(2019) that found a correlation between NMT per-
formance and the level of noise in the source sen-
tence. Note that, for computational reasons we
have considered a single NMT architecture in all
our experiments. However, Sennrich and Zhang
(2019) have recently shown that hyper-parameters
such as batch size, size of BPE vocabulary, model
depth, etc., can have a large impact on translation
performance especially in low-resource scenario,
a conclusion that should be confirmed in cross-
domain setting such as the one considered in this
work.
As shown by the differential of performance

in favor of the smaller training sets when used
with the neural models, our results suggest that
the specificities of UGC raise new challenges for
NMT systems that cannot simply be solved by
feeding ours models more data. Nevertheless,
Koehn and Knowles (2017) highlighted 6 chal-
lenges faced by Neural Machine Translation, one
of them being the lack of data for resource poor-
domain. This issue is strongly emphasized when
it comes to UGC which does not constitute a do-
main on its own and which is subjected to a degree
of variability only seen in the processing historical
document over a large period of times (Bollmann,
2019) or in emerging dialects which can greatly
varies over geographic or socio-demographic fac-
tors (transliterated Arabic dialects for example).
This is why the availability of new UGC data sets
is crucial and as such the release of the Cr#pbank
is a welcome, small, stone in the edifice that will
help evaluating machine translation architectures
in near-real conditions such as blind testing.
In order to avoid common leaderboard pitfalls

in such settings, we did not use the Cr#pbank’s
blind test set for any of our experiments, neither
did we for the MTNT validation test. Neverthe-
less, evaluating models on unseen data is neces-
sary, the more being the better. Therefore, in
the absence of a MTNT blind test, we used a sam-
ple of its validation set, approximately matching
the same average sentence length than its refer-
ence test set. In Table 7 are presented results of
our best systems, based on their performance on
our UGC test sets. They confirm the tendency
exposed earlier: our PBSMT system is more ro-
bust to noise than our transformer-based NMT

with respectively +4.4 and +11.4 BLEU points for
the MTNT and Cr#pbank blind tests. For com-
pleteness, we run the seq2seq system of Michel
and Neubig (2018), trained on their own data set
(Europarl-v7, news-commentary-v10), with-
out any domain-adaptation, on our blind tests. Re-
sults are on the same range than the same seq2seq
model we trained on our edited data set (WMT).
It would be interesting to see how their domain-
adaptation technique, fine-tuning on the target do-
main data, which brought their system’s perfor-
mance to BLEU 30.29 on the MTNT test set, would
fare on unseen data. As UGC domain is a con-
stantly moving, almost protean, target, adding
more data seems unsustainable on the long run. Ex-
ploring unsupervised adaptive normalization could
provide a solid alternative.

Blind Test Sets
System MTNT Cr#pbank

Large 16K - PBSMT 29.3 30.5
Large 32K - Transformer 24.9 19.1

N&G18 19.3 13.3
N&G18 + our UNK 21.9 15.4

Table 7: BLEU score results comparison on the
Cr#pbank and MTNT blind test sets. N&G18 stands for
(Michel and Neubig, 2018)'s baseline system

7 Conclusions
This work evaluates the capacity of both phrase-
based and NMT models to translate UGC. Our ex-
periments show that phrase-base systems are more
robust to noise thanNMT systems andwe provided
several explanations about thisrelatively surprising
fact, among which the discrepancy between BPE
tokens as interpreted by the translation model at
decoding time and the addition of lexical noise fac-
tors are among the most striking. We have also
shown, by producing a new data set with more vari-
ability, that using more training data was not nec-
essarily the solution for coping with UGC idiosyn-
crasies. The aim of this work is of course not to
discourage the NMT system deployment for UGC,
but to better understand what in PBSMT methods
contribute to noise robustness.
In our futurework, we plan to seewhether theses

conclusions still hold for other languages and even
noisier corpora. We also plan to see whether it is
possible to bypass the limitations of NMT systems
we have identified by pre-processing and normal-
izing the input sentences.
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Appendix

↓ System / Test set→ Newstest’14 Discusstest’15 MTNT†

out-of-domain set-up
WMT-seq2seq N&G18 28.93 30.76 23.27
WMT-seq2seq (Ours) 28.70 30.00 23.00

domain adaptation set-up
WMT-seq2seq N&G18+fine tuning - - 30.29

Table 8: BLEU score results comparison between our seq2seq system and thoses reported by Michel and
Neubig (2018). None of the system outputs have been treated to replace UNK tokens. Dags indicate UGC
corpora. N&G18 stands for (Michel and Neubig, 2018)'s system.

À src Nen sans rire, j’ai bu hier soir mais ca faisait deux semaines.
ref Yeah no kidding, I drank last night but it had been two weeks.
PBSMT No, no, I’ve been drinking last night, but it’s been two weeks.
seq2seq No laughing, I drank last night, but it’s been two weeks.
Transformer No kidding, I drank last night, but it’s been two weeks.

Á src Vous m’avez tellement soulé avec votre flappy bird j’sais pas quoi. Mais je vais le télécharger.
ref You annoyed me so much with your flappy bird whatever. But I’m going to download it.
PBMST You’re so drunk with your flappy bird I don’t know. But I’m going to download.
seq2seq You have soiled me happy bird I don’t know what, but I’m going to download it.
Transformer You’ve got me so flappy I don’t know what, but I’m gonna download it.

Â src Vos gueul ac vos Zlatan
ref Shut the fck up with your Zlatan.
PBMST Your scream in your Zlatan
seq2seq Your shrouds with your Zlatan
Transformer Zlatan!

Ã src CE SOIR Y A L’ÉPISODE DE #TeenWolf OMFGGGG
ref TONIGHT THERE’S THE #TeenWolf EPISODE OMFGGGGG
PBMST Tonight’s It At The EPISODE OF #Teen Wolf OMFGGGG
seq2seq Teenwolf OMFGGGGGGGGGG
Transformer THIS SOIRY HAS THE #TeenWOL OMFGGGGGGGGGG

Table 9: Examples from our noisy UGC corpus.

Figure 4: Attention matrix for the source sentence ‘Ce soir Teen Wolf les gars.*’ showing a proper trans-
lation thanks to correct casing of the named-entity BPE parts.*Tonight Teen Wolf guys.
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Abstract

Standard approaches to treebanking tradi-
tionally employ a waterfall model (Som-
merville, 2010), where annotation guide-
lines guide the annotation process and in-
sights from the annotation process in turn
lead to subsequent changes in the anno-
tation guidelines. This process remains
a very expensive step in creating linguis-
tic resources for a target language, neces-
sitates both linguistic expertise and man-
ual effort to develop the annotations and is
subject to inconsistencies in the annotation
due to human errors.

In this paper, we propose an alternative ap-
proach to treebanking—one that requires
writing grammars. This approach is moti-
vated specifically in the context of Univer-
sal Dependencies, an effort to develop uni-
form and cross-lingually consistent tree-
banks across multiple languages. We
show here that a bootstrapping approach
to treebanking via interlingual grammars
is plausible and useful in a process where
grammar engineering and treebanking are
jointly pursued when creating resources
for the target language. We demonstrate
the usefulness of synthetic treebanks in the
task of delexicalized parsing, a task of in-
terest when working with languages with
no linguistic resources and corpora. Ex-
periments with three languages reveal that
simple models for treebank generation are
cheaper than human annotated treebanks,
especially in the lower ends of the learning
curves for delexicalized parsing, which is
relevant in particular in the context of low-
resource languages.

1 Introduction

Treebanking remains a vital step in the process
of creating linguistic resources for a language –
a practice that was established in the last 2-3
decades (Marcus et al., 1994). The process of tree-
banking involves training human annotators in or-
der to obtain high-quality annotations. This is a
human-intensive and costly process where multi-
ple iterations are performed to refine the quality
of the linguistic resource. Grammar engineering
is a complementary approach to creating linguis-
tic resources: one that requires a different kind of
expertise. These two approaches have remained
orthogonal for obvious reasons: treebanks are pri-
marily necessary to induce abstractions in NLU
(Natural Language Understanding) models from
data, while grammars are themselves abstractions
arising from linguistic knowledge. Abstractions
induced from data have proven themselves to be
useful for robust NLU tasks, while grammars are
better at precision tasks involving NLG (Natural
Language Generation).

Given the resources required for treebanking,
synthetic treebanks have been proposed and used
as substitute in cross-lingual parsing for languages
where treebanks do not exist. Such treebanks are
created using parallel corpora where parse trees in
one language are bootstrapped into a target lan-
guage using alignment information through anno-
tation projection (McDonald et al., 2011; Tiede-
mann, 2014) or using machine translation systems
to bootstrap existing treebanks in one or more
source language(s) to the target language (Tiede-
mann and Agic, 2016; Tyers et al., 2018). More re-
cently, synthetic treebanks are generated for both
real and artificial languages using multilingual
treebanks by learning feasible parameter combina-
tions (Wang and Eisner, 2016) – Wang and Eisner
(2018) show that such treebanks can be useful to
select the most similar language to train a parsing
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model for an unknown language.

At the same time, grammar-based treebanking
approaches have been shown to work in monolin-
gual setups—to derive rich linguistic representa-
tions defined by explicit grammars (Oepen et al.,
2004). These approaches are carried out by pars-
ing raw corpora with a target grammar and using
an additional human disambiguation phase. Al-
ternatively, existing treebanks are matched against
the target grammar further reducing the human ef-
fort in disambiguation: these approaches face a
challenge of under-specification in the source tree-
banks (Angelov, 2011). In the current paper, we
propose a hybrid of these two methods: we use ab-
stract syntax grammars as core linguistic abstrac-
tion to generate synthetic treebanks for a grammar
that can be translated to target representations with
high precision.

The question of annotation costs and ways to
minimize the dependence on such annotated cor-
pora has been a recurring theme in the field for
the last two decades (Ngai and Yarowsky, 2000;
Garrette and Baldridge, 2013). This question has
also been extensively addressed in the context
of dependency treebanks. We revisit this ques-
tion in context of Universal Dependencies and re-
cent work on the interplay between interlingua
grammars and multilingual dependency trees in
this scheme (Kolachina and Ranta, 2016; Ranta
and Kolachina, 2017; Ranta et al., 2017). The
use of interlingua grammars to bootstrap depen-
dency treebanks guarantees two types of consis-
tencies: multilingual treebank consistency and
intra-treebank consistency. We study the effi-
cacy of these dependency treebanks using learn-
ing curves of a transition-based parser in a delexi-
calized parsing setup. The delexicalized parsing
setup allows for generation of parallel UD tree-
banks in multiple languages with minimal pre-
requisites on language-specific knowledge.

Another rationale behind the the current work in
the context of cross-lingual parsing is while syn-
thetic treebanks offer a “cheap” alternative, the
signal for the target language is limited by the
quality of the MT system. On the other hand, in-
terlingua grammars provide a high-quality signal
about the target language. High quality using in-
terlingual grammars refers to accurate generation
of word-order and morphology – although lexical
selection in translation is still a problem. There
have not been previous attempts in cross-lingual

parsing to our knowledge studying the effect of
these.

This paper is structured as follows: Sec-
tion 2 gives the relevant background on interlin-
gua grammars and the algorithm used to generate
UD trees given treebank derived from an interlin-
gua grammar. Section 3 describes our algorithm to
bootstrap treebanks for a given interlingua gram-
mar and parallel UD treebanks from them along
with an intrinsic evaluation of these bootstrapped
UD treebanks. Section 4 shows the parsing setup
we use and Section 5 details the results of the pars-
ing experiments.

2 Grammatical Framework

Grammatical Framework (GF) is a multilingual
grammar formalism using abstract syntax trees
(ASTs) as primary descriptions (Ranta, 2011).
Originating in compilers, AST is a tectogrammat-
ical tree representation that can be shared between
languages. A GF grammar consists of two parts –
an abstract syntax shared between languages and
concrete syntax that is defined for each language.
The abstract syntax defines a set of categories and
a set of functions, as shown in Figure 1. The
functions defined in the abstract syntax specify
the result of putting subparts of two categories to-
gether and the concrete syntax specifies how the
subparts are combined i.e. word-order preferences
and agreement constraints specific to the language.

A comprehensive implementation of a multilin-
gual grammar in GF is the Resource Grammar
Library, GF-RGL (Ranta, 2009), which currently
has concrete syntaxes for over 40 languages, rang-
ing from Indo-European through Finno-Ugric and
Semitic to East Asian languages. 1 This imple-
mentation contains a full implementation of the
morphology of the language, and a set of 284 syn-
tactic constructors that correspond to the core syn-
tax of the language. Also included is a small lex-
icon of 500 lexical concepts from a set of 19 cat-
egories, of which 10 correspond to different sub-
categorization frames of verbs, 2 classes of nouns
and adjectives. These grammars are reversible-
i.e. they can be used for parsing and simultaneous
multilingual generation into multiple languages.
The concrete syntaxes for all the languages de-
fine the rules for these syntactic constructors and

1The current status of GF-RGL can be seen in
http://www.grammaticalframework.org/
lib/doc/synopsis.html which also gives access to
the source code.
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Figure 1: Abstract syntax of a GF grammar and its specification for UD scheme. Also shown is an
example AST for the sentence the black cat sees us today. Any function with a definition written as
f : C1 → C2 → ...Cn → C; can be rewritten as a context-free rule f. C ::= C1C2...Cn.

the lexical concepts. The expressivity of these
grammars is equivalent to a PMCFG (Seki et al.,
1991), which makes parsing complexity of this
formalism polynomial in sentence length. Poly-
nomial parsing with high exponents can still be
too slow for many tasks, and is also brittle if the
grammars are designed to not over-generate. But
generation using GF grammars has been shown to
be both precise and fast, which suggests the idea
of combining data-driven parsing with grammar-
driven generation. We refer the interested reader
to Ljunglöf (2004) for discussion on expressivity
of this formalism and Angelov (2011); Angelov
and Ljunglöf (2014) for discussion on probabilis-
tic parsing using GF grammars.

2.1 gf2ud

Kolachina and Ranta (2016) propose an algorithm
to translate ASTs to dependency trees, that takes
a specification of the abstract syntax of the GF
grammar (referred to as configurations, see Fig-
ure 1) which describes the mapping between the
grammar and a target dependency scheme, in this
case Universal Dependencies. These configura-
tions can be interpreted as a synchronous grammar
over the abstract syntax as source and dependency
scheme as target.

The first step in this transducer is a recursive an-
notation that marks for each function in the AST,
one of the arguments as head and specifies labels
for the other arguments, as specified by the con-
figuration. The algorithm to extract the resulting
dependency tree from the annotated AST is sim-
ple.

• for each leaf X (which corresponds to a lexi-
cal item) in the AST

– trace the path up towards the root until
you encounter a label L

– from the node immediately above L, fol-
low the spine (the unlabeled branches)
down to another leaf Y

– Y is the head of X with label L

At the end of these two steps, the resulting data-
structure is an abstract dependency tree (ADT
shown in Figure 2). It should be noted that the
order of nodes shown in the ADT does not re-
flect the surface order that is specific to a language.
The ADT combined with the concrete syntax of a
language and concrete configurations (when nec-
essary) results in the corresponding full UD tree.
The concrete configurations are necessary to pro-
vide appropriate labels to syncategorematic words
like auxiliary verbs and negation particles. Addi-
tionally, the category configuration on the abstract
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see V2 cat N the Det black A we Pron today Adv
V2 N Det A Pron Adv

root

nsubj det

amod

obj

mod

Figure 2: ADT for the sentence the black cat sees
us today. The nodes in the ADT correspond to lex-
ical functions defined in the grammar. Also shown
is the UD part-of-speech tag sequence. Note that
the order of nodes does not reflect the surface or-
der in any particular language.

syntax can be augmented with a language-specific
category configurations to generate the morpho-
logical features in the dependency tree with a de-
sired tag set.

Kolachina and Ranta (2016) show that their
method can be used to generate partially labeled
UD trees for 30 languages when the correspond-
ing concrete syntax is available. They also show
that using configurations defined on abstract syn-
tax alone and depending on the availability of the
concrete syntax, a large fraction (around 75–85%
of edges) of the dependency treebanks can be gen-
erated automatically. This is done with small tree-
banks of ASTs – a UD treebank of 104 ASTs and a
GF treebank of 400 ASTs. Their results show that
parallel UD treebanks can be bootstrapped using
ASTs and interlingua grammars, the usefulness of
such treebanks however is not addressed in that
work. Full UD treebanks can be generated when
concrete configurations (those addressing syncate-
gorematic words) are additionally available for the
language.

3 Bootstrapping AST and UD treebanks

The abstract syntax component of a GF grammar
is an algebraic datatype definition, which can also
be seen as a context-free grammar (CFG). The dis-
ambiguation model defined in GF uses a context-
free probability distribution defined on the abstract
syntax. The advantage of defining the distribution
on the abstract syntax is that it allows for trans-
fer of distribution to languages for which GF tree-
banks do not exist. The context-free distribution
decomposes the probability estimate of a tree as
the product of probabilities of the sub-trees and the
probability of the function applied to these sub-

(a) An AST of an existential clause bootstrapped using our
model.

there is nothing or nobody next Saturday
det finns inget eller ingen nästa lördag

(b) Linearization of the AST in English and Swedish

nothing NP or Conj nobody NP saturday Weekday
PRON CCONJ PRON NOUN

root

cc

conj

obl

(c) ADT corresponding to the above example that has to be
delexicalized.

PRON VERB PRON CCONJ PRON ADJ NOUN

expl

root

nsubj cc

conj

amod

nmod

(d) The delexicalized UD tree in both English and Swedish
shares the same part-of-speech tag sequence and dependency
labels

Figure 3: Example of a bootstrapped AST and UD
tree and the intermediate ADT.
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trees. The probabilistic abstract syntax grammar
can therefore be defined in terms analogous to a
probabilistic CFG (PCFG). The probability distri-
bution over the set of categories in the grammar is
also included in the distribution corresponding to
the abstract syntax.

We use this formulation as a starting point and
generate ASTs for a given grammar. The ASTs
bootstrapped using the probability model defined
above are correct in terms of the grammar but do
not follow the selectional preferences that encode
semantic preferences verbs have for their argu-
ments typically found in language. For this reason,
we refer to the bootstrapped treebanks as “syn-
thetic” data.

Additionally, while the algorithm used to boot-
strap ASTs does not change depending on whether
the grammar includes a lexicon or not, it is signif-
icantly faster depending the size of the grammar.
Stacking gf2ud defined using abstract configu-
rations on top of these bootstrapped ASTs results
in a treebank of ADTs. Alternatively, the concrete
syntax of a language can straightforwardly be used
to linearize a corpus of the target language. The
concrete syntax and the concrete configurations
when available are used to generate fully labelled
UD treebanks for a target language. Figure 3
shows an example of a synthetic AST and delexi-
calized UD tree bootstrapped using the RGL.
The bootstrapping algorithm uses a parameter cor-
responding to the maximum depth of the trees d to
be generated. The generative story is as follows:
• Pick a category C using the distribution over

categories defined in the probability model.
• Select a function F with the definition C1 →
C2 → ...→ Cn → C according to the condi-
tional distribution P (F |C).
• Recursively apply the same step to build sub-

trees of maximum depth d − 1, tC1 , tC2 ...
tCn of categories C1, C2 ... Cn respectively.
• Return (F tC1 tC2 .. tCn).

3.1 Differences against UDv2

The design of the RGL and corresponding config-
urations do not contain all of the structures de-
fined in the UD annotation scheme. The miss-
ing structures fall into two major categories: la-
bels that depend on the lexical realization in a spe-
cific language, and structures that correspond to
specific linguistic constructions that are not part
of the core RGL syntax. Examples of the first

Language H(PUD) H(PGF) Cross-entropy
Afrikaans 39.59 58.34 63.12
Arabic 40.00 42.13 51.38
Basque 44.19 51.19 54.21
Bulgarian 32.09 53.76 61.23
Catalan 44.49 49.37 57.39
Chinese 39.25 42.10 59.76
Danish 44.85 55.28 63.39
Dutch 48.99 49.67 61.27
English 50.52 45.31 58.17
Estonian 39.45 43.82 49.35
Finnish 47.86 41.52 54.39
French 43.41 49.43 53.47
German 41.35 49.35 51.29
Greek 29.48 41.13 49.17
Hindi 32.99 43.18 54.27
Italian 38.55 51.37 59.64
Japanese 27.34 40.18 47.25
Latin 42.07 43.47 49.89
Latvian 49.75 49.91 59.26
Norwegian (bokmal) 40.29 45.97 53.17
Norwegian (nynorsk) 37.29 44.56 56.32
Persian 33.07 47.29 47.16
Polish 23.85 41.27 49.83
Portuguese 40.84 48.73 53.60
Romanian 47.31 52.31 57.12
Russian 39.14 47.92 52.84
Spanish 46.36 52.17 57.73
Swedish 35.36 47.41 51.39
Urdu 33.70 42.14 58.73
Icelandic N/A 51.26 N/A
Thai N/A 41.23 N/A

Table 1: Entropy values of probability distri-
butions P(label—(head-pos)) for different lan-
guages estimated from real (PUD) and boot-
strapped (PGF) treebanks. If a language has more
than one treebank in the UD distribution, we se-
lect one treebank as the primary treebank and use
that to estimate the distribution and in the parsing
experiments. Languages for which a UD treebank
does not exist but is included in GF-RGL are listed
towards the bottom of the table.

type include multi-word expressions and proper
nouns (labeled using fixed and flat label). In
the second class, are ellipsis and paratactic con-
structions in addition to labels that are used in ro-
bust analysis of web text (orphan, goeswith
and reparandum). Examples that cover these
labels can be generated by re-writing the gram-
mar: however, we found very few instances of
these in the treebanks. Finally, another varia-
tion in the bootstrapped treebanks is in the case
of label subtypes that are optionally defined in a
language-specific manner. While the configura-
tions allow for accurate generation of certain la-
bels (e.g. obl:agent in the case of passive
agents), recovering similar information in other
instances is not possible without a significant re-
design of the RGL (e.g. obl:tmod for tempo-
ral modifiers). We address this issue by restricting
gf2ud to generate only the core labels in UD and
ignore subtype labels uniformly across languages.

Table 1 shows the entropies of the conditional
probability distribution defined as probability of a
UD label given the part-of-speech tag of the head.
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The distributions are estimated on both the syn-
thetic UD treebank and a human annotated UD
treebank 2 Also shown in the table are the cross-
entropy values between the distribution estimated
from the synthetic and the original treebanks.

4 UD Parsing

The bootstrapped UD treebanks are used to train
delexicalized parsing models. We choose to work
with the delexicalized UD treebanks for two rea-
sons: first, the context-free assumption in the
probabilistic model defined on the abstract syntax
makes the tree generation decomposable, but se-
lectional preferences are not encoded in the gener-
ative model used for bootstrapping the ASTs. Sec-
ondly, generating a full UD treebank assumes the
availability of an interlingua lexicon – which re-
duces the portability of this approach to new lan-
guages.3 For both these reasons, we restrict our-
selves to strictly delexicalized UD treebanks in our
parsing experiments.

We are interested in the following three use-
cases depending on the size of the training data
(N) available for inducing parsing models.

• When N ≤ 1K sentences4 are available for
a language. There are around 20 treebanks
in the current UD distribution that match
this criterion and almost all these treebanks
have been manually annotated from scratch.
This corresponds to the scenario of under-
resourced languages, where either the mono-
lingual corpus for treebank or annotators
for treebanking are scarce. This scenario
strongly corresponds to our proposed idea of
simultaneous grammar engineering and tree-
banking.

• When 1K ≤ N ≤ 5K sentences5 are avail-
able for a language. There are around 18
treebanks in the current UD distribution that
match this criterion. While one can argue
that these languages are not really under-
resourced, this setup matches the typical case
of training domain-specific parsers either for
a particular domain like bio-medical or legal
texts.

2The UD treebanks are taken from the v2.3 distribution.
3 There is ongoing work on developing interlingual lexica

from linked data like WordNet (Virk et al., 2014; Angelov
and Lobanov, 2016).

4This approximately corresponds to 20K tokens.
5This approximately corresponds to 20K – 100K tokens.

• The case where treebanks are larger than ei-
ther of the two previous scenarios N ≥ 5K.
This setup is interesting to test the limit of
how useful are bootstrapped ASTs and UD
treebanks to train parsing models.

For each of these use-cases, we train parsing
models using data from both human annotated
UD treebanks and synthetic treebanks for different
sizes of training data. The resulting parsing mod-
els are evaluated using labelled attachment scores,
obtained by parsing the test set of the UD tree-
bank for the language in question. We experiment
with an off-the-shelf transition-based dependency
parser that gives good results in the dependency
parsing task (Straka and Straková, 2017). In the
ideal case the experiments need to be carried out
using multiple parsers from both the transition-
based and graph-based paradigms. We leave that
for future work.

5 Experiments

We ran experiments with 3 languages – English,
Swedish and Finnish in this paper. In addition to
the availability of a concrete syntax for the lan-
guage, our approach also requires concrete config-
urations for the languages (Kolachina and Ranta,
2016) in order to bootstrap full UD trees. Ta-
ble 2 shows statistics about the concrete config-
urations for the RGL grammar for the languages.
The probability distribution defined on the RGL
was estimated using the GF-Penn treebank (Mar-
cus et al., 1994; Angelov, 2011) of English. This
raises another question – how well does the distri-
bution defined on the abstract syntax of the RGL
estimated from monolingual data transfer across
other languages. The bootstrapping algorithm was
restricted to generate 20K ASTs of depth less than
10.6

We use UDPipe (Straka and Straková, 2017) to
train parsing models, using comparable settings
to the baseline systems provided in the CoNLL18
shared task (Zeman and Hajič, 2018). Gold tok-
enization and part-of-speech tags are used in both
training and testing the parser. This was done
to control for differences in tagging performance
across the synthetic and original UD treebanks.
The models are trained using the primary tree-
banks from Universal Dependencies v2.3 distri-
bution.7 We plot the learning curves for parsing

6Trees of depth less than 4 were filtered out in the process.
7 The notion of primary treebank for a language has been
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(a) Learning curves for English (b) Learning curves for Finnish (c) Learning curves for Swedish

Figure 4: Learning curves for parsing models of trained on original UD and synthetic UD treebanks.

(a) Learning curves for English (b) Learning curves for Finnish (c) Learning curves for Swedish

Figure 5: Learning curves shown using bar plots for parsing models trained on less than 1000 sentences
from original UD and 2000 sentences from synthetic UD treebanks.

Language Abstract Concrete Morph-features
English 143 21 57
Swedish 143 25 59
Finnish 143 31 57

Table 2: Estimate of the effort required in gf2ud.
The abstract configurations are the same for
all languages, while the concrete functions and
morph-features are defined for each language. The
first column corresponds to configurations for syn-
tactic constructors in the RGL, and second column
corresponds to constructors that use syncategore-
matic words in the linearization.

models in Figure 4 trained on both the original and
synthetic treebank data for each use case outlined
in Section 4. The learning curves were plotted us-
ing the LAS accuracies obtained on the test set for
the three languages using models trained on both
the original and the synthetic treebanks. It is seen
from the learning curves that models trained on the
synthetic treebanks do not outperform the models
trained using original UD treebanks.

However, the full learning curves shown in Fig-
ure 4 do not tell the complete story. Figure 5
shows the learning curves (visualized using bar
plots) for English, Finnish and Swedish in the
setup where less than 1K sentences from UD tree-

made obsolete in UD v2.3 distribution - with all treebanks be-
ing assigned a code. So, we use the term primary in this paper
to refer to EWT for English, TDT for Finnish and Talbanken
for Swedish.

banks are used. It is clear from the plots for all
the three languages that the synthetic treebanks are
sub-optimal when directly compared against real
treebanks of the same size. However, what is in-
teresting is that parsing models in this range (i.e.
N ≤ 1K) with synthetic treebanks quickly reach
comparable accuracies to using real treebank data,
with an approximate effective data coefficient of
2.0. In other words comparable accuracies can be
obtained using roughly twice the amount of syn-
thetic data, generated for free by the abstract syn-
tax grammar.

It is interesting to note that the learning curves
using the synthetic data for the English parsing
models become comparably flat in our setup with
less than 5K sentences (shown in Figure 6a). De-
spite the lower improvements with increasing tree-
bank sizes, there is still a consistent improvement
in parsing accuracies with the best accuracy of
65.4 LAS using 10K synthetic samples (shown
in Figure 6b). This pattern is consistent across
Swedish and Finnish, which allows us to draw
the conclusion that while the effective data co-
efficient is smaller, the synthetic treebanks are still
useful to improve parsing accuracies.

6 Related Work

The current trend in dependency parsing is di-
rected towards using synthetic treebanks in an
attempt to cover unknown languages for which
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(a) Learning curves for English with N between 1K and 5K
samples

(b) Learning curves for English with N between 5K and 10K
samples

Figure 6: Learning curves shown using bar plots for parsing models of English

resources are minimal or do not exist alto-
gether. Such treebanks rely on various auxiliary
resources: parallel corpora (Tiedemann, 2014),
multilingual word-embeddings (Xiao and Guo,
2014), MT system for the target language (Tiede-
mann and Agic, 2016; Tyers et al., 2018) or
more minimally, tagged corpora in the target lan-
guage (Wang and Eisner, 2018).

Tiedemann and Agic (2016) propose a method
to generate synthetic treebanks for new lan-
guages using machine translation systems to trans-
fer cross-linguistic information from resource-rich
language to under-resourced languages. This work
builds on top of many previous approaches to
cross-lingual parsing using parallel corpora and
multilingual word-embeddings. The synthetic
treebanks generated in the current work are are dif-
ferent in two ways:
• we assume multilingual abstraction and the

concrete syntaxes are available, namely the
GF-RGL to generate language-independent
samples in the form of ASTs.
• we also assume that a distribution of the tar-

get language is not available and what is
available is a distribution on the abstract syn-
tax that generalizes to other languages.

Hence, the resulting treebank is licensed by a
grammar, and high-precision cross-linguistic in-
formation is specified, but the distribution over the
resulting treebank is different from the distribution
obtained using the real treebanks. An alternative
to the method of bootstrapping UD treebanks is
to use ud2gf (Ranta and Kolachina, 2017) as a
way to translate existing UD treebanks to GF tree-
banks, that are licensed by a grammar.

The current work also relates to more recent

work in data-augmentation for dependency pars-
ing (Sahin and Steedman, 2018) and more gener-
ally in NLP (Sennrich et al., 2016). The augmenta-
tion methods are designed to address data scarcity
by exploiting monolingual corpora or generat-
ing synthetic samples in multilingual applications.
However, the underlying abstractions used to gen-
erate the synthetic data are induced from auxiliary
corpora.

Jonson (2006) show that synthetic corpora gen-
erated using a GF grammar can be used to build
language models for speech recognition. Ex-
periments in their work show that synthetic in-
domain examples generated using the grammar
when combined with large out-of-domain data re-
sult in significant reduction of word error rate of
the speech recognizer. This work falls in line with
similar approaches to combine corpus driven ap-
proaches with rule-based systems (Bangalore and
Johnston, 2004), as a way to combine the sta-
tistical information available from corpora with
good coverage resulting from rule-based abstrac-
tions especially when working with restricted do-
mains. In this paper, we restrict ourselves to uti-
lizing synthetic treebanks for parsing, and leave
the discussion on ways to combine synthetic tree-
banks with real treebanks as future work. This
choice is primarily motivated by our interest in
grammar-based development of dependency tree-
banks as opposed to the traditional way of tree-
banking – by training human annotators.

7 Conclusions

In the current paper, we propose an alternative ap-
proach to cross-lingual treebanking — one that
recommends grammar engineering. Multilingual
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abstractions that facilitate bootstrapping of cross-
lingual treebanks have been previously explored
in the setup of low precision high recall methods.
These methods presume the availability of differ-
ent resources in order to induce the cross-linguistic
signal – parallel or multilingual corpora, word
embeddings etc. Our approach explores the op-
posite direction – multilingual grammars of high
precision are used to bootstrap parallel treebanks.
While these multilingual grammars are not easy
to develop, the question of how useful such gram-
mars are is one that has been largely unexplored in
the context of cross-lingual syntactic parsing.

We use a context-free probability model to gen-
erate ASTs that are used to bootstrap parallel
UD treebanks in 3 languages. Experiments in
delexicalized parsing show that these treebanks
are useful in two scenarios – when data in the
target language is minimal (<1K sentences) and
small (<5K sentences). In the future, we intend
to look at ways to generate synthetic treebanks
from existing UD treebanks of languages using
ud2gf (Ranta and Kolachina, 2017), that aims to
address the lack of syntactic distributions in our
synthetic treebanks. We also did not pursue the
obvious direction of combining the real and syn-
thetic treebanks in the current work: we leave this
for future work. Another direction that is of in-
terest is to augment existing treebanks with syn-
tactic variations to quantify the need for regular
syntactic variants in parser development, such as
converting declaratives to questions, varying tense
and polarity, adding and removing modifiers, and
so on. String-based augmentation (as opposed to
precise grammar-based generation) in this direc-
tion has already shown promising results (Sahin
and Steedman, 2018).
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Abstract
More and more evidence is appearing that
integrating symbolic lexical knowledge
into neural models aids learning. This
contrasts the widely-held belief that neural
networks largely learn their own feature
representations. For example, recent work
has shown benefits of integrating lexicons
to aid cross-lingual part-of-speech (PoS).
However, little is known on how com-
plementary such additional information is,
and to what extent improvements depend
on the coverage and quality of these exter-
nal resources. This paper seeks to fill this
gap by providing a thorough analysis on
the contributions of lexical resources for
cross-lingual PoS tagging in neural times.

1 Introduction

In natural language processing, the deep learning
revolution has shifted the focus from conventional
hand-crafted symbolic representations to dense in-
puts, which are adequate representations learned
automatically from corpora. However, particu-
larly when working with low-resource languages,
small amounts of symbolic lexical resources such
as user-generated lexicons are often available even
when gold-standard corpora are not. Recent work
has shown benefits of combining conventional lex-
ical information into neural cross-lingual part-of-
speech (PoS) tagging (Plank and Agić, 2018).
However, little is known on how complementary
such additional information is, and to what extent
improvements depend on the coverage and quality
of these external resources.

The contribution of this paper is in the analysis
of the contributions of models’ components (tag-
ger transfer through annotation projection vs. the
contribution of encoding lexical and morphosyn-
tactic resources). We seek to understand un-
der which conditions a low-resource neural tagger

benefits from external lexical knowledge. In par-
ticular:

a) we evaluate the neural tagger across a total
of 20+ languages, proposing a novel baseline
which uses retrofitting;

b) we investigate the reliance on dictionary size
and properties;

c) we analyze model-internal representations
via a probing task to investigate to what ex-
tent model-internal representations capture
morphosyntactic information.

Our experiments confirm the synergetic effect
between a neural tagger and symbolic linguistic
knowledge. Moreover, our analysis shows that the
composition of the dictionary plays a more impor-
tant role than its coverage.

2 Methodology

Our base tagger is a bidirectional long short-term
memory network (bi-LSTM) (Graves and Schmid-
huber, 2005; Hochreiter and Schmidhuber, 1997;
Plank et al., 2016) with a rich word encoding
model which consists of a character-based bi-
LSTM representation ~cw paired with pre-trained
word embeddings ~w. Sub-word and especially
character-level modeling is currently pervasive in
top-performing neural sequence taggers, owing
to its capacity to effectively capture morpholog-
ical features that are useful in labeling out-of-
vocabulary (OOV) items. Sub-word information is
often coupled with standard word embeddings to
mitigate OOV issues. Specifically, i) word embed-
dings are typically built from massive unlabeled
datasets and thus OOVs are less likely to be en-
countered at test time, while ii) character embed-
dings offer further linguistically plausible fallback
for the remaining OOVs through modeling intra-
word relations. Through these approaches, multi-
lingual PoS tagging has seen tangible gains from
neural methods in the recent years.

25



2.1 Lexical resources

We use linguistic resources that are user-generated
and available for many languages. The first is
WIKTIONARY, a word type dictionary that maps
words to one of the 12 Universal PoS tags (Li
et al., 2012; Petrov et al., 2012). The second re-
source is UNIMORPH, a morphological dictionary
that provides inflectional paradigms for 350 lan-
guages (Kirov et al., 2016). For Wiktionary, we
use the freely available dictionaries from Li et al.
(2012). UniMorph covers between 8-38 morpho-
logical properties (for English and Finnish, re-
spectively).1 The sizes of the dictionaries vary
considerably, from a few thousand entries (e.g., for
Hindi and Bulgarian) to 2M entries (Finnish Uni-
Morph). We study the impact of smaller dictionary
sizes in Section 4.1.

The tagger we analyze in this paper is an exten-
sion of the base tagger, called distant supervision
from disparate sources (DSDS) tagger (Plank and
Agić, 2018). It is trained on projected data and
further differs from the base tagger by the integra-
tion of lexicon information. In particular, given
a lexicon src, DSDS uses ~esrc to embed the lex-
icon into an l-dimensional space, where ~esrc is
the concatenation of all embedded m properties of
length l (empirically set, see Section 2.2), and a
zero vector for words not in the lexicon. A prop-
erty here is a possible PoS tag (for Wiktionary) or
a morphological feature (for Unimorph). To inte-
grate the type-level supervision, the lexicon em-
beddings vector is created and concatenated to the
word and character-level representations for every
token: ~w ◦ ~cw ◦ ~e.

We compare DSDS to alternative ways of
using lexical information. The first approach
uses lexical information directly during decod-
ing (Täckström et al., 2013). The second approach
is more implicit and uses the lexicon to induce
better word embeddings for tagger initialization.
In particular, we use the dictionary for retrofitting
off-the-shelf embeddings (Faruqui et al., 2015) to
initialize the tagger with those. The latter is a
novel approach which, to the best of our knowl-
edge, has not yet been evaluated in the neural tag-
ging literature. The idea is to bring the off-the-
shelf embeddings closer to the PoS tagging task
by retrofitting the embeddings with syntactic clus-
ters derived from the lexicon.

We take a deeper look at the quality of the lex-
1More details: http://unimorph.org/

icons by comparing tag sets to the gold treebank
data, inspired by Li et al. (2012). In particular, let
T be the dictionary derived from the gold treebank
(development data), and W be the user-generated
dictionary, i.e., the respective Wiktionary (as we
are looking at PoS tags). For each word type, we
compare the tag sets in T and W and distinguish
six cases:

1. NONE: The word type is in the training data
but not in the lexicon (out-of-lexicon).

2. EQUAL: W = T

3. DISJOINT: W ∩ T = ∅

4. OVERLAP: W ∩ T 6= ∅

5. SUBSET: W ⊂ T

6. SUPERSET: W ⊃ T

In an ideal setup, the dictionaries contain no dis-
joint tag sets, and larger amounts of equal tag sets
or superset of the treebank data. This is particu-
larly desirable for approaches that take lexical in-
formation as type-level supervision.

2.2 Experimental setup
In this section we describe the baselines, the data
and the tagger hyperparameters.

Data We use the 12 Universal PoS tags (Petrov
et al., 2012). The set of languages is motivated by
accessibility to embeddings and dictionaries. We
here focus on 21 dev sets of the Universal Depen-
dencies 2.1 (Nivre and et al., 2017), test set results
are reported by Plank and Agić (2018) showing
that DSDS provides a viable alternative.

Annotation projection To build the taggers for
new languages, we resort to annotation projec-
tion following Plank and Agić (2018). In par-
ticular, they employ the approach by Agić et al.
(2016), where labels are projected from multi-
ple sources to multiple targets and then decoded
through weighted majority voting with word align-
ment probabilities and source PoS tagger confi-
dences. The wide-coverage Watchtower corpus
(WTC) by Agić et al. (2016) is used, where 5k
instances are selected via data selection by align-
ment coverage following Plank and Agić (2018).

Baselines We compare to the following alterna-
tives: type-constraint Wiktionary supervision (Li
et al., 2012) and retrofitting initialization.
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DEV SETS (UD2.1)
LANGUAGE 5k TCW RETRO DSDS

Bulgarian (bg) 89.8 89.9 87.1 91.0
Croatian (hr) 84.7 85.2 83.0 85.9
Czech (cs) 87.5 87.5 84.9 87.4
Danish (da) 89.8 89.3 88.2 90.1
Dutch (nl) 88.6 89.2 86.6 89.6
English (en) 86.4 87.6 82.5 87.3
Finnish (fi) 81.7 81.4 79.2 83.1
French (fr) 91.5 90.0 89.8 91.3
German (de) 85.8 87.1 84.7 87.5
Greek (el) 80.9 86.1 79.3 79.2
Hebrew (he) 75.8 75.9 71.7 76.8
Hindi (hi) 63.8 63.9 63.0 66.2
Hungarian (hu) 77.5 77.5 75.5 76.2
Italian (it) 92.2 91.8 90.0 93.7
Norwegian (no) 91.0 91.1 88.8 91.4
Persian (fa) 43.6 43.8 44.1 43.6
Polish (pl) 84.9 84.9 83.3 85.4
Portuguese 92.4 92.2 88.6 93.1
Romanian (ro) 84.2 84.2 80.2 86.0
Spanish (es) 90.7 88.9 88.9 91.7
Swedish (sv) 89.4 89.2 87.0 89.8

AVG(21) 83.4 83.6 81.3 84.1

GERMANIC (6) 88.5 88.9 86.3 89.3
ROMANCE (5) 90.8 90.1 88.4 91.4
SLAVIC (4) 86.7 86.8 84.6 87.4
INDO-IRANIAN (2) 53.7 53.8 53.5 54.9
URALIC (2) 79.6 79.4 79.2 79.6

Table 1: Replication of results on the dev sets. 5k:
model trained on only projected data; TCW : type
constraints; Retro: retrofitted initialization.

Hyperparameters We use the same setup
as Plank and Agić (2018), i.e., 10 epochs, word
dropout rate (p=.25) and l=40-dimensional lex-
icon embeddings for DSDS, except for down-
scaling the hidden dimensionality of the character
representations from 100 to 32 dimensions. This
ensures that our probing tasks always get the same
input dimensionality: 64 (2x32) dimensions for
~cw, which is the same dimension as the off-the-

shelf word embeddings. Language-specific hy-
perparameters could lead to optimized models for
each language. However, we use identical settings
for each language which worked well and is less
expensive, following Bohnet et al. (2018). For all
experiments, we average over 3 randomly seeded
runs, and provide mean accuracy.

We use the off-the-shelf Polyglot word embed-
dings (Al-Rfou et al., 2013). Word embedding
initialization provides a consistent and consider-
able boost in this cross-lingual setup, up to 10%
absolute improvements across 21 languages when
only 500 projected training instances are avail-
able (Plank and Agić, 2018). Note that we em-

Figure 1: Analysis of Wiktionary vs gold (dev set)
tag sets. ‘None’: percentage of word types not
covered in the lexicon. ‘Disjoint’: the gold data
and Wiktionary do not agree on the tag sets. See
Section 2.1 for details on other categories.

pirically find it to be best to not update the word
embeddings in this noisy training setup, as that re-
sults in better performance, see Section 4.4.

3 Results

Table 1 presents our replication results, i.e., tag-
ging accuracy for the 21 individual languages,
with means over all languages and language fam-
ilies (for which at least two languages are avail-
able). There are several take-aways.

Inclusion of lexical information Combining
the best of two worlds results in the overall
best tagging accuracy, confirming Plank and Agić
(2018): Embedding lexical information into a neu-
ral tagger improves tagging accuracy from 83.4 to
84.1 (means over 21 languages). On 15 out of 21
languages, DSDS is the best performing model.
On two languages, type constraints work the best
(English and Greek). Retrofitting performs best
only on one language (Persian); this is the lan-
guage with the overall lowest performance. On
three languages, Czech, French and Hungarian,
the baseline remains the best model, none of the
lexicon-enriching approaches works. We proceed
to inspect these results in more detail.

Analysis Overall, type-constraints improve the
baseline but only slightly (83.4 vs 83.6). Intu-
itively, this more direct use of lexical information
requires the resource to be high coverage and a
close fit to the evaluation data, to not introduce
too many pruning errors during decoding due to
contradictory tag sets. To analyze this, we look at
the tag set agreement in Figure 1. For languages
for which the level of disjoint tag set information
is low, such as Greek, English, Croatian, Finnish
and Dutch, type constraints are expected to help.
This is in fact the case, but there are exceptions,
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(a) Absolute improvement (delta) vs number of dictionary properties (ρ=0.08). (b) Absolute improvement per OOV category
(21 languages).

(c) Per language analysis: absolute improvements of DSDS over the baseline for words in the lexicon, in the training data, in
both or in neither (true OOVs).

Figure 2: Analysis of OOVs and dictionary properties.

such as Finnish. Coverage of the lexicon is also
important, and for this morphologically rich lan-
guage, the coverage is amongst the lowest (c.f.
large amount of the ‘none’ category in Figure 1).

The more implicit use of lexical information
in DSDS helps on languages with relatively high
dictionary coverage and low tag set disagreement,
such as Danish, Dutch and Italian. Compared to
type constraints, embedding the lexicon also helps
on languages with low dictionary coverage, such
as Bulgarian, Hindi, Croatian and Finnish, which
is very encouraging and in sharp contrast to type
constraints. The only outlier remains Greek.

Figure 2 (a) plots the absolute improvement in
tagging accuracy over the baseline versus the num-
ber of properties in the dictionaries. Slavic and
Germanic languages cluster nicely, with some out-
liers (Croatian). However, there is only a weak
positive correlation (ρ=0.08). More properties do

not necessarily improve performance, and lead to
sparsity. The inclusion of the lexicons results in
higher coverage, which might be part of the expla-
nation for the improvement of DsDs. The ques-
tion remains whether the tagger learns to rely only
on this additional signal, or it generalizes beyond
it. Therefore, we first turn to inspecting out-of-
vocabulary (OOV) items. OOV items are the key
challenge in part-of-speech tagging, i.e., to cor-
rectly tag tokens unseen in the training data.

In Figure 2 (b) and (c), we analyze accuracy im-
provements on different groups of tokens: The in
lex+train tokens that were seen both in the lexicon
and the training data, the in train only tokens seen
in the training data but not present in the lexicon,
the in lex only tokens that were present in the lex-
icon but not seen in the training data and the true
OOV tokens that were neither seen in training nor
present in the lexicon. Figure 2 (b) shows means
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over the 21 languages, Figure 2 (c) provides de-
tails per language. The first take-away is that in
many cases the tagger does learn to use informa-
tion beyond the coverage of the lexicon. The em-
bedded knowledge helps the tagger to improve on
tokens which are in train only (and are thus not
in the lexicon, green bars). For true OOVs (or-
ange bars), this is the case for some languages as
well Figure 2 (c), i.e., improvements on true OOVs
can be observed for Bulgarian, German, Greek,
English, Finish, Croatian, Italian and Portuguese.
Over all 21 languages there is a slight drop on true
OOVs: -0.08, but this is a mean over all languages,
for which results vary, making it important to look
beyond the aggregate level. Over all languages ex-
cept for Hungarian, the tagger, unsurprisingly, im-
proves over tokens which are both in the lexicon
and in the training data (see further discussion in
Section 4).

4 Discussion

Here we dig deeper into the effect of including lex-
ical information by a) examining learning curves
with increasing dictionary sizes, b) relating tag
set properties to performance, and finally c) hav-
ing a closer look at model internal representations,
by comparing them to the representations of the
base model that does not include lexical informa-
tion. We hypothesize that when learning from
dictionary-level supervision, information is prop-
agated through the representation layers so as to
generalize beyond simply relying on the respec-
tive external resources.

4.1 Learning curves

The lexicons we use so far are of different sizes
(shown in Table 1 of Plank and Agić (2018)),
spanning from 1,000 entries to considerable dic-
tionaries of several hundred thousands entries. In
a low-resource setup, large dictionaries might not
be available. It is thus interesting to examine how
tagging accuracy is affected by dictionary size. We
examine two cases: randomly sampling dictionary
entries and sampling by word frequency, over in-
creasing dictionary sizes: 50, 100, 200, 400, 800,
1600 word types. The latter is motivated by the
fact that an informed dictionary creation (under
limited resources) might be more beneficial. We
estimate word frequency by using the UD training
data sets (which are otherwise not used).

Figure 3 (a) provides means over the 21 lan-

(a) Average effect over 21 languages of high-freq and random
dictionaries

(b) Effect for subset of language families of high-freq and ran-
dom dictionaries

Figure 3: Learning curves over increased dictio-
nary sizes.

guages (with confidence intervals of ±1 standard
deviation based on three runs). We note that sam-
pling by frequency is overall more beneficial than
random sampling. The biggest effect of sampling
by frequency is observed for the Romance lan-
guage family, see Figure 3 (b). It is noteworthy
that more dictionary data is not always necessarily
beneficial. Sometimes a small but high-frequency
dictionary approximates the entire dictionary well.
This is for instance the case for Danish, where
sampling by frequency approximates the entire
dictionary well (‘all’ achieves 90.1, while using
100 most frequent entries is close: 89.93). Fre-
quency sampling also helps clearly for Italian, but
here having the entire dictionary results in the
overall highest performance.

For some languages, the inclusion of lexical in-
formation does not help, not even at smaller dictio-
nary sizes. This is the case for Hungarian, French
and Czech. For Hungarian using the entire dictio-
nary drops performance below the baseline. For
Czech, this is less pronounced, as the performance
stays around baseline. Relating these negative ef-
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Figure 4: Proportion of tokens unseen in the train-
ing data, in the lexicon or in both (true OOV’s).
Lighter bars are proportion of correctly labeled
portion, dark bars are proportion of errors.

fects to the results from the tag set agreement anal-
ysis (Figure 1), we note that Hungarian is the lan-
guage with the largest disjoint tag set. Albeit the
coverage for Hungarian is good (around .5), in-
cluding too much contradictory tag information
has a clear deteriorating effect. Consequently, nei-
ther sampling strategy works. Czech, which has
less coverage, sees a negative effect as well: half
of the dictionary entries have disjoint tag sets. Ital-
ian is the language with the highest dictionary cov-
erage and the highest proportion of equal tag sets,
thereby providing a large positive benefit.

We conclude that when dictionaries are not
available, creating them by targeting high-
frequency items is a pragmatic and valuable strat-
egy. A small dictionary, which does not contain
too contradictory tag sets, can be beneficial.

4.2 Analysis of correct/incorrect predictions

In the following we analyze correctly and in-
correctly labeled tokens. Because we are analyz-
ing differences between languages as well as be-
tween errors and successes we abstract away from
the underlying sample size variation by comparing
proportions.

The analysis inspects the differences in propor-
tions on four subsections of the development set,
as introduced above: the in lex+train tokens, the
in train only tokens, the in lex only tokens and the
true OOVs. The proportion of these four data sub-
sets in the correctly and the incorrectly labeled to-
kens are shown side by side in Figure 4 in lighter
and darker shades, respectively. If the OOV-
status of a word was unrelated to performance, the
lighter and darker bars would be of identical size.
This is not the case and we can observe that the
true OOVs make up a significantly larger share of
the errors than of successes (two-tailed paired Stu-
dent’s t-test: p = 0.007). Similarly, seen across all
languages the shift in the size of the proportion of

true OOVs is made up by more correct labeling
of a larger proportion of in train only (two-tailed
paired Student’s t-test: p = 0.014) and in lex only
(two-tailed paired Student’s t-test: p = 0.020),
whereas the proportion of in lex+train does not
significantly differ between the correctly and in-
correctly labeled parts (two-tailed paired Student’s
t-test: p = 0.200).2

4.3 Probing word encodings

Probing tasks, or diagnostic classifiers, are sepa-
rate classifiers which use representations extracted
from any facet of a trained neural model as input
for solving a separate task. Following the intuition
of Adi et al. (2017), if the target can be predicted,
then the information must be encoded in the repre-
sentation. However, the contrary does not neces-
sarily hold: if the model fails it does not necessar-
ily follow that the information is not encoded, as
opposed to not being encoded in a useful way for
a probing task classifier.

As the internal representations stored in neural
models are not immediately interpretable, probing
tasks serve as a way of querying neural represen-
tations for interpretable information. The prob-
ing task objective and training data is designed
to model the query of interest. The representa-
tion layer we query in this work is the word-level
output from the character embedding sub-model.
This part of the word-level representation starts
out uninformative and thus without prior predic-
tion power on the classifier objectives.

The pre-trained word embeddings stay fixed
in our model (see Section 4.4). However, the
character-based word encodings get updated: This
holds true both for the BASE system and the DSDS

tagger. As a target for assessing the flow of infor-
mation in the neural tagger, we thus focus on the
character-based word encodings.

The word-level is relevant as it is the granular-
ity at which the tagger is evaluated. The word em-
beddings may already have encoded PoS-relevant
information and the lexicon embeddings explic-
itly encodes PoS-type-level information. By con-
trast, the character-based word encodings are ini-
tialized to be uninformative and any encoding of
PoS-related information is necessarily a result of
the neural training feedback signal.

For these reasons we query the character-based
word representations of the tagger in order to com-

2Significance based on an α-level of 0.05
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pare variation between the base tagger and the
DSDS lexicon-enriched architecture.

Figure 5: Macro F1 scores for stand-alone clas-
sifiers on the probing tasks of predicting which
words are long and which are in the lexicon, re-
spectively. The baseline (bl) is a simple majority
baseline. The base- and DsDs-informed classifiers
were trained on character-based word representa-
tions from the neural taggers with and without ac-
cess to lexical information, respectively.

We employ two binary probing tasks: predict-
ing which words are long, i.e., contain more than
7 characters3, and predicting which words are in
the lexicon. The word length task is included
as a task which can be learned independently of
whether lexicon information is available to the
neural model. Storing length-related information
might help the model distinguish suffix patterns of
relevance to PoS-tagging.

Following Shi et al. (2016) and Gulordava et
al (2018), we use a logistic regression classifier
setup and a constant input dimensionality of 64
across tasks (Conneau et al., 2018). The classi-
fiers are trained using 10-fold cross-validation for
each of three trained runs of each neural model
and averaged. We include a majority baseline and
report macro F1-scores, as we are dealing with
imbalanced classes. The training vocabulary of
both probing tasks is restricted to the neural tagger
training vocabulary, that is, all word types in the
projected training data, as these are the represen-
tations which have been subject to updates during
training of the neural model. Using the projected
data has the advantage that the vocabulary is sim-
ilar across languages as the data comes from the
same domain (Watchtower).

3Considering words of 7 characters or more to be long is
based on the threshold that was experimentally tuned in the
design of the readability metric LIX (Björnsson, 1983). This
threshold aligns well with the visual perceptual span within
which proficient readers from grade four and up can be ex-
pected to automatically decode a word in a single fixation
(Sperlich et al., 2015)

The results on the word length probing task
shown on the top half of Figure 5 confirm that in-
formation relevant to distinguishing word length
is being encoded in the neural representation,
as expected. It is intriguing that the lexicon-
informed DSDS representation encodes this infor-
mation even at higher degree.

On the task of classifying which words are in
the lexicon, all neural representations beat the
majority baseline, but we also see that this task
is harder, given the higher variance across lan-
guages. With Spanish (es) and Croatian (hr) as
the only exceptions, the DsDs-based representa-
tions are generally encoding more of the informa-
tion relevant to distinguishing which words are in
the lexicon, confirming our intuitions that the in-
ternal representations were altered. Note, how-
ever, that even the base-tagger is able to solve this
task above chance level. This is potentially an
artifact of how lexicons grow where it would be
likely for several inflections of the same word to
be added collectively to the lexicon at once, and
since the character representations can be expected
to produce more similar representations of words
derived from the same lemma the classifier will
be able to generalize and perform above chance
level without the base-model representations hav-
ing ever been exposed to the lexical resource.

4.4 Updating in light of noisy data?

When training a tagger with noisy training data
and pre-trained embeddings, the question arises
whether it is more beneficial to freeze the word
embeddings or update them. We hypothesize that
freezing embeddings is more beneficial in noisy
training cases, as it helps to stabilize the sig-
nal from the pre-trained word embeddings while
avoiding updates from the noisy training data. To
test this hypothesis, we train the base tagger on
high-quality gold training data (effectively, the UD
training data sets), with and without freezing the
word embeddings layer. We find that updating
the word embedding layer is in fact beneficial in
the high-quality training data regime: on average
+0.4% absolute improvement is obtained (mean
over 21 languages). This is in sharp contrast to
the noisy training data regime, in which the base-
line accuracy drops by as much as 1.2% accuracy.
Therefore, we train the tagger with pre-trained em-
beddings on projected WTC data and freeze the
word embeddings lookup layer during training.
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5 Related work

In recent years, natural language processing has
witnessed a move towards deep learning ap-
proaches, in which automatic representation learn-
ing has become the de facto standard methodol-
ogy (Collobert et al., 2011; Manning, 2015).

One of the first works that combines neural rep-
resentations with semantic symbolic lexicons is
the work on retrofitting (Faruqui et al., 2015). The
main idea is to use the relations defined in seman-
tic lexicons to refine word embedding represen-
tations, such that words linked in the lexical re-
source are encouraged to be closer to each other in
the distributional space.

The majority of recent work on neural sequence
prediction follows the commonly perceived wis-
dom that hand-crafted features are obsolete for
deep learning methods. They rely on end-to-end
training without resorting to additional linguistic
resources. Our study contributes to the increas-
ing literature to show the utility of linguistic re-
sources for deep learning models by providing a
deep analysis of a recently proposed model (Plank
and Agić, 2018). Most prior work in this direction
can be found on machine translation (Sennrich and
Haddow, 2016; Chen et al., 2017; Li et al., 2017;
Passban et al., 2018), work on named entity recog-
nition (Wu et al., 2018) and PoS tagging (Sagot
and Martı́nez Alonso, 2017) who use lexicons, but
as n-hot features and without examining the cross-
lingual aspect.

Somewhat complementary to evaluating the
utility of linguistic resources empirically is the in-
creasing body of work that uses linguistic insights
to try to understand what properties neural-based
representations capture (Kádár et al., 2017; Adi
et al., 2017; Belinkov et al., 2017; Conneau et al.,
2018; Hupkes et al., 2018). Shi et al. (2016) and
Adi et al. (2017) introduced the idea of prob-
ing tasks (or ‘diagnostic classifiers’), see Belinkov
and Glass for a recent survey (Belinkov and Glass,
2019). Adi et al. (2017) evaluate several kinds of
sentence encoders and propose a range of probing
tasks around isolated aspects of sentence structure
at the surface level (sentence length, word content
and word order). This work has been greatly ex-
panded by including both syntactic and semantic
probing tasks, careful sampling of probing task
training data, and extending the framework to
make it encoder agnostic (Conneau et al., 2018).
A general observation here is that task-specific

knowledge is needed in order to design relevant
diagnostic tasks, which is not always straightfor-
ward. For example, Gulordava (2018) investigate
whether RNNs trained using a language model
objective capture hierarchical syntactic informa-
tion. They create nonsensical construction so that
the RNN cannot rely on lexical or semantic clues,
showing that RNNs still capture syntactic proper-
ties in sentence embeddings across the four tested
languages while obfuscating lexical information.
There is also more theoretical work on investigat-
ing the capabilities of recurrent neural networks,
e.g., Weiss et al. (2018) show that specific types of
RNNs (LSTMs) are able to use counting mecha-
nisms to recognize specific formal languages.

Finally, linguistic resources can also serve as
proxy for evaluation. As recently shown (Agić
et al., 2017), type-level information from dictio-
naries approximates PoS tagging accuracy in the
absence of gold data for cross-lingual tagger eval-
uation. Their use of high-frequency word types
inspired parts of our analysis.

6 Conclusions

We analyze DSDS, a recently-proposed low-
resource tagger that symbiotically leverages neu-
ral representations and symbolic linguistic knowl-
edge by integrating them in a soft manner. We
replicated the results of Plank and Agić (2018),
showing that the more implicit use of embedding
user-generated dictionaries turns out to be more
beneficial than approaches that rely more explic-
itly on symbolic knowledge, such a type con-
straints or retrofitting. By analyzing the reliance
of DSDS on the linguistic knowledge, we found
that the composition of the lexicon is more impor-
tant than its size. Moreover, the tagger benefits
from small dictionaries, as long as they do not con-
tain tag set information contradictory to the eval-
uation data. Our quantitative analysis also sheds
light on the internal representations, showing that
they get more sensitive to the task. Finally, we
found that freezing pre-trained word embeddings
complement the learning signal well in this noisy
data regime.
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Héctor Alonso Martı́nez, Natalie Schluter, and An-
ders Søgaard. 2016. Multilingual projection for
parsing truly low-resource languages. Transactions
of the Association for Computational Linguistics,
4:301–312.
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Abstract

This paper investigates the presence of
gender bias in pretrained Swedish embed-
dings. We focus on a scenario where
names are matched with occupations, and
we demonstrate how a number of standard
pretrained embeddings handle this task.
Our experiments show some significant
differences between the pretrained embed-
dings, with word-based methods showing
the most bias and contextualized language
models showing the least. We also demon-
strate that a previously proposed debiasing
method does not affect the performance of
the various embeddings in this scenario.

1 Introduction

The motivation for this study is the currently
widespread practice of using pretrained embed-
dings as building blocks for NLP-related tasks.
More specifically, we are concerned about such
usage by actors in the public sector, for instance
government agencies and public organizations. It
is obvious how the presence of (gender or racial)
bias would be potentially serious in applications
where embeddings are used as input to decision
support systems in the public sector.

As an example, in Sweden limited companies
must be approved and registered by the Swedish
Companies Registration Office. One important
(and internationally unique) step in this registra-
tion procedure is the approval of the company

name, which is decided by case handlers at the
Registration Office. Their decision is based on
several factors, one of which is the appropriate-
ness of the company name in relation to the com-
pany description. Now, imagine the hypothetical
use case in which the case handlers use a deci-
sion support system that employs pretrained em-
beddings to quantify the similarity between a sug-
gested company name and its company descrip-
tion. Table 1 exemplifies what the results might
look like. In this fictive example, the company de-
scription states that the company will do business
with cars, and the name suggestions are composed
of a person name in genitive and the word “cars”
(i.e. “Fredrik’s cars”). We use pretrained Swedish
ELMo embeddings (Che et al., 2018) to compute
the distance between the name suggestion and the
company description.

The results demonstrate that male person names
(“Magnus” and “Fredrik”) are closer to “cars” in
the ELMo similarity space than female person
names (“Maria” and “Anna”). If such results are
used as input to a decision support system for de-
ciding on the appropriateness of a company name
suggestion in relation to a company description,
we might introduce gender bias into the decision
process. We subscribe to the view that such bias
would be unfair and problematic.

The point of this paper is therefore to investi-
gate gender bias when using existing and read-
ily available pretrained embeddings for tasks re-
lating to names and occupations. We include
both word-based embeddings produced using

Name suggestion Company description Distance
Magnus bilar Bolaget ska bedriva verksamhet med bilar 0.028
Fredriks bilar Bolaget ska bedriva verksamhet med bilar 0.038
Marias bilar Bolaget ska bedriva verksamhet med bilar 0.044
Annas bilar Bolaget ska bedriva verksamhet med bilar 0.075

Table 1: Examples of gender bias with respect to occupations using pretrained ELMo embeddings.
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word2vec and fastText, as well as character-
based (and WordPiece-based) contextualized em-
beddings produced using ELMo and the multilin-
gual BERT. The next section covers related work.
We then discuss the various embeddings in Section
3, before we then turn to some experimental evi-
dence of bias in the embeddings, and we also show
that the previously proposed debiasing method is
unable to handle gender bias in our scenario.

2 Related work

Research regarding bias and stereotypes ex-
pressed in text and subsequently incorporated in
learned language models is currently a vivid field.
Caliskan et al. (2017) show that learned embed-
dings exhibit every linguistic bias documented in
the field of psychology (such as that flowers are
more pleasant than insects, musical instruments
are preferred to weapons, and personal names are
used to infer race). Garg et al. (2018) show that
temporal changes of the embeddings can be used
to quantify gender and ethnic stereotypes over
time, and Zhao et al. (2017) suggest that biases
might in fact be amplified by embedding models.

Several researchers have also investigated ways
to counter stereotypes and biases in learned lan-
guage models. While the seminal work by Boluk-
basi et al. (2016a, 2016b) concerns the identifi-
cation and mitigation of gender bias in pretrained
word embeddings, Zhao et al. (2018) provide in-
sights into the possibilities of learning embed-
dings that are gender neutral. Bordia and Bowman
(2019) outline a way of training a recurrent neural
network for word-based language modelling such
that the model is gender neutral. Park et al. (2018)
discuss different ways of mitigating gender bias,
in the context of abusive language detection, rang-
ing from debiasing a model by using the hard de-
biased word embeddings produced by Bolukbasi
et al. (2016b), to manipulating the data prior to
training a model by swapping masculine and fem-
inine mentions, and employing transfer learning
from a model learned from less biased text.

Gonen and Goldberg (2019) contest the ap-
proaches to debiasing word embeddings presented
by Bolukbasi et al. (2016b) and Zhao et al. (2018),
arguing that while the bias is reduced when mea-
sured according to its definition, i.e., dampening
the impact of the general gender direction in the
vector space, “the actual effect is mostly hiding the
bias, not removing it”. Further, Gonen and Gold-

berg (2019) claim that a lot of the supposedly re-
moved bias can be recovered due to the geometry
of the vector representation of the gender neutral-
ized words.

Our contribution consists of an investigation of
the presence of gender bias in pretrained embed-
dings for Swedish. We are less interested in bias as
a theoretical construct, and more interested in the
effects of gender bias in actual applications where
pretrained embeddings are employed. Our experi-
ments are therefore tightly tied to a real-world use
case where gender bias would have potentially se-
rious ramifications. We also provide further evi-
dence of the inability of the debiasing method pro-
posed by Bolukbasi et al. (2016b) to handle the
type of bias we are concerned with.

3 Embeddings

We include four different standard embeddings
in these experiments: word2vec, fastText,
ELMo and BERT. There are several pre-trained
models available in various web repositories. We
select one representative instance per model, sum-
marized in Table 2 (next page).

These models represent different types of em-
beddings. word2vec (Mikolov et al., 2013)
builds embeddings by training a shallow neural
network to predict a set of context words based on
a target word (this is the so-called skipgram archi-
tecture; if we instead predict the target word based
on the context words the model is called contin-
uous bag of words). The network learns two sets
of vectors, one for the target terms (the embedding
vectors), and one for context terms. The objective
of the network is to learn vectors such that their dot
product correspond to the log likelihood of observ-
ing word pairs in the training data. fastText
(Bojanowski et al., 2017) uses the same neural net-
work architecture, but incorporates character in-
formation by using character n-grams instead of
whole words in the prediction step.

It should be noted that most applications of the
above-mentioned vectors use only the embeddings
for the target terms. In fact, many repositories with
pretrained vectors do not even contain the context
embeddings. When the downstream task focuses
on associative relations (which is the case in the
present scenario with names and occupations), it
would be beneficial to be able to use both target
and context vectors, since using only one of these
will result in more paradigmatic similarities.
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Model Source Code Repository Training data
word2vec vectors.nlpl.eu CoNLL17 data
fastText github.com/facebookresearch/fastText Wikipedia
ELMo github.com/HIT-SCIR/ELMoForManyLangs CoNLL18 data
BERT github.com/google-research/bert Wikipedia

Table 2: The pre-trained embeddings and models included in these experiments were downloaded in
April 2019 from the following URLs. word2vec: vectors.nlpl.eu/repository/11/69.zip,
fastText: dl.fbaipublicfiles.com/fasttext/vectors-crawl/cc.sv.300.bin.gz,
ELMo: vectors.nlpl.eu/repository/11/173.zip, BERT: storage.googleapis.
com/bert models/2018 11 23/multi cased L-12 H-768 A-12.zip

ELMo (Peters et al., 2018) is a deep character-
based neural network that learns embeddings by
predicting the next token given an input sequence.
The network architecture includes both convolu-
tional and (bidirectional) LSTM layers, and pro-
duces an embedding that that is sensitive to the
particular context of the input sequence. ELMo is
thus different from word2vec and fastText
in the sense that it produces contextualized em-
beddings, which has proven to be highly benefi-
cial when using the embeddings as representation
in downstream NLP tasks such as classification,
entity recognition, and question answering.

BERT (Devlin et al., 2018) is similar to ELMo in
the sense that it uses a deep neural network archi-
tecture and produces contextualized embeddings.
However, it differs in the type of network used.
BERT uses a (bidirectional) Transformer network
that relies exclusively on attention, and the model
is trained using a masked language model task,
similar to a cloze test. Contrary to ELMo, BERT
is not character-based, but relies on WordPiece to-
kenization of the input data. This has some poten-
tially problematic effects when tokenizing proper
names. As an example, the Swedish male name
“Henrik” gets tokenized as [“hen”, “##rik”], with
“rik” probably deriving from the Swedish word
“rik” (eng. “rich”). It would have been desirable to
not use WordPiece tokenization for proper names.

In the following experiments, pre-trained ELMo
and BERT are used to produce contextualized em-
beddings both for individual words (such as names
or places) and for texts (such as company descrip-
tions). Pre-trained word2vec and fastText
are used to look up individual words, and for texts
we follow standard practice and average the vec-
tors of the component words. Since proper names
in Swedish use uppercase for the initial letter, we
retain the casing information for all models that

can handle such vocabulary, which in our case are
all models except word2vec.

4 Data

In order to investigate whether our concerns about
gender bias in pretrained Swedish embeddings are
valid, we collect lists of the 100 most common
Swedish female and male first names from Statis-
tics Sweden (www.scb.se). We also collect lists
of the most typical female and male occupations
from the same source, as shown in Tables 3 and 4
(next page). These are the most common occupa-
tions for women and men as compiled by Statistics
Sweden, together with the percentage of women
and men in each occupation.

Since our interest in this paper is bias, we do not
include occupations that have less than (or close
to) 50% occurrence of women or men (such cases
are marked by ∗ in the tables). This leaves us
with 18 typically female occupations, and 15 typ-
ically male occupations. Some of the remaining
occupations are very similar to each other, and we
therefore collapse them to one occupation (marked
by numbers in the tables), resulting in 14 distinct
female occupations and 14 distinct male occupa-
tions. For each of these gendered occupations, we
also list a number of synonyms, collected from
wikipedia.se and framtid.se. Morpho-
logical variants of each term are included.

5 Experiment 1: names and occupations

As a first experiment, we compute the similarity
between the names and the occupations using the
different embeddings. We do this by computing
the similarity between each name and each occu-
pation. Table 5 shows the percentage of female
and male names that are on average more simi-
lar to a female vs. male occupation. Numbers in
parentheses are based on only the most similar oc-
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Occupation (Swedish) Occupation (English) % women
1Undersköterska Assistant nurse 92
Barnskötare Nanny 89
Grundskollärare Primary school teacher 75
Förskollärare Preschool teacher 96
2Butikssäljare, fackhandel Shop sales 61
3Vårdbiträde Care assistant 81
Kontorsassistent och sekreterare Secretary 79
Städare Cleaner 75
Personlig assistent Personal assistant 74
2Butikssäljare, dagligvaror Retail sales 67
3Vårdare, boendestödjare Housing assistant 73
Restaurang- och köksbiträde Restaurant assistant 65
Planerare och utredare Planner 63
Grundutbildad sjuksköterska Nurse 90
4Ekonomiassistent Accountant assistant 88
1Undersköterska, vård- och specialavdelning Nursing staff 91
∗ Företagssäljare Company sales 27
∗ Kock och kallskänka Chef 52
4Redovisningsekonomer Accountant 79
Socialsekreterare Social worker 86

Table 3: The 20 most common occupations for Swedish women in 2016 according to Statistics Sweden
(www.scb.se).

Occupation (Swedish) Occupation (English) % men
Företagssäljare Company sales 73
Lager- och terminalpersonal Warehouse staff 79
Mjukvaru- och systemutvecklare Software developer 80
Lastbilsförare Truck driver 94
Träarbetare, snickare Carpenter 99
Maskinställare och maskinoperatörer Machine operator 86
∗ Butikssäljare, fackhandel Shop sales 39
Fastighetsskötare Janitor 86
Motorfordonsmekaniker och fordonsreparatör Vehicle mechanic 97
Installations- och serviceelektriker Electrician 98
∗ Butikssäljare, dagligvaror Retail sales 33
∗ Grundskollärare Primary school teacher 25
Underhållsmekaniker och maskinreparatör Maintenance mechanic 95
∗ Planerare och utredare Planner 37
∗ Restaurang- och köksbiträde Restaurant assistant 35
1Ingenjör och tekniker inom elektroteknik Electrical technician 87
1Civilingenjörsyrke inom elektroteknik Electrical engineer 84
Verkställande direktör CEO 84
Buss- och spårvagnsförare Bus driver 86
VVS-montör Plumber 99

Table 4: The 20 most common occupations for Swedish men in 2016 according to Statistics Sweden
(www.scb.se).
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Male names Male names Female names Female names
Model Male occupations Female occupations Male occupations Female occupations

word2vec 91 (86) 9 (14) 99 (98) 1 (2)
fastText 4 (10) 96 (90) 100 (100) 0 (0)
ELMo 96 (63) 4 (37) 49 (87) 51 (13)
BERT 37 (54) 63 (46) 76 (55) 24 (45)

Table 5: Percentage of female and male names that are on average more similar to a female vs. male
occupation. The similarities are calculated based on the original embeddings, before the application of
the debiasing step described in Section 6. Numbers in parentheses only count the single most similar
occupation for each name.

cupation for each name. As an example, imagine
we only have two female and male occupations,
and that the name “Anna” has the similarities 0.47
and 0.78 to the female occupations, and the simi-
larities 0.12 and 0.79 to the male occupations. In
this example, “Anna” would be closer to the fe-
male occupations when counting the average sim-
ilarities (0.625 vs. 0.455), but closer to the male
occupations when only considering the most sim-
ilar examples (0.79 vs. 0.78).

There are several ways in which an embedding
could show bias in this setting. The arguably
most detrimental effect would be if the embedding
grouped male names with male occupations and
female names with female occupations. Some-
what less severe, but still problematic, would be if
the embedding grouped all names with female or
male occupations. A completely unbiased model
would not show any difference between the female
and male names with respect to female and male
occupations.

The numbers in Table 5 demonstrate some in-
teresting differences between the different embed-
dings. word2vec shows a clear tendency to
group both male and female names with male oc-
cupations. fastText, on the other hand, shows
a bias for female occupations for male names, and
for male occupations for female names. This is a
very interesting difference, given that the only al-
gorithmic difference between these models is the
inclusion of character n-grams in the latter model.

The results for ELMo and BERT show some in-
teresting differences too. ELMo groups the male
names with the male occupations, but is less bi-
ased for the female names. When counting only
the single most similar occupation, ELMo shows a
similar tendency as word2vec and groups both
male and female names with male occupations.
BERT, on the other hand, seems slightly more

balanced, with a tendency similar to fastText
when counting the average similarities. When
only counting the single most similar occupation,
BERT is almost perfectly balanced between fe-
male and male occupations.

6 Debiasing embeddings

We apply the debiasing methodology in (Boluk-
basi et al., 2016b) to the pretrained embedddings.
Debiasing a given vector space involves finding
the general direction in it that signifies gender
using a set of predefined definitional pairs, and
then removing the direction from all vectors ex-
cept those corresponding to words that are natu-
rally gender specific.

The definitional pairs are word pairs express-
ing among themselves a natural distinction be-
tween the genders, e.g., he – she, and mother –
father. In our setting, there are 10 such pairs. The
gender specific words are words that also carry a
natural gender dimension that should not be cor-
rected during the debiasing phase of the vector
space. We use the same methodology for growing
a seed set of gender specific words into a larger
set as described in (Bolukbasi et al., 2016b), and
end up with 486 manually curated gender specific
words, including e.g., farfar (paternal grandfa-
ther), tvillingsystrar (twin sisters), and matriark
(matriarch).

The definitional pairs are used to find a gender
direction in the embedding space, which is done
by taking the difference vector of each of the def-
initional pairs (i.e. w1 − w2), and then factorizing
the mean-centered difference vectors using PCA,
retaining only the first principal component, which
will act as the gender direction. The vector space
is then hard debiased1 in the sense that the gen-

1The alternative is soft debiasing, in which one tries
to strike a balance between keeping the pairwise distances
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Male names Male names Female names Female names
Model Male occupations Female occupations Male occupations Female occupations

word2vec 88 (89) 12 (11) 95 (93) 5 (7)
fastText 0 (10) 100 (90) 100 (99) 0 (1)
ELMo 99 (87) 1 (13) 26 (71) 74 (29)
BERT 0 (50) 100 (50) 97 (52) 3 (48)

Table 6: Percentage of female and male names that are on average more similar to a female vs. male
occupation. The similarities are calculated based on the debiased version of each model. Numbers in
parentheses only count the single most similar occupation for each name.

der direction b is removed from the embeddings of
all non-gender specific words w using orthogonal
projection: w′ = w − b× w·b

b·b .
The approach described by (Bolukbasi et al.,

2016b) includes an equalize step to make all gen-
der neutral words equidistant to each of the mem-
bers of a given equality set of word pairs. The
equality set is application specific, and since the
current investigation of Swedish language embed-
dings does not naturally lend itself to include an
equality set, the debiasing of the embeddings does
not involve equalization in our case.

We apply the method described above to all pre-
trained embeddings in Table 3, as well as to the
token vectors generated by ELMo and BERT. Al-
though it is not clear whether the proposed debias-
ing method is applicable to embeddings produced
by contextualized language models, we argue that
it is reasonable to treat the contextualized models
as black boxes, and rely only on their output, given
the proposed use case.

7 Experiment 2: names and occupations
(revisited)

We repeat the experiment described in Section 5,
but using the debiased embeddings. Table 6 sum-
marizes the results. It is clear that the debiasing
method does not have any impact on the results in
these experiments. The tendencies for the word-
based embeddings word2vec and fastText
are more or less identical before and after debi-
asing. The most striking differences between Ta-
ble 5 and Table 6 are the results for ELMo and
BERT, which become less balanced after apply-
ing the debiasing method. ELMo actually shows
a clearer gender distinction after debiasing, with
male names being more similar to male occupa-
tions, and female names being more similar to fe-

among all vectors and decreasing the influence of the gender
specific direction.

male occupations. BERT also becomes less bal-
anced after debiasing, grouping male names with
female occupations, and female names with male
occupations, when considering the average simi-
larities. When counting only the most similar oc-
cupation per name, BERT is still well balanced af-
ter debiasing.

8 Experiment 3: company names and
company descriptions

The experiments in the previous sections are ad-
mittedly somewhat simplistic considering the sce-
nario discussed in the Introduction: quantifying
the similarity between a company name and a
company description. In particular the contex-
tualized language models are not primarily de-
signed for generating token embeddings, and it is
neither clear what kind of quality we can expect
from such un-contextualized token embeddings,
nor whether they are susceptible to the debias-
ing operation discussed in Section 6. In order to
provide a more realistic scenario, we also include
experiments where we compute the similarity be-
tween a set of actual company descriptions and a
set of fictive company names generated from the
lists of male and female names by adding the term
“Aktiebolag” (in English limited company) after
each name.2

The company descriptions are provided by the
Swedish Companies Registration Office, and con-
tain approximately 10 company descriptions for
each of the sectors construction work, vehicles and
transportation, information technologies, health
and health care, education, and economy. Based
on Tables 3 and 4, we consider the descriptions
from the first three sectors to be representative of
typically male occupations, and the descriptions
from the latter three sectors to be representative

2It is not uncommon for names of limited companies (in
Sweden) to feature a person name and the term “Aktiebolag”.
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Male names Male names Female names Female names
Model Male occupations Female occupations Male occupations Female occupations

word2vec 29 (29) 71 (71) 30 (30) 70 (70)
fastText 60 (61) 40 (39) 60 (61) 40 (39)
ELMo 52 (53) 48 (47) 53 (54) 47 (46)
BERT 42 (40) 58 (60) 41 (41) 59 (59)

Table 7: Percentage of female and male names that are on average more similar to a female vs. male
occupation. The similarities are calculated based on the original embeddings, using the names and
occupations in context. Numbers in parentheses only count the single most similar occupation for each
name.

of typically female occupations.
We generate vectors for each of the descrip-

tions and for each fictive company name (i.e. a
male or female name, followed by “Aktiebo-
lag”). For the word-based models (word2vec
and fastText), we take the average of the em-
beddings of the words in the descriptions and the
name. For the contextualized language models
(ELMo and BERT), we generate vectors for each
description and each fictive name. In the case of
ELMo we take the average over the three LSTM
layers, and for BERT we use the output embed-
ding for the [CLS] token for each of the input se-
quences.

The results are summarized in Table 7. It is
clear that these results are significantly more bal-
anced than the results using tokens only. Even
so, there are still some interesting differences be-
tween the embeddings. Contrary to the results in
Tables 5 and 6, word2vec now shows a bias for
female occupations, and fastText now shows a
bias for male occupations. ELMo and BERT seem
more balanced, with ELMo showing almost per-
fectly balanced results, and BERT showing a slight
bias for female occupations.

Even though the biases apparently are different
when considering tokens in comparison with con-
sidering texts, there are still biases in all models
in both cases. The only exception in our experi-
ments is ELMo, when used for texts instead of to-
kens. We hypothesize that the results for BERT are
negatively affected by artefacts of the WordPiece
tokenization, as discussed in Section 3.

9 The effect of debiasing on embeddings

So far, we have shown that all Swedish pretrained
embeddings included in this study exhibit some
degree of gender bias when applied to a real-world
scenario. We now turn to investigate the effect

the hard debiasing operation has on the embed-
ding spaces, using the intrinsic evaluation method-
ology of Bolukbasi et al. (2016b). In this setting, a
number of analogy pairs are extracted for the orig-
inal and debiased embeddings, and human evalu-
ators are used to asses the number of appropriate
and stereotypical pairs in the respective represen-
tations. Bolukbasi et al. (2016b) used 10 crowd-
workers to classify the analogy pairs as being ap-
propriate or stereotypical. Their results indicated
that 19% of the top 150 analogies generated using
the original embedding model were deemed gen-
der stereotypical, while the corresponding figure
for the hard debiased model was 6%.

We carry out a similar, but smaller, evalua-
tion exercise using the analogy pairs generated by
the original Swedish word2vec and fastText
models, as well as their debiased counterparts.3

We use hon – han (she – he) as seed pair, and score
all word pairs in the embeddings with respect to
the similarity of the word pair’s difference vector
to that of the the seed pair. The top 150 pairs are
manually categorized as either appropriate, gen-
der stereotypical, or uncertain by the authors.

The results of the annotation are shown in Ta-
ble 8 (next page). Due to the limited extent of
the evaluation, we can only use these results for
painting the big picture. First of all, there is a rel-
atively small overlap between the analogy pairs
in the top 150 of the original models, and the
top lists of the debiased models: for word2vec,
only 42 of the analogy pairs in the original list are
also in the list produced by the debiased model.
The corresponding number for fastText is 31.
This means that the debiasing operation changes

3It would have been preferable to also include ELMo and
BERT in this experiment, but generating vectors for large vo-
cabularies using these models takes a prohibitively long time,
and it is neither clear whether the resulting token embeddings
make sense, not whether the debiasing operation is applicable
to the resulting embeddings.
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Original Debiased Original Debiased
Analogies quality word2vec word2vec fastText fastText

Appropriate 97 52 135 36
Stereotypical 3 13 5 4

Uncertain 18 36 0 45

Table 8: The number of appropriate, stereotypical, and uncertain analogies in the top 150 pairs for the
original and debiased embeddings. The numbers are the analogy pairs for which the annotators agree on
the category.

the embedding space to a large extent. Second,
there is a considerable amount of annotator uncer-
tainty involved, either regarding the plausibility of
a given analogy pair, or regarding its appropriate-
ness. This is manifested by an increase of the num-
ber of uncertain analogy pairs that the annotators
agree on between the original and debiased mod-
els (both for word2vec and fastText). How-
ever, the most interesting findings have to do with
the number of stereotypical analogy pairs. The
number of stereotypical analogy pairs output by
the Swedish models is small compared to the num-
bers reported by Bolukbasi et al. (2016b). Further,
the number of stereotypical pairs is larger in the
debiased word2vec model than in the original
model (we anticipated that it should be lower). It
thus seems as if the debiasing operation makes the
word2vec embedding space more biased. For
fastText, the number of such pairs are slightly
fewer in the debiased model compared to its orig-
inal counterpart.

10 Discussion

This paper has shown that pretrained Swedish em-
beddings do exhibit gender bias to varying ex-
tent, and that the debiasing operation suggested
by Bolukbasi et al. (2016a) does not have the de-
sired effect, neither in the task of matching per-
son names with occupations, nor in the case of
the gender stereotypes being present among the
top ranked analogy pairs generated by the mod-
els. Our experiments also indicate that word-based
embeddings are more susceptible to bias than con-
textualized language models, and that there is an
unexpectedly large difference in the biases shown
by word2vec and fastText, something we
believe requires further study.

Although contextualized language models ap-
pear to be more balanced with respect to gender
bias in our experiments, there is still bias in these
models; in particular if they are used to generate

token embeddings, but also when they are used to
generate representations for texts – ELMo, which
produces almost perfect scores in Table 7, may
still show bias in individual examples, such as
those in Table 1. We acknowledge the possibility
that it may not be appropriate to use contextual-
ized language models to generate embeddings for
individual tokens, but we also believe such usages
to occur in real-world applications, and we there-
fore consider it relevant to include such examples
in these experiments.

The debiasing operation proposed by Bolukbasi
et al. (2016a) does nothing to rectify the situa-
tion in our setting. On the contrary, the debiased
models still show significant gender bias, and in
the case of ELMo and BERT, the bias actually be-
comes more prevalent after debiasing. (However,
we are aware that the debiasing operation may
neither be intended nor suitable for such repre-
sentations.) Furthermore, our (admittedly small)
analogy evaluation shows that debiasing actually
introduces more stereotypical word pairs in the
word2vec model.

Why then does not debiasing the Swedish word-
based embeddings produce results similar to those
of Bolukbasi et al. (2016a)? One of the big differ-
ences between the Swedish pretrained word2vec
model and the one used by Bolukbasi et al. is the
size of the vocabulary. The Swedish model con-
tains 3M+ word types, while Bolukbasi et al. con-
strained their experiments to include only lower-
cased words shorter than 20 characters, omitting
digits and words containing punctuation, from the
top 50,000 most frequent words in the model. By
doing so, Bolukbasi et al. effectively removed
many person names from the model. A large por-
tion of the word pairs in our analogy lists produced
by the original model consist of person names
(e.g., Anna – Jakob), which we consider to be
appropriate, and their presence on the top 150
list contribute to the comparatively low number of
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stereotypical pairs. The debiasing operation of the
word-based models remove many of the persons
name pairs from the top list, giving way for po-
tentially stereotypical pairs. Thus, the increase of
stereotypical pairs on the top list of analogy pairs
generated by a debiased model is more likely to be
due to the debiasing operation effectively remov-
ing many of the names from the top list, than the
model being more biased in the first place.

Since our experiments have focused on pre-
trained embeddings readily available on the Inter-
net, which have been trained on different types and
different sizes of data, we cannot speculate about
the extent to which a particular learning algorithm
amplifies or distorts bias. We believe this is an
interesting direction for further research, and we
aim to replicate this study using a variety of em-
beddings trained on the same data.
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Abstract
Determining how words have changed
their meaning is an important topic in Nat-
ural Language Processing. However, eval-
uations of methods to characterise such
change have been limited to small, hand-
crafted resources. We introduce an En-
glish evaluation set which is larger, more
varied, and more realistic than seen to
date, with terms derived from a historical
thesaurus. Moreover, the dataset is unique
in that it represents change as a shift from
the term of interest to a WordNet synset.
Using the synset lemmas, we can use this
set to evaluate (standard) methods that de-
tect change between word pairs, as well as
(adapted) methods that detect the change
between a term and a sense overall. We
show that performance on the new data set
is much lower than earlier reported find-
ings, setting a new standard.

1 Introduction

Determining how words have changed their mean-
ing is an important topic in Natural Language
Processing (Tang, 2018; Kutuzov et al., 2018;
Tahmasebi et al., 2018). Using large diachronic
corpora, computational linguistics has provided
methods that can detect or qualitatively explain se-
mantic change automatically. In particular, sev-
eral approaches have been introduced that use dis-
tributional semantic models representing different
time periods in diachronic corpora (Gulordava and
Baroni, 2011; Mitra et al., 2014; Kulkarni et al.,
2015, e.g.).

Researchers have illustrated through com-
pelling examples that these methods can detect se-
mantic shift, like cell obtaining the meaning of
‘phone’ and gay shifting from ‘cheerful’ to ‘ho-
mosexual’ (Mitra et al., 2014, e.g.) and have re-
ported high accuracy on small evaluation sets of

selected examples. Hamilton et al. (2016) even
report 100% accuracy in detecting known change
on 28 word pairs. As a result, these approaches
have been enthusiastically adopted (Wohlgenannt
et al., 2019; Orlikowski et al., 2018; Kutuzov et al.,
2016; Martinez-Ortiz et al., 2016, e.g.). However,
it has been called into question how reliable these
methods really are (Hellrich and Hahn, 2016a; Du-
bossarsky et al., 2017).

These developments show that there is both a
wide interest in using distributional semantic mod-
els to assess semantic change and an urgent need
for better insight into the possibilities and limita-
tions of these methods. It is therefore unsurpris-
ing that three recent survey papers on the topic all
list the lack of proper evaluation and, in particu-
lar, the absence of large-scale evaluation sets, as a
key challenge for this line of research (Tang, 2018;
Kutuzov et al., 2018; Tahmasebi et al., 2018).

In this paper, we automatically derive HiT, the
largest English evaluation set to date, from a his-
torical thesaurus. HiT consists of terms linked to
WordNet (Fellbaum, 2012) entries that represent
senses they gained or lost. We introduce sense
shift assessment as a task, enabled by this dataset,
that identifies whether a sense of a term of interest
was coming in our out of use, based on its changed
relationship with all lemmas of the sense. This is
a variation of a task introduced by Hamilton et al.
(2016) that assesses the relationship of the terms
of interest with individual other terms. The sense
shift assessment instead uncovers the conceptual
change that explains multiple observed trends be-
tween word pairs. Cross-checking and summaris-
ing individual observations also means drawing
more informed conclusions. Furthermore, the use
of WordNet sense representations allows for the
dataset entries to be automatically derived rather
than manually (expert) collected, hence limiting
the effect of bias. We use HiT to answer two main
research questions. First, how well can current
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methods detect sense shift on a larger and more
varied evaluation set? Second, how, by taking a
full synset as a representation of meaning, does the
task of detecting sense shift compare to studying
word pairs in isolation? The main contributions of
this paper are as follows. First, the new evalua-
tion set, consisting of 756 target words and 3624
word pairs. Second, we show that current meth-
ods perform quite poorly on this more challenging
set, thus confirming that this set introduces a new
benchmark. We also identify lexical factors that
contribute to these differences.

2 Related Work

This section provides an overview of previous
work on detecting lexical semantic change through
distributional semantic models.

Distributional models of meaning are motivated
by the hypothesis that words with similar mean-
ings will occur in similar contexts (Harris, 1954;
Firth, 1957). Tahmasebi et al. (2011) and Mitra
et al. (2014) induce clusters of terms that tem-
porally co-occur in particular syntactic patterns,
and (qualitatively or quantitatively) trace their de-
velopment. Their approach forms a bridge from
previous document-based approaches (Blei and
Lafferty, 2006; Wang and McCallum, 2006, e.g.)
to the window-based models that are currently
widely used.

Gulordava and Baroni (2011) and Jatowt and
Duh (2014) were among the first to use trends in
similarity between distributional representations.
The former detect change within single terms by
tracing their self-similarity. The latter, like we
do, interpret the change of a term by contrast-
ing it with other terms. In recent work, the most
common type of distributional models used to as-
sess semantic shift are known as prediction models
(Kim et al., 2014; Kulkarni et al., 2015; Hamilton
et al., 2016, e.g). In this paper, we use embeddings
that gave the best results in Hamilton et al. (2016)
and are created through the skip-gram method in-
cluded in word2vec (Mikolov et al., 2013).

Until recently, semantic shifts were determined
by comparing the distributional nearest neigh-
bours of a term in one time period to its neighbours
in another (see e.g. Tahmasebi et al. (2011)). How-
ever, such an inspection is difficult to carry out at
scale, is not suited for disappearing senses - dis-
tant neighbours are hard to assess - and is prone to
bias, especially when the aim is to confirm hypoth-

esized trends. Hamilton et al. (2016) use a prede-
termined list of terms to which the target term got
more and less related over time. This variation al-
leviates the problem of bias and introduces ‘more
distant neighbours’ into the analysis, but with just
28 term pairs it is still very small-scale.

Basile and McGillivray (2018) are, to our
knowledge, the first to exploit a large historical
dictionary as an evaluation source. The aim of
their work is to detect changed terms and their
change point, based on dips in the self-similarities,
with the Oxford English Dictionary as the gold
standard. To verify whether the observed change
point corresponds to a new dictionary sense, the
time-specific nearest neighbours of the term are
contrasted with the dictionary definition. This
work could have provided the evaluation set for
the task addressed in this paper. However, as far
as we know, the authors have not enriched the data
with said nearest neighbours nor made them avail-
able. Hence, the current work is still the first to
provide a large-scale evaluation set based on a dic-
tionary.

3 A large-scale sense shift assessment set

This section describes a new evaluation set that
links terms of interest (target terms) to rich synset
representations of their old and new senses. This
means that in an experimental setting (such as that
in Section 5), the target term can be contrasted to a
predetermined, varied set of terms. We also adapt
two existing evaluation sets, HistWords (Hamilton
et al., 2016) and the Word Sense Change Testset1

(Tahmasebi and Risse, 2017), into datasets of the
same format.

3.1 Deriving a sense shift assessment set

The new dataset, which we call HiT, is derived
from The Historical Thesaurus of the Univer-
sity of Glasgow (Kay et al., 2019). This thesaurus
lists (nearly all) English terms organised in a con-
ceptual hierarchy of senses. It also documents the
time period in which a term was attested and as-
sumed to be active in the given sense. For instance,
one entry says that the verb bray was used in the
sense of ‘Grind/pound’ (in turn a subconcept of
‘Create/make/bring about’) for the period 1382 till
1850. The thesaurus does not indicate how any
listed sense of a word relates to previous, concur-
rent or future ones. Hence, it is unclear whether

1http://doi.org/10.5281/zenodo.495572
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the term underwent a process of semantic narrow-
ing or broadening, or whether it lost or gained a
sense altogether. The change that is considered
here is a broad notion of rising or declining senses.

For HiT we use all terms in senses that came up
between 1900 and 1959 and all terms in senses that
disappeared - which were less numerous - between
1850 and 1959. To enrich the thesaurus terms, we
identify their WordNet synsets and check if each
of these expresses the intended meaning. This
check is based on the overlap between the the-
saurus definition and the synset terms. If any term
from the synset (excluding the target term itself)
overlaps with any of the terms from the thesaurus
definition (in the example above, the terms are
{create, make, bring about, grind, pound}), we
assume that the synset in question provides the in-
tended sense. The verb bray appears in WordNet
under two polylexical synsets: {bray, hee-haw},
and {bray, grind, mash, crunch, comminute}. Due
to the overlapping term grind, the thesaurus en-
try is matched with the latter, meaning ‘reduce to
small pieces or particles by pounding or abrad-
ing’, but not with the former (‘laugh loudly and
harshly’).

Newly emerging senses from the thesaurus pro-
vide gold standard instances that are supposed to
attract the vector of the target term. Disappear-
ing senses, on the other hand - such as ‘grind’ for
bray after 1850 - are gold standard instances from
which the target term should move away. Table 1
shows how the bray example translates to a HiT
entry of a vanishing sense with the WordNet syn-
onyms used as reference terms.

Only entries with at least one identified Word-
Net synset are included. This results in a dataset
of 756 target terms exhibiting 979 sense shifts.

target POS sense (WN synset) shift onset
term b reference term
bray v. grind.v.05 -1 1850

b grind, mash, crunch, comminute

Table 1: Example excerpt from an entry of HiT. Shift label
-1 means a move away from the given meaning.

Validation To establish the accuracy of the
WordNet matching method, two raters indepen-
dently annotated a subset of 191 entries. The
agreement between the raters (i.e. the proportion
of agreement above chance level) is assessed us-
ing Cohen κ for two raters (Cohen, 1960). Also,
we assessed how well the raters’ judgement corre-
sponded to the output of the automated WordNet

matching, i.e., the supposed gold standard.
Rater 1 verified whether the algorithm had se-

lected the correct synset or not. To counteract an
effect of bias from the gold standard, rater 2 did
not work with the gold standard, rather indicating
for any given WordNet synset whether it repre-
sented the given definition. These findings were
then translated to a judgement of the algorithm
output in line with rater 1. The annotators agreed
on the evaluation by 97.9 per cent; by Cohen’s
chance-normalised norm (κ = 0.789, z = 11,
p < 0.001), this is generally thought of as ‘sub-
stantial’ agreement. Except for 10 (rater 1) and
9 (rater 2) instances out of 191, the raters’ judge-
ments corresponded to that of the algorithm, an er-
ror rate of approximately 5 per cent. We consider
this high enough to take the outcome of the synset
linking method as the gold standard.

3.2 Transforming existing datasets

The thesaurus-derived dataset, HiT, qualitatively
differs from existing evaluation sets in its auto-
mated construction and in its representation of
senses by a synset rather than selected terms.
In order to compare this set to previously used
datasets, we adapt two standard evaluation sets
semi-automatically to link the target words they
contain to synsets representing the given old or
new senses.

HistWords (Hamilton et al., 2016) (HW) con-
tains 28 word pairs that saw their similarity in-
crease or decrease over time, based on 9 target
terms. HistWords states the onset of the change -
no end date - and the gold standard shift direction.
For instance, since 1800, awful has moved towards
mess and disgusting and away from impressive.

The Word Sense Change Testset (WSCT)
(Tahmasebi and Risse, 2017) lists terms that ac-
quired a new sense and unchanged control words.
It gives the type of change the term underwent (no
change, new, broader, or narrower sense), a short
explanation of the change and the onset date of the
change. For instance, memory acquires a new re-
lated sense ‘digital memory’ in 1960 whilst keep-
ing its existing sense ‘human memory’.

From HW to HW+ and from WSCT to
WSCT+. Every entry from WSCT and HW is
treated as a separate change event, with an on-
set date and a description; some target terms have
more than one change event. For each such event,
the affected sense(s) are selected out of all can-
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didate senses, i.e. all WordNet synsets that cor-
respond to the target lemma (in the correct part
of speech). This synset selection process hap-
pened manually, by comparing the lexical infor-
mation in WordNet against the change description
in the source data. More details about the anno-
tation process are given below. The outcomes de-
termine the change type listed for the combination
of target term and synset in the enriched datasets
WSCT+ and HW+. The target term is thought to
move towards any synset (and towards all terms of
the synset) that captures an increasingly common
sense, and away from any synset that expresses an
increasingly uncommon sense. For any synset that
does not capture any described change, its relation
to the target term is described as unchanged or un-
known. See Table 2 for an example.

Annotation process and validation. The se-
lection was carried out by the first author; this
was then evaluated by two co-authors for HW+
and one co-author for WSCT+. In the case of
three raters, we used Fleiss’ extension of Cohen’s
method (Fleiss, 1971). The raters judged the shift
direction of the target term with respect to all
candidate concepts (synsets): towards (+1), away
from (-1) one another, or no change (0). The eval-
uation set of word-sense combinations was larger
than the final dataset (Table 3), as it included
synsets with just the target term. The raters were
given the following data: the change description
and the time of change, given in HW or WSCT; the
(given or inferred) part of speech; the candidate
WordNet concept that connects the two terms; and
corresponding WordNet data such as the definition
and the set of terms in the synset. For WSCT+
(N=129 target-sense pairs), the two raters agreed
by 88.4 per cent, which, chance-normalised (Co-
hen’s κ = 0.63, z = 7.26, p < 0.01) is thought
to be ‘substantial’. The raters then agreed on the
final set of gold standard labels. On HW+ (N=70
target-sense pairs), the three raters agreed almost
perfectly (Fleiss’ κ = 0.83, z = 16, p < 0.01),
and the ratings by the first author were taken as
the gold standard.

Resulting datasets The evaluation sets all pro-
vide two types of pairings: target terms paired
with reference terms and target terms with synsets.
The gold standard for the individual word pairs -
target word and synonym - corresponds to the gold
standard for the whole synset. After the inter-rater
evaluation, synsets with just one term (the target

target POS sense (WN synset) t shift
term b reference term
memory n. memory.n.03 1960 0

b retention, retentiveness, retentivity
memory n. memory.n.04 1960 1

b computer memory, storage, compu-
ter storage, store, memory board

Table 2: Excerpts from two entries of WSCT+. Shift label 0
means we have no evidence the word changed with respect to
the given sense. Label 1 means a shift towards the indicated
meaning (and its associated terms).

term) were omitted, as the experiment requires ref-
erence terms. Table 3 provides an overview of
the resulting evaluation sets next to HistWords as
a baseline. HiT does not show any overlap with
the other datasets except for a single target term
lemma (verb call) in common with HW+, however
with the described change in a different meaning.

dataset HW HW+ WSCT+ HiT
dataset type existing adapted adapted new
target words (TWs) 9 9 23 756
TW+term 28 117 213 3624
converging 18 41 56 1173
diverging 10 24 0 2451
unchanged/-known 0 52 157 0
TW+sense n.a. 42 93 979
converging n.a. 10 23 282
diverging n.a. 10 0 697
unchanged/-known n.a. 22 70 0

Table 3: Contents of the evaluation sets, which come in two
variants: target terms paired with other terms and paired with
WordNet senses (synsets). This allows the datasets to be used
for the two types of evaluation used here.

4 Experiment

Two tasks are addressed in the experiment. Word
shift assessment (WordShiftAssess) (Hamilton
et al., 2016) is summarised as follows: given
a target term, a reference term, and a time pe-
riod, did the two terms become closer in mean-
ing (gold standard label 1) or did their meanings
move apart (label -1)? Sense shift assessment
(SenseShiftAssess) goes as follows: given a tar-
get term, a WordNet synset, and a time period, did
the target term in the given period move towards
or away from the given sense? To be comparable
to previous findings, we evaluate the datasets on
both tasks. This section outlines the methods and
the experimental setup.

4.1 Change assessment for word-word pairs

Our method of determining shift direction was
proposed by Hamilton et al. (2016). It depends on
the availability of distributional representations for
the target term and reference terms, corresponding
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to the synset lemmas, at regular intervals between
the start and the end of the period of interest. The
successive cosine similarities of the embeddings
of the target and reference term are (Spearman)
correlated with the time index (e.g. 1800, 1810,
.., 1990). If the correlation is positive, the target
term is taken to have moved towards the reference
term; if it is negative, away from it. Given the
binary classification setting, the statistical signifi-
cance of the correlation factor has no clear inter-
pretation. However, we include it to comply with
earlier reported findings and for readers to judge
the potential of the method for a three-way classi-
fication with a null category.

4.2 Change assessment for word-sense pairs
To address SenseShiftAssess, we suggest two
broad approaches. The first starts from the method
outlined in Section 4.1. That is, for any target-
sense pair, we start from the given target word
paired with all lemmas of the synset, and the
trend of the cosine similarities (Spearman ρ and
p) for each of these word pairs. Then, we either
take the most-observed sign of ρ as the outcome
(majority vote), or we promote one word pair to
exemplify the sense shift as a whole. Assuming
that an observed strong trend is likely to be cor-
rect, argmax(corr) takes the sign of the highest
absolute ρ value of all word pairs in the synset as
the synset assessment. argmin(p(corr)) does the
same for the observation the correlation coefficient
of which has the lowest p value.

The second approach we suggest, average vec.,
operates on a lower level, as it aggregates the dis-
tributional representations of the synset lemmas
into an average vector, for every time slice sep-
arately. The target term and the averaged repre-
sentation are then treated like a word pair (Section
4.1).

4.3 Experimental setup
We apply word shift assessment on HW, HW+,
WSCT+, and HiT. The reference terms of HW+,
WSCT+ and HiT come from WordNet; those in
HW are readily taken from the source. Figure 1 il-
lustrates how the term awful from HW+ compares
with its individual WordNet synonyms over time.

Sense shift assessment is applied to WSCT+,
HW+ and HiT, i.e. all sets that could be enriched
with sense information. To continue with the ex-
ample in Figure 1, sense shift assessment trans-
lates the word-based observations into a single as-

Figure 1: WordShiftAssess with WordNet-based reference
terms: target term awful is individually contrasted with all
terms from synset atrocious.s.02: abominable, atro-
cious dreadful, painful, etc. The fitted lines illustrate the ob-
served trend in cosine similarities, such as the growing simi-
larity between awful and terrible.

sessment of the changed relation of awful with re-
spect to the whole synset.

Distributional vectors. We use word embed-
dings provided by Hamilton et al. (2016) of size
300, trained through skip-gram with negative sam-
pling (SGNS) for every decade separately on three
corpora: the Corpus of Historical American En-
glish (Davies, 2015) (COHA), the complete En-
glish Google N-Gram corpus (Michel et al., 2011),
and the English Fiction corpus, a subset of the
Google N-Gram corpus. The embeddings are not
(part of speech) disambiguated, and can stand for
several lemmas at once. We employ the embed-
dings for every decade from the attested onset of
change up to and including the last available em-
bedding, trained on the 1990s subcorpus.

Handling of missing and infrequent data.
Some terms appear infrequently in some slices of
the corpus. The code that accompanies Hamilton
et al. (2016) deals with these cases by padding
the cosine time series with a zero for the dimen-
sion (i.e. time slice) in which either or both of
the terms was insufficiently frequent (under 500
times, except for COHA). However, this biases the
outcome, since zero is the smallest cosine sim-
ilarity value. Given that low word frequencies
are more common in the corpora of the first few
decades, this setting makes it more likely to find
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cosine time series ρ
t1 ... t10 t11 t12 t13 t14 t15
0 ... 0 0.25 0.29 0.29 0.20 0.18 0.77
NA ... NA 0.25 0.29 0.29 0.20 0.18 -0.7

Table 4: Similarity values based on infrequent data must
not be padded with zero as this biases the correlation value
towards a positive value. In the word pair delimit-define,
padding the values for decades t1 (in fact, 1850) through to
t11 (1940) with zeros would lead to a conclusion opposite
to the ground truth stating that these terms move away from
each other; hence these observations are treated as missing
data (NA) instead.

a rising trend in cosine similarities. As this is an
unwanted effect, we treated cosine values based
on low-frequency numbers as missing values. Ta-
ble 4 illustrates the difference between the caveat
explained here and the approach taken. A further
count filter ensures that all results (correlations)
are based on at least five cosine values.

5 Results

Table 5 shows the proportion of word pair observa-
tions (WordShiftAssess) displaying the expected
trend in cosine similarities for every dataset and
training corpus. The significance reported is the
proportion of correct findings (i.e. with an upper
limit of 100%) with a Spearman ρ significant on
the 0.05 level. Whether the correlation coefficient
is significant depends on its magnitude as well as
the number of cosine values considered. The latter
in turn depends on the change onset - the longer
the time series, the more observations - minus ob-
servations that were based on too little data and
were left out (see Section 4.3). N expresses how
many of the word pair entries from the datasets
(Table 3) which displayed a real shift (unchanged
words were not used) resulted in a cosine time se-
ries of at least five observations (see Section 4.3).
This depends in part on the corpus, some of which
have much greater coverage than other ones, par-
ticularly the complete English corpus, eng-all. For
instance, the results for HiT for eng-all are based
on 1461 word pairs as opposed to a mere 746 for
COHA and 772 for English fiction, out of a dataset
total of 3624 shifted terms. Moreover, eng-all re-
sulted in more statistically significant correct out-
comes than COHA and eng-fic. We therefore fo-
cus on the results based on eng-all in particular.

HiT appears more challenging than WSCT+
and HW+. On eng-all, just under 60 per cent of
all entries were correctly assessed, as opposed to
around 70 per cent for WSCT+ and 80 per cent

Figure 2: Proportions of correct word pairs (i.e. display-
ing the expected similarity trend) within synsets for HiT (on
eng-all). In just over half of the cases, the synset contained
more correct than incorrect observations (bottom half of the
pie chart).

for HW+. The significance levels show a similar
pattern, hence even the word pairs that showed the
predicted trend did so less clearly for HiT than for
the other datasets. The outcomes on COHA and
eng-fic confirm the pattern for eng-all: HiT figures
consistently lag behind WSCT+ and even further
behind HW+. While eng-all and eng-fic give simi-
lar levels of accuracy, on COHA, the outcomes for
HiT are below chance level.

HiT differs from WSCT+ and HW+ in that
the target terms were not selected for the task at
hand. Unsurprisingly, the automatically selected
dictionary terms offer a more challenging evalua-
tion set than the purposely selected terms in HW+
and WSCT+. The difference observed between
HW and HW+ reveals a similar trend concerning
hand-picked reference terms compared to (semi)-
automatically selected ones: the performance on
HW+ is about 20 per cent lower than for HW. In
sum, the selection of term pairs has great impact.

Table 6 shows the proportion of target-
sense entries that were correctly assessed
(SenseShiftAssess), based on several possible
aggregations of word pair level findings. Looking,
firstly, at the different methods, argmin(p(corr))
performed best. Hence, the word pair within a
synset that shows the most statistically robust
change is the best indicator of the conceptual
change of the target term. For HiT this resulted in
61.3% correct on eng-all and up to 64.0 % on eng-
fic. The added performance over argmax(corr),
whilst marginal (e.g. for HiT, 61.1 % on eng-all
and 61.9% on eng-fic), suggests that balancing the
correlation factor with the number of observations
leads to better judgements than looking at the
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WordShiftAssess eng-all coha eng-fic
HiT wsct+ HW+ HW HiT wsct+ HW+ HW HiT wsct+ HW+ HW

correct (%) 58.0 69.2 79.5 100.0 45.6 54.5 63.6 85.7 59.5 62.5 66.7 88.2
sig (%) 38.4 66.7 60.0 88.9 29.1 33.3 19.0 66.7 24.0 40.0 30.0 46.7
N 1461 13 44 27 746 11 33 21 772 8 30 17

Table 5: Results of determining the shift direction of a target word with respect to a reference word (WordShiftAssess).

SenseShiftAssess
corpus eng-all coha eng-fic
dataset HiT wsct+ HW+ HW HiT wsct+ HW+ HW HiT wsct+ HW+ HW
average vec. 57.8 100.0 88.9 - 44.1 50.0 57.1 - 58.9 100.0 66.7 -
argmax(corr) 61.1 100.0 84.6 - 46.4 80.0 53.8 - 61.9 100.0 66.7 -
majority vote 50.7 100.0 76.9 - 36.0 80.0 53.8 - 49.7 75.0 66.7 -
argmin(p(corr)) 61.3 100.0 84.6 - 46.8 80.0 53.8 - 64.0 75.0 66.7 -
N average vec. 374 2 9 - 204 2 7 - 214 1 6
N other methods 450 5 13 - 278 5 13 - 286 4 12 -

Table 6: Results of determining the shift direction of a target word with respect to a reference word (SenseShiftAssess).

magnitude of the correlation alone. Averaging
the vectors of all reference terms (average vec.)
was less reliable an aggregation overall than
promoting one word pair to represent the synset.
However, it still did better than the majority vote,
which required more than half of the word pairs
in a synset to display the expected shift pattern.
For HiT, this did not surpass chance level on
any of the corpora. Hence, within a synset, false
observations can be as numerous as or outweigh
true ones, and heuristics are needed to find the
signal in the noise.

SenseShiftAssess was expected to suffer less
from noisy results that occur on the word level
(WordShiftAssess). However, the improvement
observed over the word pair results was marginal.
For instance, for HiT on eng-all, the synset-level
approach was correct in 61 per cent of cases at
best, as opposed to 58 per cent on the word pair
level. HW+ and WSCT+ did benefit more from
the synset aggregation, but the small sample size
makes it hard to draw conclusions from this. Fig-
ure 2 shows how much we can rely on the terms
within a synset to display the anticipated change
in relation to the target term (for HiT and eng-
all). The vast majority of synsets - all except 18
per cent - contain at least one word pair that dis-
plays the true shift. This means that SenseShift-
Assess on HiT is feasible, at least in theory, and
the maximum accuracy attainable on eng-all is 82
per cent. A third of all synsets (34%) have all
word pairs displaying the predicted shift; hence
the lower limit is 34 per cent. There were more
synsets with mostly correct than mostly false ex-
amples, and more synsets with just correct (33 per

cent) than just false (17 per cent) ones. Based on
the slightly higher odds of picking a correct than
an incorrect example, our selection methods are
perhaps not informed by the most determining fac-
tors. To know how we can find the signal in noisy
word pair patterns, we must first understand what
causes noise. This question is addressed next.

6 Follow-up analysis

We examine several lexical and corpus factors that
may play a role in the outcomes. For every term
in a word pair, we look at its polysemy, its fre-
quency in the training corpus, and its typicality as
a representation of the underlying concept. Ta-
ble 7 breaks down the WordShiftEval results by
the combined lexical properties of target and ref-
erence term. For every entry type we distinguish
(e.g. a low-polysemous target term paired with a
high-polysemous reference term), we examine the
proportion of the result set it accounts for, and the
observed tendency for such word pairs to display
the expected shift pattern. Due to its fewer out-
comes, WSCT+ was left out of this analysis.

When a term is ambiguous, i.e. when it tends to
occur in various semantic and syntactic contexts,
its distributional representation might be less suit-
able to reflect any single one of these. Polysemy
is difficult to define (Ravin and Leacock, 2000).
Here, we define the polysemy of a term by its to-
tal number of synsets divided by the number of
different parts of speech it can occur in. We tested
different thresholds for considering a term polyse-
mous, from two to six synsets per part of speech,
which all revealed similar results. The results we
report are based on a minimum of three, four and
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entry type (N.B.: ‘low’ can mean more or less challenging, depending on the property)
low-low low-high high-low high-high

property threshold corpus accuracy proportion accuracy proportion accuracy proportion accuracy proportion
polysemy 3* HiT 63.8 17.8 60.9 18.2 62.8 18.4 52.7 45.6

3* HW 100 37 100 29.6 100 18.5 100 14.8
3* HW+ 70.6 38.6 71.4 31.8 100 20.5 100 9.1

polysemy 4* HiT 66.4 32.2 58.1 21.1 59.6 17.5 47.9 29.3
4* HW 100 51.9 100 25.9 100 11.1 100 11.1
4* HW+ 82.1 63.6 60 22.7 100 9.1 100 4.5

polysemy 5* HiT 64.8 45.3 58.7 19.7 53 14.9 45.9 20.1
5* HW 100 70.4 100 14.8 100 14.8 - 0
5* HW+ 81.8 75 40 11.4 100 11.4 100 2.3

frequency 100k HiT 65.7 33.9 61.4 17.2 58.6 17.1 47.6 31.8
100k HW 100 18.5 100 11.1 100 22.2 100 48.1
100k HW+ 80 34.1 66.7 13.6 81.2 36.4 85.7 15.9

frequency 10k HiT 65.1 7.5 74.5 14.8 63.5 12.9 52.4 64.8
10k HW - 0 - 0 100 11.1 100 88.9
10k HW+ - 0 - 0 76.9 29.5 80.6 70.5

frequency 5k HiT 52.5 2.7 74.3 9.9 68.8 9.7 54.8 77.8
5k HW - 0 - 0 100 7.4 100 92.6
5k HW - 0 - 0 66.7 13.6 81.6 86.4

centrality 1* HiT 56.4 75.8 62.4 10.2 66.9 9.7 56.5 4.2
1* HW - - - - - - - -
1* HW+ 76 56.8 75 27.3 100 15.9 - 0
2* HiT 54.5 54.3 60.2 18.4 63.5 16.5 63.9 10.8
2* HW - - - - - - - -
2* HW+ 66.7 34.1 81.8 25 100 9.1 85.7 31.8

*high polysemy means the term has min. [THRESHOLD] total synsets / total parts of speech
*high centrality means the term has the intended concept as synset number [THRESHOLD] at most

Table 7: WordShiftEval results broken down by the frequency, centrality, and polysemy of the terms that make up the entries.

five senses per part of speech. Depending on the
threshold T , the most-observed type of word pair
amongst the HiT results is that of two polysemous
terms (45.6 % of the result set, T = 3), two rel-
atively unpolysemous terms (45.3%, T = 5), or
equal proportions of the two (T = 4).

The proportion of correctly classified term pairs
is unequally distributed across polysemy classes,
in particular for HiT. Word pairs with two non-
polysemous (i.e. relatively unambiguous) terms
are consistently more likely to see their shift di-
rection assessed correctly (64-66% correct, de-
pending on the polysemy threshold) than word
pairs with two polysemous terms (46-53% cor-
rect), which have an almost equal chance of get-
ting correctly or incorrectly classified. Entries
with a single polysemous term consistently fall
somewhere between these two trends. Compared
to HiT, HW and HW+ have notably smaller pro-
portions of polysemous term pairs, with as little as
9.1% polysemous pairs (under T = 3) for HW and
14.8% for HW+, as opposed to 45.6% for HiT.

A low corpus frequency was expected to neg-
atively impact the results. With a small number
of occurrences used to collect (train) the vector
representations, these risk being less stable and
reliable. We take the frequencies underlying the

1990s eng-all vector corpus as a proxy for the
overall frequencies of the terms and use several
frequency cut-offs (5k, 10k and 100k). HiT clearly
displays more lower-frequent terms than HW and
HW+. For instance, under a cutoff value of 100k,
HiT has about the same proportion of low-frequent
(33.9%) and high-frequent pairs (31.8%), while
HW has clearly more high-frequent (48.1%) than
low-frequent pairs (18.5%). Also, HiT is the only
set that contains entries made up of terms with fre-
quencies under 5k and 10k.

Looking at the results on HiT when both terms
were very sparse (under 5k) the assessment is just
ad random (52.5%), but with a higher threshold of
10k the sparse pairs were more likely to be cor-
rectly classified (65.1%). At the same time, high-
frequent term pairs with target and reference term
both over 10k instances showed to be difficult to
classify (52.4%). Taken together, these findings
suggest that while higher-frequency terms are not
always more suitable, a minimum number of in-
stances is indispensable for reliable results.

By centrality we mean how good a contem-
porary example of the intended concept a term
is. To this end we look at the synset that con-
nects target and reference term. If the (target
or reference) term has this sense listed among
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its top senses in WordNet, we assume it is ex-
emplary. For the target term this is also an as-
sessment of whether the change took place in
(what is now) its primary, second, or in a more
distant sense. For instance, we assess the tar-
get term shrewd in its currently most prevalent
sense ‘marked by practical hardheaded intelli-
gence’ (synset astute.s.01). While the ref-
erence term astute is central to this concept, sharp
is not, as it is only the sixth sense listed for this
term. Hence shrewd-astute might be a better ex-
ample of the shift than shrewd-sharp. HW was
excluded from the analysis, as the terms in it are
not related through WordNet synsets.

We consider two cut-off points: one that ex-
amines just the first sense and a less strict one
that includes the second listed sense. For the for-
mer, the (rare) word pairs in HiT that were made
up of two strong terms (4.2%) surprisingly had
the same proportion correct (56.5%) as the much
larger group of word pairs (75.8%) with two weak
terms (56.4% correct). This might be an artefact
due the small sample size, as the groups with a sin-
gle strong term did show higher accuracies (62.4%
and 66.9%) than those with none. Under the looser
definition of centrality, the accuracy of the shift as-
sessment on HiT increases with the centrality of
the terms involved, from 54.5% on weak pairs up
to 63.9% on strong pairs. HW+ displays the same
trend. However, with a much higher proportion of
weak term pairs and a lower proportion of strong
pairs than HW+, the HiT results are more at risk
of centrality effects.

7 Conclusion

This work offers the largest and most realistic
dataset for assessing sense change to date, HiT,
which provides 3624 English word pairs and 979
word-synset pairs. HiT is made available along
with this publication (click here or look for Sense-
ShiftEval on GitHub) and can be automatically ex-
tended with more entries. Our experiments have
given a number of insights. Firstly, they show how
brittle the state-of-the-art method really is. When
applied to HiT rather than to small sets of hand-
crafted examples, the state-of-the-art performance
drops dramatically. The error analysis shows in
what way existing evaluation data are privileged, if
not to say biased: they contain fewer polysemous
terms, fewer terms that are less exemplary for the
intended concept, and fewer terms modelled on

a low number of examples in the corpus. All
of these are factors inherent to natural language,
which a robust model of sense change will need to
handle. The analysis showed that these factors in-
deed hindered our ability to assess shift direction.
For this reason, the two corpus-independent fac-
tors, polysemy and centrality, will be incorporated
as features in the dataset, to be able to select more
or less challenging entries and to assess the effect
of these factors on the outcomes.

Complementary to the findings above, several
studies have demonstrated that noise is inherent to
distributional approaches and stems from factors
both computational - e.g. cross-temporal vector
alignment (Dubossarsky et al., 2017) - and fun-
damental, by the mere variance found in natural
text corpora (Hellrich and Hahn, 2016). Exper-
imental validation was not the focus of this pa-
per, but we would encourage follow-up work with
more rigid experimental checks, including control
conditions and non-aligned (e.g. see Dubossarsky
et al. (2019)) or count-based vectors.

Given the presence of noise, it is crucial to
cross-check findings. HiT is unique in that it caters
for this with multiple synonymous entries per tar-
get term. We have presented a number of ways
to derive holistic, sense-level insights. Some ag-
gregations were more promising than others. The
term pair with the largest and most significant
cosine trend often displayed the predicted trend.
However, averaging the vector representations of
all synonyms did not sufficiently cancel out noise.

A logical next step would be to exploit lexi-
cal factors for sense-level evaluations, i.e., to se-
lect the most representative term pair of a synset
based on its centrality to the concept and its (lack
of) ambiguity. A preliminary experiment on HiT
showed that selection by centrality outperforms
some other evaluation techniques. This will be the
topic of follow-up work.
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Abstract

We apply hyperbolic embeddings to trace
the dynamics of change of conceptual-
semantic relationships in a large di-
achronic scientific corpus (200 years). Our
focus is on emerging scientific fields and
the increasingly specialized terminology
establishing around them. Reproducing
high-quality hierarchical structures such
as WordNet on a diachronic scale is a very
difficult task. Hyperbolic embeddings can
map partial graphs into low dimensional,
continuous hierarchical spaces, making
more explicit the latent structure of the in-
put. We show that starting from simple
lists of word pairs (rather than a list of en-
tities with directional links) it is possible
to build diachronic hierarchical semantic
spaces which allow us to model a process
towards specialization for selected scien-
tific fields.

1 Introduction

Knowledge of how conceptual structures change
over time and how the hierarchical relations
among their components evolve is key to the com-
prehension of language evolution. Recently, the
distributional modelling of relationships between
concepts has allowed the community to move a
bit further in understanding the true mechanisms
of semantic organization (Baroni and Lenci, 2010;
Kochmar and Briscoe, 2014; Marelli and Baroni,
2015), as well as in better mapping language
change in terms of shifts in continuous semantic
values (Hamilton et al., 2016; Hellrich and Hahn,
2017; Stewart and Eisenstein, 2017). In the past
decades, extensive work has also gone into creat-
ing databases of hierarchical conceptual-semantic
relationships, the most famous of these ontologies
probably being WordNet (Miller, 1995). These

hand-made resources are tools of high quality and
precision, but they are difficult to reproduce on a
diachronic scale (Bizzoni et al., 2014), due to word
form changes (De Melo, 2014) and shifts in mean-
ing (Depuydt, 2016), which always make it hard
to determine “when”, over a period of time, a new
lexical hierarchy is in place (Kafe, 2017).

A recent attempt to integrate hierarchical struc-
tures, typical of lexical ontologies, and the com-
mutative nature of semantic spaces are hyperbolic
embeddings (Nickel and Kiela, 2017). Hyper-
bolic embeddings have shown to be able to learn
hierarchically structured, continuous, and low-
dimensional semantic spaces from ordered lists of
words: it is easy to see how such technology can
be of interest for the construction of diachronic dy-
namic ontologies. In contrast to hand-made re-
sources, they can be built quickly from histori-
cal corpora, while retaining a hierarchical struc-
ture absent in traditional semantic spaces. In their
work Nickel and Kiela (2017) have extensively
evaluated hyperbolic embeddings on various tasks
(taxonomies, link prediction in networks, lexical
entailment), evaluating in particular the ability of
these embeddings to infer hierarchical relation-
ships without supervision.

This paper is a first attempt in the direction of
using hyperbolic semantic spaces to generate di-
achronic lexical ontologies. While count-based
and neural word embeddings have often been ap-
plied to historical data sets (Jatowt and Duh, 2014;
Kutuzov et al., 2018), and the temporal dimen-
sion has even solicited innovative kinds of distri-
butional spaces (Dubossarsky et al., 2015; Bamler
and Mandt, 2017), this is to the best of our knowl-
edge the first attempt to model a diachronic cor-
pus through hierarchical, non-euclidean seman-
tic spaces. The literature on hyperbolic embed-
dings has until now mainly focused on reproduc-
ing lexical and social networks from contemporary
data (Chamberlain et al., 2017; Nickel and Kiela,
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2018).
We demonstrate that these kinds of word em-

beddings, while far from perfect, can capture rel-
evant changes in large scale lexico-semantic rela-
tions. These relations are on the “vertical” axis,
defining a super-subordinate structure latent in the
data. But we also show that meaningful rela-
tions between words are preserved on the “hori-
zontal” axis (similarity of meaning, common se-
mantic belonging) as typically captured by distri-
butional spaces and topic models.

While distributional semantic spaces can be
built from unconstrained texts, the main concep-
tual limitation of hyperbolic embeddings proba-
bly lies in the fact the user always needs to pre-
compose (and so pre-interpret) their input in the
form of a list of entities linked by a set of parent–
children relations; we thus show a simple sys-
tem to collect undirected relations between enti-
ties that require less pre-interpretation of the texts
at hand and a broader lexical coverage, giving
more value to the information provided by the
spaces.

Our main contributions are thus two. First, we
apply hyperbolic embeddings to a diachronic set-
ting, for which hand-crafted hierarchical resources
are extremely difficult to create. Second, we intro-
duce a system to design training inputs that do not
rely on directional lists of related word pairs as in
previous works. This is particularly advantageous
as the system does not need a pre-interpretation
nor a pre-formulation of the data in terms of ex-
plicit hierarchy and it allows a wider terminologi-
cal coverage than the previous systems.

2 Methodology

2.1 Data
As our data set, we use the Royal Society Cor-
pus (RSC; version 4.0; Kermes et al. (2016))1,
containing around 10.000 journal articles of the
Transactions and Proceedings of the Royal Society
in London (approx. 32 million tokens). The time
span covered is from 1665 to 1869 and the cor-
pus is split up into five main periods (1650: 1665-
1699, 1700: 1700-1749, 1750: 1750-1799, 1800:
1800-1849, 1850: 1850-1869).

As meta-data annotation, the RSC provides e.g.
title, author, year, and journal of publication. Cru-
cial for our investigation is the annotation of sci-

1We obtained the RSC from the CLARIN-D repository at
http://hdl.handle.net/21.11119/0000-0001-7E8B-6.

entific disciplines (18 in total), which has been ap-
proximated by topic modeling (Blei et al., 2003)
using Mallet (Fankhauser et al., 2016). Each doc-
ument is annotated with primary topic and sec-
ondary topic, each with confidence scores. We
select two groups: (1) the primary topics Chem-
istry and Physiology, which are subdivided in
two sub-groups (Chemistry I and II and Physiol-
ogy I and II) and thus might indicate more pro-
nounced specialization tendencies, (2) Botany and
Galaxy, both forming only one topic each, and
thus possibly reflecting less pronounced special-
ization tendencies. Table 1 presents a detailed
corpus statistics on tokens, lemmas and sentences
across decades.

decade tokens lemmas sentences
1660-69 455,259 369,718 10,860
1670-79 831,190 687,285 17,957
1680-89 573,018 466,795 13,230
1690-99 723,389 581,821 17,886
1700-09 780,721 615,770 23,338
1710-19 489,857 383,186 17,510
1720-29 538,145 427,016 12,499
1730-39 599,977 473,164 16,444
1740-49 1,006,093 804,523 26,673
1750-59 1,179,112 919,169 34,162
1760-69 972,672 734,938 27,506
1770-79 1,501,388 1,146,489 41,412
1780-89 1,354,124 1,052,006 37,082
1790-99 1,335,484 1,043,913 36,727
1800-09 1,615,564 1,298,978 45,666
1810-19 1,446,900 1,136,581 42,998
1820-29 1,408,473 1,064,613 43,701
1830-39 2,613,486 2,035,107 81,500
1840-49 2,028,140 1,565,654 70,745
1850-59 4,610,380 3,585,299 146,085
1860-69 5,889,353 4,474,432 202,488

total 31,952,725 24,866,457 966,469

Table 1: Corpus statistics of the RSC per decade.

2.2 Approach

Our approach encompasses (1) extraction of re-
lations from data to serve as training data (edge
extraction), (2) modeling hyperbolic embeddings
on the obtained data, and (3) testing on selected
benchmarks.

Edge extraction. In order to select relevant en-
tities, we used the word clusters of a topic model
trained on the whole RSC corpus (Fankhauser
et al., 2016; Fischer et al., 2018), which gener-
ated circa 50 meaningful clusters, mainly belong-
ing to disciplines (such as Paleontology, Electro-
magnetism) or objects of interest (such as Solar
System or Terrestrial Magnetism).
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topic label words in topic
Chemistry acid baro-selenite acid.-when hy-

droguretted salifiable diethacetone
subphosphate meta-furfurol chlori-
onic causticity acidt acld pyrome-
conate chloric acids pyroxylic di-
ethyl acid* acid. iodic

Galaxy stars star to1 nebulosity milky-way
facula rethe constellations nebulae
lyrce nebula nebule presidencies
pole-star st nebulhe sun-spots stars*
nebulosities magnet.-

Table 2: The first 20 words from the Chemistry
and the galactic Astronomy topic clusters.

For this study, we selected the topics of Chem-
istry, Physiology, Botany, and galactic Astronomy.
Chemistry and Physiology during the time span
covered by our corpus undergo a significant in-
ner systematization, which is mirrored by the fact
that they are both represented in to two distinct
and cohesive topics in our topic model. Botany
and galactic Astronomy also underwent major
changes during the covered years, but, despite
important systematization efforts, kept a more
multi-centered conceptual architecture: as a conse-
quence, they represent less cohesive clusters, with
more noise and internal diversity. Since the mean-
ingful clusters drawn from topic modeling were
relatively small, we populated them through co-
sine similarity in euclidean semantic spaces built
on the same corpus, so as to attain lists of circa 500
elements, of the kind shown in Table 2. Notwith-
standing the predictable amount of noise present in
these lists, they keep a relative topical cohesion2.

Based on this selection of words, for each of
the five 50-years periods of the RSC, we extract
a list of bigrams, i.e. pairs of words of entities of
interest.

While usually the training input to model hy-
perbolic word embeddings is based on directional
lists of related word pairs (e.g. the Hearst patterns
extracted via rule-based text queries (Roller et al.,
2018; Le et al., 2019)), we decided to opt for a
more “agnostic” method to create input lists for
our model.

We consider two words as related if they occur
in the same sentence, and we do not express any

2Stop words like adverbs, pronouns, determiners and
prepositions are also rare in the lists.

hierarchical value or direction between the words
constituting the input lists: the input can be viewed
as an undirected graph3.

On simple cases, this way of extracting undi-
rected edges appears to work well. As an exam-
ple, in Figure 1 we show the output space of the
Wikipedia article on Maslow’s Hierarchy of Needs
(a very hierarchical topic). In this case, the key-
words were selected manually and the text was
simple in its exposition of the theory. Accord-
ing to the hierarchy exposed in the article, human
needs are as follows: physiological needs (food,
water, shelter, sleep), safety (health, financial,
well-being), social needs (family, intimacy, friend-
ships), self-esteem, self-actualization (parenting),
transcendence. In the hyper-space resulting from
this text, the word needs occupies the root of the
hierarchy: it is the closest point to the origin of
the axes and has, consequently, the smallest norm.
The six categories of needs described in the in-
put page directly follow as hyponyms: physiolog-
ical, safety, social, self-esteem, self-actualization,
transcendence. The specific kinds of needs mainly
cluster as hyponyms of such categories: for exam-
ple water, food, sleep, shelter are all very close
in the space, higher in norm, and located as di-
rect hyponyms of physiological (they are closer to
physiological than to the other categories).

The case we are going to deal with in this paper
is much more complex: the lists of terms were se-
lected automatically and the corpus is diachronic,
technical in nature, and occasionally noisy.

On our corpus, we obtain through our system
of edge extraction lists of variable length, between
500 and 5000 pairs depending on the topic and pe-
riod. While this approach makes the input noisier
and the model potentially more prone to errors, the
system requires way less starting assumptions on
the nature of the data, guarantees a larger cover-
age than the previous methods, and re-introduces
the principle of unstructured distributional profil-
ing so effective in euclidean semantic spaces.

Poincare hierarchical embeddings. For train-
ing hyperbolic semantic spaces, we rely on gen-
sim’s implementation of Poincare word embed-
dings. Here, we apply the Poincare hyperspace
semantic model recently described by Nickel and
Kiela (2017) on each 50-year period of the RSC
corpus. We train each model for 20 epochs, di-

3Basically, each word pair is twice in the list: (1) word A
related to word B, and (2) word B related to word A.
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Figure 1: The center of the disk (left) and the whole space (right) as extracted from a Wikipedia article on
the Hierarchy of Needs. The main needs cluster around the root of the hierarchy, while their hyponyms
cluster to the periphery, but tendentially closer to their hypernymic category than to the others. Note that
the space organizes words along the hypernym-hyponym hierarchical line, and ignores other kinds of
hierarchy: physiological, albeit being treated as more “basic” in the input text, is not closer to needs than
transcendence.

rectly setting a bi-dimensional output. Since our
Poincare models generate 2d spaces, we can visu-
alize them without losing any information.

Benchmarks. Since a gold standard to verify the
qualities and pitfalls of diachronic hyperbolic se-
mantic spaces is lacking, and it is of not obvi-
ous generation, we use two different benchmarks
to perform partial tests of the results. The first
benchmark is the correlation between the number
of WordNet senses and words’ norm in the spaces.
The other benchmark is the same topic model-
ing described above: we use it to test whether the
words that happen to be in the same topic also
cluster together in our spaces.

3 Analysis and results

Having a look at the semantic spaces resulting
from the four topics we selected, we can already
see that Chemistry and Physiology develop a par-
ticularly centralized structure, with few elements
in the center and a large crown of peripheral ter-
minology, while Botany and galactic Astronomy
return less clear symptoms of their inner ordering.

Figure 2, for example, illustrates hyperbolic
embeddings of the Chemistry field for each 50-
year period (1650s-1850s). The closer to the cen-
ter, the more abstract (and potentially ambiguous)
the meaning of the words should be, while the

more distant from the center, the more we should
find specialized terminology. In an ideal semantic
hyper-space, the center should represent the real
root of the ontology, and its edges should repre-
sent the most distant leaves.

In some disciplines (mainly Chemistry and
Physiology), we observe the emergence of a
clearly centralized and hierarchical evolution,
while in others (Biology and Astronomy) we see
the development a more multi-central, compli-
cated sort of conceptual organization.

Comparing the evolution of Chemistry with
galactic Astronomy (see Figure 3), we can see that
the development towards hierarchization does ap-
ply to both, but is more pronounced in the Chem-
istry space.

Figure 4, for clarity, shows only selected labels
on the spaces of the 1650s and the 1850s: some
words pertaining to the empirical framework, such
as inquires and investigations, and technical terms
at various degrees of specificity (still mostly ab-
sent in the 1650s space). We see how simple forms
of conceptual hierarchization appear in the latter
space: for example compound moves to the center
of the disk, close to a cluster including terms like
substance and matter (and others not included for
clarity, such as solution), all being more abstract
in meaning. Actions becomes a hypernym of in-
vestigations and inquiries. Instead, the more spe-

58



Figure 2: Evolution of the space with original edges for Chemistry.

Figure 3: Evolution of the spaces for Chemistry (top row) and galactic Astronomy (bottom row). The
high level of hierarchization in Chemistry appears evident. Galactic Astronomy maintains a more chaotic
outlook despite the increase of terminology; still, a cluster of terms can be seen growing in the center of
the space, while the periphery of the spaces becomes more dense.

cialized terms tend to be located at the edge of the
disk, such as ammoniac vs. ammonium-salt, anhy-
dride vs. carboneous vs. gas-carbon, or oxide vs.
protoxide. See also Table 3 for some examples of
developing hierarchization.

This tendency to cluster more clearly ab-
stract/generic and specialized terms is visible in
all four disciplines, and is mirrored in the evolu-
tion of the structure of the spaces. Measuring the
variations in the overall norm of all words, and in
the average norm of the 30 elements with the high-
est and lowest norm of the space for each of the
four fields taken into consideration (see Table 4),
we record in all cases a tendency to an increas-
ing hierarchization, with small clusters of words
moving towards the center and larger numbers of
words clustering further away at the periphery of
the hyper-disk (see Figure 5 for the highly cen-
tralized space of Physiology in the last period of
our corpus). Even in Galaxy, the least cohesive of
the topics, we notice a steady growth of the aver-

age norm (from 3.2 to 20.9), indicating an exten-
sion of the periphery. Comparing the results with
a “control group” (see again Table 4) formed by
sentimental terms (happiness, misery), which are
present throughout the corpus but are neither the
topic of the papers nor undergo systematic concep-
tualizations, there is no hierarchization tendency.
Moreover, on average the norm of the 30 most
peripheral words steadily increases through time.
The tendency of words to increasingly populate
more peripheral areas of the disk can be seen as an
indication of the increased formation of special-
ized meanings within particular scientific fields
(see Figure 6 for an example).

In Table 4, we show a compendium of these ob-
servations for each topic, while in Figure 7 we
show the average norm of all words in the space
for each discipline through time. It can be seen
that the control group does not show most of the
trends pictured by the other topics – centralization
of a group of words, average increase of the norm,
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Epoch cluster plant flowers
1650 clusters, triple, larger juice, stem, plants bud, roots, tree
1700 dark-grey, situation, clusters species, seed, juice leaves, tree, trees
1750 clusters, nebula, nebulae flowers, fruit, piece fruit, branches, plant
1800 nebulosity, clusters, nebulae leaf-stalk, leaves, roots shurbs, stem, horse-chestnut
1850 clusters, stellar, nebulae flowered, seeded, soil petals, stamina, pistilla

Table 3: Nearest descendants for cluster, plant and flowers in diachronic Poincare spaces for galactic
Astronomy (in the first case) and Botany (second and third case). It is possible to observe the emergence
of stellar as a kind of cluster; of the division between flowered and seeded plants (an antithesis that
became meaningful towards the XIX century); and of specific elements of a flower’s anatomy, such as
the stamen, which were particularly relevant in the studies on flowers’ sexuality (mid XIX century).

Figure 4: Selected nodes (in violet) from 1850s Chemistry, as compared to the 1650s. In Compounds
joins Substances and Matter to the top of the hierarchy, while Actions becomes a hypernym of Inquires
and Investigations. Raw chemical hierarchies can be seen forming at the edges of the hyperdisc.

extension of the peripheries – while a slight trend
towards the increase of the norm of the most pe-
ripheral words can also be observed in this group.

WordNet comparison. Due to the practical
and theoretical difficulties of using contemporary
WordNet as a benchmark to validate historical on-
tologies (should we expect an ideal algorithm to
return us a close WordNet similarity on historical
data?), we do not use WordNet to directly com-
pare the structure of the spaces (as Nickel and
Kiela (2017) do for contemporary data sets), but
to correlate the number of WordNet senses a word
has with respect to its norm in each period. We
notice that in all the considered disciplines, the
correlation between the number of senses a word
has and its vector’s norm is not null, and tends to
increase over time (see e.g. Table 5 for Physiol-

ogy). The words at the center of the hyper-disk
tend more and more to overlap with highly pol-
ysemous words in contemporary English, while
the words that cluster at the edges of the disk
correlate more and more with highly specialized
words in contemporary English (words with one
or two senses at most). Table 5 shows the top
30 words with the lowest norm (most abstract in
meaning) and the highest norm (most specialized)
for Physiology through time. Both groups show a
tendency towards fewer senses over time, indicat-
ing increased semantic specialization and decreas-
ing polysemy. Also, in all epochs the first group
displays on average more senses than the second
group. Table 6 presents Pearson correlation be-
tween WordNet senses and words’ norms per pe-
riod across topics, showing an increasing correla-
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Epoch Physiology Chemistry Botany Galaxy Control
H L %>.3 H L %>.3 H L %>.3 H L %>.3 H L %>.3

1650 0.06 0.53 45.2 0.09 0.57 43.7 0.10 0.21 4.3 0.06 0.20 3.2 0.13 0.02 0.0
1700 0.11 0.47 32.4 0.04 0.44 33.3 0.09 0.18 6.2 0.02 0.30 5.3 0.07 0.01 0.0
1750 0.08 0.64 57.6 0.09 0.65 61.2 0.11 0.43 3.7 0.05 0.30 5.2 0.10 0.06 0.0
1800 0.06 0.68 67.9 0.12 0.70 71.2 0.10 0.36 18.0 0.05 0.35 15.1 0.13 0.08 0.1
1850 0.06 0.62 64.1 0.05 0.69 69.3 0.10 0.40 24.7 0.04 0.47 20.9 0.13 0.07 0.0

Table 4: Average norm for the 30 elements with the highest (H) and lowest (L) norm and percentage of
elements with norm higher than .3 for each period and discipline.

Epoch WordNet senses
abstract specialized

1650 11.2 3.4
1700 6.6 4.2
1750 10.9 2.2
1800 5.2 1.03
1850 5.2 0.6

Table 5: Average number of WordNet senses for
the 30 terms with the lowest norm (column 2) and
for the 30 terms with the highest norm (column 3)
in the space of Physiology.

Figure 5: Physiology space (with original edges)
for the last period. The centralized hierarchical
structure is clearly visible.

tion.
Topic clustering. All four the selected topics

show a tendency to increase their words’ average
norm and the distance between the center and the
edge of the disk. The two topics that show stronger

symptoms of conceptual hierarchization, Chem-
istry and Physiology, were also distinguished in
two lexical sub-topics by our original topic model.
The emergence of these sub-topics was mainly due
to the changes in word usage caused by relevant
scientific discoveries (like for example the sys-
tematization of elements in Chemistry) that cre-
ated vocabularies and conceptual systems that had
scarce interactions with one another. In Table 7,
we show that the average cosine similarity be-
tween the words belonging to the one sub-topic
tends to stay higher than their average similarity
to the words belonging to the other sub-topic: the
topical distance between the two groups is not lost
in the hierarchization.

4 Discussion

We have built diachronic semantic hyperspaces for
four scientific topics over a large historical En-
glish corpus stretching from 1665 to 1869. We
have shown that the resulting spaces present the
characters of a growing hierarchization of con-
cepts, both in terms of inner structure and in terms
of light comparison with contemporary semantic
resources (growing Pearson correlation between
norm and WordNet senses). We have shown that
while the same trends are visible in all four dis-
ciplines, Chemistry and Physiology present more
accentuated symptoms of hierarchization, while
the group of control had even few or no signs of
hierarchization.

Specialization in scientific language. This
work is part of a larger project aimed to trace the
linguistic development of scientific language to-
ward an optimal code for scientific communica-
tion (Degaetano-Ortlieb and Teich, 2018, 2019).
One mayor assumption is the diachronic develop-
ment towards specialization – as a scientific field
develops, it will become increasingly specialized
and expert-oriented.
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Figure 6: Population of the same area of the hyper-disk for Physiology in the first and last epoch. More
specialized and technical terms tend to populate the same level in the “hierarchy”.

Epoch Physiology I and II Chemistry I and II Galaxy Botany Control
1650 -0.37 -0.42 -0.50 -0.09 -0.06
1700 -0.20 -0.44 -0.35 -0.05 0.67
1750 -0.40 -0.45 -0.43 -0.24 -0.34
1800 -0.42 -0.46 -0.16 -0.22 -0.17
1850 -0.41 -0.46 -0.37 -0.32 -0.16

Table 6: Pearson correlation between WordNet senses and word’s norm per period per topic.

Figure 7: For all four disciplines the average
words’ norm increases through time. This is
due to the expansion of the hyperspace periphery:
words become more specialized, hierarchies be-
come deeper. The control group (sentiment terms)
does not show this tendency.

Thus, as a field specializes, it develops more
technical and differentiated vocabulary (Halliday,

Epoch P in P out C in C out
1650 .58 .59 .54 .55
1700 .60 .60 .56 .56
1750 .53 .53 .50 .49
1800 .51 .50 .48 .47
1850 .50 .47 .47 .44

Table 7: Topic detectability. Average cosine simi-
larity for elements pertaining to the same sub-topic
(in) and elements pertaining to different sub-topics
(out) in Physiology (P) and Chemistry (C) through
time.

1988; Teich et al., 2016). For the disciplines in-
vestigated here increased specialization over time
appears clearly in our hyperspaces showing a ten-
dency towards the use of more peripheral words
and deeper hierarchies.

Considerations on validity of our baselines.
Finding valid, meaningful baselines to evaluate
hierarchies based on a diachronic corpus is not
a trivial task. Comparing them to the topic
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model’s results on the same corpus was possibly
the most sensible one, but we should not expect
too much on that side: Hyperbolic embeddings are
not specifically designed to tell topics apart, and if
words pertaining to slightly different topics (such
as two kinds of chemistry) happen to be on the
same level of conceptual abstraction, it is fair to
expect them quite near in the hyper-disk geogra-
phy.

At the same time, comparing our results to
WordNet makes sense only partially: the concep-
tual structures of WordNet are 150 years more re-
cent than the ones discussed in the most recent of
our spaces, and it is wrong to assume a priori that
their distribution in a historical hierarchy should
be similar. So we relied on internal analysis and
qualitative considerations, but baselines for these
kinds of tasks would be highly needed to better
test diachronic ontologies.

Considerations on our extraction system. To
collect our data, we used a very simple and non-
committal approach that feeds the models with
less information than usually provided in the lit-
erature.

However, choosing the words with some care
and working on large numbers, our models do not
seem completely at a loss in front of the noise of
the input data. With differences due to the noise
of the word lists and the development of the fields,
a tendency for specialized terms to cluster as hy-
ponyms of more abstract and polysemous words
could be observed in all four disciplines. In future
work, we intend to accurately test this procedure
by means of contemporary data sets.

Dynamic diachronic WordNets. Hand crafted,
historical ontologies of concepts are extremely ex-
pensive in terms of person/hour, not considering
the amount of expertise and skills required to build
a hierarchy of concepts based on the knowledge
and beliefs of a different time. We speculate that
these sorts of technologies can be a step towards an
easier, and more dynamic way of building corpus-
induced ontologies, offering for example raw ma-
terial to be polished by human experts.
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Abstract

We present an evaluation of Czech low-
dimensional distributed word representa-
tions, also known as word embeddings.
We describe five different approaches to
training the models and three different cor-
pora used in training. We evaluate the re-
sulting models on five different datasets,
report the results and provide their further
analysis.

1 Introduction

Distributed word representations, often referred to
as word embeddings, have received a lot of atten-
tion in recent years, and they have been used to im-
prove results in many NLP tasks. The term itself
refers to representing words as low-dimensional
real-valued vectors (usually with dimensionality
of 50-1000), and is opposed to explicit sparse
representations, i.e. representing words as high-
dimensional vectors of 0s and 1s (usually with di-
mensionality in the tens of thousands).

Many different models have been proposed (see
section 2). By their nature, these models are
language-independent (given the language can be
tokenized) but usually the reported results are
measured using only English. This is encouraged
not only by English being the standard scientific
language, but also by the availability of English
text corpora and, even more importantly, English
datasets to evaluate the models on.

We have decided to perform an intrinsic evalu-
ation of embedding models on Czech. We have
identified several successful models to evaluate,
collected existing datasets to evaluate them on and
designed two more datasets to extend the evalu-
ation. We should note that we do not perform
downstream-task evaluation, even though it might
not correlate well with the intrinsic evaluation
(Tsvetkov et al., 2015). We also use the models

with their default parameters and only try chang-
ing the corpus they are trained on.

The rest of the paper is organized as follows:
first, we describe related work (section 2). We
continue with a description of selected models
(section 3), corpora used in training (section 4)
and the datasets (section 5). Finally, we present
the results (section 6).

2 Related work

Related work could be clustered into three groups
of papers.

First, we should mention papers performing
evaluation of Czech word embeddings. Such eval-
uation exists for Word2Vec and GloVe using anal-
ogy corpus (Svoboda and Brychcı́n, 2016), how-
ever we are not aware of any more recent evalua-
tion (which would cover also more recent models).
Still, some papers evaluate some word embed-
dings in the context of a new dataset, as is the case
of Czech similarity-relatedness dataset (Konopik
et al., 2017).

Second, there are intrinsic evaluations of em-
beddings. These are usually part of new model
proposals but there are exceptions. A notable one
is a comparison by Baroni et al (2014), and also
the work by Levy and Goldbert (2014), though
this paper proposes another objective to solving
analogies. Tsvetkov (2015) should also be men-
tioned for showing that intrinsic evaluation of em-
beddings need not correlate with performance on
downstream tasks, and Nayak et al (2016) pro-
posed a suite to test word embeddings.

Finally, there are model proposals. The most fa-
mous one is probably Word2Vec (Mikolov et al.,
2013a), which has later been extended to fastText
(Bojanowski et al., 2017). Despite being so well
known, Word2Vec is neither the older (cf. e.g. the
work by Schütze (1993)) nor the only one. An-
other famous models include GloVe (Pennington
et al., 2014), LexVec (Salle et al., 2016b), ELMo
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(Peters et al., 2018) or a recent model BERT (De-
vlin et al., 2018).

In addition to models themselves, there are pro-
posals on altering the trained model so that it bet-
ter fits a purpose, e.g. by transforming the vector
space to get vectors of synonyms closer to each
other and increase the distance between antonym
vectors (Faruqui et al., 2014; Mrkšić et al., 2016).

3 Selected models

In this section, we outline each of the selected
models. We also report which implementation we
use in our experiments.

Following some literature, we characterize each
model as either predictive (trained by learning to
predict a word) or counting (trained using co-
occurences counts).

Unfortunately, it has not been feasible to train
some model-corpus combinations.1 We were not
able to train fastText on Czech National Corpus
using forms and LexVec on Czech National Cor-
pus using either forms or lemmata. We have also
not trained BERT on our own, instead, we only use
a pre-trained model.

3.1 Word2Vec

Word2Vec (Mikolov et al., 2013a,b) is proba-
bly the most famous neural embedding model.
The same name actually refers to two different
architectures – called continuous bag of words
(CBOW) and skip-gram (SG).

Both architectures are basically feed-forward
networks. CBOW’s inputs are words (tokens)
within another word’s context and its golden out-
put is the surrounded word. Often, context win-
dow of size 5 is used, i.e. five words preceding
and five words following the predicted word form
the inputs. There’s one projection layeyr between
input and output layers. For skip-gram, it is the
other way round, i.e. one word forms the input
and words surrounding it are predicted. In both
architectures, all words share the projection layer,
which reduces the number of parameters to train,
and thus the training time.

When using Word2Vec without specifying ar-
chitecture, skip-gram is usually the default as it
performs better in most evaluation. However,
since Svoboda and Brychcı́n (2016) found out
CBOW performed better in their experiments on
Czech, we experiment with both architectures.

1We hope to overcome this limitation in our future works.

We use Word2Vec implementation provided in
the gensim library (Řehůřek and Sojka, 2010).

An important concept introduced in the second
paper (Mikolov et al., 2013b) is negative sam-
pling: when training a word vector, other words
are randomly sampled from the corpus and the
model is penalized for high similarity of their vec-
tors.

3.2 FastText

FastText (Bojanowski et al., 2017) is an exten-
sion of Word2Vec skip-gram which incorporates
subword information in resulting vectors. Words
are prefixed and suffixed with boundary symbols
and vectors are then trained not only for all words
but also for all n-grams appearing in any of the
words. Boundary symbols are important to dis-
tinguish short words from n-grams appearing in-
side words. Using n-gram embeddings, even vec-
tors for out-of-vocabulary words (i.e. words not
present in training corpus) can be generated.

Please note that even though Bojanowski et al.
(2017) describe the model as using skip-gram, it
can integrate with CBOW architecture. We have
tried using both architectures.

We use the implementation provided in gensim
library (Řehůřek and Sojka, 2010).

3.3 GloVe

GloVe (Pennington et al., 2014) is a counting
model which utilizes co-occurence matrix, i.e.
numbers of times a word occurs within the con-
text of another word. The basic idea is that if
some words are related to the same concept, the
probability of appearing in their context is much
higher for these words than for any other word.
This ratios need to be captured by the resulting
model. The formulae to capture these similari-
ties/ratios are further weighted so that rarely seen
co-occurences contribute little to the resulting vec-
tors (through loss function) and there’s a limit to
which frequent co-occurencies might contribute.

We use the original implementation provided by
authors.2

3.4 LexVec

LexVec (Salle et al., 2016b,a; Salle and Villavi-
cencio, 2018) is, like GloVe, a counting model. It
again utilizes co-occurence matrix and weights the

2https://github.com/stanfordnlp/GloVe
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errors so that more frequent co-occurences con-
tribute more. It however also employs the negative
sampling (originally introduced as an extension to
skip-gram Word2Vec (Mikolov et al., 2013b)) to
force scattering vectors of unrelated words.

Since the first paper, LexVec has been extended
with positional context (i.e. it is not important only
whether word a appeared in the context of word b
but also whether it was to the left or to the right
and how many words there were in between), the
ability to use external memory for storing the co-
occurences (which allows to train on a huge cor-
pus), and finally with subword information (which
allows deriving vectors even for out-of-vocabulary
words).

We use the original implementation provided by
authors.3

3.5 BERT

BERT (Devlin et al., 2018), which stands for
bidirectional encoder representations from trans-
former, is a neural predictive model. It is trained
on sentences rather than on words themselves (ac-
tually, its inputs are sentence pairs) but it does
produce word embeddings. It’s training can be
viewed as a two-step process, the model is first
pre-trained using specific tasks and then fine-tuned
using downstream tasks.

The two tasks used to pretrain the model are
next sentence prediction (i.e. deciding whether
the second sentence really followed the first one
in original text or if it was picked at random)
and something the authors call masked language
model, which is very close to a cloze test (Taylor,
1953). The idea is that some amount of randomly
chosen words is masked (i.e. replaced with a spe-
cial token), and the model has to correctly predict
them.

We do not train the model, we use the dis-
tributed multilingual model 4 and our department
wrapper around it.

Because of its different nature, we evaluate this
model only on similarity datasets (those described
in subsections 5.2 and 5.3).

4 Corpora

In this section, we briefly describe the corpora we
use to train the models on.

3https://github.com/alexandres/lexvec
4https://github.com/google-research/bert

Apart from using different models and corpora
to train on, we have also experimented with two
more settings: token form (i.e. training either on
forms as they appear in the corpora, or on lem-
mata) and keeping/substituting numbers. The sec-
ond idea is rather a concept, though concretized in
numbers – some words have similar function but
come in many different forms (and remain distinct
when lemmatized) so their token counts are low
and they do not take big part in the training. How-
ever, their similar function suggests that they could
still be useful in defining contexts/concepts. We
therefore tried also substituting all numbers (i.e.
tokens tagged as C= by MorphoDiTa tool) with a
meta-word.

For lemmatization of both corpora and datasets,
we have used the MorphoDiTa tool (Straková
et al., 2014).

4.1 Czech Wikipedia dump

As is common in natural language processing, we
use Wikipedia dump as a training corpus. This
corpus consists of short documents (hundreds to
thousands words), the style is encyclopedic but not
really expert. No shuffling has to happen, all co-
occurences are kept as they are. Unfortunately,
Czech Wikipedia is rather small when compared
to the English version, thus we expect it to pro-
duce worse results.

We have used the dump from 1st May 2019. We
have processed the dump with wikiextractor5 and
tokenized it using MorphoDiTa (Straková et al.,
2014) tool.

4.2 CzEng

CzEng (Bojar et al., 2016) is a parallel Czech-
English corpus. The texts in it are of varied do-
mains, including news, fiction, laws, movie sub-
titles and tweets. It is shuffled at block level, i.e.
only a few consecutive sentences are kept together
each time. Each sentence is associated with its do-
main but it is not possible to reconstruct the origi-
nal documents.

We have used version 1.7 and only extracted the
Czech part of CzEng, keeping the tokenization and
lemmatization provided in CzEng. We have re-
ordered the sentences so that all sentences which
share the domain are grouped together.

5http://attardi.github.io/wikiextractor/
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4.3 Czech National Corpus

Czech National Corpus (Křen et al., 2016) is a
large corpus of written Czech. Version SYN v4,
which we have used, contains texts of varying
types, however news are by far the most common.
(This version is not considered representative be-
cause of the prevailing news, but it is much larger
than representative CNC subcorpora.) The cor-
pus is again shuffled at block level, sentences are
linked with the exact document they come from
but their order cannot be reconstructed.

5 Datasets

We describe the existing (as well as no-longer-
existing) datasets suitable for the evaluation of
Czech word embeddings.

5.1 RG-65 Czech (unavailable)

RG-65 Czech (Krčmář et al., 2011) is (or per-
haps used to be) a Czech version of the fa-
mous Rubenstein-Goodenough set (Rubenstein
and Goodenough, 1965), a set on word related-
ness.

In the original set, the data are triplets: two
words and a mean relatedness score as annotated
by human annotators, there are 65 word pairs.

The authors decided to translate the word pairs,
using a reference on the original meanings. Pair
relatedness was annotated by 24 human annotators
of varying age, gender and education. During the
translation and annotation process, a total of 10
pairs was omitted since one of the words could not
be easily translated (or it would be translated to
exactly the same word as the other).

Unfortunately, this dataset seems not to be
available any more. The URL provided in the pa-
per does not work, neither does the first author’s
email. We have tried contacting another author of
the paper but they did not have the data.

We therefore do not evaluate on this dataset,
however we think it should be listed when dis-
cussing all relevant datasets.

5.2 WordSim353-CZ

WordSim353-CZ (Cinková, 2016) is a Czech ver-
sion of WordSim (Finkelstein et al., 2002), which
is another dataset on word relatedness. The data
are again triplets, word pair and a score (though
technically the Czech dataset contains other infor-
mation for each pair).

The author decided to create a dataset as similar
as possible to the original, which especially means
she encouraged the annotators to annotate related-
ness, even though the name refers to similarity.

During the process of creating the dataset, four
candidate translations were suggested for each of
the original pairs, and 25 annotators annotated all
reasonable pairs. The authors then selected the
pairs so that the correlation between Czech and
English rankings is maximal.

A version with all annotated pairs is available
but we stick to the selected subset in our experi-
ments.

5.3 Czech similarity and relatedness

The dataset for Czech similarity and relatedness
(Konopik et al., 2017) not only enables another
evaluation of word similarity, it also addresses
the problem of scoring words which are closely
related but not really similar (those may be e.g.
antonyms or pairs like beach and sand). This
dataset contains 953 words.

The authors decided to build the dataset from
several different resources. They translated ran-
dom pairs from several English datasets, RG-65
(Rubenstein and Goodenough, 1965), WordSim
(Finkelstein et al., 2002), MTurk (Radinsky et al.,
2011), Rare words (Luong et al., 2013) and MEN
(Bruni et al., 2014). They also mined translational
data using Moses (Koehn et al., 2007) and CzEng
(Bojar et al., 2016), language part of Czech gen-
eral study tests SCIO, and they invented a few
pairs on their own.

Word pairs were annotated by 5 annotators and
each of them annotated both similarity and relat-
edness, the annotators achieved Spearman corre-
lation of 0.81.

The dataset itself does not contain only the word
pairs and their scores but also examples of their us-
age, examples of ambiguities (sentences contain-
ing the same word with different meaning) and ex-
amples of the two words co-occuring; all examples
were taken from the Czech National Corpus.

5.4 Czech analogy corpus

Czech analogy corpus was presented as a part of
embedding-related experiments by Svoboda and
Brychcı́n (2016), and it mimics the Google anal-
ogy test set.6

6http://download.tensorflow.org/data/questions-words.txt
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It contains 11 relationship categories. Of those,
4 are purely semantic (capital cities and three
groups of antonym relations, further divided based
on part-of-speech), 3 are purely syntactic (noun
plural, verb past tense, adjective gradation), 3 are
rather syntactic (gender variation of job names and
of nationalities, grammatic number variation of
pronouns, including pairs like I and we) and 1 is
rather semantic (family relations, i.e. he-cousin to
she-cousin as father to mother). While family re-
lations is in fact gender variation of family roles,
feminime variants usually cannot be derived from
masculine ones.

There is also a phrase version which contains
some additional categories but we use the version
containing single words only.

5.5 Extended semantic analogies

We have developed four additional analogy cat-
egories and word pairs representing those cate-
gories. These categories are: old or even ar-
chaic words and more modern words with the
same / close enough meaning, e.g. biograf and
kino ’cinema’; diminutives, e.g. máma ’mum’ and
maminka ’mummy’; more foreign-sounding (of-
ten expert) words and their more Czech-sounding
variants, e.g. akceptovat and přijmout ’(to) ac-
cept’; and synonyms.

While we understand and acknowledge the am-
biguity of listed relations, we believe some ambi-
guity accompanies also antonyms and family rela-
tions, and we are curious about the model perfor-
mance.

5.6 Synonym retrieval

We propose evaluating word embeddings also on
synonym retrieval. Using our department the-
saurus, we have randomly selected 500 words
known to have at least 5 synonyms. (No two tested
words are synonyms of each other.)

For each tested word, we find 10 words having
the most similar vectors and we evaluate the top-
1, top-3 and top-5 precision. We do it both with
respect to the answer really given and with respect
to an oracle which would move true synonyms to
top positions whenever they would appear within
the 10 candidates.

Please note that even though Leeuwenberg et al
(2016) have shown that relative cosine similarity
is a better approach to synonym extraction, it does
not make a great difference in our case because we

do not need to set a similarity threshold between
synonyms and non-synonyms.

6 Results

We evaluated all trained models on all available
datasets, with the exception of BERT embed-
dings which were only evaluated on WordSim353-
CZ and Czech similarity and relatedness dataset.
Please keep in mind that we were not able to train
fastText on Czech National Corpus using forms
and LexVec on Czech National Corpus using ei-
ther forms or lemmata.

When evaluating analogies, we have tried using
both 3CosAdd suggested by Mikolov et al (2013b)
and 3CosMul suggested by Levy and Goldbert
(2014) as similarity objective. To evaluate simi-
larity, we use cosine similarity in all tasks.

Since the number of trained and evaluated mod-
els is high, we do not report results for each of the
models. Instead, we do the following:

• Divide the tasks into five groups: syntac-
tic analogies, semantic analogies, extended
analogies, similarity/relatedness assignment
and synonym retrieval. For each group, we
identify all models which achieve the best re-
sult on any task within this group, and for all
such models, we report results on all tasks
within this group. We also report the per-
formace of BERT embeddings on the simi-
larity/relatedness group.

• Report a basic approximation of parame-
ter volatility, given by differences in perfor-
mance when only the parameter in question
is changed.

• Discuss the patterns we have noticed during
our examination of all results.

Table 1 shows the results on syntactic analogies.
Please note that the dominance of models trained
on forms is expected since models trained on lem-
mata are not able to solve purely syntactic tasks
(plural, past tense, pronouns, gradation). The non-
zero accuracy of lemmatized models on plural is
only possible due to a dataset lemmatization error.

The achieved accuracies are pleasing, with a no-
table exception of pronoun analogies. We suspect
this could be because the pronoun analogies in fact
mix several aspects, i.e. there are pairs like já ’I’
- my ’we’ but also mého ’my (sg., i.e. my thing)’
- mých ’my (pl., i.e. my things)’, instead of mého
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fastText Word2Vec Word2Vec LexVec fastText
Wiki CNC CNC CzEng CNC
forms forms forms forms lemmata

3CosMul 3CosAdd 3CosMul 3CosMul 3CosMul
Plural 71.85 64.11 64.04 68.17 2.70
Jobs 83.92 87.54 85.35 80.72 75.00

Past tense 89.02 66.58 67.84 87.79 0.00
Pronouns 7.54 9.79 10.98 10.45 0.00
Gradation 60.00 62.50 60.00 70.00 0.00
Nations 43.18 25.19 28.03 40.15 67.52

Table 1: Results on syntactic analogies; numbers were always kept in place; both Word2Vec and fastText
were trained using CBOW architecture

LexVec Word2Vec LexVec Word2Vec LexVec
CzEng Wiki Wiki CNC CzEng

lemmata lemmata forms lemmata lemmata
meta meta numbers meta numbers

3CosAdd 3CosAdd 3CosAdd 3CosAdd 3CosMul
Anto-nouns 23.33 13.44 17.28 14.72 18.56

Anto-adj 20.96 31.71 3.54 23.17 20.15
Anto-verbs 6.79 5.27 13.66 7.68 6.70
City/state 5.35 41.62 3.03 54.72 5.08

Family 45.99 41.98 8.03 43.83 48.61

Table 2: Results on semantic analogies;

CNC CNC CNC CzEng
numbers meta meta numbers
3CosMul 3CosAdd 3CosMul 3CosMul

Archaic 18.92 15.92 17.72 7.56
Diminutives 25.97 27.66 27.66 13.97

Expert 23.09 19.63 23.48 14.19
Synonyms 20.27 19.79 19.79 26.71

Total 22.80 21.32 23.17 14.83

Table 3: Results on extended analogies; all models were trained using Word2Vec with CBOW architec-
ture, corpus was always lemmatized

’my’ - našeho ’our’. The possessive pronouns are
also given in genitive/accusative (same forms are
used for both cases) while the personal pronouns
are given in nominative.

Results on semantic analogies are reported in ta-
ble 2, and results on extended analogies are given
in table 3.

Consistently with Svoboda and Brychcı́n
(2016), we have found that CBOW outperforms
skip-gram on Czech, which is not consistent with
the results observed on English (Mikolov et al.,
2013b). We hypothesize this could be due to rel-
atively free word order and strong inflection and

conjugation found in Czech. For example, while
the two sentences Profesor pochválil studenta and
Studenta pochválil profesor ’A professor praised a
student’, have a different meaning with respect to
topic-focus articulation, they can be both utilized
in Czech to communicate roughly the same thing.
In English, changing the word order would also
require transforming the verb. Therefore, a single
Czech word could be less predictive than a single
English word, making skip-gram less effective.

The best result is not always achieved using
the largest corpus available. Out of 15 anal-
ogy classes, 4 are best solved when training on
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Wikipedia dump. The difference is very subtle
for noun plural, rather subtle for past tense and
verb antonyms (with LexVec trained on CzEng be-
ing the second in all cases) but high for adjective
antonyms (the best non-wiki model achieves ac-
curacy of 25.67). While we are not able to truly
explain, we suspect several factors could be re-
sponsible: Wikipedia dump is probably more con-
sistent in style than both other corpora (which
are compilations of various sources); many pages
originated as English Wikipedia translation and
thus are likely to follow English stylistics, mak-
ing the language more similar to English; its en-
cyclopaedic nature could make the language more
regular in general. Perhaps these properties could
outweight the corpus size.

However, CNC in general gives good results
on extended analogies. We suppose its size does
make an advantage, though indirectly, by mak-
ing the appearance of queried words in the cor-
pus more likely and their contexts more recogniz-
able (some words are unusual in Czech, especially
words from archaic and expert analogies).

We notice that while syntactic analogies are bet-
ter solved by models trained on forms (with the
exception of gendered nationality analogies), most
semantic analogies are better solved by models
trained on lemmata. We suppose this is due to
large numbers of word forms for each lemma (a
prototypic Czech noun has 14 forms, adjectives
and verbs have even more), further strengthened
by lemmata having some basic sense disambigua-
tion annotation.

The exception to lemmata performing better are
verbal antonyms. The best lemma-based model
achieves accuracy of 10.18, which is notably lower
than the best result. We are not sure about the
cause. However, verbs have lots of forms (which
all get lemmatized to the same string) and many
verbal forms contain auxiliary words, often also
verbal. The combination of that could make dis-
tinguisting contexts more difficult.

Table 4 gives the results on similarity tasks. To
evaluate BERT on Czech similarity and related-
ness dataset, we extracted all example sentences
(which are given to demonstrate the use of the
word with the desired meaning) and inferred the
embeddings of all words in them. We then used
the embeddings of the queried words to evaluate
the model.7

7Technically, we first associated the word with a unique

We were quite surprised to see the relatively
low results of BERT, compared to other models.
We suspect the elimination of accented charac-
ters could hurt BERT performance since accents
may differentiate meaning in Czech and the re-
moval of accented characters might produce the
same string (as turning both malý ’small (mascu-
line)’ and malá ’small (feminime)’ into mal; můra
’moth’ and mı́ra ’measure, rate’ to mra) or even
to valid Czech words (as turning zeď ’wall’ into
ze ’from’). However, this should be rather rare,
except for systematic occurences as with the mas-
culine and feminime adjectives.

We find it more likely that BERT performance
is hurt by inferring embeddings of rather artificial
sentences. For WordSim, the sentences had only
the queried words. For the similarity and related-
ness dataset, these were true sentences, but with-
out further context.

The results on synonym retrieval are reported
in table 5. We again see that CBOW architecture
outperforms skip-gram, which might be because
of relatively free word order in Czech. The effect
could be even stronger in context of synonym re-
trieval, as the distinction e.g. between subject and
object could also be the distinction between (near-
)synonym and (near-)antonym verb.

The corpus size might be a more important fac-
tor than model selection for synonym retrieval.
Even though moving from forms to lemmata helps
both in general and specifically with this task,
models trained on unlemmatized CNC often out-
performed models trained on lemmatized CzEng.
However, Word2Vec/CBOW trained on smaller
lemmatized corpus still outperformed other mod-
els trained on CNC. Unfortunately, we cannot be
sure about the performance of LexVec on CNC
but its performance on CzEng is 30%-70% of
word2vec/CBOW performance with the remain-
ing parameters matching.

We have also noticed that while oracle precision
is good, the synonyms often do not come first. The
exact precisions differ but for all models, the real
precision is one third to one half of oracle preci-
sion.

In all our experiments, GloVe did not perform

identifier, added the identifier and the inferred embedding to a
special model using gensim, and finally evaluated this special
model against the translation of the dataset into the identifiers.
The identifiers are needed since embeddings are contextual-
ized, i.e. different for the same word in different contexts, but
gensim only supports mapping one word to one embedding.
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fastText LexVec BERT
CNC CzEng
meta numbers

SimRel/Similarity 72.45 65.39 46.90
SimRel/Relatedness 66.51 62.14 38.63

WordSim353-CZ 69.17 70.41 13.88

Table 4: Results (Spearman correlation coefficient) on similarity tasks; All models were trained on
lemmatized corpus; fastText was trained using CBOW architecture

numbers meta-numbers
Top-1 oracle 78.10 74.79
Top-3 oracle 47.80 49.45
Top-5 oracle 32.07 32.48

Top-1 precision 35.12 33.88
Top-3 precision 26.86 26.45
Top-5 precision 21.65 22.15

Table 5: Results on synonym retrieval; Models
were trained using Word2Vec/CBOW on lemma-
tized CNC

well. The rank of best performing GloVe model
was usually around 30, therefore being worse than
about a quarter of all other models. It is however
possible that GloVe would benefit from tweaking
the parameters more carefully. Altering a param-
eter often has the opposite effect on GloVe than
on other modesl, which also encourages this as-
sumption. Still, it should be noted that this result
again is consistent with the findings of Svoboda
and Brychcı́n (2016), who discovered GloVe per-
formed worse than Word2Vec on Czech.

Despite all the research into incorporating sub-
word information into embeddings (which is,
among other, motivated by morphologically rich
languages), models trained on lemmata perform
better that their counterparts trained on forms.
Tasks which require form distinguishing are a nat-
ural exception to this. We suspect this gap is par-
tially caused by some forms being quite different
from its lemma (and therefore hardly connectable
on form/subword level), by lots of forms being
only seemingly similar (sharing a long substring
but meaning a different thing), and also by some
forms appearing in specific contexts only (mak-
ing the model learn a relation more specific than
it should be).

However, we believe performing a strictly syn-
tactic evaluation of embeddings which would
focus on deriving correctly inflected/conjugated

forms would be an interesting experiment to evalu-
ate to benefits of subword information in morpho-
logically rich languages.

As has been already mentioned, CBOW outper-
forms skip-gram on Czech. The difference is big-
ger on syntactic analogies; CBOW advantage is
less clear in fastText models than Word2Vec mod-
els and on similarity tasks (in which CBOW only
outperforms skip-gram if trained on lemmata).

Word2Vec with CBOW architecture generally
performs well, though there are tasks (especially
similarity assignment) on which LexVec gives no-
tably better results.

Number substitution with meta-words alters the
results only slightly. Though sometimes the best
result is achieved by a model trained on text with
those meta-words, the substitution hurts more of-
ten than it helps.

Similarly, the difference in analogy perfor-
mance between different similarity objectives is
rather subtle, though it is notable that semantic
analogies are generally best solved with 3CosAdd
objective while syntactic analogies are generally
best solved with 3CosMul. However, this pat-
tern is not repeated in extended analogies which
are mostly semantic but best solved with 3CosMul
(though the results on extended analogies are low
which might further reduce the effect of similarity
objective).

In general, training on CzEng instead of CNC
results in worse results, suggesting CNC is more
appropriate for training word embeddings. The
difference of size is likely to play a role, but with-
out further investigations we cannot eliminate the
possibility that the fact that CzEng is comprised of
more different text types also worsens (or possibly
improves) the results.

The comparison of training with CzEng and
Wikipedia dump is less one-sided. In most cases,
moving from CzEng to Wikipedia dump has a
negative impact, however it does improve the re-
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Parameter Mean Deviation Maximum
model 9.61 12.62 87.54
corpus 7.22 9.38 55.61

form/lemma 13.87 19.85 89.02
form/lemma* 5.89 6.36 30.30

numbers 1.13 1.70 15.00
similarity objective 1.58 2.34 18.54

Table 6: Approximation of parameter volatility given by the distribution of performance differences
(percent points) when altering the parameter with all remaining parameters fixed; Minimum difference
is always 0; similarity objective is only taken into account on analogy tasks; * line refers to values when
skipping noun plural, past tense, pronouns and gradation which are by nature unsolvable by lemmata-
based models

sults on several task/model combinations (espe-
cially syntactic analogies). We also noticed that
on similarity assignment, LexVec performs better
than most models when both are trained on CzEng
but worse when trained on Wikipedia dump (the
comparison for CNC is not available). The effects
of moving from CNC to Wikipedia dump are sim-
ilar to effects of moving from CNC to CzEng (i.e.
usually negative).

7 Conclusion

We have presented an intrinsic evaluation of Czech
word embeddings. We have evaluated several
models trained on three different corpora, using
different strategies during the training process. We
have evaluated the resulting embeddings on a vari-
aty of tasks – analogy, similarity, synonym re-
trieval.

The most important of our findings, regard-
ing model selection, are that GloVe model us-
ing the default parameter settings does not seem
to work well on Czech, that CBOW architecture
of Word2Vec/fastText generally outperforms the
Skip-gram architecture (unlike on English) and
that LexVec performs fairly well in our experi-
ments. It is worth noting that model selection af-
fected the results more than corpus selection.

While bigger corpus might be expected to give
better results, our results regarding corpus size
are mixed. In most cases, the best performing
model is trained on CNC, the largest corpus we
have used, and if the best result is achieved using
CzEng, the model is usually LexVec (which we
were not able to train on CNC). However, the best
result in several tasks is achieved using Wikipedia
dump. We hypothesize the encyclopaedic nature
of Wikipedia and the similarity of its language to

English (following from many pages being trans-
lated or based on their English counterparts) could
be important factors.

We have also found that models trained on lem-
matized corpus usually perform better. Given that
lemmatization tools are available for Czech, we
would therefore recommend lemmatizing the text
even when training on models which employ sub-
word information. We hypothesize the differences
of forms as well as some basic sense disambigua-
tion might play a role.

We have several future goals which have
emerged from the described work. Obviously,
overcoming the limitations and being able to train
all models on any corpus is one of them. We ex-
pect to try reformumalting the analogy task so that
there can be more than one correct answer (which
is clearly useless for tasks like currect capitals but
might be interesting for tasks like antonyms or
diminutives). We would also like to create more
syntactic tasks to further evaluate the benefits of
subword information, train the models on corpora
subsets to better evaluate the effect of using bigger
corpus, and carefully evaluate analogies and syn-
onym retrieval using contextualized embeddings.
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Abstract
In this paper, we investigate the effect of
enhancing lexical embeddings in LSTM
language models (LM) with syntactic and
semantic representations. We evaluate the
language models using perplexity, and we
evaluate the performance of the models
on the task of predicting human sentence
acceptability judgments. We train LSTM
language models on sentences automat-
ically annotated with universal syntactic
dependency roles (Nivre et al., 2016), de-
pendency tree depth features, and uni-
versal semantic tags (Abzianidze et al.,
2017) to predict sentence acceptability
judgments. Our experiments indicate that
syntactic depth and tags lower the perplex-
ity compared to a plain LSTM language
model, while semantic tags increase the
perplexity. Our experiments also show
that neither syntactic nor semantic tags im-
prove the performance of LSTM language
models on the task of predicting sentence
acceptability judgments.

1 Introduction

Lau et al. (2014) show that human acceptability
judgments are graded rather than binary. It is not
entirely obvious what determines sentence accept-
ability for speakers and listeners. However, syn-
tactic structure and semantic content are clearly
central to acceptability judgments. In fact, as Lau
et al. (2015, 2017) show, it is possible to use a lan-
guage model, augmented with a scoring function,
to predict acceptability. Standard RNN language
models perform fairly well on the sentence accept-
ability prediction task.

By experimenting with different sorts of enrich-
ments of the training data, one can explore their
effect on both the perplexity and the predictive ac-
curacy of the LM. For example, Bernardy et al.

(2018) report that including contextual informa-
tion in training and testing improves the perfor-
mance of an LSTM LM on the acceptability task,
when contextual information is contributed by pre-
ceding and following sentences in a document.

Here we report several experiments on the pos-
sible contribution of symbolic representations of
semantic and syntactic features to the accuracy of
LSTM LMs in predicting human sentence accept-
ability judgments. 1

For semantic tags, we use the Universal Se-
mantic Tagging scheme, which provides language
independent and fine-grained semantic categories
for individual words (Abzianidze et al., 2017). We
take our syntactic roles from the Universal Depen-
dency Grammar scheme (Nivre et al., 2016). This
allows us to assign to each word in a sentence a
semantic and a syntactic role, respectively.

Our working hypothesis is that for a language
model the syntactic and semantic annotations will
highlight semantic and syntactic patterns observed
in the data. Therefore sentences that exhibit these
patterns should be more acceptable than sentences
which diverge from them. One would expect that
if we get lower perplexity for one of the tagging
scheme LMs, then its performance would improve
on the acceptability prediction task. Clearly, bet-
ter performance on this task indicates that tagging
supplies useful information for predicting accept-
ability.

2 Experimental Setup

First, we train a set of language models, some of
them on tag annotated corpora, and some on plain
text. While we are interested in the effect of the
tags on model perplexity, our main concern is to
measure the influence of the tags on an LSTM

1Our training and test sets, and the code for generating
our LSTM LM models are available at https://github.
com/GU-CLASP/predicting-acceptability.
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LM’s predictive power in the sentence acceptabil-
ity task.

We implement four variants of LSTM language
models. The first model is a plain LSTM that pre-
dicts the next word based on the previous sequence
of words. The second, third and fourth models pre-
dict the next word wi conditioned on the previous
sequence of words and tags, for which we write
PM (wi). For a model M that uses syntactic or
semantic information:

PM (wi) = P (wi|(wi−1, ti−1), ..., (wi−n, ti−n))
(1)

We stress that the current tag (ti) is not given when
the model predicts the current word (wi).

Using the main hyperparameters from a previ-
ous similar experiment (Bernardy et al., 2018), all
language models use a unidirectional LSTM of
size 600. We apply a drop-out of 0.4 after the
LSTM layer. The models are trained on a vocab-
ulary of 100,000 words. We randomly initialise
word embeddings of size 300 dimensions, and tag
embeddings of size 30 dimensions. Each model is
trained for 10 epochs.

Following the literature on acceptability (Lau
et al., 2015, 2017; Bernardy et al., 2018), we pre-
dict a judgment by applying a variant of the scor-
ing function SLOR (Pauls and Klein, 2012) to a
model’s predictions.

2.1 SLOR

To estimate sentence acceptability, we use a
length-normalized syntactic log-odds ratio (here-
after simply referred to as SLOR). We use SLOR
rather than any other measurements since it was
shown to have the best results in a previous study
(Lau et al., 2015). It is calculated by taking the
logarithm of the ratio to the probability of the sen-
tence s predicted by a model M (PM ) with the
probability predicted by the unigram model (PU ),
divided by the length of the sequence |s|.

SLORM (s) =
log(PM (s))− log(PU (s))

|s| (2)

where PM (s) =
∏|s|

i=1 PM (wi), and PU (s) =∏|s|
i=1(PU (wi)). This formula discounts the effect

of both word frequency and sentence length on the
acceptability score that it assigns to the sentence.
SLOR has been found to be a robustly effective
scoring function for the acceptability prediction
task (Lau et al., 2015).

2.2 Model evaluation

We evaluate the model by calculating the
Weighted Pearson correlation coefficient between
the SLOR score assigned by the model and the
judgments assigned by the annotators.

Even though we show only the mean judgment
in Figure 3, each data point comes also with a vari-
ance (there is heteroscedasticity). Thus we have
chosen to weight the data points with the inverse
of the variance when computing the Pearson corre-
lation, as is standard when computing least square
regression on heteroscedastic data.

We report the weighted correlation point wise
between all models, and between each model and
the human judgments. Additionally, we perform
three experiments where we shuffle the syntactic
and semantic representations in the test sentences.
This is done to determine if the tags provide useful
information for the task.

2.3 Language Model Training Data

For training the LMs we selected the English part
of the CoNLL 2017 dataset (Nivre et al., 2017).
The input sentences were taken from a subset of
this corpus. We used only 1/10 of the total CoNNL
2017 Wikipedia corpus, randomly selected. We
took out all sentences whose dependency root is
not a verb, thus eliminating titles and other non-
sentences. We also removed all sentences longer
than 30 words. After filtering, the training data
contained 87M tokens and 5.3M sentences.

3 Semantic Tags

We train a LSTM model for predicting semantic
tags. We use this model to tag both the training
set extracted from the CoNLL 2017 corpus, and
the crowdsource annotated test set (described in
Section 6).

The Universal semantic tagging scheme pro-
vides fine-grained semantic tags for tokens. It in-
cludes 80 different semantic labels. The seman-
tic tags are similar to Part-of-Speech (POS) tags,
but they are intended to generalise and to semanti-
cally disambiguate POS tags. For many purposes,
POS tags do not provide enough information for
semantic processing, and this is where semantic
tags come into play. A significant element of POS
disambiguation consists in assigning proper nouns
to semantic classes (named entities). In this way,
the scheme also provides a form of named entity
recognition. The scheme is designed to be lan-
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guage independent. Annotations currently exist
for English, German, Dutch and Italian, but we
only use the English labels in our model.

The corpus of semantically tagged sentences
that we use comes from the Parallel Meaning Bank
(PMB) (Abzianidze et al., 2017). It contains 1.4M
tagged tokens divided into 68,177 sentences2. The
dataset is extracted from a variety of sources:
Tatoeba, News Commentary, Recognizing Textual
Entailment (RTE), Sherlock Holmes stories, and
the Bible. The sentences are split into gold and sil-
ver annotations, where the gold has been manually
annotated, and the silver has been annotated by a
parser with manual corrections. The silver anno-
tations are mostly correct, but may contain some
errors.

Example (1) below is a semantically tagged sen-
tence, taken from the PMB corpus. It includes two
pronouns ’he’ and ’his’. Both of these instanti-

(1) He took his book .
PRO EPS HAS CON NIL

ate the same POS, but their semantic classes are
distinct. The first is a simple third person pro-
noun, while the second is a possessive pronoun.
Semantic tags are able to handle this distinction,
by assigning PRO (pronoun) to the third person
pronoun, and HAS (possessive) to the possessive
pronoun.

3.1 Semantic Tagging Model

To assign semantic tags to the CoNNL 2017 train-
ing corpus and our training set we use a bidirec-
tional LSTM of size 256, with a standard config-
uration. The model is trained with a batch size of
512 sentences. The word embeddings are of size
256 and are randomly initialized. The model is im-
plemented with keras (Chollet et al., 2015). We
stress that this model is separate from the language
models used to predict sentence acceptability.

The semantic tagging model is trained for a
maximum of 1024 epochs, with early stopping
if the validation loss does not improve after 32
epochs. For each epoch, we feed the model 64
batches of 512 randomly selected sentences. The
model observes 32,768 sentences (e.g. roughly
half of the corpus) per epoch. To select the best
model we left out 1024 gold annotated sentences,

2Available for download at https://pmb.let.rug.
nl/releases/sem-0.1.0.zip

randomly selected, and we used them for valida-
tion.

Performance The model was validated on 1.5%
of the sentences with gold annotations. The re-
maining data were used for training. This split was
chosen because the primary goal of this model is
a downstream task, namely tagging data for lan-
guage modeling. We wish to maximise the num-
ber of sentences in the training data.

The model finished after 33 epochs, with a final
validation loss of 0.317 and a validation accuracy
of 91.1%. The performance of our model is similar
to that of (Bjerva et al., 2016).

4 Syntactic Tags

To introduce syntactic information into our model
in an explicit way, we provide it with Universal
Dependency Grammar (UD) roles. The UD anno-
tation scheme seeks to develop a unified syntac-
tic annotation system that is language independent
(Nivre et al., 2016). UD implements syntactic an-
notation through labelled directed graphs, where
each edge represents a dependency relation. In
total, UD contains 40 different dependency rela-
tions (or tags). For example, the sentence ’There
is no known cure’ (taken from the CoNLL2017
Wikipedia corpus) is annotated as the dependency
graph shown in Figure 1.

There is no known cure .

ROOT

expl

neg

amod

nsubj

punct

Figure 1: Dependency Graph

The model gives the label of the dependency
originating from each word, which we call the syn-
tactic role of the word. This label is provided as an
additional feature for each word in the input to our
language model. The model does not attempt to
predict these roles. For the above sentence, the in-
formation given to our syntactic tag trained mod-
els would be:

There is no known cure
expl root neg amod nsubj

We use the Stanford Dependency Parser (Chen
and Manning, 2014) to generate syntactic tags for
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the training and test sets.

5 Syntactic Depth

In addition to using syntactic and semantic tags,
we also experiment with syntactic depth. To as-
sign a depth to word n, we compute the number of
common ancestors in the tree between word n and
word n + 1. The last word is arbitrarily assigned
depth 0. This method was proposed by Gómez-
Rodrı́guez and Vilares (2018) for constituent trees,
but the method works just as well for dependency
trees. An example tree is shown below:

There is no known cure .
1 1 2 2 1 0

ROOT

expl

neg

amod

nsubj

punct

Figure 2: Linearized dependency graph

6 Test Set

The test set for evaluating our LMs comes from
the work of Lau et al. (2015, 2017). 600 sentences
were extracted from the BNC corpus (BNC Con-
sortium, 2007) and filtered for length (8 < |s| <
25). After this filtering 500 sentences remained
and were put through a round-trip machine trans-
lation process, from English to Norwegian, Span-
ish, Chinese or Japanese, and then back to English.
In total, the test set contains 2500 sentences: 500
original sentences, and 500 from each language
used for round-trip translation (i.e. Norwegian,
Spanish, Chinese and Japanese). The purpose of
using round-trip MT is to introduce a wide variety
of infelicities into some of the sentence in our test
set. This insures variation in acceptability judge-
ments across the examples of the set.

We used Amazon Mechanical Turk (AMT)
crowdsourcing to obtain acceptability judgments.
The annotators were asked to rate the sentences
based on their naturalness (as opposed to the theo-
retically committed notion of well-formedness) on
a scale of 1 to 4. On average, each sentence had
14 annotators after filtering (for a more detailed
description see (Lau et al., 2017)).

The results are shown in Table 1. The original
sentences, and the sentences that were round-trip
translated through Norwegian and Spanish have a

higher mean rating than the sentences translated
through Japanese and Chinese. The standard devi-
ation is slightly higher for all the sentences which
underwent round-trip translation, which is to be
expected.

Table 1: Mean judgments and standard deviation
for the test set.

SENTENCES MEAN ST-DEV

en 3.51 0.46
en-no-en 3.13 0.70
en-es-en 3.12 0.69
en-zh-en 2.42 0.72
en-ja-en 2.14 0.74

7 Results

Below we denote the plain LSTM LM by LSTM,
the LM with syntactic tags as +SYN, the LM with
semantic tags as +SEM, and the LM with syntactic
tree depth as +DEPTH. We denote the models with
shuffled tags by using the star (*) as a modifier.

7.1 Language Model Perplexity
We report in Table 3 the training loss for the plain-
LSTM language model, and for the LSTM lan-
guage models enhanced with syntactic and seman-
tic tags. At the end of the training, the language
model conditioned on syntactic tags shows the
lowest loss. By definition loss is the logarithm of
the perplexity. The semantic tag LM exhibits the
highest degree of loss. It seems that the syntac-
tic tags reduce LM perplexity, while the semantic
tags increase it.

7.2 Acceptability Predictions
The matrix in Table 2 gives the results for the sen-
tence acceptability prediction task. Each entry rij
indicates the weighted Pearson correlation r be-
tween SLORi and SLORj . Scatter plots showing
the correlation between human and model predic-
tions are given in Figure 3

The plain LSTM performs close to the level that
Bernardy et al. (2018) report for the same type of
LM, trained and tested on English Wikipedia data.
This indicates the robustness of this model for the
sentence acceptability prediction task, given that,
unlike the LSTM of Bernardy et al. (2018), it is
trained on Wikipedia text, but tested on a BNC test
set. Therefore, it sustains a relatively high level of
performance on an out of domain test set.
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Table 2: Weighted Pearson correlation between prediction from different models on the SMOG1 dataset.
* indicates that the tags have been shuffled.

HUMAN LSTM +SYN +SYN* +SEM +SEM* +DEPTH +DEPTH*
HUMAN 1.00
LSTM 0.58 1.00
+SYN 0.55 0.96 1.00
+SYN* 0.39 0.76 0.75 1.00
+SEM 0.54 0.81 0.78 0.61 1.00
+SEM* 0.52 0.81 0.78 0.63 0.96 1.00
+DEPTH 0.56 0.97 0.97 0.74 0.79 0.79 1.00
+DEPTH* 0.46 0.87 0.85 0.73 0.72 0.72 0.86 1.00

Table 3: Training loss and accuracy for the lan-
guage modeling task.

MODEL LOSS ACCURACY

LSTM 5.04 0.24
+SYN 4.79 0.26
+SEM 5.23 0.21
+DEPTH 4.88 0.27

We also tested a model that combined depth
markers and syntactic tags, which is, in effect, a
full implicit labelled dependency tree model. In-
terestingly, its Pearson correlation of 0.54 was
lower than the ones achieved by the syntactic tag
and depth LSTM LMs individually.

None of the enhanced language models in-
creases correlation with human judgments com-
pared to the plain LSTM. Neither does the addi-
tional information significantly reduce correlation.

Shuffling the tags causes a drop of 0.16 in corre-
lation for syntactic tags, and a drop of 0.1 for tree
depth. Shuffling the semantic tags also lowers the
correlation, but only by a small amount (−0.02).

8 Discussion

8.1 Semantic Tags

As can be observed in Table 3, the semantic tags
show the highest loss during training. This indi-
cates that semantic tags increase the perplexity of
the model, and do not help to predict the next word
in a sentence. Despite this, +SEM correlates fairly
well with human judgments (r = 0.54).

The results obtained with shuffled semantic tags
(+Sem*) are revealing. They yield a correlation
factor nearly as high as the non-shuffled tags (r =
0.53). This suggests that the semantic tags do not
provide any useful information for the prediction

task. This hypothesis is further confirmed by the
high correlation between the non-shuffled and the
shuffled semantic tag LMs (r = 0.96).

The question of why semantic tags do not re-
duce perplexity, or why randomly assigned seman-
tic tags are almost as good as non-shuffled tags
at predicting acceptability requires further study.
One possibility is that the tagging model does not
perform as well on the ConLL 2017 Wikipedia
subset, or the BNC test set, as it does on the PMB
corpus. It may be the case that since the domains
are somewhat different, the model is not able to
accurately predict tags for our training and test
sets. Similarly, we do not know the accuracy of
the Stanford Dependency Parser on the BNC test
set.

8.2 Syntactic Tags

Providing syntactic tags improves the language
model, but not the correlation of its predictions
with mean human acceptability judgments. How-
ever, shuffling the syntactic tags does lower the
correlation substantially. This indicates that syn-
tactic tags significantly influence the predictions
of the language model.

8.3 Tree Depth

The depth marker enriched LSTM performs best
of all the feature enhanced models. Shuffling the
markers significantly degrades accuracy, and the
non-shuffled depth model achieves a reduction in
perplexity. However, it still performs below the
simple LSTM on the acceptability prediction task

It may be the case that the plain LSTM already
acquires a significant amount of latent syntactic in-
formation, and adding explicit syntactic role label-
ing does not augment this information in a way
that is accessible to LSTM learning. This con-
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Figure 3: Scatter plots showing the weighted Pearson correlation between human acceptability judgments
(y-axis) and model predictions (x-axis).

clusion is supported by the work of Bernardy and
Lappin (2017) on syntactic agreement. They ob-
serve that replacing a significant portion of the lex-
icon of an LSTM with POS tags degrades its ca-
pacity to predict agreement.

In general, our results do not show that syntac-
tic and semantic information plays no role in the
performance of any LM for the acceptability pre-
diction task. It seems clear that the simple LSTM
model learns both semantic and syntactic relations
among words and phrases, but represents these in
a distributed way through the encoding of lexical
embeddings in vectors. In fact, there is a body
of work which shows that such LSTMs recognise
complex long-distance syntactic relations (Linzen
et al., 2016; Bernardy and Lappin, 2017; Gulor-
dava et al., 2018; Lakretz et al., 2019).

8.4 Error analysis
We analyse the models in two ways. First, we ex-
plore how they score sentences in the test set as
categorised by the round-trip translation language

that the sentences went through. Second, we look
at two example sentences for which no model did
particularly well.

8.4.1 Model performance on test sentences
To analyse the scores assigned by the model in
comparison to the human judgments we first need
to normalise the scores. We do this by dividing
the score assigned to each sentence by the maxi-
mum score assigned. Thus, the relative score of
a sentence indicates how close it is to the highest
acceptability judgment.

The mean relative score of the human judg-
ments and model scores are presented in Table 4.
We observe that the models generally appear to as-
sign a lower relative score than humans. But all
models also appear to follow the general trend of
human judgments and assign a lower score to the
Chinese and Japanese round-trip translated sen-
tences compared to the Spanish, Norwegian and
original sentences. However, looking at the num-
bers the difference in magnitude for Chinese and
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Japanese sentences is rather large. The Chinese
and Japanese sentences have a lower relative score
of 0.27 and 0.35 respectively. But for models, this
difference is only ≈ 0.07 and ≈ 0.12 respectively.
This indicates that while the models are able to see
some acceptability differences between the sub-
classes of test sentences, the models do not penal-
ize these sentences as much as humans.

Table 4: Comparison of the average relative score
assigned by the models and humans for the differ-
ent sentences in the test set.

MODEL EN NO ES ZH JA

Human 0.88 0.78 0.78 0.61 0.53
LSTM 0.41 0.40 0.40 0.34 0.29
+SYN 0.46 0.44 0.45 0.39 0.35
+SEM 0.39 0.36 0.37 0.30 0.28
+DEPTH 0.45 0.43 0.44 0.38 0.34

We also note that the models consistently
assign much lower relative scores than the human
annotators do to most of the sentences. This,
biases their scores in favour of the Chinese and
Japanese target sentences, since these are typically
’worse’ than their original English sources, or the
Norwegian and Spanish targets, according to the
human judges (see Table 1).

We also compare the worst scoring sentences
between the models. This was done by splitting
the predictions into two sets: (a) model scores
above the average3 and (b) model scores below
the average. We sort these sets by their difference
to the humans and select the top 20 sentences for
each model. Table 5 shows the intersection of sen-
tence sets for the different models.

Table 5: Shared erroneous sentences between the
models.

MODEL LSTM +SYN +SEM +DEPTH

LSTM 40
+SYN 30 40
+SEM 19 15 40
+DEPTH 30 28 17 40

We observe that the syntactic tag and depth
models share many sentences with each other, and
with the plain LSTM, but not as many with the

3We compare scores by dividing each score by it’s maxi-
mum value, as described previously.

semantic model. This shows that the difficult sen-
tences for the semantic model are different than
those for the syntactic and plain models.

8.4.2 Model and human performance
We use the relative scores from the previous sec-
tion to select sentences for examination. We look
at two types of cases, one in which the model pre-
dicts a higher score than the human judgments,
and the other where the model predicts a lower
score than human judgments. For both cases we
select a sentence at random.

We begin by considering an example to which
the model assigns a higher score than humans do.
The sentence went through Chinese:

(1) ’1.5% Hispanic or Latino of any race popula-
tion.’

The sentence lacks a verb, and the modifier-
noun construction ’race population’ is lexically
strange. It is interesting to note that our syntactic
models (+SYN and +DEPTH) both assign a high
score to this sentence, while the semantic and plain
LM assign a lower score (which is closer to the
human judgment). We would think that the model
using syntactic tags would pick up on the missing
verb, and so penalize the sentence. The scores for
the sentence (1) are shown in Table 6:

Table 6: Human judgments and model scores for
sentence (1).

MODEL RELATIVE ABSOLUTE

HUMAN 0.40 1.62
LSTM 0.77 3.74
+SYN 0.90 4.47
+SEM 0.71 3.29
+DEPTH 0.85 4.17

For (1), the LM enhanced with semantic tags
gave the sentence the lowest score. The syntactic
and depth model gave the sentence a high score
(0.90 and 0.85 respectively). This indicates that
while still assigning the sentence a relatively high
score, the semantic and plain LM rate the sentence
closer to humans than the syntactical LM.

In the second case, (2), the sentence is one of
the original English sentences:

(2) ’ACS makes a special ”FAT” heavy duty
BMX freewheel in 14T and 16T with 3/16
”teeth compatible only with 3/16” chains.’
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The human annotators gave it an appropriately
high score, but the models did not, as indicated in
table Table 7.

Table 7: Human judgments and model scores for
sentence (2).

MODEL RELATIVE ABSOLUTE

HUMAN 0.80 3.23
LSTM -0.007 -0.03
+SYN 0.002 0.01
+SEM 0.26 1.20
+DEPTH 0.02 -0.01

Again, we can see that the LM enhanced with
semantic tags performed the best (i.e. assigned the
sentence the highest score). The sentence has a
few features which might make it difficult for the
standard LM and syntactically enhanced language
models. The sentence contains a high number of
quotations, acronyms (e.g. ACS) and specialized
terms (e.g. 3/16). The dependency tags do not
treat these words in any special way. Because the
words are rare they are not likely candidates. The
semantic tags will treat these words in a different
manner, since it contains tags for named entities
and quantities.

8.5 Pre-Trained Language Models
Recently several large pre-trained language mod-
els using transformation architecture, like BERT
(Devlin et al., 2018), or bidirectional LSTM with
attention, such as ELMo (Peters et al., 2018), have
achieved state of the art results across a variety
of NLP tasks. We opted not to experiment with
any of these pre-trained language models for our
task. The LSTM architecture of our LMs is far
simpler, which facilitates testing the contribution
of explicit feature representation to correlation in
the acceptability prediction task, and perplexity
for the language modeling task.

9 Related Work

There has been a considerable amount of work
showing that encoding tree representations in deep
neural networks, particularly LSTMs, improves
their performance on semantic relatedness tasks.
So, for example, Tai et al. (2015) show that Tree-
LSTMs outperform simple LSTMs on SemEval
2014 Task 1, and sentiment classification. Sim-
ilarly, Gupta and Zhang (2018) argue that by
adding progressive attention to a Tree-LSTM it is

possible to improve its performance on several se-
mantic relatedness tasks.

Williams et al. (2018) describe a number of ex-
periments with latent tree learning RNNs. These
models learn tree structures implicitly, rather than
through training on a parse annotated corpus.
They construct their own parses. Williams et al.
(2018) state that they outperform Tree-LSTM and
other DNN models on semantic relatedness appli-
cations, and the Stanford Natural Language Infer-
ence task. Interestingly, the parse trees that they
construct are not consistent across sentences, and
they do not resemble the structures posited in for-
mal syntactic or semantic theories. This result is
consistent with our finding that LSTMs learn syn-
tactic and semantic patterns in a way that is quite
distinct from the classifications posited in classical
grammatical and semantic systems of representa-
tion.

Finally, Warstadt and Bowman (2019) discuss
the performance of several pre-trained transformer
models on classifying sentences in their Corpus of
Linguistic Acceptability (CoLA) as acceptable or
not. These models exhibit levels of accuracy that
vary widely relative to the types of syntactic and
morphological patterns that appear in CoLA.

It is important to recognise that CoLA is a very
different sort of test set from the one that we use
in our experiments. It is drawn from linguists’
examples intended to illustrate particular sorts of
syntactic construction. It is annotated for binary
classification according to linguists’ judgments.
By contrast, our BNC test set consists of natu-
rally occurring text, where a wide range of infe-
licities are introduced into many of the sentences
through round trip machine translation. It is anno-
tated through AMT crowd sourcing with gradient
acceptability judgments. Given these significant
differences in design and annotation between the
two test sets, applying our models to CoLA would
have taken us beyond the scope of the sentence
acceptability task, as specified in (Lau et al., 2015,
2017; Bernardy et al., 2018),

Moreover, our experiments are not focused on
identifying the best performing model as such. In-
stead, we are interested in ascertaining whether
enriching the training and test data with explicit
syntactic and semantic classifier representations
contributes to LSTM learning for the sentence ac-
ceptability prediction task.
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10 Conclusions

We present experiments that explore the effect
of enhancing language models with syntactic and
semantic tags, and dependency tree depth mark-
ers, for the task of predicting human sentence
acceptability judgments. The experiments show
that neither syntactic nor semantic tags, nor tree
depth indicators improve the correlation between
an LSTM LM and human judgments. Our experi-
ments also show that syntactic tags provide infor-
mation that is useful for language modeling, while
semantic tags do not. However, further experi-
ments are needed to verify our results for semantic
tags. The model that we used for tagging, rather
than the information in the tags themselves, may
be responsible for the observed result.

Surprisingly our initial hypothesis that lower
training perplexity produces better acceptability
prediction has been overturned. We have not ob-
served any correlation between the perplexity of
an LM and its accuracy in acceptability prediction.
The SLOR scoring function may mask an underly-
ing connection between preplexity and prediction
accuracty.

Our tentative conclusion from these experi-
ments is that simple LSTMs already learn syntac-
tic and semantic properties of sentences through
lexical embeddings only, which they represent in a
distributional manner. Introducing explicit seman-
tic and syntactic role classifiers does not improve
their capacity to predict the acceptability of sen-
tences, although such information may be useful
in boosting the performance of deep neural net-
works on other tasks.

In future work, we plan to test other sources of
information for the language models. One pos-
sibility is to use constituency, rather than depen-
dency tree depth. We also plan to experiment with
different combinations of tags for the language
models, such as models that use both semantic and
syntactic roles.
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et al. 2017. Universal dependencies 2.0. LIN-
DAT/CLARIN digital library at the Institute of For-
mal and Applied Linguistics (ÚFAL), Faculty of
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Abstract

In this paper, we compare the use of lin-
ear versus neural classifiers in a greedy
transition system for MWE identification.
Both our linear and neural models achieve
a new state-of-the-art on the PARSEME
1.1 shared task data sets, comprising 20
languages. Surprisingly, our best model
is a simple feed-forward network with one
hidden layer, although more sophisticated
(recurrent) architectures were tested.
The feedback from this study is that tuning
a SVM is rather straightforward, whereas
tuning our neural system revealed more
challenging. Given the number of lan-
guages and the variety of linguistic phe-
nomena to handle for the MWE identifi-
cation task, we have designed an accurate
tuning procedure, and we show that hyper-
parameters are better selected by using a
majority-vote within random search con-
figurations rather than a simple best con-
figuration selection.
Although the performance is rather good
(better than both the best shared task
system and the average of the best per-
language results), further work is needed
to improve the generalization power, espe-
cially on unseen MWEs.

1 Introduction

Multi-word expressions (MWE) are composed
of several words (more precisely of elements
that are words in some contexts) that exhibit
irregularities at the morphological, syntactic
and/or semantic level. For instance, ”prendre
la porte” is a French verbal expression with
semantic and morphological idiosyncrasy because
(1) its idiomatic meaning (”to leave the room”)
differs from its literal meaning (”to take the

door”) and (2) the idiomatic reading would
be lost if ”la porte” were used in the plural.
Identifying MWE is known to be challenging
(Constant et al., 2017), due to the highly lexical
nature of the MWE status, the various degrees of
the MWE irregularities and the various linguistic
levels in which these show. In this paper we
focus on the task of identifying verbal MWEs,
which have been the focus of two recent shared
tasks, accompanied by data sets for 20 languages:
PARSEME shared task ST.0 (Savary et al., 2017)
and ST.1 (Ramisch et al., 2018). Verbal MWEs
are rather rare (one every 4 sentences overall in
ST1.1 data sets) but being predicates, they are
crucial to downstream semantic tasks. They are
unfortunately even more difficult to identify than
other categories of MWEs: they are more likely
to be discontinuous sequences and to exhibit
morphological and structural variation, if only the
verb generally shows full inflectional variation,
allows adverbial modification and in some cases
syntactic reordering such as relativization.

Our starting point to address the MWE iden-
tification task is to reuse the system of Al Saied
et al. (2018), an enhanced version of the winning
system of ST.0, a transition system using a linear
(SVM) model. Our objective has been to incor-
porate neural methods, which are overwhelming
in current NLP systems. Neural networks have
brought substantial performance improvements on
a large variety of NLP tasks including transition-
based parsing (e.g. Kiperwasser and Goldberg
(2016) or Andor et al. (2016)), in particular thanks
to the use of distributed representations of atomic
labels, their ability to capture contextual informa-
tion. Moreover, neural methods supposedly learn
combinations from simple feature templates, as
an alternative to hand-crafted task-specific feature
engineering.
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Yet, using neural methods for our task is
challenging, the sizes of the available corpus are
relatively modest (no ST.1 language has more
than 5000 instances of training MWEs), albeit
neural models generally have more parameters to
learn than linear models. Indeed, the best systems
at the shared tasks ST.0 and ST.1 (Al Saied et al.,
2017; Waszczuk, 2018) (in closed track) are not
neural and surpassed some neural approaches.

In this paper, we carefully describe and com-
pare the development and tuning of linear versus
neural classifiers, to use in the transition system
for MWE identification proposed in Al Saied et al.
(2018), which itself built on the joint syntactic
/ MWE analyzer of Constant and Nivre (2016).
We set ourselves the constraints (i) of building
systems that are robust across languages, hence
using the same hyperparameter configuration for
all languages and (ii) of using lemma and POS
information but not syntactic parses provided in
the PARSEME data sets, so that the resulting
systems require limited preprocessing. We report
a systematic work on designing and tuning linear
and neural transition classifiers, including the
use of resampling, vocabulary generalization and
several strategies for the selection of the best
hyperparameter configuration. We address both
the open and closed tracks of the PARSEME ST.1,
i.e with and without external resources (which in
our case amount to pre-trained word embeddings).

The contributions of our work are:

• a new state-of-the art for the MWE identifica-
tion task on the PARSEME ST1.1 data sets.
Our neural model obtains about a four-point
error reduction on an artificial score mixing
the best results for each language, and 4.5
points compared to the best participating sys-
tem (even though we do not use syntactic
parses);

• a report on which hyperparameters proved
crucial to obtain good performance for the
neural models, knowing that a basic feed-
forward network without class balancing
showed high instability and achieves very
poorly (average F-score between 15% and
30%);

• an alternative strategy for tuning the hyperpa-
rameters, based on trends in random search

(Bergstra and Bengio, 2012);

• a fine-grained analysis of the results for vari-
ous partitions of the MWE, shedding light on
the necessity to address unknown MWE (not
seen in train);

• a negative result concerning the basic semi-
supervised strategy of using pre-trained word
embeddings.

We discuss the related work in Section 2, data
sets in Section 3 and the transition system in Sec-
tion 4. Linear and neural models are described
in Sections 5 and 6, and the tuning methodology
in Section 7. We present experiments and discuss
results in Sections 8 and 9, and conclude in Sec-
tion 10.

2 Related work

Supervised MWE identification has made sig-
nificant progress in the last years thanks to the
availability of new annotated resources (Schneider
et al., 2016; Savary et al., 2017; Ramisch et al.,
2018). Sequence tagging methods have been
largely used for MWE identification. In particular,
first studies experimented IOB or IOB-like anno-
tated corpora to train conditional random fields
(CRF) models (Blunsom and Baldwin, 2006;
Constant and Sigogne, 2011; Vincze et al., 2011)
or other linear models (Schneider et al., 2014).

Recently, Gharbieh et al. (2017) experimented
on the DiMSUM data set various IOB-based
MWE taggers relying on different deep learning
models, namely multilayer perceptron, recurrent
neural networks and convolutional networks.
They showed that convolutional networks achieve
better results. On the other hand, Taslimipoor and
Rohanian (2018) used pre-trained non-modifiable
word embeddings, POS tags and other technical
features to feed two convolutional layers with
window sizes 2 and 3 in order to detect n-grams.
The concatenation of the two layers is then passed
to a Bi-LSTM layer.
Legrand and Collobert (2016) used a phrase
representation concatenating word embeddings in
a fixed-size window, combined with a linear layer
in order to detect contiguous MWEs. They reach
state-of-the-art results on the French Treebank
(Abeillé et al., 2003; Seddah et al., 2013). Ro-
hanian et al. (2019) integrate an attention-based
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L S T MWE L S T MWE
RO 43 782 4.7 DE 7 130 2.8
PT 22 473 4.4 LT 5 090 0.3
BG 18 399 5.4 HU 5 120 6.2
FR 17 421 4.6 EL 4 123 1.4
TR 17 335 6.1 EN 4 053 0.3
IT 14 342 3.3 FA 3 045 2.5
PL 13 220 4.1 ES 3 097 1.7
HE 12 238 1.2 HR 2 054 1.5
SL 10 202 2.4 HI 1 018 0.5
EU 08 117 2.8

Table 1: The number of Sentences, Tokens and MWEs in
train sets of ST.1 Languages. Dev and test sets have all a
close number of MWEs (between 500 and 800). Languages
are represented by their ISO 639-1 code and all table numbers
are scaled and rounded (1/1000).

neural model with a graph convolutional neural
network to produce an efficient model that outper-
forms the state-of-the-art on certain languages of
the PARSEME Shared Task 1.1.

The work of Waszczuk (2018) extends a se-
quential CRF to tree structures, provided that
MWEs form connected syntactic components and
that dependency parse trees are given as input. De-
pendency trees are used to generate a hypergraph
of possible traversals and a binary classifier labels
nodes as MWEs or not using local context infor-
mation. A multi-class logistic regression is then
used to determine the globally optimal traversal.
This method has showed very competitive scores
on the data sets of the PARSEME ST1.1, by rank-
ing first overall on the closed track.

By contrast, some authors have used Transition
systems, introducing a greedy structured method
that decomposes the MWE prediction problem
into a sequence of local transition predictions.
Constant and Nivre (2016) proposed a two-stack
transition system to jointly perform MWE iden-
tification and syntactic parsing. Al Saied et al.
(2017) experimented a partial implementation of
this system for identifying and categorizing ver-
bal MWEs. This system eliminates the syntac-
tic aspects of Constant and Nivre (2016)’s system
and learn a SVM model using linguistic and tech-
nical features to classify transitions. Relying on
Al Saied et al. (2017), Stodden et al. (2018) re-
placed the linear model with a convolutional mod-
ule that transforms the sparse feature vectors into
continuous ones and connect them to a dense layer.

Name Cond. Action
SHIFT β 6= ∅ (σ, i|β, γ) ⇒ (σ|i, β, γ)
REDUCE σ 6= ∅ (σ|i, β, γ) ⇒ (σ, β, γ)
MERGE |σ| > 1 (σ|i, j, β, γ) ⇒ (σ|(i, j), β, γ)
MARK σ 6= ∅ (σ|i, β, γ) ⇒ (σ|i, β, γ ∪ (i))

Figure 1: Set of transitions, each with its precondition.

3 Data sets

For our investigation, we focus on the data sets of
the PARSEME Shared Task on verbal MWE iden-
tification edition 1.1 (Ramisch et al., 2018), there-
after ST.1. Table 1 provides statistics on this data
set, which includes 20 languages1 covering a wide
range of families and corpus sizes. All languages
come with train and test sets, and all but EN, HI
and LT have a development set. They contain tok-
enized sentences in which MWEs are annotated.
Each token comes with its word and lemma forms
and its part of speech (POS) tag. ST.1 also has
extra linguistic annotations such as morphologi-
cal features and syntactic dependency trees, but
we do not use them for the purpose of the pa-
per. One MWE instance is either a set of sev-
eral potentially non-continuous tokens, or a sin-
gle token compounding multiple words (namely a
multiword token, hereafter MWT).2 Data sets also
contain rare MWEs embedded in another one, and
overlapping MWEs.

4 System description

Transition system A transition system incre-
mentally builds the expected output structure
by sequentially applying a transition to a con-
figuration that encodes the state of the system,
outputting a new configuration. It has been used
in particular to build a syntactic tree for a given
input sentence (Nivre, 2004), and to build both
the syntactic tree and the MWE list (Constant and
Nivre, 2016). We use such a system here to build
the list of MWEs only.We reuse the transition
system of Al Saied et al. (2018), simplified in that
we do not predict the MWE types.

In this system, a configuration is a triplet
c = (σ, β, γ), where β is a buffer of (remaining)
tokens, σ is a stack of ”elements”, which are
either single tokens or binary trees of tokens,
and γ is the list of elements that have been

1We used all languages but Arabic due to licence issues.
2MWTs are extremely marginal for all ST.1 languages ex-

cept German (30%) and Hungarian(75%)
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Trans Configuration = (σ, β, γ)
Fi(s) ⇒ [ ], [Take, .., account], [ ]
SHIFT ⇒ [Take], [the, .., account], [ ]
SHIFT ⇒ [Take, the], [fact, .., account], [ ]
REDUCE ⇒ [Take], [fact, .., account], [ ]
SHIFT ⇒ [Take, fact], [that, .., account], [ ]
...
SHIFT ⇒ [Take, give], [up, into, account], [ ]
SHIFT ⇒ [Take, give, up], [into, account], [ ]
MERGE ⇒ [Take, (give, up)], [into, account], [ ]
MARK ⇒ [Take, (give, up)], [into, account]

, [(give, up)]
REDUCE ⇒ [Take], [into, account], [(give, up)]
SHIFT ⇒ [Take, into], [account], [(give, up)]
MERGE ⇒ [(Take, into)], [account], [(give, up)]
SHIFT ⇒ [(Take, into), account], [ ], [(give, up)]
MERGE ⇒ [((Take, into), account)], [ ], [(give, up)]
MARK ⇒ [((Take, into), account)], [ ], (give, up),

((Take, into), account)]
REDUCE ⇒ [ ], [ ], [(give, up), ((Take, into), account)]

Figure 2: Application of the oracle transition sequence for
the sentence Take the fact that I didn’t give up into account,
containing two verbal MWEs: Take into account and give up.

identified as MWEs so far3. To build the list of
MWEs for a given input sentence w1, w2, ...wn,
the system starts by the initial configuration
(σ = [ ], β = [w1, ..., wn], γ = [ ]), and applies
a sequence of transitions until a terminal config-
uration is reached, namely here when both the
buffer and stack are empty. The transition set,
and their precondition is described in Figure 1.
Note the MERGE transition creates complex stack
elements, by merging the top 2 elements of the
stack4.

The identification of a MWE made of m com-
ponents t1, ..., tm necessitates m − 1 MERGEs,
and one final MARK. The REDUCE transition
allows to manage discontinuities in MWEs. Note
that MARK identifies S0 as MWE, but does
not remove it from the stack, hence enabling to
identify some cases of embedded MWEs (we
refer to Al Saied et al. (2018) for the precise
expressive power). At prediction time, we use
a greedy algorithm in which the highest-scoring
applicable transition according to a classifier is
applied to the current configuration.

Learning algorithm and oracle To learn this
3In all the following, we use σ|i to denote a stack with

top element i and remainder σ, and i|β for a buffer with first
token i followed by the elements in β. Si and Bi denote the
ith element of the stack and buffer respectively, starting at 0.

4Hence Si elements are either single tokens or binary
trees of tokens. In the latter case, their linguistic attributes
(lemma, POS, word form) are obtained by simple concatena-
tion over their components.

Tuning BoR TB Feature template
Prelim + + Unigrams S0, S1, B0

Prelim + + Bigrams S0S1, S0B0, S0B1, S1B0

Prelim + + Lemma ngrams and POS ngrams
Prelim + + S0 in MWT dictionary
Prelim - - Resampling
Rdm Sch - - word forms ngrams
Rdm Sch + - Unigram B1

Rdm Sch + - Bigram S0B2

Rdm Sch + - Trigram S1S0B0

Rdm Sch + + Distance between S0 and S1

Rdm Sch + + Distance between S0 and B0

Rdm Sch + - MWE component dictionary
Rdm Sch - - Stack length
Rdm Sch + + Transition history (length 1)
Rdm Sch - + Transition history (length 2)
Rdm Sch + - Transition history (length 3)
FG 62.5 60

Table 2: Linear model feature hyperparameters. First col-
umn: prelim if the hyperparameter was fixed once and for all
given preliminary tests vs. Rdm Sch for tuning via random
search (see Section 7). Best of random BoR column: whether
the template is activated (+) or not (-) in the best performing
hyperparameter set of the random search. Trend-based TB:
same but for the trend-based hyperparameter set (cf. sec-
tion 7). The last line provides the corresponding global F-
scores on dev sets of the three pilot languages (BG, PT and
TR).

transition classifier, we use the static deterministic
oracle of Al Saied et al. (2018). For any input
sentence and list of gold MWEs, the oracle
defines a unique sequence of transitions, pro-
viding example pairs (config / next transition to
apply). Transitions have a priority order (MARK

> MERGE > REDUCE > SHIFT), and the oracle
greedily applies the highest-priority transition that
is compatible with the gold analysis. MERGE

is gold-compatible whenever S0 and S1 are part
of the same gold MWE.5 For REDUCE to be
gold-compatible, S0 must not be strictly included
in a gold MWE. Moreover, either S0 is not a gold
MWE, or it is already marked as MWE.

Figure 2 shows the application of the ora-
cle transition sequence for a sentence with two
MWEs.6

5 Linear model

In order to compare linear and neural models
for MWE identification, we reused the best

5Note that this order will lead to left-branching binary
trees for elements in the stack.

6The system is implemented in Python 2.7, using
Keras and Scikit-learn libraries. The code is available
at https://github.com/hazemalsaied/MWE.
Identification/releases/tag/v.1 under MIT
licence.
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performing linear model of Al Saied et al. (2018),
namely a SVM, in a one versus rest scheme with
linear kernel and squared hinge loss.

We used the feature templates of Al Saied
et al. (2018) minus the syntactic features, since
we focus on MWE identification independently
of syntactic parsing. Table 2 displays the list of
feature templates. We detail the ”S0 in MWT
dictionary” and ”MWE component dictionary”
templates, the other features names being rather
transparent: ”S0 in MWT dictionary” feature fires
when S0 lemma is a MWT at least once in train,
and binary features fire when either S0, S1, B0,
B1 or B2 belong to at least one train multi-token
MWE.

We ran some preliminary experiments which
led us to set some hyperparameters once and for all
(first four lines of Table 2). In particular, we ended
up not using resampling to balance the class distri-
bution, because it proved quite detrimental for the
linear model, contrary to the neural models. We
then performed tuning for all the other features (cf.
section 7).

6 MLP model

Though we investigated various neural archi-
tectures7, the ”baseline” multi-layer perceptron
(hereafter MLP) proved to be the best in the
end. It is a plain feed-forward network, with an
embedding layer concatenating the embeddings
for the POS of S0, S1, B0 and B1 and for either
their word form or lemma (hyperparameter), fully
connected to a dense layer with ReLU activation,
in turn connected to the output layer with softmax
activation.

Table 3 provides the exhaustive list of MLP
hyperparameters, along with their possible values
and their optimal values for the most performing

7We tried in particular (1) a MLP with several hidden lay-
ers; (2) a MLP fed with a bidirectional recurrent layer to rep-
resent the sequence of elements S0S1B0; (3) We also built a
model inspired by Kiperwasser and Goldberg (2016) in which
the recurrent (LSTM) embeddings of certain focus elements
(S0, S1, B0 and B1) are dynamically concatenated and fed
into a MLP, with back-propagation for a whole sentence in-
stead of for each transition. The recurrent representations of
the focus elements are supposed to encode the relevant con-
textual information of these elements in the sentence. These
models suffered from either a non-competitive performance
or a very unstable loss (36.7 for the bidirectional MLP and
8.4 for kiperwasser on test data sets of ST1.1).

configurations. Lines 1 to 9 correspond to embed-
ding and initialization hyperparameters: Lines (1,
2) concern which elements to include as additional
input (Use B2, Use B−1)8, (3) which form for
input tokens (Lemmatization), (4, 5) which size
for token and POS tag embeddings (Token and
POS dimensions), (6) whether the embeddings are
initialized randomly or pre-trained (pre-trained),
(7) whether the embeddings are Trainable or
not, and (8) how to generate embedding vectors
for stack elements: as the average of tree token
embeddings or as their sum (Averaging).

Vocabulary For the neural model, when Si
or Bi are missing, a special dummy word is used
instead. Moreover, we investigated an aggressive
reduction of the known vocabulary. We compared
2 strategies to define it: in exhaustive vocabulary
mode, hapaxes are replaced at training time by a
UNK symbol, with probability 0.5. In compact
vocabulary mode, any token (or complex element)
whose lemma is never a component of a MWE in
the training set is replaced by UNK. Note that in
both modes, the used vocabulary contains the con-
catenated symbols in case of complex Si elements.

Resampling Given that tokens are mostly not
part of a VMWE, the transitions for their identi-
fication are very rare, leading to a very skewed
class distribution.9 Resampling techniques aiming
at balancing class distribution are known to be
efficient in such a case (Chawla, 2009). Moreover,
preliminary experiments without resampling
showed unstable loss and rather low performance.
We thus used in subsequent experiments a hy-
brid resampling method composed of (1) under
sampling, that removes training sentences non
containing any MWE, and (2) random over-
sampling, that forces a uniform distribution of
the classes by randomly duplicating minority
class instances (all but SHIFT) (Chawla, 2009).
Preliminary experiments showed that without
these strategies, the systems suffered from very
unstable loss and low performance, which led us
to systematically use these two strategies in the
subsequent experiments.

8 B−1 is the last reduced element (its right-most token if
it is a complex stack element).

9For all ST.1 languages, the transitions in training sets are
approximately distributed as follows: 49% for SHIFT, 47%
for REDUCE, 3% for MERGE and 1% for MARK.
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Type Hyperparameter Range or set BoRc BoRo TB

E
m

be
dd

in
g

an
d

in
iti

al
is

at
io

n Use B2 {True, False} True True True
Use B−1 {True, False} True False True
Lemmatization {True, False} True True True
Token dimension [100, 600] 157 300 300
POS dimension [15, 150] 147 132 35
Pre-trained {True, False} False True True | False
Trainable {True, False} True True True
Averaging {True, False} False True True
Vocabulary {Compact, Exhaustive} True False True

Dense
Unit number [25, 600] 85 56 75
Dropout {.1, .2,.. .6} 0.3 0.1 0.4

Sampling
Focused / Frequency threshold {True, False} / {5, 10,.. 30} False / - False / - False / -
Over loss / Loss coefficient {True, False} / [1, 40] False / 1 False / 1 False / 1

Train
Learning rate [.01, .2] 0.017 0.095 0.03
Batch size {16, 32, 48, 64, 128} 128 16 48

FG on all languages (on dev sets if available or 20% of train) 61.2 57.8 63.5 | 64.3

Table 3: MLP hyperparameters and their possible values (”range or set” column). Best-of-random closed (BoRc) and Best-
of-random open (BoRo) columns: hyperparameter values in best configurations according to random search on the three pilot
languages, in closed and open tracks. Last column: Trend-based (TB) configuration (see text in section 7). Last line: global
F-scores for these configurations, calculated using the average precision and recall for all ST.1 languages. The models are fit
on truncated training sets of the three pilot languages (BG, PT and TR) (cf. section 7).

Tuning explored two supplementary resampling
techniques: ”focused” oversampling which aims
at mimicking a minimum number of occurrences
for all MWEs. When set, training instances with
MERGE and MARK transitions are duplicated for
each training MWE below a frequency threshold.
”Over loss” hyperparameter penalizes the model
when it fails to predict MERGE and MARK, by
multiplying the loss by a coefficient (see Table 3).

7 Tuning methodology

The tuning phase served us to choose a hyperpa-
rameter configuration for the linear model and the
neural model, in closed and open track. In our
case, we experimented open track for the neural
model only, by using pre-trained embeddings
instead of random initialization. We thus consider
three cases: closed track linear, closed track MLP
and open track MLP.

For each of these three cases, in order to enforce
the robustness across languages of the selected hy-
perparameters, we aimed at selecting the same hy-
perparameter configuration for all the languages.

Yet, to reduce the tuning time, we have chosen
to work on three pilot languages, from three
different language families. But because the
various training sets have various sizes, we tried
to neutralize this variation by using training sets
of average size. This led us to choose three
languages (Bulgarian, Portuguese and Turkish)
among ST.1 languages having training sets bigger

than average and to tune the hyperparameters
using training sets truncated to that average size
(270k tokens) and evaluating on dev sets.

Multilingual metric: the official metric for the
PARSEME shared task is the macro average of
the F-scores over all languages (hereafter FAV G).
Yet we noted that although macro-averaging
precision and recall is appropriate because the
number of dev and test MWEs is almost the
same for all languages, averaging the F-scores
of all languages sometimes substantially differs
(e.g. by 2 points) from taking the F-score of the
macro-averaged precision and the macro-averaged
recall (hereafter FG). We thus use FAV G for
comparability with the shared task results, but
also report the FG score, and use the latter during
tuning.

Random search: To tune the hyperparame-
ters on the three pilot languages, we used random
search, which proved to be more efficient than
grid search when using the same computational
budget, because it allows to search larger ranges
of values (Bergstra and Bengio, 2012). We thus
run about 1000 trials for SVM, closed track MLP
and open track MLP. For the SVM, random search
used a uniform distribution for the hyperparam-
eters, which are all boolean. For the MLP, the
random hyperparameter values are generated from
either a set of discrete values using a uniform
distribution or from a range of continuous values
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using logarithmic distribution. For the MLP, each
resulting random hyperparameter configuration
was run on each pilot language twice, using
always the same two seeds 0 and 110. We then
averaged the precision and recall on the dev sets,
for the three languages and the two seeds (i.e. use
the global F-score FG).

Selecting hyperparameter configurations:
Random hyperparameter search for the three pilot
languages led us to use two strategies to select
the hyperparameter sets. The first one is simply
to select the best performing hyperparameter sets
(shown in column BoR in Table 2 for the linear
model, and in the BoRc and BoRo columns in Ta-
ble 3). Yet, we noted that some hyperparameters
varied a lot among the top performing systems.
We thus investigated to build a ”trend-based”
configuration, by selecting each hyperparameter
value according to the observed trend among the
top k best configurations (with k=500/250 for
MLP/SVM)11. This results in two sets for the
linear model (best-of-random and trend-based,
in closed mode) and four configurations for the
MLP: best-of-random or trend-based, in closed or
open mode.

We then trained these six configurations on the
full-size training sets for all ST.1.1 languages,
using two seeds (0 and 1), and retaining the best
seed for each language. For the MLP case, the
global F-scores on dev sets are provided in the
last row of Table 3. Interestingly, the trend-based
configuration largely beats the best-of-random
configurations, both in closed and open tracks12.
This shows that choosing hyperparameter values
independently of each other is compensated by
choosing more robust values, by using the top k
best performing systems instead of one.

Note that for the linear case, the trend-based
configuration does not surpass the best perform-
ing random search configuration (the last line of

10Preliminary experiments showed a relative stability
when changing seeds, hence we used only two seeds in the
end. Changing seeds was useless for the linear model which
is more stable.

11We chose the values using an approximate majority vote,
using a graphical visualization of the hyperparameter values
in the top k best performing systems.

12Moreover, the best-of-random open configuration
showed instability when switching from the three pilot lan-
guages to all languages, leading to a null score for Hindi
(hence the rather low global F-score of 57.8).

Language Closed track Open track
SVM MLPc ST.1 MLPo ST.1

BG 63.3 66.8 62.5 67.7 65.6
HR 55.4 59.3 55.3 59.0 47.8
LT 38.0 45.7 32.2 45.3 22.9
PL 69.4 71.8 67.0 72.2 63.6
SL 53.5 62.7 64.3 61.2 52.3
DE 49.5 51.5 45.3 49.9 45.5
EN 28.4 31.4 32.9 31.9 33.3
ES 39.2 40.0 34.0 39.7 38.4
FR 61.1 59.0 56.2 58.8 60.9
IT 55.7 55.0 49.2 56.5 45.4
PT 68.9 67.8 62.1 70.4 68.2
RO 80.9 83.5 85.3 82.0 87.2
HI 66.8 64.9 73.0 64.9 72.7
FA 75.4 70.6 77.8 70.6 78.4
EL 57.8 62.2 49.8 61.4 58.0
EU 80.7 82.1 75.8 80.2 77.0
HE 43.3 45.2 23.3 47.3 38.9
HU 91.7 92.4 90.3 92.6 85.8
TR 47.5 52.1 45.2 47.9 58.7

FAV G 59.3 61.3 56.9 61.0 57.9
FG 60.8 62.6 57.8 62.3 58.7

FG best sys 54.0 58.1

Table 4: MWE-based F-scores for ST.1 languages on test
sets using our tuned SVM and MLP models, fit on train and
dev sets when available. ST.1 stands for the most perform-
ing scores of the shared task for each language in closed and
open tracks. All ST.1 systems fit training and development
sets except the system that produced the best score of BG
on closed track. Languages are grouped according to their
linguistic families (Slavic, Germanic, Romance, Indo-Iranian
and other).) FAV G is the official metric (average F-scores).
FG is the global F-score (see Section 7). In the FAV G and
FG lines, the best ST.1 per-language scores are used, whereas
the last line concerns the FG score of the best ST.1 systems
(Waszczuk, 2018; Taslimipoor and Rohanian, 2018).

Table 2). This asymmetry could mean that the
number of random trials is sufficient for the lin-
ear case, but not for the neural models, and that a
trend-based strategy is advantageous within a lim-
ited computational budget.

8 Experiments and results

Table 4 provides identification scores on test sets,
for our tuned SVM and MLP models for each
ST.1 language, along with the best score of ST.1
for each language, in open and closed tracks. It
also displays overall scores using both the official
ST.1 metrics (FAV G) and the more precise FG

score introduced in section 7. This FG score for
the ST.1 results is computed in two modes: in line
FG, the ST.1 columns correspond to artificially
averaging the best result of each language (in
closed / open tracks), whereas ”FG best sys” is the
score of the best system of ST.1. The differences
between SVM and MLPc results are significant13

13We used a MWE-based McNemar test.
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for all languages except EU, HU, LT and PL.

For both FAV G and FG metrics, results show
that MLP models significantly outperforms all
other systems both in the closed and open tracks.
In the closed track, MLP surpasses SVM by 1.8
points, the best ST.1 systems per language by
4.8 points, and the best ST.1 system (Waszczuk,
2018) by 8.6 points. In the open track, MLP beats
the best ST.1 system (Taslimipoor and Rohanian,
2018) by 4.2 points, and the best ST.1 systems per
language by 3.6 points14.

In the closed track, MLP ranks first for 11
languages, while the SVM model and the best
ST.1 systems per language reach the first position
respectively for three and five languages. In
open track, MLP achieves the highest scores for
13 languages while ST.1 systems beat it for six
languages. These results tend to validate the
robustness of our approach across languages.
Regarding language families, MLP reports
remarkable gains for Slavic languages and lan-
guages from the other family, but achieve lower
performance on Indo-Iranian languages when
compared with best ST.1 results. For Romance
languages, our models surpass the ST.1 best
results (except for RO), and the SVM model is
globally better than the MLP.

Comparing the results of the open and the
closed track, we can observe that the use of pre-
trained word embeddings has no significant im-
pact on the MLP results. This might mean that
static embeddings are not well-suited for repre-
senting tokens both when used literally and within
MWE. This tendency would deserve more investi-
gation using other word embedding types, in par-
ticular contextualized ones (Devlin et al., 2018).

9 Discussion

Performance analysis In order to better under-
stand the strengths and weaknesses of the various
systems, we provide in Table 5 an in-depth
performance analysis of our models, on dev sets,
broken-down by various classifications of MWEs,

14It is worth noting that the model of Rohanian et al.
(2019), published while writing this paper, outperforms our
scores for the languages they use for evaluating their model
(EN:41.9, DE:59.3, FR:71.0, FA:80.0) on the ST.1 test sets.
However, this model exploits syntactic information (See Sec-
tion 2).

namely (1) whether a dev MWE was seen in train
(and if so, more than 5 times or not) or unseen;
(2) whether the MWE is continuous or has gaps;
and (3) according to the MWE length. The
table provides the proportions of each subclass
within the gold dev set and within the predictions
of each model (% columns), in addition to the
average precision and recall over all languages,
and the global FG score, for each model. Overall,
neural models (in closed and open tracks) tends
to get better recall than the SVM model (56
and 57, versus 49) but lower precision (70 versus
86), which is coherent with the use of embeddings.

Generalization power Without surprise, the
global F-score on seen MWEs is high for all our
systems (> 80), and it is still above 75 for MWEs
with frequency≤ 5. Yet this masks that the neural
models have comparable precision and recall
on seen MWEs, whereas the SVM has better
precision than recall. Now when turning to the
unseen category, we can observe that all systems
get very low performance.

In comparison with MLP models, the most
important advantage of SVM is its (little) ability
to generalize (FG = 12 on unseen MWEs),
whereas the MLPs have none at all. Note that
frequency ≤ 5 is sufficient for the MLP models
to surpass the linear model. For comparison, the
average F-scores on test sets of the PARSEME
ST.1 for unseen MWEs range from 0 to almost 20.
This very low generalization of our MLP models
is understandable since tuning led us to favor
the compact vocabulary mode, which agressively
reduces the known vocabulary to seen MWE
components. Yet our best result on unseen MWEs
with a MLP with exhaustive vocabulary mode
only achieves FG = 4 on unseen MWEs.

It appears that for all models, more than 90%
of the unindentified MWEs (the silence) are either
unseen or with frequency ≤ 5, which clearly
shows that the frequency of a MWE in train set is
the crucial trait for identification. Further analysis
is needed to study the performance according to
the literal versus MWE ambiguity rate.

Continuous/discontinuous MWEs MLP
models show better performances for discon-
tinuous MWEs than SVM, whereas they reach
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Type % SVM MLPo MLPc

% FG P R % FG P R % FG P R
All - - 63 86 49 - 62 70 56 - 63 70 57
Seen 63 93 80 89 72 99 81 83 80 98 82 82 82
- Freq > 5 26 37 80 84 77 37 82 81 82 36 81 81 82
- Freq <= 5 38 56 75 86 67 62 77 79 76 61 78 79 77
Unseen 37 7 12 44 7 1 0 7 0 2 2 10 1
Contin. 67 77 69 88 57 75 69 84 59 74 70 83 60
Discont. 33 23 45 78 31 25 50 77 37 26 50 75 37
Length 1 (MWT) 6 7 84 93 77 7 82 89 77 7 84 91 78
Length 2 78 84 64 86 51 85 65 82 54 85 66 81 56
Length 3 13 8 40 66 29 7 40 69 28 7 40 66 29

Table 5: Performance of our tuned models, on all languages, with models fit on train and evaluated on dev sets if available,
otherwise fit on 80% of train and evaluated on the rest (with seed 0 for MLP models). First line: performance on all languages.
Subsequent lines: break-down according to various MWE classifications (first column). Second column: proportion of the
subclass in gold dev set. For each model (SVM, MLPo(open) and MLPc(losed)), we report for each subclass: the proportion of
the subclass in the system prediction, the global F-score (FG), Precision (P) and Recall (R).

comparable scores for continuous MWEs. In
particular, they display a 5-point gain in F-score,
due to a 6-point gain in recall on discontinuous
MWEs.

MWE length The three systems display com-
parable scores regarding MWE length. Results
validate the intuition that the shorter the MWE, the
easier it is to identify.

10 Conclusion

We described and compared the development of
linear versus neural classifiers to use in a transition
system for MWE identification (Al Saied et al.,
2018). Surprisingly, our best neural architecture
is a simple feed-forward network with one hidden
layer, although more sophisticated architectures
were tested. We achieve a new state-of-the art
on the PARSEME 1.1 shared task data sets,
comprising 20 languages.
Our neural and linear models surpass both the
best shared task system (Waszczuk, 2018) and the
artificial average of the best per-language results.
Given the number of languages and the variety
of linguistic phenomena to handle, we designed a
precise tuning methodology.
Our feedback is that the development of the linear
(SVM) system was pretty straightforward, with
low variance between the configurations. For
the neural models on the contrary, preliminary
runs led to low and unstable performance. Class
balancing proved crucial, and our proposal to
select hyperparameter values using majority vote
on the top k best performing systems in random
search also proved beneficial.

Although our systems are competitive, their
generalization power reveals disappointing: per-
formance on unseen MWEs is very low for the
linear model (F-score=12) and almost zero for the
neural models (whereas the shared task results
range from 0 to 20 for unseen MWEs). Basic
semi-supervised experiments, consisting in using
pre-trained word embeddings, did not bring any
improvement. Static embeddings might not be
suitable representations of MWE components, as
their behavior differs when used literally or within
a MWE. This definitely calls for future work that
can incorporate information on semantic irregular-
ity.
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Abeillé, editor, Treebanks. Kluwer, Dordrecht.

Hazem Al Saied, Marie Candito, and Matthieu Con-
stant. 2017. The ATILF-LLF system for parseme
shared task: a transition-based verbal multiword ex-
pression tagger. In Proceedings of the 13th Work-
shop on Multiword Expressions (MWE 2017), pages
127–132, Valencia, Spain. Association for Compu-
tational Linguistics.

Hazem Al Saied, Marie Candito, and Matthieu Con-
stant. 2018. A transition-based verbal multiword
expression analyzer. In Multiword expressions at
length and in depth: Extended papers from the MWE
2017 workshop, volume 2, page 209. Language Sci-
ence Press.

Daniel Andor, Chris Alberti, David Weiss, Aliaksei
Severyn, Alessandro Presta, Kuzman Ganchev, Slav
Petrov, and Michael Collins. 2016. Globally nor-
malized transition-based neural networks. arXiv
preprint arXiv:1603.06042.

James Bergstra and Yoshua Bengio. 2012. Random
search for hyper-parameter optimization. Journal of
Machine Learning Research, 13(Feb):281–305.

Phil Blunsom and Timothy Baldwin. 2006. Multilin-
gual deep lexical acquisition for hpsgs via supertag-
ging. In Proceedings of the 2006 Conference on
Empirical Methods in Natural Language Process-
ing, pages 164–171, Sydney, Australia. Association
for Computational Linguistics.

Nitesh V Chawla. 2009. Data mining for imbalanced
datasets: An overview. In Data mining and knowl-
edge discovery handbook, pages 875–886. Springer.
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Abstract

This paper analyzes results on light-verb
construction identification, distinguishing
between known cases that could be di-
rectly learned from training data from un-
known cases that require an extra level of
semantic processing. We propose a simple
baseline that beats the best results of the
PARSEME 1.1 shared task (Savary et al.,
2018) for the known cases, and couple it
with another simple baseline to handle the
unknown cases. We additionally present
two other classifiers based on a richer set
of features, with results surpassing these
best results by 7 percentage points.

1 Introduction

Light-verb constructions (LVCs), such as the ex-
pression pay visit, are a linguistic phenomenon
coupling a verb and a stative or eventive noun,
in which the verb itself is only needed for mor-
phosyntactic purposes, its syntactic dependents
being semantically related to the noun. For in-
stance in the sentence John paid me a visit, the
subject and object of paid play the roles of the vis-
itor and the visited. The verb’s semantics is either
bleached or redundant with that of the noun (as in
commit crime) (Savary et al., 2018).
This mismatch between syntax and semantics has
to be taken care of for semantically-oriented tasks
to recover the full predicate-argument structure of
the noun, since at least one of its semantic argu-
ments of the noun is generally attached to the verb
in plain syntactic treebanks.1 Moreover, the fact

1For instance, Nivre and Vincze (2015) report that for the
majority of the 18 UD languages at that time, in a structure
like X takes a photo of Y in English, X is attached to the
verb, but the Y argument is attached to the noun. In some
annotation schemes, the Y would be attached to the verb too.
Note though that some treebanks do annotate the LVC status
(e.g. in Hungarian). Additional semantic annotation of LVC
can be found e.g. in propbank (Bonial and Palmer, 2016).

that the verb choice is conventionalized and se-
mantically bleached makes LVC identification an
important requirement in semantic tasks such as
machine translation (Cap et al., 2015).

Because of their syntactico-semantic charac-
teristics, LVCs are generally considered diffi-
cult to circumscribe and annotate consistently
(Bonial and Palmer, 2016). Yet recently, the
PARSEME 2018 shared-task has brought forth a
collection of corpora containing verbal multiword
expression (VMWE) annotations across 19 lan-
guages (Ramisch et al., 2018), including LVCs.
The reported inter-annotator agreement is variable
across languages, but the macro-averaged chance-
corrected kappa is overall 0.69, which is generally
considered to denote a good agreement. In the an-
notated corpora, the category of LVCs2 accounted
for a third of all expressions (Savary et al., 2018).
The annotation was performed in a separate layer,
largely independent from the underlying syntactic
framework, and relied on semantic properties of
the verb (bleached or redundant in the given con-
text) and both semantic and syntactic properties of
the noun: it should be stative or eventive and take
at least one semantic argument, and it should be
possible to have all the syntactic arguments of the
verb realized within a NP headed by the noun (for
instance out of John paid me a visit, one can create
the NP John’s visit to me).

A total of 13 systems participated in the
PARSEME shared-task, predicting VMWEs oc-
currence in the test corpora. Results for each sys-
tem varied across different systems and target lan-
guages, in which expressions that had been seen
in the test corpus were predicted with variable ac-
curacy. However, expressions that had never been
seen in the test corpus were hardly ever predicted
by most systems (the best F-score on unseen-

2Unless otherwise stated, this paper refers to the 1.1
edition of the PARSEME shared task, and to the category
LVC.full (as opposed to LVC.cause).
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in-train expressions in the closed track is below
20%).

In this paper, we investigate the task of LVC
identification in running text. The main contribu-
tions of this paper are: (1) we propose handling
the task of LVC identification differently depend-
ing on whether it was seen in the training corpus;
(2) we present a simple baseline that surpasses all
systems for seen LVCs; (3) we propose and eval-
uate different techniques for the prediction of un-
seen LVCs, which we then compare to the state of
the art.

The remainder of this paper is structured as fol-
lows: Section 2 presents the related work; Sec-
tion 3 describes the methodology that will be em-
ployed; Section 4 describes the results; and finally,
Section 5 presents our conclusions.

2 Related Work

LVC identification may follow one of two strate-
gies: (a) LVC candidates are initially proposed
based on lexicosyntactic patterns, and are then
classified as LVC or non-LVC based on other cri-
teria; (b) a variant of the BIO scheme (Ramshaw
and Marcus, 1999) is employed so as to directly
classify each token as belonging or not to an LVC.
The former method allows the use of features that
encompass the LVC as a whole, while the latter
can be more easily implemented in the framework
of some machine learning algorithms.

Most works in the literature concerning LVC
identification focus on annotations in a particu-
lar language, often with a language-specific under-
standing of LVCs. Vincze et al. (2013) adapt a de-
pendency parser so as to identify Hungarian LVC
candidates as a byproduct of parsing, which they
then evaluate on the Szeged Dependency Treebank
with LVC annotations. Nagy T. et al. (2013) ex-
tract English LVC candidates involving a verb and
a dependent noun with a specific dependency la-
bel. A J48 and an SVM classifier are then consid-
ered, using lexical and morphosyntactic features
from the corpus, as well as semantic features from
WordNet. The latter was found to contribute to
better results when compared to earlier works that
relied purely on morphosyntactic and statistical
features (Tu and Roth, 2011). Chen et al. (2015)
detect English LVCs in the BNC and OntoNotes
corpora, using the PropBank layer to select LVC
candidates composed of an eventive noun linked
one of 6 known light verbs. The candidates are

then filtered based on semantic features, including
WordNet synsets and hypernym relations.

More recently, the PARSEME shared-task saw
13 system submissions that tried to predict LVCs
along with other VMWEs for annotated corpora
in 19 languages (Ramisch et al., 2018). Over-
all, the best F1 scores across all languages in the
open track were obtained by the SHOMA system,
which employed a pipeline of CNNs, a Bi-LSTM,
and and optional CRF layer (Taslimipoor and Ro-
hanian, 2018). MWE prediction followed a variant
of the BIO scheme that allowed multiple tags per
token, with input features including a set of pre-
trained embeddings (leading the system to com-
pete in the open track category), POS tags, and a
set of word-shape features.

In the closed track, the TRAVERSAL system
obtained the best overall results for MWEs in gen-
eral as well as for LVCs. It uses a syntax-based ap-
proach, in which each node in the syntax tree was
classified as part of an MWE or not (Waszczuk,
2018). The classifier resembles a second-order
CRF, but rather than considering the previous 2 to-
kens at each point, it considers the parent and left-
sibling. Features included the lemma, POS tag and
dependency relation.

Rather than predicting each token as being part
of an LVC or not, the varIDE system use a Naive
Bayes classifier to tag LVC candidates (Pasquer
et al., 2018). These were extracted based on all
possible token combinations whole multi-set of
lemmas corresponded to an LVC that had been
seen in the training corpus (no attempts were made
at predicting unseen LVCs). Classifier features in-
cluded POS tags and morphological information.

Graph convolutional neural networks have also
been used in the identification of VMWE can-
didates for subsequent classification (Rohanian
et al., 2019). In this work, the network is com-
bined with an attention mechanism so as to im-
prove the accuracy of long-range predictions, and
a Bi-LSTM layer is used to classify these predic-
tions and produce the final output. The system
uses contextualized embeddings (ELMo) and out-
performs the state of the art for the four languages
for which results are reported.

3 Methods and materials

Our LVC identification technique consists of two
main stages: (1) extraction of LVC candidates
based on syntactic patterns; and (2) classification
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of candidates based on a set of lexical, morpholog-
ical, syntactic and semantic features, concerning
both the candidate as a whole and its components.

3.1 Extraction of candidates

The first step of LVC identification in a target cor-
pus is to identify candidates. While LVCs are
commonly thought of as a combination of a verb
and noun acting as its direct object, other configu-
rations can be attested in the PARSEME corpora.
This may be due to morphosyntactic variations
(e.g. passive voice), the presence of more com-
plex noun phrases (instead of a single noun), non-
standard analyses (e.g. verbs that are tagged as ad-
jectives) or other language-specific idiosyncrasies.
A robust candidate extraction method should han-
dle this variation, and we do so by using the mor-
phosyntactic patterns of the LVCs in the training
corpora, using the provided UD parses.

So we start by extracting language-specific mor-
phosyntactic patterns from the training LVCs.
More specifically, for each LVC annotated in a
training corpus, we retain a representation involv-
ing the POS tag and the syntactic relation be-
tween components (henceforth referred to as a
“pattern”). If the LVC does not form a con-
nected tree (e.g. to give a series of lectures),
the pattern will additionally include the minimum
number of nodes that makes the tree connected
(if two nodes are only connected by the root
node, we discard the occurrence instead). In the
example above, the extracted pattern would be:
VERB1

obj−−→(NOUN2)
nmod−−→NOUN3 (the components of

the LVC being those not within brackets).
The number of extracted patterns ranges from

14 (Slovene) to 185 (Farsi), with an average of
90 patterns per language. We then sort the pat-
terns based on how many occurrences of LVCs
led to each pattern. As expected, the patterns fol-
low a Zipfian distribution. For example, for the
French training data, the most common pattern is
VERB1

obj−−→NOUN2 with 977 occurrences; the second
is NOUN1

acl−−→VERB2 with 150 occurrences (as in for
instance a picture taken yesterday); the third is

VERB1
nsubj:pass−−−−−−→NOUN2 with 58 occurrences (as in

this picture was taken yesterday); and so on3.
The most common patterns are then used to

identify LVC candidates in the train, development
3Note that the majority of LVCs has two components only,

but some do contain additional components, such as preposi-
tions when they are required to connect the verb and the noun.

and test data, using the Grew tool (Bonfante et al.,
2018). Obviously, using unlexicalized patterns
results in getting a vast majority of candidates
that are not LVCs, and this is even more true for
rare patterns. We experimented with two pat-
tern selecting stategies: topN, in which we take
the N most common patterns (we considered val-
ues of N ∈ {1, 5, 10, 20, 50} ); and atleastNoc-
curs, in which we take all patterns that originated
from at least N occurrences in the training cor-
pus (we considered N ∈ {2, 5, 10, 50}). More-
over, for each pattern p containing label−−−→NOUNi,
we add a pattern p′ replacing this subpattern by
label−−−→(NOUNj)

conj−−→NOUNi
4.

Using the selected patterns, we identify LVC
candidates in the development and test corpora,
but also in the training corpora, so as to obtain pos-
itive and negative LVC candidates to train a binary
classifier. For each identified candidate, we pro-
duce a set of features which may be related either
to the whole LVC, or to its components.5

3.2 Features

The PARSEME 1.1 data contains
test/development and training data for 19
languages. The training data contained an average
of 1171 LVCs per language (σ=948, ranging
from 78 for English to 2952 for Turkish). Most
corpora contain morphosyntactic information (in
most cases obtained by an external parser, and in
most cases representing data using the POS and
dependency tagsets recommended by UD).

For a given candidate c, we first extract the verb
component v and predicative noun component n.
This is in general trivial, but in order to cover all
cases, v is taken to be the leftmost token that has
POS tag VERB, or the leftmost AUX, or the leftmost
ADJ, or the leftmost token in c, while n is the left-
most NOUN, leftmost PROPN, or leftmost token that
is not v. In all the features, we use the lemmas of
v and n. We then extract the following features:

• F1: One-hot representing the pattern used to
predict the candidate (see Section 3.1).

• F2: Fraction of true LVCs among all candi-
4This alternative pattern would cover the expression make

adjustment in make an effort and an adjustment, for which
two occurrences of LVCs would be annotated according the
PARSEME guidelines.

5For the training data, we take the union of gold LVCs and
LVC candidates identified through syntactic patterns, since
the patterns do not cover all gold LVCs.
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BG DE EL ES EU FA FR HE HR HU IT PL PT RO SL TR µAvg
%seen 60 26 50 48 86 61 68 45 29 75 71 66 74 90 57 44 62
Coverage (seen) 98 100 100 95 94 91 99 82 93 86 90 97 95 96 100 98 95
Coverage (unseen) 73 84 91 98 98 90 91 78 96 86 72 90 93 33 92 95 90

Table 1: Fraction of LVC annotations that were seen in train, and LVC candidate coverage (highest
recall achievable, if all candidates are predicted as LVC) — evaluated on the development sets.

dates in train that have the same pattern and
lexical items (lemma-wise comparison) as c
(-1 if unseen in train).

• F3: POS tag of v and n.

• F4: Dependency relation between v and n
(NONE if not directly connected).

• F5: One-hot for the number of components
of c (with the rationale that LVCs of length
higher than 2 may display more non-standard
behavior due to the additionally lexicalized
words).

• F6: One-hot for the number of gaps (extra-
neous words that do not belong to the LVC),
between the leftmost and rightmost compo-
nents of c, in the underlying sentence.

• FC : Binary contextual features from the un-
derlying UD parses. Features are defined for
every observed 〈key, value〉 pair in the mor-
phological CoNLLU column (e.g. 〈Tense,
Past〉), as well as every observed 〈column,
value〉 pair for the UD columns FORM,
LEMMA, XPOS, UPOS and DEPREL (e.g.
〈FORM, took〉, 〈LEMMA, picture〉, 〈POS,
NOUN〉). These features are binary in value,
and indicate whether the 〈key, value〉 pair is
present for c. A feature is considered present
if it appears in at least one of the direct de-
pendents of n or v. We consider only the top
t features with the highest mutual informa-
tion and whose underlying pairs appear in at
least ` LVCs.

While it is clear that LVC identification would
greatly benefit from fine-grained semantic clues
such as noun predicativeness, such information
is not readily available for most languages under
study. We consider instead on a set of unsuper-
vised features that can be constructed for all lan-
guages based on distributional semantic models.
In particular, we consider the fasttext (Bojanowski
et al., 2017) set of pretrained word embeddings

(which is also used by the SHOMA system) as a
basis for semantic features.

• FE : Word embeddings for the lemma of the
verb and noun (300 dimensions each).

• F1
k : k-nearest neighbors of the underlying

noun n. Considered neighbors are all nouns
that are paired up with the underlying verb
v in at least one LVC candidate in the train-
ing set, whether true LVC or not. We select
the top k neighbors whose embedding has
highest cosine against n’s embedding. Each
neighbor is either seen-in-LVC (it is part of at
least one true LVC) or an unseen-in-LVC (it
is part of false positives only). The final value
of the feature is the sum of the scores of the
k neighbors, where a seen-in-LVC neighbor
has score +1 and an unseen-in-LVC neigh-
bor has score −1.

• Fck: Same as F1
k, but each neighbor’s score

that is being summed up is additionally
weighted by the underlying cosine.

3.3 LVC classifiers

We present below two LVC candidate binary clas-
sifiers based on the features above: SVM and FFN.
We compare them against two simple baselines:
Majority, which only predicts LVCs seen in train,
and kNN, which we use either for all LVCs or for
those unseen in train, in combination with Major-
ity for the seen LVCs. Note we consider a pre-
dicted or gold LVC to be seen in train when the
training corpus contains at least one gold LVC
with same lemmas, in whatever order and with
whatever syntactic pattern.

• Majority baseline: Predict a candidate as
LVC if and only if it has been annotated more
often than not in the training corpus (i.e. the
value of feature F2 is greater than 0.5).

• kNN baseline: Predict a candidate as LVC if
and only if the value of feature Fck is positive,
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Configuration BG DE EL ES EU FA FR HE HR HU IT PL PT RO SL TR µAvg
Maj (seen) 72 84 76 89 81 83 93 68 91 91 87 92 86 90 70 38 81
kNN (seen) 62 84 76 89 79 81 92 66 91 91 83 89 82 37 60 46 78
FFN (seen) 74 78 82 94 87 87 94 67 92 92 86 90 88 87 68 71 85
SVM (seen) 70 74 84 86 86 89 93 64 91 91 84 89 90 72 76 57 84
kNN (unseen) 08 08 24 22 32 30 30 04 13 13 11 20 32 00 04 24 22
FFN (unseen) 15 18 27 29 22 55 31 05 21 33 12 22 25 00 08 27 28
SVM (unseen) 15 15 33 20 42 63 37 02 24 46 10 31 45 00 10 34 34

Table 2: F1 scores on Majority and kNN baselines (Fck with k = 2) , along with the best configuration
for the SVM and FFN classifiers — on the development sets.

meaning that within the k nominal neigh-
bors of the noun n of the candidate, the total
cosine of seen-in-LVC surpasses that of the
unseen-in-LVC neighbors.

• SVM: Support vector machine with RBF ker-
nel. Positive and negative examples are bal-
anced through compensating class weights.
We use a 3-fold grid-search to select for
the best combination of classifier hyperpa-
rameters for each language; we consider the
values C ∈ {1, 10, 20, 50, 100} and γ ∈
{0.5, 0.1, 0.05, 0.01}.

• FFN: Feed-forward network with a 100-
neuron hidden layer, using tanh as an acti-
vation function and 50% dropout. The net-
work uses an SGD optimizer6 and negative
log-likelihood loss. Positive training exam-
ples are duplicated as much as needed so
as to be balanced against negative examples.
The final list of examples is shuffled, and
fed into the classifier in batches of size B ∈
{1, 2, 4, 8, 16}. Training is performed for a
number e of epochs, such that epoch e+1
would have had higher loss on the valida-
tion set (10% of train). One-hot features are
implemented as a layer of trainable embed-
dings instead (300 dimensions for lemmas; 5
dimensions for dependency relations, for F5

and F6).

3.4 Evaluation
We explore hyperparameters on the 16 languages
that contained a development set, and evaluate the
final systems on the test set for all 19 languages
(using both training and development set for train-
ing). Evaluation of LVC predictions for each lan-
guage uses the MWE-based F1 score from of the
PARSEME shared task (Ramisch et al., 2018). We
modified its evaluation script so as to output scores

6Basic tuning of the learning rate led us to use 0.01.

for seen and unseen LVCs: it first labels a LVC
(whether gold or predicted) as "seen" if there ex-
ists at least one gold LVC occurrence with the
same set of lemmas in the training set, and unseen
otherwise. The two labels are then evaluated sep-
arately.

We also present a micro-average score (µAvg),
in which the F1 scores of all languages are av-
eraged with a weight that is proportional to the
number of LVCs in that languages test (or devel-
opment) set.7 On test sets, we compare our results
with SHOMA and TRAVERSAL, the two highest-
scoring systems in the shared-task.8

4 Results

Table 1 presents the fraction of LVCs in the de-
velopment set that can also be seen in the training
set. In the lower end, German dev LVCs were only
seen in train 26% of the time, mostly due to the
small training set in this language. In the higher
end, 90% of Romanian LVCs had a counterpart in
the training set, suggesting that a simple baseline
focusing on seen LVCs should already yield good
results for this language.

The last two rows in Table 1 present the cov-
erage (i.e. recall) in the initial step of LVC can-
didate extraction, for the strategy atleastNoccurs
with N = 2. This strategy was found to yield the
best results in both SVM and FFN settings dur-
ing early experiments. It can be seen that, despite
variation across languages, mainly due to training
corpus size differences, the micro-averaged cover-
age is 95% for dev LVCs seen in train, and slightly

7We chose to use micro-average, since the test sets across
languages don’t have the same number of sentences, for rea-
sons that are independent of the linguistic properties of each.

8We used the predicted test sets of all participat-
ing systems (made available by the shared task organiz-
ers at https://gitlab.com/parseme/sharedtask-data/
tree/master/1.1/system-results), filtering them to con-
sider LVCs only. The best systems in open and closed tracks
(SHOMA and TRAVERSAL) are the same when considering
all verbal MWEs or LVCs only.
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Configuration BG DE EL EN ES EU FA FR HE HI HR HU IT LT PL PT RO SL TR µAvg
Maj (seen) 74 67 85 64 60 87 84 85 70 90 87 94 82 48 87 89 81 75 53 80
kNN (seen) 71 67 78 64 61 83 84 87 64 89 89 92 80 47 88 87 38 62 58 78
SVM (seen) 75 67 80 65 60 86 87 89 66 94 80 94 83 38 89 91 67 79 77 81
FFN (seen) 82 69 79 67 64 87 86 89 69 92 85 94 82 48 88 93 74 69 87 83
SHOMA (seen) 64 00 79 00 39 88 88 66 73 88 43 78 66 49 69 87 93 52 79 76
TRAV (seen) 62 53 66 34 44 82 81 70 58 81 64 87 64 45 76 78 83 63 66 72
kNN (unseen) 14 09 23 23 17 16 21 34 05 44 18 24 13 08 19 28 00 05 36 22
SVM (unseen) 17 24 34 19 07 17 57 29 07 61 17 36 06 07 39 39 67 13 43 31
FFN (unseen) 20 18 18 33 20 19 45 25 06 64 16 29 12 15 33 31 00 07 34 29
SHOMA (unseen) 21 00 36 03 13 35 62 37 19 53 19 14 04 08 22 35 29 00 50 31
TRAV (unseen) 08 00 18 14 10 11 41 31 05 42 21 23 00 01 20 24 00 00 23 20
Maj + kNN 53 26 62 31 36 81 64 62 30 68 45 77 63 28 60 74 69 34 44 57
kNN 56 26 59 32 37 77 65 64 29 67 46 76 62 28 61 72 28 31 49 57
SVM 61 40 66 26 35 79 77 65 41 77 44 81 70 28 71 78 67 63 61 63
FFN 53 26 43 40 36 74 74 51 21 78 42 75 44 30 60 68 57 26 56 56
SHOMA 50 00 60 02 22 79 78 51 43 72 24 59 46 29 51 70 86 28 64 56
TRAVERSAL 44 15 47 18 26 70 65 52 30 62 32 68 51 23 52 62 73 38 44 50

Table 3: F1 scores (split for seen LVCs, unseen LVCs and overall) for the Majority and kNN baselines,
the best configuration of our SVM and FFN classifiers, and the highest-scoring systems in the shared-task
(SHOMA and TRAV(ERSAL)) — evaluated on the test sets.

lower (90%) for unseen ones.
We tuned the hyperparameters on the develop-

ment sets. For every system, the same configura-
tion is used for all languages. The best kNN con-
figuration is Fck with k=2; the best SVM and FFN
configurations are both F1..6, FC (t=30, `=30), FE .

Table 2 presents the scores obtained by these
best configurations on the development sets.
Across seen LVCs, both the Majority and kNN
baselines have considerably high scores (F1=81
and 78 respectively, but the highest results are ob-
tained by FFN and SVM (F1=85 and 84). For the
unseen LVCs, results are quite lower, and there is
a bigger gap between the kNN baseline (F1=0.22)
and the best system on unseen, namely the SVM
(F1=0.34).

Table 3 presents system results for the same
configurations when evaluated against the test sets.
On seen LVCs here again, the Majority baseline
is slightly higher than the kNN baseline. How-
ever, both baselines beat the best systems from the
shared-task (that we recomputed for LVCs only).
Results for SVM (F1=81) are comparable to the
Majority baseline (F1=81) while FFN obtains the
highest score (F1=83).

When we consider LVCs that were not seen
in training data, results are much lower. The
kNN baseline obtains an F1=0.22, while SHOMA
obtains F1=0.31, as does our SVM, while re-
sults for FFN are slightly weaker. When predic-
tions for both seen and unseen LVCs are taken
together, FFN and SHOMA have comparable
scores (F1=56), while the baselines (either Major-

ity+kNN or kNN alone) is slightly higher. The
best system overall is the SVM (F1=63).

5 Conclusion

In this paper, we considered the task of iden-
tifying LVCs in running text. We propose to
use data-driven language-specific syntactic pat-
terns for the extraction of LVC candidates out of
syntactic parses, followed by a binary classifica-
tion of the candidates into LVC or not.

We proposed a strong baseline combining dif-
ferent methods for LVC candidates depending on
whether they were seen in the training set or not
(“seen” meaning a LVC with same lemmas is an-
notated at least once in the training set). The base-
line for seen cases tags a candidate as LVC if the
training occurrences with same lemmas are more
often tagged as LVC than not. The baseline for
unseen cases uses the similarity of the predicative
noun with the nouns of the training candidates, in
a distributional semantic model. We also proposed
supervised classifiers (a SVM and a feed-forward
neural network) trained using internal and contex-
tual morphosyntactic and semantic features, and
working independently of the seen/unseen status.

Overall the SVM system is our best one, sur-
passing the best shared task system on LVCs
(SHOMA, (Taslimipoor and Rohanian, 2018)) by
7 percentage points. When evaluating perfor-
mance separately on seen and unseen LVCs, the
feed-forward network performs a little better on
seen LVCs, but less well on unseen ones. It
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also appears that our results for seen LVCs sur-
pass the best shared-task results even in the case
of the baseline, in spite of a much simpler tech-
nique of supervised learning. For unseen LVCs,
results are globally quite lower. The best perfor-
mance is F1=31%, achieved both by the SHOMA
system and our SVM. Our kNN-inspired baseline
achieves F1=22% only, a performance that would
rank second for unseen LVCs in the shared task.

Given the quality of predictions for seen LVCs,
future works should focus on improving predic-
tion for the unseen expressions. Such task could
be achieved through an evaluation of different
types of neural network. Other semantically-
motivated language-independent features should
also be considered, so as to estimate the candi-
date noun’s abstractness and predicativeness, as
well as the level of semantic bleaching in the use
of the verb. Finally, future works should investi-
gate using a model for contextualized word em-
beddings such as BERT (Devlin et al., 2018)), de-
spite the difficulty of covering the 19 languages of
the PARSEME datasets.
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Abstract
We explore the effectiveness of four fea-
ture representations – bag-of-words, word
embeddings, principal components and
autoencoders – for the binary categoriza-
tion of the easy-to-read variety vs standard
language. “Standard language” refers to
the ordinary language variety used by a
population as a whole or by a community,
while the “easy-to-read” variety is a sim-
pler (or a simplified) version of the stan-
dard language. We test the efficiency of
these feature representations on three cor-
pora, which differ in size, class balance,
unit of analysis, language and topic. We
rely on supervised and unsupervised ma-
chine learning algorithms. Results show
that bag-of-words is a robust and straight-
forward feature representation for this task
and performs well in many experimen-
tal settings. Its performance is equiva-
lent or equal to the performance achieved
with principal components and autoen-
corders, whose preprocessing is however
more time-consuming. Word embeddings
are less accurate than the other feature rep-
resentations for this classification task.

1 Introduction

Broadly speaking, a language variety is any spe-
cific form of language variation, such as standard
language, dialects, registers or jargons. In this pa-
per, we focus on two language varieties, namely
the standard language variety and the easy-to-read
variety. In this context, “standard language” refers
to the official and ordinary language variety used
by a population as a whole, or to a variety that is
normally employed within a community. For ex-
ample, “Standard English” is the form of the En-
glish language widely accepted as the usual cor-
rect form, while within the medical community it

is the specialized medical jargon that is considered
to be standard language. In contrast, the easy-to-
read variety is a simpler version of a standard lan-
guage. The need of an easy-to-read variety stems
from the difficulties that certain groups of people
experience with standard language, such as people
with dyslexia and other learning disabilities, the
elderly, children, non-native speakers and so on.
In order to meet the needs of a simpler language
that makes information easy to read and under-
stand for all, European Standards have been estab-
lished1, and an important initiative like Wikipedia
has created a special edition called Simple En-
glish Wikipedia2. These are not isolated phenom-
ena. For instance, in Sweden public authorities
(sv: myndigheter) provide an easy-to-read version
(a.k.a. simple Swedish or sv: lättläst) of their writ-
ten documentation.

Both in the case of the Simple English
Wikipedia and in the case of Swedish public au-
thorities, the simplified documents are manually
written. Since the manual production of simplified
texts is time-consuming, the task called Text Sim-
plification (TS) is very active in Natural Language
Processing (NLP) in the attempt to streamline this
type of text production. TS is a fast-growing re-
search area that can bring about practical benefits,
e.g. the automatic generation of simplified texts.
There is, however, a TS subtask that is still un-
derexplored: the categorization of the easy-to-read
variety vs standard language. The findings pre-
sented in this paper contribute to start filling this
gap. The automatic separation of standard texts
from easy-to-read texts could be particularly use-
ful for other TS subtasks, such as the bootstrap-
ping of monolingual corpora from the web or the

1https://easy-to-read.eu/wp-content/
uploads/2014/12/EN_Information_for_all.
pdf

2https://simple.wikipedia.org/wiki/
Main_Page
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extraction of simplified terminology. Other ar-
eas that could benefit from it include informa-
tion retrieval (e.g. for the retrieval of easy-to-read
or patient-friendly medical information) and deep
learning-based dialogue systems (e.g. customized
chatbots for expert users or naive users).

The research question we would like to an-
swer is: which is the most suitable feature rep-
resentation for this categorization task? In or-
der to answer this question, we compare four dif-
ferent feature representations that can potentially
make sense of the lexical makeup that differenti-
ates easy-to-read from standard language, namely
bag-of-words (BoWs), word embeddings, princi-
pal components and autoencoders. It goes without
saying that these four feature representations are
just a few of the many possible feature representa-
tions for this kind of task. We start our long-term
exploration with these four feature representations
because they are straightforward and easy to ex-
tract automatically from any corpora. We test the
efficiency of the four feature representations with
three types of machine learning algorithms: tra-
ditional supervised machine learning, deep learn-
ing and clustering3. The experiments are based
on three corpora belonging to different domains.
From these corpora, we extracted three datasets
of different sizes, different class balance, different
units of analysis (sentence vs document), different
languages (Swedish and English).

The ultimate goal of the experiments presented
in this paper is to propose a first empirical baseline
for the categorization of the easy-to-read variety vs
standard language.

2 Previous Work

As mentioned above, the automatic separation of
standard language from the easy-to-read variety is
underinvestigated, but it could be useful for sev-
eral TS subtasks, such as the bootstrapping (Ba-
roni and Bernardini, 2004) of monolingual paral-
lel corpora (Caseli et al., 2009), of monolingual
comparable corpora (Barzilay and Elhadad, 2003)
or the exploitation of regular corpora (Glavaš and
Štajner, 2015). Extensive work exists in TS (Sag-
gion, 2017). The most advanced work focuses
on the implementation of neural text simplifica-
tion systems that are able to simultaneously per-
form lexical simplification and content reduction

3The umbrella term ‘categorization’ is used to cover these
three machine learning approaches.

(Nisioi et al., 2017).
In this paper, however, we do not focus on the

creation of TS systems, but rather on the sheer
downstream categorization task of separating stan-
dard language from the easy-to-read variety. To
our knowledge, limited research exists in this area,
which mostly focuses on the discrimination be-
tween the specialized language used by domain
experts and the language used by non-experts
(a.k.a. laypeople or the lay). This type of distinc-
tion is required in some domains (e.g. medical and
legal domains), where the specialized jargon hin-
ders the understanding of “ordinary” people, i.e.
people without specialized education, who strug-
gle to get a grip on professional sublanguages. In
the experiments reported in Santini et al. (2019),
it is shown that it is possible to successfully dis-
criminate between medical web texts written for
experts and for laypeople in Swedish. Results are
encouraging and we use one of their datasets in the
experiments presented here.

Other corpora are available that can be used
for the automatic categorization of the easy-to-
read variety vs standard language. For instance,
the Simple English Wikipedia corpus4 (Kauchak,
2013), and the DigInclude corpus5 in Swedish
(Rennes and Jönsson, 2016). However, neither
Simple English Wikipedia nor DigInclude have
ever been used for this text categorization task. We
use them in this context for the first time.

3 Corpora and Datasets

In our experiments, we use three corpora, two
in Swedish and one in English. More precisely,
we rely on 1) a subset of the eCare corpus (San-
tini et al., 2019) in Swedish; 2) a subset of the
DigInclude corpus (Rennes and Jönsson, 2016) in
Swedish and 3) a subset of the Simple English
Wikipedia corpus (Kauchak, 2013) in English.

The eCare corpus is a domain-specific web cor-
pus. The domain of interest is the medical field of
chronic diseases. From the current version of the
corpus we re-use a labelled subset. The eCare sub-
set contains 462 webpages without boilerplates.
The webpages have been labelled as ‘lay’ or ‘spe-
cialized’ by a lay native speaker. Lay sublanguage
is an easy-to-read version of the standard lan-
guage (the medical jargon) used by healthcare pro-

4http://www.cs.pomona.edu/˜dkauchak/
simplification/

5https://www.ida.liu.se/˜arnjo82/
diginclude/corpus.shtml
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fessionals. The 462 webpages of the eCare dataset
(amounting to 424,278 words) have been labelled
in the following way: 388 specialized webpages
(66%) and 154 lay webpages (33%). The dataset
is unbalanced. The unit of analysis that we use in
these experiments is the document.

The DigInclude corpus is a collection of easy-
to-read sentences aligned to standard language
sentences. The corpus has been crawled from
a number of Swedish authorities’ websites. The
DigInclude datasets contains 17,502 sentences,
3,827 simple sentences (22%) and 13,675 standard
sentences (78%), amounting to 233,094 words.
The dataset is heavily unbalanced. The unit of
analysis is the sentence.

The Simple English Wikipedia (SEW) cor-
pus was generated by aligning Simple English
Wikipedia and standard English Wikipedia. Two
different versions of the corpus exist (V1 and V2).
V2 has been packaged in sentences and in docu-
ments. We used the subset of V2 divided into sen-
tences. The SEW dataset contains 325,245 sen-
tences, 159,713 easy-to-read sentences (49.1%)
and 165,532 standard sentences (50.9%), amount-
ing to 7,191,133 words. The dataset is fairly bal-
anced. The unit of analysis is the sentence.

4 Features Representations and Filters

At the landing page of Simple English Wikipedia,
it is stated: “We use Simple English words and
grammar here.” Essentially, this statement implies
that the use of basic vocabulary and simple gram-
mar makes a text easier to read. In these experi-
ments we focus on the effectiveness of feature rep-
resentations based on lexical items and leave the
exploration of grammar-based tags for the future.

In this section, we describe the four feature
representations, as well as the filters that have
been applied to create them. These filters and the
methods described in Section 5 are included in
the Weka Data Mining workbench (Witten et al.,
2016)6. All the experiments performed with the
Weka workbench can be replicated in any other
workbench, or programmatically in any program-
ming language. We use Weka here for the sake of
fast reproducibility, since Weka is easy to use also
for those who are not familiar with the practicali-
ties of machine learning. Additionally, it is open
source, flexible and well-documented.

6Open source software freely available at https://
www.cs.waikato.ac.nz/ml/weka/

In the experiments below several filters have
been stacked together via the Multifilter metafil-
ter, which gives the opportunity to apply several
filtering schemes sequentially to the same dataset.

BoWs. BoWs is a representation of text that de-
scribes the occurrence of single words within a
document. It involves two things: a vocabulary
of known words and a weighing scheme to mea-
sure the presence of known words. It is called a
“bag” of words, because any information about the
order or structure of words in the document is dis-
carded. The model is only concerned with whether
known words occur in the document, not where
in the document, or with which other words they
co-occur. The advantage of BoWs is simplicity.
BoWs models are simple to understand and im-
plement and offer a lot of flexibility for customiza-
tion. Preprocessing can include different levels of
refinement, from stopword removal to stemming
or lemmatization, and a wide range of weighing
schemes. Usually, lexical items in the form of
BoWs represent the topic(s) of a text and are nor-
mally used for topical text classification. Several
related topics make up a domain, i.e. a subject
field like Fashion or Medicine. Here we use BoWs
for a different purpose, which is to detect the dif-
ferent level of lexical sophistication that exists
between the easy-to-read variety and standard lan-
guage. Intuitively, easy-to-read texts have a much
plainer and poorer vocabulary than texts written in
standard language. The rationale of using BoWs
in this context is then to capture the lexical diver-
sification that characterizes easy-to-read and stan-
dard language texts.

Starting from datasets in string format, we ap-
plied StringToWordVector, which is an unsuper-
vised filter that converts string attributes into a set
of attributes representing frequencies of word oc-
currence. For all the corpora, we selected the TF
and IDF weighing schemes, normalization to low-
ercase and normalization to the length of the doc-
uments. Lemmatization, stemming and stopword
removal were not applied. The number of words
that were kept varies according to the size of cor-
pus. The complete settings of this and all the other
filters described below are fully documented in the
companion website.

Word embeddings. Word embeddings are one
of the most popular representations of document
vocabulary to date, since they have proved to be
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effective in many tasks (e.g. sentiment analysis,
text classification, etc.). The advantage of word
embeddings lies in their capability to capture the
context of a word in a document, as well as se-
mantic and syntactic similarity. The basic idea be-
hind word embeddings is to “embed” a word vec-
tor space into another. The big intuition is that this
mapping could bring to light something new about
the data that was unknown before. More specifi-
cally, word embeddings learn both the meanings
of the words and the relationships between words
because they capture the implicit relations be-
tween words by determining how often a word ap-
pears with other words in the training text. The
rationale of using word embeddings in this con-
text is to account for both semantic and syntactic
representations, traits that can be beneficial for the
categorization of language varieties.

Word embeddings can be native or pretrained.
Here we use the pretrained Polyglot Embed-
dings (Al-Rfou et al., 2013) for Swedish (polyglot-
sv) and for English (polyglot-en).

Principal Components. Principal Component
Analysis (PCA) involves the orthogonal transfor-
mation of possibly correlated variables into a set
of values of linearly uncorrelated variables called
principal components. This transformation is de-
fined in such a way that the first principal com-
ponent explains the largest possible variance, and
each succeeding component in turn explains the
highest variance possible under the constraint that
it is orthogonal to the preceding components. The
advantage of PCA is to reduce the number of re-
dundant features, which might be common but dis-
turbing when using a BoWs approach, thus possi-
bly improving text classification results. The ra-
tionale of using PCA components in this context
is to ascertain whether feature reduction is benefi-
cial for the categorization of language varieties.

To perform PCA and the transformation of the
data, we wrapped PrincipalComponents filter on
the top of the StringToWordVector filter, via the
Multifilter metafilter. The PrincipalComponents
filter is an unsupervised filter that chooses enough
principal components (a.k.a eigenvectors) to ac-
count for 95% of the variance in the original data.

Autoencoders. Similar to PCA, the basic idea
behind autoencoders is dimensionality reduction.
However, autoencoders are much more flexible
than PCA since they can represent both linear and

non-linear transformation, while PCA can only
perform linear transformation. Additionally, au-
toencoders can be layered to form deep learning
networks. They can also be more efficient in terms
of model parameters since a single autoencoder
can learn several layers rather than learning one
huge transformation as with PCA. The advantage
of using autoencoders in this context is to trans-
form inputs into outputs with the minimum possi-
ble error (Hinton and Salakhutdinov, 2006). The
rationale of their use here is to determine whether
they provide a representation with enriched prop-
erties that is neater than other reduced representa-
tions.

In these experiments, autoencoders are gener-
ated using the MLPAutoencoder filter stacked on
the top of the StringToWordVector filter, via the
Multifilter metafilter. This MLPAutoencoder fil-
ter gives the possibility of creating contractive au-
toencoders, which are much more efficient than
standard autoencoders (Rifai et al., 2011).

5 Methods, Baselines and Evaluation

In this section, we describe the categorization
schemes, the baselines and the evaluation metrics
used for comparison.

Methods. We use three different learning meth-
ods, namely an implementation of SVM, an imple-
mentation of multilayer perceptron (MLP) and an
implementation of K-Means for clustering. The
rationale behind these choices is to compare the
behaviour of the four feature representations de-
scribed above with learning schemes that have a
different inductive biases, and to assess the differ-
ence (if any) between the performance achieved
with labelled data (supervised algorithms) and un-
labelled data (clustering). We calculate a random
baseline with the ZeroR classifier. All the catego-
rization schemes are described below.

ZeroR: baseline classifier. The ZeroR is based
on the Zero Rule algorithm and predicts the class
value that has the most observations in the train-
ing dataset. It is more reliable than a completely
random baseline.

SVM: traditional supervised machine learning.
SVM is a classic and powerful supervised machine
learning algorithm that performs extremely well
in text classification tasks with numerous features.
Weka’s SVM implementation is called SMO and
includes John Platt’s sequential minimal optimiza-
tion algorithm (Platt, 1998) for training a support
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vector classifier (Joachims, 1998).
Since two corpora are highly unbalanced, we

also combined SMO with filters that can cor-
rect class unbalance. More specifically, we re-
lied on ClassBalancer, which reweights the in-
stances in the data so that each class has the
same total weight; Resample, which produces a
random subsample of a dataset using either sam-
pling with replacement or without replacement;
SMOTE, which resamples a dataset by applying
the Synthetic Minority Oversampling TEchnique
(SMOTE); and SpreadSubsample, which produces
a random subsample of a dataset. All the models
built with SMO are based on Weka’s standard pa-
rameters.

Multilayer Perceptron: Deep Learning. Weka
provides several implementations of MLP. We re-
lied on the WekaDeeplearning4j package that is
described in Lang et al. (2019). The main clas-
sifier in this package is named DI4jMlpClassifier
and is a wrapper for the DeepLearning4j library7

to train a multilayer perceptron. While fea-
tures like BoWs, principal components and au-
toencoders can be fed to any classifiers within
the Weka workbench (if they are wrapped in fil-
ters), word embeddings can be handled only by
the DI4jMlpClassifier (this explains N/A in Ta-
ble 2). We used the standard configuration of
the DI4jMlpClassifier (which includes only one
output layer) for BoWs, principal components
and autoencoders. Conversely, the configura-
tion used with word embeddings was cutomized
in the following way: word embeddings were
passed through four layers (two convulational lay-
ers, a GlobalPoolingLayer and a OutputLayer);
the number of epochs was set to 100; the in-
stance iterator was set on CnnTextEmbeddingIn-
stanceIterator; we used the polyglot embeddings
for Swedish and English, as mentioned above.

K-Means: Clustering. We compare the perfor-
mance of the supervised classification with clus-
tering (fully unsupervised categorization). We
use the traditional K-Means algorithm (Arthur and
Vassilvitskii, 2007) that in Weka is called Sim-
pleKMeans. Since we know the number of classes
in advance (i.e. two classes), we evaluate the qual-
ity of the clusters against existing classes using the
option Classes to cluster evaluation, which first
ignores the class attribute and generates the clus-

7https://deeplearning.cms.waikato.ac.
nz/

ters, then during the test phase assigns classes to
the clusters, based on the majority value of the
class attribute within each cluster.

Evaluation metrics. We compare the perfor-
mances on the Weighted Averaged F-Measure
(AvgF), which is the sum of all the classes’ F-
measures, each weighted according to the number
of instances with that particular class label.

In order to reliably assess the performance
based on AvgF, we also use k-statistic and the ROC
area value. K-statistic indicates the agreement of
prediction with true class; when the value is 0 the
agreement is random. The quality of a classifier
can also be assessed with the help of the ROC
area value which indicates the area under the ROC
curve (AUC). It is used to measure how well a
classifier performs. The ROC area value lies be-
tween about 0.500 to 1, where 0.500 (and below)
denotes a bad classifier and 1 denotes an excellent
classifier.

ZeroR Baselines. Table 1 shows a breakdown of
the baselines returned by the ZeroR classifier on
the three corpora. These baselines imply that the
k-statistic is 0 and the ROC area value is below or
equal to 0.500.

6 Results and Discussion

The main results are summarized in Table 2 and
Table 3. As shown in in Table 2, by and large both
SMO and the DI4jMlpClassifier have equivalent
or identical performance on all datasets in combi-
nation with BoWs and principal components (we
observe however that the DI4jMlpClassifier is def-
initely slower than SMO). Word embeddings have
a slightly lower performance than BoWs and prin-
cipal components on the eCare and SEW subsets.
Autoencoders perform well (0.82) in combination
with SMO on the eCare subset, less so (0.77) when
running with the DI4jMlpClassifier. The perfor-
mance of clustering with BoWs on eCare gives an
encouraging 0.59 (6 points above the ZeroR base-
line of 0.53), while the performance with principal
components and autoencoders is below the ZeroR
baselines. In short, BoWs, which is the simplest
and the most straightforward feature representa-
tion in this set of experiments, has a performance
that is equivalent or identical to other more com-
plex feature representations.

But what do the classifiers learn when they
are fed with BoWs? The classifiers learn the
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Table 1: ZeroR baselines, breakdown

Class k Acc(%) Err(%) P R F ROC

eCare Subset (462 webpages)
lay (154 webpages) 0.00 66.66 33.33 0.00 0.00 0.00 0.490
specialized (308 webpages) 0.66 1.00 0.80 0.490
AvgF 0.53

DigInclude Subset (17,502
sentences)

simplified (3,827 sentences) 0.00 78.13 21.86 0.00 0.00 0.00 0.500
specialized (13,675 sentences) 0.78 1.00 0.87 0.500
AvgF 0.68

SEW Subset (325,235 sentences)
simplified (159,708 sentences) 0.00 50.89 49.10 0.00 0.00 0.00 0.500
specialized (165,527 sentences) 0.50 1.00 0.67 0.500
AvgF 0.34

Table 2: Summary table (AvgF): easy-to-read variety vs standard language

Dataset Features SMO DI4jMlp K-Means

eCare Subset

BoW Features 0.80 0.80 0.59
Word Embeddings N/A 0.75 N/A
Principal Components 0.80 0.81 0.44
Autoencoders 0.82 0.77 0.50

DigInclude Subset

BoW 0.72 0.72 0.29
Word Embeddings N/A 0.72 N/A
Principal Components 0.73 0.72 0.19
Autoencoders 0.68 0.68 0.33

SEW Subset

BoW 0.58 0.56 0.43
Word Embeddings N/A 0.55 N/A
Principal Components 0.55 0.56 0.49
Autoencoders 0.52 0.51 0.49

Table 3: Summary table (AvgF): unbalanced datasets (BoWs + class balancing filters applied to SMO)

Dataset NoFilter ClassBalancer Resample SpreadSample SMOTE
eCare Subset 0.80 0.81 0.81 0.80 0.81

DigInclude Subset 0.72 0.68 0.66 0.73 0.74

words that have been automatically selected by the
StringToWordVector filter. Interestingly, since we
did not apply stopword removal, the lexical items
selected by the filter are mostly function words and
common lexical items. An example is shown in
Table 4.

Table 4: 5 top frequent words and 5 bottom fre-
quent words in one of the SEW models

Word Freq
the 237021
of 159924
in 149698

and 135958
a 135867
... ...
... ...

usually 1517
international 1503
municipatlity 1449

show 1415
island 1277

At first glance, it might appear counter-intuitive
that BoWs, which are very simple features that do
not take syntax and word order into account, can
perform well in this kind of task. However, we

surmize that this is the effect of the presence of
stopwords. As stopwords have not been removed
(see settings reported earlier), the classifiers do not
learn ‘topics’ – since content words are pushed
down in the rank of the frequency list – but rather
the distribution of function words, that are instead
top-ranked and represent “structural” lexical items
that capture the syntax rather than the meaning
of texts. Essentially, function words can be seen
as a kind of subliminal syntactic features. What
is more, in the corpora some words are domain-
specific and difficult, while others are easy and
common. Apparently, this difficult vs easy varia-
tion in the vocabulary helps the classification task.
The full list of the words extracted by the String-
ToWordVectorFilter (utilized alone or as the basis
of other filters) is available on the companion web-
site.

The snap verdict of this set of experiments is
that BoWs are a valuable feature representation
for this kind of task. Their added value is that they
need little preprocessing and no additional conver-
sion schemes, as it is required by principal compo-
nents and autoencoders. BoWs seem to be a robust
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feature representation that accounts for both syn-
tactic information and lexical sophistication.

As for word embeddings, it seems that their full
potential remains unleashed in this context. The-
oretically, word embeddings would be an ideal
feature representation for this task because they
combine syntax and semantics and they could
capture simplification devices both at lexical and
morpho-syntactic level. However, this does not
fully happen here. As a matter of fact, it has al-
ready been noticed elsewhere that word embed-
dings might have an unstable behaviour (Wend-
landt et al., 2018) that needs to be further inves-
tigated.

Table 5: SMO, breakdown

SMO: eCare Subset
BOW k Acc(%) Err(%) P R F ROC
lay 0.56 80.92 19.04 0.72 0.68 0.70 0.779
specialized 0.84 0.87 0.85 0.779
AvgF 0.80
PCA k Acc(%) Err(%) P R F ROC
lay 0.58 80.30 19.69 0.71 0.68 0.70 0.774
specialized 0.84 0.86 0.85 0.774
AvgF 0.80
Autoenc k Acc(%) Err(%) P R F ROC
lay 0.60 82.16 17.83 0.72 0.75 0.73 0.804
specialized 0.87 0.85 0.86 0.804
AvgF 0.82

(a) eCare

SMO: DigInclude Subset
BOW k Acc(%) Err(%) P R F ROC
simplified 0.13 79.04 20.95 0.61 0.11 0.18 0.546
standard 0.79 0.98 0.88 0.546
AvgF 0.72
PCA k Acc(%) Err(%) P R F ROC
simplified 0.14 78.80 21.19 0.56 0.14 0.22 0.555
standard 0.80 0.97 0.77 0.555
AvgF 0.73
Autoenc k Acc(%) Err(%) P R F ROC
simplified 0.00 78.49 21.50 0.00 0.00 0.00 0.500
standard 0.78 1.00 0.87 0.500
AvgF 0.68

(b) DigInclude

SMO: SEW Subset
BOW k Acc(%) Err(%) P R F ROC
simplified 0.23 61.81 38.18 0.61 0.61 0.61 0.618
standard 0.62 0.62 0.62 0.618
AvgF 0.61
PCA k Acc(%) Err(%) P R F ROC
simplified 0.13 57.08 42.91 0.57 0.45 0.51 0.569
standard 0.56 0.67 0.61 0.569
AvgF 0.56
Autoenc k Acc(%) Err(%) P R F ROC
simplified 0.04 52.67 47.32 0.52 0.42 0.46 0.525
standard 0.53 0.62 0.57 0.525
AvgF 0.52

(c) SEW

We observe that the classification results are
promising on the eCare subset (see breakdown in
Tables 5a, 6a and 7a). Arguably, a factor has
contributed to achieve this performance: the unit
of analysis. Certainly, classification at document
level is easier because the classifier has more text
to learn from. Surprisingly, the unbalance of the
eCare dataset seems to be somehow mitigated by

the unit of analysis, since the classifiers are not bi-
ased towards the majority class and k-statistic and
ROC area values are quite robust (mostly above
0.500 and above 0.800 respectively). Additonally,
the dataset is small, and this might also facilitate
the learning. Clustering with BoWs is well above
the ZeroR baseline, while with the other feature
representations the performance is below the base-
line thresholds.

Table 6: DI4jMlpClassifier, breakdown

DI4jMlpClassifier: eCare Subset
BOW k Acc(%) Err(%) P R F ROC
lay 0.57 80.08 19.91 0.67 0.78 0.72 0.890
specialized 0.88 0.80 0.84 0.890
AvgF 0.80
Embed k Acc(%) Err(%) P R F ROC
lay 0.45 75.79 24.20 0.63 0.65 0.64 0.807
specialized 0.82 0.81 0.81 0.807
AvgF 0.75
PCA k Acc(%) Err(%) P R F ROC
lay 0.58 80.73 19.26 0.68 0.79 0.73 0.900
specialized 0.88 0.81 0.84 0.900
AvgF 0.81
Autoenc k Acc(%) Err(%) P R F ROC
lay 0.52 77.07 22.92 0.61 0.84 0.71 0.872
specialized 0.90 0.73 0.81 0.872
AvgF 0.77

(a) eCare

DI4jMlpClassifier: DigInclude Subset
BOW k Acc(%) Err(%) P R F ROC
simplified 0.18 72.86 27.13 0.37 0.35 0.36 0.667
standard 0.82 0.83 0.82 0.667
AvgF 0.72
Embed k Acc(%) Err(%) P R F ROC
simplified 0.10 77.24 22.75 0.41 0.13 0.20 0.587
standard 0.80 0.94 0.86 0.587
AvgF 0.72
PCA k Acc(%) Err(%) P R F ROC
simplified 0.16 72.94 27.05 0.36 0.31 0.33 0.650
standard 0.81 0.84 0.83 0.650
AvgF 0.72
Autoenc k Acc(%) Err(%) P R F ROC
simplified 0.00 78.49 21.50 0.00 0.00 0.00 0.500
standard 0.78 1.00 0.87 0.500
AvgF 0.68

(b) DigInclude

DI4jMlpClassifier: SEW Subset
BOW k Acc(%) Err(%) P R F ROC
simplified 0.13 56.50 43.49 0.55 0.57 0.56 0.594
standard 0.57 0.55 0.56 0.594
AvgF 0.56
Embed k Acc(%) Err(%) P R F ROC
simplified 0.10 55.26 44.73 0.54 0.53 0.53 0.586
standard 0.55 0.57 0.56 0.586
AvgF 0.55
PCA k Acc(%) Err(%) P R F ROC
simplified 0.10 55.21 44.78 0.54 0.55 0.55 0.577
standard 0.56 0.54 0.55 0.577
AvgF 0.55
Autoenc k Acc(%) Err(%) P R F ROC
simplified 0.04 52.14 47.85 0.51 0.60 0.55 0.535
standard 0.53 0.44 0.48 0.535
AvgF 0.51

(c) SEW

The DigInclude subset (see breakdown in Ta-
bles 5b, 6b, and 7b) is quite problematic from a
classification standpoint. It is highly unbalanced
and the unit of analysis is the sentence. The
classification models built with BoWs, word em-
beddings and principal components in combina-

111



tion with SMO and the DI4jMlpClassifier are very
close to random (see the value of k-statistic and
the ROC area value). Although the AvgF values in
the summary table (Table 2) seem to be decent for
a binary classification problem, they are actually
misleading, because the classifiers perform poorly
on the minority class, as revealed by the low value
of k-statistic and the ROC area value shown in the
breakdown tables (Tables 5b and 6b). Classifi-
cation with autoencoders is perfectly random (k-
statistic 0.00 and ROC area value 0.500). Cluster-
ing results are very poor with all feature represen-
tations. Arguably, with this dataset the learning is
hindered by two factors: the high class unbalance
and the very short text that makes up a sentence.
While in the case of the eCare subset, unbalance is
compensated by the longer text of webpages, with
DigInclude the sentence does not allow any gen-
eralizable learning. Given these results, a differ-
ent approach must be taken for datasets like Dig-
Include. Solutions to address these problems in-
clude changing the unit of analysis from sentences
to documents (if possible) and/or applying a dif-
ferent classification approach e.g. a cost-sensitive
classifier of the kind used to predict rare events,
e.g. Ali et al. (2015) or Krawczyk (2016). Algo-
rithms used for fraud detection (Sundarkumar and
Ravi, 2015) could also be useful.

The SEW corpus (see Tables 5c, 6c and 7c) is
balanced and the unit of analysis is the sentence.
The performance is promising because it is well
above the ZeroR baseline (0.32). The best perfor-
mance is with the combination of SMO and BoWs
that reaches an AvgF of 0.58 with only a limited
number of features. Word embeddings perform
slightly worse than BoWs (but the running time
is much longer). Clustering is definitely encour-
aging and much above the baseline level with all
features representations.

Since the eCare and DigInclude datasets are
both unbalanced, we applied class balance correc-
tors. Table 8 shows the breakdown of SMO on the
eCare subset in combination with four balancing
filters. The performance with filters is similar to
the performance without filters. This is true also
if we look at the performance (P, R, AvgF) of the
minority class (the lay class). K-statistic is sta-
ble (greater than 0.50) as are the ROC area values
(greater than 0.700). Essentially, this means that
this dataset, although unbalanced, does not need a
class balancing filter. As pointed out earlier, we

Table 7: K-means, breakdown

K-means: eCare
BOW Acc(%) Err(%) P R F
lay 60.82 39.18 0.48 0.75 0.56
specialized 0.81 0.53 0.64
AvgF 0.59
PCA Acc(%) Err(%) P R F
lay 51.95 48.05 0.32 0.50 0.39
specialized 0.65 0.47 0.54
AvgF 0.44
Autoenc Acc(%) Err(%) P R F
lay 54.55 45.45 0.37 0.57 0.45
specialized 0.71 0.53 0.61
AvgF 0.50

(a) eCare

Simple K-means: DigInclude
BOW Acc(%) Err(%) P R F
simplified 75.78 24.22 0.21 0.93 0.35
standard 0.73 0.04 0.08
AvgF 0.29
PCA Acc(%) Err(%) P R F
simplified 78.09 21.91 0.21 0 0
standard 0.78 0.99 0.87
AvgF 0.19
Autoenc Acc(%) Err(%) P R F
simplified 54.54 45.46 0.22 0.62 0.33
standard 0.79 0.40 0.53
AvgF 0.37

(b) DigInclude

K-means: SEW
BOW Acc(%) Err(%) P R F
simplified 50.27 49.73 0.46 0.17 0.25
standard 0.50 0.80 0.62
AvgF 0.43
PCA Acc(%) Err(%) P R F
simplified 50.37 49.63 0.48 0.49 0.48
standard 0.50 0.50 0.50
AvgF 0.49
Autoenc Acc(%) Err(%) P R F
simplified 50.46 49.55 0.48 0.54 0.51
standard 0.50 0.45 0.47
AvgF 0.49

(c) SEW

suppose that it is the unit of analysis used for the
classification (the webpage) that has a positive ef-
fect on the results since the classifier learns more
from an extended text (i.e. several sentences about
a coherent topic) than from a single sentence.

Conversely, on the DigInclude subset (see full
breakdown in Table 9), two filters (ClassBalancer
and Resample) out of four filters produce lower
AvgF values than the performance with no filters.
A bit paradoxically, this might be good news if we
are interested in the performance on the minority
class (i.e. the simplified class). When we look at
the performance breakdown, we notice a big gap
between P and R on the minority class. Without
filters, the P of the simplified class is decent (0.61),
while the R is very low (0.11). When applying a
ClassBalancer and Resample, the P of the minor-
ity class jumps down to about 0.30, but R soars
up to above 0.60. Thus, although the AvgF values
with these two filters are lower than the SMO with-
out any filter, the performance on the individual
classes is more balanced. The best performance
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is, in our view, with SMOTE, which achieves an
AvgF of 0.74 with a k-statistic of 0.24 and a ROC
area value of 0.624. The P and R of the minor-
ity class are balanced (0.41 in both cases). This
is indeed an encouraging result for this dataset. It
is to be acknowledged however that all the clas-
sifiers based on the DigInclude subset shown in
Table 9 are rather weak, since both k-statistic and
ROC area values are rather modest.

Table 8: eCare - Class balancing filters, break-
down

eCare: SMO NoFilter
BOW k Acc(%) Err(%) P R F ROC
lay 0.56 80.90 19.04 0.72 0.68 0.70 0.797
specialized 0.84 0.87 0.85 0.779
AvgF 0.80

eCare: SMO ClassBalancer
BOW k Acc(%) Err(%) P R F ROC
lay 0.57 81.16 18.83 0.72 0.69 0.71 0.782
specialized 0.85 0.87 0.86 0.782
AvgF 0.81

eCare: SMO Resample
BOW k Acc(%) Err(%) P R F ROC
lay 0.58 81.81 18.18 0.74 0.70 0.72 0.789
specialized 0.85 0.87 0.86 0.789
AvgF 0.81

eCare: SMO Spreadsubsample
BOW k Acc(%) Err(%) P R F ROC
lay 0.56 80.95 19.04 0.72 0.68 0.70 0.779
specialized 0.84 0.87 0.85 0.779
AvgF 0.808

eCare: SMO SMOTE
BOW k Acc(%) Err(%) P R F ROC
lay 0.57 81.16 18.83 0.73 0.68 0.70 0.781
specialized 0.84 0.87 0.86 0.781
AvgF 0.81

7 Conclusion and Future Work

In this paper, we explored the effectiveness of
four feature representations – BoWs, word em-
beddings, principal components and autoencoders
– for the binary categorization of the easy-to-read
variety vs standard language. The automatic sep-
aration of these two varieties would be helpful
in tasks where it is important to identify a sim-
pler version of the standard language. We tested
the effectiveness of these four representations on
three datasets, which differ in size, class balance,
unit of analysis, language and topic. Results show
that BoWs is a robust and straightforward fea-
ture representation that performs well in this con-
text. Its performance is equivalent or equal to the
performance of principal components and autoen-
corders, but these two representations need addi-
tional data conversion steps that do not pay off
in terms of performance. Word embeddings are
less accurate than the other feature representations
for this classification task, although theoretically
they should be able to achieve better results. As
mentioned in the Introduction, several other fea-

ture representations could be profitably tried out
for this task. We started off with the simplest ones,
all based on individual lexical items. We propose
the findings presented in this paper as empirical
baselines for future work.

We will continue to explore categorization
schemes in a number of additional experimental
settings. First, we will try to pin down why word
embeddings are less robust than other feature rep-
resentations in this context. Then, we will explore
the performance of other feature representations
suitable for the task, e.g. lexical and morphologi-
cal n-grams as well as features based on syntactic
complexity. We will also explore other classifica-
tion paradigms, e.g. BERT (Devlin et al., 2018),
and extend our investigation on the impact of the
unit of analysis (e.g. by using the DigInclude and
SEW versions that contain documents rather than
sentences). Last but not least, we will try out ap-
proaches specifically designed to address the prob-
lem of unbalanced datasets.

Table 9: DigInclude - Class balancing filters,
breakdown

DigInclude: SMO NoFilter
BOW k Acc(%) Err(%) P R F ROC
simplified 0.13 79.04 20.95 0.61 0.11 0.18 0.546
standard 0.79 0.98 0.88 0.546
AvgF 0.72

DigInclude: SMO ClassBalancer
BOW k Acc(%) Err(%) P R F ROC
simplified 0.22 65.24 34.57 0.34 0.62 0.44 0.645
standard 0.86 0.66 0.74 0.645
AvgF 0.68

eCare: SMO Resample
BOW k Acc(%) Err(%) P R F ROC
simplified 0.19 63.92 36.07 0.32 0.61 0.42 0.629
standard 0.85 0.64 0.73 0.629
AvgF 0.66

eCare: SMO Spreadsubsample
BOW k Acc(%) Err(%) P R F ROC
simplified 0.18 75.39 24.60 0.40 0.28 0.33 0.584
standard 0.81 0.88 0.84 0.584
AvgF 0.73

eCare: SMO SMOTE
BOW k Acc(%) Err(%) P R F ROC
simplified 0.24 74.30 25.69 0.41 0.41 0.41 0.624
standard 0.83 0.83 0.83 0.624
AvgF 0.74
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Abstract

Affordances denote actions that can be per-
formed in the presence of different objects,
or possibility of action in an environment.
In robotic systems, affordances and actions
may suffer from poor semantic generaliza-
tion capabilities due to the high amount of re-
quired hand-crafted specifications. To allevi-
ate this issue, we propose a method to mine for
object-action pairs in free text corpora, succes-
sively training and evaluating different predic-
tion models of affordance based on word em-
beddings.

Affordance; Natural Language Processing;
Robotics; Intention Recognition; Conditional Varia-
tional Autoencoder;

1 Introduction

The term “affordance” was introduced by the Amer-
ican psychologist Gibson (Greeno, 1994) to describe
what an animal can do in a given environment. It
has since then been extensively utilized, interpreted,
and re-defined (see (Çakmak Mehmet R. Doğar et al.,
2007) for an overview) in fields such as robotics (Zech
et al., 2017), human-computer-interaction (Schneider
and Valacich, 2011) or human-robot-interaction (HRI)
(E. Horton et al., 2012). Several interpretations for af-
fordance exist in the literature, we use the term in a
loose way to denote actions that can be performed with
objects. As a simplified first approach we assume a
one-to-many mapping G: Objects→ Affordances. The
object “door” may, for example, be used to perform the
actions “open”, “close”, and “lock”.

This paper presents how G may be learned from
free-text corpora. The results show how it is possi-
ble to learn a generative model G that, given an object
name, generates affordances according to a probability
distribution that matches the used training data. Quali-
tatively results also indicate that the model manages to
generalize, both to previously unseen objects and ac-
tions.

The paper is organized as follows. In Section II and
III we give a brief literature review on affordances from
different fields. The developed method is described

in Section IV, and results from the evaluation are pre-
sented in Section V. The paper is finalized by conclu-
sions in Section VI.

2 Affordances
When learned, the mapping G can be used in several
ways in artificial systems, for example, by visually
identifying objects in the environment or in the ver-
bal dialogue with the user, suitable actions can be in-
ferred by applying G to the observed objects. The ob-
jects and actions can then be used for shared planning
or intent recognition (Bonchek-Dokow and Kaminka,
2014), thus allowing closer cooperations with the user.

For example, the mapping G may be used in a robot
to decide how it should act within a given context that
affords certain actions. In HRI, a service robot may for
example suggest its user to read a book after it being
visually detected or mentioned. Affordances may also
be useful for object disambiguation. When a robot is
told to “pick it up!”, the robot only has to consider ob-
jects that are “pickable” in the current scene (E. Hor-
ton et al., 2012). Alternatively, affordances may be
used to infer the human’s intention, which may guide
the robot’s behavior (Bonchek-Dokow and Kaminka,
2014). If a user expresses will of talking to his children,
a robot may infer that the user want to call them, and
suggest making a phone call. Inference of affordances
may also be used to design robots that are understand-
able by humans, since mutually perceived affordances
may contribute to explaining a robot’s behavior (Hell-
ström and Bensch, 2018), and thereby increase interac-
tion quality (Bensch et al., 2017).

Classical planning require knowledge about the ac-
tions that are possible in a certain situation, i.e. its af-
forded actions. For simple scenarios, it could suffice to
enumerate all objects in the current scene, to later score
their affordances and finally select the most promising
to activate.

Affordances can be organized in a hierarchy, thus ex-
posing relations or subsumptions between actions (An-
tanas et al., 2017; Zech et al., 2017). Assuming that
a door affords the action open, it is clear that in order
to be opened, several actions must be performed in a
precise sequence (e.g. turn the handle, push the han-
dle). Objects that offer the same grouped sequence of
actions could then be represented as similar in a latent
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space.
Antanas et al. (Antanas et al., 2017) relate affor-

dances to the symbol grounding problem. In the at-
tempt of grounding the object door, we could say it is
an object affording open, close, etc.: it is grounded over
those actions. Further stress is also put on describing
affordances as relations between objects and qualities
of objects. A pear can be cut with a knife because it’s
soft, while a hard surface could instead be just scraped.
The blade of the knife affords cut only if used in con-
junction with soft enough objects. This relational hy-
pothesis is supported by neuroscience studies showing
how motor cortices are activated faster if a tool is pre-
sented together with another contextual object, rather
than alone (Borghi et al., 2012).

Depending on the desired level of abstraction, af-
fordances can be represented on different levels (Zech
et al., 2017). We broadly distinct two categories,
namely symbolic and sub-symbolic. In symbolic form,
affordances are expressed through symbols, and ev-
ery symbol enjoys certain relations with other sym-
bols. This usually gives rise to the possibility of hav-
ing a knowledge-base, containing entities such as af-
fords(knife, cut, pear), and organizing them in a graph.
Sub-symbolic encodings (such as through neural net-
works) are instead useful to obtain percepts (Persiani
et al., 2018). By clustering the perceptual/procedural
space, we obtain entities (the centroids) that may or
may not be utilizable as symbols, depending on the na-
ture of the input space and subsequent calculations.

Inference of affordances from images (Zech et al.,
2017) is an example of sub-symbolic approach. This
is related to object recognition/segmentation, and cor-
responds to associating afforded actions to different vi-
sual regions of the object. Recognized affordance re-
gions can be used for object categorization (Dag et al.,
2010). For example, in a kitchen environment objects
having two graspable regions could be identified as
pans or containers. This is especially useful for robotic
manipulation tasks (Yamanobe et al., 2017): a planner
for a gripper must have knowledge about the geometric
shape of the parts that can actually be grasped.

Ruggeri and Di Caro (Ruggeri and Caro, 2013) pro-
pose methodologies on how to build ontologies of af-
fordances, also linking them to mental models and lan-
guage. If we think at the phrase “The squirrel climbs
the tree”, we can create a mental image for it, imaging
how it reaches the top. If an elephant climbs the tree in-
stead, surely some semantic mismatch will soon arise.
The mental model doesn’t fit because the tree doesn’t
afford climbing to the elephant. The opposite might
instead apply for scenarios like “Lifting a trunk”.

3 Related work
Unsupervised extraction of object-action pairs from
free text corpora has been a relevant point in recent
Natural Language Processing (NLP) research. Differ-
ently from the other methods, corpora can be mined by

different techniques with the goal of finding in an unsu-
pervised manner relationships between objects, proper-
ties of objects and actions. Chao et al. (Chao et al.,
2015) show how in NLP objects and actions can be
connected through the introduction of a latent space.
They argue that building such a space is equivalent
to obtaining a co-occurrence table, referred to as the
“affordance matrix”. In their approach every object-
action word pair is scored through a similarity measure
in the latent space, and only the pairs over a certain
threshold are retained as signaling the presence of af-
fordance. The affordance matrix, together with other
automatically extracted properties and relations (alto-
gether referred to as commonsense knowledge), such as
expected location for objects, can be then used to build
PKS (Planning with Knowledge and Sensing (Petrick
and Bacchus, 2002)) planners (Petrick and Bacchus,
2002; Kaiser et al., 2014).

In (Chen et al., 2019), the authors map semantic
frames to robot action frames using semantic role label-
ing, showing how a language model can yield the likeli-
hood of possible arguments. Their proposed Language-
Model-based Commonsense Reasoning (LMCR) will
give as more probable an instruction such as ”Pour the
water in the glass.” rather than ”Pour the water in the
plate.”. The LMCR is trained over semantic frames
by using mined knowledge about semantic roles and
can be used to rank robot action frames by testing the
different combinations of the available objects. When
searching for an object where to pour water, the LMCR
is used to rank the available objects.

4 Method
We trained a generative model for the one-to-many
mapping G : Objects → Affordances using pairs of
the type <object, action>. These pairs were gener-
ated by semantic role labeling of sentences from a se-
lected corpus. Objects and actions were represented by
wordvectors throughout the process, as is illustrated in
Fig. 1. The model allows to rank the different affor-
dances for a given object name, as names of actions
that can per performed on it. By employing a neural
network model rather than a tabular model we investi-
gate whether wordvectors encoding allows for the gen-
eralization the in mapping object-action.

Corpus
Semantic

Role
Labeling 

Word
Embeddings

Generative
Model

(CVAE) 

Figure 1: Steps taken to obtain the generative model.

4.1 Corpus
As data source we used the Yahoo! Answers Manner
Questions (YAMC) dataset1 containing 142,627 ques-

1Obtained at https://webscope.sandbox.yahoo.com/catalog.php?datatype=l.
Accessed May 16, 2019.
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tions and corresponding answers. The corpus is a dis-
tillation of all questions gathered from the platform Ya-
hoo! Answers during the year 2007. It is a small subset
of all questions, selected for their linguistic properties
such as good quality measured in terms of vocabulary
and length.

This specific corpus was selected due to the nature
of its content. Our hypothesis is that being a collection
of QA regarding daily living, the actions and objects
being mentioned are more closely related to affordance
than the ones in other corpora such as Wikipedia.

4.2 Semantic Role Labeling
In NLP, semantic roles denote the semantic func-
tions that words have in a given phrase (Carreras and
Márquez, 2004). For example, in the phrase “John
looks in the mirror”, the words “looks in” (denoted V )
refer to the action being performed. “John” identifies
the agent carrying out the action (denotedA0), and “the
mirror” is the object (denoted A1) being target of the
action.

Semantic role labeling (Gildea and Jurafsky, 2002) is
the task of assigning semantic roles to words or groups
of words in a sentence. A variety of tools exist for this
task, with different conventions for the associated roles.
As an example, for (Sutherland et al., 2015), the SE-
MAFOR parser (Das et al., 2010) was used to infer hu-
man intention in verbal commands to a robot. In the
current paper we used the parser in SENNA (Collobert
et al., 2011), which is a software tool distributed with a
non-commercial license.

After parsing the corpus using SENNA, phrases with
semantic roles A1 and V of size one were selected.
Each action V was lemmatized into the basic infini-
tive form since we were not interested in discriminating
temporal or other variants of the verbs.

Finally, all pairs (A1,V ) that appeared at least
seven times were used to create data samples <object,
action>. This number was found to filter out spurious
pairs. A fictional example illustrating possible gener-
ated sample pairs <object, action> is shown in Table
4.2.

Phrase <object, action>
Add flour. <flour, add>
Crack the egg. <egg, crack>
Set the mixer on two steps. <mixer, set>
Whip using the mixer. <mixer, use>
Open the oven. <oven, open>
Enjoy the cake. <cake, enjoy>

Table 4.2 Examples of object-action pairs generated
from phrases in a recipe.

Objects and actions are further filtered based on a
concreteness value (Kaiser et al., 2014), that corre-
spond to how close they are to being physical entities
rather than abstract ones. To do so, for every sense of
every object we navigate the WordNet entity hierarchy

and retain that sense only if it is a child node of physi-
cal entity. Only objects with a ratio of physical senses
above a certain threshold are kept. We apply the same
procedure to actions but regarding them as physical if
they are child of move, change, create, make.

4.3 Dataset
The words in each generated pair <object, action>
were converted to wordvectors to provide numeric data
to be used in the subsequent experiments. All data was
divided into a training set comprising of 734,002 pairs,
and a test set comprising 314,572 pairs. Special care
was taken to include different objects in training and
test data sets. This would allow us to test in a more
aggressive way the generalization capabilities of the
trained models. The data contained NO = 33,655 dis-
tinct object names and NA = 11,923 distinct action
names.

4.4 Word Embeddings
Word embeddings (Collobert et al., 2011) model every
word x as a dense vector Wx. Words that co-occur of-
ten in the corpus have similar associated vectors, and
enjoy linear or non-linear properties reflecting seman-
tic or syntactic relationships such as analogies(Drozd
et al., 2016). Wking −Wman ≈ Wqueen −Wwoman

(semantic analogy), or Wlift − Wlifted ≈ Wdrop −
Wdropped (syntactic analogy). Similarity of words is
often measured though cosine distance of the vectors.
For a review on analogy tests see (Finley et al., 2017).

GloVe (Pennington et al., 2014) and Word2Vec
(Mikolov et al., 2013) are common approaches to cre-
ate word embeddings. We trained Word2Vec over
YAMC to get embeddings for words that were most
specific for our dataset. The selected dimensionality
for the wordvectors was 100.

4.5 Generative Model
We compare three different models in how good they
are in predicting P (A|O) provided the evidence in the
data. A Conditional Variational Autoencoder (CVAE)
(Doersch, 2016) trained on off-the-shelf GloVe em-
beddings with dimensionality 200, a CVAE trained on
word2vec embeddings fitted on the YAMC dataset, a
K-NN model.

4.5.1 Conditional Variational Autoencoder
A CVAE is a trainable generative model that learns
a conditional probability distribution P (A|O) while
keeping a stochastic latent code in its hidden lay-
ers. They can be divided into two coupled layers:
an encoder and a decoder. The encoder transforms
the input distribution into a certain latent distribution
Qφ(z|A,O), while the decoder reconstructs the orig-
inal vectors from its latent representation z together
with the conditioning input o, with output distribution
equal to Pϕ(A′|z, o).

The encoder’s latent layer is regularized to be close
to certain parametric prior Qϑ(z|O). The lower-bound
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loss function for the CVAE is:

LCV AE = E[log Pϕ(A′|z, o)]−
λDKL(Qφ(z|A,O)||qϑ(z|O))

(1)

The first term accounts for how good the autoen-
coder reconstructs the input given its latent represen-
tation. The second term regularizes the hidden latent
space to be close to a certain posterior distribution. The
factor λ balances how regularization is applied during
learning. Starting from zero it is linearly grown up to
one as the learning epochs advance. This technique ad-
dresses the vanishing latent variable problem and is re-
ferred to as KL annealing (Bowman et al., 2016).
ϕ, φ, ϑ denotes the three disjoint sets of parameters

of the components that are simultaneously involved
in learning. More specifically, they represent set of
weights for the three neural network composing the
CVAE. The CVAE was trained using the training set
generated as described above, and was implemented
using the Keras (Chollet et al., 2015) library for Python.

In order to search for a most direct relationship be-
tween objects and actions in wordvectors space, we
keep the autoencoder with one hidden layer in both en-
coder and decoder. Nevertheless, nonlinearity of the
output function of the hidden units proved necessary
to yield a high accuracy. We set the dropout value for
the hidden layers of the autoencoder to 0 (no features
are dropped during the training phase), as this setting
proved better performance in all of the experiments.

4.5.2 Nearest Neighbor
For a given input object o, the Nearest Neighbors model
predicts P (A|o) as P (A|o′), where o′ is the closest ob-
ject in training data. o′ is found by cosine similarity
of the wordvectors o and o′. P (a′|o′) is computed as
N(a′, o′)/N(o′), where N(.) is the counting of occur-
rences in training data.

Input Output
door open, pull, put, loosen, grab, clean, leave,

get, slide, shut
egg hatch, poach, implant, lay, crack, peel,

spin, whip, float, cook
wine pour, add, mix, dry, rinse, melt, soak, get,

use, drink
book read, get, write, purchase, find, use, sell,

print, buy, try
cat declaw, deter, bathe, bath, spay, pet, scare,

feed, attack
money loan, inherit, double, owe, withdraw, save,

waste, cost, earn, donate
knife scrape, cut, brush, chop, use, roll, pull, re-

move, slide, rub
body trick, adapt, tone, adjust, recover, starve,

cleanse, respond, flush, exercise

Table 4.5.2 Examples of actions generated by the
CVAE. For every input object the 10 most probable out-
puts are sorted from high to low probability.

5 Evaluation

By sampling the model, we obtain names of possi-
ble actions A. As described above, the sampling fol-
lows the estimated conditional probabilities P (A|O).
Hence, actions with high probability are generated
more frequently than actions with low probability.
Since the CVAE outputs actions in numeric wordvec-
tor format, these actions are “rounded” to the closest
action word appearing in the dictionary. This is equiva-
lent to a K-NN classification with K = 1. A few exam-
ples of the most probable generated actions for CVAE
are shown in Table 4.5.2.

Evaluation of generative models is in general seen
as a difficult task (Theis et al., 2015; Hendrycks and
Basart, 2017; Kumar et al., 2018), and one suggestion
is that they should be evaluated directly with respect to
the intended usage (Theis et al., 2015). In that spirit we
evaluated how often our models produced affordances
that were correct in the sense that they exactly matched
test data with unseen objects. For a model Pk(A|O) we
define an accuracy measure as follows:

Algorithm 1 Accuracy computation of a model
Pk(A|O)

1: procedure ACCURACY(Pk(A|O), l,m,test set)
2: s← size(test set)
3: x← 0
4: for (oi, ai) ∈ test set do
5: Ao ← Pk(A|oi) . Output of the k-th

model, sampled m times, with m >> 1
6: SORT(Ao) . The list of actions is sorted in

descending order
7: selil ← FIRST(Ao, l) . The most frequent

actions up to l are kept
8: if ai ∈ selil then
9: x← x+ 1 . x is increased when ai is

contained in selil
10: end if
11: end for
12: accuracyk ← x

s
13: end procedure

This measure tests how good a model replicates test
data, and is meant to be a quantitative evaluation. Two
different CVAEs are evaluated, the first with data en-
coded with GloVe-200 embeddings, the second with
word2vec embeddings obtained over YAMC. We eval-
uated CVAE, K-NN and a baseline model by the de-
scribed procedure. As baseline model we used a prior
P (A|O) = P (A), that is the probability distribution of
actions over all objects. For every action a, P (a) =
Na/Ntot, where Na is the number of times a appeared
in the dataset. Accuracy computed on the test set for
the different models are presented in Figure 2.
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Figure 2: Computed accuracy for the different models.
The X axis shows different percentages of retained out-
put actions, starting from the most probable ones (pa-
rameter L). The Y axis shows the obtained accuracy.

The K-NN model fails to generalize the task: jump-
ing to the closest object and outputting the empirical
probability for it yield performances just above zero,
also lower to the baseline.

We explain the K-NN performance as being this low
due to the fact that similarity of objects (using cosine
distance) does not encode similarity of associated ac-
tions. Supporting this hypothesis there is also the ne-
cessity of having nonlinear layers in the autoencoder in
order to achieve high accuracy values. From this con-
sideration we conclude that in word embedding space
the mapping object-action is non-linear using the off-
the-shelf embedding features.

The two CVAEs performance is higher, reaching a
score of 0.35 with the off-the-shelf wordvectors. Ad-
ditionally, we observed that training word2vec embed-
dings over the corpus lead to overfitting: performance
computed over the test set comprising unseen objects is
lower than the performance obtained with general pur-
pose wordvectors.

6 Conclusions

With the goal of mining knowledge about affordance
from corpora, we presented an unsupervised method
that extracts object-action pairs from text using Seman-
tic Role Labeling. The extracted pairs were used to
train different models predicting P (A|O): two Condi-
tional Variational Autoencoders and one K-NN model.
The presented results show that, on unseen objects, a
CVAE trained on off-the-shelf wordvectors performs
significantly better than the other tested models. Fur-
thermore, we show how the K-NN model fails to gen-
eralize on our specific benchmark task, having perfor-
mance even lower than the baseline model.

Knowledge about affordance, even in simple forms
such as a object-action mapping, is relevant for appli-
cations such as inference of intent or robot planning. In
robotics, planning requires a high amount of specifica-

tions inserted in the domain description, usually result-
ing in most of the decision rules being hand-crafted.
With this paper, we present an algorithm allowing the
leverage of knowledge about affordance present in cor-
pora, thus allowing for a method of generating of at
least a part the domain automatically.

Future work related to this research will be about im-
proving the method by which the object-action pairs are
mined, followed by reasearch on how this knowledge
can be transformed to be used for robotic planning and
intent recognition problems.
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Abstract

This paper documents the creation of a
large-scale dataset of evaluative sentences
– i.e. both subjective and objective sen-
tences that are found to be sentiment-
bearing – based on mixed-domain profes-
sional reviews from various news-sources.
We present both the annotation scheme
and first results for classification experi-
ments. The effort represents a step to-
ward creating a Norwegian dataset for
fine-grained sentiment analysis.

1 Introduction

Sentiment analysis is often approached by first lo-
cating the relevant, sentiment-bearing sentences.
Traditionally, one has distinguished between sub-
jective and objective sentences, where only the
former were linked to sentiment (Wilson, 2008).
Objective sentences typically present facts about
the world, whereas subjective sentences express
personal feelings, views, or beliefs. More recently,
however, it has become widely recognized in the
literature that subjectivity should not be equated
with opinion (Liu, 2015): On the one hand, there
are many subjective sentences that do not express
sentiment, e.g., I think that he went home, and on
the other hand there are many objective sentences
that do, e.g., The earphone broke in two days, to
quote some examples from Liu (2015). Addition-
ally, sentences often contain several polarities in a
single sentence, which complicates the labeling of
a full sentence as positive or negative.

This paper documents both the annotation ef-
fort and first experimental results for sentence-
level evaluative labels added to a subset of the
data in the Norwegian Review Corpus (NoReC)
(Velldal et al., 2018), a corpus of full-text reviews
from a range of different domains, collected from
several of the major Norwegian news sources.

The annotated subset, dubbed NoReCeval, covers
roughly 8000 sentences across 300 reviews and 10
different thematic categories (literature, products,
restaurants, etc.).

Sentences are labeled to indicate whether they
are evaluative, i.e. where they are intended by the
author (or some other opinion holder) to serve as
an evaluation or judgment. They are not, however,
annotated with respect to positive/negative polar-
ity. The reason for this is that polarity is often
mixed at the sentence-level. Hence, we defer an-
notating polarity to a later round of phrase-level
annotation. Although most of the sentences la-
beled as evaluative will be subjective and personal,
they can also include objective sentences. More-
over, our annotation scheme singles out a partic-
ular category of evaluative sentences called fact-
implied non-personal, following the terminology
of Liu (2015). Evaluative sentences are also fur-
ther sub-categorized as to whether they are consid-
ered on-topic with respect to the object being re-
viewed, and whether they express the first-person
view of the author.

The annotation scheme is described in further
detail in Sections 3 and 4. We start, however, by
briefly outlining relevant previous work and back-
ground in Section 2. In Section 5 we describe
more practical aspects of the annotation procedure
and go on to analyze inter-annotator agreement in
Section 6, before Section 7 summarizes the result-
ing dataset. In Section 8, we analyze the corpus
experimentally and present a series of preliminary
classification experiments using a wide range of
state-of-the-art sentiment models including CNNs,
BiLSTMs and self-attention networks, before we
in Section 9 conclude and outline some remaining
avenues for future work. The dataset and the an-
notation guidelines are made available, along with
code for replicating the experiments.1

1https://github.com/ltgoslo/norec_eval
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2 Background and related work

In this section we briefly review some of the pre-
vious annotation efforts (for English) that are most
relevant for our work.

Toprak et al. (2010) present a sentiment-
annotated corpus of consumer reviews. In a first
pass, sentences are annotated with respect to rel-
evancy to the overall topic and whether they ex-
press an evaluation. In a second pass, sentences
that were marked as relevant and evaluative are
further annotated with respect to whether they are
opinionated (i.e. express a subjective opinion) or
polar-facts (i.e. factual information that implies
evaluation). In addition to evaluations, they also
identify sources (opinion holders), targets (the en-
tity or aspect that the sentiment is directed to-
wards), modifiers, positive/negative polarity and
strength, and anaphoric expressions.

Also working with review data, Scheible and
Schütze (2013) present a simplified annotation
scheme which appears similar in spirit to the
first pass of annotation described by Toprak et al.
(2010). Scheible and Schütze (2013) annotate sen-
tences with respect to what they call sentiment rel-
evance, indicating whether they are informative
for determining the sentiment of a document. Sen-
timent relevant sentences can be either subjective
or objective, but must be on topic and convey some
evaluation of the object under review.

Van de Kauter et al. (2015) present a fine-
grained scheme for annotation of polar expres-
sions at the sub-sentential level. They distinguish
between two types of sentiment; explicit senti-
ment on the one hand, corresponding to private
states, and implicit sentiment on the other, cor-
responding to factual information that implies a
positive/negative evaluation (van de Kauter et al.,
2015). The latter category corresponds to what
is refered to as polar-facts by Toprak et al.
(2010) or objective polar utterances by Wilson
(2008). The annotations of van de Kauter et al.
(2015) also identify sources, targets, and modi-
fiers. Acknowledging that the distinction between
implicit/explicit sentiment is not always clear cut,
polar expressions are labeled with a graded numer-
ical value indicating a continuum ranging from ob-
jective to subjective.

Liu (2015) proposes various sub-
categorizations of what he calls opinionated
expressions along several dimensions. Among
the most relevant for our work is the distinction

between subjective and fact-implied opinions. The
subjective expressions are further sub-categorized
as either emotional or rational, and the fact-
implied can be either personal or non-personal
(Liu, 2015). In the order they are listed above,
these sub-categorizations can perhaps be seen to
correspond to four bins of the subjective–objective
continuum defined by van de Kauter et al. (2015).
Liu (2015) also differentiates between first-person
and non-first-person opinions, where non-first-
person indicates that the opinion is held by
someone other than the author of the sentence.

In the next section we describe the choice of la-
bel categories used in our sentence-level annota-
tion of NoReC reviews.

3 Annotation scheme

Our annotation approach corresponds to some de-
gree to that of Scheible and Schütze (2013) or
the first step described by Toprak et al. (2010) –
see discussion above – in that we assign labels
only at the sentence-level and without marking
polarity (as this might be mixed at the sentence-
level), and include both subjective and objective
sentences. However, our approach is slightly more
fine-grained in that we also explicitly annotate
evaluative sentences with respect to being on-topic
or not, and with respect to expressing a first-person
opinion of the author or not. Finally, we also sin-
gle out one particular sub-class of evaluative sen-
tences, namely those that in the terminology of
Liu (2015) are fact-implied non-personal. These
sentences might require special treatment, where
proper identification might be more dependent on
taking the overall domain and discourse context
into account (Liu, 2015). In this section we pro-
vide more details and examples for the various la-
bel types in our annotation scheme.

Evaluative Following Toprak et al. (2010), we
use the term evaluative to refer to any sentence that
expresses or implies a positive or negative evalua-
tion, regardless of its subjectivity. An example of
an evaluative sentence can be found in (1) below
which contains the positive evaluation signaled by
the adjective lekkert ‘tastefully’.

(1) Det
The

hele
whole

var
was

også
also

lekkert
tastefully

presentert.
presented.

‘Everything was tastefully presented.’

Our EVAL label roughly comprises the three
opinion categories described by Liu (2015) as
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emotional, rational and fact-implied personal.
Sentences including emotional responses (arousal)
are very often evaluative and involve emotion
terms like e.g. elske ‘love’, like ‘like’ or hate
‘hate’. Sentences that lack the arousal we find
in emotional sentences may also be evaluative, for
instance by indicating worth and utilitarian value,
e.g. nyttig ‘useful’ or verdt (penger, tid) ‘worth
(money, time)’.

Evaluative fact-implied non-personal There
are actually two types of evaluative sentences in
our scheme: simply evaluative (labeled EVAL) as
in (1) above, or the special case of evaluative fact-
implied non-personal (FACT-NP).

A sentence is labeled as FACT-NP when it is
a fact or a descriptive sentence but evaluation is
implied, and the sentence does not involve any
personal experiences or judgments. (In contrast,
objective sentences expressing personal experi-
ences – so-called fact-implied personal in the ter-
minology of Liu (2015) – are not seen as ob-
jective to the same degree, and are labeled as
EVAL.) FACT-NP-labeled sentences are usually
understood to be evaluative because we interpret
them based on common (societal, cultural) back-
ground knowledge, and they are often highly con-
text dependent. The example in (2) illustrates a
FACT-NP-labeled sentence which simply states
factual information, however, within the context
of a car review, it clearly expresses a positive eval-
uation.

(2) 178
178

hestekrefter.
horsepowers.

‘178 horsepower.’

Note that the definition of FACT-NP departs from
what at first might appear like similar categories
reported in the literature, like factual implicit sen-
timent (van de Kauter et al., 2015), polar-facts
(Toprak et al., 2010) or objective polar utter-
ances (Wilson, 2008), in that it does not include
so-called personal fact-implied evaluations (Liu,
2015). This latter class is in our scheme subsumed
by EVAL. The reason for this is that we found them
to have a more explicit and personal nature, sepa-
rating them from the purely objective FACT-NP
sentences described above.

Non-evaluative Sentences that do not fall into
either of these two categories (EVAL and
FACT-NP) are labeled non-evaluative (NONE). An
example of this category can be found in (3),

which is taken from a restaurant review. Even
though this sentence clearly describes a personal
experience, it is still a factual statement that does
not express any sort of evaluation.

(3) Jeg
I

har
have

aldri
never

spist
eaten

den
the

oransje
orange

varianten
variant

av
of

sorten,
kind.the,

sa
said

Fredag.
Fredag.

‘I have never tasted the orange kind, said Fredag’

On-topic or not Sentences that are identified as
evaluative, in either the EVAL or FACT-NP sense,
are furthermore labeled with respect to two other
properties: (i) whether the author is the one ex-
pressing the evaluation, and (ii) whether the eval-
uation is on topic or not.

Sentences that are not-on-topic are labeled
¬OT. For an example, see (4), where the review is
about a music album, but the sentence expresses an
evaluation about the author upon whose book the
album is based, and does not reflect the reviewer’s
evaluation of the album itself.

(4) Jeg
I

liker
like

Aune
Aune

Sand.
Sand

‘I like Aune Sand [name of author].’

The class of sentiment-bearing sentences that are
not considered relevant or on-topic are typically
not marked in other annotation efforts, e.g. by
Toprak et al. (2010) or Scheible and Schütze
(2013). However, from a modeling perspective,
we expect it will be difficult in practice to cor-
rectly identify evaluative sentences that are on-
topic while leaving out those that are not, at least
without going beyond the standard sentence-level
models typically applied in the field today and
move towards more discourse-oriented modeling.
By explicitly labeling the not-on-topic cases we
are able to quantify this effect, both with respect
to human annotations and system predictions.

First person or not Sentences where the author
is not the holder of the evaluation, are labeled ¬FP
(‘not-first-person’). An example is provided in (5)
where the holder of the opinion is not the author of
the review, but rather the subject noun phrase ekte
astronauter ‘real astronauts’.

(5) Ekte
real

astronauter
astronauts

har
have

også
also

sett
seen

filmen
movie.the

og
and

skryter
boast

hemningsløst
unrestrainedly

av
of

dens
its

autentisitet
authenticity
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‘Real astronauts have also seen the movie and
boast highly of its authenticity’

Mixed class sentences A sentence may include
several types of evaluative expressions. In these
cases, we label a sentence as EVAL if it contains
both EVAL and FACT-NP, as in example (6) be-
low.

(6) Dette
this

gir
gives

et
an

gjennomsnitt
average

på
on

27,3
27,3

MB/sek
MB/sec

som
which

er
is

meget
very

bra.
good

‘This gives us an average of 27,3 MB / sec,
which is very good.’

Similarly, we refrain from labeling ¬OT and ¬FP
if a sentence contains any sentiment expression
that is first-person or on topic respectively.

4 Annotation challenges / special cases

Below, we provide some more details about partic-
ular annotation decisions related to various special
cases, including some challenges.

Modality In our annotation guidelines, the treat-
ment of modals depends on the specific modal
verb in use. In particular, we found that some
modals like burde ’should’ are frequently used to
indicate evaluation, as in the example (7) below.

(7) Hun
She

burde
should

hatt
had

med
with

seg
herself

en
an

opplevelse
experience

i
in

tillegg.
addition.

‘On top of this she should have brought with her
an experience.’

Conditionals Conditional sentences also re-
quire special attention. In particular, so-called ir-
realis sentences, i.e., sentences that indicate hy-
pothetical situations, have been excluded in some
previous sentence-level annotation efforts (Toprak
et al., 2010), but we wish to include them as long
as they clearly indicate evaluation. A seemingly
common use of irrealis is to indicate negative eval-
uation by expressing a future condition, indicating
that the current situation is less optimal, as in (8)
below.

(8) Bare
Only

Elvebredden
Elvebredden

får
gets

nok
enough

arbeidskraft
work-power

[. . . ]
[. . . ]

gleder
look-forward

Robinson
Robinson

&
&

Fredag
Fredag

seg
themselves

til
to

å
INF

komme
come

tilbake
back

‘If only Elvebredden had more waiters, Robinson
& Fredag would gladly return’

Questions Questions often have a similar role
in expressing evaluations as the conditionals dis-
cussed above. Often a sentence may question
some aspect of the object in question, also indi-
cating a negative evaluation of the current state of
the object, as in (9) below, labeled EVAL.

(9) Et
A

“mimrespill”
memory-game

skal
should

vel
well

stimulere
stimulate

mer
more

enn
than

korttidsminnet?
shortterm.memory.the?

‘Shouldn’t a “memory game” stimulate more
than the short term memory?’

Cross-sentential evaluation An evaluative ex-
pression may sometimes span across several sen-
tences. Since our annotation is performed at the
sentence-level, annotations may not span across
sentences. We decided to label adjacent sentences
that were strongly related identically. In examples
(10) and (11) below, for instance, the first sen-
tence contains a general comment about the action
scenes penned by a given book author, but this is
tied to the topic of the review (the author’s new
book Gjenferd ‘Ghost’) only in the sentence fol-
lowing it. In our annotation, these two sentences
were both annotated as EVAL.

(10) Min
my

største
biggest

innvending
objection

er
is

at
that

actionscenene
action.scenes.the

til
of

Nesbø
Nesbø

har
has

en
a

tendens
tendency

til
to

å
INF

få
get

noe
something

tegneserieaktig
cartoon.like

overdrevent
exaggerated

over
over

seg.
themselves

‘My biggest objection is that Nesbø’s action
scenes have a tendency to give an exaggerated
cartoon-like expression.’

(11) Det
That

gjelder
applies

også
also

i
in

”Gjenferd”.
”Gjenferd”

‘That also applies in ”Gjenferd” [book title].’

Other examples of evaluative expressions span-
ning sentences are lists of reasons following or
preceding a more clearly evaluative expression,
and sentences where the target and polar expres-
sion are split, as in a question–answer structure.

External objective evaluation Another chal-
lenging type of sentence encountered during an-
notation are sentences where the author refers to
prizes or evaluations by people other than the au-
thor, as in (12) below. These expressions are
marked as ¬FP, but evaluation-wise they can be
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seen from two angles: Is the author using the
phrase to express an explicit positive evaluation,
in which case it would be marked as EVAL, or
is the author reporting a fact, in which case it
is marked as FACT-NP. The same problem ap-
plies to words like populær ’popular’ or folkekjær
’loved by the people’, although these words tend
towards EVAL, while nominations like in (12) tend
towards FACT-NP.

(12) [...]
[...]

er
are

både
both

Ejiofor
Ejiofor

og
and

Fassbender
Fassbender

Oscar-nominert.
Oscar-nominated .
‘[...]] both Ejiofor and Fassbender have been
Oscar-nominated.’

In this case, the evaluation has been performed by
a different group of people at an earlier stage and
the evaluation is also not of the object being re-
viewed, and is therefore marked as ¬OT, ¬FP and
FACT-NP.

Higher-level topic evaluation At times the an-
notators also found sentences where the evaluation
is at a higher ontological level than the object be-
ing reviewed, as in sentence (13), where the re-
view is about a specific edition of a series of games
called Buzz, but the evaluation is about the series
as a whole.

(13) Da
Then

tror
think

jeg
I

Buzz
Buzz

kan
can

fenge
captivate

i
in

mange
many

år
years

til
more

[...].
[...]

‘Then I think Buzz [game] can captivate for
many more years’

In these cases, it was decided that as long as the
object being reviewed is a close subclass of the
target of the evaluation, it is reasonable to assume
that the author wrote this sentence in order to say
something about the overall quality of the actual
object under review, and thus the sentence above
is labeled EVAL.

5 Annotation procedure

Annotation was performed using the WebAnno
tool (Eckart de Castilho et al., 2016), and anno-
tators were able to see the whole review in order
to judge sentences in context. There were five
annotators in total (students with background in
linguistics and language technology) and all sen-
tences were doubly-annotated. In cases of dis-
agreement, another of the annotators would con-
sider the sentence a second time and resolve the

conflict. Problematic sentences would be dis-
cussed at a meeting with all annotators present.

The annotation guidelines were fine-tuned in
three rounds using two sets of texts. The first set
contained 10 texts, representing each of the the-
matic categories in NoReC, in order to provide
the annotators with as much variation as possi-
ble. These texts were annotated by two of the an-
notators, and the results were discussed, forming
the basis of the guidelines. The same annotators
then annotated a second set of 8 texts, trying to
strictly adhere to the guidelines. After a second
fine-tuning, the remaining annotators would an-
notate the first set, and the guidelines were again
fine-tuned in accordance with the new disagree-
ments. These texts are not included when calcu-
lating the agreement scores reported below.

6 Inter-annotator agreement

Inter-annotator agreement scores for the main
three categories EVAL, FACT-NP, and NONE are
presented in Table 1, calculated as F1-scores be-
tween pairs of annotators on the complete set of
sentences. We find that agreement among the an-
notators is high for the EVAL sentences and for
the overall score. Agreement is much lower for the
FACT-NP label, however, likely reflecting the fact
that these sentences have no clear sentiment ex-
pression, with interpretation more heavily depend-
ing on context and domain-specific knowledge.

We also computed annotator agreement for the
attribute categories ¬OT and ¬FP, restricted to
the subset of sentences labeled EVAL,2 yielding
F1 of 0.59 and 0.56, respectively. In other words,
we see that the agreement is somewhat lower for
these subcategories compared to the top-level la-
bel EVAL. Possible reasons for this might be that
although problems with these attributes seem to
be resolved quickly in annotator meetings, they
might pose difficulties to the individual annotator,
as sometimes these attributes can be context de-
pendent to an extent that makes them difficult to
infer from the review text by itself.

Kenyon-Dean et al. (2018) problematizes a
practice often seen in relation to sentiment anno-
tation, namely that complicated cases – e.g. sen-
tences were there is annotator disagreement – are
discarded from the final dataset. This makes the

2For the FACT-NP subset there were too few instances
of these attributes (prior to adjudication) for agreement to be
meaningfully quantified; 1 for ¬OT and 0 for ¬FP.
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EVAL FACT-NP NONE all

0.84 0.22 0.87 0.82

Table 1: F1 inter-annotator agreement for each
top-level label.

data non-representative of real text and will arti-
ficially inflate classification results on the annota-
tions. In our dataset, we not only include the prob-
lematic cases, but also explicitly flag sentences for
which there was disagreement among annotators
(while also indicating the resolved label). This
can be of potential use for both error analysis and
model training, as we will also see in Section 8.3.
Finally, note that we also found interesting differ-
ences in agreement across review domains and this
too is something we return to when discussing ex-
perimental results in Section 8.3.

7 Corpus statistics

Table 2 presents the distribution of the annotated
classes (EVAL, FACT-NP and NONE), as well as
the attributes ¬OT and ¬FP in terms of absolute
number and proportion of sentences across the dif-
ferent review domains (screen, music, literature,
etc.). The resulting corpus contains a total of 298
documents and 7961 total sentences.

In general, we may note that there is a large
proportion of evaluative sentences in the corpus, a
fact which is unsurprising given the review genre.
EVAL sentences are in a slight majority in the cor-
pus (just above 50%) followed by NONE which
accounts for 46% of the sentences, while the
FACT-NP label makes up a little less than 4% of
the sentences.

We observe that the evaluative sentences (EVAL
or FACT-NP) are not evenly distributed across the
different thematic categories. The category with
the highest percentage of evaluative sentences –
restaurants – tend to be written in a personal style,
with vivid descriptions of food and ambience. In
contrast, stage reviews tend to be written in a non-
personal style, largely avoiding strong evaluations.
Unsurprisingly, the product category has a higher
number of FACT-NP sentences, as they contain
several objective but evaluative product descrip-
tions. The low proportion of EVAL sentences
found in the literature category is somewhat sur-

prising, as one would not normally consider liter-
ature reviews as especially impersonal. However,
music reviews in this corpus tend to be written in
a personal, informal style, which is reflected in the
high rate of EVAL sentences.

The corpus contains a total of 396 ¬OT sen-
tences and 109 ¬FP sentences. Most of the eval-
uative sentences are thus on topic, and most eval-
uations belong to the author. The percentages of
the attributes ¬OT and ¬FP are quite evenly dis-
tributed among the different domains, with the ex-
ception of one apparent outlier: the 31.33% of
¬FP sentences in the sports domain. This is prob-
ably due to the interview-like style in one of the
reviews, reporting the evaluations of several dif-
ferent people. Reviews about video games seem
to have a slightly higher percentage of ¬OT sen-
tences. This could be due to a large number of
comparisons with earlier games and different gam-
ing consoles in these texts.

8 Experiments

In this section we apply a range of different ar-
chitectures to provide first baseline results for pre-
dicting the various labels in the new corpus. Data
splits for training, validation and testing are inher-
ited from NoReC.

8.1 Models
We provide a brief description of the various clas-
sifiers below. Additionally, we provide a major-
ity baseline which always predicts the EVAL class
as a lower bound. Note that all classifiers except
the bag-of-words model take as input 100 dimen-
sional fastText skipgram embeddings (Bojanowski
et al., 2016), trained on the NoWaC corpus (Gue-
vara, 2010), which contains over 680 Million to-
kens in Bokmål Norwegian. The pre-trained word
embeddings were re-used from the NLPL vector
repository3 (Fares et al., 2017).

BOW learns to classify the sentences with a
linear separation estimated based on log likeli-
hood optimization with an L2 prior using a bag-
of-words representation.

AVE (Barnes et al., 2017) uses the same L2 lo-
gistic regression classifier as BOW, but instead us-
ing as input the average of the word vectors from
a sentence.

CNN (Kim, 2014) is a single-layer convolu-
tional neural network with one convolutional layer

3http://vectors.nlpl.eu/repository/
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EVAL FACT-NP NONE ¬OT ¬FP
Domain Docs Sents # % # % # % # % # %

Screen 110 2895 1359 46.94 50 1.73 1486 51.33 160 11.36 20 1.42
Music 101 1743 1055 60.53 48 2.75 640 36.72 100 9.07 23 2.09
Literature 35 930 327 35.16 31 3.33 572 61.51 50 13.97 18 5.03
Products 22 1156 619 53.55 127 10.99 410 35.47 36 4.83 10 1.34
Games 13 520 278 53.46 23 4.42 219 42.12 37 12.29 6 1.99
Restaurants 6 268 167 62.31 10 3.73 91 33.96 4 2.26 6 3.39
Stage 8 264 100 37.88 6 2.27 158 59.85 7 6.60 0 0.0
Sports 2 149 78 52.35 5 3.36 66 44.3 2 2.41 26 31.33
Misc 1 36 20 55.56 0 0.0 16 44.44 0 0.0 0 0.0

Total 298 7961 4003 50.28 300 3.77 3658 45.95 396 9.20 109 2.53

Table 2: Distribution of documents, sentences and labels across the thematic categories of reviews. Note
that the percentages for ¬OT and ¬FP are relative to evaluative (EVAL or FACT-NP) sentences.

on top of pre-trained embeddings. The embed-
ding layer in convoluted with filters of size 2, 3,
and 4 with 50 filters for each size and then 2-max
pooled. This representation is then passed to a
fully connected layer with ReLU activations and
finally to a softmax layer. Dropout is used after
the max pooling layer and ReLU layer for regular-
ization.

BILSTM is a one-layer bidirectional Long
Short-Term Network (Graves et al., 2005) with
word embeddings as input. The contextualized
representation of each sentence is the concatena-
tion of the final hidden states from the left-to-
right and right-to-left LSTM. This representation
is then passed to a softmax layer for classification.
Dropout is used before the LSTM layers and soft-
max layers for regularization.

SAN is a one-layer self-attention network
(Vaswani et al., 2017) with relative position rep-
resentations (Shaw et al., 2018) and a single set
of attention heads, which was previously shown
to perform well for sentiment analysis (Ambart-
soumian and Popowich, 2018). The network uses
a variant of the attention mechanism (Bahdanau
et al., 2014) which creates contextualized repre-
sentations of the original input sequence, such that
the contextualized representations encode both in-
formation about the original input, as well as how
it relates to all other positions.

8.2 Experimental Setup
We apply the models to five experimental se-
tups. The main task is to classify each sentence
as evaluative (EVAL), fact-implied non-personal
(FACT-NP), or non-evaluative (NONE). In order
to provide a view of how difficult it is to model
the secondary properties mentioned in Section 3,

Model EVAL FACT-NP NONE Overall

majority 66.2 0.0 0.0 49.5
BOW 69.6 0.0 64.4 65.8
AVE 75.4 0.0 70.4 71.6
CNN 76.3 (0.7) 0.0 (0.0) 72.2 (0.7) 73.1 (0.3)

BILSTM 76.1 (0.1) 6.0 (4.8) 72.1 (0.1) 72.7 (0.1)

SAN 76.2 (0.1) 7.1 (3.1) 72.3 (0.3) 73.7 (0.1)

Table 3: Per class F1 score and overall micro F1

of baseline models on the main classification task.
For the neural models mean micro F1 and standard
deviation across five runs are shown.

two additional binary classification tasks are per-
formed; determining if the sentence is on topic
(OT) and if the opinion expressed is from a first-
person perspective (FP). Only the best performing
model from the main experiment above is applied
for these subtask, and the model is trained and
tested separately on the two subsets of sentences
annotated as EVAL and FACT-NP, leading to four
binary classification experiments in total.

For all models, we choose the optimal hyper-
parameters by performing a random search on the
development data. Given that neural models are
sensitive to random initialization parameters, we
run each neural experiment five times with differ-
ent random seeds and report means for both per-
class and micro F1 in addition to their standard
deviation.

8.3 Results
Table 3 shows the results for all models on the
main three-way classification task. All classifiers
perform better than the majority baseline (at 49.5

127



F1 overall). Of the two logistic regression classi-
fiers, the AVE model based on averaged embed-
dings as input performs much better than the stan-
dard discrete bag-of-words variant (65.8 vs. 71.6
overall). While the AVE model proves to be a
strong baseline, the three neural models have the
strongest performance. The CNN achieves the best
results on the EVAL class (76.3) and improves 1.8
ppt over AVE on NONE. While overall results are
quite even, the strongest model is SAN – the self-
attention network – which achieves an overall F1

of 73.7. This model also proves more stable in the
sense of having slightly lower variance across the
multiple runs, at least compared to the CNN.

The easiest class to predict is EVAL, followed
closely by NONE. The most striking result is that
is appears very difficult for all models to identify
the FACT-NP class. This is largely due to the few
examples available for FACT-NP, as well as the
fact that FACT-NP sentences do not contain clear
lexical features that separate them from EVAL and
NONE. This confirms the intuitions presented in
Section 3. Only BILSTM and SAN manage to
make positive predictions for FACT-NP, but the
scores are still very low (with 7.1 F1 being the
best) and we see that the variance across runs is
high. An analysis of the strongest model (SAN)
shows that the model tends to confuse FACT-NP
nearly equally with EVAL (15 errors) and NONE
(20 errors), while only correctly predicting this
category 6 times, suggesting this category is dif-
ficult for the models to capture.

Performance per domain Table 4 breaks down
the F1 score of the SAN model across the differ-
ent review domains. We observe that there are
fairly large differences in performance, and fur-
thermore that these can not simply be explained
just by differences in the number of training exam-
ples for each domain (cf. the class distributions in
Table 2). We see that sentences from the literature
reviews appear difficult to classify, despite being
relatively well represented in terms of training ex-
amples, while the opposite effect can be seen for
the games category. The lowest performance is
seen for the product reviews, which is unsurpris-
ing given that – despite having a high number of
examples – it is arguably the most heterogeneous
category in the dataset, in addition to having a rel-
atively high proportion of the difficult FACT-NP
sentences.

Domain F1

Screen 77.5 (2.2)

Music 76.1 (1.3)

Literature 66.0 (1.3)

Products 65.0 (0.8)

Games 77.6 (2.2)

Restaurants 69.6 (1.5)

Stage 70.0 (2.2)

Table 4: Per domain micro F1 score of the SAN

model. Note that the test set does not contain sen-
tences from the Sports or Misc domains.

Human agreement vs model performance We
also computed the inter-annotator agreement
scores per domain, again as pairwise micro F1,
and found that while the agreement tends to vary
less than model performance, the two scores yield
a similar relative ranking of domains in terms of
difficulty. For example, the two domains with the
highest prediction scores, Games and Screen (with
F1 of 77.6 and 77.5, respectively), also have the
highest inter-annotator agreement (82.6 and 83.8).
The two domains with lowest prediction F1, Prod-
ucts and Restaurants (65.0 and 69.6, respectively),
also have the lowest agreement (77.54 and 78.5).

As described in Section 3, while annotator dis-
agreements have been resolved, we have chosen to
mark them in the final dataset. An error analysis
of the classifier predictions show there is a strong
correlation between inter-annotator agreement and
errors that the classification models make (using a
χ2 test, p � 0.01). This suggests that these ex-
amples are inherently more difficult, and lead to
disagreement for both human and machine learn-
ing classifiers.

On-topic and first-person Table 5 shows the
results of applying the SAN architecture to the
four binary tasks. The sentences which are on-
topic (OT) and first-person (FP) are the easiest to
classify (F1 ranging from 92.8 to 99.4), while the
not-on-topic (¬OT) and not-first-person (¬FP) are
very difficult (0.0 – 11.3 F1). None of the mod-
els are able to correctly predict the ¬FP class. In
order to distinguish this class, some kind of co-
reference resolution likely needs to be included in
the model, as simple lexical information cannot
distinguish them from FP. Note, however, that the
prediction scores for ¬FP need to be taken with a
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Model Subset OT ¬OT Avg. FP ¬FP Avg.

SAN
EVAL 93.5 (0.1) 11.3 (4.3) 88.5 (1.0) 99.4 (0.0) 0.0 (0.0) 98.9 (0.0)

FACT-NP 97.2 8 (0.0) 0.0 (0.0) 94.6 (0.0) 92.8 (0.0) 0.0 (0.0) 86.5 (0.0)

Table 5: Per-class and micro F1 for the self-attention network trained to predict whether an example is
on topic (OT) or not (¬OT) or whether the opinion is expressed by the first person (FP) or not (¬FP). The
models are trained and tested on the subset of sentences annotated as evaluative (EVAL) and fact-implied
(FACT-NP).

grain of salt as there are too few instances in the
test data to give reliable estimates; 5 in each of the
EVAL and FACT-NP subsets. The same is true
of the ¬OT predictions for FACT-NP (8 test in-
stances). We see that the network is able to predict
to some degree (11.3) the ¬OT class for EVAL,
but the absolute score is still low, which also re-
flects the inter-annotator scores. Once information
about aspect or target expressions is added to the
data in future annotation efforts, we hope that this
might be leveraged to more accurately predict ‘on-
topicness’.

9 Summary and outlook

This paper has described an annotation effort fo-
cusing on evaluative sentences in a subset of
the mixed-domain Norwegian Review Corpus,
dubbed NoReCeval. Both subjective and objective
sentences can be labeled as evaluative in our anno-
tation scheme. One particular category of objec-
tive sentences, conveying so-called fact-implied
non-personal sentiment, is given a distinct label,
as this category might need special treatment when
modeling. Evaluative sentences are also assigned
labels that indicate whether they are on topic and
express a first-person point of view.

The paper also reports experimental results for
predicting the annotations, testing a suite of differ-
ent linear and neural architectures. While the neu-
ral models reach a micro F1 of nearly 74 on the
three-way task, none of them are able to success-
fully predict the underrepresented minority-class
FACT-NP, misclassifying it nearly equally as of-
ten with EVAL as with NONE. Additional experi-
ments show that it is difficult to classify sentences
as not-on-topic (¬OT) and not-first-person (¬FP),
indicating that important of this in future research
on sentiment analysis. Moreover, our error anal-
ysis also showed that the cases where annotators
disagree (flagged in the data) are also difficult for
the classifiers to predict correctly.

Note that, in our annotation scheme, we only
annotate sentences as sentiment-bearing (i.e. eval-
uative), not with positive/negative polarity val-
ues, as labeling polarity on the sentence-level only
makes sense for sentences that do not contain
mixed sentiment. Although such datasets are not
uncommon, we argue that this is a rather idealized
classification task not in line with the goal of the
current effort. In immediate follow-up work, how-
ever, we will perform fine-grained sentiment an-
notation where we label in-sentence sentiment ex-
pressions and their polarity, in addition to sources
(holders) and targets (aspect expressions). In later
iterations we plan to also analyze additional in-
formation that can be compositionally relevant to
polarity like negation, intensifiers, verbal valence
shifters, etc. The dataset and the annotation guide-
lines are made available, along with code for repli-
cating the experiments.4
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Abstract

We present our work towards developing a
system that should find, in a large text cor-
pus, contiguous phrases expressing sim-
ilar meaning as a query phrase of arbi-
trary length. Depending on the use case,
this task can be seen as a form of (phrase-
level) query rewriting. The suggested ap-
proach works in a generative manner, is
unsupervised and uses a combination of
a semantic word n-gram model, a statisti-
cal language model and a document search
engine. A central component is a distri-
butional semantic model containing word
n-grams vectors (or embeddings) which
models semantic similarities between n-
grams of different order. As data we use
a large corpus of PubMed abstracts. The
presented experiment is based on man-
ual evaluation of extracted phrases for ar-
bitrary queries provided by a group of
evaluators. The results indicate that the
proposed approach is promising and that
the use of distributional semantic models
trained with uni-, bi- and trigrams seems
to work better than a more traditional uni-
gram model.

1 Introduction

When searching to see if some information is
found in a text corpus, it may be difficult to for-
mulate search queries that precisely match all rel-
evant formulations expressing the same informa-
tion. This becomes particularly difficult when the
information is expressed using multiple words, as
a phrase, due to the expressibility and complex-
ity of natural language. Single words may have
several synonyms, or near synonyms, which re-
fer to the same or similar underlying concept (e.g.
“school” vs “gymnasium”). When it comes to

multi-word phrases and expressions, possible vari-
ations in word use, word count and word order
complicate things further (e.g. “consume food” vs
“food and eating” or “DM II” vs “type 2 diabetes
mellitus”).

An important task for a search engine is to
try to bridge the gap between user queries and
how associated phrases of similar meaning (se-
mantics) are written in the targeted text. In this pa-
per we present our work towards enabling phrase-
level query rewriting in an unsupervised manner.
Here we explore a relatively simple generative ap-
proach, implemented as a prototype (search) sys-
tem. The task of the system is, given a query
phrase as input, generate and suggest as output
contiguous candidate phrases from the targeted
corpus that each express similar meaning as the
query. These phrases, input and output, may be
of any length (word count), and not necessarily
known as such before the system is presented with
the query. Ideally, all unique phrases with similar
meaning as the query should be identified. For ex-
ample, the query might be: “organizational char-
acteristics of older people care”. This exact query
phrase may or may not occur in the target corpus.
Regardless, a phrase candidate of related mean-
ing that we want our system to identify in the tar-
geted corpus could then be: “community care of
elderly”. In this example, the main challenges that
we are faced with are: 1) how can we identify
these four words as a relevant phrase, and 2) de-
cide that its meaning is similar to that of the query.
Depending on the use case, the task can be seen as
a form of query rewriting/substitution, paraphras-
ing or a restricted type of query expansion. Rel-
evant use cases include information retrieval, in-
formation extraction, question–answering and text
summarization. We also aim to use this functional-
ity to support manual annotation. For that purpose
the system will be tasked with finding phrases
that have similar meaning as exemplar phrases and
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queries provided by the user, and/or as previously
annotated text spans. An unsupervised approach
like we are aiming for would be particularly valu-
able for corpora and in domains that lack relevant
labeled training data, e.g. in the form of search
history logs, needed for supervised paraphrasing
and query rewriting approaches.

The presented system relies on a combination
of primarily three components: A distributional
semantic model of word n-gram vectors (or em-
beddings), containing unigrams, bigrams and tri-
grams; A statistical language model; And a doc-
ument search engine. Briefly explained, the way
the system works is by first generating a set of
plausible phrase (rewrite) candidates for a given
query. This is done by first composing vector rep-
resentation(s) of the query, and then searching for
and retrieving n-grams that are close by in the se-
mantic vector space. These n-grams are then con-
catenated to form the phrase candidates. In this
process, the statistical language model helps to
quickly discard phrases that are likely nonsensi-
cal. Next the phrases are ranked according to their
similarity to the query, and finally the search en-
gine checks which phrase candidates actually exist
in the targeted corpus, and where.

Similar to Zhao et al. (2017) and Gupta et al.
(2019) we explore the inclusion of word n-
grams of different sizes in the same semantic
space/model. One motivation for this is that they
both found this to produce improved unigram rep-
resentations compared to only training with uni-
gram co-occurrence statistics. Another motivation
is that we want to use the model to not only re-
trieve unigrams that are semantically close to each
other, but also bigrams and trigrams.

2 Related Work

Unsupervised methods for capturing and modeling
word-level semantics as vectors, or embeddings,
have been popular since the introduction of La-
tent Semantic Analysis (LSA) (Deerwester et al.,
1990) around the beginning of the 1990s. Such
word vector representations, where the underlying
training heuristic is typically based on the distri-
butional hypothesis (Harris, 1954), usually with
some form of dimension reduction, have shown
to capture word similarity (synonymy and relat-
edness) and analogy (see e.g. Agirre et al. (2009);
Mikolov et al. (2013)). Methods and toolkits like
Word2Vec (Mikolov et al., 2013) and GloVe (Pen-

nington et al., 2014) are nowadays commonly used
to (pre-)train word embeddings for further use
in various NLP tasks, including supervised text
classification with neural networks. However, re-
cent methods such as ELMo (Peters et al., 2017)
and BERT (Devlin et al., 2018) use deep neural
networks to represent context sensitive word em-
beddings, which achieves state-of-the-art perfor-
mance when used in supervised text classification
and similar.

Further, there are several relatively recent works
focusing on using and/or representing n-gram in-
formation as semantic vectors (see e.g. Bo-
janowski et al. (2016); Zhao et al. (2017); Po-
liak et al. (2017); Gupta et al. (2019)), possibly
to further represent clauses, sentences and/or doc-
uments (see e.g. Le and Mikolov (2014); Pagliar-
dini et al. (2018)) in semantic vector spaces.

A relatively straight forward approach to iden-
tify and represent common phrases as vectors in
a semantic space is to first use some type of col-
location detection. Here the aim is to identify se-
quences of words that co-occur more often than
what is expected by chance in a large corpus. One
can then train a semantic model where identified
phrases are treated as individual tokens, on the
same level as words, like it is done in Mikolov
et al. (2013).

In the works mentioned so far, the focus is on
distributional semantics for representing and cal-
culating semantic similarity and relatedness be-
tween predefined lexical units and/or of predefined
length (words/n-grams, collocations, clauses, sen-
tences, etc.). Dinu and Baroni (2014) and Tur-
ney (2014) take things a step further and approach
the more complex and challenging task of us-
ing semantic models to enable phrase generation.
Their aim is similar to ours: given an input query
(phrase) consisting of k words, generate as output
t phrases consisting of l words that each expresses
its meaning. Their approaches rely on applying
a set of separately trained vector composition and
decomposition functions able to compose a single
vector from a vector pair, or decompose a vector
back into estimates of its constituent vectors, pos-
sibly in the semantic space of another domain or
language.

Dinu and Baroni (2014) also apply vector com-
position and decomposition in a recursive man-
ner for longer phrases (t ≤ 3). Their focus is
on mapping between unigrams, bigrams and tri-
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grams. As output their system produce one vec-
tor per word which represent the (to be) generated
phrase. Here the evaluation primarily assumes
that t = 1, i.e. the nearest neighbouring word
in the semantic model, belonging to the expected
word class, is extracted per vector to form the out-
put phrase. However, no solution is presented for
when t > 1 other than independent ranked lists of
semantically similar words to each vector.

Turney (2014) explores an approach targeting
retrieval of multiple phrases for a single query (i.e.
t > 1), evaluated on unigram to bigram and bi-
gram to unigram extraction. Here he applies a su-
pervised ranking algorithm to rank the generated
output candidates. For each input query, the eval-
uation checks whether or not the correct/expected
output (phrase) is among the list of top hundred
candidates.

It is unclear how well these two latter ap-
proaches potentially scale beyond bigrams or tri-
grams. Further, they assume that the length of the
input/output phrases is known in advance. How-
ever, the task that we are aiming for is to develop
a system that can take any query phrase of arbi-
trary (sub-sentence) length as input. As output it
should suggest phrases that it identifies in a large
document corpus which express the same or sim-
ilar information/meaning. Here the idea is that
we only apply upper and lower thresholds when
it comes to the length of the output phrase sugges-
tions. In addition, we do not want to be concerned
with knowledge about word classes in the input
and output phrases. We are not aware of previous
work presenting a solution to this task.

In the next section, Section 3, we describe how
our system works. In Section 4 we present a pre-
liminary evaluation followed by discussion and
plans for future work directions.

3 Methods

3.1 Semantic Model Training

In order to train a semantic n-gram model of un-
igrams, bigrams and trigrams, we initially ex-
plored two approaches. First using the Word2Vecf
(Levy and Goldberg, 2014) variation of the origi-
nal Word2Vec toolkit, where one can freely cus-
tomize the word-to-context training instances as
individual rows in the training file – each row con-
taining one source word and one target context to
predict. We opted for a skip-gram representation
of the training corpus, meaning, for each row in

the customized training file, we put the source n-
gram and one of its neighboring n-grams as target
context. The size of the sliding window is decided
by how many neighboring (context) n-grams we
include for each source n-gram. Overlap between
the source n-gram and target n-grams is allowed.

However, we found that Word2Vecf only allows
training using negative sampling. As an alternative
approach we simply used the original Word2Vec
toolkit, with the skip-gram architecture, hierarchi-
cal softmax optimization and a window size of
one, to train on the same word-to-context orga-
nized training file intended for Word2Vecf. This
means that it sees and trains on only two n-grams
(cf. word–context pair) at a time. Based on pre-
liminary testing we found this latter approach to
produce semantic models that seemed to best cap-
ture n-gram semantics for our use case.

The text used for training the semantic model is
first stemmed using the Snowball stemmer. This
is done to normalize inflected word forms, re-
duce the number of unique n-grams and conse-
quently the size of the model, as well as creat-
ing more training examples for the remaining n-
grams. Mapping back to full-form words and
phrases is later done using a document search en-
gine, as explained below.

3.2 Phrase-Level Query Rewriting System
Our system works in a generative way when trying
to find phrases from a target corpus that are seman-
tically similar to a query phrase. We describe this
as a five-step process/pipeline.

Step 1: As a first step we generate a set of query
vectors for each of the different n-gram orders
in the model – uni, bi and tri. We simply gen-
erate these vectors by normalizing and summing
the associated n-gram vectors from the semantic
model. In addition, if a word (or all words in a
n-grams when n > 1) is found in a stopword list1,
we give these vectors half weight. As an example:
given the query “this is a query”, we generate three
query vectors, #    »q1-g, #    »q2-g and #    »q3-g as follows:

#    »q1-g = sum(
1

2

#   »

this,
1

2

#»

is,
1

2
#»a , #        »query) (1)

#    »q2-g = sum(
1

2

#         »

this is,
1

2

#   »

is a, #             »a query) (2)

#    »q3-g = sum(
1

2

#              »

this is a,
#                   »

is a query) (3)

1We use the NLTK (Bird et al., 2009) stopword list for
English.
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If, let’s say, the query only contains one word,
we can not generate query bigram or trigram vec-
tors. Also, not all n-grams might be found in the
semantic model. To compensate for this possibil-
ity, we keep track of the coverage percentage of
each composed vector. This is later used when
calculating similarity between the query and the
generated phrase candidates (see step 4).

Step 2: Having composed the query vectors, the
second step focuses on using the semantic model
to extract the most similar n-grams. For each
query vector, #    »q1-g, #    »q2-g and #    »q3-g, we extract se-
mantically similar unigrams, bigrams and trigrams
that are near in the semantic space. As a distance
measure we apply the commonly used cosine sim-
ilarity measure (cos). We use a cut-off threshold
and a max count as parameters to limit the num-
ber of retrieved n-grams and further the number of
generated phrase candidates in step 3.

Step 3: The third step focuses on generating
candidate phrases from the extracted n-grams.
This is primarily done by simply exploring all pos-
sible permutations of the extracted n-grams. Here
we apply the statistical language model, trained
using the KenLM toolkit (Heafield, 2011), to ef-
ficiently and iteratively check if nonsensical can-
didate phrases are being generated. For n-grams
where n > 1 we also combine with overlapping
words – one overlapping word for bigrams and
one or two overlapping words for trigrams. As
an example, from the bigrams: “a good” and
“good cake”, we can construct the phrase “a good
cake” since “good” is overlapping.

The generation of a phrase will end if no ad-
ditional n-grams can be added, or if the length
reaches a maximum word count threshold rela-
tive to the length of the query2. If, at this point,
a phrase has a length that is below a minimum
length threshold3, it will be discarded. Finally, we
also conduct some simple rule-based trimming of
candidates by mainly removing stopwords if they
occur as the rightmost word(s).

Step 4: After having generated a set of candidate
phrases, we now rank these by their similarity to
the query. For each phrase candidate we compose
phrase vectors ( #     »pn-g) in the same way as we did
for the query. That said, we observed that the tri-
gram coverage of the semantic model is relatively

2
max length = query length + 2 if query length ≤ 2 else query length × 1.50

3
min length = 1 if query length ≤ 2 else query length × 0.50

low compared to unigrams and bigrams. This is a
result of us using a minimum n-gram occurrence
count threshold of 20 when training the semantic
model. Thus, for the presented experiment, we de-
cided to exclude trigrams in the similarity scoring
function.

As already mentioned, not all n-grams may be
found in the semantic model. Thus, we also incor-
porate what we refer to as coverage information
for each #     »qn-g – #     »pn-g pair. The underlying intuition
is to let query vectors and phrase candidate vec-
tors with low model coverage have a lower influ-
ence on the overall similarity score. For example,
if phrase p is “this is a phrase”, which consist of
three bigrams, but the semantic model is missing
the bigram “a phrase”, the coverage of #    »p2-g, i.e.
cov( #    »p2-g), becomes 2/3 = 0.66. The coverage of
a #     »qn-g – #     »pn-g pair is simply the product of their
coverage, i.e. cov( #     »qn-g)× cov( #     »pn-g).

The overall similarity function sim(q, p) for a
query q and a phrase candidate p is as follows:

sim(q, p) =
1

covsum

2∑

n=1

2∑

m=1

(
cos( #     »qn-g, #      »pm-g)

× cov( #     »qn-g)× cov( #      »pm-g)
)

(4)

Where cos is cosine similarity, cov( #     »qn-g) and
cov( #      »pm-g) refer to their coverage in the semantic
model, and covsum is:

(5)covsum =

2∑

n=1

2∑

m=1

(
cov( #     »qn-g)×cov( #      »pm-g)

)

Finally, all candidate phrases generated from a
query are ranked in descending order.

Step 5: In the final step we filter out the can-
didate phrases that are not found in the targeted
text corpus. To do this we have made the cor-
pus searchable by indexing it with the Apache Solr
search platform4. Since the candidate phrases are
at this point stemmed, we use a text field ana-
lyzer that allows matching of stemmed words and
phrases with inflected versions found in the orig-
inal text corpus. In this step we also gain infor-
mation about how many times each phrase occur
in the corpus, and where. By starting with the
most similar candidate phrase, the search engine
is used to filter out non-matching phrases until the

4http://lucene.apache.org/solr
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desired number of existing phrases are found, or
until there are no more candidates left.

In addition, the system checks to see if an ex-
act match of the query exist in the corpus. If this
is the case, it removes any phrase candidate that
are either a subphrase of the query or contains the
entire query as a subphrase. This is a rather strict
restriction, but for evaluation purposes it ensures
that the system does not simply find and suggest
entries of the original query phrase (with some ad-
ditional words), or subphrases of it.

4 Experiment

Evaluating the performance of such a system is
challenging due to the complexity of the task and
the size of the text corpus. We are not aware of
evaluation data containing gold standards for this
task. Also, the complexity of the task makes it dif-
ficult to apply suitable baseline methods to com-
pare against.

We decided to conduct a relatively small ex-
periment, relying on manual evaluation, with the
aim of getting an insight into strengths and weak-
nesses of the system. As text corpus we use a
collection of PubMed abstracts consisting of ap-
proximately 3.6B tokens. Since our approach is
unsupervised, we use this same data set for both
training and testing. Six people (aka evaluators)
with background as researchers and practitioners
in the field of medicine were asked to provide 10
phrases of arbitrarily length, relevant to their re-
search interests. The requirements were that the
phrases should be intended for PubMed, more or
less grammatically correct, and preferably consist
of two or more words. This resulted in 695 phrases
of different topics, length and complexity, with an
average word count of 4.07. These serve as query
phrases, or simply queries, for the remainder of
this experiment.

Next, we use three different versions of the
system, Ngram, Unigram and Ngramrestr (de-
scribed below) to separately generate and suggest
20 candidate phrases for each query. The evalu-
ators were then given the task of assessing/rating
if these phrases expressed the same information,
similar information, topical relatedness or were
unrelated to the query. Each evaluator assessed the
suggestions for the query phrases they provided
themselves6. The five-class scale used for rating

5One person submitted 19 phrases.
6No overlapping evaluation were conducted, so no inter-

Class Description
1 Same information as the query.
2 Same information as the query

and has additional information.
3 Similar information as the query

but is missing some information.
4 Different information than the query

but concerns the same topic.
5 Not related to the query.

Table 1: Classes used by the evaluators when rat-
ing phrases suggested by the system.

the phrase suggestions can be seen in Table 1. In
total, 1380 phrases were assessed for each system
(69 × 20).

System - Ngram: Here the system is employed
as it is described in Section 3.2. We prepared the
training data for the semantic n-gram model with
a window size equivalent to 3. Minimum occur-
rence count for inclusion was 207. A dimension-
ality of 200 was used and otherwise default hyper
parameters.

System - Unigram: Here we use a more tradi-
tional semantic model containing only unigrams.
We trained the model using Word2Vec with skip-
gram architecture, a dimensionality of 200, win-
dow size of 3, minimum inclusion threshold of
20, and otherwise default hyper parameters. This
model was used to both extract relevant words
and to calculate similarity between phrases and
the query. Comparing this to the Ngram vari-
ant should provide some insight into the effect
of training/using semantic models with word n-
grams.

System - Ngramrestr: Here we add an addi-
tional restriction to the default setup (Ngram) by
removing any generated phrase candidates con-
taining one or more bigrams found in the query
(based on their stemmed versions). The intention
is to see if the system is still able to find phrases of
related information to a query, despite not allowed
to use any word pairs found in it.

In all system versions we use a statistical lan-
guage model (KenLM (Heafield, 2011)) trained
on the mentioned text corpus with an order of 3.
We set the phrase inclusion likelihood threshold to

rater agreement information is available.
7Unique unigrams = 0.8M, bigrams = 6.5M, trigrams = 15.7M.
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Class System
Ngram Unigram Ngramrestr

1 13.99% 9.78% 8.48%
2 17.61% 12.54% 16.30%
3 24.13% 23.04% 16.23%
4 22.61% 25.14% 24.06%
5 21.67% 29.49% 34.93%

1+2 31.59% 22.32% 24.78%
1+2+3+4 78.33% 70.51% 65.07%

Table 2: Manual evaluation results.

−11.2. We strived to select parameters that made
the system variants produce, on average, approxi-
mately the same number of phrase candidates (step
2 and 3). The number of phrase candidates gener-
ated in step 3 varied significantly depending on the
query and system, from some thousands to some
tens of thousands.

5 Results, Discussion and Future Work

Table 2 shows how the evaluators rated the
(rewrite) phrases extracted by the various system
setups. With the Ngram variant, when allowed to
suggest 20 phrases, 31.59% of these contain the
same information as the query phrases – possi-
bly with some additional information (rated class
1+2). 78.33% of the suggested phrases concerns
the same topic as the query phrases, i.e. rated
class 1+2+3+4. The latter indicate the percent-
age of phrases that could be relevant to the user
when it comes to query-based searching. Overall
the results show that the system is indeed capa-
ble of generating, finding and suggesting (from the
PubMed abstracts corpus) phrases that expresses
similar meaning as the query. Table 3 shows ex-
amples of a few queries, rewrite suggestions by
the system and their ratings by the evaluators.

Using a semantic model trained on word n-
grams of different orders simultaneously (Ngram)
achieves better results than using a unigram model
(Unigram). This supports the findings in Zhao
et al. (2017) and Gupta et al. (2019).

Naturally, the restricted Ngramrestr variant
achieves lower scores than Ngram. However,
the performance differences are not that great
when looking at the percentage of phrases rated
as class 2. This suggests that the system finds
phrases containing some additional information
and/or phrases with words and expressions de-
scribing other degrees of specificity. Further, de-

spite not allowed to suggest phrases containing
bigrams found in the associated queries, it still
achieves a higher 1+2 score than Unigram.

For some expressions used in the queries, there
might not exist any good alternatives. Or, these
might not exist in the PubMed abstracts cor-
pus. For example, given the query “hand hy-
giene in hospitals”. Since Ngramrestr is not al-
lowed to suggest phrases containing the expres-
sion “hand hygiene”, or even “hygiene in”, it has
instead found and suggested some phrases con-
taining somewhat related concepts such as “hand-
washing” and “hand disinfection”. However, for
other queries the system had an arguably easier
time. For example, for the query “digestive tract
surgery” it suggests phrases like “gastrointestinal
( GI ) tract operations” (rated as class 1) and “gas-
trointestinal tract reconstruction” (rated as class
2). In other cases, the same meaning of a phrase
is more or less retained when simply changing the
word order (e.g. “nurses’ information needs” vs
“information nurses need”).

We observed that step 5 typically took less time
to complete for Ngram compared to Unigram.
This could indicate that Ngram – using the n-
gram model – is better at producing phrases that
are likely to exist in the corpus. Another factor
here is the effect of using the n-gram model in the
ranking step (step 4), which retains some word or-
der information from the queries.

A weakness of the conducted experiment is that
we do not have a true gold standard reflecting if
there actually exist any phrases in the corpus of
similar meaning to the queries, or how many there
potentially are. Still, the results show that the
proposed system is indeed able to generate and
suggest phrases whose information expresses the
same or similar meaning as the provided queries,
also when there are no exact matches of the query
in the corpus. A planned next step is to look into
other evaluation options. One option is to create
a gold standard for a set of predefined queries us-
ing a smaller corpus. However, it can be difficult
to manually identify and decide which phrases are
relevant to a given query. Another option is to
use the system to search for concepts and entities
that has a finite set of known textual variants – e.g.
use one variant as query and see if it can find the
others. Alternatively, an extrinsic evaluation ap-
proach would be to have people use the system in
an interactive way for tasks related to phrase-level
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Query phrase Rewrite suggestions by the system Rating
infection prevention and control • prevent and control hospital infections 1
in hospital • control and prevent nosocomial infection 2

• infection control and preventative care 4
information system impact • information system influence 1

• impact of healthcare information systems 2
• health information system : effects 2

attitude and hand hygiene • knowledge and attitude towards hand hygiene 2
• Hand Hygiene : Knowledge and Attitudes 2
• handwashing practices and attitudes 3

assessment of functional capacity • the functional assessment of elderly people 1
of older people • functional capacity of the elderly 3

• the functional status of elderly individuals 4
facial muscle electromyography • electromyography of facial muscles 1

• electromyography ( EMG ) of masticatory muscles 2
• facial muscle recording 3

treatment of post-operative nausea • postoperative nausea and vomiting ( PONV ) treatment 1
and vomiting • control of postoperative nausea and vomiting ( PONV ) 1

• treatment of emesis , nausea and vomiting 4
fundamental care • fundamental nursing care 2

• palliative care is fundamental 2
• holistic care , spiritual care 4

pain after cardiac surgery • postoperative pain after heart surgery 1
• postoperative pain management after cardiac surgery 2
• discomfort after cardiac surgery 4

Table 3: Examples of a few queries, rewrite suggestions by the system and their ratings by the evaluators.

searching and matching, and then collect qualita-
tive and/or quantitative feedback regarding impact
on task effectiveness.

So far, not much focus has been placed on sys-
tem optimization. For example, no multithreading
was used in the phrase generation steps. The av-
erage time it took for the system to generate and
find 20 phrases in the PubMed abstracts corpus for
a query was about 30 seconds. This varied quite a
bit depending on the number of n-grams extracted
in step 2, the semantic model used and the length
of the query. One bottleneck seems to be step 5
which is dependent on the size and status of the
document index. However, it is worth noting that
we have observed this to take only a few seconds
for smaller corpora. For use in search scenarios
where response time is critical, offline generation
for common queries is an option. Further, this
could for example serve to produce training data
for supervised approaches.

As future work, system optimization will aim
towards having the system generate as few non-
relevant phrase candidates as possible while avoid-

ing leaving out relevant ones. This includes mak-
ing the search in the vector space (semantic model)
to be as precise as possible (query vector com-
position) with a wide enough search for semanti-
cally similar n-grams (cos similarity cutoff thresh-
old). Also, the similarity measure used to rank the
phrase candidates relative to the query (sim(q, p))
is important for the performance of the system. As
future work we also plan to look into the possibil-
ity of incorporating ways to automatically exclude
non-relevant phrase candidates, e.g. by using a
similarity cut-off threshold. Other text similarity
measures and approaches could be tried, such as
some of those shown to perform well in the Se-
mEval STS shared tasks (Cer et al., 2017). In our
relatively straight forward vector composition ap-
proach, each word/n-gram are weighted equally
(except for stopwords). Improvements may be
gained by incorporating some sort of statistical
word weighting, like TF-IDF (Salton and Buck-
ley, 1988). Other vector composition approaches
could also be considered. Further, we also plan to
explore other approaches to generating semantic
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text representations, such as Sent2Vec (Pagliardini
et al., 2018). Also approaches like ELMo (Peters
et al., 2017) and BERT (Devlin et al., 2018) could
be applicable for this purpose. Additionally, one
could also explore the use of cross-lingual seman-
tic models for tasks related to translation.

Some times the system had a hard time finding
phrases reflecting all the information in some of
the more lengthy and complex queries – possibly
referring to multiple topics. For example, “means
to reduce the duration of surgical operations” and
“a systematic approach to infection control”. For
some of the queries one can assume that no con-
tiguous (sub-sentence) phrases exist among the
PubMed abstracts that expresses the same mean-
ing. However, something that is missing from our
current pipeline is some kind of query segmenta-
tion step. We are now treating each query as a
single expression. As future work, especially in
the context of query-based free-text searching, we
aim to incorporate some sort of query segmenta-
tion which may split the query into smaller parts
dependent on its complexity and the number of
topics it refers to. Here we also want to explore
the possibility of having wildcards in the query.

Overall we find these initial results to be
promising. Further exploration and evaluation of
the presented approach and system is needed. This
includes looking into potential improvements and
extensions, such as those mentioned above.

6 Conclusion

In this paper we have described a prototype sys-
tem intended for the task of finding, in a large text
corpus, contiguous phrases with similar meaning
as a query of arbitrary length. For each of the
69 queries provided by a group of evaluators, we
tested the system at finding 20 phrases expressing
similar information. As corpus a large collection
of PubMed abstracts were used. The results indi-
cate that using a semantic model trained on word
n-grams of different orders (1–3) simultaneously
is beneficial compared to using a more traditional
word unigram model. Further, when restricting
the system from suggesting phrases containing bi-
grams from the corresponding queries, the results
indicate that the system is still able to find and sug-
gest relevant phrases.
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Abstract

We present ParIce, a new English-
Icelandic parallel corpus. This is the first
parallel corpus built for the purposes of
language technology development and re-
search for Icelandic, although some Ice-
landic texts can be found in various other
multilingual parallel corpora. We map
which Icelandic texts are available for
these purposes, collect and filter aligned
data, align other bilingual texts we ac-
quired and describe the alignment and fil-
tering processes. After filtering, our cor-
pus includes 39 million Icelandic words
in 3.5 million segment pairs. We estimate
that our filtering process reduced the num-
ber of faulty segments in the corpus by
more than 60% while only reducing the
number of good alignments by approxi-
mately 9%.

1 Introduction

In recent years machine translation (MT) systems
have achieved near human-level performance in
a few languages. They rely heavily on large
amounts of parallel sentences. This can pose prob-
lems for inflected languages like Icelandic, where
a substantial amount of data is necessary to cover
common word forms of frequent words. For train-
ing statistical (SMT) and neural (NMT) machine
translation systems, parallel data quality is im-
portant and may weaken performance if inade-
quate, especially for NMT (see e.g. Khayrallah
and Koehn (2018)). A vital part of compiling good
parallel corpora is thus to assess how accurate the
alignments are.

In addition to MT, parallel corpora have been
employed for many tasks, including the creation
of dictionaries and ontologies, multilingual and
cross-lingual document classification and various

annotation projection across languages. See e.g.
Steinberger et al. (2012) for a discussion on the
many aspects of parallel corpora usage.

This paper introduces ParIce, the first parallel
corpus focusing only on the English-Icelandic lan-
guage pair. There have been few available multi-
lingual parallel corpora including Icelandic texts
and those that exist vary in quality. Our primary
aim was to build a corpus large enough and of
good enough quality for training useful MT sys-
tems, while we also want it to be useful for other
purposes, such as those listed above. The project
plan for a language technology program for Ice-
landic, set to start in fall 2019, notes that for a
quality MT system, a parallel corpus of 25-35
million sentence pairs is preferable, although 2
million may be sufficient for initial experiments
with state-of-the-art methods (Nikulásdóttir et al.,
2017). This first version of ParIce includes 3.5
million sentence pairs. That is quite far from the
ambitious aim set forward in the project plan, but
is hopefully sufficient to get meaningful results
when used to train MT systems.

We started by mapping what parallel data was
available and assessed its quality. We then col-
lected unaligned bilingual texts and aligned and
filtered them. In the filtering process we want to
remove as many bad segment pairs as possible,
while maximizing the number of good sentence
pairs we hold on to. There is considerable liter-
ature on filtering parallel texts. Taghipour et al.
(2011) point out that a lack of properly labeled
training data makes it hard to use discriminative
methods. They utilize unsupervised methods for
outlier detection. To reduce reliance on labeled
examples, Cui et al. (2013) conduct a PageRank-
style random walk algorithm to iteratively com-
pute the importance score of each sentence pair.
The higher the score, the better the quality. Xu
and Koehn (2017) tackle the problem of insuffi-
cient labeled data by creating synthetic noisy data
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to train a classifier that identifies known good sen-
tence pairs from a noisy corpus.

In this paper we describe our semi-supervised
method of using an NMT system trained on part of
the corpus, and a bootstrapped dictionary to itera-
tively assess and score the sentence pairs. We then
show how using the score to filter out low quality
data results in a better quality corpus.

2 Available texts

The data mapping was twofold. First we looked
for available parallel corpora with Icelandic and
English texts. Then we looked for texts available
to us in both languages that we could align and had
permission to publish with open licenses.

2.1 Aligned data

We collected over 1.9 million English-Icelandic
sentence pairs from other parallel corpora (see Ta-
ble 1), mostly from the Opus project1 but also
from the Tilde MODEL corpus2, ELRC3 and a
multilingual parallel bible corpus4.

Opus (Tiedemann, 2012) has a variety of differ-
ent parallel corpora in multiple languages. In the
EN-IS language pair there are film and tv subtitles
collected from OpenSubtitles5, texts from local-
ization files for KDE4, Ubuntu and Gnome and a
collection of translated sentences from Tatoeba6,
an online collection of sentences and their transla-
tions, created by volunteers.

ELRC (European Language Resource Coordi-
nation) offers among others a parallel corpus that
was derived from Icelandic and English texts from
the Statistics Iceland (SI) website7.

From the Tilde MODEL corpus (Rozis and
Skadins, 2017) we include the EN-IS language
pair from a corpus of texts from the European
Medicines Agency document portal.

A parallel corpus of the bible in 100 lan-
guages (Christodoulopoulos and Steedman, 2015)
is available online. This includes the Icelandic

1http://opus.nlpl.eu
2https://tilde-model.s3-eu-west-1.

amazonaws.com/Tilde_MODEL_Corpus.html
3Available at the ELRC-SHARE repository
4http://christos-c.com/bible/
5http://www.opensubtitles.org
6http://tatoeba.org
7https://www.statice.is
8Part of the Tilde MODEL corpus
9Part of the OPUS corpus

10Created by ELRC

Sentence Bad align-
Corpus pairs ments (%)
The Bible4 31,085 0.5
EMA8 420,297 3.3
Gnome9 5,431 n/a
KDE49 87,575 45.0
OpenSubtitles9 1,368,170 8.3
Statistics Iceland10 2,360 8.0
Tatoeba9 8,139 0.0
Ubuntu9 2,127 2.5
TOTAL 1,923,060

Table 1: Pair count and ratio of bad alignments in
the parallel corpora available.

translation from 1981 and the King James version
of the English bible.

An examination of random sentences from
these corpora revealed that the sentence pairs were
sometimes faulty. This could be due to misalign-
ment, mistranslation or other causes. Thus, in
cases where we could obtain the raw data that the
corpora were compiled from, we realigned them
using our methods. For the EMA corpus we only
had the raw data in pdf-files and decided against
harvesting the texts from these files for realign-
ment. The raw data for the SI corpus was not avail-
able on the ELRC-website, and we did not scrape
the SI website for this project. The Tatoeba data
is collected in such a way that there is no reason
to align it again, and inspection of the data from
GNOME indicated that the alignments were of in-
sufficient quality and that mending them would
prove hard so we decided to exclude them from
our corpus.

2.2 Unaligned data

Regulations, directives and other documents trans-
lated for the members of the European Eco-
nomic Area (EEA) were obtained from the EFTA-
website11, where they are available in both pdf and
html format.

The Icelandic Sagas have been translated into
numerous languages. Some of these translations
are out of copyright and available in English on
Project Gutenberg12. The Icelandic texts were ob-
tained from the SAGA corpus (Rögnvaldsson and
Helgadóttir, 2011). We also selected four books
from Project Gutenberg, which were available in

11https://www.efta.int
12https://www.gutenberg.org

141



translation on Rafbókavefurinn13, a website with
a collection of books in Icelandic in the public do-
main. The purpose of this was to experiment with
aligning literary translations.

3 Compiling ParIce

We employed a two-step process to pair the sen-
tences. First the texts were aligned with LF
Aligner, except in cases where no alignment was
necessary (see Section 3.1.2). Then the alignment
was assessed and filtered.

3.1 Alignment

We used LF Aligner14, which relies on Hunalign
(Varga et al., 2005) for automatic sentence pair-
ing. It aligns sentences in two languages by using
a dictionary and information on sentence length.

3.1.1 Dictionary
We created a makeshift dictionary of over 12 thou-
sand lemmas (D1) by scraping the Icelandic Wik-
tionary. In the case of nouns, pronouns and ad-
jectives all possible inflections are listed on Wik-
tionary and were included in D1,

We ran LF Aligner, using D1, in the first pass
of the alignment process. Afterwards the data was
sent through the filtering process described in Sec-
tion 3.2. We then used bitextor-builddics (Esplà-
Gomis, 2009), to create another dictionary (D2).
Builddics takes as an input source language seg-
ments in one file and target language segments in
another. It then compares corresponding lines and
builds a bilingual dictionary. Finally, D2 was ex-
panded by getting all possible word forms of every
Icelandic word in the dictionary from the Database
of Modern Icelandic Inflection (DMII) (Bjar-
nadóttir, 2005). For each Icelandic word in D2, all
the possible lemmas were found in DMII and ev-
ery word form was retrieved for each lemma. D2
contains approx. 31 thousand lemmas, not count-
ing different word forms. We used this dictionary
for a second run of alignment on all the corpora.

3.1.2 Texts not requiring alignment
Texts from localization files (KDE4 and Ubuntu)
are aligned by design. Some lines also contain
strings that are not proper words but placehold-
ers. In order to have less noisy texts these were

13https://rafbokavefur.is
14http://sourceforge.net/projects/

aligner

removed. The Tatoeba segments were also not re-
aligned, as the segments are created by translation.

3.2 Assessment and filtering
Aside from the cases where there was no need for
assessment due to the nature of the data (Tatoeba,
Bible), or because the alignments had already been
filtered (KDE4, Ubuntu), we start by assessing the
quality of the alignment and filtering out all lines
deemed bad. A rough inspection of the aligned
texts reveals that bad alignments usually come in
chunks. If an error occurs in one alignment it has
a tendency to affect the alignment of one or more
sentences that follow since LF Aligner can take
several lines to find the right path again.

As part of the filtering process we translate the
English text of each sentence pair into Icelandic
and then compare the translations to the Icelandic
sentence and score each pair depending on that
comparison. Every chunk of sentence pairs that
has unfavorable scoring is deleted, but the sen-
tence pairs that are not deleted are used to expand
the dictionary (D2). These steps of translating,
scoring, filtering and expanding the dictionary are
repeated several times.

Before describing the filtering pipeline in detail
we describe the scoring process.

3.3 Scoring
All English segments were translated into Ice-
landic by employing these two methods:

i) All possible translations were obtained from
dictionary D2 for every word in the English sen-
tence, thus creating a multiset for each word.

ii) We used OpenNMT (Klein et al., 2017) to
train an MT system, using a 1 million segment
translation memory provided by the Translation
Centre of the Ministry for Foreign Affairs, and
parallel corpora obtained from Opus. The system
was used to translate each English sentence into
Icelandic.

Since Icelandic is an inflected language it was
necessary to take into account every word form.
As described in Section 3.1.1, the D2 dictionary
included all possible word forms but for the trans-
lated sentence obtained with OpenNMT all word
forms were obtained by using DMII and a multiset
created for each word of the translated sentence.

The score for every sentence was calculated by
finding the average of score1 and score2. Score1 is
the ratio of words in the Icelandic sentence found
in any of the multisets created by either the first or
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Accepted Bad Accepted Bad Deleted
Before Filtering Accepted Pairs Pairs (%) Pairs (%) Pairs (%)

The Bible 32,964 32,964 100.0 0.0 n/a
Books 16,976 12,416 73.1 3.5 38.0
EEA 2,093,803 1,701,172 81.3 5.0 63.5
EMA 420,297 404,333 96.2 1.3 45.0
ESO 12,900 12,633 97.9 0.5 46.0
KDE4 137,724 49,912 36.2 9.0 n/a
OpenSubtitles 1,620,037 1,305,827 80.6 1.4 37.0
Sagas 43,113 17,597 40.8 11.0 55.5
Statistics Iceland 2,481 2,288 92.2 5.0 56.0
Tatoeba 8,263 8,263 100.0 0.0 n/a
Ubuntu 11,025 10,572 95.9 2.0 n/a
TOTAL 4,399,582 3,557,977 80.9

Table 2: Pair count before and after filtering as well as ratio of accepted pairs and deleted pairs that were
deemed bad during the assessment.

the second method of translation. Score2 was cal-
culated by finding the ratio of multisets, created
with dictionary D2, that contained a word form
appearing in the Icelandic sentence, and the ratio
of multisets, created with OpenNMT/DMII, that
contained a word form appearing in the Icelandic
sentence, and then selecting the higher ratio. Sen-
tence pair (1) gets 1.0 as score1 since each word in
the Icelandic sentence would be found in the mul-
tisets, and 0.38 as score2 since only three of eight
multisets would contain a word appearing in the
Icelandic sentence. The score would thus be 0.69.

(1) a. Hann gekk inn. (e. He walked in)
b. As he walked in he sang a song.

The score for each document is the average
score for all sentence pairs.

3.3.1 Filtering
We set up a filtering pipeline, sending one subcor-
pus through it at a time. Steps 4-8 in the pipeline,
detailed below, were repeated several times with
the conditions for “good” sentence pairs strict at
first but more lenient in later iterations. The con-
ditions were controlled by thresholds and deletion
rules described in step 7 below.

Our filtering pipeline is set up as follows:

1. Aligned sentences are cleaned of all out-of-
vocabulary unicode symbols, as some sym-
bols cause problems in parsing.

2. The aligned texts are divided into files, one
for each document in the text. The process

deletes faulty files, defining faulty to be ones
that contain either unusually few and large
aligned segments or a very low ratio of Ice-
landic letters (i.e. ð, þ, ö) in the Icelandic seg-
ments, indicating that they might have been
obtained by inadequate OCR.

3. The English segments are automatically
translated to Icelandic with the OpenNMT
system, as described in Section 3.3.

4. The English segments are translated using
dictionary D2, as described in Section 3.3.

5. Each sentence pair is scored.

6. Files receiving on average a score below a
given threshold for their segment pairs are
deleted. The assumption is that the English
and Icelandic files being aligned are not com-
patible or only compatible in minor parts.

7. Sentences are deleted according to one of two
rules: i) If a certain number of pairs in a row
have a score under a given threshold, they
are deleted. ii) If a certain number of pairs
in a row have a score above a given thresh-
old, they are not deleted but all other pairs
are deleted. The second rule is more strict
and is usually only used during the first iter-
ation. For both rules, the number of pairs in
a row and the threshold have different values
selected for each iteration and subcorpus.

8. Two text files are created from the accepted
sentence pairs: English in one file and Ice-
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landic in the other, with sentences matching
on line number. The files are used to create a
new dictionary with bitextor-builddics which
is appended to dictionary D2.

In OpenSubtitles there often exist many ver-
sions of both English and Icelandic subtitles for
the same film. Therefore we sometimes chose be-
tween several files from the corpus. Working with
the Sagas, we sometimes had two translations of
the same Saga. The files receiving the highest
score, after going through the pipe, were selected.

4 Resulting dataset

Before filtering the texts we had 4,399,582 sen-
tence pairs in total, see Table 2. During the filter-
ing process 841,605 pairs were deleted, 19.13%.
The resulting dataset contains 3,557,977 pairs.

4.1 Quality assessment

We manually assessed the alignment quality of the
new corpus as well as the pre-existing corpora by
checking from 200 to 800 sentence pairs in each
subcorpus, depending on its size. If the sentences
were not in agreement, if a large chunk was erro-
neous or if a sentence in one language contained
a segment not found in the other language the pair
was classified as bad.

The quality of ParIce varies between subcor-
pora, from containing no bad alignments to 11.0%.
Approximately 3.5% of the alignments in the cor-
pus are bad, while the ratio was 8% in the pre-
existing corpora. See Table 1 for quality estimates
of the pre-existing corpora and Table 2 for quality
estimates of ParIce.

5 Filter assessment

We checked a random sample of 100 to 400 of the
deleted pairs in each subcorpus, depending on the
number of deleted lines, and counted the amount
of bad pairs. The results are shown in Table 2.
When we compare this assessment to the assess-
ment of the final version of ParIce, we can esti-
mate the reduction of errors in the filtering pro-
cess. If we exclude the alignments of KDE4 and
Ubuntu, which were not sent through the main fil-
tering pipeline, then 753,340 of 4,250,833 align-
ments, or 17.72%, were deleted during the filter-
ing process. Of these 53.0% were bad, given that
the ratio is the same as in our random samples, and
the filtering process reduced the number of faulty

segments in the corpus by 77.0% while it only re-
duced the number of good ones by 9.5%.

6 Availability

ParIce can be downloaded from http://www.
malfong.is. Available sentences have been
PoS-tagged with a BiLSTM tagger (Steingrímsson
et al., 2019), lemmatized with Nefnir (Ingólfsdót-
tir et al., 2019) and word aligned with GIZA++
(Och and Ney, 2003).

The corpus is also searchable on http://
malheildir.arnastofnun.is in a search
tool powered by Korp (Borin et al., 2012).

7 Conclusion and future work

From a fragmented collection of around 1.9 mil-
lion sentence pairs of unknown quality, and other
data, we have built the ParIce corpus of ap-
prox. 3.5 million sentence pairs, assessed to
be of acceptable quality. This enables the Ice-
landic language technology community, and oth-
ers, to experiment with building MT systems for
the English-Icelandic language pair.

While increasing alignment quality, our method
filters out many perfectly good sentence pairs. It
is necessary both to improve the filtering and the
alignment processes. For better alignments a bet-
ter dictionary is crucial. In the absence of a better
dictionary, multiple iterations of aligning and fil-
tering, where the aligned data is used to grow the
dictionary in every iteration, could be helpful.

For better filtering adding features to our scor-
ing algorithm might be beneficial. Hangya and
Fraser (2018) follow Lample et al. (2018) and train
monolingual word embeddings for two languages
and map them to a shared space without any bilin-
gual signal. They use these bilingual word embed-
dings for parallel corpus filtering. This approach
could prove useful for our purposes.

The web is our best prospect for growing the
corpus. We have yet to see how much the Para-
Crawl project will collect of Icelandic parallel
data, but can expect filtering to be important for
that dataset (see e.g. Koehn et al. (2018)).

It would be useful to try to estimate how good
MT systems trained on this data can get, and
whether our filtering and realigning methods are
useful for that purposes. Training MT systems on
data from different stages and evaluating BLEU
scores should thus be added as part of our pipeline,
when working on future versions of ParIce.
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Abstract
The topic of this paper is The Database
of Icelandic Morphology (DIM), a mul-
tipurpose linguistic resource, created for
use in language technology, as a reference
for the general public in Iceland, and for
use in research on the Icelandic language.
DIM contains inflectional paradigms and
analysis of word formation, with a vocab-
ulary of approx. 287,000 lemmas. DIM
is based on The Database of Modern Ice-
landic Inflection, which has been in use
since 2004. Whereas the older work was
descriptive, the new version is partly pre-
scriptive, making the data applicable in a
greater range of projects than before.

1 Introduction

This paper describes The Database of Icelandic
Morphology (DIM), containing the morphologi-
cal analysis of approx. 287,000 Icelandic lemmas.
The DIM is based on The Database of Modern
Icelandic Inflection (DMII), a collection of inflec-
tional paradigms first published in 2004, and orig-
inally conceived as a resource for language tech-
nology (LT) (Bjarnadóttir, 2012). The DMII has
been restructured and extended to include infor-
mation on word formation, and the analysis has
been extended to include genre, style, domain,
age, and various grammatical features. The orig-
inal DMII was descriptive, but DIM is partly pre-
scriptive, i.e., the “correctness” of both words and
inflectional forms is marked in accordance with
accepted rules of usage. This greatly improves
the scope of applications using the data, from
the purely analytical possibilities of the old DMII
(used for e.g. search engines, PoS tagging, named
entity recognition, etc.), to the productive possibil-
ities of the DIM, such as correction and formula-
tion of text. The additional analysis of morpholog-
ical constituent structure also provides important

linkups between lexical items, as the morphology
of Icelandic is extremely productive. The name
DIM is here used inclusively for the new project,
whereas DMII refers to the inflectional part only.1

DIM has five aspects:

• An LT data source for various uses (inclusive
of the original format available from 2007)

• A new enhanced and enlarged website for the
general public

• The prescriptive DMII Core which is a sub-
set of the inflectional paradigms marked for
correctness

• A morphological analysis (MorphIce) with
binary constituent structure and lemmatiza-
tion of constituents

• A data source for linguistic research utilizing
the classifications in the database to the full.

The paper is structured as follows. Section 2
contains a short description of Icelandic morphol-
ogy, to pinpoint the features of analysis needed for
various LT uses, with a discussion of the differ-
ence of descriptive and prescriptive data. Section
3 describes the DIM database and discusses de-
tails of the classification system briefly. Section 4
describes the five main parts of DIM listed above,
one by one, drawing out the benefits of the new
classification system in each case, i.e., in the DIM

1The Icelandic name of the DMII is Beygingarlýsing
íslensks nútímamáls, abbreviated BÍN. The abbreviation has
become a household name in Iceland, with the noun BÍN as-
signed feminine gender, and the verb bína (with the object in
the accusative) used of the search. As the name is so well
known, it is not easy to rename the project, and thus BÍN
is still used inclusively in Icelandic for the whole project,
both DMII and DIM, i.e., BÍN-vefurinn (DMII Web, for in-
flection online), BÍN-máltæknigögn (DIM/DMII LT Data),
BÍN-kjarninn (DMII Core), BÍN-orðföng (DIM Morpholog-
ical Data, MorphIce)), and Rannsóknar-BÍN (DIM for Re-
search).
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Core, the DMII Web, MorphIce, the accessible LT
data, and a website for linguists doing research on
Icelandic. Section 5 gives details on availability
and licensing, and Section 6 contains the conclu-
sion.

2 DIM and the Morphology of Icelandic

Work on the DMII was started in 2002, at the In-
stitute of Lexicography in Reykjavík (cf. Bjarna-
dóttir (2012) for a description of the project).2

The database (and the analysis) was very limited
in scope, due to considerations of finance and
manpower. The result was a set of inflectional
paradigms for Icelandic intended for LT use, and
a website for the general public.3 The download-
able LT data has been available in two formats,
i.e., in a list of inflectional forms with grammati-
cal tags, linked to a list of lemmas, and in a simple
list of inflectional forms without any analysis. Up
to date, the data has most popularly been down-
loaded as a CSV file, with the fields lemma; word
class; domain; inflectional form; grammatical tag.
The inflectional data for the genitive singular defi-
nite form of the masculine noun köttur “cat” is as
follows, slightly simplified, with the grammatical
tag in English:

köttur;416784;masc;kattarins;GEN.SG.+DEF;

This simple data has been used extensively in
Icelandic LT projects to date, but these projects
have shown the need for a more extensive analysis
of Icelandic morphology, which is rich and full of
variants and ambiguities, both in regard to inflec-
tion and word formation. The reasons are shortly
addressed in the following subsections, insofar as
they are reflected in the analysis used in DIM.

2.1 Inflection

The ratio of inflectional forms to paradigms in
the original DMII is quite high, i.e., 5.8 mil-
lion inflected forms to 270,000 paradigms, with
up to 16 inflectional forms to a noun, 120 to an
adjective, and 107 to a verb, excluding variants
(Bjarnadóttir, 2012).4 The inflectional categories

2In 2006, The Institute of Lexicography merged with
other institutions under the name The Árni Magnússon In-
stitute for Icelandic Studies.

3It should be noted that the DMII is a set of hardcoded
paradigms and not a rule-based inflectional system. The rea-
sons for this are given in Bjarnadóttir (2012).

4The figures are from Bjarnadóttir (2012), but the num-
ber of inflectional forms of verbs quoted here is from the

for nouns are case (nom., acc., dat., gen.), num-
ber (sg., pl.), and definiteness (-/+);5 for adjectives
gender (masc., fem., neut.), case (4), number (2),
definiteness (2), and degree (pos., comp., superl.);
for finite verbs voice (active, mediopassive), mood
(indicative, subjunctive), tense (present, past),
number (sg., pl.) and person (1st, 2nd, 3rd).6 For
other word classes, some adverbs inflect for de-
gree; personal pronouns inflect for person, case
and number; other pronouns, the definite article
and the numbers from one to four inflect for gen-
der, case and number, etc. All these features are
used in the tag set for the DMII, which is corre-
spondingly large, cf. footnote 4.

The number of inflectional forms is, per se,
not problematic, but the number of variant forms
with the same grammatical tag within the same
paradigm can be. A simple case in point is gen-
itive forms taking different endings, as in the gen-
itive singular of the masculine noun lestur “read-
ing”: lestrar/lesturs. These two genitive forms
are equally acceptable, but restrictions on the us-
age of variants can, in other lexical items, be a
question of context, style, and degree of accept-
ability. A case in point is the feminine noun rödd
“voice” where the otherwise obsolete dative sin-
gular variant röddu is only used in contexts like
hárri röddu “with a forceful voice” (i.e., “loudly,
clearly”; this instrumental dative phrase construc-
tion is quite common). The result of the number
of possible variants of inflectional endings (i.e.,
exponents of a grammatical category) is a rather
large number of inflectional patterns or inflectional
classes.7

The inflectional forms are highly ambiguous,
and this can be demonstrated by the distribution
of the inflectional endings. In the genitive plu-

original DMII. The new DIM includes additional cliticized
verb forms, and grammatical tags for impersonal construc-
tions (i.e., verbs with oblique subjects), so the number of
possible inflectional forms for a verb presently exceeds 300.
That analysis is under review, and there are plans to review
the PoS tag set for Icelandic which at present contains more
than 670 possible morphosyntactic tags, of which 559 turn up
in a corpus of 1.2 billion running words (Steingrímsson et al.,
2018).

5Gender is a lexical category for nouns, not an inflectional
one.

6The categories for non-finite verbs are not listed here.
7The paradigm of each word is run as a whole, i.e., all

the inflectional variants are produced by one bundle of rules,
instead of specifying that a word can belong to more than one
inflectional class. There are at present (May 2019) 669 such
inflectional classes in the DIM; the number fluctuates easily
with new data.
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ral, the universal ending for nouns is -a8 (as in
anda, gen.pl. for both the feminine noun önd
“duck” and the masculine noun andi “spirit”), but
the same ending is also one of the nom.sg. endings
in feminine nouns, the acc./dat./gen.sg. ending in
some masculine nouns, the acc.pl. ending in some
masculine nouns, not to mention the function of
the same ending in other word classes. The re-
sult is that inflectional forms are hugely ambigu-
ous, with only 32% of the inflectional forms in the
original DMII being unambiguous (Bjarnadóttir,
2012). Disambiguation is therefore an important
task in Icelandic LT, and because of the idiosyn-
crasies of individual words in respect of variant
inflectional forms this can only be achieved by re-
ferring to a lexicon.

2.2 Word Formation
In Icelandic, the morphological head of a word
is the word-final base word or compound, de-
pending on the binary structure of the word (cf.
Bjarnadóttir (2017a) for a short reference). Com-
pounds can be formed by joining any of the open
word classes, but noun-noun compounds are by
far the most common. The rules of compound
formation are recursive, and there is no theoreti-
cal limit to the number of constituents in a com-
pound, although compounds with more than six
constituents are rare. An added complication is the
fact that the first part of compounds (i.e., the mod-
ifier) can take a variety of combining forms. Nom-
inal modifiers can appear as stems or inflected
forms, most often in the genitive, singular or plu-
ral. The choice of forms is arbitrary, but not free,
cf. examples in Table 1 where unacceptable com-
pounds are marked by * (cf. also Bjarnadóttir
(1995)).

Stem Gen.sg. Gen.pl. Meaning
bóksala *bókarsala *bókasala “book store”
*bókkápa bókarkápa bókakápa “book cover”
*bókbúð *bókarbúð bókabúð “book store”

Table 1: Examples of combining forms in Ice-
landic compounds.

The lemmatization of the modifiers is needed
for disambiguation, as inflectional forms are
highly ambiguous, as in the case of the genitive
plural anda in andagift “spiritual gift” (i.e., “in-
spiration”), and andapollur “duck pond”, where

8Except for a subset of feminine nouns and a (very) few
neuter nouns where the generative plural ending is -na.

the lemma for anda in the first compound is the
masculine noun andi “spirit, breath”, but the fem-
inine noun önd “duck” in the second compound.

The ambiguity of the combining forms is a re-
flection of the ambiguity of inflectional forms,
and the most ambiguous of those in the DMII
at present is minni, which shows up as 30
inflectional forms in four paradigms, i.e., in
the neuter noun minni “memory” (5 inflec-
tional forms: nom./acc./dat. sg., nom./acc.pl.);
in the verb minna “remember” (4 inflectional
forms, not counting impersonal ones: active
voice, 1.p.sg. pres. indicative & subjunctive;
3.p.pl. pres. subjunctive); in the adjective
lítill “small, little” (20 inflectional forms, i.e.,
comp., masc./fem. nom./acc./dat./gen.sg., and
masc./fem./neut. nom./acc./dat./gen.pl.); and in
the possessive pronoun minn “mine” (1 inflec-
tional form, fem.dat.sg.). The ambiguity in com-
bining forms is therefore linked to ambiguity else-
where in the DIM.

2.3 Description vs. prescription

The DMII was originally created as a part of an
effort to start work on LT at the start of the millen-
nium, financed by the Icelandic Ministry for Edu-
cation and Culture. The first version of the DMII
was a set of XML files with 173,389 paradigms,
made available on CDs for use in LT in 2004. The
purpose was quite simple, the data was to be used
in coping with the morphology in Icelandic texts,
as well as in search engines and other tools requir-
ing the information. The emphasis was being able
to cope with Icelandic texts “as is”, without re-
gard to correct spelling, grammar, vocabulary, or
style. In other words, the data was descriptive, as
it had to function for analysis, but it was in no way
suited for production. For that prescriptive data is
needed, in order to conform with the established
standards for good Icelandic.

Icelandic standards appear in the “Rules
of spelling and punctuation” (Ritreglur (2016),
Reglur um greinamerkjasetningu (2018)), pub-
lished by the Ministry of Education and Culture,
and in Stafsetningarorðabókin “The Dictionary of
Spelling” (Sigtryggsson, 2016), published by the
Árni Magnússon Institute for Icelandic Studies.9

Various handbooks and grammar books, used in

9These sources are available at the website
of The Árni Magnússon Institute for Icelandic
Studies, https://arnastofnun.is and at
https://malid.is.
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the school system, also function as prescriptive
sources.

In order to make the transition from descriptive
to prescriptive, the core vocabulary of the DMII
has been checked against the standards mentioned
above, adding extensive cross-referencing of less
than optimal instances of usage to the standardized
forms in the DMII. This applies both to spelling,
inflectional forms, and to the vocabulary itself, as a
part of good usage is considered to be in the choice
of native words instead of loan words.

The mark-up of the prescriptive data, with the
links from the less optimal forms to the prescribed
ones, makes the data better suited for LT projects
such as spell checkers, grammar checkers, and any
kind of production of text, including teaching ma-
terial such as grammatical exercises.

3 The structure of the DIM Database

The old DMII database has been restructured to
achieve two main objectives. The first is to al-
low for more detailed information and classifica-
tion (cf. Subsection 3.1), and the other to allow
for configuring different aspects of the data for
different use (cf. Section 4). Some parts of the
new database have been designed from scratch and
contain new types of data, such as the analysis of
word formation which is linked to the other parts
of DIM.

Examples of the detailed information added to
the database are features of usage restrictions (syn-
tactic, semantic, stylistic, etc.), different ortho-
graphic representations, and features of accept-
ability, as described in Subsection 3.1. In ad-
dition, a proposed part of the DIM, still only in
the preliminary stages, is a repository of written
word forms not found elsewhere in the DIM data,
including obsolete forms, errors of all kinds, and
abbreviations. These will be classified, dated, at-
tributed to source, and be linked to the list of lem-
mas in the DIM proper. Extensive material of this
type is ready for import into the database, both
from lexicographic sources and from error anal-
ysis. This data allows for new analytic possibil-
ities, both for language technology and linguistic
research. It also extends the time frame of the data,
by creating a place for older inflectional variants,
as the DMII was originally confined to Modern
Icelandic, cf. the name: The Database of Mod-
ern Icelandic Inflection. The inclusion of older
data does not entail attempts at creating paradigms

for Icelandic through the centuries; the data is too
scarce for that. Experiments with using these pe-
ripheral word forms in LT have been made, cf.
footnote 14 below.

3.1 Classification

DIM uses a new sorting and grading system for
words and inflectional forms to differentiate be-
tween prescriptive and descriptive use, or to give
researchers access to vocabulary containing rele-
vant grammatical features. Following is a brief
description of the main sorting categories, with
a handful of examples in footnotes. The system
is complex and a full exposition with examples is
outside the scope here.

• Grammatical features of words: Used to
mark words with certain features or restricted
usage. Words can be marked for more than
one feature. These include: Idiom bound,
gender variation, older word form, restricted
paradigm, loan word, spelling variants . . . 10

• Value of inflectional forms: Used for inflec-
tional forms where two or more variants are
presented, to indicate their status in respect of
the other variant(s), with values like: equal,
dominant, yielding, uncertain.11

• Correctness Grade: Used to mark a word’s
or variant’s correctness according to prescrip-
tive grammar rules and standardized spelling.
Grades range from 0 to 5. Most words have
a grade of 1, and this is the default value and
stands for “Correct”. Grades 2, 3 and 4 stand
for “Used”, “Not good” and “Very bad”, de-
pending on the level of “wrongness”, 4 being
the lowest grade. Grade 5 exists for words or
inflectional forms that have somehow made it
into the database but are so “wrong” that they

10Examples of “Grammatical features of words”: Idiom
bound: almannavitorð n.neut. “public knowledge”, only
used in the dative singular in the idiom e-ð er á almanna-
vitorði “sth is public knowledge”; Gender variation: engi-
fer n.masc. or n.neut. “ginger”; Older word form: röddu
dat.sg. of rödd n.fem. “voice”, cf. Subsection 2.1; Restricted
paradigm: munu v. auxilary. The verb is finite only, active
voice only, and there is no past tense in the indicative; Loan
word: engifer n.masc. or n.neut. “ginger” (Loanwords, es-
pecially multisyllable ones, need marking as their inflection
very often deviates from the inflection of the native vocabu-
lary.); Spelling variants: pósitívur/pósitívur adj. “positive”.

11Examples of "Values of inflectional forms”: Equal:
dugir/dugar, 3.p.sg.pres. active voice of duga v. “suffice”;
Dominant: rödd, dat.sg. of rödd n.fem. “voice”; Yielding:
röddu, dat.sg. (idiom bound) of rödd n.fem. “voice”.
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could not possibly be part of the language of
an adult with a native speaker’s competence
in Icelandic, and so they are only visible in
administrator mode. Words and inflectional
variants classified by genre (cf. next para-
graph) have the grade 0, standing for “Not
applicable, depends on style or genre”. This
is because variants marked by genre are not
incorrect, but they are not the most common
correct form either.12

• Genre: Used to sort words and inflectional
forms according to style or age. Values:
Formal, informal, derogatory, obscene, rare,
old-fashioned, obsolete, poetic language, re-
gional. Genre is not a mandatory feature for
words or variants.

• Domain: A semantic classification, used
to classify named entities and domain spe-
cific vocabulary. These include several dif-
ferent kinds of names (e.g. Icelandic per-
sonal names, place names, etc.), and tech-
nical terms from different fields, etc. Most
words are in the domain called Common lan-
guage, which is the default value. All words
belong to one domain only.13 Domain spec-
ification only applies to words, not to inflec-
tional forms.

• Pronunciation: Features of pronunciation
are marked on words with possible discrep-
ancies between pronunciation and spelling.
Still a work in progress, this is meant for
linguistic research, but it may be useful for
speech synthesizers or speech analysis, etc.

• Peripheral word forms: Older word forms,
spelling errors and other forms that do not fit
within a paradigm are kept in a separate list
and connected to a lemma in the database.
This can be used to connect errors or old

12Examples of “Correctness Grade”: 1 (Correct, default
value): jafnvægi n.neut. “balance”. 2 (Used): ballans
n.masc. “balance”. The compound jafnvægi is considered
better usage, it is also much more common.; 3 (Not good):
pósitífur adj. “positive”. According to The Dictionary of
Spelling the correct form is pósitívur; 4 (Very bad): líter
n.masc. “liter”. The correct form is lítri n.masc. 0 (Grading
is not applicable): blóðgagl “raven, vulture”, poetic language
(blóð “blood” and gagl “goose; bird”).

13The result is that the common noun hrafn “raven”
and the personal name Hrafn are shown in two different
paradigms, although the inflection is identical.

forms to the appropriate modern form.14

4 The Five Aspects of DIM

DIM has five aspects or conceptual units. All of
them are part of one database; two of them are
solely focused on inflection, i.e., the DMII Core
(Subsection 4.1) and the DMII Website (Subsec-
tion 4.2), and one contains the word formations
analysis, i.e., MorphIce (Subsection 4.3). The re-
maining two aspects contain different modes of
access to the data, the LT Website for use in lan-
guage technology (Subsection 4.4), and the Ling-
Research for research on the language (Subsec-
tion 4.5).

4.1 The DMII Core
The DMII Core is designed to meet users’ de-
mands for data from the DMII in a prescriptive
context, and it is created to be used for third party
publication through an API, especially for lan-
guage learners. The RESTful API is open for
everyone to use. It allows users to send sim-
ple queries and receive full paradigms in JSON-
format as a response. The data in the DMII
Core only contains the core vocabulary of Ice-
landic, only standardized spelling, and only the
most common or correct inflectional forms. This
makes the data suited for creating teaching mate-
rial and for other prescriptive uses. As the data
in the DMII Core is simplified and the vocabulary
limited, the omission of a word or variant does not
imply that it is wrong. However, if a word or vari-
ant is found in the DMII Core, users should be able
to trust that it is safe to use, i.e., correct, in all (or
most) contexts.

The vocabulary of the DMII Core is based on
the list of headwords in The Modern Icelandic
Dictionary (Jónsdóttir and Úlfarsdóttir, 2016), and
the 50,000 most frequent words (lemmas) in the
The Icelandic Gigaword Corpus (Steingrímsson
et al., 2018). The total number of paradigms in
the DMII Core now stands at 56,867 (end of May
2019), as compared almost 287,000 in the whole
of DIM.

The new classification system (cf. Subsec-
tion 3.1), is used to choose words and inflec-
tional variants for the DMII Core. Only words
and variants with a correctness grade of 1 (univer-
sally acceptable) are included in the DMII Core,

14Cf. Daðason et al. (2014) for description of an LT tool
for transposing older Icelandic texts to modern spelling, using
data from a pilot project of this kind.
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and the categories of genre included are “formal,
informal, derogatory, obscene”. (The excluded
ones are “rare, old-fashioned, obsolete, poetic lan-
guage, regional”.) The only domain included in
the DMII Core is common language (i.e., the de-
fault value), with a chosen selection of named enti-
ties, i.e., common Icelandic personal names, a few
very common place names, and the most common
names of institutions.

The paradigms in the DMII Core have been
simplified as possible, without omitting equally
valid variants, showing only the best forms, or the
variants not limited by specific usage restrictions.
The correctness grade is also used for inflectional
forms, and only variants with correctness grade of
1 are included.

4.2 The DMII website

Individual paradigms have been accessible on the
DMII website from 2004.15 Extensively used by
the Icelandic public as a reference on inflection,
the website has been popular from the start, and
the latest figures show that more than 200,000
users viewed over 1.7 million pages in the year
starting June 1, 2018. (The total population of Ice-
land is approx. 360,000.) The figures are still ris-
ing, with 9% growth over the previous year. Orig-
inally, the data was set out to be purely descrip-
tive, for use in analysing Icelandic text “as is”, not
just the “received” text adhering to the rather strict
language norms officially advocated. To make the
website more useful, notes on usage were placed
with individual inflectional paradigms, pointing
the way in the choice of variants, and containing
information on restrictions on their use. These
notes are in Icelandic only, and they were origi-
nally hand-crafted and not classified in any way.
This makes the original website unsuited for any
but speakers with native or near native knowledge
of Icelandic, as the users themselves have to make
the final choice between variants, with the help of
the notes. In this context, the multitude and ambi-
guity of variant forms has to be stressed.

This mode of operation has not always been to-
tally successful, as the descriptive nature of the
data causes problems, even for native speakers of
Icelandic. The expectation is that all word forms
appearing on the site are “best usage”, all spelling
variants are “good”, and all words shown on the
website are acceptable, irrespective of genre, style,

15http://bin.arnastofnun.is

etc. The tolerance for substandard usage appear-
ing on the website is at times very low, as the users
will let the editors know from time to time. The
converse is also true, as some users expect all “ac-
ceptable” Icelandic words to be found in the DMII,
in spite of clear statements to the contrary on the
website, stating that the DMII is not exhaustive
and not an authority on acceptable Icelandic vo-
cabulary. The original duality of purpose in the
DMII, i.e., the need for the maximum number of
word forms found in texts for LT analysis vs. the
needs of ordinary users for prescriptive data, has
therefore caused some problems from the start.

The new version of the DMII website, to be
opened in 2019, makes use of the work on clas-
sification in the DMII Core described in Subsec-
tion 3.1. Markings on variations in spelling and
word formation, and any restrictions on use dis-
covered in the work of adapting the standard, are
carried over into the paradigms on the DMII web-
site, in the form of better notes on usage, with
extensive cross-references. To give one example
of two words commonly causing confusion be-
cause of their spelling, the words híði “den” (as
in “bear’s den”) and hýði “skin” (as in “banana
skin”) are pronounced in the same way. Each of
these entries on the website gives both forms, ex-
plaining the semantic difference. In case of sub-
standard spelling (as in writing pósitífur instead
of pósitívur “positive”), a hyperlink to the appro-
priate spelling rule is provided, as published on-
line at The Árni Magnússon Institute’s portal for
information on Icelandic usage.16 The guidelines
on the DMII website still warn the users that the
DMII is not a spelling dictionary, but there are
now referrals to the standard wherever possible.

4.3 MorphIce

The morphological analysis included in MorphIce
gives full constituent structure, with lemmatized
constituents. As compounding in Icelandic is ex-
tremely productive, this is of importance in LT
tasks, as the data can be used to minimize the ef-
fect of out-of-vocabulary words. The data also
serves for training of tools such as the com-
pound splitter Kvistur (cf. Daðason and Bjarna-
dóttir (2014)), which has been used to estimate
the probability of unknown compounds by the use
of a preliminary version of the data in MorphIce.
This data was originally analysed manually in the

16https://malid.is
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nineties (Bjarnadóttir, 2006) and will now be in-
corporated into the DIM. It is only with the cre-
ation of MorphIce that this data can be made freely
available as a linguistic resource.

As stated in Subsection 2.2, compound forma-
tion in Icelandic is complex. The compound anal-
ysis in MorphIce assumes binary branching, and
the rules are recursive, resulting in quite complex
binary trees.

The data on each compound will give full de-
tails on each component, with links to the main
index in the DIM, with DMII ids. All information
on the inflection of each constituent word in the
compound will therefore be accessible.17 Bound
constituents (affixes and combining forms) form a
separate part of the data set, with information on
the structures into which they fit. The format of
the output is still under construction, but a sample
of the analysis can be seen in the word orðabókar-
maður “lexicographer” below, with the consituent
parts orð “word”, bók “book”, and maður “man”.
The analysis is binary, with each item in the ex-
ample showing the result of one process or word
formation rule. These can be nested or not in the
output, according to needs, but as stated above, the
final format is still under construction. The num-
bers are the ids of the words in the DMII.

• orðabókarmaður:
[[orðabókar]<gen.sg.orðabók.n.fem.404616>
[maður]<n.masc.5763>]<n.masc.88516>

• orðabók:
[[orða]<gen.pl.orð.n.neut.2635>
[bók]<n.fem.11100>]<n.fem.404616>

A coding system for the binary trees is included in
the data, with “0” for base words, “1” for a sin-
gle join, “12” for a left-branching binary tree with
three constituents, as in [[[orða][bókar]][maður]]
above, etc. The granularity of the compound anal-
ysis can by adapted to the needs of each LT task,
and the most detailed analysis will probably only
be of interest to linguists.

The data in MorphIce will be linked to a dataset
containing argument structure, presently found in

17The inflection of Icelandic compounds is notoriously
unpredictable, especially when there is a choice of variant
forms, as in útvegur “fishing industry”, gen.sg. útvegs (i.e.,
út “out” adv., vegur “road, way”) vs. akvegur “road (for
cars)”, gen.sg. akvegar (aka “drive” verb, vegur “road”).
In recursive compounding, such genitives do appear as modi-
fiers. In such cases, the data should be sufficient for analysis,
but perhaps not unerring in predictions for new compounds.

a pilot version on the website of The Árni Magn-
ússon Institute for Icelandic Studies (Bjarnadóttir,
2017b). This data will be used to link multiword
constructions, such as particle verbs and verbs
with incorporated object, to their compound coun-
terparts, as in greina að “separate” (i.e., “take
apart”, the compound verb aðgreina also ex-
ists), the past participle/adjective aðgreindur, the
present participle aðgreinandi, and the noun að-
greining. Structures of this kind are very com-
mon in Icelandic, and finding and analysing mul-
tiword lexical entities and linking them to com-
pounds helps in demarcating semantic units.

In the future, the plan is to make the binary trees
themselves accessible online, but as yet the for-
mulation of that project is only in the preliminary
stages.

4.4 The LT Website

Datasets from DIM, for use in language technol-
ogy, are available from a separate website. Until
now, two versions of the data have been available
for download on the old DMII website along with
detailed descriptions of the datasets, in Icelandic
and English. One version is the list of inflec-
tional forms and lemmas, along with word class
and grammatical tag, described in Section 2. The
other is a simple list of word forms, without any
classification or linkups. The new DIM-LT web-
site still makes the DIM data available for down-
load in those formats, but more configurations are
available, constructed in cooperation with a select
group of long-time users. The data available on
the DIM-LT website is updated daily. For repro-
duction purposes, versioned datasets will be pub-
lished periodically.

The dataset is published with an open license
and is intended for use in the development of LT
tools and methods, but it may also be suitable in
other fields as well. The DIM-LT data is not in-
tended for lookups. Users who build software that
needs to do lookups in DIM at runtime will be en-
couraged to use the API, described in Sections 4.1
and 5, as that will allow them access at all times to
the most recently updated data.

As well as providing access to download-
able data, the DIM-LT website has informa-
tion on licensing, detailed information on all the
grammatical features appearing in the inflectional
paradigms, including lists of word classes, all in-
flectional categories and grammatical terms, and
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other relevant information, in Icelandic and En-
glish. The tag set in the downloadable data is in
Icelandic, but English translations are accessible
on the website.

4.5 DIM LingResearch

The DIM LingResearch is an adaptation of the edi-
torial interface to the new database, to be made ac-
cessible for linguistic research. All features of the
classification of words and inflectional forms will
be accessible for the extraction of data. Some fea-
tures have been specially included in the database
with linguistic research in mind, such as categories
of irregular pronunciation. To name an example,
the vowel a is diphthongized when preceding ng
(as in the word bangsi “teddy bear”), except in a
few loanwords, such as mangó and tangó. This
type of data is interesting for linguists working on
morphophonemics, but it may also be useful for
speech systems, etc. There are at present 16 pro-
nunciation sets of this kind in the data, along with
similar sets for various other features of word for-
mation, etc.

5 Access and licencing

As described in previous sections, DIM is avail-
able in different configurations. The DMII Core is
made available through an API through a permis-
sive license that allows third parties to publish the
data on the web. They are required not to mod-
ify the data and to give appropriate credit. All
paradigms can be viewed individually on the new
DMII website, as they have been on the old DMII
website since 2004. Access is open to all and
free of charge, but scraping the data or copying en
masse is prohibited. For use in language technol-
ogy or research on the language, the datasets are
available for download with an open, permissive
license, CC BY-SA. The same will apply to the
MorphIce data. Finally, access to the DIM Ling-
Research interface, intended for scholars, will be
given upon request.

6 Conclusion

The data from the old DMII has been used exten-
sively from 2004, when it was first made avail-
able. The initial dream was basically to create
data for rather simple tools, like a decent search
engine, etc. Very many of the projects using the
data have far surpassed these expectations. Two of
these projects are mentioned above, i.e., the com-

pound splitter Kvistur (cf. Subsection 4.3), and
the spellchecker Skrambi, referred to in connec-
tion with the use of peripheral word forms (cf.
Subsection 3.1, footnote 14).18 Two very recent
NLP-tools take advantage of DMII, the PoS Tag-
ger ABLTagger (Steingrímsson et al., 2019) and
the lemmatizer Nefnir, which is described in this
current version of NoDaLiDa (Ingólfsdóttir et al.,
2019). A list of additional projects is accessible on
the DIM website.19

In fall 2019, the first projects will start in a
national language technology programme, which
will run for five years. The programme follows
a plan set forward in 2017 (Nikulásdóttir et al.,
2017), and aims to produce open systems for ma-
chine translation, spell and grammar checking,
speech synthesis and speech recognition.

Extensive linguistic resources are needed for the
new projects planned in the next five years. This
is especially important for two reasons. First, the
Icelandic language community is very small, and
although Icelanders take pride in the production
of a great deal of text (as evidenced in a bloom-
ing Icelandic literary scene, and the proliferation
of Icelandic websites, etc.), the actual mass of text
produced is nowhere close to the scale accessi-
ble in really large language communities. Even if
all Icelandic texts from all times were accessible,
very many word forms would probably only oc-
cur a few times, certainly not often enough to be
useful in statistical analysis.20 The other reason
is the complexity of Icelandic morphology, both
inflectional and morphological, with correspond-
ing irregularities and ambiguities. It has therefore
proved to be necessary to produce and store the
morphological data, instead of writing a rule sys-
tem for analysing the morphology on the go.

We see the work in the immediate future as
ongoing excerption from the Gigaword Corpus
(Steingrímsson et al., 2018), fine-tuning the analy-
sis and classifications described in this paper, and
ongoing cooperation with the users of the data, as
they are the people who know what they need.

18Skrambi is available as an online spellchecker
(http:skrambi.bin.arnastofnun.is), but it
is also used in different versions for tasks such as correcting
OCR texts, and to transpose older texts with unstandardized
spelling from different periods to Modern Icelandic.

19http:bin.arnastofnun.is
20Some inflectional forms are not found at all, as is the case

for the dative singular of the name of Odin’s tree Yggdrasill
which is not to be found in any of the Old Icelandic sources.
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Abstract
This paper presents an overview of linguis-
tic resources available for the Sakha lan-
guage, and presents new tools for support-
ing language learning for Sakha. The essen-
tial resources include a morphological an-
alyzer, digital dictionaries, and corpora of
Sakha texts. We extended an earlier version
of the morphological analyzer/transducer,
built on the Apertium finite-state platform.
The analyzer currently has an adequate level
of coverage, between 86% and 89% on two
Sakha corpora. Based on these resources,
we implement a language-learning environ-
ment for Sakha in the Revita computer-
assisted language learning (CALL) plat-
form. Revita is a freely available online lan-
guage learning platform for learners beyond
the beginner level. We describe the tools for
Sakha currently integrated into the Revita
platform. To our knowledge, at present this
is the first large-scale project undertaken to
support intermediate-advanced learners of
a minority Siberian language.

1 Introduction
The Sakha language, also known by its exonym
Yakut, is the language of an ethnic community, who
mainly inhabit the Republic of Sakha in the Far
East of Siberia, Russian Federation. According to
the 2010 census, Sakha is the native language of
450,140 people, and is considered vulnerable due
to its limited usage. Children do not use Sakha in
all aspects of their life; they speak Sakha at home
with family, but do not use it in school and socially.
Sakha belongs to the Northern group of the

Siberian branch of the Turkic language family, and
is agglutinative, as are all Turkic languages, (Ubry-
atova, 1982). It has complex, four-way vowel har-
mony, and a basic Subject-Object-Verb word or-
der. The lexicon of Sakha consists of native Turkic

words, has many borrowings from the surrounding
Mongolic and Tungusic languages, numerous loan-
words from Russian, as well as words of unknown
origin. Sakhamakes extensive use of post-positions,
which indicate syntactic relations and govern the
grammatical case of nominals, (Forsyth, 1994).
In the digital sphere, Sakha can be considered a

low-resource language. We report on our project
to provide learning support for Sakha. Building
on pre-existing digital resources, we aim to provide
a learning platform for students (including adults)
who are interested in strengthening their linguistic
competency in Sakha.
The paper is structured as follows. Section 2 de-

scribes distinctive properties of the Sakha language
and motivates the need for language-learning sup-
port by reviewing the social environment of the lan-
guage. Section 3.1 presents an overview of previous
work Sakha; Section 3.2 describes the Revita plat-
form for language learning. Section 4 describes the
instruments we integrate to support language learn-
ing for Sakha. In Section 5 we discuss initial results
obtained with the tools. Sections 6 concludes with
pointers for future work.

2 Sakha language

Sakha is the national language of the Sakha people,
which, along with Russian, is one of the official lan-
guages of the Republic of Sakha (Yakutia), (Yart-
seva, 1990). The Sakha language differs signifi-
cantly from other Turkic languages ​​by the presence
of a layer of vocabulary of unclear (possibly Paleo-
Asiatic) origin, (Kharitonov, 1987). There are also a
large number of words ofMongolic origin related to
ancient borrowings, as well as late borrowings from
the Russian language, (Tenishev, 1997).

2.1 Distinctive features
Vowels in Sakha follow complex vowel harmony
rules. The features of the vowels within a wordmust
agree in a strictly defined fashion. First, palatal-
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velar harmony of vowels is observed in Sakha
strictly sequentially and does not admit exceptions.
If the first syllable contains a front vowel, then the
vowels in all subsequent syllables in the word must
be front. Otherwise, if the first syllable contains a
back vowel, then the vowels in all subsequent syl-
lables must be back. Second, labial vowel harmony
requires that the sequence of vowels agree according
to the degree of roundedness within adjacent sylla-
bles, (Sleptsov, 2018). For example:

• back+unrounded: “аҕа / аҕалардыын”
[aGa / aGalard̄In]
“father/with fathers”

• back+rounded: “оҕо / оҕолордуун”
[oGo / oGolordūn]
“child / with children”

• front+unrounded: “эбэ / эбэлэрдиин”
[ebe / ebelerd̄in]
“grandmother / with grandmothers”

• front+rounded: “бөрө / бөрөлөрдүүн”
[börö / börölörd¯̈un]
“wolf / with wolves”

Thus, the vowels in the suffixes “-лар-” [lar], in-
dicating the plural, and “-дыын” [d̄In], indicating
comitative case, undergo 4-way mutation according
to vowel harmony.
In Sakha, the verb is the central part of

speech, (Dyachkovsky et al., 2018). Some verbs can
have multiple affixes (as in most Turkic languages),
which can correspond to an entire clause or sentence
in other languages, such as Russian. Sakha has no
infinitive form for verbs, therefore a predicate that
(in other languages) would include an infinitive is
conveyed by various indirect means, for example:

• “суруйан бүтэрдэ”: [surujan büterde]
“he finished writing”
(literally: “he wrote, finished”);

• “сатаан ыллыыр”: [satān Ill̄Ir]
“he can sing”
(literally: “he knows how, sings”);

• “бобуоххун син”: [bobuoXXun sin]
“you can forbid”
(literally: “you can, let’s forbid”).

Sakha is characterized by an exceptional variety
of verbal tenses. In particular, according to (Kork-
ina, 1970), 8 past forms are distinguished:

• proximal-past:
“үлэлээтим” [ülelētim]
“I worked (recently)”;

• remote-past:
“үлэлээбитим” [ülelēbitim]
“I worked (long ago)”;

• past perfect:
“үлэлээбиппин” [ülelēbippin]
“In fact, I worked”;

• episodic past:
“үлэлээбиттээхпин” [ülelēbittēXpin]
“I used to work on occasion”;

• past imperfect:
“үлэлиирим” [ülel̄irim]
“I worked in the past for some time”;

• plusquamperfect:
“үлэлээбит этим” [ülelēbit etim]
“I had worked prior to that”;

• episodic plusquamperfect:
“үлэлээбиттээх этим” [ülelēbittēX etim]
“Long ago, I used to work”.

The total number of tense forms exceeds 20.
One of the particularities of nouns is when paired

nouns are marked with possessiveness, both compo-
nents of the compound noun change in parallel, as
the word is inflected:

• “баай-дуол” [bāj duol] “wealth”:
“баайа-дуола” [bāja duola]
(3rd person possessive, nominative case),
“баайын-дуолун” [bājIn duolun]
(3rd person singular possessive, accusative)

• “сурук-бичик” [suruk bičik] “writing”:
“сурукта-бичиктэ” [surukta bičikte]
(partitive case),
“суругу-бичиги” [surugu bičigi]
(accusative case)

2.2 Socio-linguistic environment
According to (Vasilieva et al., 2013), since 1990,
the percentage of ethnic Sakha has grown, reach-
ing 45% of the total population in the Republic of
Sakha. Ethnic Sakha together with other indigenous
peoples of the North Siberia and the Far East com-
prise over 50% of the total population.
Vasilieva et al. (2013) has conducted surveys,

which show a direct dependence of the level of lin-
guistic proficiency on the language of instruction at
school. A fluent level of proficiency is achieved by:

• respondents who had schooling in the Sakha
language (34.5%)

• respondents who had studied in schools, where
subjects were taught in Russian and partly in
Sakha (27.4%).
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Only 17.9% of respondents who had studied in
Russian are fluent in Sakha. Respondents who
speak Sakha poorly, or do not speak at all, graduated
from Russian-speaking schools. Thus, as expected,
linguistic skills and abilities in Sakha are poorer for
those who had studied in Russian.
In work life, the Russian language is dominant

for all age groups. In the two youngest age groups
(16–25 and 26–35 years old), the use of Russian is
growing, approaching 50%. This is due to the re-
quirements of formal communication, terminolog-
ical dependence, ethnically mixed composition of
professional teams. On the other hand, after the
completion of active professional life, the return to
an increased usage of the original ethnic language is
common, (Vasilieva et al., 2013).
In Yakutsk—the capital and the largest city of

the Sakha Republic—one in three Sakha children
lack the opportunity to study in their native lan-
guage. This is a violation of the right to study
in one’s native language. The number of schools
which offer teaching in Sakha in Yakutsk in 2002–
2003 was 16, and dropped to 15 by 2003–2004.
The number of schools where Sakha is studied as
a subject decreased from 22 (in 2002–2003) to 16
(in 2003–2004). The number of Sakha language
learners decreased from 6,377 to 2,902, (Vasilieva
et al., 2013). According to the statistical report
of the Ministry of Education of the Republic of
Sakha in 2006–2007, the cities of the Republic had
147 schools with Russian language of instruction
(61,055 children), 4 educational institutions with
non-Russian languages of instruction (1014 chil-
dren), 29 institutions with amix of Russian and non-
Russian languages of instruction (18,094 children).
In 11 schools (serving 1,262 students) non-Russian
languages are offered as optional subjects of study.
Vasilieva et al. (2013) indicate that this situa-

tion concerning the language of instruction of eth-
nic Sakha pupils has a direct correlation with other
serious problems in terms of linguistic competency
in Sakha and vitality of Sakha—acculturation and
assimilation of urban youth, which will leads to lin-
guistic conformism due to the lack of sufficient so-
cial opportunities for using the language.

3 Prior work

3.1 Sakha language resources
Despite the current advances in digitization, digital
resources for the Sakha language are severely lack-
ing. The creation of digital tools would strengthen

the language in a number of ways, and several
projects are being undertaken to support Sakha. We
briefly mention some of them here.
The digital bilingual dictionary SakhaTyla.Ru1

currently offers over 20,000 items from Sakha to
Russian, over 35,000 items from Russian to Sakha,
about 2,000 items from Sakha to English, and about
1,000 items from English to Sakha. In addition to
translations, this dictionary also contains examples
of usage, including idiomatic usage, for every item,
which constitutes a base of lexical data, and can
be highly useful for language learning and teaching.
The base of examples from this dictionary is cur-
rently not utilized in our learning platform.
Leontiev (2015) has compiled a newspaper cor-

pus of Sakha containing over 12 million tokens.
The SakhaWikipedia contains over 12,000 articles,
which makes up a corpus of over 2 million tokens.2
A Sakha course on the educational platform

Memrise offers a vocabulary of about 3100 words.3
Audio materials: Common Voice is a platform

for crowdsourcing open-source audio datasets.4 At
present, it offers just under 2.5 hours validated
voice recordings in Sakha. By comparison, English
has almost 850 hours of audio content on the plat-
form, and Russian has 50 hours.
In summary, few linguistic resources exists for

Sakha.

3.2 Revita language learning platform

Revita is an e-learning platform, which uses
methods from computer-assisted language learn-
ing (CALL) and intelligent tutoring systems (ITS).5
The platform provides a language-independent
foundation for language learning, which can be
adapted to support new languages, by adding
language-specific resources, without modifying the
core system. The platform is used for language
teaching and learning at several universities in Eu-
rope and Asia.
The goal of the system is to provide tools for

language learning, (Katinskaia et al., 2018), and
to support endangered languages, (Katinskaia and
Yangarber, 2018; Yangarber, 2018). The system
focuses on stimulating the student to actively pro-
duce language, rather than passively absorb exam-

1www.sakhatyla.ru
2sah.wikipedia.org
3www.memrise.com/course/153579/sakha-tylyn-

leksikata-sakha-tyla-iakutskii/
4voice.mozilla.org/en/about
5revita.cs.helsinki.fi
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ples of language use or grammatical rules. The sys-
tem achieves this by helping students learn language
from stories. The story can be any text, which the
students can choose themselves. The platform takes
an arbitrary text chosen by the user and uses it as
practice material; it creates exercises for the stu-
dent based on the text: the exercises are new every
time the student practices with the text—to keep the
practice sessions interesting and to reduce boredom.
The computational engines in the platform analyze
the text, and try to determine which concepts are
best suited for the student to learn next.
The platform has been customized for sev-

eral less-resourced Finno-Ugric languages: Erzya,
Komi-Zyrian, Meadow Mari, North Saami, Ud-
murt; it has also been customized for Kazakh (also
a Turkic language), and several others. Revita also
offers a number of languages with larger resources:
currently, the most developed are Finnish, Russian,
and German, and initial support exists for Swedish,
Spanish, Catalan, and French.

4 System for supporting Sakha

In this section we describe our work on adding the
Sakha language to the Revita platform for language
learning. The system is built on several lower-level
linguistic tools and components.

4.1 Morphological analyzer
The morphological analyzer, part of the package
called apertium-sah, was developed in the con-
text of the Apertium platform, (Forcada et al.,
2011). The analyzer is developed using the Helsinki
Finite-State Toolkit (HFST), (Lindén et al., 2011).
The lexicon and morphotactics are written in the
lexc formalism, and the morphophonology is de-
veloped using the twol formalism, based on the
Two-Level Morphology framework, (Koskenniemi,
1983). The transducers are compiled into a mor-
phological analyzer and a generator. The transducer
is two-directional: on one hand, it can map a surface
form to all of its possible lexical forms; on the other
hand, it can take a lexical form and generate all of
its corresponding surface forms. That is, the trans-
ducer can be used both for analysis and for genera-
tion of surface forms.
For example, the surface form “атын” receives

two analyses—lexical forms:

• ат [at] <n> <px3sg> <acc>
Horse.Noun.Possessive-3sg.Accusative
“his horse” (accusative)

• атын [atIn] <adj>
“other” Adjective (indeclinable)

We extended the initial, baseline version of the
Apertium Sakha analyzer by adding lemmas to the
lexicon based on their frequencies, which we com-
puted from the Wikipedia corpus. Initially the ana-
lyzer had 4,303 stems. Table 1 gives the number of
lexical items for each of the major parts of speech
(POSs) in inital and extended analyzer versions.

Part of speech Original Improved
Noun 2,582 4,240
Proper noun 815 2,155
Adjective 464 1,362
Verb 278 1,038
Adverb 62 338
Numeral 58 89
Pronoun 15 17
Postposition 12 42
Conjunction 7 16
Determiner 10 16
Total: 4,303 9,313

Table 1: Number of stems per part of speech

The morphological tagset consists of 92 tags: 16
tags indicate parts of speech—noun, adjective, verb,
postposition, etc.—and 76 tags indicate values for
morphological subcategories, e.g., for case, number,
person, possession, transitivity, tense, aspect, mood,
etc. We consultedUbryatova (1982) as the principal
source of grammatical information.

4.2 Language learning platform
The platform offers the learner several exercise
modes based on input stories: reading mode, prac-
tice mode, flashcards, crossword mode, etc.
In the reading mode learner can read a story, and

request translations of unfamiliar words.
In the practice mode the system generates exer-

cises based on the story, which user has uploaded
to the system. The story undergoes several stages
of analysis. At the lowest level the system uses
the Sakha morphological analyzer, (Ivanova et al.,
(To appear). The story is presented in “snippets”—
small pieces of text, about 50 tokens each, approx-
imately one paragraph or 2–3 sentences in length.
The system selects some of the tokens in the snip-
pet to generate quizzes. Each quiz may be of several
types: “cloze” (i.e., fill-in-the-blank quiz), multiple-
choice, or a listening exercise (where the learner
must type in the words s/he hears).
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Figure 1: Practice mode

The system creates cloze quizzes from inflected
parts of speech, i.e., nouns, verbs, etc. For example,
the first sentence in the snippet in Figure 1 is

“Туйаара уонна Айаал оонньуулларын
сөбүлүүллэр .”

[tujāra uonna ajāl ōnnjūllarIn söbül¯̈uller]

“Tuyaara and Ayaal like to play.”
The current snippet of the story appears over a
grey background, and contains cloze and multiple-
choice exercises. The system created a cloze exer-
cise, showing to the user only the base form (lemma)
“сөбүлээ” [söbülē] (“to like”) of the surface form
“сөбүлүүллэр” [söbül¯̈uller] (“they like”):

“Туйаара уонна Айаал оонньуулларын
сөбүлээ ...”

[tujāra uonna ajāl ōnnjūllarIn söbülē]

From the verb lemma the learner should guess
which form of the hidden word fits the context best.
Multiple-choice quizzes are constructed also

from non-inflected parts of speech (adverbs, post-
positions, etc.) Tokens of similar part of speech are
presented to the learner as “distractors”—incorrect
answer options. Figure 1 shows a multiple-choice
quiz for the token “куруук” [kurūk] (“always”) with
other adverbs serving as distractors.
Listening exercises (optional) are generated from

tokens in the story—the words are spoken by a
speech synthesizer and the learner must enter the
word that was pronounced. Currently, listening ex-
ercises are not available for Sakha; we plan to in-
corporate them into the system when text-to-speech
(TTS) synthesis for Sakha becomes available.

The previous snippets—above the current
snippet—show correctly answered questions—
coloured in green—and incorrectly answered
questions in blue.
The choice of candidates for exercises depends

on the user model—based on the history of the
user’s previous answers. The system computes
probabilities (weights) for potential candidates in
the snippet. Exercises receive a lower probability
if the student had mostly answered them correctly
or mostly incorrectly in earlier sessions—since it
means that they are too easy or too difficult for the
learner at present.
In the crossword mode, a crossword is built based

on the text. Exercises for the crossword are selected
randomly, and according to the same principles as
in practice mode.
The user can receive the translation of an unfa-

miliar word by clicking on it. The box on the left in
Figure 1 shows a dictionary entry for a token clicked
by the user—”дьиэ” [Žie] (“house”). The learner
can request a translation of an unfamiliar word in
all practice modes. Translations are looked up in
the SakhaTyla.Ru digital dictionary. The system
records the words for which translations were re-
quested into the user’s own set of flashcards. In the
flashcardmode the user can practice vocabulary, us-
ing timed repetition algorithms.
Stories for learning can be found on newspaper

websites, such as edersaas.ru, kyym.ru, etc., or from
the Sakha Wikisource.6

6https://sah.wikisource.org/
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Figure 2: Example of a chunk

4.3 Chunking for exercises
Revita allows the language expert to customize the
system for a new language by explicitly specify-
ing rules for syntactic government and agreement.
The system performs shallow parsing (“chunking”)
based on these rules, and uses the chunks when cre-
ating exercises, discussed in the previous section.
Next we discuss how these rules can work for Sakha.
A government rule, Rg, may state:
(сылтаан, PostP)→ [Ablative]

which means that the post-position lemma
сылтаан, [sIltān], (meaning “because-of”),
governs the ablative case of its preceding noun (or
noun phrase).
A simple but quite general agreement rule, Ra,

may state:
[ {pos: Noun, case: $X }
+ {pos: PostP, gov_case: $X } ]

RuleRa consists of two elements/tokens, and de-
scribes case agreement. If a token with noun POS
is followed by a token with postposition POS, they
will form a unit (phrase) if the free variable $X, in-
dicating the value of the case feature of the noun
and the case that the postposition governs, has the
same value for both tokens.
Using these two rules, the systems will match all

corresponding constructions in text. For example:

“... ардахтан сылтаан ... ”
[ardaXtan sIltān]

Rain.Noun.ABL because_of.Post-position
“... because of rain ...”

The Revita language learning system uses these
chunk rules to construct exercises. For example, the
exercise based on the second sentence in Figure 2:

“Ол гын баран бэҕэһээ ардахт сылтаан
олус тымныы этэ!”
[ol gIn baran beGehē ardaX sIltān olus

tImn̄I ete]

“But it was very cold yesterday because of the
rain!”

Corpus Tokens % Coverage
Original analyzer:
Wikipedia 2015 1,020,000 73.02
Kyym (newspaper) 1,040,000 71.36
Improved analyzer:
Wikipedia 2019 2,195,565 89.28
Newspapers 16,436,999 86.41

Table 2: Coverage of the morphological analyzer

The boxes contain the cloze quizzes—exercises for
the user. The system provides hints for each cloze.
First, inside the box it shows the lemma of the
word. Further, each phrase circled in red forms a
chunk/unit—based on the government and agree-
ment rules, such as Rg and Ra, above. Thus,
the post-position “сылтаан” [sIltān] (“because of”),
which governs the ablative case, links it to its pre-
ceding noun “ардах” [ardaX] (“rain”) to hint to the
user that the noun’s surface form should be in the
ablative.

5 Discussion

5.1 Analyzer coverage
Table 2 shows the coverage of the improved mor-
phological analyzer, as compared to the original
one. Coverage of the original analyzer was mea-
sured on the Wikipedia corpus (dump from 2015)
and the “Kyym” Sakha newspaper.
The improved analyzer was tested on aWikipedia

dump from 2019, and the large newspaper corpus
compiled by Leontiev (2015). Currently, the cov-
erage on Wikipedia is about nine out of ten tokens,
which is higher, as expected, since the analyzer was
developed based on a frequency list from this cor-
pus.

5.2 Learner engagement
We have presented the language learning platform
to language experts and lecturers at the Department
of the Sakha language, at the North-Eastern Fed-
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eral University in Yakutsk, Russian Federation. The
experts confirm that the language learning system
can be a promising tool for enhancing instruction
in Sakha. We also plan to introduce the learning
system to Sakha learners in cooperation with Yaku-
tia.Team, the organization for promoting Sakha lan-
guage and culture.7
Releasing the system for use by language learners

will yield mutual benefits for the learners as well as
for the researchers. The learners receive a training
platform which helps them improve their linguistic
competency. From the interaction of the learners
with the platform, the researchers receive valuable
educational data, for modeling the process of learn-
ing Sakha, the patterns of mistakes that the learners
make over time, and insights into how the learning
system can be improved on the basis of the collected
data.

5.3 Multiple admissibility
Multiple Admissibility (MA) in language learning
occurs when more than one surface form of a given
lemma fits syntactically and semantically within a
given context. MA implies that multiple alternative
answers are “correct” for the given context, not only
the word that the author chose to use in the story.
From the perspective of CALL and ITS (intelligent
tutoring systems), MA forms a complex challenge,
discussed in current research, (Katinskaia et al.,
2019).
The Sakha language presents a particularly rich

source of scenarios for multiple-admissible an-
swers. Due to the agglutinative morphology of
Sakha, the learner can add affixes to a word,
which carry additional information or connotations
to slightly alter the meaning of the word. We briefly
discuss several such scenarios.
The category of possessiveness—possessive af-

fixes on nominals—is one of the fundamental cate-
gories of Sakha grammar. Possessive forms are very
common, and the scope of their usage is far wider
than merely indicating possession in the strict sense;
possessive affixes express a wide range of logical re-
lations and connections between objects, which are
often not related directly to the strict notion of pos-
session, (Ubryatova, 1982). For example:

• “сылдьыбатах сирим”
[sIlŽIbataX sirim]
“a place where I have not been”
(literally: “my place, where ...”)

7https://www.yakutia.team

• “билбэт киһитэ”
[bilbet kihite]
“man whom s/he doesn’t know”
(literally: “her man, whom ...”).

We often find examples of using an impersonal
form of a noun in place of a possessive form of a
noun and vice versa, as in the following examples:

• Example of using an impersonal noun instead
of a possessive noun:
1a. Form which was used in a story:

“ сааны ылан сүгэр”
[sānI Ilan süger]
(“he hung a gun on his shoulder”)

1b. The learner’s input:
“ саатын ылан сүгэр”
[sātIn Ilan süger]
(“he hung his gun on his shoulder”)

• Example of using a possessive form instead of
an impersonal form:
2a. Form which was used in a story:

“моонньун уһатан уутун көрөр”
[mōnnjun uhatan ūtun körör]
(“craning his neck, he looks at (his) wa-
ter”)

2b. The learner’s input:
“моонньун уһатан ууну көрөр”
[mōnnjun uhatan ūnu körör]
(“craning his neck, he looks at the water”)

Secondly, Sakha has a highly developed system
of verbal aspects. Aspect in Sakha can be expressed
by various affixes or analytically. Aspect is one of
the most commonly used grammatical categories in
Sakha, which allows statements in the language to
be expressive and precise, (Ubryatova, 1982). Eight
forms are used to designate actions that have oc-
curred prior to the present time.
As a result of this choice, it may be quite difficult

to decide which form best fits the context, given only
the base form of the word. For instance, it can be
difficult to distinguish the “first past” perfect tense
and recent past tense, because the results of both
actions are connected with a present moment.
The verb form which was used in a story: first

past perfect tense, indicative mood, third person,
singular:

“Эһэм сиргэ сылдьан өрүү түргэн
хаамыылаах, оттон бу сырыыга өссө
чэпчэкитик үктэнэргэ дылы буолбут .”
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[ehem sirge sIlŽan ör¯̈u türgen XāmĪlāX,
otton bu sIr̄Iga össö čepčekitik üktenerge
dIlI buolbut ]

“Grandfather usually walks fast in the field, but
this time he also seems to step lighter” (meaning,
the action is inferred from its result).

The learner’s input was a verb form in the recent
past tense, indicative mood, third person, singular:

“Эһэм сиргэ сылдьан өрүү түргэн
хаамыылаах, оттон бу сырыыга өссө
чэпчэкитик үктэнэргэ дылы буолла .”
[ehem sirge sIlŽan ör¯̈u türgen XāmĪlāX,
otton bu sIr̄Iga össö čepčekitik üktenerge
dIlI buolla ]
“Grandfather usually walks fast in the field,
but this time he also steps lighter” (meaning,
the action is observed by the speaker).

These and many other examples show that the
task of generating exercises automatically for Sakha
is far from trivial and requires much research due to
extensive multiple admissibility.

6 Conclusion and future work

This paper offers an overview of the resources avail-
able for Sakha, and describes our work on creating
tools to support language learning for Sakha. Our
surveys of available resources demonstrate that they
are severely lacking.
We present the following tools and resources,

which we combine to create a system to support lan-
guage learning for Sakha:

• morphological analyzer, built on the Apertium
platform,

• language learning system, built on the Revita
platform,

• bilingual Sakha dictionaries,
• several Sakha corpora.
The morphological analyzer is an essential com-

ponent in any natural language processing (NLP)
system, without which little can be done to provide
computational tools for the language.
The functionality of the language learning sys-

tem is under development. For larger languages
many more linguistic resources and tools are avail-
able than for Sakha. For example, currently, the
Sakha system has only noun–postposition govern-
ment rules. We plan to implement additional
shallow-parsing rules to provide intelligent error
feedback to the learners. For example, verb–
complement government:

“ангинанан ыалдьыбыт”
[anginanan IalŽIbIt]

tonsillitis.Noun.INS contract.Verb.2SG.PAST
(“s|he contracted tonsillitis”).

The verb “ыарый” [IarIj] (“to contract”) gov-
erns the instrumental case of the noun “ангина”
[angina] (“tonsillitis”).
Currently, the system employs chunking (shallow

parsing) to track instances of syntactic government.
The system can track more complex and longer-
range government with the help of deep parsing.
Once a parser for Sakha becomes available, it will
enable Revita to provide richer feedback to the
learner.
The Sakha analyzer needs further improvement

to reach higher coverage. The main work to be
done is extending the lexicon. While a good level of
coverage has been achieved with only 9,313 stems,
production-level morphological analyzers have at
least tens of thousands of stems—more typically,
hundreds of thousands. Once good coverage has
been achieved for the morphological analyzer, the
next step is to build models for morphological and
syntactic disambiguation.
As more advanced tools for Sakha become avail-

able, they will be incorporated into Revita, to pro-
vide richer functionality:

• Parsers, e.g., dependency parsers, such as
based on the constraint-grammar formalism
(commonly used in Apertium), or statistical or
neural-network based parsers.

• Difficulty models—to predict the difficulty of
a story for the user, and to assess the learner’s
level of competency—based on how well a
learner handles easy vs. difficult stories.

• Disambiguationmodels—to disambiguate am-
biguous tokens in text.

• Text-to-speech—to provide listening exercises
based on text.

• Speech-to-text—to provide speaking exercises
(not yet available).
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Abstract
We show how to express the problem of
finding an optimal morpheme segmentation
from a set of labelled words as a 0/1 linear
programming problem, and how to build
on this to analyse a language’s morphology.
The approach works even when there is
very little training data available.

1 Introduction

Many recent tools for morphological analysis use
statistical approaches such as neural networks (Cot-
terell et al., 2018). These approaches can profitably
use huge amounts of training data, which makes
them ideal for high-resource languages. But if there
is little training data available, statistical methods
can struggle to learn an accurate model. And when
they learn the wrong model, it is difficult to diag-
nose the error, because the model is a black box.

This paper presents a new approach to
morphological analysis that produces human-
understandable models and works even if only a
few training words are given. The user gives a list
of inflected words together with each word’s mor-
phosyntactic features and standard form (lemma):

standard inflected features
woman women Pl;Nom
baby babies’ Pl;Gen
dog dogs’ Pl;Gen
cat cat’s Sg;Gen
lorry lorries Pl;Nom

Our tool then proposes, for each feature, the affixes
and morphological rules which mark that feature.
For the example above it suggests the following:

feature context morpheme
Gen Sg +’s∗
Gen Pl +’∗
Pl Gen +s∗
Pl Nom +a+→ +e+
Pl +y∗ → +ies∗
Sg +y∗, +a+, ∅

Here, +’s∗ represents the suffix ’s, and +a+ repre-
sents an infix a.1 The table shows that both ’s and
an apostrophe can mark the genitive case; the sec-
ond column means that the genitive was marked
by ’s only in singular nouns, and by an apostrophe
only in plural nouns. An s suffix marks plural, and
because of the tiny input data it was only seen in
genitive nouns. Plural can be marked by an inner
vowel change from a to e (indicated by the arrow),
or by changing a final y to ies, in which case the
singular form is marked by a or y.

The tool also segments the input words into mor-
phemes consistent with the table of rules (the in-
ferred stem is marked in bold):

standard inflected
wom|a

Sg
|n| ∅

Nom
wom|e

Pl
|n| ∅

Nom
bab|y

Sg
| ∅
Nom

bab|ies
Pl
| ’
Gen

dog| ∅
Sg,Nom

dog|s
Pl
| ’
Gen

cat| ∅
Sg,Nom

cat| ’s
Gen
|∅

Sg
lorr|y

Sg
| ∅
Nom

lorr|ies
Pl
| ∅
Nom

Our key idea is a novel morphological segmen-
tation algorithm used to produce the segmentation
above (section 3). Once we have a segmentation,
we use it to compute the rules on the left (section 4).

In this example, the rules inferred by our tool pre-
cisely capture the morphology of the input words,
and the segmentation shows which rules are most
common. We claim that, together, they can be
used to perform high-quality morphological analy-
sis. We validate this claim in section 5 by showing
how to build on our tool to do reinflection.

2 Related Work

Morphological segmentation is a well-studied prob-
lem in NLP, with applications including machine
translation (Green and DeNero, 2012), speech

1The tool also supports prefixes such as ∗un+, and cir-
cumfixes such as ∗ge+t∗ in the German gerannt (run; past
participle). We explain the meaning of ∗ and + in section 3.3.
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recognition (Rajagopal Narasimhan et al., 2014)
and information retrieval (Turunen and Kurimo,
2008); for a more detailed overview we refer
the reader to Ruokolainen et al. (2016) or Ham-
marström and Borin (2011). Unsupervised learning
(Harris, 1955; Creutz and Lagus, 2007; Goldsmith,
2001; Johnson, 2008; Poon et al., 2009) relies on
unannotated text, and is perhaps the most popular
approach, because of the large amount of unanno-
tated text available for many languages, but it can
suffer from low accuracy (Hammarström and Borin,
2011). One way to improve accuracy is to exploit
semantic information (Sakakini et al., 2017; Vulić
et al., 2017; Schone and Jurafsky, 2000; Soricut and
Och, 2015). Another is minimally-supervised learn-
ing (Monson et al., 2007; Kohonen et al., 2010;
Ruokolainen et al., 2013; Grönroos et al., 2014;
Sirts and Goldwater, 2013; Ahlberg et al., 2014),
which combines a large amount of unannotated
text with a small amount of annotated text, and
potentially provides high accuracy at a low cost.

Silfverberg and Hulden (2017) observe that in
the Universal Dependencies project (Nivre et al.,
2017), each word is annotated with its lemma and
features, but not segmented. They study the prob-
lem of finding a segmentation for these words. Our
segmentation algorithm solves the same problem,
and can be used in their setting. We improve on
their solution by using a constraint solver to achieve
high accuracy even with limited data, and using a
precise language for expressing affixes and rules,
which allows us to use the resulting model to pre-
cisely analyse new words.

Luo et al. (2017) use Integer Linear Program-
ming for unsupervised modelling of morphological
families. They use ILP as a component of a larger
training algorithm, so unlike our work they do not
attempt to find a globally optimal solution. ILP
has been used in other NLP applications outside
of morphology (Berant et al., 2011; Roth and Yih,
2005; Clarke and Lapata, 2008).

3 Morphological segmentation

The input to our tool is a list of words, each anno-
tated with its lemma and morphosyntactic features.
From now on, we model the lemma as simply an-
other feature; for example, the word “women” has
the features Nom, Pl and woman.

The goal of this section is to divide each word
into segments, and assign each feature of the word
to one of those segments. A segment may consist

of multiple discontinuous pieces, or be empty. In
the segmentation on page 1, for example, the word
women is segmented by assigning Pl the segment
e, Nom the null segment, and woman the discon-
tinuous segment wom*n. In general, the segment
assigned to the lemma feature represents the stem
of the word.

We say a segmentation is valid if for each word:

• Every letter is in exactly one segment.

• Each feature labels exactly one segment.

• Each segment is labelled with exactly one fea-
ture.2

There are many valid segmentations, some good,
some bad. We consider a segmentation good if it is
parsimonious: each morpheme should be marked
by as few features as possible. Note that different
forms of a word may be assigned different stems
(e.g. go and went), but parsimony dictates that we
share stems wherever reasonable. Perhaps surpris-
ingly, finding the most parsimonious segmentation
is an NP-hard problem, by reduction from set cover.

3.1 Segmentation as a constraint problem

We solve the segmentation problem using zero-one
linear programming (0/1 LP). A 0/1 LP problem
consists of a set of variables (e.g. x, y, z, . . .) and
a set of linear inequalities over those variables (e.g.
2x + 3y ≥ z and x ≤ 2y + 3). Given such a
problem, a 0/1 LP solver finds an assignment of
values to the variables that makes all the inequali-
ties hold, and where all variables have the value 0
or 1. A 0/1 LP problem also specifies a linear term
whose value should be minimised (e.g. 4x+y−z),
called the objective function. A 0/1 LP solver is
guaranteed to find the solution that minimises the
objective function, if a solution exists. The solver
that we use is CPLEX (ILOG, 2009).

In this section we assume that we are given, in
addition to the labelled words, a (possibly large)
set of allowable segments for each feature, which
we call candidate morphemes. How candidate mor-
phemes are automatically generated is explained in
section 3.2.

Our encoding uses the following variables. If m
is a candidate morpheme of feature f , the variable

2This is an unrealistic assumption, but also fairly harmless:
when a morpheme marks (e.g.) genitive plural, it will be
assigned one of those features, but the inferred rules will show
that it only occurs together with the other feature.
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Sf,m should be 1 if m is used to mark f , and 0
otherwise. If f is a feature with a candidate mor-
pheme m that occurs in word w, and P is the set
of positions in w occupied by m, then the vari-
able Mw,P,f,m should be 1 if this occurrence of m
marks feature f , and 0 otherwise.

Example Suppose that we are given the prob-
lem of segmenting the Swedish word hästarna (the
horses). For simplicity, suppose that we know that
the stem of hästarna is häst, and that the possible
affixes are ar and na. (For now, we ignore the fact
that these should be suffixes; we deal with this in
section 3.3.) This results in the following candidate
morphemes:

feature candidate morphemes
Pl ar, na
Def ar, na
häst häst

The string ar appears at positions 5–6
in hästarna, and na appears at positions
7–8. Therefore, the encoding introduces
the following variables: SPl,ar, SPl,na, SDef,ar,
SDef,na, Shäst,häst, Mhäst,5–6,Pl,ar, Mhäst,5–6,Def,ar,
Mhäst,7–8,Pl,na, Mhäst,7–8,Def,na, Mhäst,1–4,häst,häst.

We then generate the following constraints:

• If a morpheme is used to mark a feature in a
given word, it must be a genuine morpheme
of that feature. For each M -variable, if the
M -variable is 1 then the corresponding S-
variable must also be 1:

Sf,m ≥Mw,P,f,m

• Each position of each word must be in ex-
actly one segment. For each position in each
word, there must be exactly one M -variable
that contains that position and whose value is
1. Thus for each position p of each word w
we generate the following constraint:

∑

f∈features of w
m∈candidate morphemes of f

P∈occurrences of m in w where p∈P

Mw,P,f,m = 1.

• In each word, each feature must be mapped to
exactly one morpheme. For each feature f of
each word w and feature f of w, exactly one
M -variable must be 1:

∑

m∈candidate morphemes of f
P∈occurrences of m in w

Mw,P,f,m = 1.

Example For the above example, the first rule
generates the following constraints, which force an
S-variable to 1 when one of its M -variables is 1:

Shäst,häst ≥Mhäst,1–4,häst,häst

SPl,ar ≥Mhäst,5–6,Pl,ar

SPl,na ≥Mhäst,7–8,Pl,na

SDef,ar ≥Mhäst,5–6,Def,ar

SDef,na ≥Mhäst,7–8,Def,na

The second rule generates the following con-
straints, since letters 1 to 4 can only be covered by
häst, letters 5 to 6 by ar (either as Pl or Def), and
letters 7 to 8 by na:

Mhäst,1–4,häst,häst = 1

Mhäst,5–6,Pl,ar +Mhäst,5–6,Def,ar = 1

Mhäst,7–8,Pl,na +Mhäst,7–8,Def,na = 1

The third rule generates the following con-
straints, stating that häst, Pl and Def must be
marked by exactly one morpheme each:

Mhäst,5–6,Pl,ar +Mhäst,7–8,Pl,na = 1

Mhäst,5–6,Def,ar +Mhäst,7–8,Def,na = 1

Mhäst,1–4,häst,häst = 1

This set of constraints has two solutions:

1. One where Pl is assigned to ar and Def to
na. In this solution, the following variables
are 1 and the rest are 0: Shäst,häst, SPl,ar, SDef,na,
Mhäst,1–4,häst,häst, Mhäst,5–6,Pl,ar, Mhäst,7–8,Def,na.

2. One where Def is assigned to ar and Pl to na.

In general, any valid segmentation of the input
words is a solution to the constraint problem. To
make the constraint solver find the best segmen-
tation, we also supply an objective function to be
minimised. In our case, we choose to minimise the
total number of morpheme-feature pairs used. To
achieve this, we supply the objective function

∑

f∈features
m∈candidates of f

Sf,m.

Example Suppose that we add to our earlier ex-
ample the word hundars (dogs’). Its stem is hund
and its other features are Gen and Pl. We also add
s to the candidate morphemes for Pl, Def and Gen.

The constraint solver finds the solution that min-
imises the value of the objective function, which
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in this case means assigning ar to Pl, s to Gen and
na to Def. The objective function’s value is then 3
(SPl,ar + SGen,s + SDef,na). This is the correct seg-
mentation; the wrong segmentations are rejected
because they have more feature-morpheme pairs
and thus make the objective function larger.

3.2 Choosing the candidate morphemes: the
naive approach

The constraint solver requires as input a set of can-
didate morphemes for each feature. Since the prob-
lem formulation requires that a morpheme or stem
of a word in the dictionary must be a subsequence
of that word, one option is to simply let the candi-
date morphemes of a feature f include all subse-
quences of all words that are annotated with fea-
ture f . This guarantees the optimal solution with
respect to the given constraints. We have found
two main problems with this approach.

1. While it works very well for small inputs
(around 20 words), the constraint problem
quickly becomes infeasible with larger sets of
data, especially if many features are involved.

2. It does not consider the position of the mor-
pheme in the word: the suffix -s is a plural
marker in English, but the infix -s- is not.

We solve Problem 1 with an algorithm that
guesses an approximate stem and then refines the
guess. The algorithm is described in section 3.4.

To solve Problem 2, we now introduce mor-
pheme patterns, which restrict the way in which
morphemes can be applied: in this case, a mor-
pheme that has been observed only as a suffix in
the data should only occur to the right of the stem.

3.3 Morpheme patterns
If we do not distinguish prefixes, suffixes and in-
fixes, we can not know whether the word seashells
should be segmented as seashell|s or s|eashells or
even sea|s|hells. Morpheme patterns allow us to
make this distinction. A typical morpheme pattern
is +s∗, which represents the suffix s.

Morpheme patterns act as jigsaw pieces that
make sure each morpheme is placed in its appropri-
ate position in relation to the stem. By using mor-
pheme patterns, we restrict the way morphemes can
be combined and obtain a more precise segmenta-
tion. The purpose of this section is to formalise
what + and ∗ in patterns mean, and to extend the
segmentation algorithm to respect the meaning of

the patterns. Both stems and affixes are described
using morpheme patterns, but their semantics are
slightly different.

Stem Patterns For stems, a ∗ symbol marks a
position where an affix can (but does not have to
be) inserted. For example, m∗n∗ is the stem of man,
where an a can be inserted in the infix position to
make it singular, or an e to make it plural. In the
suffix position, we can have the null morpheme,
or add an affix such as ’s. To accommodate word
forms with multiple tokens, such as the German
word fängt an (begins), with standard form anfan-
gen, stems are represented by a set of patterns. The
patterns of this set can be combined in any order,
with or without a space. {f∗ng∗, an} is thus a stem
of both word forms.

Affix Patterns Affix patterns include two special
symbols, + and ∗. For an affix pattern to match
a word, you must be able to obtain the word by
replacing each + and ∗ with an appropriate string.
For example, +s∗ matches dogs’ by replacing +
with dog and ∗ by an apostrophe. But there are two
important restrictions:

• Each + must be replaced by a string that con-
tains some part of the stem.

• Each ∗ must be replaced by a string that does
not contain any part of the stem.

In effect, the + symbol determines where the
stem must be placed in relation to the affix, while
the ∗ symbol allows other affixes to be attached in
its place. For example, the plural morpheme +s∗
in English must be placed after (but not necessarily
directly after) a stem. Likewise, the genitive mor-
pheme +’∗ must have the stem entirely on its left
side. The two morphemes can be combined into
+s’∗, and be placed after the stem horse∗, to pro-
duce the word horses’. The morpheme +ea+ must
be placed where it has the stem on both sides, thus
making it an infix. Together with the stem pattern
br∗k∗, it produces the word break. Similarly, the
morpheme +o+en∗ together with br∗k∗ produces
the word broken. An affix pattern can in theory
have any number of +-symbols.

Extra constraints In order to make the con-
straint solver follow the semantics of stem pat-
terns and affix patterns, we must for each word
add extra constraints for the stems and patterns
that are incompatible. An affix and stem can both
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be chosen for a word only if the affix is in an ap-
propriate position in relation to the stem. Thus,
for all words w, and all pairs of M -variables
Mw,P1,f1,m1 ,Mw,P2,f2,m2 , we check if m1 is a
stem pattern, m2 is an affix pattern and their posi-
tions P1 and P2 are incompatible. If so, we add a
constraint that only one of them can be chosen:

Mw,P1,f1,m1 +Mw,P2,f2,m2 ≤ 1

For example, supposing we have +e+ as a candi-
date morpheme for plural, +s’ as a candidate mor-
pheme of genitive, and bus∗ as a candidate stem of
buses’, the constraint will not accept bus|e|s’ as a
segmentation, since +e+ is required to be an infix
of the stem.

3.4 The Algorithm
Considering all possible subsequences of all words
yields an unmanageable number of variables for
the constraint solver. We therefore need to identify
the relevant subsequences, which is done in several
steps.

1. As a first step, we approximate the stem as the
longest common subsequence of the inflected
word and the standard form:

standard inflected features
woman women Pl;Nom
baby babies’ Pl;Gen
dog dogs’ Pl;Gen
lorry lorry Sg;Nom

2. By removing the approximated stems, we sim-
plify the problem to segmenting the non-stem
part of each word. The resulting problem in-
cludes many duplicates, as well as having
shorter strings to segment, making it feasi-
ble to naively consider every subsequence as
a candidate for each feature listed with the
word. The result is as follows.

women e → e
Pl
|

Nom

woman a → a
Sg
|

Nom

babies’ ies’ → ies
Pl
| ’

Gen

baby y → y
Sg
|

Nom

dogs’ s’ → s
Pl
| ’

Gen

dog →
Sg
|

Nom

lorry →
Sg
|

Nom

We simplify the problem further, by automat-
ically giving the null morpheme to features
that are shared between the inflected form and
the standard form. Since we do not allow any
segment to be explained by multiple features,
we can assume that the word difference is un-
related to the features that are shared between
the two word forms. As an optimisation, when
a word is annotated with a single non-shared
feature, that feature is automatically paired
with the entire non-stem part, and no subse-
quences are generated.

The approximated stem together with the seg-
mentation of the remainder of the word makes
a first approximation of a segmentation of the
entire word. However, choosing the longest
common subsequence as the stem does not
always result in the best segmentation. In our
example above, the -y is dropped in the stem
of baby, but is included in the stem of lorry. A
more consistent choice would be to drop it for
lorry too, which we achieve in the next step.

3. Taking the morphemes chosen by the con-
straint solver in step 2, we generate additional
stem candidates by removing from each word
each possible choice of morpheme for the
word’s features. For example, in the segmenta-
tion to the left, we got +y∗ as a morpheme of
the Sg feature. Therefore, for any word with
the Sg feature that ends in y, we generate a
candidate stem where the -y suffix is dropped.

For lorry, we get the candidate stem lorr∗ in
addition to the approximated stem lorry from
step 1. For baby, in addition to the suffix +y,
we also consider the infix +a+ from wom∗n
in step 2 as a possibility for the singular mor-
pheme. The candidate stems thus become
bab∗ and b∗by.

4. Using the morphemes computed in step 1 and
the stem candidates of step 3, we re-run the
constraint solver and let it find the optimal
choice of stems and morphemes. The cho-
sen stems and morphemes are decoded from
the 1-valued S-variables, while the segmen-
tation can be decoded from the 1-valued M -
variables.

4 Finding morphological rules

We have now discovered which morphemes mark
each features. This section shows how to find in-
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flections that change one morpheme to another, and
morphemes that mark a combination of features.

4.1 Function features

In order to detect inflection rules that involve re-
placing one morpheme with another, such as the
change of the suffix +y∗ into +ie∗ in English plu-
ral, we introduce the concept of function features.
Without function features, we might find all of +s∗,
+es∗ and +ies∗ as English plural morphemes. By
adding function features, we can specify that +s∗
is generally used as the pluralisation morpheme,
and when +ies∗ and +es∗ are used instead.

Function features are a special synthetic feature
automatically added to some input words. They are
added once we have segmented the input, and only
for words where the standard and inflected form
have the same stem. Let us take as an example the
word babies, its standard form baby, and its stem
bab∗. We first remove the stem from the standard
form to get +y∗. Our idea is that, since +y∗ is a
suffix, we will add the feature From Suffix y to the
set of features of babies. We process the whole
input this way, and then re-run the segmentation.
Assuming there are several words in the input that
share the same paradigm, the constraint solver will
map +s∗ to Plural (because the pair (+s∗, Plural)
is commonly occurring and shared by other words),
and +ie∗ to the From Suffix y feature. This seg-
mentation captures the fact that words ending in y
often change to ie in plural. We can picture this
process as: bab(y→ ie) |s

Pl
.

In the same way, the word-lemma pairs men
- man, wives - wife and mice - mouse result in
the stem changes +a+→ +e+, +f+→ +v+ and
+ous+→ +ic+, after we synthesise the respective
function features From Infix a, From Infix f and
From Infix ous.

An inflection rule may also be specific to a part
of the stem, such as the doubling of the letter g in
big - bigger. To cover cases involving the last or
first letter of the stem, we synthesise the feature
AddTo Suffix x, where x is the last letter of the stem,
and AddTo Prefix x, where x is the first letter of the
stem. As an example, bigger, with the stem big∗,
is given the additional feature AddTo Suffix g. The
morpheme +er∗ is likely to be mapped to the com-
parative feature (due to its commonness in words
in comparative form), while the remaining +g∗ is
mapped to the AddTo Suffix g feature:

bi(g→ gg) | er
Comp

We also capture the phenomenon where extra
letters are inserted when adding an affix, such as
the insertion of an extra g between the past tense
marker ge and a stem beginning with the letter e
in German. To do so, we identify the first and last
letters of the stem and add them as synthesised
features. In this case, this results in the extra fea-
ture AddTo Prefix e, the segmentation of gegessen
(eaten) becomes ge

Past
|(e→ ge)ss|en

Past
.

This algorithm is not language-specific: it works
for any language where the concepts of prefix, infix,
suffix, first and final letter affect inflection.

4.2 Morphemes with multiple features

Sometimes, a morpheme can be linked to more
than one feature. For example, +na∗ in Swedish
is a morpheme of definite form, but it occurs only
in plural. To find such links we post-process the
result returned by the constraint solver. For each
morpheme m of each feature f, we collect all words
whose segmentation uses morpheme m for feature
f. The intersection of all features of all such word
entries reveals what features always occur together
with the combination of m and f .

5 Experimental Results

We evaluated our tool on four different problems:
English nouns, Swedish nouns, Dutch verbs, and
the SIGMORPHON 2018 shared task of morpho-
logical reinflection (Cotterell et al., 2018).

English nouns We tested our tool on 400 ran-
domly selected English nouns from the GF resource
grammar library (Ranta, 2009). The tool took 3.9s
to run. Fig. 1 shows the morphemes chosen before
and after the addition of function features.

From the test results, we randomly select 20
words to demonstrate their segmentations. The first
segmentation, based on approximated stems (step
3 of the algorithm) is presented in Fig. 2.

Step 4 of the algorithm changes just one entry:
the suffix y has been dropped from the stem of sky.
None of the 20 word entries involves a function
feature that was assigned to a non-null morpheme.

Combined morphemes Fig. 3 lists the mor-
phemes with multiple features, as described in sec-
tion 4.2. The list of combined features nicely shows
many of the inflection rules appearing in the data.

Reducing the test data We repeat the experi-
ment after reducing the test data to include only
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First approximation of morphemes
feature morphemes
Gen ∗ +’s∗ +’∗ +e+’s∗

+v+’∗
Nom ∗
Pl ∗ +s∗ +ies∗ +es∗ +e+

+ren∗ +v+s∗ +ic+
Sg ∗ +y∗ +a+ +f∗ +f+

+oo+ +ous+
Morphemes, including function features
feature morphemes
Gen ∗ +s’ +’s
Nom ∗ +ous+
Pl ∗ +s∗
Sg ∗ +a+ +oo+ +y∗

+f∗ +f+
Infix a ∗ +e+
Infix f ∗ +v+
Infix oo ∗ +ee+ +oo+
Infix ous ∗ +ic+
Suffix f ∗ +ve∗ +f*
Suffix y ∗ +ie∗ +y*
AddToSuffix d ∗ +ren∗
AddToSuffix h ∗ +e∗

Figure 1: Chosen morphemes after each step

the 20 randomly selected words. After step 2, the
segmentation based on 20 words is identical to the
segmentation based on 400 words, with just one
exception; the stem of country includes the suf-
fix y. After step 3 and step 4, the segmentation is
identical to the one based on 400 words.

Swedish nouns and Dutch verbs We also tested
our method on a set of Swedish nouns and Dutch
verbs. For Swedish nouns, our method works very
well. The precision is 100% based on a set of 50
words, and 94% based on a set of 250 words. The
erroneous results on the bigger data were because
the algorithm noticed a vowel change in certain
words and applied it universally, causing for exam-
ple the stem of grad (degree) to wrongly become
gr∗d∗ instead of grad∗, because of other words in
which a becomes ä in the plural. For Dutch verbs,
the precision was 80%, based on 50 words, and
74% based on 250 words. The errors made were
similar to those on the Swedish test data.

Comparison with earlier work We compared
our results on Swedish with those of Silfverberg
and Hulden (2017), although they do not use the

word stem morphemes
1 rivers’ river +s’/Gen,Pl
2 breasts breast +s/Pl /Nom
3 river’s river +’s/Gen /Sg
4 windows’ window +s’/Gen,Pl
5 television’s television +’s/Gen /Sg
6 country countr+ +y/Sg /Nom
7 languages’ language +s’/Gen,Pl
8 fire fire /Sg,Nom
9 number number /Sg,Nom
10 ceiling ceiling /Sg,Nom
11 question’s question +’s/Gen /Sg
12 song song /Sg,Nom
13 airplane’s airplane +’s/Gen /Sg
14 doors’ door +s’/Gen,Pl
15 fires fire +s/Pl /Nom
16 water water /Sg,Nom
17 arts’ art +s’/Gen,Pl
18 flowers’ flower +s’/Gen,Pl
19 sky’s sky +’s/Gen /Sg
20 ear ear /Sg,Nom

Figure 2: The segmentation of the 20 test words,
based on the test data of 400 words

feature morpheme combines with
+a+ → +e+ Pl
(policeman→ policemen and 1 other(s) )
+f+ → +v+ Pl
(wife→ wives)
+oo+ → +ee+ Pl,Gen
(foot→ feet’s)
+ous+ → +ic+ Pl,Nom
(louse→ lice)
Pl +s’∗ Gen
(doctor→ doctors’ and 91 other(s) )
+d → +d∗ren Pl
(child→ children)
+h → +h∗e Pl
(church→ churches and 1 other(s) )
+f → +ve∗ Pl,Gen
(leaf→ leaves’)
+y → +ie∗ Pl
(country→ countries and 7 other(s) )

Figure 3: The combined features, where the feature
of column 1 and morpheme of column 2 occur only
in combination with the features of column 3

same dataset (in particular, ours only includes
nouns). Our precision of 94% far exceeds their
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precision of 62%.3 To find out why, we looked
into what sort of errors both tools made. As men-
tioned above, our tool made one class of errors,
inferring a vowel change where none was needed,
but produced a plausible segmentation.

Their tool found many implausible segmenta-
tions; for example, inkomst (income) was some-
times segmented into i|nkomst, and pension into
p|ension. Furthermore, it segmented words incon-
sistently: some occurrences of inkomst were (cor-
rectly) left as one segment. This means that the tool
has not found the simplest explanation of the in-
put data: its explanation requires more morphemes
than necessary, such as i, p and nkomst. We avoid
this problem since the constraint solver guarantees
to find the globally minimal solution to the input
constraints.

Secondly, their tool does not restrict where in
a word a morpheme can occur. For example, the
letter a can mark common nouns, such as flicka
(girl). It only occurs as a suffix, but their tool uses
it as a prefix to segment arbetsinkomst (income
from work) into a|rbetsinkomst. By distinguishing
different kinds of affixes, we avoid this problem.

Morphological Reinflection We use an adapted
version of our tool to solve the SIGMORPHON
2018 shared task of morphological (type level) re-
inflection (Cotterell et al., 2018). Given a lemma
and set of morphological features, the task is to gen-
erate a target inflected form. For example, given the
source form release and target features PTCP and
PRS, the task is to predict the target form releasing.

Our approach requires a set of labelled training
data, which we segment to obtain a list of affixes
and their associated features. To predict the target
inflected form of a word, we: 1) find the stem of
the word, 2) find a word in the training data whose
features match the target features, and 3) replace
the stem of that word with that of the input word.

In more detail, in step 1, we check if the word
contains any affixes that are associated with a fea-
ture belonging to the lemma. We remove any such
affix from the word. There may be a choice of
affixes for each feature so this results in a set of
candidate stems. When considering a candidate
stem, we also add the appropriate function features
to the target feature list; for example, if the stem
drops a suffix suff from the source form, we add

362% is the figure for unlabelled morphemes. The figures
given in the paper for labelled morphemes are unfortunately
erroneous.

the feature From Suffix suff. In step 2, for each
candidate stem, we collect the entries of the train-
ing data that match the target features (including
the function features collected in step 1). Out of
those, we pick the word whose stem best matches
the source form. In step 3, we take this word, and
replace its stem with the stem of the input word.

Language Our system Mean Best
Arabic 25.6 14.77 45.2

(2.95) (6.63) (1.77)
Galician 49.0 31.93 61.1

(1.42) (2.4) (0.72)
Greek 27.9 15.76 32.3

(3.02) (4.89) (1.83)
Karelian 32.0 47.93 94.0

(1.4) (1.53) (0.1)
Russian 43.8 26.86 53.5

(1.41) (3.64) (1.07)
Sanskrit 43.9 25.76 58.0

(1.55) (2.99) (0.93)
Slovene 35.9 24.80 58.0

(1.15) (2.7) (0.73)
Tatar 64.0 48.89 90.0

(0.44) (2.15) (0.14)
Telugu 66.0 67.41 96.0

(0.98) (1.29) (0.06)
West Frisian 43.0 32.52 56.0

(1.86) (1.85) (1.01)

Figure 4: Results of reinflection. The first line gives
the average accuracy and the second line the aver-
age Levenshtein distance from the right answer.

We evaluate our system on the low training data,
the smallest of the three available sizes, which con-
sists of 100 words for each of the 103 languages.
The data includes a mixture of nouns, adjectives
and verbs. 17 of the languages were excluded from
the evaluation, because they involved a large num-
ber of features, resulting in a too long execution
time. On the remaining 86 languages, our approach
performs, with a few exceptions, in the better half,
and often in the better third of the 27 submitted
systems. For English, Czech, Greek, Livonian and
Romanian, the accuracy is within 5% of the accu-
racy of the system with the highest score. Figure
4 shows the accuracy and Levenshtein distance of
our system on a sample of languages, and the mean
and best values of the systems that took part in
the shared task. Our reinflection algorithm is very
simple, but still competes with state-of-the-art sys-
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tems, indicating that the underlying morphological
analysis provided by our tool is of good quality.

6 Conclusion and Future Work

We have presented a method for morphological seg-
mentation based on constraint solving. Our eval-
uation shows that it works well even given little
training data, producing almost the same segmen-
tation from 20 English words as it does from 400
words. It produces a morphological analysis pre-
cise enough that a simple reinflection algorithm
built on it can compete with state-of-the-art sys-
tems. The reasons for this good precision are (a)
the pattern semantics, which allows the solver to
make precise distinctions between different kinds
of morphemes, such as infix and suffix; (b) the use
of function features to express replacement rules.

The paper also demonstrates that constraint solv-
ing is a useful alternative to machine learning for
segmentation, particularly for low-resource lan-
guages where one must make the most of a small
set of data. We hope that our paper spurs further
research in this direction.There are many possible
refinements to our technique and some of our ideas
for future work are listed below.

More refined semantics for morphemes With
a more refined semantics of morphemes, we can
guide the constraint solver to pick a segmenta-
tion that follows the observed data in a more pre-
cise way. This can be done by restricting how
a morpheme can be placed in relation to other
morphemes. For example, the definite morpheme
+na∗ in Swedish always follows a plural morpheme
(+er∗, +or∗ or +ar∗), and never occurs directly
after a stem. The morpheme semantics could be
improved to allow these kind of restrictions, and
the algorithm refined to automatically infer them
from the data.

Improved function features Currently, we con-
sider only the first and last letter of the stem for
stem additions, as described in section 4. We are
currently investigating generalising this idea by
using the constraint solver to find the relevant seg-
ment of the stem. This would allow us to detect a
wider range of morphological changes.

As an example, suppose we would like to find
out which kinds of English words form their plural
with +es. We could take all such words that occur
in the input, and give the following segmentation
problem to the constraint solver:

standard features
bus bus; Suffix es
dress dress; Suffix es
box box; Suffix es
suffix suffix; Suffix es

The solution returned indicates which letter pat-
terns are associated with the plural form +es:

bu| s
Suffix es

dres| s
Suffix es

bo| x
Suffix es

suffi| x
Suffix es

We could then introduce new features Ad-
dTo Suffix s and AddTo Suffix x to the original
problem, whereupon the algorithm of Section 4
would find the correct function features. This
method would be able to invent function features
from an arbitrary substring of the given words.

Tweaking the objective function The objective
function can be weighted to give higher or lower
cost to stems or morphemes related to specific
kinds of features. For example, by multiplying
each term Sf,m in the objective function by the
length of m, we would recover the Minimum De-
scription Length principle. It is left as future work
to investigate how the choice of cost function af-
fects the result in different settings.

Distinguishing between rules and exceptions
Once a morpheme is used in a segmentation, the
algorithm is sometimes too eager to use the same
morpheme elsewhere. This means that adding more
data sometimes leads to worse results, and errors
in the input can cause unrelated words to be seg-
mented wrongly. We plan to investigate using sta-
tistical methods to distinguish between morpholog-
ical rules and exceptions; exceptions should not be
applied everywhere, but rules should.

Scalability For most languages our tool works
comfortably up to a thousand words or more, but
for languages with many morphosyntactic features
(such as Basque) it can struggle to deal with a hun-
dred words. We would like to see if, by tackling
features in smaller groups, it is possible to scale
the approach to large inputs.
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Abstract
This paper explores the use of multi-task
learning (MTL) for incorporating external
knowledge in neural models. Specifically,
we show how MTL can enable a BiLSTM
sentiment classifier to incorporate infor-
mation from sentiment lexicons. Our
MTL set-up is shown to improve model
performance (compared to a single-task
set-up) on both English and Norwegian
sentence-level sentiment datasets. The pa-
per also introduces a new sentiment lexi-
con for Norwegian.

1 Introduction

Current state-of-the-art neural approaches to sen-
timent analysis tend not to incorporate available
sources of external knowledge, such as polarity
lexicons (Hu and Liu, 2004; Taboada et al., 2006;
Mohammad and Turney, 2013), explicit negation
annotated data (Morante and Daelemans, 2012;
Konstantinova et al., 2012), or labels represent-
ing inter-annotator agreement (Plank et al., 2014).
One reason for this is that neural models can
already achieve good performance, even if they
only use word embeddings given as input, as they
are able to learn task-specific information (which
words convey sentiment, how to resolve negation,
how to resolve intensification) in a data-driven
manner (Socher et al., 2013; Irsoy and Cardie,
2014). Another often overlooked reason is that
it is not always entirely straightforward how we
can efficiently incorporate this available external
knowledge in the model.

Despite achieving strong results, neural mod-
els are known to be difficult to interpret, as well
as highly dependent on the training data. Re-
sources like sentiment lexicons, on the other hand,
have the benefit of being completely transparent,
as well as being easy to adapt or update. Addition-
ally, lexicons are often less sensitive to domain and

frequency effects and can provide high coverage
and precision even for rare words. We hypothesize
that these two views of sentiment are complimen-
tary and that even competitive neural models can
benefit from incorporating lexicon information.

In the current work, we demonstrate that multi-
task learning (Caruana, 1993; Collobert et al.,
2011) is a viable framework to incorporate lexi-
con information in a sentence-level sentiment clas-
sifier. Our proposed multi-task model shares the
lower layers in a multi-layer neural network, while
allowing the higher layers to adapt to either the
main or auxiliary task. Specifically, the shared
lower layers are a feed-forward network which
uses a sentiment lexicon auxiliary task to learn
to predict token-level sentiment. The higher lay-
ers use these learned representations as input for a
BiLSTM sentiment model, which is trained on the
main task of sentence-level classification. The in-
tuition is that the representations learned from the
auxiliary task give the model an advantage on the
main task.

Compared to previous methods, our model has
two advantages: 1) it requires only a single senti-
ment lexicon, and 2) the lexicon prediction model
is able to generalize to words that are not found
in the lexicon, increasing the overall performance.
Experimental results are reported for both English
and Norwegian, with the code1 made available.
While we rely on an existing sentiment lexicon for
English, we introduce and make available a new
lexicon for Norwegian.2

In the following, we first consider relevant re-
lated work (§ 2), and describe the sentiment lex-
icons (§ 3) and datasets (§ 4) that we use for our
experiments. In § 5 we detail our proposed multi-
task model, while § 6 presents the experimental
results and error analysis. Finally, we summarize
and point to future directions in § 7.

1https://github.com/ltgoslo/mtl_lex
2https://github.com/ltgoslo/norsentlex

175



2 Related work

In this section we briefly review previous relevant
work related to (i) sentiment lexicons, (ii) lexicon-
based approaches to sentiment analysis (SA), (iii)
use of lexicon information in neural models, and
finally (iv) multi-task learning in NLP.

Sentiment lexicons Sentiment lexicons provide
a valuable source of information about the prior
affective orientation of words, oftentimes driven
by theoretical approaches to emotion (Stone et al.,
1962; Bradley et al., 1999). There are several
freely available sentiment lexicons for English.
One widely used lexicon is that of Hu and Liu
(2004),3 which was created using a bootstrapping
approach from WordNet and a corpus of product
reviews. This is the lexicon that forms the basis of
the experiments in the current paper and we return
to it in § 3.1. Other available lexicons include the
MPQA subjectivity lexicon (Wilson et al., 2005)
which contains words and expressions manually
annotated as positive, negative, both, or neutral.
SentiWordnet (Esuli and Sebastiani, 2006) con-
tains each synset of the English WordNet anno-
tated with scores representing the sentiment orien-
tation as being positive, negative, or objective. The
So-Cal (Taboada et al., 2011) English sentiment
lexicon contains separate lexicons of verbs, nouns,
adjectives, and adverbs. The words were manually
labeled on a scale from extremely positive (+5) to
extremely negative (−5), and all words labeled as
neutral (0) were excluded from the lexicons.

While no high-quality sentiment lexicons for
Norwegian are currently publicly available, there
have been some previous attempts at generating
lexicons for Norwegian. Hammer et al. (2014)
used a set of 51 positive and 57 negative man-
ually selected seed words to crawl three Norwe-
gian thesauri in three iterations, to extract syn-
onyms and antonyms at each iteration. These were
thereafter used to build an undirected graph with
words as nodes, and synonymy and antonymy re-
lations as edges. A label propagation algorithm
was applied to create a lexicon by identifying the
strength and polarity of the non-seed words and
calculating the weighted average of the connected
nodes. They used the Norwegian full-form lexi-
con SCARRIE4 to retrieve all forms of each word

3Available at https://www.cs.uic.edu/˜liub/
FBS/sentiment-analysis.html

4https://www.nb.no/sprakbanken/show?
serial=sbr-9

in the lexicon. As a benchmark, they have also cre-
ated two other lexicons: a machine translated ver-
sion of the AFINN lexicon (Nielsen, 2011), and
a manually corrected version of this translation.
The generated lexicons were evaluated against re-
views containing ratings (dice values) by summing
the scores of each sentiment word present in a re-
view, averaging these scores over the total num-
ber of words in the review, and assigning a final
score based on threshold intervals. The authors
also took into account the use of the sentiment
shifter ikke (not) if it appeared two words before
a word from the lexicons. Their results show that
the translated lexicons outperformed, by mean ab-
solute error with standard deviation, all of their
automatically generated lexicons. Unfortunately,
none of the lexicons are made available.

Bai et al. (2014) used a corpus of newspaper
articles and discussion forums with a modified
version of Pointwise Mutual Information (PMI)
to compute the semantic orientation of candidate
words against a list of seed words. They manu-
ally selected 7 positive and 7 negative words as
seed words, and instead of using the entire cor-
pus as candidate words they used a selection of
the top 10,000 most frequent words in the corpus
and a list of adjectives generated from their cor-
pus using SCARRIE. Their results showed that the
translated lexicons outperformed all of their gen-
erated lexicons, but unfortunately only the latter
were made publicly available.

Lexicon-based approaches to SA Early ap-
proaches to sentiment analysis classified docu-
ments based on the sum of semantic orienta-
tion scores of adjectives in a document. Often,
researchers used existing lexicons (Stone et al.,
1962), or extended these resources in a semi-
supervised fashion, using WordNet (Hu and Liu,
2004; Kim and Hovy, 2004; Esuli and Sebastiani,
2006). Alternatively, an adjective’s semantic ori-
entation could be determined as the strength of as-
sociation with positive words (excellent) or nega-
tive words (poor) as measured by Pointwise Mu-
tual Information (Turney and Littman, 2003).

Researchers quickly discovered, however, that
various linguistic phenomena, e.g. negation, inten-
sifying adverbs, downtoners, etc, must be taken
into account to correctly assign a sentiment score.
Taboada et al. (2011) proposed an approach to
determine the semantic orientation of documents
which incorporates sentiment lexicons for adjec-
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tives, nouns, verbs, and adverbs. Additionally,
they included compositional rules for intensifica-
tion, negation, and irrealis blocking. They showed
that smaller, manually built lexicons outperform
semi-supervised lexicon approaches and that their
model is more robust to domain shifts than ma-
chine learning models.

Lexicons in neural approaches The general
tendency in NLP when using neural approaches is
to perform end-to-end learning without using ex-
ternal knowledge sources, relying instead solely
on what can be inferred from (often pre-trained)
word embeddings and the training corpus itself.
This is also the case for neural sentiment model-
ing. However, there have been some attempts to
include external knowledge like lexicon features
into such models (Teng et al., 2016; Zou et al.,
2018; Lei et al., 2018a; Bao et al., 2019a).

One notable example is the work of Shin et al.
(2017) where several approaches are tested for
how to incorporate lexicon information into a
CNN for sentiment classification on the SemEval
2016 Task 4 dataset and the Stanford Sentiment
Treebank (SST). Shin et al. (2017) create feature
vectors that encode the positive or negative po-
larity values of words across a broad selection of
different sentiment lexicons available for English.
These word-level sentiment-score vectors are then
combined with standard word embeddings in dif-
ferent ways in the CNN: through simple concate-
nation, using multiple channels, or performing
separate convolutions. While all three approaches
yield improvements for the SemEval data, perfor-
mance deteriorates or remain unchanged for SST.
The model used by Shin et al. (2017) requires
information from six different lexicons, which is
overly restrictive for most languages besides En-
glish, where one will typically not have the luxury
of several publicly available sentiment lexicons.

Lei et al. (2018b) propose a different approach
based on what they dub a ‘Multi-sentiment-
resource Enhanced Attention Network’, where
lexicon information is used for guiding an atten-
tion mechanism when learning sentiment-specific
sentence representations. The approach shows
promising results on both SST and the Movie Re-
view data of Pang and Lee (2005), although the
model also incorporates other types of lexicons,
like negation cues and intensifiers.

In a similar spirit, Margatina et al. (2019) in-
clude features from a range of sentiment-related

lexicons for guiding the self-attention mechanism
in an LSTM. Bao et al. (2019b) generate features
from several different lexicons that are added to an
attention-based LSTM for aspect-based sentiment
analysis.

In the current paper we will instead explore
whether lexicon information can be incorporated
into neural models using the framework of multi-
task learning. This has two main advantages: 1)
we require only a single sentiment lexicon, unlike
much previous work, and 2) our model is able to
generalize to sentiment words not seen in the lex-
icon as it only uses word embeddings as features.
Below we review some relevant background on
multi-task learning for NLP.

Multi-task learning Multi-task learning (MTL)
(Caruana, 1993; Collobert et al., 2011), whereby a
single machine learning model is simultaneously
trained to perform two or more tasks, can allow
a model to incorporate a useful inductive bias by
restricting the search space of possible represen-
tations to those that are predictive for both tasks.
MTL assumes that features that are useful for a
certain task should also be predictive for similar
tasks, and in this sense effectively acts as a reg-
ularizer, as it prevents the weights from adapting
too much to a single task.

The simplest approach to MTL, hard parame-
ter sharing (Caruana, 1993), assumes that all lay-
ers are shared between tasks except for the fi-
nal predictive layer. This approach tends to im-
prove performance when the auxiliary task is care-
fully chosen (Plank, 2016; Peng and Dredze, 2017;
Martı́nez Alonso and Plank, 2017; Fares et al.,
2018; Augenstein et al., 2018). What charac-
teristics determine a useful auxiliary task, how-
ever, is still not completely clear (Bingel and
Søgaard, 2017; Augenstein and Søgaard, 2017;
Martı́nez Alonso and Plank, 2017; Bjerva, 2017).

Søgaard and Goldberg (2016) propose an im-
provement over hard parameter sharing that uses
the lower layers of a multi-layer recurrent neural
network to make predictions for low-level auxil-
iary tasks, while allowing higher layers to focus on
the main task. In this work, we adopt a similar ap-
proach to incorporate sentiment lexicon informa-
tion as an auxiliary task to improve sentence-level
sentiment and evaluative-language classification.
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3 Sentiment lexicons

We here describe the sentiment lexicons used in
the experiments reported in § 5.

3.1 English sentiment lexicon
For English we use the sentiment lexicon com-
piled by Hu and Liu (2004), containing 4,783 neg-
ative words and 2,006 positive words. The sen-
timent lexicon was a bi-product of their task for
predicting which reviews were positive and nega-
tive from a corpus of customer reviews of a range
of products. Hu and Liu (2004) first PoS-tagged
the review corpus to identify all the adjectives it
contained, and then manually defined a list of 30
seed adjectives and their labels (positive or nega-
tive). The synsets and antonyms of the adjectives
in the seed list were searched for in WordNet, and
the positive and negative labels were automatically
assigned based on the synonymy or antonymy re-
lation of each word to the corresponding adjective
from the seed list, iteratively growing the set of
words in the lexicon. This has also enabled the in-
clusion of words that were not adjectives, which
made the lexicon a mix of word classes and inflec-
tions.

3.2 Norwegian sentiment lexicon
We automatically translated (from English to Nor-
wegian) the positive and negative words in the sen-
timent lexicon compiled by Hu and Liu (2004)
described above. Thereafter, all the translations
were manually inspected and corrected when nec-
essary. If an English word had several senses
that could be translated into different Norwegian
words, these were manually added to the trans-
lations during the manual inspection. For exam-
ple the English word outstandingly has been trans-
lated to the five following Norwegian words be-
merkelsesverdig, fortreffelig, fremstående, utmer-
ket, and utsøkt.

We have also decided to omit all multi-
word expressions, and only keep single-word
translations. For example the translations of
the negative-labeled expressions die-hard, layoff-
happy, ultra-hardline, muscle-flexing, martyrdom-
seeking, anti-israeli; and positive-labeled expres-
sions like counter-attacks, well-positioned, and
well-backlit were not included.

Some other words were not translated because
we either believed that they did not fit into the
positive or negative categories, or because we

Negative Positive

Tr
an

sl
at

ed

All 3,917 1,601
Adjectives 1,728 844
Verbs 1,575 541
Nouns 1,371 461
Participle adjectives 146 97

F
ul

l-
fo

rm
s All 14,839 6,103

Adjectives 6,392 3,030
Verbs 5,769 2,269
Nouns 4,565 1,559
Participle adjectives 938 368

Le
m

m
as

All 4,939 2,004
Adjectives 2,085 958
Verb 942 371
Noun 1,186 415
Participle adjectives 934 366

Table 1: Overview of the Norwegian sentiment
lexicon, showing counts for the manually in-
spected translations, the full-forms of the ex-
panded version, and finally the lemmas found after
expansion.

could not find an appropriate Norwegian transla-
tion. Examples of some of the originally negative-
labeled words that fell into these categories are:
drones, vibration, miscellaneous, frost, funny, flirt,
sober, and rhetorical. Examples of positive-
labeled words that were excluded are work, hot-
cakes, rapport, dawn, illuminati, electrify, ftw, and
instrumental. We also removed all words that
were present in both the positive and the nega-
tive lists. This process resulted in a Norwegian
sentiment lexicon containing a collection of 3,917
negative and 1,601 positive words. Table 1 gives
an overview of the word classes present in the
translated Norwegian lexicon (Translated). Sev-
eral words can overlap between word classes, for
example 60 positive nouns and 123 negative nouns
are also adjectives.

Similarly to the English lexicon, the resulting
Norwegian lexicon contains a mix of word classes
and inflected forms. In order to produce a more
general version of the lexicon containing all pos-
sible word-forms (Full-forms), we have used the
previously mentioned Norwegian full-form lexi-
con SCARRIE to expand the entries to include
all inflected forms. This resulted in a lexicon of
14,839 negative words and 6,103 positive words.
Table 1 gives a detailed overview of the content
of the Norwegian lexicon, both with regards to the
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number of word-forms and lemmas, where partici-
ple adjectives are all words that can be both adjec-
tives and participles.

Our preliminary experiments showed that us-
ing the Norwegian lexicon as directly translated
yields similar results to using the expanded lexi-
con. In what follows we therefore only report re-
sults of using the translated and manually curated
(but non-expanded) Norwegian lexicon. However,
we make both versions of the lexicon publicly
available.5

Additionally, we set aside 20 percent of each
lexicon (1,357 words for English, 1,122 for Nor-
wegian) as a development set to monitor the per-
formance of the models on the auxiliary task.

4 Sentiment datasets

In the following we present the datasets used to
train and evaluate our sentence-level classifiers.

4.1 English
The Stanford Sentiment Treebank (SST) (Socher
et al., 2013) contains 11,855 sentences taken from
English-language movie reviews. It was annotated
for fine-grained sentiments (strong negative, neg-
ative, neutral, positive, strong positive) based on
crowdsourcing. We perform experiments using
the pre-defined train, development and test splits
(of 8,455 / 1,101 / 2,210 sentences, respectively).

4.2 Norwegian
The Norwegian dataset used in this work forms
part of the Norwegian Review Corpus NoReC
(Velldal et al., 2018), consisting of full-text re-
views from a range of different domains, such as
restaurants, literature, and music, collected from
several of the major Norwegian news sources. The
particular subset used in the current work, dubbed
NoReCeval, comprises 7961 sentences across 298
documents that have been manually annotated ac-
cording to whether or not each sentence con-
tains an evaluation, as described by Mæhlum
et al. (2019). Two types of evaluative sen-
tence categories are distinguished (in addition to
non-evaluative sentences): simple evaluative and
a special case of evaluative fact-implied non-
personal. The latter follows the terminology of
Liu (2015), denoting factual, objective sentences
which are used with an evaluative intent but with-
out reference to personal experience. Example

5https://github.com/ltgoslo/norsentlex

(1) shows an evaluative sentence, labeled EVAL,
which contains the positive evaluation signaled
by the adjectives sterk ‘strong/powerful’ and flott
‘great’.

(1) Sterk
Strong

og
and

flott
great

film
movie

om
about

hevntanker
revenge

A powerful and great movie about revenge

Example (2) shows a fact-implied non-personal
sentence, labeled FACT-NP, where a factual, ob-
jective statement is interpreted as expressing an
evaluation given the context of a car review.

(2) Firehjulsdriften
Fourwheeldrive

kan
can

kobles
switched

inn
in

og
and

ut
out

etter
after

behov.
need

The four wheel drive can be switched on and off
as required

Unlike the English dataset discussed above, the
annotation does not specify the polarity of the sen-
tence. The rationale for this is that a sentence may
contain more than one sentiment expression and
have a mixed polarity, hence this type of annota-
tion is better performed sub-sententially following
an initial annotation of evaluative or sentiment-
relevant sentences (Toprak et al., 2010; Scheible
and Schütze, 2013).

We use the training, development and test splits
as defined by Mæhlum et al. (2019), see the sum-
mary of corpus statistics in Table 2.

5 Multi-task learning of lexicon
information in neural models

This section details our multi-task neural architec-
ture for incorporating sentiment lexicon informa-
tion into neural networks, as shown in Figure 1.
Our multi-task model shares the lower layers (an
embedding and fully connected layer), while al-
lowing the higher layers to further adapt to the
main and auxiliary tasks. Specifically, we use a
sentiment prediction auxiliary task, where the goal
is to correctly predict whether a single word is
positive or negative, to improve the main task of
sentence-level classification. Although the units of
classification for the two tasks are different (word-
level in the auxiliary task and sentence-level in the
main), the auxiliary task can be assumed to be
highly predictive for the main task, as sentiment
bearing words are the main feature for identifying
evaluative sentences and their polarity.
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Figure 1: Our proposed multi-task model to incorporate lexicon information into a neural classifier.

Train Dev Test

Documents 230 33 35
Sentences 5,915 1,151 895
Tokens 104,350 20,755 16,292

Table 2: Corpus counts for the Norwegian dataset.

Lexicon prediction model: We propose a lex-
icon prediction model, which given a word from
a sentiment lexicon, predicts whether the word is
positive or negative. We implement a multi-layer
feed-forward network which uses word embed-
dings as input, ReLU non-linearities, and a soft-
max layer for classification. This model has pre-
viously shown promise for predicting abstractness
(Köper and Schulte im Walde, 2017) and emotion
ratings (Köper et al., 2017). We additionally use
dropout (0.3) after the embedding layer for regu-
larization.

Sentence-level prediction model: For senti-
ment classification, we use a bidirectional Long
Short-Term Memory network to create contextual-
ized representations of each token after being pro-
jected to the sentiment infused space. The final
contextualized vectors at each time step are con-
catenated and then passed to a max pooling layer
and finally to a softmax layer for classification.
This single-task model trained without the lexicon

prediction task (STL) is also used as a baseline to
measure the relative improvement.

Multi-task model: During training, the multi-
task learning model (MTL) alternates between
training one epoch on the main task and one
epoch on the auxiliary task. Preliminary ex-
periments showed that more complicated train-
ing strategies (alternating training between each
batch or uniformly sampling batches from the two
tasks) did not lead to improvements. For English
we use 300 dimensional pre-trained embeddings
from GoogleNews,6 while for Norwegian we use
100 dimensional skip-gram fastText embeddings
(Bojanowski et al., 2016) trained on the NoWaC
corpus (Guevara, 2010). The pre-trained embed-
dings were re-used from the NLPL vector reposi-
tory7 (Fares et al., 2017). We train the model for
10 epochs using Adam (Kingma and Ba, 2014),
performing early stopping determined by the im-
provement on the development set of the main
task. Given that neural models are sensitive to
the random initialization of their parameters, we
perform five runs with different random seeds and
show the mean and standard deviation as the fi-
nal result for each model. We use the same five
random seeds for all experiments to ensure a fair
comparison between models.

6Available at https://code.google.com/
archive/p/word2vec/.

7http://vectors.nlpl.eu/repository
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Model SST NoReCeval

LEXICON 14.7 37.2
BOW 37.4 45.0
BOW+LEXICON 38.9 45.8
LEX-EMB 34.7 (1.1) 48.9 (0.1)

STL 37.8 (3.1) 51.2 (2.6)
MTL 42.4 (3.2) 52.8 (2.9)

Table 3: Macro F1 of models on the SST and
NoReCeval sentence-level datasets. Neural models
report mean and standard deviation of the scores
over five runs.

Lexicon embedding Model: We also include
an additional model (LEX-EMB), which uses
the feed-forward network previously described to
learn to predict word-level polarity and the same
BiLSTM architectures for sentiment classification.
Instead of jointly learning the two tasks, we first
train the feed-forward model on the lexicon task
and update the original embeddings. We then con-
catenate these learned sentiment embeddings to
the original embeddings to create a sentiment in-
formed representation of each word before passing
them to the BiLSTM. All other parts of the models
are the same as the STL model.

Baselines: We also include three non-
neural baseline models: LEXICON, BOW,
BOW+LEXICON. The LEXICON baseline uses the
sentiment lexicon to create features for a Linear
SVM. The inputs to the SVM were presented as
sequences of labels representing the sentences
of the datasets, such that each word present in
the lexicons was labeled as either +1 or −1 for
positive or negative words respectively, and the
rest were labeled as 0. This was done to incor-
porate lexicon information, and predict classes
based on the distribution of positive and negative
words within sentences. The BOW baseline uses
a bag-of-words representation of the data to train
a Linear SVM. Finally, the BOW+LEXICON

adds two additional features to the BOW model:
the total number of tokens which are found in
the positive and negative lists in the sentiment
lexicons. We choose the optimal c value for each
classifier on the development split.

6 Model results

Table 3 shows the Macro F1 scores for all mod-
els on the SST and NoReCeval test sets. Note that
previous work often uses accuracy as a metric on
the SST dataset, but as we hypothesize that lexi-
con information may help the minority classes, we
thought it important to give these equal weight.
(A macro F1 of 40.1 in our case corresponds to
46.7 accuracy). The BOW model performs quite
well on SST, only 0.4 percentage points (ppt)
worse than STL. On NoReCeval, however, it per-
forms much worse, which can be attributed to the
the difficulty of determining if a sentence is non-
evaluative or fact-implied using only unigram in-
formation, as these sentence types do not differ
largely lexically.

BOW+LEXICON performs better than BOW on
both datasets, although the difference is larger on
SST (1.5 ppt vs. 0.8 ppt). This is likely due to sen-
timent lexicon features being more predictive for
the sentiment task. Additionally, it outperforms
the STL model by 1.1 ppt on SST, confirming that
it is a strong baseline (Mohammad et al., 2013).

LEX-EMB is the weakest model on the SST
dataset with 34.7 F1 but performs better than the
non-neural baselines on NoReCeval (48.9). STL

performs better than LEXICON, BOW, and LEX-
EMB on both tasks, as well as BOW+LEXICON on
NoReCeval. Finally, MTL is the best performing
model on both tasks, with a difference of 3.5 ppt
between MTL and the next best performing model
on SST, and 1.6 ppt on NoReCeval.

6.1 Error analysis
We perform an error analysis by comparing how
the MTL model changes predictions when com-
pared to the STL model. We create a confusion
matrix of the predictions of each model on the SST
and NoReCeval tasks over all five runs and show
the relative differences in Figures 2 and 3. Posi-
tive numbers (dark purple) indicate that the MTL

model made more predictions in this square, while
negative numbers (white) indicate it made fewer
predictions.

Counter-intuitively, the MTL model improves
mainly on the neutral, strong positive, and
strong negative classes, while performing rela-
tively worse on the positive and negative classes.
In general, the MTL makes fewer negative and
positive predictions than the STL model. On the
NoReCeval task, the MTL model leads to fewer ab-
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Sentence Gold STL MTL

Light, cute and forgettable. neutral negative neutral
Despite some gulps the film is a fuzzy huggy. positive negative positive
This is art paying homage to art. positive positive neutral
Undercover Brother doesn’t go far enough. negative negative neutral

Table 4: Examples where MTL performs better and worse than STL. A red box indicates negative
polarity (blue box indicates positive) according to the sentiment lexicon used to in the auxiliary training
task.
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Figure 2: A relative confusion matrix on the SST
task, where positive numbers (dark purple) indi-
cate that the MTL model made more predictions
than STL in the square and negative (white) indi-
cate that it made fewer.
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Figure 3: A relative confusion matrix on the
NoReCeval task, where positive numbers (dark
purple) indicate that the MTL model made more
predictions than STL in the square and negative
(white) indicate that it made fewer.

Model English Norwegian

LEX-EMB 87.1 (0.2) 87.5 (0.2)
MTL 86.7 (0.2) 72.4 (3.9)

Table 5: Mean accuracy and standard deviation of
the MTL and LEX-EMB models over five runs on
the Hu and Liu lexicon for English and the trans-
lated lexicon for Norwegian.

solute changes, but importantly reduces the num-
ber of non-evaluative sentences predicted as eval-
uative. Again, the MTL model has a tendency to
reduce predictions for the majority class and in-
crease them for the minority classes (fact-implied
and non-evaluative). This seems to point to the
regularizing effect of multi-task learning (Augen-
stein et al., 2018; Bingel and Søgaard, 2017). Ta-
ble 4 additionally shows examples where MTL is
better and worse than STL.

6.2 Lexicon prediction results
In this section, we evaluate the performance of
the MTL and LEX-EMB models on the auxiliary
lexicon prediction task. Table 5 shows that the
LEX-EMB model outperform the MTL model on
both English and Norwegian. For English the dif-
ference between models is small (0.4 ppt), while
much larger for Norwegian (15.1 ppt). Rather than
being attributed to differences in language, we hy-
pothesize that the difference is due to task similar-
ity. For English, the auxiliary task is much more
predictive of the main task (sentence-level senti-
ment), while for Norwegian the main task of pre-
dicting evaluative, fact implied and non-evaluative
does not depend as much on word-level sentiment.
The MTL classifier in Norwegian therefore relies
less on the auxiliary module.
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Model Lexicon # tokens SST

STL – – 37.8 (3.1)

MTL

SOCAL 4,539 41.3 (3.1)
SOCAL GOOGLE 1,691 37.9 (0.3)
NRC EMOTION 4,460 41.5 (3.1)
HU AND LIU 5,432 42.4 (3.2)

Table 6: Macro F1 of models on the SST sentence-
level datasets. We compare the MTL model on
SST using different lexicons.

6.3 Other lexicons
In this section, we experiment with using differ-
ent English lexicons as an auxiliary task for the
MTL model. Specifically, we compare the follow-
ing sentiment lexicons:

• SOCAL: a sentiment lexicon compiled man-
ually with words taken from several review
domains (Taboada et al., 2011).

• SOCAL GOOGLE: a semi-supervised lexi-
con created from a small set of seed words
(Taboada et al., 2006) using a PMI-based
technique and search engine queries (Turney
and Littman, 2003).

• NRC EMOTION: a crowd-sourced emotion
lexicon which also contains polarity annota-
tions (Mohammad and Turney, 2013).

• HU AND LIU: the sentiment lexicon de-
scribed in § 2.

While the NRC EMOTION lexicon already con-
tains binary annotations, tokens in SOCAL and
SOCAL GOOGLE are annotated on a scale from
−5 to 5. We make these annotations binary by
assigning positive polarity to tokens with a rating
> 0 and negative for those < 0. Any neutral to-
kens are discarded. Table 6 shows that the MTL

model is robust to different sources of sentiment
information. The size of the dataset appears to
be more important than the specific content, as all
lexicons over 4,000 words achieve similar scores.

7 Conclusion

This paper proposes a method to incorporate exter-
nal knowledge, in this case about word polarity in
the form of sentiment lexicons, into a neural clas-
sifier through multi-task learning. We have per-
formed experiments on sentence-level sentiment

tasks for English and Norwegian, demonstrating
that our multi-task model improves over a single-
task approach in both languages. We provide a de-
tailed analysis of the results, concluding that the
multi-task objective tends to help the neutral and
minority classes, indicating a regularizing effect.

We have also introduced a Norwegian senti-
ment lexicon, created by first machine-translating
an English lexicon and manually curating the re-
sults. This lexicon, and its expansion to a full-form
lexicon, are made freely available to the commu-
nity. While our current model ignores subword in-
formation, e.g. unimpressive, and multiword ex-
pressions, e.g. not my cup of tea, including this
information could further improve the results.

Although we have limited the scope of our aux-
iliary task to binary classification, using a regres-
sion task with sentiment and emotion labels may
provide more fine-grained signal to the classifier.
We also plan to experiment with a similar setup for
targeted or aspect-level classification tasks.

Finally, it is important to note that the MTL ap-
proach outlined in this paper could also be applied
to incorporate other types of external knowledge
into neural classifiers for other types of tasks be-
sides sentiment analysis.
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Abstract

Sentiment analysis has become very popu-
lar in both research and business due to the
vast amount of opinionated text currently
produced by Internet users. Standard sen-
timent analysis deals with classifying the
overall sentiment of a text, but this doesn’t
include other important information such
as towards which entity, topic or aspect
within the text the sentiment is directed.
Aspect-based sentiment analysis (ABSA)
is a more complex task that consists in
identifying both sentiments and aspects.
This paper shows the potential of using
the contextual word representations from
the pre-trained language model BERT, to-
gether with a fine-tuning method with ad-
ditional generated text, in order to solve
out-of-domain ABSA and outperform pre-
vious state-of-the-art results on SemEval-
2015 (task 12, subtask 2) and SemEval-
2016 (task 5). To the best of our knowl-
edge, no other existing work has been
done on out-of-domain ABSA for aspect
classification.

1 Introduction

Sentiment analysis, also known as opinion mining,
is a field within natural language processing (NLP)
that consists in automatically identifying the sen-
timent of a text, often in categories like negative,
neutral and positive. It has become a very popu-
lar field in both research and industry due to the
large and increasing amount of opinionated user-
generated text in the Internet, for instance social
media and product reviews. Knowing how users

feel or think about a certain brand, product, idea
or topic is a valuable source of information for
companies, organizations and researchers, but it
can be a challenging task. Natural language of-
ten contains ambiguity and figurative expressions
that make the automated extraction of information
in general very complex.

Traditional sentiment analysis focuses on clas-
sifying the overall sentiment expressed in a text
without specifying what the sentiment is about.
This may not be enough if the text is simultane-
ously referring to different topics or entities (also
known as aspects), possibly expressing different
sentiments towards different aspects. Identifying
sentiments associated to specific aspects in a text is
a more complex task known as aspect-based senti-
ment analysis (ABSA).

ABSA as a research topic gained special trac-
tion during SemEval-2014 (Pontiki et al., 2014)
workshop, where it was first introduced as Task 4
and reappeared in the SemEval-2015 (Pontiki
et al., 2015) and SemEval-2016 (Pontiki et al.,
2016) workshops.

In parallel, within NLP, there have been numer-
ous developments in the field of pre-trained lan-
guage models, for example ELMo (Peters et al.,
2018) and BERT (Devlin et al., 2019). These lan-
guage models are pre-trained on large amounts of
unannotated text, and their use has shown to al-
low better performance with a reduced require-
ment for labeled data and also much faster train-
ing. At SemEval-2016, there were no submissions
that used such pre-trained language model as a
base for the ABSA tasks. For this paper we will
use BERT as the base model to improve ABSA
models for the unconstrained evaluation, which
permits using additional resources such as exter-

187



nal training data, due to the pre-training of the base
language model. More precisely, the contributions
of this paper are as follows:

• It proposes the new ABSA task for out-of-
domain classification at both sentence and
text levels.

• To solve this task, a general classifier model
is proposed, which uses the pre-trained lan-
guage model BERT as the base for the con-
textual word representations. It makes use of
the sentence pair classification model (Devlin
et al., 2019) to find semantic similarities be-
tween a text and an aspect. This method out-
performs all of the previous submissions, ex-
cept for one in SemEval-2016.

• It proposes a combined model, which uses
only one sentence pair classifier model from
BERT to solve both aspect classification and
sentiment classification simultaneously.

2 State-of-the-art

This chapter provides an overview of the tech-
niques and models used throughout the rest of the
paper, as well as existing state-of-the-art results.

Section 2.1 will cover the pre-trained model
used in this paper, which has achieved state-of-
the-art results in several NLP tasks, together with
the architecture of the model and its key features.
Thereafter, Section 2.2 will explain the ABSA
task from SemEval-2016. Previous work with and
without a pre-trained model will be briefly de-
scribed in Section 2.3 and Section 2.4.

2.1 BERT

Pre-trained language models are providing a con-
text to words, that have previously been learning
the occurrence and representations of words from
unannotated training data.

Bidirectional encoder representations from
transformers (BERT) is a pre-trained language
model that is designed to consider the context of
a word from both left and right side simultane-
ously (Devlin et al., 2019). While the concept is
simple, it improves results at several NLP tasks
such as sentiment analysis and question and an-
swering systems. BERT can extract more con-
text features from a sequence compared to train-
ing left and right separately, as other models such
as ELMo do (Peters et al., 2018).

The left and right pre-training of BERT is
achieved using modified language model masks,
called masked language model (MLM). The pur-
pose of MLM is to mask a random word in a sen-
tence with a small probability. When the model
masks a word it replaces the word with a to-
ken [MASK]. The model later tries to predict the
masked word by using the context from both left
and right of the masked word with the help of
transformers. In addition to left and right context
extraction using MLM, BERT has an additional
key objective which differs from previous works,
namely next-sentence prediction.

Previous work

BERT is the first deeply bidirectional and un-
supervised language representation model devel-
oped. There have been several other pre-trained
language models before BERT that also use bidi-
rectional unsupervised learning. One of them is
ELMo (Peters et al., 2018), which also focuses
on contextualized word representations. The word
embeddings ELMo generates are produced by us-
ing a Recurrent Neural Network (RNN) named
Long Short-Term Memory (LSTM) (Sak et al.,
2014) to train left-to-right and right-to-left inde-
pendently and later concatenate both word repre-
sentations (Peters et al., 2018). BERT does not
utilize LSTM to get the word context features, but
instead uses transformers (Vaswani et al., 2017),
which are attention-based mechanisms that are not
based on recurrence.

Input Representaion

The text input for the the BERT model is first
processed through a method called wordpiece to-
kenization (Wu et al., 2016). This produces set
of tokens, where each represent a word. There
are also two specialized tokens that get added to
the set of tokens: classifier token [CLS], which
is added to the beginning of the set; and separa-
tion token [SEP], which marks the end of a sen-
tence. If BERT is used to compare two sets of
sentences, these sentences will be separated with a
[SEP] token. This set of tokens is later processed
through three different embedding layers with the
same dimensions that are later summed together
and passed to the encoder layer: Token Embed-
ding Layer, Segment Embedding Layer and Posi-
tion Embedding Layer.
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Transformers
Previous work in sequence modeling used
the common framework sequence-to-sequence
(seq2seq) (Sutskever et al., 2014), with tech-
niques such as recurrent neural networks
(RNNs) (Graves, 2013) and long short-term
memory (LSTM) (Hochreiter and Schmidhuber,
1997).

The architecture of transformers is not based on
RNNs but on attention mechanics (Vaswani et al.,
2017), which decides what sequences are impor-
tant in each computational step. The encoder does
not only map the input to a higher dimensional
space vector, but also uses the important keywords
as additional input to the decoder. This in turn im-
proves the decoder because it has additional infor-
mation such which sequences are important and
which keywords give context to the sentence.

Sentence Pair Classifier Task
Originally, BERT pre-trained the model to obtain
word embeddings to make it easier to fine-tune the
model for a specific task without having to make a
major change in the model and parameters. Usu-
ally, only one additional output layer on top of the
model was required to make the model more task-
specific.

The Sentence Pair Classifier task deals with de-
termining the semantic relations between two sen-
tences. The model takes two texts as input, as de-
scribed in Section 2.1, and outputs a label repre-
senting the type of relation between the sentences.
This kind of task evaluates how good a model is on
comprehensive understanding of natural language
and the ability to do further inference on full sen-
tences (Conneau et al., 2017). There is a bench-
mark that evaluates natural language understand-
ing on models named general language under-
standing evaluation (GLUE) (Wang et al., 2018),
which consists of several tasks such as multi-genre
natural language inference (MNLI) (Williams
et al., 2018), the semantic textual similarity bench-
mark (STS-B) (Cer et al., 2017) and Microsoft
research paraphrase corpus (MRPC) (Dolan and
Brockett, 2005).

Pre-training tasks
Supervised machine learning tasks are solved
training a model from scratch with training data.
NLP is a diversified field that contains many dis-
tinct tasks for which only small sets of human-
labeled training data may be available. It has been

proven that a large amount of training data in-
creases the performance of deep learning models,
for instance in the computer vision field with Im-
ageNet (Deng et al., 2009). The same concept can
be applied to deep language models. The devel-
opment of a general purpose language model uses
large amount of unannotated text, which is called
pre-training, and the general purpose for the lan-
guage model is to learn the contextual representa-
tion of words.

Language Models are key components in solv-
ing NLP problems and learn word occurrence and
word prediction patterns based on unannotated
text data. A language model learns the context by
using techniques such as word embeddings which
use vectors to represent the words in a vector space
(Mikolov et al., 2013). With the large amount of
training data, the language model learns that rep-
resentations of words, depending on the context,
allows similar words to have a similar representa-
tion.

Masked Language Model BERT uses a mask
token [MASK] to pre-train deep bidirectional rep-
resentations for the language model. But as op-
posed to conditional language models that train
left-to-right or right-to-left to predict words, where
the predicted word is positioned at the end or at the
start of the text sequence, BERT masks a random
word in the sequence. The other reason for using a
mask token to pre-train is that the standard condi-
tional language models are only able to explicitly
train left-to-right or right-to-left because the words
can indirectly “see itself” in a multi-layered con-
text.

Next Sentence Prediction is used to under-
stand the relationship between two text sentences.
BERT has been pre-trained to predict whether or
not there exists a relation between two sentences.
Each of these sentences, sentence A and sentence
B, has its own embedding dimensions.

Sentence A : [CLS] The man went to the store . [SEP]

Sentence B : He bought a gallon of milk . [SEP]

Label : IsNextSentence

During training, half of the time sentence B is
the follow-up of sentence A in half and the Is-
NextSentence label is used. The other half of the
time, a random sentence is chosen for sentence B
and the IsNotNextSentence label is used.
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2.2 Aspect-Based Sentiment Analysis

ABSA is a more complex task than traditional
text-level sentiment analysis. It focuses on iden-
tifying the attributes or aspects of an entity men-
tioned in a text, together with the sentiment ex-
pressed towards each aspect.

ABSA was first introduced in SemEval-2014
(Pontiki et al., 2014), which provided a dataset
with annotated reviews about restaurants and lap-
tops. The ABSA task in SemEval-2014 did not
contain full reviews until SemEval-2015 (Pontiki
et al., 2015) and the dataset for SemEval-2016 did
not change from 2015 except for additional test
data.

The goal of the SemEval-2016 ABSA task is
to identify opinions expressed towards specific as-
pect for a topic within customer reviews. Specif-
ically, given a text review about a certain topic,
from the dataset (e.g. laptop, restaurant), the ob-
jective for SemEval-2016, the goal is to address
the following tasks:

Aspect category classification aims to identify
the topic and aspect pair, which an opinion is ex-
pressed in the text. The topic and aspect should be
chosen from an already defined set of topic types
(e.g. LAPTOP, RESTAURANT, FOOD) and as-
pects (e.g. PRICE, QUALITY) per domain.

Opinion target expression (OTE) is the task of
extracting the linguistic expression used in the text
input that refers to the reviewed entity, for each
entity-aspect pair. The OTE is defined with one
starting and ending offsets in the sequence. If no
entity is explicitly mentioned, the value returned
is ”NULL”.

Sentiment polarity classification has the ob-
jective of predicting the sentiment polarity for
each identified topic and aspect pair. The senti-
ment polarity is a value within the set {positive,
negative, neutral, conflict}.

Subtask 1: Sentence Level. The input consists
of one sentence, usually obtained from the fully
text level text.

Subtask 2: Text Level. The input is a full re-
view, where several aspects can be mentioned si-
multaneously and also different opinions on the
same aspect can be given.

2.3 ABSA without BERT

The submissions that performed best at the
SemEval-2016 ABSA challenges used mostly ma-
chine learning techniques such as support vec-

tor machines (SVM) (Joachims, 1998; Hsu et al.,
2003) or conditional random field classifiers (Laf-
ferty et al., 2001). Even though deep learning
models have shown to perform well in sentiment
analysis (Kim, 2014), the submissions employing
deep learning techniques performed poorly that
year.

The features used with the SVM were usually
contextualized word representations extracted us-
ing GloVe (Pennington et al., 2014) or word lists,
which were generated by extracting the nouns and
adjectives from the datasets.

2.4 ABSA with BERT

BERT has shown to produce good results on NLP
tasks (Wang et al., 2018) due to the large amounts
of text it has been trained on. For tasks such as
ABSA, performance has shown to improve with
the help of an additional training on Review text,
called Post-Training (Xu et al., 2019). To solve an
ABSA task, the Post-Training paper constructed
ABSA as a question answering problem, together
with a machine reading comprehension technique
for reviews called “review reading comprehen-
sion”.

Solving ABSA as a sentence-pair classifica-
tion task using BERT by constructing auxiliary
sentence has been seen to improve the results,
compared to the previous state-of-the-art models
that used single-sentence classification (Sun et al.,
2019).

3 Experiments

The models implemented in this paper are three:
an aspect classification model, a sentiment polar-
ity classification model, and a combined model for
both aspect and sentiment classification. The as-
pect classification model, described in Section 3.4,
uses sentence pair classification from BERT (De-
vlin et al., 2019). As it only predicts whether an
aspect is related to a text or not, this model has
the possibility to be used for out-of-scope aspects.
The sentiment polarity classifier, described in Sec-
tion 3.3, is a classification model that is trained to
determine the sentiment labels (positive, negative,
neutral, conflict) for a given aspect and text input.
Finally, Section 3.5 explains the last model, which
is a combination of both the sentiment and aspect
classification models. It outputs a sentiment if the
aspect is related, and otherwise it returns the unre-
lated label.
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Sentence Level Text Level
Restaurant Laptop Both Restaurant Laptop Both

Texts 2000 2500 4500 334 395 729
Unique Aspects 12 81 93 12 81 93

Aspects with Sentiment 2507 2908 5415 1435 2082 3517
Aspects without Sentiment 21493 199592 413085 2573 29913 64280

Total Aspects 24000 202500 418500 4008 31995 67797

Table 1: Distribution of data in each training dataset.

3.1 Pre-processing entity and aspect pairs for
BERT

The format of the pairs in the SemEval-2016
dataset is originally structured in the form of ”EN-
TITY#ASPECT”. In order to fit better the BERT
model when training and to be able have the pre-
trained data in BERT to be applicable, we for-
matted it to have a sentence-like structure, so the
pair ”FOOD#STYLE OPTIONS” gets parsed into
”food, style options”. This text is what we use as
aspect.

3.2 Data generation

The dataset used in our experiments is reused from
SemEval-2016 - Task 5 (Pontiki et al., 2016). Each
sample in the dataset contains text that has been
annotated with a list of aspects and sentiment po-
larity which consists of ’positive’, ’neutral’, ’neg-
ative’ or ’conflict’. The annotations to be gener-
ated are those which have an aspect that are not
related to the subject, for example, the text “The
food tasted great!” and the aspect ’restaurant, am-
bience’ do not have any relations.

As the dataset has a fixed amount of aspects
(e.g. the Restaurant dataset has 12 different unique
aspects), we can assume that each aspect that has
not been annotated for a specific text is unrelated
to said text. The aspects, which are not related to
the text will be added to the list of aspects for the
text with an ’unrelated’ label instead of a senti-
ment label. Table 1 and Table 6 show the distribu-
tion of the original data and our generated data in
the training and test dataset respectively.

Unbalanced data
The dataset from SemEval-2016 is originally very
unbalanced, it becomes even more so when the un-
related data is generated, as seen in aspects with-
out sentiment compared to aspects with sentiment
in Table 1.

To compensate for the imbalance, we weight

each label depending on how frequently they show
up in the training set. The higher the frequency of
a label, the lower the weight of the given label.

3.3 Sentiment Classifier
This is a model for predicting sentiment on a text,
given a specific aspect. It is implemented using
the architecture of the Sentence Pair classification
model explained in Section 2.1, where the first in-
put is the text to be evaluated, and the second in-
put is the aspect that the text will be evaluated on.
The output of this model will be one of the la-
bels ‘positive’, ‘negative’, ‘neutral’ and ‘conflict’,
where ‘conflict’ means that there are parts of the
text where the aspect is judged positively and other
parts where the aspect judged negatively.

3.4 Aspect Category Classifier
This is a model for aspect classification, with the
structure of a Sentence Pair classifier described in
Section 2.1, with the text and the aspect as input.
This model is used to predict whether or not the
aspect is related to the text or not, using labels ’re-
lated’ and ’unrelated’. With the aspect as input,
it is possible to handle out-of-domain aspects, i.e.
outside the set of aspects the model was trained
on.

3.5 Combined model
This model is structured as a multi-class classifier
for predicting both the aspect and the sentiment
using the structure of a Sentence Pair classifica-
tion, described in Section 2.1. The model also
takes the text and the aspect as input and returns
a sentiment label if the aspect is related to the text,
and the unrelated label otherwise.

The model can be used as an entire ABSA struc-
ture. It has the possibility to behave as either an
aspect category model by mapping the polarity la-
bels to ’related’ or it can behave like a sentiment
model by ignoring the value of the ’unrelated’ la-
bel or it can behave as both at the same time.
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4 Evaluation

The evaluation is based on the SemEval-2016 Task
5, more specifically the subtasks: aspect catego-
rization in subtask 1 & 2, slot 1 and sentiment po-
larity in subtask 1 & 2, slot 3. The results for each
model implemented are presented in the tables in
Table 2a to Table 5c, with the previous state-of-
the-art models as baseline.

The Aspect Category Classifier, the Sentiment
Classifier, and the Combined Classifier, have all
been trained on each dataset described in Ta-
ble 1. This results in 18 models, where each of
these models have been tested on every dataset de-
scribed in Table 6. However, the text-level Ho-
tel dataset was generated by concatenating all the
sentence-level input to a full text and labelling the
text with all the aspects corresponding to the sen-
tences, because the Hotel dataset only consisted of
the sentence level.

For the results in the tables of this section, we
only show the best performing model for model
type, in-domain, out-of-domain, text-level and
sentence-level model. The dataset in which these
models has been tested on can be found in the de-
scription of the tables.

4.1 Aspect Category Models

In this section, we evaluate how well the aspect
categorization works with our models, which are
described in Section 3.4 and Section 3.5. Each
is trained in all the different domains and levels
described in Table 1. As the performance of as-
pect category classifiers is only measured with F1-
score in SemEval-2016, all the result tables in this
section are ordered by F1 score in descending or-
der.

In the tables within this section, the ’Model’
column represents which model type it is. The
combined model is defined as ’COM’ and ’ASP’
is the Aspect Category Classifier. The other two
columns, Domain and Level, denote which do-
main and text type it was trained on.

For aspect classification, the text-level datasets
in Table 3 produce better results than the sentence-
level datasets in Table 2. In both of these ta-
bles, the aspect classifiers always outperform the
combined classifiers. In out-of-scope evaluations,
aspect classification performs better with classi-
fiers that have been trained on datasets with more
unique aspects.

Model Domain Level F1 PRE REC ACC
ASP REST SENL 79.9 80.2 79.5 96.3
COM REST SENL 77.4 75.9 79.0 95.8
ASP REST TEXL 55.5 41.0 85.9 87.4
COM LAPT SENL 35.7 30.0 44.1 85.5
Baseline: BERT-PT 78.0 - - -
Baseline: NLANGP 73.0 - - -

(a) Results of Aspect models on dataset: Restau-
rant, Sentence-Level. BERT-PT (Xu et al., 2019) and
NLANGP (Toh and Su, 2016) as baselines

Model Domain Level F1 PRE REC ACC
ASP BOTH SENL 51.7 40.7 70.6 98.4
ASP BOTH TEXL 39.0 27.5 66.7 97.5
COM BOTH SENL 38.7 25.5 80.7 96.9
ASP REST SENL 5.7 3.0 67.3 73.5
Baseline: NLANGP 51.9 - - -

(b) Results of Aspect models on dataset: Laptop, Sentence
Level. With NLANGP (Toh and Su, 2016) as baseline.

Model Domain Level F1 PRE REC ACC
ASP BOTH SENL 34.4 23.3 65.9 89.1
COM REST SENL 34.1 22.9 67.5 88.7
ASP LAPT TEXL 33.8 28.2 42.1 92.8

(c) Performance of Aspect models on the dataset: Hotel,
Sentence-Level.

Table 2: Best performance of aspect category clas-
sifiers in sentence-level datasets

Model Domain Level F1 PRE REC ACC
ASP REST TEXL 85.0 84.2 85.9 88.7
COM BOTH TEXL 82.4 78.2 87.1 86.1
ASP BOTH SENL 78.8 81.9 76.0 84.7
COM LAPT TEXL 68.0 66.4 69.6 75.5
Baseline: GTI 84.0 - - -

(a) Results of Aspect models on dataset: Restaurant, Text-
Level. Baseline: GTI (Álvarez-López et al., 2016).

Model Domain Level F1 PRE REC ACC
ASP BOTH TEXL 64.3 60.9 68.1 92.3
COM BOTH TEXL 63.9 57.4 72.1 91.7
ASP LAPT SENL 61.0 58.7 64.6 91.6
COM REST SENL 21.6 12.3 87.4 37.0
Baseline: UWB 60.5 - - -

(b) Performance of Aspect models on the dataset: Laptop,
Text-Level. UWB (Hercig et al., 2016) as baseline.

Model Domain Level F1 PRE REC ACC
ASP BOTH TEXL 60.8 48.3 82.0 62.8
COM LAPT TEXL 59.4 53.7 66.4 68.0
COM BOTH SENL 58.8 45.2 84.0 58.5
ASP REST SENL 56.7 45.0 76.7 58.8

(c) Results of aspect category classifiers on the dataset: Ho-
tel, Text-Level

Table 3: Best performance of aspect category clas-
sifiers in text-level datasets
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4.2 Sentiment Models

In this section, we evaluate how well the sentiment
classification performs with our models, which are
described in Section 3.3 and Section 3.5. Each
model trained on all the different domains and lev-
els are described in Table 1. The F1 score mea-
sured on the tables in this section is a weighted
average of the F1 on each label. As the perfor-
mance of sentiment classifiers are only measured
with accuracy in SemEval-2016, all the tables in
this section is ordered by accuracy in descending
order.

In the tables within this section, the ’Model’
column represents which model type it is, ’COM’
is the combined model, ’SEN’ is the Sentiment
Classifier. The other two columns, Domain and
Level, is which domain and text type it was trained
on.

For sentiment classification, in both Table 4 and
Table 5, the combined classifiers always outper-
formed the sentiment classifiers. In out-of-scope
scenarios, the classifiers which have been trained
on sentence-level datasets outperform the classi-
fiers which have been trained on the text-level
datasets.

Model Domain Level F1 PRE REC ACC
COM BOTH SENL 89.5 89.5 89.8 89.8
SEN BOTH SENL 89.2 89.6 89.5 89.5
COM BOTH TEXL 83.3 84.0 84.0 84.0
SEN LAPT SENL 81.6 84.0 81.2 81.2
Baseline: XRCE - - - 88.1

(a) Performance of Sentiment models on the dataset:
Restaurant, Sentence-Level. XRCE (Brun et al., 2016) as
baseline.

Model Domain Level F1 PRE REC ACC
COM BOTH SENL 83.2 83.6 82.8 82.8
SEN LAPT SENL 82.7 83.0 82.6 82.6
COM REST SENL 77.0 75.7 79.0 79.0
COM BOTH TEXL 76.2 76.1 76.7 76.7
Baseline: IIT-T - - - 82.8

(b) Performance of Sentiment models on the dataset: Lap-
top, Sentence-Level. IIT-T (Kumar et al., 2016) as baseline.

Model Domain Level F1 PRE REC ACC
COM BOTH SENL 90.0 91.0 89.5 89.5
SEN BOTH SENL 89.0 89.4 88.9 88.9
SEN REST SENL 87.0 86.9 87.3 87.3
COM LAPT SENL 86.2 86.0 87.0 87.0
COM BOTH TEXL 84.2 84.2 84.2 84.2
Baseline: lsislif - - - 85.8

(c) Performance of Sentiment models on the dataset: Hotel,
Sentence-Level. Lsislif (Hamdan et al., 2015) as baseline.

Table 4: Best performance of sentiment classifiers
in sentence-level datasets

Model Domain Level F1 PRE REC ACC
COM BOTH SENL 86.3 86.2 87.5 87.5
COM BOTH TEXL 84.7 84.1 86.6 86.6
SEN REST SENL 83.4 81.0 86.3 86.3
COM LAPT SENL 80.4 79.9 82.4 82.4
Baseline: UWB - - - 81.9

(a) Results of aspect category classifiers on dataset: Restau-
rant, Text-Level. Baseline: GTI (Álvarez-López et al.,
2016).

Model Domain Level F1 PRE REC ACC
COM BOTH SENL 79.4 80.8 78.7 78.7
COM REST SENL 75.6 73.4 78.2 78.2
SEN BOTH SENL 77.1 76.7 77.8 77.8
COM LAPT TEXL 75.1 74.4 76.7 76.7
Baseline: ECNU - - - 75.0

(b) Performance of Sentiment models on the dataset: Lap-
top, Text-Level. ECNU (Jiang et al., 2016) as baseline.

Model Domain Level F1 PRE REC ACC
COM BOTH SENL 86.9 86.5 87.3 87.3
COM REST SENL 85.5 84.1 87.3 87.3
COM BOTH TEXL 85.4 84.9 86.4 86.4
SEN BOTH SENL 82.5 81.6 83.8 83.8
COM LAPT SENL 82.3 81.1 83.5 83.5

(c) Performance of Sentiment models on the dataset: Hotel,
Text-Level

Table 5: Best performance of sentiment classifiers
in text-level datasets

5 Discussion

Our proposed out-of-domain implementation per-
formed well in the out-of-domain evaluation. In
aspect category for hotels in Table 3c, which our
aspect models have not been introduced to before,
the model achieved a higher F1 score than the in-
domain baseline for laptop F1 score in Table 3b.
This shows the potential of using semantic simi-
larities to find features for relations between aspect
and a text input. However, to compare these mod-
els more in depth, a better measurement would be
to look at both precision and recall, as the laptop
domain has much more unique aspects, which in
turn makes it more likely to predict more false pos-
itives which causes a lower precision.

For all the experiments and evaluation, we
trained the models on each specific dataset and
tried for the others. Our expectation was that
the model would be able to improve the per-
formance by using the combined dataset (restau-
rant & laptop) because it offers more features to
use for the aspect classification task. This was
not always the case, and we assume it has to
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Sentence Level Text Level
Restaurant Laptop Hotel Restaurant Laptop Hotel

Texts 676 782 226 90 80 30
Unique Aspects 12 81 28 12 81 28

Aspects with Sentiment 859 777 339 404 545 215
Aspects without Sentiment 7253 62565 5989 676 5935 625

Total Aspects 8112 63342 6328 1080 6480 840

Table 6: Data distribution in test datasets.

do with the difference between the amount of
unique aspects in the domains. The aspect clas-
sifiers seem not to work well on the sentence-
level test dataset. We suspect that the reason
for this is that each sentence does not necessar-
ily have enough information to validate whether
an aspect is relevant for a text. A sentence-
level text input example is “It wakes up super fast
and is always ready to go”, which is categorized
as “LAPTOP#OPERATION PERFORMANCE”.
In the out-of-domain and generalized model, this
sentence does not provide the necessary informa-
tion to make clear that the aspect is related to the
sentence and instead can be applied to a lot of
other aspects from other domains.

The combined model performs consistently bet-
ter than the sentiment model in all domains. We
believe that the reason for this is that the combined
model is trained on a vast volume of “unrelated”
data compared to the sentiment model, which al-
lows it to learn to ignore redundant features when
predicting the sentiment. However, the combined
model performs worse than the aspect model in
classifying relevant aspects. We conclude that the
reason for this is that the combined model has
to find what is relevant, which for this model is
defined by the 4 sentiment polarity labels. This
increases the complexity compared to the aspect
model that was trained specifically on whether or
not the aspect is relevant to the text.

A possible reason for why our model improves
upon previous state-of-the-art models may be that
it uses BERT for the word representation and can
then employ the semantic similarities in the dif-
ferent word embeddings for the word, which cap-
tures the context, to find sentiments for an aspect
in a text. Compared to the previous best models
that generate one vector for each word, BERT uses
positional word embeddings to generate different
word embeddings for each word, depending on its
position in the text. Another possible reason is the

use of sentence-pair classification to compare the
similarities of an aspect to a text instead of the pre-
vious best models that used single-sentence classi-
fication to determine what aspect is found in a text.

6 Conclusion

In this paper, we proposed an ABSA model that
can predict the aspect related to a text for in-
domain and out-of-domain. We achieve this
by using the pre-trained language model BERT
and fine-tuning it to a sentence pair classification
model for the ABSA task. Moreover, we train the
aspect classifier model with data that we generate,
which consist of ’related’ and ’unrelated’ labels.

We further experimented with this approach for
the sentiment classifier, by fine-tuning the model
to find a relation between an aspect and a text and
to make the model learn when the contextual rep-
resentation showed a sentiment context. Further-
more, we proposed a combined model that can
classify both aspect and sentiment using only one
sentence pair classification model. Experimental
results show that the combined model outperforms
previous state-of-the-art results for aspect based
sentiment classification.
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Abstract

The task of stance detection consists of
classifying the opinion expressed within
a text towards some target. This paper
presents a dataset of quotes from Dan-
ish politicians, labelled for stance, and
also stance detection results in this con-
text. Two deep learning-based models are
designed, implemented and optimized for
political stance detection. The simplest
model design, applying no conditional-
ity, and word embeddings averaged across
quotes, yields the strongest results. Fur-
thermore, it was found that inclusion of
the quote’s utterer and the party affiliation
of the quoted politician, greatly improved
performance of the strongest model.

Dansk abstrakt: I indeværende artikel
præsenteres et annoteret datasæt over ci-
tater fra danske politikere, samt to Deep
Learning-baserede modeller til brug ved
identifikation af holdninger i de an-
noterede citater. Det konkluderes at den
simpleste af de to modeller opnår de bed-
ste resultater, samt at brug af information
vedrørende citaternes kontekst forbedrer
modellernes resultater.

1 Introduction

As a result of digitalization, the availability of in-
formation regarding the state of politics has never
been greater, interviews, debates, party programs
and articles all readily available online. This can
be seen as a democratic benefit, contributing to
the enlightenment of the population, giving indi-
viduals a basis on which to form their opinions
and place their votes. However, the large amount
of information available means the time required
for keeping up to date on the state of politics be-
comes increasingly higher. A partial solution to

this problem is to convert textual data into quanti-
tative data, representing a large amount of text in a
more compact fashion. This can be achieved using
Natural Language Processing (NLP), the field con-
cerned with the automatic parsing, analysis and
understanding of text. Within this field is the
task of stance detection, concerned with discern-
ing the stance in a text towards some target. Build-
ing a model which can accurately solve the task
of stance detection can help generate quantitative
data regarding the state of Danish politics.

The objective of this work is two-fold; creat-
ing a dataset of quotes from politicians labelled
for stance, allowing statistical analysis of opinions
within parties and for each politician, and building
a machine learning-based stance detection model,
able to determine the stances within quotes in the
generated dataset.

The task of collecting data for the dataset is de-
fined as the extraction of quotes from news arti-
cles for all political parties within the Danish par-
liament. Here, considerations are made regarding
the objectivity of the collected data, both taking
into account the subjectivity of journalists, media
outlets and the researcher.

The task of data labelling will be performed us-
ing the labels for, against and neutral. For this
task, the subjectivity of the researcher is the pri-
mary concern, in regards to the objectivity and
general applicability of the dataset.

The task of stance detection is defined as the au-
tomatic detection of a stance within a given quote
towards some target, using the stance classes for
and against the target, or as neither for nor against
the target, which we call neutral. The goal of this
work is to create a model which can perform this
task, both to be used as a tool for political anal-
ysis and to expand the generated dataset by auto-
matic labelling of quotes, as well as to be used as
a benchmark for further research within the field
of NLP in Danish.
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2 Related Work

Stance detection has been addressed through a
number of different model approaches, including
probabilistic classifiers (Qazvinian et al., 2011),
kernel-based classifiers (Mohammad et al., 2017;
Enayet and El-Beltagy, 2017; Collins and Duffy,
2001) and ensemble learners (Zeng et al., 2016;
Tutek et al., 2016). Recently, deep learning ap-
proaches have shown promise at this task. The
two top performing teams of SemEval 2016 Task 6
both applied deep learning models (Zarrella and
Marsh, 2016; Wei et al., 2016) as did those in Ru-
mourEval 2019 (Gorrell et al., 2019).

The task of stance detection has been applied
widely within political analysis, both analyzing
the stance of politicians towards a given topic (Lai
et al., 2016; Skeppstedt et al., 2017), as is the
task within this paper, and also to identify the
stance of individuals towards some politician or
policy (Aker et al., 2017; Augenstein et al., 2016;
Mohammad et al., 2016; Johnson and Goldwasser,
2016; Iyyer et al., 2014). For several of these
cases, the stance target has been mentioned explic-
itly in the data. This is not necessarily the case for
the dataset generated for this paper, increasing the
difficulty of the task significantly. Furthermore, all
of these examples perform stance detection for En-
glish, whereas the dataset generated for this data is
in Danish. This further increases the difficulty of
the task, as fewer resources are available.

Enevoldsen and Hansen (2017) perform senti-
ment analysis in Danish using newspaper articles,
using the AFINN dictionary over sentiment of
Danish words (Årup Nielsen, 2011), performing
ternary classification of articles using for, against
and neutral labels. However, no research has
been done within political stance detection in Dan-
ish (Kirkedal et al., 2019), and only very recently
has any work been done for stance in Danish in
the first place – just Lillie et al. (2019), published
at the same time as this paper.

3 Data

We assembled a dataset of quotes from Danish
politicians, extracted from articles from the Dan-
ish media outlet Ritzau. Considerations were
made regarding the objectivity of the collected
data, and seeing as Ritzau is owned by a conglom-
erate of media outlets from all areas of the politi-
cal spectrum (Ritzau, 2019), it is assumed that ar-
ticles from the media outlet will not contain bias

towards any given party. A data statement (Ben-
der and Friedman, 2018) is in the appendix.

A shortlist of possible topics to include in the
dataset was attained based on an opinion poll exe-
cuted by Kvalvik (2017), seeking to identify the
topics most important to the Danish population,
when voting in the next election. Here, the five
most important topics were identified as health
policy, social policy, immigration policy, crime
and justice policy and finally environment and cli-
mate policy. Immigration policy was chosen as
the topic to be included in the dataset, due to al-
ternative topics being defined too broadly to easily
allow a clear definition of annotation guidelines.

3.1 Choice of Politicians

To accurately represent the full spectrum of Dan-
ish legislative politics, politicians from all politi-
cal parties with seats in parliament are included in
the dataset. From each party, ten politicians have
been chosen for inclusion in the dataset. Politi-
cians with seats in parliament have been priori-
tized over those without seats. For the parties with
more than ten politicians in parliament, prioritiza-
tion has been made as follows:

1. Ministers
2. Party heads
3. Speakers

(a) Speakers within the five top topics of in-
terest to the Danish population as pre-
sented by (Kvalvik, 2017)

(b) Speakers not within the five top topics

4. Non-speaker Members of parliament

Considerations were made regarding the gen-
der representativity within the dataset. The met-
rics just described yields the gender distribution
presented in Table 1. It can be observed that the
approach creates a skewed gender distribution of
included politicians, but the skewness is judged to
be within a reasonable margin, with 58% male and
42% female politicians.

3.2 Data Labelling

The choice of labelling convention is based on that
applied by Mohammad et al. (2016) in organizing
SemEval-2016 Task 6, which is concerned with
the detection of stance within tweets, and the cre-
ation of a dataset for this task. Three classes are
defined along which quotes are labelled, the first
called for, declaring support of a given topic, the
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Males Females
Party Count % Count %
Alternativet 7 70 3 30
Dansk Folkeparti 5 50 5 50
Det Konservative Folkeparti 6 60 4 40
Enhedslisten 7 70 3 30
Liberal Alliance 6 60 4 40
Radikale Venstre 5 50 5 50
Socialdemokratiet 7 70 3 30
Socialistisk Folkeparti 3 30 7 70
Venstre 6 60 4 40
Total 52 58 38 42

Table 1: Gender distribution of dataset per party

second called against, declaring opposition to a
given topic, and a third, called neutral, contains
both quotes that are deemed to be neutral towards
the topic, as well as quotes for which a specific
stance can not be determined. During the initial
labelling efforts, it was observed that not all gath-
ered quotes could be categorized along the same
axis, and it was therefore decided to divide the
dataset into sub-topics.

3.2.1 Defining Sub-topics
A clear division of the dataset was found along
whether the quote concerned immigration issues
in the context of within the borders of Denmark, or
in a more global context. The sub-topic National
immigration policy (national policy for short) was
defined as policy and topics that concern mat-
ters within Danish borders, such as the number
of asylum seekers the country takes in, how these
are housed, and what requirements should be set
for them in regards to taking Danish education
and employment. An example of a quote within
this subtopic can be found below, which concerns
the government’s initiative to combat communities
that they define as ghettos.

Det er godt, at der lægges op til højere
straffe og en styrket politiindsats i ghettoer. Men
regeringen skal passe på ikke at oversælge sit ud-
spil. Det kan ikke løse alle problemer.

It is good that harsher penalties and an in-
creased police effort in ghettos is encouraged.
But the government should be careful not to over-
sell its proposal. It can not solve all problems.
Martin Henriksen, (Ritzau, 2018b)

Centralized immigration policy (centralization
for short) is defined as policy and topics that con-
cern immigration on a European or international
level, for example distribution of asylum seekers
among the member countries of EU, deterring im-
migrants at EU’s boarders or the sending of im-

migrant from Denmark to refugee camps in other
countries. An example of such a quote is:

Den danske regering bør i stedet sige til den
italienske regering, at Danmark og Italien i fæl-
lesskab kan transportere asylansøgerne tilbage
til Afrika, så de kan blive sat af på kyste.

The Danish government should instead tell
the Italian government that Denmark and Italy
can transport the asylum seekers back to Africa
together, where they can be set ashore on the
coast.
Martin Henriksen, (Ritzau, 2018f)

Some quotes fit both subtopics. In these cases,
a duplicate quote is created, and one is labelled
with each subtopic. An example of this is found
below, where first half of the quote is concerning
the free mobility of labour within EU, and immi-
gration stemming from this, and the second half is
concerned with the effect on immigration legisla-
tion changes on a Danish level.

Det er oplagt at se på, hvordan vi kan
understøtte en højere grad af mobilitet i Europa,
så danske virksomheder, der har brug for
arbejdskraft, kan få den, uden det betyder
den indvandring, som vil følge af at sætte
beløbsgrænsen ned.

It would be natural to look at, how we
can support a higher level of mobility in Eu-
rope, so Danish companies that need laborers
can get them, without it resulting in the immi-
gration, which would result from lowering the
threshold.
Mette Frederiksen, (Ritzau, 2018d)

3.2.2 Annotation Guidelines
The subtopic national policy is defined as tighten-
ing the policy within the borders of Denmark on
the legislative fields of immigration, integration
and asylum. Therefore, a quote would be classi-
fied as for this topic, if it exhibits one or more of
the following traits.

• support for higher restrictions on immigrants
or asylum seekers entering the country

• support for lowering public benefits to immi-
grants or asylum seekers

• a wish to get immigrants or asylum seekers
to leave Denmark, after they have entered the
country

• making demands specifically of immigrants
or asylum seekers, for instance regarding tak-
ing language courses or job search
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• seeking to make immigrants or asylum seek-
ers change their culture or behaviour

• communicating explicitly or implicitly that
immigration is a burden to Danish society

• wishing to implement changes in behaviour
though negative incentives such as decreased
public benefits

Quotes classified as against the national policy
subtopic, on the other hand, will exhibit one or
more of the following traits.

• support for lower restrictions on immigrants
or asylum seekers entering the country

• support for higher public benefits to immi-
grants or asylum seekers

• immigrants or asylum seekers are free to stay,
after having entered the country

• seeking to making fewer demands of, and
give more freedom to, immigrants or asylum
seekers

• not seeking to make immigrants or asylum
seekers change their culture or behaviour

• communicating explicitly or implicitly that
immigration is an asset to Danish society

• wishing to implement changes in behaviour
though positive incentives such as increased
public benefits

The subtopic centralization is defined as yield-
ing decision power to EU, and/or solving more
immigration issues on a European or international
level, rather than on a national level, and for and
against labels are thus more clearly defined for
this subtopic. A for quote would support yielding
power, an example of which is found below.

Europa har en fælles udfordring med
flygtninge og migranter. Vi må have et fælles
asylsystem.

Europe has a mutual challenge with
refugees and immigrants. We must have a com-
mon asylum system.
Rasmus Nordqvist, (Ritzau, 2018a)

On the other hand, an against quote would be
opposed to yielding power, an example of which
is found below.

Der er for mange spørgsmål, som står
ubesvaret hen, og derfor mener vi, at man fra
dansk side skal suspendere det samarbejde,
indtil der er fuldstændig klarhed over, hvad

regeringen har forpligtet sig til på Danmarks
vegne.

There are too many questions left unan-
swered, and therefore we believe that Denmark
should suspend the collaborative efforts, until
there is complete clarity regarding what the gov-
ernment has committed itself to on behalf of Den-
mark.
Martin Henriksen, (Ritzau, 2018g)

3.2.3 Resolving Grey Areas
Not all quotes contain explicit communication of
a stance or even clear indicators, like the ones just
described. To solve this issue, inspiration is taken
from Mohammad et al. (2016), and the questions
given to annotators. In line with Mohammad et al.
(2016), when labelling quotes, stance is inferred
from how the quotee refers to things and people
aligned with or opposed to the topic. An exam-
ple of this would be a politician indicating support
towards a ban on the use of burkas, which falls
within the subtopic of national policy. Seeing as
the ban on burkas is a restriction of behaviour, the
quote would be labelled as for, as the stance of
the quote can be induced by proxy. Furthermore,
when no clear stance is communicated, and no
stance can be determined by proxy, the tone of the
quote is analyzed, looking at the use of weighted
words, for instance describing immigrants as re-
sources, nuisances or in neutral terms.

4 Annotated Dataset

Looking at the quote count for the dataset as pre-
sented in Table 2, it is clear that the dataset is sig-
nificantly skewed towards the for label, contain-
ing 57.2% of the quotes, with 23.4% labeled as
against and 19.3% as neutral when observing the
full dataset, and the skewness remains if looking
at the two subsets in isolation. Such skewness has
shown to be an issue for stance detection mod-
els in earlier research, an example of this being
the SemEval-2017 competition Task 8, where the
dataset contained a majority label with 66% of the
data points in the train set and 74% of data points
in the test set (Derczynski et al., 2017).

Another potential issue for the stance detection
task is the size of the dataset, as a size of 898
instances might not be sufficient to learn the lan-
guage patterns within the quotes.

4.1 Assessing Representativity in the Dataset
Out of the 90 politicians chosen to be included in
the dataset, relevant quotes were only found in the
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Party Topic # Quotes
F A N Total

Alternativet NP 7 2 9
C 2 2
Total 2 7 2 11

Dansk Folkeparti NP 187 5 25 217
C 5 18 7 30
Total 192 23 32 247

Det Konservative NP 18 1 5 24
Folkeparti C 2 2

Total 20 1 5 26
Enhedslisten NP 3 26 5 34

C 4 1 5
Total 3 30 6 39

Liberal Alliance NP 6 6 6 18
C 0
Total 6 6 6 18

Radikale Venstre NP 7 68 18 93
C 6 1 7
Total 13 68 19 100

Socialdemokratiet NP 92 20 42 154
C 7 1 1 9
Total 99 21 43 163

Socialistisk NP 5 26 2 33
Folkeparti C 2 2

Total 7 26 2 35
Venstre NP 144 14 54 212

C 38 1 8 47
Total 182 15 62 259

All parties NP 462 173 159 794
C 62 24 18 104
Total 524 197 177 898

Table 2: Quote count overview for dataset, NP de-
noting national policy, C denoting centralization,
F denoting For, A denoting Against and N denot-
ing Neutral.

Ritzau database for 63 politicians. This might con-
stitute an issue in terms of representativity, if a cer-
tain gender, party or political orientation is more
likely to be quoted by news outlets.

Dividing parties based on their placement on the
political axis, defining Alternativet, Enhedslisten,
Radikale Venstre, Socialdemokratiet and Social-
istisk Folkeparti as left-wing parties and Dansk
Folkeparti, Det Konservative Folkeparti, Liberal
Alliance and Venstre as right-wing parties, a skew-
ness towards the right-wing parties within the
dataset can be observed, as seen in Table 3. We
observe an over-representation of right-wing par-
ties with 61% of the quotes.

Quote #
Left-wing Right-wing Total

For 400 124 479
Neutral 105 72 177
Against 45 152 197
Total 550 348 898

Table 3: Quote count divided by political axis

Figure 1: Quote distribution for the subtopic na-
tional policy between the labels for, against and
neutral, for each party, in percentage, totals calcu-
lated as sums of quotes

Similarly, a skewness towards the male gender
can be observed in the data, shown in Table 4. This
is, however, likely to be a reflection of the skew-
ness in the number of male and female politicians
included in the party, observed in Table 1.

Gender
Male Female

For 316 208
Against 124 72
Neutral 98 80
Total 538 360
% 60 40

Table 4: Quote count divided by gender

The skewness of data, as presented within this
section, is likely to constitute a weakness in any
classifier built on the dataset, as the classifier will
likely be better at recognizing quotes from right-
wing than from left-wing parties, and from males
than from females.

4.2 Quote Distribution within Parties

Figure 1 shows the distribution of policy quotes
on one topic, over parties. Alternativet is the
only party univocally against implementing tighter
immigration policy. Enhedslisten, Radikale Ven-
stre and Socialistisk Folkeparti are largely against,
with approximately 80% of quotes within this
class. It is worth noting that the quote distribu-
tions of both Socialdemokratiet and Liberal Al-
liance differ significantly from the rest of the par-
ties within their half of the political spectrum,
and to a higher degree resembles that of their
political opponents. With a for distribution of
60%, Socialdemokratiet resides more closely to
the right-wing total of 75% than the 32% of the
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left-wing total, and with a for distribution of 32%
Liberal Alliance matches that of the left-wing
total. However, Liberal Alliance has a lower
against quote distribution than the left-wing to-
tal, and Socialdemokratiet has a larger against dis-
tribution than the right-wing total. Venstre, Det
Konservative Folkeparti and Dansk Folkeparti all
have a very low against distribution, with Dansk
Folkeparti holding the smallest at just a few %.

5 Method

Pretrained fastText word embeddings of size 300
are used as word representations. These are sup-
plemented by what will be denoted as context-
based features. These consists of two sets of
one-hot embeddings, representing the politicians
present in the dataset and the nine parties presently
in the Danish parliament respectively. For each
quote, a context-based feature vector is generated
with a flag raised at the index of the politician
behind the quote, and the party affiliation of this
politician.

5.1 LSTM Implementation
The initial approach in classifying the stances
within the quote dataset was based on a recur-
rent LSTM-based architecture (Hochreiter and
Schmidhuber, 1997), applying forget gate (ft), in-
put gate (it), cell state (Ct), output gate (ot) and
the output vector (ht) as:

H =

[
ht−1

xt

]

ft = σ(Wf ×H + bf )

it = σ(Wi ×H + bi)

Ct = ft × Ct−1 + it × tanh(Wc ×H + bc)

ot = σ(Wo ×H + bo)

ht = ot × tanh(Ct)

xt denotes the input vector at time step t, and
ht−1 denotes the output of the model at time step
t-1. W denotes trainable weight matrices and b
denotes trainable biases. By using an LSTM, it
was sought to preserve knowledge of long-range
dependencies between words, while circumvent-
ing the vanishing and exploding gradient prob-
lem (Pascanu et al., 2013).

5.1.1 Conditional Encoding
The first model implemented, denoted Conditional
LSTM, applies conditionality, inspired by Augen-
stein et al. (2016), by initializing the LSTM layer

Figure 2: Diagram of Conditional LSTM layer(s)

at time step t0 on the one-hot embedding repre-
senting the quoted politician, and the party of said
politician. Thus, the model learns politician and
party-dependent quote representations.

The model takes a quote as input, generated as
a matrix of word embeddings of the size E × L,
E denoting the word embedding size, 300 for the
FastText embeddings used within this paper, L de-
noting the length of the quote. For any value
xi in the quote embedding matrix, it is true that
xi ∈ R| − 1 ≤ xi ≤ 1. At each time step,
the model takes a single word embedding as input.
This LSTM layer type is depicted in Figure 2.

5.2 Multi-Layered Perceptron

The second model is a simple multi-layered per-
ceptron (Rosenblatt, 1961), denoted MLP, which
applies average quote embeddings, generated as
vectors where the value of the vector is the av-
erage of all word embeddings in the quote. The
vector will be of length 300, when using the Fast-
Text word embeddings, and for a quote of length
N, average quote embeddings are calculated as:

xi =

∑N
i=0 xword

N

Quote embeddings are concatenated with the
one-hot representation of the quoted politician and
the politician’s party affiliation. See Figure 3.

5.3 Full Model Architecture

The number of deep learning layers are variable,
and used as a parameter in hyperparameter search.
The output of the deep learning layers are passed
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Figure 3: Diagram of Multi-layered perceptron
layer(s)

to a number of linear layers containing ReLU acti-
vation functions (Richard H. R. Hahnloser and Se-
ung, 2000), the number of which are likewise used
as a parameter in hyperparameter search, followed
by a softmax layer allowing for classification and
optimization using categoric cross entropy loss.
Both models had the number of deep learning lay-
ers and units, number of ReLU layers and units
and L2 optimized, using a grid-wise search of the
hyperparameter space. A learning rate of 0.001
and dropout of 0.5 is applied to both models.

6 Results and Analysis

The overall evaluation of the three models was
performed with the full dataset, as well as with
the national policy subset, using the optimal hy-
perparameters. No experiments were made us-
ing only the centralization dataset, as this was
deemed too small at a quote count of just 104.
The models were compared on both F1micro and
F1macro. However, due to the skewed label dis-
tribution within the dataset, as pointed out in Sec-
tion 4, F1macro is the primary metric for model
evaluation.

Seeing as the dataset was generated specifi-
cally for this piece of research, there exists no
prior benchmarks with which to compare the mod-
els. For this reason, two benchmark models are

Full Dataset
GNB RF Cond. MLP

F1macro 0.266 0.387 0.375 0.575
F1micro 0.306 0.461 0.400 0.717
Facc 0.442 0.267 0.580 0.826
Aacc 0.6 0.2 0.244 0.120
Nacc 0.029 0.797 0.440 0.797

National Policy dataset
GNB RF Cond. MLP

F1macro 0.254 0.435 0.358 0.585
F1micro 0.283 0.560 0.372 0.774
Facc 0.337 0.525 0.256 0.963
Aacc 0.696 0.435 0.480 0.043
Nacc 0.036 0.821 0.478 0.804

Table 5: Performance comparison of all models,
including benchmark models, using optimized hy-
perparameters, GNB referring to Gaussian Naı̈ve
Bayes, RF referring to Random Forest

built, namely a Gaussian Naive Bayes classifier
and Random Forest classifier, both out-of-the-box
implementations from the scikit-learn Python li-
brary (Pedregosa et al., 2011).

There are three majority-based baselines. The
first majority baseline-based model uses the over-
all majority class of the full dataset to classify
quotes. The second applies the majority class for
each politician to classify quotes from that politi-
cian, and the third model does the same, instead
using the majority class for each party.

6.1 Model Comparison

From Table 5 it can be observed that the MLP
outperforms all four other models in terms of
F1macro on both the full and national policy
datasets. The MLP also performs best in regards to
F1micro on both the full dataset and the national
policy dataset.

Table 6 show that the MLP model out-performs
both majority baseline models in terms of F1macro.
However, the politician-level baseline outperforms
the MLP in terms of F1micro.

F1macro F1micro
MLP 0.575 0.717
Majority 0.253 0.611
Majoritypol 0.299 0.835
Majorityparty 0.270 0.696

Table 6: Comparison of majority baseline perfor-
mance to MLP performance
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Policy dataset Full dataset
F A N F A N

F 77 0 3 F 22 52 1
A 8 15 2 A 5 16 2
N 10 57 2 N 2 52 2

Table 7: Confusion matrices for Multi-layered
perceptron, using optimized hyperparameters

6.2 Misclassification Analysis
Table 7 shows the confusion matrix for the MLP,
run with optimal hyperparameters on both the full
and national policy dataset, can be found. For
both datasets, the strength of the MLP is its ability
to correctly classify for and neutral quotes. As a
function of this, the model more or less ignores the
against class, in pursuit of correctly classifying the
two larger classes instead. A tendency can be ob-
served towards classifying against-quotes as for,
and to some extend also misclassifying some neu-
tral quotes as for. This is not surprising, for being
the majority class. Both the against-quotes and
neutral-quotes classified as for are generally found
to contain a large number of negative words target-
ing some other topic than immigration. Generally,
the quotes within the for label apply a large num-
ber of negative words, suggesting that the classi-
fiers mis-interpret the target of the negative words.
An example of a neutral-quote labeled as for is:

Det er ingen hemmelighed, at vi i Dansk
Folkeparti opfatter Dansk Industri som meget
manipulerende og utroværdig i diskussionen om
udenlandsk arbejdskraft.

It is no secret that we in Dansk Folkeparti
perceive Dansk Industri as being very manipu-
lative and untrustworthy in the debate regarding
foreign labor.
Martin Henriksen, (Ritzau, 2018c)

And an example of an against quote:
Det er bestemt ikke problemfrit at inte-

grere flygtninge. Men løsningen er da ikke
at eksportere problemerne til for eksempel
Nordafrika, hvor man i forvejen står med en
kæmpemæssig opgave.

Integrating refugees is definitely not without
its challenges. But the solution is not to export
the problem to, for instance, North Africa, where
the region is already faced with a huge task.
Johanne Schmidt Nielsen, (Ritzau, 2018e)

6.3 Post-hoc Exploratory Experiments
Additional experiments were performed using the
MLP trained on the full dataset, to gain additional
insight into the model’s performance.

6.3.1 The Effect of Context-based Features
Comparing Table 8 and Table 5, it can be observed
that removal of either party or politician from the
context-based features significantly reduces the
MLP’s results. A model applying a feature vector
composed only of the two context-based features
out-performs models applying combinations of the
text-based features and one of the two context-
based features, but is in turn out-performed by
the model applying all three features. This shows
that the inclusion of context-based features signifi-
cantly improves the model’s performance, but that
the model still relies on text-based features for op-
timal performance.

Feature F1macro F1micro
FastText 0.138 0.261
FastText, Vectorpol 0.405 0.522
FastText, Vectorparty 0.441 0.594
Vectorpol, Vectorparty 0.439 0.583
FastText, Vectorpol, Vectorparty 0.575 0.717

Table 8: Results of experiments on MLP with re-
duced contextual features

6.3.2 Size of the Dataset
It is assumed that the small size of the quote
dataset is a significant factor in preventing the
models from achieving better performance, see-
ing as a smaller dataset size makes generalization
to unobserved data points more difficult. To test
this hypothesis, experiments were performed on
the MLP using the optimal model hyperparame-
ters, but a reduced training set sizes, in the range
of 10 - 100% of the total quote dataset, the results
of which can be found in Table 9. From this table,
it is clear that decreasing the training set size re-
duces the performance of the model. It is assumed
that the opposite is also true, and that a dataset of
larger size would thus increase performance of the
generated models.

6.3.3 Choice of Optimizer
The models were implemented using a simple
stochastic gradient descent optimizer from Py-
Torch (Paszke et al., 2017). This decision was
made early in the development process, prior to
the search of hyperparameter spaces for models.
Thus, little testing was performed for the alter-
native, more advanced, optimizers. To gain in-
sight into whether the use of alternative optimizers
would have improved performance, a comparative
experiment was performed, the results of which
are presented in Table 10.

204



Quotes Optimal epoch F1micro F1macro
10% 72 Any 0.383 0.185
20% 144 Any 0.383 0.185
30% 216 Any 0.383 0.185
40% 288 200 0.5 0.33
50% 360 300 0.478 0.33
60% 432 200 0.567 0.425
70% 504 200 0.583 0.428
80% 576 200 0.656 0.488
90% 648 300 0.727 0.52
100% 720 300 0.717 0.575

Table 9: Dataset size impact on MLP performance

Adagrad Adadelta Adam
rate ε 0.001 0.01 0.001 0.01 0.001 0.01
Epoch Any 200 300 30 30 Any
F1micro 0.383 0.633 0.722 0.622 0.661 0.383
F1macro 0.185 0.490 0.518 0.536 0.547 0.185

Table 10: Performance of the Adagrad, Adadelta
and Adam optimizers in the MLP

From this table it can be seen, that the Adam op-
timizer reaches an F1macro score of 0.547, com-
parable to the best score of the basic SGD opti-
mizer which was 0.575, despite hyperparameters
being trained using the basic SGD optimizer. It is
worth noting that this result is achieved after only
30 epochs, whereas the basic SGD optimizer re-
quired 300 epochs. This indicates that using an
adaptive optimizer would not necessarily lead to
higher performance than stochastic gradient de-
scent, for this task, but can be a more efficient
choice of optimizer.

6.3.4 Alternative Learning Rates
As can be seen in Table 11, a higher learning
rate decreases the convergence time on high F1-
scores significantly, however reducing the perfor-
mance of models for higher numbers of epochs.
The fact that the models applying a higher learn-
ing rate can not achieve as strong a performance
as that using a learning rate of 0.001 is likely to
be due to the models skipping some maxima. One
solution would be a variable learning rate, reduc-
ing the learning rate once the model shows per-
epoch diminishing loss reduction, thus achieving
both quick convergence and precision.

7 Conclusion

This work created both a dataset and approach for
political stance detection in Danish. A dataset
of quotes from Danish politicians, including the
quoted politician and the quoted politician’s party,
annotated for use in stance detection was gener-

Learning Rate Epoch F1macro F1micro
0.001 30 0.185 0.383

50 0.185 0.383
70 0.185 0.383
100 0.348 0.506
200 0.525 0.733
300 0.575 0.717

0.01 30 0.526 0.733
50 0.410 0.606
70 0.396 0.594
100 0.454 0.578
200 0.478 0.633
300 0.410 0.500

0.1 30 0.423 0.589
50 0.504 0.706
70 0.442 0.617
100 0.437 0.639
200 0.397 0.572
300 0.497 0.667

Table 11: Results of Learning Rate experiments
on Quote LSTM using optimal hyperparameters

ated, and annotation guidelines for this dataset
were defined. Two deep learning-based classi-
fiers were designed, implemented and optimized
for the task. The simple MLP model that took
an averaged quote embedding as input far outper-
formed the more advanced LSTM model, which
took a single word at each time step. The gen-
erated dataset is applicable for use in future re-
search within the field of stance detection in Dan-
ish, and the created models can be used as bench-
marks when testing stance detection classifiers on
this dataset.

Labeled quote data and code for this project is
available on GitHub (link).
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https://ritzau.com/ejerskab-bestyrelse-og-
aarsregnskab/.

Frank Rosenblatt. 1961. Principles of neurodynam-
ics: Perceptrons and the theory of brain mecha-
nisms. Cornell Aeronautical Laboratory, Buffallo,
New York, USA.

Maria Skeppstedt, Vasiliki Simaki, Carita Paradis, and
Andreas Kerren. 2017. Detection of stance and sen-
timent modifiers in political blogs. In Proceedings
of the International Conference on Speech and Com-
puter, SPECOM, pages 1589–1599, Hatfield, United
Kingdom.

Martin Tutek, Ivan Sekulic, Paula Gombar, Ivan Pal-
jak, Filip Culinovic, Filip Boltuzic, Mladen Karan,
Domagoj Alagic, and Jan Snajder. 2016. Take-
Lab at SemEval-2016 Task 6: Stance Classification
in Tweets Using a Genetic Algorithm Based En-
semble. In Proceedings of the 10th International
Workshop on Semantic Evaluation (SemEval-2016),
pages 464–468.

Wan Wei, Xiao Zhang, Xuqin Liu, Wei Chen, and
Tengijao Wang. 2016. pkudblab at SemEval-2016
Task 6 : A Specific Convolutional Neural Network
System for Effective Stance Detection. In Proceed-
ings of the 10th International Workshop on Semantic
Evaluation (SemEval-2016), pages 384–388.

Guido Zarrella and Amy Marsh. 2016. MITRE at
SemEval-2016 Task 6: Transfer Learning for Stance
Detection. In Proceedings of the 10th International
Workshop on Semantic Evaluation (SemEval-2016),
pages 458–463.

Li Zeng, Kate Starbird, and Emma S. Spiro. 2016.
Unconfirmed: Classifying Rumor Stance in Crisis-
Related Social Media Messages. In Proceedings
of the Tenth International AAAI Conference on
Web and Social Media (ICWSM), pages 747–750,
Cologne, Germany.

Appendix 1: Data Statement

Curation rationale Quotes from Danish politi-
cians published by the Ritzau news agency.

Language variety BCP-47: da-DK

Speaker demographic
• Danish politicians.

• Age: approx. 25-70.

• Gender: mixed; see Section 3.1.

• Race/ethnicity: mostly white with Scandina-
vian background.

• Native language: Danish.

• Socioeconomic status: minimum 56494.17
DKK per month ($8470 USD).

• Different speakers represented: 63.

• Presence of disordered speech: Quotes are
mostly curated, so not prevalent.

Annotator demographic
• Age: 20-30.

• Gender: male.

• Race/ethnicity: white northern European.

• Native language: Danish.

• Socioeconomic status: higher education stu-
dent.

Speech situation Quotes given by politicians in
parliament during debate or discussion, during
verbal interviews or in writing, transcribed and
then published in edited newswire.

Text characteristics Danish Newswire.

Provenance Originally taken from Ritzau.
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Abstract

The net is rife with rumours that spread
through microblogs and social media. Not
all the claims in these can be verified.
However, recent work has shown that the
stances alone that commenters take toward
claims can be sufficiently good indicators
of claim veracity, using e.g. an HMM
that takes conversational stance sequences
as the only input. Existing results are
monolingual (English) and mono-platform
(Twitter). This paper introduces a stance-
annotated Reddit dataset for the Danish
language, and describes various imple-
mentations of stance classification mod-
els. Of these, a Linear SVM provides pre-
dicts stance best, with 0.76 accuracy / 0.42
macro F1. Stance labels are then used
to predict veracity across platforms and
also across languages, training on conver-
sations held in one language and using the
model on conversations held in another.
In our experiments, monolinugal scores
reach stance-based veracity accuracy of
0.83 (F1 0.68); applying the model across
languages predicts veracity of claims with
an accuracy of 0.82 (F1 0.67). This
demonstrates the surprising and powerful
viability of transferring stance-based ve-
racity prediction across languages.

1 Introduction

Social media has come to play a big role in our ev-
eryday lives as we use it to connect with our social
network, but also to connect with the world. It is
common to catch up on news through Facebook,
or to be alerted with emerging events through

∗: These authors contributed to the paper equally.

Twitter. However these phenomena create a plat-
form for the spread of rumours, that is, stories with
unverified claims, which may or may not be true
(Huang et al., 2015). This has lead to the con-
cept of fake news, or misinformation, where the
spreading of a misleading rumour is intentional
(Shu et al., 2017). Can we somehow automati-
cally predict the veracity of rumours? Research
has tried to tackle this problem (Qazvinian et al.,
2011), but automated rumour veracity prediction
is still maturing (Gorrell et al., 2019).

This project investigates stance classification as
a step for automatically determining the veracity
of a rumour. Previous research has shown that the
stance of a crowd is a strong indicator for verac-
ity (Dungs et al., 2018), but that it is a difficult
task to build a reliable classifier (Derczynski et al.,
2017). Moreover a study has shown that careful
feature engineering can have substantial influence
on the accuracy of a classifier (Aker et al., 2017).
A system able to verify or refute rumours is typ-
ically made up of four components: rumour de-
tection, rumour tracking, stance classification, and
veracity classification (Zubiaga et al., 2018). This
project will mainly be concerned with stance clas-
sification and rumour veracity classification.

Current research is mostly concerned with the
English language, and in particular data from
Twitter is used as data source because of its
availability and relevant news content (Derczynski
et al., 2017; Gorrell et al., 2019). To our knowl-
edge no research within this area has been carried
out in a Danish context. To perform automated ru-
mour veracity prediction for the Danish language
following the components in Zubiaga et al. (2018),
a number of problems must be solved. (1) to facil-
itate Danish stance classification a Danish dataset
must be generated and annotated for stance. (2)
developing a good stance classifier is difficult, es-
pecially given the unknown domain of the Dan-
ish language. Therefore experiments must be per-
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formed to investigate what approach to apply to
Danish stance classification. (3) given rumourous
data, and aided by stance classification, a rumour
veracity prediction component should be able to
determine whether it is true or false.

2 Background

The attitude that people express towards claims
can be used to predict veracity of those claims, and
these attitudes can be modelled by stance classi-
fiers. This section will cover some state-of-the-art
research for stance classification and rumour ve-
racity resolution. While the introduced classifica-
tion tasks are related to the work carried out in this
project, they differ in a number of ways: (1) this
project performs stance classification for the Dan-
ish language, (2) the generated dataset is from the
Reddit platform, and (3) this project seeks to join
stance classification and veracity prediction with-
out external fact verification.

Stance classification: Long-Short Term Mem-
ory (LSTM) neural network models are popular, as
they have proven to be efficient for working with
data within NLP. In particular (Kochkina et al.,
2017) introduced a stance classifier based on a
“Branch-LSTM” architecture: instead of consid-
ering a single tweet in isolation, whole branches
are used as input to the classifier, capturing struc-
tural information of the conversation. The model
is configured with several dense ReLU layers, a
50% dropout layer, and a softmax output layer,
scoring a 0.78 in accuracy and 0.43 macro F1

score. They are however unable to predict the
under-represented “denying” class.

Another LSTM approach deals with the prob-
lem introduced in the SemEval 2016 task 6 (Mo-
hammad et al., 2016). The LSTM implements a
bidirectional conditional structure, which classi-
fies stance towards a target with the labels “posi-
tive”, “negative”, and “neutral” (Augenstein et al.,
2016). The approach is unsupervised, i.e. data
is not labelled for the test targets in the training
set. In this case the system achieves state-of-the-
art performance with a macro F1 score of 0.49,
and further 0.58 when applying weak supervision.

A different approach is based on having well-
engineered features for stance classification exper-
iments using non-neural networks classifiers in-
stead of Deep Learning (DL) methods (Aker et al.,
2017). Common features such as CBOW and POS
tagging are implemented, but are extended with

problem-specific features, which are designed to
capture how users react to tweets and express con-
fidence in them. A Random Forest classifier per-
formed best, with an accuracy of 0.79.

The lack of labelled data is a major chal-
lenge for stance classification. One study shows
that classification can be improved by transferring
knowledge from other datasets (Xu et al., 2019).
In particular, a model is implemented with adver-
sarial domain adaptation to train on the FEVER
dataset (Thorne et al., 2018) and test on the Fake
News Challenge dataset.1 By augmenting the tra-
ditional approach for stance classification with a
domain adaption component, the model learns to
predict which domain features originate from.

RumourEval 2019 is a very recent SemEval task
which deals with stance classification and veracity
prediction (Gorrell et al., 2019), and a first look at
the scoreboard indicates very promising results.2

With the Branch-LSTM approach as a baseline
on the RumourEval 2019 dataset, scoring 0.4930
macro F1, the “BERT” system scores a macro F1

of 0.6167 (Fajcik et al., 2019). The implemen-
tation employs transfer learning on large English
corpora, then an encoding scheme concatenates
the embeddings of the source, previous and tar-
get post. Finally the output is fed through two
dense layers to provide class probabilities. These
BERT models are used in several different ensem-
ble methods where the average class distribution
is used as the final prediction.

Rumour veracity prediction: Rumour veracity
classification is considered a challenging task as
one must typically predict a truth value from a sin-
gle text, being the one that initiates the rumour.
The best performing team for that task in Ru-
mourEval 2017 (Derczynski et al., 2017) imple-
ments a Linear Support Vector Machine (SVM)
with only few (useful) features (Enayet and El-
Beltagy, 2017). They experiment with several
common features such as hashtag existence, URL
existence, and sentiment, but also incorporates an
interesting feature of capturing whether a text is a
question or not. Furthermore the percentage of re-
plying tweets classified as supporting, denying, or
querying from stance classification is applied. It is
concluded that content and Twitter features were
the most useful for the veracity classification task

1http://www.fakenewschallenge.org
2https://competitions.codalab.org/

competitions/19938 26-05-2019
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and the system scores an accuracy of 0.53.
While the system described above engages in

the task of resolving veracity given a single ru-
mour text, another interesting approach is based
on the use of crowd/collective stance, which is the
set of stances over a conversation (Dungs et al.,
2018). This system predicts the veracity of a ru-
mour, based solely on crowd stance as well as
tweet times. A Hidden Markov Model (HMM) is
implemented, which is utilised such that individ-
ual stances over a rumour’s lifetime is regarded as
an ordered sequence of observations. This is then
used to compare sequence occurrence probabili-
ties for true and false rumours respectively. The
best scoring model, which include both stance la-
bels and tweet times, scores an F1 of 0.804, while
the HMM with only stance labels scores 0.756
F1. The use of automatic stance labels from (Aker
et al., 2017) is also applied, which does not change
performance much, proving the method to have
practical applications. It is also shown that using
the model for rumour veracity prediction is still
useful when limiting the number of tweets to e.g.
5 and 10 tweets respectively.

Danish: While Danish is not a privileged lan-
guage in terms of resources (Kirkedal et al., 2019),
there is stance classification work on political
quotes (Lehmann and Derczynski, 2019). How-
ever, this is over a different text genre, and does
not focus on veracity prediction as its final goal.

Comprehensive reviews of automatic veracity
and rumour analysis from an NLP perspective
include Zubiaga et al. (2018), Atanasova et al.
(2019), and Lillie and Middelboe (2019b).

3 Dataset

Because of various limitations on big social media
platforms including Facebook and Twitter, Red-
dit is used as platform for the dataset.3 This is a
novel approach; prior research has typically relied
on Twitter (Mohammad et al., 2016; Derczynski
et al., 2017; Gorrell et al., 2019).

Data sampling: The data gathering process con-
sists of two approaches: to manually identify inter-
esting submissions on Reddit, and; to issue queries
to the Reddit API4 on specific topics. An ex-
ample of a topic could be “Peter Madsen” refer-

3In particular the Danish Subreddit at www.reddit.
com/r/Denmark/

4www.reddit.com/dev/api/

ring to the submarine murder case, starting from
August 2017.5 A query would as such be con-
structed of the topic “Peter Madsen” as search text,
a time window and a minimum amount of Red-
dit upvotes. A minimum-upvotes filter is applied
to limit the amount of data returned by the query.
Moreover the temporal filters are to ensure a cer-
tain amount of relevance to the case, specifically
when the event initially unfolded. Several submis-
sions prior or subsequent to the given case may
match a search term such as “ubåd” (submarine).

Four Danish Subreddits were browsed, includ-
ing “Denmark, denmark2, DKpol, and Gammel-
Dansk”,6 although all relevant data turned out
to be from the “Denmark” Subreddit. The sub-
mission IDs found manually and returned by the
queries are used to download all posts from each
submission using the praw7 and psaw8 Python
libraries. The submission data is subsequently
stored in a JSON format, one JSON file per sub-
mission, consisting of submission data and a list
of comment data. These files include submis-
sion post text and comment text, as well as meta-
information about the following: submission post,
submitter user, Subreddit, comments, and com-
menting users.

Annotation: One widely used annotation
scheme for stance on Twitter is the SDQC
approach from Zubiaga et al. (2016). Twitter
differs from Reddit in the way conversations are
structured. Each tweet spawns a conversation
which can have nested replies, and as such
creates branches. Reddit implements the same
mechanism, but a set of conversations are tied
to a specific submission, which is initiated by a
submission post. The Reddit structure is depicted
in Figure 1, illustrating a conversation (in green)
and two respective branches (in respectively red
and purple). Note that branches share at least
one comment. Thus, a way to annotate data
from the Reddit platform with the annotation
scheme from Zubiaga et al. (2016) is by regarding
a submission post as a source, instead of each
top-level comment for the conversations.

The stance of the source/submission post is
taken into account when annotating the stance for

5www.dr.dk/nyheder/tema/ubaadssagen
6www.reddit.com/r/Denmark/wiki/

danish-subreddits
7praw.readthedocs.io/en/latest/ v. 6.0.0.
8github.com/dmarx/psaw v. 0.0.7.
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Figure 1: The structure of a Reddit submission

replying posts of top-level posts. As stance anno-
tations are relative to some target, each post does
not have one single stance annotation: each post is
annotated for the stance targeted towards the sub-
mission and the stance targeted towards the direct
parent of the post. The double-annotation should
facilitate a way to infer the stance for individual
posts. For instance, if the source post supports a
rumour, and a nested reply supports its parent post,
which in turn denies the source, then the nested re-
ply is implicitly denying the rumour.

Further, a majority of submissions have no text,
but a title and a link to an article, image or an-
other website, with content related to the title of
the submission. If this is the case and the title of
the submission bears no significant stance, it is as-
sumed that the author of the submission takes the
same stance as the content which is attached to the
submission.

Annotation tool: A custom web-based annota-
tion tool was built to facilitate the annotation pro-
cess of the data. C# and MySQL technologies
were used to build the tool in order to support rapid
development. The tool enables annotators to par-
tition datasets into events and upload submissions
in the JSON form from the gathering Reddit data
to each event. Further the tool allows for a branch
view of each submission in the event and facili-
tates annotation following the SDQC scheme, as
well as certainty and evidentiality as presented by
Zubiaga et al. (2016). Any annotation conflicts are
highlighted by the tool, which will cause the an-
notators to discuss and re-annotate the post with a
conflict. A screenshot of the annotation page for

Figure 2: Screenshot of the annotation tool

the annotation tool is presented in Figure 2.
During annotation of the first ∼ 500 posts, an-

notators disagreed upon labels for around 40-50%
of posts. However after the initial annotation work
this rate dropped to around 25%. Annotation con-
flicts were handled in collaboration between the
annotators after annotation of every ∼ 100 posts.

DAST: The result of the data sampling and anno-
tation process is the Danish stance-annotated Red-
dit dataset (DAST). The dataset consists of a total
of 11 events with 3,007 stance-annotated Reddit
posts across 33 submissions with a total of 1,161
branches. Information on DAST is presented in Ta-
ble 1 including event names, SDQC distribution
and total post counts.

Event
Label S D Q C Total

5G 26 47 7 193 273
Donald Trump 39 17 5 185 246
HPV vaccine 24 4 8 219 255
ISIS 3 40 8 118 169
“Kost” 50 56 4 447 557
MeToo 1 8 3 48 60
“Overvågning” 41 20 13 278 352
Peter Madsen 15 45 19 302 381
“Politik” 43 46 7 227 323
“Togstrejke” 8 6 3 84 101
“Ulve i DK” 23 11 4 252 290
Total 273 300 81 2,353 3,007
% 9.1 10 2.7 78.2 100

Table 1: SDQC stance labels per event

The “querying” label is rare with a total of 81
annotations out of the 3,007 posts. The “support-
ing” and “denying” labels are almost equally dis-
tributed with a total of respectively 273 “support-
ing” and “300” denying posts. The “commenting”
class is the absolute dominant one, with a total of
2,353 annotations.

Table 2 illustrates the relative SDQC distribu-
tion for the whole dataset for both response types,
being targeted towards respectively submission
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Target
Label S D Q C

Submission post 273 300 81 2,353
Parent comment 261 632 304 1,810
Submission post % 9.1 10 2.7 78.2
Parent comment % 8.7 21 10.1 60.2

Table 2: SDQC stance label distribution in DAST

(source) and parent posts, i.e. the posts replied
to. The distribution is quite skewed towards the
“commenting” class label, with a total distribution
of S(0.091), D(0.1), Q(0.027) and C(0.782).

Rumour data: The dataset contains 16 ru-
mourous submissions, 3 of which are true, 3
are false and the remaining 10 are unverified.
They make up 220 Reddit conversations, or 596
branches, with a total of 1,489 posts, equal to
about half of the dataset. The posts are distributed
across the nine events as follows: 5G (233), Don-
ald Trump (140), ISIS (169), “Kost” (324), MeToo
(60), Peter Madsen (381), “Politik” (49), “Togstre-
jke” (73), and “Ulve i DK” (56). Thus ISIS,
MeToo, and Peter Madsen are the only events
which only contain rumourous conversations.

Although rumours with known truth value
would be optimal for veracity classification, this
might reflect reality as the truth value of rumours
may stay unverified. The amount of unverified ru-
mours does however warrant more investigation
in order to use all of the rumourous submissions
for rumour veracity classification. Further details
about the approach to unverified rumours are cov-
ered in Section 4.

In total the dataset contains 3,007 Reddit posts
distributed across 33 submissions respectively
grouped into 16 events.

The tools9 and annotated corpora (Lillie and
Middelboe, 2019a) are openly released with this
paper in GDPR-compliant, non-identifying for-
mat. See appendix for data statement (Bender and
Friedman, 2018).

4 Method

Our veracity prediction approach depends on two
components: a stance classifier and a veracity
classification component (Zubiaga et al., 2018).

4.1 Stance Classification
For stance classification two different approaches
have been used, one being an LSTM classifier in-

9github.com/danish-stance-detectors

spired by (Kochkina et al., 2017) and the other
employing a number of classic machine learning
models with a focus on feature engineering as pre-
sented in Aker et al. (2017).

LSTM classifier: The LSTM model is widely
used for tasks where the sequence of data and ear-
lier elements in sequences are important (Gold-
berg, 2016). The temporal sequence of tweets was
one of the motivations for Kochkina et al. (2017)
to use the LSTM model for branches of tweets, as
well as for the bidirectional conditional LSTM for
Augenstein et al. (2016).

While the results from both the Bi-LSTM in
Augenstein et al. (2016) and Branch-LSTM in
Kochkina et al. (2017) achieve state-of-the-art per-
formance, they both note that their deep learning
approaches suffer from the lack of a larger training
dataset. This is not uncommon in this task (Taulé
et al., 2017; Zubiaga et al., 2016; Gorrell et al.,
2019). We suspect that we would observe the same
tendency for the DAST dataset, which is relatively
small with its 3,007 Reddit posts. However, as the
LSTM approach still manages to achieve state-of-
the-art performance, we opted to include an LSTM
implementation for the stance classification task.

Specifically, the LSTM classifier used for stance
classification here is implemented with PyTorch10

and consists of a number of LSTM layers and a
number of ReLU layers, followed by a dropout
layer and a softmax layer to perform classifica-
tions. The model is trained with stochastic gra-
dient descent (SGD) and a negative log likeli-
hood loss function. The configurations considered
and overall approach is inspired by the Branch-
LSTM classifier in (Kochkina et al., 2017), except
that we do not input data grouped sequentially by
branches, but one by one.

Non-neural network classifiers: It is the inten-
tion to use non-neural network models in contrast
to the LSTM deep learning approach above, as re-
search shows that this approach can do very well
(Derczynski et al., 2017), and particularly Deci-
sion Tree and Random Forest classifiers (Aker
et al., 2017). Furthermore Support Vector Ma-
chine (SVM) and Logistic Regression have proven
to be efficient (Enayet and El-Beltagy, 2017; Der-
czynski et al., 2017). The models are listed below,
prefixed with a label, which we will use to denote
them throughout the paper:

10https://pytorch.org/
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logit Logistic Regression classifier

tree Decision Tree classifier

svm Support Vector Machine (linear kernel)

rf Random Forest classifier

Baselines: A simple majority voter (MV) as
well as a stratified classifier (SC) were imple-
mented. The former predicts only the most fre-
quent class, and the latter generates predictions by
respecting the training set’s class distribution.

The non-neural networks models and baseline
models described above are all implemented with
the Scikit Learn (Pedregosa et al., 2011) frame-
work, which provides a wide variety of machine
learning implementations.

Preprocessing: As a preprocessing step, all post
texts are lower-cased and then tokenised with the
NLTK library (Bird et al., 2009), and finally all
punctuation is removed, not including cases such
as commas and periods in numbers, as well as pe-
riods in abbreviations. Furthermore URLs are re-
placed with the tag “urlurlurl” and quotes with the
tag “refrefref”.

Features: In order to represent the features of
the preprocessed data numerically we employ
eight feature categories, which are grouped by
how they relate: text, lexicon, sentiment, Red-
dit, most frequent words, BoW, POS, and word
embeddings. Note that only the Reddit specific
features are domain-dependent, while the others
should apply for the general case. The choices of
features are a compilation of select features from
various state-of-the-art systems (Aker et al., 2017;
Kochkina et al., 2017; Enayet and El-Beltagy,
2017), except for the Reddit specific ones. Most
of the features are binary, taking either a 0 or a 1
as value, and those that are not are min-max nor-
malised (Han et al., 2011, p. 114), except for the
word embeddings.

Table 3 presents an overview of the total fea-
ture vector, including the feature categories and
their number of individual features. Note that the
word embeddings are actually 300 long, but the
extra 3 features are the cosine similarities between
different word embeddings with regards to parent,
source, and branch word tokens.

Sentiment analysis is performed with the Afinn
library (Årup Nielsen, 2011), and POS tagging is
performed with the Danish Polyglot library (Al-
Rfou et al., 2013). Text features include binary

Category Length
Text 13
Lexicon 4
Sentiment 1
Reddit 10
Most frequent words 132
BOW 13,663
POS 17
Word embeddings 303
Total 14,143

Table 3: Feature vector overview

features for presence of: ‘.’, ‘!’, ‘?’, ’hv’-words,
‘...’, as well as text length, URL count, maximum
length of capital character sequence, and count of:
‘...’, ‘?’, ‘!’, and words. Finally the text features
include ratio of capital letters to non-capital letters
and average word length.

Lexicon features are extracted by looking up
occurrences of items in four predefined lexi-
con/dictionaries: negation words, swear words,
positive smileys, and negative smileys. Nega-
tion words are translated from the English list
used in Kochkina et al. (2017), as no list could
be found for this purpose elsewhere. Beyond
ourselves, swear words are taken from various
sources: youswear.com, livsstil.tv2.dk, dansk-og-
svensk.dk, and dagens.dk. Smiley lists were
compiled from Wikipedia using the western style
emoticons.11

Reddit-specific features include karma, gold
status, Reddit employment status (if any), veri-
fied e-mail, reply count, upvotes, and whether the
user is the submission submitter. Further, based on
Reddit commenting syntax, the following features
are included: sarcasm (‘/s’), edited (‘edit:’), and
quote count (‘>’).

Finally, word embeddings are generated with
word2vec (Mikolov et al., 2013) using the Gensim
framework (Řehůřek and Sojka, 2010). The word
vectors are trained on a Danish text corpus ac-
quired from “Det Danske Sprog- og Litteratursel-
skab” (DSL),12 consisting of 45 million tokens of
written LGP (Language for General Purposes),13

as well as the preprocessed Reddit text.

4.2 Rumour Veracity Prediction
The rumour veracity classification implemented is
inspired by the approach presented in Dungs et al.
(2018). This approach is especially interesting

11en.wikipedia.org/wiki/List_of_
emoticons

12https://dsl.dk/
13https://korpus.dsl.dk/resources.html
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as it relinquishes language specific features such
as word embeddings and relies on sequences of
stance labels and temporal features of the posts.
This possibly enables the use of data across lan-
guages and platforms. One implemented HMM,
λ is alike the model presented in Dungs et al.
(2018) receiving sequences of stance labels or-
dered by their posting time as input. For each
label presented in the data, a model is trained
with training data for that label. For example
in a label space containing the labels “True” and
“False”, two HMM models λfalse and λtrue are
trained. The predicted label of the model λ will be
whichever labelled model presents a higher prob-
ability score for the given sequence.

Further a model ω is built, which differs from λ
by also containing normalised timestamps for each
post. This was done as inclusion of temporal fea-
tures boosted performance in (Dungs et al., 2018).
Note that ω is not the same model as the variably-
spaced λ′ of Dungs et al. (2018).

As a baseline throughout the experiments, a
simple stratified baseline will be used, denoted
VB. The baseline notes the average distribution
of stance labels as a four-tuple for respectively
true and false (and unverified where relevant) ru-
mours. When predicting rumour veracity, VB cal-
culates the distribution of stance labels in a given
sequence in the testing data and chooses the truth
value with the most similar class label distribution.

The data used for experiments across languages
and platforms include the PHEME dataset (Zubi-
aga et al., 2016; Derczynski et al., 2015). First, ex-
periments are performed isolated on DAST. Then,
the PHEME dataset is used as training data while
DAST is used as test set. Further, unverified ru-
mours are approached in two ways: (1) three-way
classification is performed on true, false and un-
verified rumours, and (2) two-way classification
is performed with unverified rumours treated as
True. The results are presented in Section 5.2.

The data from DAST is used in three different
ways, given the expected discrepancies between
the English Twitter data and the Danish Reddit
data. The Reddit conversation structure in Figure
1 differs slightly from the Twitter structure. The
submission post is the actual source of conversa-
tion, while conversation top level comments are
the source for Twitter conversations. Three differ-
ent representations are tested for DAST:

BAS each branch in a conversation is regarded as a

rumour (branch-as-source). This causes par-
tial duplication of comments, as branches can
share parent comments.

TCAS top level comments are regarded as the source
of a rumour and the conversation tree they
spawn are the sequences of labels (top-level
comment-as-source).

SAS the entire submission is regarded as a rumour
(submission-as-source). The SAS approach
means that only 16 instances are available.

4.3 Evaluation Measures
Most of the related work report results with ac-
curacy as scoring metric (Derczynski et al., 2017;
Aker et al., 2017), which expresses the ratio of
number of correct predictions to the total num-
ber of input samples. However, this becomes
quite uninteresting if the input samples have im-
balanced class distributions, which is the case for
our dataset. What is interesting to measure is how
well the models are at predicting the correct class
labels. As such, in addition to reporting accuracy
we will also use the F1 scoring metric. In particu-
lar we will use an unweighted macro-averaged F1

score for the case of multi-class classification.

5 Results and Analysis

This section reports performance at stance classi-
fication and rumour veracity prediction.

5.1 Stance Classification Results
First, an ablation study of the feature groups re-
vealed that the Reddit specific features as well as
lexicon features contributed negatively to perfor-
mance for stance classification. Further, it turned
out that the Most Frequent Words (MFW) feature
category resembled BOW with low variance fea-
tures removed. Finally the generated MFW list
contained stopwords very specific to DAST, such
as “B12”, “CO2”, and “5G”. As such all clas-
sifiers has the feature categories Reddit, lexicon,
and MFW removed.

Second, parameter search was performed
through grid-search for three classifiers, being
LSTM, Logistic Regression (logit), and Support
Vector Machine (svm). Decision Tree and Ran-
dom Forest were omitted due to poor performance.
Full details of the parameters searched are given
in Middelboe and Lillie (2019).

Classifier results are given in Table 4, under 5-
fold (stratified) cross validation. Top-level com-
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Model Macro-F1 σ Accuracy σ
MV 0.2195 (+/- 0.00) 0.7825 (+/- 0.00)
SC 0.2544 (+/- 0.04) 0.6255 (+/- 0.01)
logit 0.3778 (+/- 0.06) 0.7812 (+/- 0.02)
svm 0.3982 (+/- 0.04) 0.7496 (+/- 0.02)
logit’ 0.4112 (+/- 0.07) 0.7549 (+/- 0.04)
svm’ 0.4212 (+/- 0.06) 0.7572 (+/- 0.02)
LSTM 0.2802 (+/- 0.04) 0.7605 (+/- 0.03)
LSTM’ 0.3060 (+/- 0.05) 0.7163 (+/- 0.16)

Table 4: Stance cross validation results for logit,
svm, LSTM, and baselines with macro F1 and ac-
curacy, including standard deviation (σ).

ments are not shared across splits. The base-
lines MV and SC and the default models for Lo-
gistic Regression (logit) and Support Vector Ma-
chine (svm) are included. logit’ and svm’ de-
note parameter-tuned models without Reddit, lex-
icon, and MFW features. Finally LSTM is the
parameter-tuned model with all features; LSTM’
is without Reddit, lexicon, or MFW features.

We see that svm’ is the best performing model,
achieving a macro F1 score of 0.42, an improve-
ment of 0.02 over the default model. Note that
the accuracy is worse than the MV baseline, and
logit’ has even decreased its accuracy. The rea-
son for this could be that the models have been
tuned specifically for macro F1. As expected we
see that MV only predicts “commenting” classes
and that SC follows the class label distribution of
the dataset, while logit’ and svm’ are able to pre-
dict the under-represented classes. Because of the
low-volume of data in DAST we did not expect the
LSTM to perform very well, which was reflected
in its best macro F1 score of 0.3060.

5.2 Rumour Veracity Prediction Results

The results for the rumour veracity experiments
are presented in this section. For size limitation
reasons only the result tables for “Unverified” ru-
mours interpreted as “False” are included, as these
are superior. When interpreting “Unverified” as
“True” the overall results for the experiments are
worse. This indicates that the stance sequences in
“Unverified” and “False” rumours are more alike
than those in “True” rumours. When performing
3-fold cross validation on DAST, the best results
are observed with the ω model on the BAS struc-
ture with an accuracy of 0.83 and an F1 of 0.68.

We hypothesise that stance structures leading
to veracity predictions may be similar across lan-
guages. To investigate this, we trained HMMs us-
ing the PHEME data (mostly English and German)

Structure Model Acc. F1

SAS
λ 0.81 0.45
ω 0.81 0.45

VB 0.39 0.36

TCAS
λ 0.73 0.63
ω 0.79 0.61

VB 0.35 0.35

BAS
λ 0.78 0.66
ω 0.83 0.68

VB 0.43 0.42

Table 5: Stance-only veracity prediction, cross-
validated over the Danish-language DAST corpus.

and evaluated performance of these models over
DAST. Results are in Table 6.

Structure Model Acc. F1

SAS
λ 0.88 0.71
ω 0.75 0.67

VB 0.81 0.45

TCAS
λ 0.77 0.66
ω 0.81 0.59

VB 0.80 0.62

BAS
λ 0.82 0.67
ω 0.67 0.57

VB 0.77 0.53

Table 6: Veracity prediction from stance only,
training on English/German PHEME rumour dis-
cussions and testing on Danish-language DAST.

The best performance is under the SAS struc-
ture. Note that the results when transferring ve-
racity prediction across languages not only match
the in-language training, but in fact exceed it. This
indicates that cross-lingual stance transfer is pos-
sible with advantages, suggesting extra-lingual be-
haviours present in conversations about true and
false claims. The increase in performance is at-
tributed to the larger amount of training size avail-
able in the PHEME dataset compared to perform-
ing cross-validation within DAST.

There is also an interesting note about the effect
of post times. λ performs better than ω when train-
ing on PHEME data, but ω performs better when
solely training and testing on DAST. This suggests
differences in the posting time tendencies, which
may be caused by either the platform or language
differences between the datasets.

5.3 Joining Stance and Veracity Prediction

To investigate the use of the system on new unseen
data, the SVM stance classifier is used to classify
stance labels for each of the rumour submissions.
This is done by training on all of DAST except the
one rumour to classify stance for (“hold one out”).
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Structure Model Acc. F1

SAS
λ 0.81 0.64
ω 0.75 0.67

VB 0.81 0.45

TCAS
λ 0.79 0.56
ω 0.68 0.55

VB 0.76 0.43

BAS
λ 0.82 0.58
ω 0.76 0.56

VB 0.76 0.48

Table 7: Training on the PHEME dataset and test-
ing on automatic stance labels generated for DAST

with “Unverified” rumours treated as “False”.

This use of predicted instead of gold stance labels
evaluates the system’s extrinsic performance.

The best results were seen with “Unverified” la-
bels as false, with the λ model on the BAS struc-
ture, which is reported in Table 7. A general
tendency compared to the gold label results is a
marginal drop in F1, but little to no effect in the
veracity prediction performance of the system.

5.4 Unverified as True
In the following experiments the unverified ru-
mours have been interpreted as true rumours.
Comparisons between these results and the ‘Un-
verified as false’ experiments above, might reveal
interesting properties about the data. Switching
between interpreting unverified as true or as false
should approximately afford either higher rumour
detection precision or higher recall, respectively.

Structure Model Acc. F1

SAS
λ 0.74 (+/- 0.21) 0.49 (+/- 0.13)
ω 0.74 (+/- 0.21) 0.53 (+/- 0.33)

VB 0.19 (+/- 0.03) 0.16 (+/- 0.02)

TCAS
λ 0.67 (+/- 0.09) 0.55 (+/- 0.08)
ω 0.65 (+/- 0.16) 0.49 (+/- 0.16)

VB 0.34 (+/- 0.02) 0.34 (+/- 0.02)

BAS
λ 0.61 (+/- 0.05) 0.54 (+/- 0.07)
ω 0.71 (+/- 0.06) 0.62 (+/- 0.05)

VB 0.59 (+/- 0.10) 0.54 (+/- 0.03)

Table 8: Danish veracity results on 3-fold cross
validation for unverified being true.

Results are given in Table 8. This framing
generally saw lower scores than comparable prior
results (i.e. Table 5), with the highest accuracy
at 0.74 achieved with the ω and λ models on the
SAS structure. The highest F1 score is achieved
by ω on BAS, at 0.62.

To check if this result was specific to Danish, we
repeated the experiment, over the English and Ger-
man conversations in the larger PHEME dataset,

Structure Model Acc. F1

SAS
λ 0.75 0.59
ω 0.81 0.45

VB 0.69 0.54

TCAS
λ 0.72 0.54
ω 0.76 0.52

VB 0.70 0.56

BAS
λ 0.62 0.56
ω 0.60 0.51

VB 0.61 0.58

Table 9: Training and testing on PHEME data, with
“Unverified” rumours treated as “True”.

again using its gold stance labels. Results are in
Table 9. The performance level held in this non-
Danish setting. The highest accuracy achieved is
0.81 reached by the ω model on the SAS structure.
The highest F1 score is 0.59, achieved on the SAS
structure as well by the λ model.

5.5 Usage Implications
The consequences of declaring a claim to be true
or false can be serious. As in Derczynski et al.
(2019), we intend this technology to be used solely
as part of a “human-in-the-loop” system; although
stories may be flagged automatically as false (or
true), these should be presented to humans as un-
reliable results for analysis. On the other hand,
technology offers potential to assist in the vital
task of finding candidate misinformation among
vast amounts of web data.

6 Conclusion

Social media has created a platform for the spread
of rumours, which are stories with unverified
claims. We investigated how to automatically pre-
dict the veracity of rumours spread on Danish so-
cial media by analysing the stance of conversation
participants. Through experiments a Linear SVM
gave SDQC stance classification with an accuracy
of 0.76 and a macro F1 of 0.42. An HMM then
predicted rumour veracity automatically-labelled
stance with up to 81% accuracy.

Interestingly, we find that veracity prediction
models that use only stance labels from conversa-
tions in one language can be transferred effectively
to predict veracity in conversations held in another
language, based again on stance. This indicates
the presence and utility of cross-lingual conversa-
tional behaviours around true and false claims.

Further and extensive experimentation and re-
sults can be found in the thesis that led to this
work (Middelboe and Lillie, 2019).
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Radim Řehůřek and Petr Sojka. 2010. Software Frame-
work for Topic Modelling with Large Corpora. In
Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks, pages 45–50, Val-
letta, Malta. ELRA. http://is.muni.cz/
publication/884893/en.

Kai Shu, Amy Sliva, Suhang Wang, Jiliang Tang, and
Huan Liu. 2017. Fake news detection on social me-
dia: A data mining perspective. ACM SIGKDD Ex-
plorations Newsletter, 19(1):22–36.

Mariona Taulé, M. Antónia Martı́, Francisco Rangel,
Paolo Rosso, Cristina Bosco, and Viviana Patti.
2017. Overview of the Task on Stance and Gen-
der Detection in Tweets on Catalan Independence at
IberEval 2017. In Proceedings of the Second Work-
shop on Evaluation of Human Language Technolo-
gies for Iberian Languages (IberEval 2017), pages
157–177.

James Thorne, Andreas Vlachos, Oana Cocarascu,
Christos Christodoulopoulos, and Arpit Mittal.
2018. The Fact Extraction and VERification
(FEVER) shared task. In Proceedings of the First
Workshop on Fact Extraction and VERification.

Brian Xu, Mitra Mohtarami, and James Glass. 2019.
Adversarial domain adaptation for stance detection.
In Proceedings of the Conference on Neural Infor-
mation Processing Systems, Montréal, Canada.
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A Rumour sources

Event Submission title Rumour status

5G
5G-teknologien er en miljøtrussel, som bør stoppes Unverified
Det er ikke alle, som glæder sig til 5G. Unverified
Uffe Elbæk er bekymret over de “sundhedsmæssige
konsekvenser” af 5G-netværket

Unverified

Donald Trump Hvorfor må DR skrive sådan noget åbenlyst falsk pro-
paganda?

Unverified

16-årig blev anholdt for at råbe ‘fuck Trump’ til lovlig
demonstration mod Trump

Unverified

ISIS 23-årig dansk pige har en dusør på $1 million på hendes
hovede efter at have dræbt mange ISIS militanter

Unverified

Danish student ‘who killed 100 ISIS militants has
$1million bounty on her head but is treated as terrorist’
(The Mirror)

Unverified

Kost Bjørn Lomborg: Du kan være vegetar af mange gode
grunde - men klimaet er ikke en af dem

Unverified

Professor: Vegansk kost kan skade småbørns vækst False
MeToo Björks FB post om Lars Von Trier (#MeToo) Unverified

Peter Madsen
Savnet ubåd er fundet i Køge Bugt: Alle er i god behold False
Undersøgelser bekræfter: Ubåd blev angiveligt sunket
bevidst

True

Peter Madsen: Kim Wall døde i en ulykke på ubåden False
Politik KORRUPT True
Togstrejke De ansatte i DSB melder om arbejdsnedlæggelse 1.

april.
True

Ulve i DK Den vedholdende konspirationsteori: Har nogen udsat
ulve i Nordjylland?

Unverified

Table 10: Overview of the rumour submissions
and their veracity.
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B Veracity results

Structure Model Acc. F1

SAS
λ 0.53 (+/- 0.09) 0.53 (+/- 0.10)
ω 0.55 (+/- 0.09) 0.55 (+/- 0.10)

VB 0.37 (+/- 0.03) 0.31 (+/- 0.07)

TCAS
λ 0.60 (+/- 0.07) 0.58 (+/- 0.08)
ω 0.64 (+/- 0.05) 0.61 (+/- 0.05)

VB 0.53 (+/- 0.04) 0.38 (+/- 0.03)

BAS
λ 0.60 (+/- 0.05) 0.58 (+/- 0.05)
ω 0.67 (+/- 0.03) 0.62 (+/- 0.04)

VB 0.49 (+/- 0.10) 0.40 (+/- 0.01)

None
λ 0.55 (+/- 0.05) 0.54 (+/- 0.07)
ω 0.57 (+/- 0.08) 0.55 (+/- 0.10)

VB 0.43 (+/- 0.03) 0.33 (+/- 0.08)

Table 11: Training and testing on mix of PHEME
data and different DAST structures for unverified
false
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C Data statement

Curation rationale Comments around ru-
mourous claims.

Language variety BCP-47: da-DK

Speaker demographic

• Reddit users

• Age: Unknown – mixed.

• Gender: Unknown – mixed.

• Race/ethnicity: Unknown – mixed.

• Native language: Unknown; Danish speak-
ers.

• Socioeconomic status: Unknown – mixed.

• Different speakers represented: Unknown;
upper bound is the number of posts.

• Presence of disordered speech: Rare.

Annotator demographic

• Age: 20-30.

• Gender: male.

• Race/ethnicity: white northern European.

• Native language: Danish.

• Socioeconomic status: higher education stu-
dent.

Speech situation Discussions held in public on
the Reddit platform.

Text characteristics Danish colloquial web
speech.

Provenance Originally taken from Reddit,
2018.
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Abstract

NER is the task of recognizing and de-
marcating the segments of a document
that are part of a name and which type
of name it is. We use 4 different cate-
gories of names: Locations (LOC), miscel-
laneous (MISC), organizations (ORG), and
persons (PER). Even though we employ
state of the art methods—including sub-
word embeddings—that work well for En-
glish, we are unable to reproduce the same
success for the Norwegian written forms.
However, our model performs better than
any previous research on Norwegian text.
The study also presents the first NER for
Nynorsk. Lastly, we find that by combin-
ing Nynorsk and Bokmål into one training
corpus we improve the performance of our
model on both languages.

1 Introduction

NER is the task of recognizing and demarcating the
segments of a document that are part of a name and
which type of name it is. We use 4 different cate-
gories of names: Locations (LOC), miscellaneous
(MISC), organizations (ORG), and persons (PER).
Even though we employ state of the art methods—
including sub-word embeddings—that work well
for English, we are unable to reproduce the same
success for the Norwegian written forms. How-
ever, our model performs better than any previous
research on Norwegian text.

We also find that when we train on a combined
corpus of Nynorsk and Bokmål, which we call
Helnorsk, we get significantly better results (+5
percentage points) than if we train the models sepa-
rately. We believe that this shows us, together with
evidence provided by Velldal et al. (2017) that it
is possible to use the similarities in the two writ-
ten forms to produce better models than we would

otherwise be able to when the models are trained
separately. We discuss this further in section 7 and
8.

Previous research on NER for Norwegian has
chosen a more granular approach to the categories
of names and have included the categories "works"
and "events". The reason we chose to exclude
these two categories was firstly that international
research on English and other languages mainly
focus on the same categories as us—that means
that it is easier for us to compare our research to
what has been done for other languages.

Secondly, previous research on Norwegian NER
does not implement the same type of model that
we and international researchers have implemented.
They focus solely on the task of recognizing what
type of name an already segmented name is cate-
gorized as. Our research also includes the segmen-
tation of the names as well. This makes it difficult
to compare our research directly with theirs.

Using their tools would also prevent us from
using the NER directly on new documents if we
wanted to build new research on top of such a NER
model. We would have to first segment the text
through Named-Entity Chunking (NEC) and then
run the their recognizer on the result from the NEC.
Johansen (2015) does provide a chunker that per-
forms well (>95% Fβ=1 score) However, we want
to see how well a model that use state-of-the-art
algorithms developed for English will perform on
Norwegian. These algorithms usually do chunking
as an implicit step of the NER process.

In our study we show that our model performs
better than all previous attempts at a Bokmål NER
(> +5 percentage points). There are no other NER
models for Nynorsk that we are aware of. We
show that by combining Nynorsk and Bokmål, into
what we call Helnorsk in our study, we get better
results than if we train separate models for the two
written forms. "Helnorsk" translates to "The whole
of Norwegian", which is fitting as it combines both
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of the official written forms.
The steps we take to present our study are to

1. Present related research on NER in section 2.

2. Introduce a new corpus which is tagged with
named entities and their types in section 3.

3. Develop a sub-word embedding model for
Nynorsk, Bokmål, and Helnorsk and imple-
ment a deep learning system designed to train
a NER model based on a state-of-the-art En-
glish model in section 4.

4. Run experiments on Bokmål, Nynorsk, and
Helnorsk to show how the model performs in
section 5.

5. Discuss the results of the experiments in sec-
tion 6.

6. Conclude on what we believe the experiments
show us in section 7.

7. Present future research that we believe should
be explored to answer some of the questions
that we found at the end of this study in section
8.

2 Related research

Bick (2000) developed an early Danish NER base
on constraint grammar parsing. They report an er-
ror rate of ∼5%. It is unclear how their measure
relates to the more standard way of reporting ac-
curacy with F -scores. Bick (2004) improved the
first model and achieved an Fβ=1 score of 93%. It
is however unclear how they arrive at this score as
they originally report on different error rates of the
model and then say that these numbers translate
to the given F score. They do not tell us how they
translated these numbers.

Derczynski et al. (2014) worked on a NLP toolkit
for danish based on the Stanford NER package that
includes a NER part. They annotated the Copen-
hagen Dependency Treebank for person, location
and organisation entities. However, they do not
report on the performance of their tool.

Jónsdóttir (2003) did some early work on chunk-
ing and recognition for Norwegian Bokmål. They
used a ruled-based approach through the use of
constraint grammar rules. The approach did pro-
vide good recall scores (>90%) for NER, but the
precision did not reach satisfactory results (<50%).

Jónsdóttir does not provide the corresponding num-
bers for their NEC.

Nøklestad (2009) and Haaland (2008) also
worked on named entities for Norwegian Bokmål
texts. Nøklestad uses a Memory-Based Learning
approach while Haaland uses Maximum Entropy
Models. The main challenge with the approach im-
plemented by Nøklestad and Haaland is that they
only categorize names that are already chunked
from the text. That means that they are dependent
on a named-entity chunker to tell the categories of
names in running text. Haaland provide a Fβ=1

score of 81.36%, while Nøklestad achieve a score
of 82.53%.

Husevåg (2016) explores the role of named enti-
ties in automatic indexing based on text in subtitles.
They show that the distribution of named entities
are not the same for all types of text and that Nor-
wegian text has a significantly lower name density
than English for non-fiction text. They also ar-
gue that NER is an important tool for indexing as
named entities are a common search request.

Kokkinakis (2004) created a NER for Swedish
and showed that they could get good results on a
test corpus of 45962 tokens. They got a Fβ=1 score
of 90.50%.

Dalianis and Åström (2001) use a rule-based
approach to NER for Swedish and show a Fβ=1

score of 61%.
Mickelin (2013) also worked on NER for

Swedish. They use SVM to train their model and
achieve a Fβ=1 score of 20%.

Olsson (2008) developed a tool for annotating
NER data an showed that their tool decreases the
number of documents an annotator needs to review
and still get good results.

Kokkinakis et al. (2014) converted and adapted
the NER described by Kokkinakis (2004) to the
Helsinki Finite-State Transducer Technology plat-
form (HFST). HFST is a pattern matching tool
(Karttunen, 2011). Their NER tags 8 different cat-
egories: Person, location, organization, artifact,
work, event, measure, and temporal. They report a
precision of 79.02%, recall of 70.56%, and a Fβ=1

score of 74.55%.
Kapočūtė-Dzikienė et al. (2013) use CRF to train

a NER model for Lithuanian. They achieve an
Fβ=1 score of 89.5%.

Chiu and Nichols (2015) implemented NER for
English using LSTM-BiRNNs, and is the research
that we have tried to implement for Norwegian, ex-
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cept that we are using sub-word embeddings, repre-
sent the character and case information differently,
and work with Norwegian text instead of English.
We also combine two different written forms of the
same language to increase performance.

Rama et al. (2018) present a new corpus con-
sisting of Norwegian clinical trials annotated with
entities and relationships. The entities are cate-
gorized into 10 different categories, while there
are 5 different categories for relationships. They
build two different models, one entity extraction
model and one model for relationship extraction.
The entity extraction model achieves a F1 score
of 84.1%. The relation extraction model achieves
a F1 score of 76.8%. They use SVMs for both
models. The entities that they describe are not all
fully named entities. They are also interested in
finding family members addressed as, for example,
"bestefar" (translation: grandfather) and nouns that
refer to the patient in question, such as "pasienten"
(translation: the patient).

Stadsnes (2018) trained and evaluated different
word embeddings models for Norwegian and came
to the conclusion that while fastText skipgram em-
beddings performed better when recognizing analo-
gies, word2vec CBOW embeddings were better for
synonym extraction. In section 5 we show that
skipgrams work better for NER.

Peters et al. (2018) implemented NER for En-
glish using a novel approach they call ELMo,
which "is a deep contextualized word representa-
tion that models both complex characteristics of
word use (e.g. syntax and semantics) and how these
uses vary across linguistic context (i.e. to model
polysemy)." They achieve a Fβ=1 score of 92.22%
on English text.

3 Corpus

We introduce a newly tagged corpus with named
entities for the task of NER of Norwegian text. It is
a version of the Universal Dependency (UD) Tree-
bank for both Bokmål and Nynorsk (UDN) where
we tagged all proper nouns with their type accord-
ing to our tagging scheme. UDN is a converted
version of the Norwegian Dependency Treebank
into the UD scheme (Øvrelid and Hohle, 2016).

Table 1 shows the distribution of the different
types of text in the corpus. It consists of 82%
newspaper texts, 7% government reports, 6% par-
liament transcripts, and 5% blogs (Solberg et al.,
2014). Table 2 shows the number of names for

Resource Percentage
Newspaper texts 82
Government reports 7
Parliament transcripts 6
Blogs 5

Table 1: Description of data set.

each of the categories that the corpus has been
tagged with. We chose to tag it with the same
categories as the CONLL-2003 shared task for
language-independent NER (Tjong Kim Sang and
Buchholz, 2000): Location (LOC), miscellaneous
1 (MISC), organization (ORG), and person (PER).
The corpus along with the source for the project
can be found here: https://github.com/
ljos/navnkjenner.

We chose this scheme despite previous research
on NER for Norwegian has chosen a more granular
approach (e.g. Haaland (2008); Jónsdóttir (2003);
Nøklestad (2009)) This meant that we are to be
able to more easily compare our NER tagger to
taggers developed for English. Previous research
studies on Norwegian text are also not solving the
exact same problem as we are investigating for our
research. They focus solely on categorizing named
entities and do not also delineate them from the
text at the same time. Having fewer categories also
meant that an annotator could perform the tagging
faster as there were fewer choices to make when
they decided the category of a name.

There are however some constraints on our cor-
pus. The corpus has only been tagged by one anno-
tator in one pass. This means that there are prob-
ably mistakes which will affect the performance
of the trained models. The type of deep learning
model that is trained for this research can never be
better than the input it receives. After some inves-
tigation of the UDN data set, we also decided to
trust that all named entities were tagged in the orig-
inal UDN corpus with the PROPN (proper noun)
tag. It is entirely possible that some of the enti-
ties are tagged as nouns only, further degrading the
performance.

During the tagging we noted that—especially for
the Nynorsk part of the UDN corpus—not all parts
of a name were always tagged as a proper noun.
This is not necessarily wrong in a grammatical
sense, but it does mean that the two written forms

1By "michellaneous" we mean a catch-all category where
any named entity that does not belong in any of the other
categories goes into this category.
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Bokmål Tokens Sentences LOC MISC ORG PER Total
Training 243894 15686 3241 498 3082 4113 10934
Development 36369 2410 409 113 476 617 1615
Test 29966 1939 420 90 317 564 1391
Total 310229 20035 4070 701 3875 5294 13940

Nynorsk Tokens Sentences LOC MISC ORG PER Total
Training 245330 14174 3482 588 2601 3992 10663
Development 31250 1890 340 67 268 421 1096
Test 24773 1511 300 59 246 362 967
Total 301353 17575 4122 714 3115 4775 12726

Helnorsk Tokens Sentences LOC MISC ORG PER Total
Training 489224 34170 6723 1086 5683 8105 21597
Development 67619 4300 749 180 744 1038 2711
Test 54739 3450 720 149 563 926 2358
Total 611582 41920 8192 1415 6990 10069 26666

Table 2: Number of names for each data set.

follow a slightly different grammatical UD tagging
schema. Since the tagging of named entities was
quite time consuming, we did not have time to
investigate further or try to figure out how to correct
any mistakes that were made in our named-entity
tags or the PoS tags of the UDN corpus.

4 Method

For the NER tagger we chose to use the BIOES
tagging scheme as other researchers report that
the BIOES tagging scheme performs (marginally)
better on this type of task (Lample et al., 2016).
The BIOES tagging scheme uses 5 different tags,
instead of the 3 of the IOB2 scheme. The tags are

B A token at the beginning of a sequence.

I A token inside a sequence.

O A token outside a sequence.

E A token at the end of a sequence.

S A single token representing a full sequence.

We tagged each of the tokens in our corpus with
one of these tags and the corresponding class of
that token. There is an example in table 3.

We then trained a CBOW and a skipgram em-
bedding model for each of the language forms:
Nynorsk, Bokmål, and Helnorsk. The models were
trained on a cleaned and combined corpus consist-
ing of texts from Wikipedia, the Norwegian News

Corpus (Andersen and Hofland, 2012), and the
Norwegian Dependency Treebank (Solberg et al.,
2014). We used fastText to train the sub-word em-
beddings with a vectors size of 300 components
with a minimum n-gram size of 2 and maximum
of 5 for the sub-words (Bojanowski et al., 2017).

We created a gazetteer from the NER corpus by
extracting all words that appear as part of a name
in the corpus. The gazetteer is used as part of the
input to the model so the model can tell if a token
has been used as part of a given category of names
in the past.

The model that we use is a bidirectional Recur-
rent Neural Network with a Long Short-Term Mem-
ory unit (biLSTM) and it is trained on sentences
that we treat as sequences of words. Recurrent
Neural Networks "are a family of neural networks
for processing sequential data" (Goodfellow et al.,
2016, Chap. 10).

For each word in the sequence, we create an
input vector that consists of the sub-word embed-
ding of the word, membership in the gazetteer, the
sequence of the characters of the word, and the
part-of-speech of the word.

A biLSTM is a recurrent neural network that
walks the sequence in both the forward and back-
wards directions. Long Short-Term Memory units
introduces "self-loops to produce paths where the
gradient can flow for long durations" and thereby
capturing long-term dependencies (Goodfellow
et al., 2016, Chap. 10). Using biLSTMs allows
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O O O O O B-PER I-PER E-PER O
Folk er så opptatt av Karl Ove Knausgård .
People are so occupied with Karl Ove Knausgård .

Table 3: Example of tagging a sequence that mentions a person.

us to capture information about each word from
both the past and future words in the sentence.

We also train a character embedding as part of
the model. The character embeddings for each
character in a word is run through a 1-dimensional
Convolutional Neural Network layer (CNN), and
the output of the convolutional layer is pooled to-
gether by selecting the maximum value for each
position in the vector from the character embed-
dings. By 1-dimensional we mean that the CNN
operates on a view of the neighbouring characters
in each word .

The convolutional layer is activated by a Recti-
fied Linear Unit. It constrains the value its output
to be 0 or greater and is used in many types of tasks
from image classification to machine translation
(Ramachandran et al., 2018).

CNNs are "neural networks that use convolution
in place of general matrix multiplication" (Good-
fellow et al., 2016) and are used in tasks such as
image classification. Using a dense network for
these types of tasks would require too many neu-
rons to be possible to train in a reasonable amount
of time. Instead of operating on every point of
the image, each neuron in a CNN operates on a
n-dimensional view of the input.

We use the sub-word embeddings, the part-of-
speech, gazetteer information, and the pooled char-
acter embeddings as the input to the biLSTM layer.

The output of the biLSTM layer is then fed
through a linearly-activated dense layer that re-
duces the dimensionality of the output from the
biLSTM down to the number of tags in our vocab-
ulary.

A dense layer is a neural network where every
input to the layer is connected to every output of
the layer (Mitchell, 1997). It still has a weight for
every connection, an activation function, and a bias
for every output in the network. Each node in the
neural network calculates the affine transformation
of the inputs where the inputs ~x are weighted by the
kernel ~w and then summed together with a bias b.
The bias makes it possible to improve the fit of the
input of the activation function to the prdiction by
altering the shape of the function. The bias is either

set to a specific number like 1, or trained as one
of the parameters of the network. The sum is then
put through an activation function. The activation
function acts as a decision boundary for the node.

The output of the dense layer is fed to a Linear-
chain Conditional Random Field (CRF), that we
use to calculate the log likelihoods of the predicted
tags. We then use the CRF to calculate the most
likely sequence given the evidence we have seen.
The model can be found here: [redacted for re-
view].

A CRF is used to classify sequences where the
variables can be dependent on any other part of the
sequence (Lafferty et al., 2001) like in a sentence.
A CRF needs a takes a parameter vector that it uses
for classification and is usually learned through an
optimization algorithm, but in our case it is the out-
put of the dense layer that we use as the parameter
vector. In other words, the neural network decides
the parameter vector for the CRF and then the CRF
uses that to classify each token in the input.

Variable Value
Batch size 100
Char. embed size 25
Conv. kernel 3
Pool size 53
Depth 1
Dropout 0.5
RNN hidden size 256
Learning rate 0.01

Table 4: Hyperparameter configuration of the
model training.

We trained the model using the Adam optimiz-
ing algorithm on the cross entropy loss given the
predicted likelihood for each tag. The cross en-
tropy loss then provides how many bits are needed
to represent the difference between the two distri-
butions. Therefore, the smaller the difference, the
more similar the distributions are.

We manually tested the training parameters, but
because of time constraints we ended up using the
hyperparameter configuration in table 4 as those
were giving us the best results for the values that
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were tested.
Adam is an algorithm for "first-order gradient-

based optimization of stochastic objective func-
tions" (Kingma and Ba, 2014). It gets its name
from the fact that it uses "adaptive moment estima-
tion" to train the weights in the model based on the
local moments, instead using the global moments
as the estimated error.

The way the algorithm works is by calculating
adaptive learning rates for different parameters by
estimating the mean (the first moment) and the
uncentred variance (the second moment).

In further detail, it first calculates the gradient for
the stochastic objective of our loss function. Then
it updates the first and second moment estimates
based on the current timestep. It then uses the in-
dividual moment estimates of each gradient to cal-
culate the updated parameters for the loss function.
To update the network, it uses back-propagation
of the errors through the network to update all the
weights of the network.

To avoid the problem of exploding gradients in
biLSTMs as described by Bengio et al. (1994), it
is adviced to clip the gradients to the global norm,
or to a max value, as suggested by Pascanu et al.
(2013). The reason for this problem is that biL-
STMs allow the network to keep information about
the past for an unspecified amount of time. This re-
sults in "an explosion of the long term components,
which can grow exponentially more than the short
term ones" (Pascanu et al., 2013).

For each model we set a batch size of 100, a
character embedding size of 25, the convolution
kernel was 3, the max pooling of the convolution
run was set to 53 wide and the biLSTM depth–or
how many biLSTM layers there are—was 1. The
dropout between layers was 50% and the hidden
size of the RNN was 256 neurons. The learning
rate for the ADAM optimizing algorithm was 0.01.

Dropout is a regularization technique that helps
to reduce overfitting by holding out a percentage
of the input to a neural network at random (Hinton
et al., 2012). This forces each neuron in the net-
work to detect a specific feature that can help the
network give the correct prediction.

5 Results

The results from training the different models are
displayed in table 5. We trained 4 different mod-
els. One for Bokmål, Nynorsk, and Helnorsk using
the CBOW embedding model. It shows that the

combined Helnorsk model performs better than ei-
ther of the models trained on a single written form
by ∼5 percentage points (p.p.) over both forms.
We then trained a skipgram model for Helnorsk
which performs ∼5 p.p. above the CBOW Hel-
norsk model.

In the end we end up with a Fβ=1 score of
86.73%, with a precision of 87.22% and recall
of 86.25% for the combined written form. The
model performs slightly better on Bokmål with an
Fβ=1 score of 87.20%, precision of 87.93%, and
recall of 86.48%. The same model has an Fβ=1

score of 86.06% for Nynorsk, 86.20% precision,
and 85.93% recall.

Written form Precision Recall Fβ=1

Bokmål, CBOW 80.03 73.47 76.61
Nynorsk, CBOW 77.86 68.04 72.62
Helnorsk, CBOW 84.42 76.33 80.17
H/Bokmål, CBOW 87.06 77.42 81.96
H/Nynorsk, CBOW 80.78 74.76 77.65
Helnorsk, SG 87.22 86.25 86.73
H/Bokmål, SG 87.93 86.48 87.20
H/Nynorsk, SG 86.20 85.93 86.06
Helnorsk, SG-g 86.69 85.96 86.32
H/Bokmål, SG-g 87.74 86.48 87.11
H/Nynorsk, SG-g 85.21 85.21 85.21

Table 5: Results of NER experiments. (CBOW =
continous-bag-of-words, SG = skipgram, SG-g =
skipgram with smaller gazetteer)

LOC Nynorsk Bokmål Helnorsk
Precision 87.98 89.55 88.89
Recall 90.33 89.76 90.00
Fβ=1 89.14 89.65 89.44
ORG
Precision 81.63 80.06 80.74
Recall 81.30 82.33 81.88
Fβ=1 81.46 81.18 81.31
MISC
Precision 71.88 74.54 73.56
Recall 38.98 45.56 42.95
Fβ=1 50.54 56.55 54.23
PER
Precision 88.91 92.58 91.11
Recall 93.09 92.90 92.98
Fβ=1 90.96 92.74 92.04

Table 6: Per name precision, recall, and F1 score
for the best performing Helnorsk model.
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In table 6 the pr. name category results are dis-
played. There, it can be seen that it is especially
the miscellaneous (MISC) category that through its
recall score is driving the results down with a score
of 42.95%. The precision is also low with a score
of 73.56%.

The organisation (ORG) category also performs
worse than the total score with an Fβ=1 score of
81.31%. It is the location (LOC) category, with a
Fβ=1 score of 89.44%, and especially the person
(PER) category with a Fβ=1 score of 92.04%, that
is pushing the over all score upwards.

During the writing of the paper we discovered a
mistake in the experimental setup: We had included
the names from the full corpus (the training and test
data), instead of just the training data. This leaks
information between the training and test steps and
could in turn lead to overfitting the model to the test
data. We were able to rerun the experiment without
the names from the test data for the Helnorsk model.
The results of that are reported in table 5 with the
label "SG-g". With this model, the results reduce
slightly over most of the measures (<1 p.p), except
on the recall of Bokmål where it stays the same.

It is difficult to tell if the difference between the
SG and SG-g experiments are because of some vari-
ation in the random initialization of the weights,
random dropout between the layers, or some other
variant. As we did not have time to control for
these variables we still report the results of the
model with the full gazetteer with the caveat that
it includes data from the whole corpus. It could
also be that because we use dropout, the gazetteer
becomes an unreliable feature and is not used. In
the future, we could test this through feature ab-
lation testing—removing features from a model
to see which features contribute the most to the
performance of the model.

6 Discussion

When comparing the results from our research with
that of other research that has been done on the Nor-
wegian written forms, it is evident that our model
performs significantly better than what has been
shown before:

Haaland (2008) and Nøklestad (2009) shows a
Fβ=1 score of 81.36% and 82.53%, respectively,
for Bokmål and we have a score of 87.20%; almost
5 p.p improvement over their results. However, the
comparison is not completely fair. They only try to
categorize already segmented names. Our research

segments and categorizes the text as part of the
same process.

Jónsdóttir (2003) shows a Fβ=1 score of 60%.
We cannot boast of the same precision that they
have (90%) for Bokmål, but we are close with
87.93%. They do not provide any results for
Nynorsk.

(Rama et al., 2018) developed an entity extrac-
tion model based on SVMs and got a Fβ=1 score of
84.1% on a corpus of clinical texts. They are inter-
ested in finding nouns, and not only named entities,
such as "bestefaren" (translation: the grandfather),
and it is therefore difficult to compare our study
with theirs.

Chiu and Nichols (2015) achieves a Fβ=1 score
of 91.62% on the CoNLL-2003 data set and 86.28%
on the OntoNotes data set. Both are English data
sets. The CoNLL-2003 data set is somewhat com-
parable to our data set on the number of entities
and tokens. Their corpus has 35089 entities over
302811 tokens (Tjong Kim Sang and De Meulder,
2003), while ours has 26666 entities over 611582
tokens for the Helnorsk data set. The OntoNotes
data set is 104151 over 1388955 tokens and is much
larger than the data set we have available for Nor-
wegian. We see here that the ratio between tokens
and entities in OntoNotes is ∼7%, and in CoNLL-
2003 it is ∼12%, while for the Helnorsk data the
ratio is ∼4%.

Though the CoNLL-2003 data set uses BIO (or
IOB2) tags and we use BIOES, this is not a problem
as we are not comparing how well the model is
labelling each word, but how well the model finds
and categorizes named entities.

This supports the conclusion by Husevåg (2016)
that Norwegian has a much lower density of named
entities compared to English. Since deep learning
models require large amounts of data to general-
ize effectively over the data set, it is possible that
this is a problem for training a model for NER on
Norwegian text.

We saw in table 6 that the worst performing
name category is the miscellaneous category. This
is also the category with the fewest named entities,
showing us that lower amounts of data gives us
worse performance. If one looks at how many
names there are for each category, in table 2, and
compare to the performance on each category, it
shows that the score is higher if there are more
examples of names.

Peters et al. (2018) is the latest state-of-the-art
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NER for English, as of writing, and achieves a
Fβ=1 score of 92.22% on the CoNLL-2003 data
set. Though we are not able to reach the same score,
we are only trailing by∼5 p.p. Right now, there are
many avenues to try out for research on Norwegian
text to reduce that gap. In section 8 we discuss the
ideas that we believe are the most promising and
the most immediate.

7 Conclusion

The results of this research show that it is possible
to train a deep learning model to learn how to find
named entities in Norwegian text and reach close
to ( ∼5 p.p.) the results of state-of-the-art models
for English text. Our model achieves a Fβ=1 score
of 86.73 on the combined Bokmål and Nynorsk
corpus (called Helnorsk).

We also show that it is plausible that Norwe-
gian is harder to train for NER because Norwegian
has a lower density of named entities compared to
English.

We also show that we can get better performing
models for both the written forms, Bokmål and
Nynorsk, if we use (sub)word embeddings and train
on a combined data set instead of training a separate
model for each written form of the language. We
do not know if this way of combining Nynorsk and
Bokmål into one training set will transfer to other
natural language tasks.

We do see some challenges like a worse result for
Nynorsk compared to Bokmål, which we cannot
immediately explain. However, Velldal et al. (2017)
has shown similar results as us when they trained
a PoS tagger using a combined corpus instead of
treating the two written forms as distinct languages.

8 Future work

There are many possible avenues for improving
on this research in the future. The first thing we
would like to try would be to do a hyperparameter
search to see if there are other parameter settings
that could improve the results further. We should
also perform ablation testing of the input features
to see which of the features are the most important
to the network. This could give us information
about where we should focus our work to improve
the model further.

The comparison between the Helnorsk data set
and the Nynorsk/Bokmål data could also be im-
proved. As of this paper, it is difficult to say if the
improved scores are caused by having a larger data

set that is good enough or if the combined data set
is truly better. A way we could do this is to run the
training on a selection of the Nynorsk and Bokmål
data that has the same size as those data sets.

Next, we should investigate if we can train and
use the ELMo embeddings presented by Peters
et al. (2018) for Norwegian. They report a relative
increase of 21% on NER for English using their
new embedding model.

More time should be spent on analyzing and
cleaning the corpus. For now, only 1 annotator has
gone through and annotated the data set with NER
tags.

We would also like to investigate why the mis-
cellaneous category is performing so much worse
than the other categories. This could be because we
have more mistakes there or that the category is too
broad; and it is difficult for the model to find a good
delineation between the names in the category and
the rest of the corpus.

We would also like to further test the hypothesis
that a model trained on both written forms performs
better than if we train two separate models. Is it
just because we have more training data, and de-
spite introducing noise, it performs better; or is
it the model that is able to generalize better over
the wider data set? Does the performance increase
hold for other natural language processing tasks?
Is it just Nynorsk and Bokmål that exhibits this be-
havior, or can we include other similar languages
like Swedish and Danish? How close do the lan-
guages have to be to show this type of performance
increase?
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Abstract
Named entity recognition (NER) is a task
extensively researched in the field of NLP.
NER typically requires large annotated cor-
pora for training usable models. This is
a problem for languages which lack large
annotated corpora, such as Finnish. We pro-
pose an approach to create a named entity
recognizer for Finnish by leveraging pre-
existing strong NER models for English,
with no manually annotated data and no
parallel corpora. We automatically gather
a large amount of chronologically matched
data in the two languages, then project
named entity annotations from the English
documents onto the Finnish ones, by resolv-
ing the matches with simple linguistic rules.
We use this “artificially” annotated data
to train a BiLSTM-CRF NER model for
Finnish. Our results show that this method
can produce annotated instances with high
precision, and the resulting model achieves
state-of-the-art performance.

1 Introduction

The goal of Named Entity Recognition (NER) is to
recognize names and classify them into pre-defined
categories, based on their context. The quality of
NER is crucial, since it is an important step in mod-
ern NLP, e.g., information retrieval (IR) or informa-
tion extraction (IE) systems. Various approaches
have been proposed to tackle the NER task, includ-
ing (Finkel et al., 2005; Huang et al., 2015; Lample
et al., 2016; Ma and Hovy, 2016; Chiu and Nichols,
2016; Reimers and Gurevych, 2017; Peters et al.,
2018; Devlin et al., 2018). These approaches re-
quire large annotated datasets to train models, and
have been shown to be effective for languages with
abundant linguistic resources, such as English.

However, not all languages are as resource-rich
as English. There are significantly fewer resources

for languages such as Finnish. Further, very few
NER taggers or corpora are publicly available on-
line. The FiNER tagger from the Language Bank
of Finnish1 is one of the few, but we found no
documentation of its performance.

Automatically annotating corpora for training
NER models is one solution to this problem. Sev-
eral approaches have been proposed for building
such corpora for NER. Most of these rely on the
Wikipedia corpus, (Al-Rfou et al., 2015; Ghaddar
and Langlais, 2017; Kim et al., 2012; Richman and
Schone, 2008; Kazama and Torisawa, 2007; Toral
and Munoz, 2006; Nothman et al., 2013). However,
the amount of Wikipedia documents in Finnish is
also relatively small.

In this paper, we propose a novel approach for
automatically marking Finnish text with NE an-
notations, for the purpose of training a statistical
NER model from these annotated data. This can
be viewed as a projection of a pre-existing NER
model in one language to a NER model in another
language. The core idea of our annotation approach
is to utilize strong NER available for English and
to match automatically annotated English data with
Finnish data by resolving the base form of names.
Ehrmann et al. (2011) proposed an idea of model
projection similar to the one in the this work. How-
ever, rather than resolving the base form of named
entities in target language internally as we do, they
used machine translation as the basis for projec-
tion. This allows them to project models between
different languages, including in languages with
different writing systems, such as Russian and En-
glish. However, this assumes the existence of a
high-quality machine translation system, and token
binding between the languages, which determine
the quality of the NER training dataset.

Using the resulting annotated data, we train an
BiLSTM-CRF model on the basis of (Ma and Hovy,

1www.kielipankki.fi
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2016; Reimers and Gurevych, 2017), and evaluate
it on a manually annotated dataset. Our results
show that training models on data annotated in this
way achieves improved performance for Finnish
NER tagging over models trained on the publicly
available data alone. This suggests that our ap-
proach works well for annotating a corpus with
named entities automatically, and enables using
this corpus to learn good-quality NER models for
less-resourced languages.

The paper is organized as follows. In section 2
we briefly introduce a few terms and key concepts
used throughout the paper. In section 3 we describe
the data sources, pre-processing steps and the rule-
based annotation pipeline. Section 4 describes our
model architecture, as well as the parameters used
in training. In section 5 we discuss the results ob-
tained from the experiments. Section 6 concludes
with current directions of research.

2 Terminology

Base form: The base form of a word, also is
referred as lemma, is the canonical, or “dictionary”
form of a word. For example, the base form of the
English token “was” is “be.”

Surface form: The surface form of a token is the
form in which the word appears in the actual text.
Words in this form may be inflected, such as “was,”
or be identical with its base form, such as the past
participle of “run”.

Compound: A compound is a word which con-
sists of multiple root morphemes. For example,
“pancake” consists of two parts: “pan” and “cake”.
Some languages, such as Finnish and German,
make extensive use of compounding.

3 Automatic projection pipeline

3.1 Data source

Finnish names and their types are obtained by
matching the base forms of English names with
Finnish potential names. This section details this
procedure step by step.

English news gathering and name processing:
English news is collected by our business news
surveillance system, PULS (Du et al., 2016), from
over 3,000 English sources.2 Over 5,000 docu-
ments are gathered daily. Each document collected

2http://newsweb.cs.helsinki.fi/

Source prec rec F1
PULS pattern-based 0.68 0.37 0.30
BiLSTM-CRF-GloVe 0.87 0.85 0.85
BiLSTM-CRF-W2V 0.89 0.90 0.89

Table 1: English NER tagger quality on
CoNLL2003 test dataset

by the system is processed by a cascade of pre-
processing classifiers, including a pattern-based
named entity tagger. Here, we obtain the base
forms of names and their types, which are later
used for projection.

The performance, especially the precision, of
the English NER tagger is therefore crucial for the
entire pipeline. It is worth pointing out that the
precision of the English NER tagger controls the
quality of the projected Finnish data. The recall,
on the other hand, determines the variety of the
projected named entities. Lower recall rate can
be compensated by feeding in more news articles.
Therefore, in this paper, the precision of English
NER tagger is considered to be more essential than
the recall or the overall F1 score.

For comparison, we also trained two BiLSTM-
CRF models (Ma and Hovy, 2016) from scratch, us-
ing Word2Vec and GloVe word embeddings. These
models were trained on the CoNLL2003 English
dataset. Table 1 shows an evaluation of all three En-
glish NER taggers on the CoNLL2003 test dataset.

We should mention that the PULS NLP system
has different tokenization compared to the CoNLL
dataset, and our pattern-based NER tagger is cus-
tomized for the business news domain. Though the
output of our pattern-based tagger is aligned to be
comparable with the CoNLL dataset, the content
of its test dataset, which is mostly sports news, is
still skewed against our tagger. In practice, our
tagger achieves higher precision on business news.
To confirm this, we evaluate the PULS tagger on
10 randomly selected articles, containing both gen-
eral and business news. Although this is a simple
experiment, the overall precision of the PULS tag-
ger increases to 77%. As for the two BiLSTM-
CRF models, the results are different from what
was reported in the papers (Ma and Hovy, 2016;
Reimers and Gurevych, 2017), since we used a de-
fault hyper-parameter setup, rather than using the
fine-tuned setup in the papers.

Finnish news gathering and name pre-
processing: Finnish news articles are collected
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from two major Finnish online news agencies.
Around 200 news articles are collected daily.
The Turku dependency parser (Haverinen et al.,
2014) has been applied for sentence splitting and
tokenization. Three different problems need to be
solved so that all potential names can be extracted
in these steps: name identification, base form
selection, and name merging.

Name identification: For identifying whether
a token is a name or part of a name, we use the
rules based on the position of tokens as follows:

• Any capitalized token which appears in the
middle of a sentence is definitely a name or
part of the name.

• If token A is a name according to previous
rule, and token B, having the same base form
as token A, appears at the beginning of a sen-
tence, we assume token B is the same name.

• If a token of a potential name appears in the
document only at the beginning of sentences,
it is not certain and therefore not assumed to
be a name.

Base form selection: To determine the base
form corresponding to a surface form found in text,
we consider all base forms returned by our mor-
phological analyzer, (Moshagen et al., 2013), and
a simple rule-based stemmer, and look through the
entire article. If there is an intersection between the
possible base forms of two name tokens, their true
base form can then be resolved. When the intersec-
tion has only one base form, it can be confirmed to
be the base form of a name directly. Otherwise, all
of them will be recorded as potential base form of
the name. All potential base forms will be further
filtered when matching with English named entities
during projection.

Suppose the surface form “Trumpille” (in the
allative case) and “Trump” (nominative) both ex-
ist in an article. Without any external knowl-
edge, the Finnish surface form “Trumpille” will
be assigned two potential lemmas by our stem-
mer: “Trumpi” and “Trump” (both of these lem-
mas have the same allative form). For the surface
form “Trump”, only “Trump” will be returned as a
potential lemma. Then, in this case, their intersec-
tion, “Trump”, will be confirmed to be the lemma
of both “Trumpille” and “Trump”. However, if
instead the article only contains the surface forms
“Trumpille” and “Trumpin” (genitive). Then both

lemmas “Trumpi” and “Trump” will be recorded
as potential lemmas.

We perform name identification and base form
selection jointly, since they are connected, by
searching for the common base forms of tokens.

Name merging: We use a set of rules to merge
names that consist of more than one token. Poten-
tial names can contain only the following kinds of
tokens in positions other than the final position:

• Singular common noun or proper noun which
must be in the nominative case, for example:
“Spring Harbour”.3

• English function words: e.g., “the”, “and”,
“new”, etc. For example: “The New York
Times”
• Having no valid analyses returned by the

Finnish morphological analyzer, and its sur-
face form can be confirmed to be its own
lemma during the base form selection process
above.
One example is the token “Trump” in “Trump
Towerin” (genitive: “of the Trump Tower”).
Our Finnish morphological analyzer will re-
ject (not recognize) the input token “Trump”.
We assume that “Trump” can be confirmed
as a name or as part of a multi-token name
according to the rules. “Trump” can be con-
firmed to be its own base form, which means
its base form happens to be the same as its
surface form. In this case, “Trump” will be
merged with the following token “Towerin”.

We should note that when several potential name
tokens are strung together, the true partitioning of
names is ambiguous. During name merging, all
different partitionings and potential forms of the
base forms of names are cached as candidates for
the following name resolution step.

Hyphenating between tokens are also a criterion
for merging names, such as the Indian surname
“Ankalikar-Tikekar”.

3.2 Name projection

In the next stage, we annotate Finnish names by
utilizing the potential names candidates produced
by the previous three steps, namely name identifi-
cation, base form selection, and name merging.

3Names such as “Helsingin Sanomat” (name of a major
newspaper in Finland), where the first token is in the genitive
case (of “Helsinki”) are currently not handled by these rules,
and are handled separately by a list.
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The fundamental assumption is that a name
refers to only one entity in a given article. We ex-
pect this assumption to hold for well-edited news
articles. This means that if only one instance (sur-
face form) of a particular name has been annotated
in an article, the remaining occurrences of the same
name in the article—possibly involving other sur-
face forms—can be annotated as well.

We gather two sets of named entities from
Finnish document and English documents:

• For a Finnish document, published on day t,
we use three steps mentioned above to obtain
a set of potential Finnish named entity candi-
dates, including both potential base forms and
confirmed base form of names.

• From English news in the time interval (t± 2
days), using an English NER tagger, a set
of English named entities and their corre-
sponding tags are obtained. Each of them has
its base form resolved by the pre-processing
pipeline in PULS.

Names can naturally be matched according to their
base form. The type of the English named entities
can therefore be projected to their Finnish coun-
terparts. The remaining Finnish names candidates,
for which no type annotation can be inferred, are
dropped after this step.

The idea of a time window (t ± 2 days) is to
take advantage of the fact that names overlap sig-
nificantly in different articles due to continuous
coverage of important events, and therefore opti-
mize our memory usage and time efficiency.

Again, take “Trump” as an example. Suppose we
have a named entity “Donald Trump” from the En-
glish news articles and it is recognized as “Person”.
We may have “Donald Trumpille” in a Finnish arti-
cle; if the surface form “Trump” is not present in
the same Finnish article, as we mentioned already,
we can only infer that the base form of “Trumpille”
is “Trumpi” or “Trump”, using stemming rules.
In addition, “Donald Trumpille” has two tokens
but we do not yet know whether they belong to-
gether as one name. Therefore, “Donald”, “Donald
Trump”, “Donald Trumpi”, “Trump” and “Trumpi”
are all Finnish name candidates. After matching,
only “Donald Trump” will be kept and annotated
as Person, while other candidates, namely “Don-
ald”, “Donald Trumpi”, “Trump” and “Trumpi”,
are dropped.

In addition, for the Person type only, names will
be connected by their partial base form. Once
“Donald Trump” gets annotated, all the other “Don-
ald” and “Trump” tokens in the entire article will
be annotated as Person as well.

3.3 Special cases: rule-based projection

We use extra steps to handle special cases in this
process. In Finnish, geo-location names, such as
the names of countries, are often different from
their English names. For example, France is “Ran-
ska” in Finnish, and the United States is “Yhdys-
vallat” in Finnish. Some organizations also have
the same problem, as UN is “YK” in Finnish, etc.
Therefore, we manually build a small database of
frequent names, including Finnish geo-locations,
and a few of the major and most frequently occur-
ring international companies and organizations, to
assure that they are annotated correctly. In addition,
this covers some cases which the English tagger
fails to catch. We also filter out names that can
have multiple types, such as MacLaren, since these
are ambiguous.

Additionally, we introduce a list of 1000 com-
mon first names and assume that names beginning
with these tokens are of type Person. However,
this practice requires more rules to constrain its
outcome:

• A Person name should have at most 2 tokens.

• A Person name should not start with “The”.

• No token in a Person name should be fully
uppercase.

• We require that a Person name be mentioned
using the full name at least once in the article.

These rules are simple, naive and strict. The
purpose of these rules is to remove any uncertain
instances and make the data as clean as possible.
Even if only one name in an article can meet all
these rules, all other name instances related to that
name instance will be correctly annotated. Also,
taking advantage of our enormous amount of data,
we can afford to filter out uncertain data without
worrying about the amount of remaining data.

Currently, the annotations may be wrong when
an article only mentions the last name of a person,
which also happens to be the name of a location.
For example, “Sipilä” is the last name of the current
Prime Minister of Finland, and may therefore be
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mentioned many times in an article, without men-
tioning the full name, “Juha Sipilä”. Coincidentally,
“Sipilä” is a town in Finland. The situation where
both the person and the location are mentioned in
the same article rarely occurs in practice and can
be tackled by filtering out such names.

4 NER model

Next we provide the details of the adapted
BiLSTM-CRF model for Finnish NER and the hy-
perparameter setup for training this model. The
basic network structure of the model is inspired
by (Ma and Hovy, 2016; Reimers and Gurevych,
2017). The model is implemented in Keras with
TensorFlow as its backend. The CRF layer is pro-
vided by Keras-contrib.4 The training process was
run on an Nvidia GeForce 1080 Ti GPU. It took
around 3 hours to train the model using the setup
in this section. The model is shown in Figure 1.

Tag-0 Tag-1 Tag-2

CRF CRF CRF

BiLSTM BiLSTM BiLSTM

Linear Linear Linear

|| ......

Word

Emb.
Char

CNN
Case

Emb.
PoS

PoS-dense

Token-1

Figure 1: Adapted BiLSTM-CRF network struc-
ture for Finnish NER

As seen in Figure 1, Part-of-Speech (PoS) is in-
cluded as an additional feature, compared to the
model of Ma and Hovy (2016). This is because a
lemma may be assigned multiple PoS tags by our
morphological analyzer (Moshagen et al., 2013).
Word embeddings such as Word2Vec (Mikolov
et al., 2013) may implicitly contain PoS informa-
tion but will still be static regardless of context.
Using PoS as input feature also compensates for

4www.github.com/keras-team/
keras-contrib

out-of-vocabulary problem in embeddings. In these
cases, not even the implicit PoS information can
be detected by the network if PoS is not a part of
input features.

4.1 Data encoding
Tokens are encoded into to several features: word
embedding, character embedding, case embedding
and Part of Speech (PoS). Except for PoS, most
of the features follow the setup in (Reimers and
Gurevych, 2017). Word embeddings are extended
with a special mark for ambiguous tokens—tokens,
for which our morphological analyzer fails returns
more than one base forms and PoS. These tokens
are replaced with a special token “AMBIGUOUS”.
Additionally, we only use the embedding of the
last part of a compound word if this word is out-
of-vocabulary. This is because the last part is the
essential part of compounds in Finnish. Charac-
ter embeddings are extended with a special value
for “unrecognized” character. The PoS feature
is encoded as an array of ones and zeros. Each
dimension corresponds to one PoS type, includ-
ing PADDING and UNKNOWN. Integer “1” is
assigned to the dimension corresponding to the to-
ken’s PoS. If a token is a compound word, only the
PoS of its last part is used for encoding. If a token
has multiple PoS analyses, more than one position
in the PoS array is assigned “1”. The values of PoS
are as follows:

• PADDING
• UNKNOWN
• Noun
• Verb
• Adj
• Adv

• Pron
• Conj
• Interj
• Num
• Punct
• other

These four input features are concatenated be-
fore feeding into BiLSTM.

4.2 Parameter initialization
Word embeddings: We use a pre-trained
Word2Vec embedding matrix, which is trained by
(Laippala and Ginter, 2014). It has been trained on
4.5B words of text. As mentioned previously, we
include vectors for “PADDING”, “UNKNOWN”
and “AMBIGUOUS” tokens. Embeddings for the
tokens “UNKNOWN” and “AMBIGUOUS” are
randomly initialized with uniform sampling from
-0.25 to 0.25, while the “PADDING” embedding is
a zero vector.
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Layer Hyper-parameter Number

Char CNN
Number of filters 30
Filter size 3

PoS-dense
Unit size 30
Activation Relu

BiLSTM
Number of layers 2
State size 200
Dropout rate 0.25

Table 2: Table of hyper-parameter for experiments

Character embeddings: Character embeddings,
including “UNKNOWN” character embedding, are
randomly initialized with uniform samples from

−
√

3
dim to

√
3

dim , where dim = 30.

Case embedding: Case embeddings are ran-
domly initialized applying a uniform initializer.
The dimensionality of the case embeddings is 10.

Weight Matrices and Bias Vectors: Most of
weights are initialized as a uniform sample from
[−

√
6

Ni+No
,
√

6
Ni+No

], where Ni and No refer to
the number of input and output units in the weight
tensor. Bias is initialized with zeros.

4.3 Optimization

Optimizer: We used the Adam optimizer, as rec-
ommended in (Reimers and Gurevych, 2017). The
setup for the Adam optimizer also followed the
Keras default setting: lr = 0.001, β1 = 0.9, β2 =
0.999. Although Ma and Hovy (2016) used gradi-
ent norm clipping of 5.0, we did not.

Early stopping and learning rate decay: We
applied early stopping following the categorical
accuracy on the training dataset in case of over-
fitting. On average, the training process stops after
5 epochs. We have also explored reducing the learn-
ing rate during the training process if the accuracy
stops improving. However, this made the training
slower, and did not improve the final result on the
validation dataset.

4.4 Hyper-parameter setup

Most of the hyper-parameter values, shown in Ta-
ble 2, follow the recommendations in (Reimers and
Gurevych, 2017). The layer called “PoS-dense” in
Figure 1 is a dense layer with a non-linear acti-
vation function, rather than an embedding layer,
due to the encoding method of the PoS features,
as explained in Section 4.1. For the mini-batch

size, the authors recommend using the batch size
between 8 and 32, depending on the size of the
training dataset. However, that is the result on the
CoNLL-2003 dataset, which is an English dataset.
We use 50 similarly to the German NER model in
(Reimers and Gurevych, 2017).

We should mention that the CRF layer im-
plemented by the Keras-contrib package offers
two different modes for the training and testing
processes: “Join” and “Marginal” for training,
“Viterbi” and “Marginal” for testing. The “Join”
training mode and “Viterbi” testing mode follows
the “vanilla” fitting algorithms for linear chain CRF.
“Marginal” training is optimized via composition
likelihood (product of marginal likelihood), which
is not optimal in this case. “Marginal” testing mode
will decode the input sequence according to the
training result and compute marginal probabilities.
In this mode, it can therefore output a probability
prediction of the classes for tokens. According
to the documentation, the “Join” training mode
can outperform the other training mode, and the
“Viterbi” testing mode can achieve better perfor-
mance than “Marginal” testing mode, but reason-
ably close. In this work, we evaluate using both
“Join-Marginal” and “Join-Viterbi” modes.

5 Performance and evaluation

In this section, we report the performance for the
automatic projection pipeline and the NER model.
F1-score is used as the evaluation metric. The
overall F1-score is the weighted average F1-score
of each category.

5.1 Automatic projection pipeline

We currently utilize data only from the beginning
of 2017 to July of 2018 for development, model
training and validation. The total Finnish data con-
sists of around 83,000 articles.

Our English data, on the other hand, date back
6 years from 2018 to 2012. Only articles from
the same time period as the Finnish data can be
used for name matching. The amount of usable
English articles is around 4,486,000. We consider
the NER performance only on “person”, “location”
and “organization” tags, to make the final outcome
comparable to the Polyglot Finnish NER tagger.

To evaluate the performance of the automatic
projection, we manually checked 1,000 randomly
selected sentences from March 2018 to April 2018.
Since our three English NER taggers have different

237



Tag Prec Rec F1 Support
B-PER 0.97 0.99 0.98 823
I-PER 0.97 0.97 0.97 668
B-LOC 0.99 0.99 0.99 341
I-LOC 1.00 0.67 0.80 3
B-ORG 0.99 0.98 0.98 536
I-ORG 1.00 0.82 0.90 78
Avg / total 0.98 0.98 0.98 2449

Table 3: Quality of Finnish data projected from
PULS pattern-based NER: evaluated on 1,000 sen-
tences, annotated manually.

Tag Prec Rec F1 Support
B-PER 0.99 0.97 0.98 776
I-PER 0.99 0.97 0.98 639
B-LOC 0.97 0.97 0.97 376
I-LOC 0.55 0.60 0.57 10
B-ORG 0.95 0.98 0.96 587
I-ORG 0.91 0.87 0.89 92
Avg / total 0.97 0.97 0.97 2478

Table 4: Quality of Finnish data projected from
BiLSTM-CRF-W2V model: evaluated on 1,000
sentences, annotated manually.

performance, the manual evaluation is conducted
separately, as shown in Table 3, Table 4 and Ta-
ble 5.

5.2 NER model

For training the NER models, we used data from
2017-01 to 2017-12 (12 months). This period
contains 50,009 Finnish documents, for which we
found 920,658 matching English documents. We
filtered out projected sentences for which the En-
glish tagger produced NER tags other than Per-
son, Organization, or Location. This data pro-
duced approximately 114,000 automatically pro-
jected sentences after filtering. For validation, we
used two months: 2018-04 to 2018-05. This period
contained 11,452 Finnish documents, which had
389,072 English matching documents. This data
produced 23,277 automatically projected sentences,
after filtering.

Instances are projected from 3 different En-
glish NER taggers: the PULS pattern-based tagger,
BiLSTM-CRF-GloVe tagger and BiLSTM-CRF-
W2V tagger. Two train-test modes, “Join-Marginal”
and “Join-Viterbi”, are also applied for comparison.
Six different Finnish NER models are evaluated.

Tag Prec Rec F1 Support
B-PER 0.96 0.99 0.97 767
I-PER 0.97 0.97 0.97 632
B-LOC 0.97 0.96 0.96 403
I-LOC 0.71 0.53 0.61 19
B-ORG 0.96 0.97 0.96 639
I-ORG 0.97 0.78 0.87 101
Avg / total 0.96 0.96 0.96 2561

Table 5: Quality of Finnish data projected from the
BiLSTM-CRF-GloVe model: evaluated on 1,000
sentences, annotated manually.

Table 6 shows the model evaluation on this data.
As expected, upon visual inspection, we noticed

instances with incorrect “ground truth” since pro-
jection is not entirely clean. Despite its good over-
all quality, the validation performance may still
differ from actual performance.

We conducted further model testing and inspec-
tion to obtain better estimates of the true perfor-
mance. We sampled another set of articles from
2018-08 to 2018-10 (3 months), which is outside
our automatic projection time period. For further
inspection and error analysis, in Section 5.3, we
randomly sampled a total of 36 articles, evenly
from the following 6 sections of the newspaper:

• “Talous” (Economics)
• “Politiikka” (Politics)
• “Ulkomaat” (Foreign news)
• “Kotimaa” (Domestic news)
• “Koti” (Home)
• “Kaupunki” (The City)

The first three of these categories are more
closely related to the Business domain. Again, arti-
cles are evaluated manually. The result is shown
in Table 7. Polyglot is used as the performance
baseline. Two additional Finnish NER models are
trained with full FiNER-data (Ruokolainen et al.,
2019), including the validation and test dataset, for
better comparison.5

As shown in Table 7, Polyglot and the model
trained with FiNER-data have better precision than
most of our Finnish NER taggers, but have a worse
recall rate. Overall, most of our Finnish NER tag-
gers achieve better performance. Only one model,
projected from BiLSTM-CRF-W2V in Join-Viterbi
mode, performs worse than the FiNER-data model

5www.github.com/mpsilfve/finer-data
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Eng-NER Source Train-test mode Prec Rec F1 Support
PULS pattern-based Join-Viterbi 0.94 0.92 0.93 28858
PULS pattern-based Join-Marginal 0.94 0.93 0.93 28858
BiLSTM-CRF-GloVe Join-Viterbi 0.92 0.89 0.90 34526
BiLSTM-CRF-GloVe Join-Marginal 0.93 0.91 0.92 34526
BiLSTM-CRF-W2V Join-Viterbi 0.87 0.83 0.84 37219
BiLSTM-CRF-W2V Join-Marginal 0.87 0.85 0.85 37219

Table 6: Validation scores on 2018-04 to 2018-05. “PULS pattern-based” and “BiLSTM-CRF-*” refer
to the Finnish NER models that are projected from our PULS pattern-based NER tagger and English
BiLSTM-CRF NER tagger respectively. “GloVe” and “W2V” indicates the embedding that English NER
taggers use.

NER Source Train-test mode Prec Rec F1 Support
PULS pattern-based Join-Viterbi 0.89 0.77 0.82 916
PULS pattern-based Join-Marginal 0.80 0.83 0.81 916
BiLSTM-CRF-GloVe Join-Viterbi 0.80 0.75 0.76 916
BiLSTM-CRF-GloVe Join-Marginal 0.79 0.74 0.75 916
BiLSTM-CRF-W2V Join-Viterbi 0.76 0.72 0.73 916
BiLSTM-CRF-W2V Join-Marginal 0.78 0.79 0.78 916
FiNER-data Join-Viterbi 0.83 0.72 0.75 916
FiNER-data Join-Marginal 0.73 0.68 0.64 916
Polyglot 0.82 0.55 0.64 916

Table 7: Test evaluation. “FiNER-data” refer to the Finnish NER model trained with data from FiNER-data.
“Polyglot” entry illustrates the performance of their model on our test dataset

in Join-Viterbi mode. The Finnish NER tagger that
is projected from the PULS pattern-based English
NER tagger in Join-Viterbi mode achieves the over-
all best performance. This result also suggests that
the dataset produced by our automatic projection
pipeline is valid for model training, data of large
size and various topics, while FiNER-data only
covers technology-related news.

5.3 Error analysis

Despite good overall performance on all automat-
ically projected datasets, the average F1 score of
models with the different setups is still around 77%.
More work is required to improve performance. To
guide future work, we did further visual inspections
to examine the predictions in general.

One major problem is that the NER model gets
data from automatic projection with limited pat-
tern diversity. During the training pipeline, in-
cluding automatic projection, there are two reasons
that may cause this problem.

Firstly, flaws still exist in the automatic projec-
tion pipeline. One flaw that shows up often during
visual inspection is that the projection currently

does not support named entities without any capital
letters. Named entities such as “Valkoinen talo”
(the White House) cannot be fully recognized at
the beginning of the pipeline (because the second
token is lowercase). As a result, only the token
with a capitalized letter such as “Valkoinen” will
be predicted as a named entity by Finnish NER
tagger.

Secondly, the English data source is biased in
favor of foreign business topics. Within the time
period of the training data, our database contains
mostly business news. As a consequence, more
business-related news and their named entities in
Finnish news can be tagged. General news may
behave differently than business news, and may
contain more patterns for the task of NER. To ver-
ify this conjecture, we inspect each category with
the model projected from the PULS pattern-based
tagger in Join-Viterbi mode. As shown in Table 8,
the model can achieve better performance on av-
erage on the topics which are related to foreign
business or politics news, compared to domestic or
local news.

Another major problem is due to a flaw in
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Category Prec Rec F1 Support
Overall 0.89 0.77 0.82 916
Talous 0.91 0.90 0.90 123
Politiikka 0.89 0.79 0.83 191
Ulkomaat 0.92 0.75 0.83 227
Kotimaa 0.90 0.70 0.78 100
Koti 0.86 0.73 0.77 167
Kaupunki 0.83 0.71 0.74 108

Table 8: Performance of the Finnish NER tagger
for each category. The tagger is projected from the
pattern-based English NER tagger in Join-Viterbi
mode, first line in Table 7.

data encoding. As mentioned previously, out-of-
vocabulary compound lemmas are decomposed and
assigned the embedding of the last part of the com-
pound lemma. Many ordinary tokens may bene-
fit from this approach, while organization named
entities do not. During visual inspection, we no-
ticed that the name of some Finnish national or
local governmental departments can be a made-
up word or a compound word. Such names will
either be assigned the “UNKNOWN” token em-
bedding or the embedding of the last part of the
compound word, which is most likely a common
noun. For example, “Verohallinto” (Tax Admin-
istration) does not have an embedding as a whole.
However, “hallinto” (“government”) is a common
noun within the embedding vocabulary. As a result,
these named entities are more likely to be tagged in-
correctly. As illustrated in Table 9, the performance
of organizations (B-ORG) suffers from severely
low recall rates due to this problem, as well as the
previously mentioned problem that Finnish domes-
tic named entities are less likely to get projections
in the pipeline.6

6 Conclusions and future work

In this paper, we propose the idea of building a
Finnish NER dataset by leveraging the output of
an English NER tagger and projecting the type of
recognized named entities from English to Finnish.
The contributions of this paper are:

• Our work shows that the Finnish NER dataset
produced by only simple rule-based projec-
tion can be used for NER model training. No
parallel bilingual documents are used, only

6Because they are unlikely to appear in English-language
news.

Tag Prec Rec F1 Support
B-PER 0.88 0.70 0.78 20
I-PER 0.83 1.00 0.91 10
B-LOC 0.85 0.90 0.88 52
I-LOC 0.00 0.00 0.00 5
B-ORG 1.00 0.32 0.48 19
I-ORG 0.00 0.00 0.00 2
avg/total 0.83 0.71 0.74 108

Table 9: Detailed performance of Finnish NER
tagger for category “Kaupunki” (“The City”) in
Table 8.

projected named entities, obtained by several
monolingual tools.

• We demonstrate the performance of our NER
model, and set a new benchmark for Finnish
NER.

For future work, we plan to first tackle the prob-
lems that we mentioned in the error analysis sec-
tion and conduct further inspection. Secondly, we
plan to combine our pipeline with a disambiguation
model, to improve both the pre-processing and the
data encoding steps. Thirdly, it would be interest-
ing to experiment and generalize our approach with
other languages with limited NER tools, such as
Estonian, if corresponding news datasets are easily
accessible.
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Abstract

News articles such as sports game reports
are often thought to closely follow the un-
derlying game statistics, but in practice
they contain a notable amount of back-
ground knowledge, interpretation, insight
into the game, and quotes that are not
present in the official statistics. This
poses a challenge for automated data-to-
text news generation with real-world news
corpora as training data. We report on
the development of a corpus of Finnish
ice hockey news, edited to be suitable
for training of end-to-end news generation
methods, as well as demonstrate genera-
tion of text, which was judged by journal-
ists to be relatively close to a viable prod-
uct. The new dataset and system source
code are available for research purposes.1

1 Introduction

Automated, or robotic, journalism aims at news
generation from structured data sources, either as
the final product or as a draft for subsequent post-
editing. At present, automated journalism typi-
cally focuses on domains such as sports, finance
and similar statistics-based reporting, where there
is a commercial product potential due to the high
volume of news, combined with the expectation of
a relatively straightforward task.

News generation systems—especially those de-
ployed in practice—tend to be based on intricate
template filling, aiming to give the users the full
control of the generated facts, while maintaining
a reasonable variability of the resulting text. This
comes at the price of having to develop the tem-
plates and specify their control logic, neither of
which are tasks naturally fitting journalists’ work.

1https://github.com/scoopmatic/
finnish-hockey-news-generation-paper

Further, this development needs to be repeated for
every domain, as the templates are not easily trans-
ferred across domains. Examples of the template-
based news generation systems for Finnish are
Voitto2 by the Finnish Public Service Broadcast-
ing Company (YLE) used for sports news genera-
tion, as well as Vaalibotti (Leppänen et al., 2017),
a hybrid machine learning and template-based sys-
tem used for election news.

Wiseman et al. (2018) suggested a neural tem-
plate generation, which jointly models latent tem-
plates and text generation. Such a system in-
creases interpretability and controllability of the
generation, however, recent sequence-to-sequence
systems represent the state-of-the-art in data-to-
text generation. (Dušek et al., 2018)

In this paper, we report on the development
of a news generation system for the Finnish
ice hockey news domain, based on sequence-to-
sequence methods. In order to train such a system,
we compile a corpus of news based on over 2000
game reports from the Finnish News Agency STT.
While developing this corpus into a form suitable
for training of end-to-end systems naturally re-
quires manual effort, we argue that compiling and
refining a set of text examples is a more natural
way for journalists to interact with the system, in
order for them to codify their knowledge and to
adapt it for new domains.

Our aim is to generate reports that give an
overview of a game based on information in-
ferrable from the statistics. Such reports can be
used either as a basis for further post-editing by
a journalist imprinting own insights and back-
ground information, or even used directly as a
news stream labelled as machine-generated.

In the following, we will introduce the news
dataset and the process of its creation, introduce an
end-to-end model for news generation, and eval-

2https://github.com/Yleisradio/
avoin-voitto
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uate its output respective to the abovementioned
objectives.

2 Ice Hockey News Dataset

An ice hockey game is recorded into statistics in
terms of different events occurring during play,
such as goals and penalties. In order to train a
model to generate game reports, we need access
to these events, as well as example news articles
about the game. Only recently have game statis-
tics become available to the public through a web
interface or API, whereas the information has tra-
ditionally been recorded as structured text files.

The news corpus from the Finnish News
Agency STT3 includes, among all other news, ar-
ticles covering ice hockey games in the Finnish
leagues during the years 1994–2018. In addition
to news articles, the corpus also includes the orig-
inal game statistics text files. This creates an op-
portunity to align the game statistics with the cor-
responding news articles, producing a dataset of
over 20 years of ice hockey data with reference
news articles for the games. When automatically
pairing the game statistics with news articles us-
ing date and team names as a heuristic, we obtain
a total of 3,454 games with existing statistics and
at least one corresponding news article.

Utilizing real journalistic material poses a chal-
lenge in that the articles mix information that
can be found directly in the game statistics (e.g.,
scores and names) with information inferable from
the statistics (e.g., statements such as shortly af-
ter), information based on background knowledge
(e.g., a team’s home city or player’s position),
game insight and judgement based on viewing the
game (e.g., expressions such as slapshot or tipping
the puck describing the character of a shot), and
even player interviews.

Therefore, directly using the limited amount of
actual news articles for end-to-end system training
becomes problematic. In our initial experiments
the generation model learns to “hallucinate” facts,
as easily occurs when the target text is too loosely
related to the conditioning input.4 In order to en-
sure that the generation model is able to learn to
generate accurate descriptions from game statis-
tics, we clean the news corpus by manually align-

3A version of the corpus is available at http://urn.
fi/urn:nbn:fi:lb-2019041501 for academic use.

4This observation is also supported by Wiseman et al.
(2017) mentioning that their generation model occasionally
“hallucinates factual statements” that are plausible but false.

ing corresponding text spans with game events de-
tailed in the statistics.

For the sake of comparison, let us consider
the Rotowire corpus (Wiseman et al., 2017) con-
taining basketball game summaries and statistics,
which was recently released and has become a
popular data set for training data-to-text genera-
tion systems (cf., e.g., Nie et al. (2018); Wise-
man et al. (2018); Puduppully et al. (2019)). The
Rotowire game summaries are straightforward in
their style of reporting, focusing on the game at
hand and tend for the most part to reference facts
in the statistics. By contrast, our news corpus is
more heterogeneous, including both articles focus-
ing on the particular game and articles that take a
broader perspective (e.g., describing a player’s ca-
reer). The STT news articles tend to read in the
journalist’s voice, putting substantial emphasis on
the character of the game, often in colorful lan-
guage, as well as quoting players and coaches.

An example of the events available in the game
statistics, the actual news article on the game, and
how these align, is shown in Figure 1. Text spans
highlighted with blue color are based on informa-
tion available in the statistics, all other being ex-
ternal information. It illustrates the typical portion
of a raw article that is not inferrable from the data.
English translations are available for a comparable
example in Figure 4.

2.1 Extraction of Game Events

For each event occurring in a game and recorded
in statistics, we identify its type and associated
features. There are four event types: end result,
goal, penalty and save. As a general rule, for each
game the end result entry specifies total scores,
participating teams and additional circumstances
of the game such as overtime or shootout. The
goal event is the most frequent and includes fea-
tures such as goal scorer, assists, team, resulting
score, time and the current state of the game (e.g.,
power play, penalty shot). We also derive special
features that in many cases require consideration
of other events in the context, but pertain to one
particular event, e.g., is the goal deciding or final.
The penalty event specifies player, team, time in
the game and penalty time. The save event sum-
marises the number of saves of a goaltender/team.

We perform information extraction with regular
expressions on the statistics in order to structure
the game into a chronological sequence of events,
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Game events:

E1 Lopputulos Blues–HPK 4–0 (1–0, 2–0, 1–0)
E2 Jäähy Jaakko Turtiainen, HPK 2min 11.57
E3 Maali 1–0 Arttu Luttinen, Blues (Jari Sailio) 14.56
E4 Jäähy Petri Lammassaari, Blues 2min 16.31
E5 Jäähy Mathias Porseland, HPK 2min 20.47
E6 Jäähy Janne Kolehmainen, HPK 2min 21.20
E7 Maali 2–0 yv Toni Kähkönen, Blues (Camilo Miettinen) 22.26
E8 Maali 3–0 yv Jere Karalahti, Blues (Stephane Veilleux, Stefan 
Öhman) 23.01
E9 Jäähy Roope Ranta, Blues 2min 25.57
E10 Jäähy Jere Sallinen, Blues 2min 29.04
E11 Jäähy Oskari Korpikari, Blues 2min 32.41
E12 Maali 4–0 J Sallinen, Blues (Valtteri Virkkunen) 42.11
E13 Jäähy Turtiainen, HPK 2min 44.58
E14 Jäähy Teemu Lassila, HPK 2min 48.47
E15 Jäähy Virkkunen, Blues 2+2min 50.29
E16 Jäähy Jukka Laamanen, HPK 2min 51.30
E17 Jäähy Laamanen, HPK 2min 57.46
E18 Torjunnat Iiro Tarkki, Blues 30 torjuntaa
E19 Torjunnat Teemu Lassila, HPK 34 torjuntaa

Original game report (with alignments):

Espoon Blues kukisti HPK:n jääkiekon SM-liigassa  4–0-numeroin.[E1]
Kotijoukkue  Blues  hankkiutui  avauserässä  1–0-johtoon Arttu  Luttisen
maalilla  [E3], mutta ottelun ratkaisut nähtiin toisessa erässä.  Blues iski
erän alussa vajaassa minuutissa kaksi osumaa [E7,8], ja HPK:n pelihalut
karisivat.
– Oikea joukkue voitti. Monessa pelissä olemme onnistuneet kirimään,
tänään  emme.  Ekassa  erässä  olimme  hyvin  mukana,  mutta  selkeät
ratkaisut  tulivat  meidän  alivoimissa,  joissa  emme  onnistuneet,  HPK-
käskijä Harri Rindell harmitteli.
Ensin osui Toni Kähkönen ajassa 22.26. kahden miehen ylivoimalla.[E7]
Alle minuutin päästä Jere Karalahti  lisäsi  kotijoukkueen johdon jo 3–
0:aan.[E8] Kokenut  puolustaja  nousi  kulmalta  maalille,  laukoi  ja  iski
oman  paluukiekon  ohi  HPK-vahti  Teemu  Lassilan.  Osumaan  nappasi
syöttöpisteen pirteästi  pelannut  Stephane  Veilleux[E8],  jolle  peli  oli
ensimmäinen  SM-liigassa.  Jere  Sallinen  kaunisteli  vielä  päätöserässä
lukemat 4–0:aan.[E12]
– Pelimme oli kurinalaista, ei kauhean nättiä, mutta pisteet ratkaisevat.
Oltiin,  hyviä,  tehokkaita  ja  suht  tylyjä,  Blues-valmentaja  Petri
Matikainen ynnäsi.

Figure 1: A representative example of events extracted from game statistics and the corresponding report
in the news corpus. Events that are mentioned in the article are boldfaced (left) and the aligned text spans
are highlighted in blue (right). Event references are indicated at the end of each alignment (e.g., [E1]).

which can then be aligned with the corresponding
text spans from the news article, as well as used as
input in the text generation. An initial sequence of
events after information extraction is shown on the
left side in Figure 1. Before text generation, these
events are yet enhanced with additional informa-
tion derived from the event itself, or the game.

2.2 Manual Alignment

The manual alignment of game events and the ar-
ticle text is carried out by a single annotator in
approximately 6 weeks as an integral part of the
system development work. The annotator receives
a sequence of extracted events and aligns these
with the corresponding news article, typically but
not necessarily a single sentence for every ex-
pressed event. All ungrounded parts within the
text are removed and if necessary, the text is mod-
ified for fluency. We cannot align full sentences
with events as, for instance, Barzilay and Lapata
(2005) do, as often information not grounded in
the statistics is expressed together with statistics-
based facts within the same sentences and clauses.

The alignment process therefore frequently re-
quires rephrasing the text, for instance, in order to
make it more neutral and avoid generating arbi-
trary subjective judgements. We find that the news
article commonly includes description that is not
evident from the data (e.g., subjective characteris-
tics of the player or the shot), and often may re-
flect the reporter’s viewpoint. For instance, the re-
porter may evaluate an event negatively by writing

Player A did not manage to score more than one
goal, reflecting expectation of the player’s perfor-
mance, which we would change into a more objec-
tive form such as Player A scored one goal. Sim-
ilarly, word choices based on viewing the game
(e.g., slapshot) are changed to more neutral coun-
terparts.

After removing the uninferable parts of a sen-
tence, the remainder is often relatively short, in
which case we sometimes opt to replace the infor-
mation that was removed with references to other
appropriate information from the game statistics,
such as the time of the event or the state of the
game. This serves to maintain a similar sentence
and clause structure as that of the original corpus.

In the majority of our aligned data one text span
refers to one game event. However, in some cases
the same indivisible span can describe multiple
events, most commonly of the same type (e.g.,
Player A scored two goals, or Team A received a
total of eight penalties). In such cases, we produce
multi-event alignments, where all related events
are aligned with a single text span.5 Multi-event
alignments support the development of more ad-
vanced generation, which stands to produce more
natural-sounding reports in terms of less repetition
and more flexible structuring.

5Cf. Figure 1, alignments of E7 and E8: The events are
expressed differently depending on type of alignment, where
the 2-to-1 aligned text says that the team scored two goals.
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Games 2,134
Events 36,097
Aligned events 12,251

End result 2,092
Goal 6,651
Penalty 2,163
Save 1,345

Aligned spans 8,831
Aligned sentences 9,266
Aligned tokens 84,997

Table 1: Event alignment statistics.

Original Corpus Aligned
Sentences 49,496 9,266
Tokens 601,990 84,997
Unique tokens 54,624 7,393
Unique lemmas 24,105 4,724
STTR (words) 0.641 0.525
STTR (lemmas) 0.501 0.424

Table 2: Comparison of the original hockey news
and the aligned sentences, including analysis of
lexical diversity.

2.3 Corpus Statistics

In Table 1, we summarize the overall size statis-
tics of the final ice hockey corpus after the statis-
tics and news articles have been automatically
paired, and events have been manually aligned
with the text. In total, 2,307 games were manually
checked (66.8% of the paired corpus), of which
2,134 games were correctly paired with the arti-
cle describing the game. In these games, 12,251
out of 36,097 events (33.9%) were referenced in
the text and successfully aligned. End result oc-
curs in nearly all news articles as the first event,
whereas the goal event is by far the most frequent
one, each game mentioning on average 3.1 goals.
The number of aligned events is greater than the
number of aligned text spans due to multi-event
alignments. While 82.1% of text spans align with
a single event, there is a long tail of multi-event
alignments, with 11.2% aligning to two events,
3.4% to three, 1.4% to four, etc.

In Table 2 we measure the lexical diversity
of original ice hockey news articles, as well as
the resulting dataset after manual alignment, by
computing the Standardized Type–Token Ratio
(STTR). The measure is defined as the number
of unique tokens or lemmas divided by the total
number of tokens, calculated on every segment of

1,000 tokens separately and averaged across the
corpus. STTR is more meaningful than the stan-
dard type–token ratio when comparing corpora
of substantially different sizes. Both corpora are
tokenized and lemmatized using the Turku Neu-
ral Parser pipeline (Kanerva et al., 2018, 2019).
STTR of the aligned corpus is lower than in the
original hockey news on both word and lemma
level, indicating a somewhat—but not substan-
tially so—more restricted vocabulary use in our
aligned subset.

3 Event Selection Model

As illustrated previously, any given news article
describes only a subset of most noteworthy events
of a game. We observe that most reports are con-
cise, referencing on average 5.7 events. The distri-
bution of events/report is: 1st quantile at 3 events
(20.9% of events in game), 2nd at 5 (22.2%), 3rd at
7 (38.5%), 4th at 36 (100%).

Our alignment serves as a gold standard reflect-
ing which events the journalists have chosen to
mention for each game. In our generation task,
we are presented with the problem of selecting ap-
propriate events from the full game statistics. We
use the gold standard selection during training and
validation of the text generation model, as well as
the automatic evaluation. As we deploy our text
generation model for manual evaluation, we use a
Conditional Random Field (CRF) model to predict
which events to mention.

Casting the event selection problem as a se-
quence labeling task, the CRF model takes as in-
put the full sequence of events in one game to-
gether with associated features for each event,
and predicts a binary label for each event.6 We
achieve an overall F-score of 67.1% on the test
set, which broken down by event type is: end re-
sult (98.0%), goal (70.2%), penalty (20.1%), save
(47.7%). Penalties are the most difficult to pre-
dict, being reported only 7.8% of the time in real-
ity, e.g., compared to 54.1% for goals.

4 Text Generation

Next, we present the model architecture used in
text generation, and evaluate the model on a pop-

6We use label weighting to account for the imbalanced
distribution, which we optimize against the validation set to
0.85:1 for the positive class (other optimal hyperparameters
are C1=35.0, C2=0.5, as well as defaults). We use CRFsuite
(Okazaki, 2007) with label weighting by Sampo Pyysalo:
https://github.com/spyysalo/crfsuite
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ular baseline dataset. After that, we describe the
training of the generation model on our ice hockey
corpus and use automatic evaluation metrics to
compare against existing references.

4.1 Model Architecture
We use a pointer-generation network (Vinyals
et al., 2015; Gu et al., 2016; See et al., 2017),
where the neural attention mechanism in the
encoder-decoder model is adapted to jointly model
a probability distribution over words from the
known vocabulary, a distribution over words from
the input sequence to copy and a probability that
controls the copying mechanism. A separate cov-
erage attention vector, a sum of past attention dis-
tributions, is maintained to inform the model of its
past attention decisions. Such a coverage model is
shown to prevent text repetition in generated out-
put (Tu et al., 2016; See et al., 2017).

The model is implemented using the
OpenNMT-py library (Klein et al., 2017). The
encoder has two bidirectional LSTM layers with
500 hidden units, together with 500-dimensional
word embeddings. The decoder has two unidi-
rectional LSTM layers with 500 hidden units.
Both encoder and decoder apply a dropout of 0.3
between LSTM layers.

4.2 Baseline Experiments on the E2E Dataset
To demonstrate the performance of our generation
model architecture, we report results on a known
dataset with published baselines, namely the E2E
NLG Challenge (Dušek et al., 2018) on end-to-end
natural language generation in spoken dialogue
systems. The task is to produce a natural lan-
guage description of a restaurant based on a given
meaning representation (MR)—an unordered set
of attributes and their values. The attributes in-
cluded, among others, the restaurant name, area,
food type and rating. We represent the given MR
as a sequence of tokens where each attribute value
is embedded into XML-style beginning and end
attribute markers, and the order of attributes is kept
fixed across the whole dataset. The target output is
a sequence of tokens. We do not apply any explicit
delexicalization steps.

In Table 3 we measure BLEU (Papineni et al.,
2002), NIST (Doddington, 2002), METEOR
(Lavie and Agarwal, 2007), ROUGE-L (Lin,
2004) and CIDEr (Vedantam et al., 2015) met-
rics on the 2018 E2E NLG Challenge test data
using the evaluation script provided by the orga-

nizers7. Our generation system is compared to the
official shared task baseline system, TGen (Dušek
and Jurčı́ček, 2016), as well as to the top perform-
ing participant system on each score (ST top). Our
system outperforms the TGen baseline on 3 out
of 5 metrics (BLEU, METEOR and ROUGE-L),
which is on par with the official shared task results,
where not a single one participant system was able
to surpass the baseline on all five metrics. On two
metrics, BLEU and METEOR, our system outper-
forms the best shared task participants.

E2E NLG Challenge evaluation is based on hav-
ing multiple references for each MR, on average
each unique MR in the corpus having 8 reference
descriptions. In the evaluation, the output for each
unique MR is compared against all references and
the maximum score is used, naturally leading to
higher scores. To have more comparable num-
bers to our ice hockey corpus, where we have only
one reference for each input event, we also include
scores obtained by comparing each MR to each of
its reference descriptions separately as if they were
individual data points (Ours single ref.).

4.3 Hockey Data Representation

Currently, we concentrate on training the model
only with text spans aligning with single events,
excluding the less frequent multi-event align-
ments. Furthermore, we are considering each
event as a separate training example, independent
of other events in the game.

Given a single event described as a sequence
of features and their values, our text generation
model is trained to produce the text span aligned
with it. Following the data representation used in
E2E NLG Challenge experiments, the input events
are represented as a linearized sequence of tokens,
where XML-style beginning and end tags are used
to separate the different features (see Figure 2).
This allows the model to directly copy some of the
input tokens to the output when necessary. The
ability to copy tokens is especially important with
player names and exact times, where the vocab-
ulary is sparse, and many of these can even be
previously unseen, unknown tokens. In addition,
we also include features that are meant to inform
generation without being copied themselves, for
example, the type of the event. The target of gen-
eration is a tokenized sequence of words, where

7https://github.com/tuetschek/
e2e-metrics
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BLEU NIST METEOR ROUGE-L CIDEr
Ours 0.6758 8.5588 0.4536 0.6990 2.2007
TGen 0.6593 8.6094 0.4483 0.6850 2.2338
ST top 0.6619* 8.6130* 0.4529** 0.7083† 2.2721‡

Ours single ref. 0.3190 5.1995 0.3574 0.4969 1.7922

Table 3: Performance of our generation model on the E2E test set compared to the shared task baseline
(TGen) and winners on each metric (*Juraska et al. (2018), **Puzikov and Gurevych (2018), †Zhang
et al. (2018), ‡Gong (2018)), as well as our model in an adapted evaluation setup (Ours single ref.).

also dashes inside scores are separated, allowing
the model to swap scores when necessary. The ref-
erence text sometimes flips the order of the teams,
requiring the score to be inverted as well (Team
A–Team B 0–1 into Team B won Team A 1–0).

One particular challenge in our corpus is that
the decision of which aspects to focus on, i.e.,
which particular features from the source event
to verbalize, is relatively arbitrary. For exam-
ple, sometimes a journalist mentions the player or
players assisting a goal, but in many cases it is left
out. Both options are equally correct, but overlap-
based metrics such as BLEU penalize such cre-
ative variation. By contrast, in other text gener-
ation datasets such as the E2E NLG Challenge,
the output text in general describes all input fea-
tures. To account for this variation, we include a
length feature to act as a minimal supervision sig-
nal for the model to rely on. We divide output text
lengths into three evenly sized categories (short,
medium and long) to provide a hint to the model
during training of how long and detailed output it
is expected to generate for each training example.
At test time, we then have the possibility to con-
trol the desired approximate length of the gener-
ated text. In the experiments throughout this pa-
per, we generate all three length variants for each
event and pick the one with the highest average
confidence of the generation model.

4.4 Training and Optimization

The model is trained using the Adam optimizer
with learning rate of 0.0005 and batch size of 32.
The model is trained for a maximum of 8000 steps
(ca. 40 epochs), and the final model is chosen
based on validation set performance. We use 80%
of the aligned games for training, 10% for valida-
tion and 10% for testing.

In our initial experiments, we used the RBFOpt
library (Costa and Nannicini, 2014) for hyperpa-
rameter tuning, maximizing validation set BLEU

score. However, when manually inspecting gen-
eration results on the validation set, we noticed
that models with a higher BLEU score result in
more fluent text but generate more factual mis-
takes. This observation is supported by Wiseman
et al. (2017), who note that BLEU score tends to
reward fluent text rather than other aspects desir-
able in generation of sports summaries from data.
For this reason, we ultimately decided to use hy-
perparameters manually tuned on the validation
set to give a good perceived balance between flu-
ent and factually correct text.

4.5 Automatic Evaluation of Hockey
Generation

In Table 4, we provide evaluation results using the
five aforementioned metrics. We evaluate on event
level using gold standard event selection, where
each generated event description is compared to
its existing reference text. As the model is trained
to produce a tokenized sequence, we apply a deto-
kenizer to be able to compare against the origi-
nal untokenized reference text. On the test set,
the model achieves a BLEU score of 19.67. To
the extent that different datasets allow comparison,
the best reported score on the Rotowire basketball
news corpus is 16.50 (Puduppully et al., 2019).
Compared to our earlier E2E baseline experiment,
we score lower than our closest comparable ref-
erence of 31.90 (with single references), which is
understandable due to the much smaller train set
size for the hockey corpus (about 13% in size).

In Figure 3, we plot the learning curve with in-
creasing sizes of training data in order to illustrate
how generation performance benefits from more
data. The learning curve is still steadily increas-
ing when using 100% of the training data currently
available, which indicates that more data would
most likely further improve the performance.
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INPUT: <length>long</length> <type>result</type> <home> Ässät </home> <guest> Blues </guest>
<score> 0 - 4 </score> <periods> ( 0 - 3 , 0 - 0 , 0 - 1 ) </periods>

OUTPUT: Blues vei voiton Ässistä maalein 4 - 0 ( 3 - 0 , 0 - 0 , 1 - 0 ) .

Figure 2: An example input–output pair for the text generation model, derived from manual alignment.
The original, untokenized output sentence is Blues vei voiton Ässistä maalein 4–0 (3–0, 0–0, 1–0).
(Literal English translation: Blues took a win from Ässät with goals 4–0 (3–0, 0–0, 1–0).)

BLEU 0.1967
NIST 4.4144
METEOR 0.2297
ROUGE-L 0.4159
CIDEr 1.8658

Table 4: Automatic evaluation metrics on hockey
corpus test set.
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Figure 3: Learning curve demonstrating the effect
of training data size on generation performance.

5 Human evaluation

As our objective is practically usable news gen-
eration, we carry out a manual evaluation of its
output on 59 randomly selected games from the
test set, focusing in particular on the corrections
that would be necessary to obtain acceptable out-
put. Example corrections are shown in Figure 4.
These full game reports are generated by first ap-
plying the selection model described in Section 3
to select the events to be included in the report,
and then using the text generation model to ver-
balize each selected event. The generated texts of
the events are then detokenized and concatenated
in chronological order into a full game report.

5.1 Minimum Edit Evaluation
In the minimum edit evaluation, carried out by
the annotator who created the news corpus, only
factual mistakes and grammatical errors are cor-
rected, resulting in text which may remain awk-
ward or unfluent. The word error rate (WER)

Error type Count
Team or player name 25
Type or score of goal 24
Time reference 14
Total score 6
Penalty 5
Assist 2
Power play 2

Table 5: Types of factual errors in the generated
output for 59 games.

of the generated text compared to its corrected
variant as a reference is 5.6% (6.2% disregard-
ing punctuation). The WER measure is defined as
the number of insertions, substitutions, and dele-
tions divided by the total length of the reference,
in terms of tokens. The measure is the edit dis-
tance of the generated text and its corrected vari-
ant, directly reflecting the amount of effort needed
to correct the generated output.

5.1.1 Factual Correctness
The factual errors and their types are summarized
in Table 5. From the total of 510 game events gen-
erated by the system, 78 of these contained a fac-
tual error, i.e. 84.7% were generated without fac-
tual errors.

The most notable errors involved player or team
names. The input for a single game event may
contain more than one name (e.g. the goal scorer
and up to two assisting players). In these cases, the
model occasionally paired first name and surname
incorrectly. Less frequent errors include wrong
team pairings when referring to the end result of
the game, e.g., Team A lost to Team A.

In sentences where the exact time of a game
event is generated as a number (at time 39.54) the
model copied the time reliably, but when the ap-
proximate time of an event is verbalized (at the
end of the second period) there were occasional
errors. Another notable error category is types of
goals or their scores (e.g. 3–0, deciding goal, tying
goal). In this category, the error similarly occurred
in cases when the reference is verbal (third goal),
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but occasionally also in numerical representation
(3–0 instead of 0–3). The other, less common cat-
egories relate to game total scores, power play, as-
sists and penalties.

5.1.2 Fluency
Overall, the generated text is highly grammati-
cal. The most frequent grammatical error in the
output is unconjugated player names; commonly
names in their Finnish nominative case that should
be in genitive. In a few cases, the model makes
grammatical errors when it copies an incompati-
ble word from the input, e.g., a name instead of a
time reference.

Both error types commonly occur when the
model copies from the input. As it operates on the
token rather than sub-word level, it is challenging
to map between word forms and inflect infrequent
words such as player names. The latter error likely
occurs when the copy attention is indecisive and
fails to recognize the type for infrequent tokens.

Most fluency issues relate to the overall flow
and structure of the report. Addressing these is-
sues would require the model to take into account
multiple events in a game, and combine the infor-
mation more flexibly to avoid repetition. For in-
stance, the output may repeatedly mention the pe-
riod number for all goals in the same period. Like-
wise, this setup sometimes results in unnatural, yet
grammatical, repetition of words across consecu-
tive sentences. Even though the model has learned
a selection of verbs meaning to score a goal, it is
unable to ensure their varied use. While not suc-
cessful in our initial experiments, generating text
based on the multi-event alignments or at docu-
ment level may eventually overcome these issues.

5.2 Product-Readiness Evaluation

The second human evaluation aimed at judging
the acceptability of the output for production use
in a news agency. The output is evaluated in
terms of its usability for a news channel labelled
as being machine-generated, i.e. not aiming at the
level of a human journalist equipped with sub-
stantial background information. The evaluation
was carried out by two journalists from the STT
agency, who split the 59 games among themselves
approximately evenly. The first journalist edited
the games to a form corresponding to a draft for
subsequent minor post-editing by a human, simu-
lating the use of the generated output as a prod-
uct where the final customer is expected to do

own post-editing before publication. The second
journalist directly edited the news to a state ready
for direct publication in a news stream labeled as
machine-generated news. In addition to correcting
factual errors, the journalists removed excessive
repetition, improved text fluency, as well as occa-
sionally included important facts which the system
left ungenerated. The WER measured against the
output considered ready for post-editing, is 9.9%
(11.2% disregarding punctuation), only slightly
worse than the evaluation with only the factual and
grammatical errors corrected. The WER measured
against the output considered ready for direct re-
lease, was 22.0% (24.4% disregarding punctua-
tion). In other words, 75–90% of the generated
text can be directly used, depending on the ex-
pected post-editing effort.

Figure 4 shows two example games along
with the generated reports and manual corrections
made by the journalist in order to prepare it for
publication. Literal translations from the gener-
ated, uncorrected Finnish into English are pro-
vided for reference.

6 Conclusions and Future Work

We developed and evaluated an end-to-end sys-
tem for news generation from structured data, us-
ing a corpus of news and game statistics in the
ice hockey domain. In terms of the data, our pri-
mary finding was the level to which professionally
produced news contain information that cannot be
inferred from the game statistics. This leads to
the model learning to ”hallucinate” facts and ne-
cessitates a manual alignment and editing of the
training data. Once we created a suitable train-
ing dataset, we were able to generate highly gram-
matical text which, in terms of word error rate
(edit distance), was relatively close to what was
judged as a viable product by domain journalists.
We found that most factual errors in the gener-
ated output fall into a small number of categories,
mostly related to copying names from the input,
types of events, and time references. Addressing
these errors is a matter of future work and can be
approached using data augmentation techniques as
well as introducing sub-word units which would
allow the model to deal with inflections.

Currently, we only generate the news as inde-
pendent events, with roughly one sentence corre-
sponding to one event. As this leads to a some-
what unnatural text, we have attempted in prelim-
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Events (game 1):

E1 Lopputulos Blues–Ilves 3–2 ja (0–1, 1–0, 1–1, 1–0)
E2 Maali 0–1 Linda Välimäki, Ilves (None) 2.07
E3 Jäähy Salla Korhonen, Blues 2min 3.22
E4 Jäähy Annina Rajahuhta, Ilves 2min 6.08
E5 Jäähy Johanna Koivula, Ilves 2min 15.37
E6 Maali 1–1 Essi Hallvar, Blues (None) 27.03
E7 Jäähy Ninni Taskinen, Blues 2min 27.13
E8 Jäähy Anna Kinnunen, Blues 2min 32.43
E9 Jäähy Jenni Hiirikoski, Ilves 2min 37.53
E10 Maali 2–1 Marjo Voutilainen, Blues (Oona Parviainen, Terhi Mertanen) 43.55
E11 Maali 2–2 Annina Rajahuhta, Ilves (Linda Välimäki, Satu Niinimäki) 47.49
E12 Jäähy Ninni Taskinen, Blues 2min 54.03
E13 Jäähy Satu Niinimäki, Ilves 2min 56.04
E14 Jäähy Tea Villilä, Blues 2min 66.55
E15 Jäähy Tiia Reima, Blues 2min 69.07
E16 Jäähy Annina Rajahuhta, Ilves 2min 70.55
E17 Jäähy Linda Välimäki, Ilves 2min 71.16
E18 Maali 3–2 yv Oona Parviainen, Blues (Emma Laaksonen, Terhi Mertanen) 
72.34
E19 Torjunnat Anna Vanhatalo, Blues 45 torjuntaa
E20 Torjunnat Linda Selkee, Ilves 30 torjuntaa

Generated game report with manual corrections:
Ilves voitti IlvesBluesin jatkoajalla 3–2 (0–1, 1–0, 1–1, 1-0). 
Linda Välimäki vei Ilveksen johtoon 1-0 avauserässä. 
Bluesin ainokaisentasoituksen teki Essi Hallvar toisessa erässä. 
Kolmannessa erässä Marjo Voutilainen vei Bluesin 2–1 -johtoon. 
Ilveksen Linda Rajahuhta viimeisteli 2–2 -tasoituksen. 
Oona Ottelun ratkaisun teki Oona Parviainen jatkoajalla.
Bluesin maalivahti Anna Vanhatalo torjui 45 laukausta. 
Ilveksen maalivahti Linda Selkee torjui 30 laukausta.

Literal English translation of generated report:
Ilves won Ilves on overtime 3–2 (0–1, 1–0, 1–1). 
Linda Välimäki took Ilves to a 1-0 lead. 
Blues’ only goal was made by Essi Hallvar. 
In the third period Marjo Voutilainen took to a 2–1 lead. 
Linda Rajahuhta finished off with a 2–2 tying goal. 
Oona the deciding goal was made by Oona Parviainen. 
Blues’ goalkeeper Anna Vanhatalo saved 45 shots. 
Ilves’ goalkeeper Linda Selkee saved 30 shots.

Events (game 2):

E1 Lopputulos HIFK–Jokerit 2–4 (1–1, 1–2, 0–1)
E2 Jäähy Jere Karalahti, Jokerit 2min 3.20
E3 Maali 0–1 Antti Tyrväinen, Jokerit (Nichlas Hardt, Teuvo Teräväinen) 6.12
E4 Maali 1–1 Juuso Puustinen, HIFK (Ville Peltonen, Corey Elkins) 7.12
E5 Jäähy Hardt, Jokerit 2min 17.47
E6 Maali 1–2 Steve Moses, Jokerit (Ossi Väänänen, Teräväinen) 23.36
E7 Maali 1–3 Mikko Kousa, Jokerit (Teräväinen, Hardt) 26.28
E8 Jäähy Braden Birch, HIFK 2min 28.56
E9 Jäähy Trevor Gillies, HIFK 5+20min 32.16
E10 Maali 2–3 av Iiro Pakarinen, HIFK (Eero Somervuori, Peltonen) 34.11
E11 Jäähy Elkins, HIFK 2min 36.02
E12 Jäähy Kousa, Jokerit 2min 37.58
E13 Jäähy Janos Hari, HIFK 2min 39.22
E14 Jäähy Dehner, Jokerit 2min 46.24
E15 Jäähy Toni Söderholm, HIFK 2min 47.21
E16 Jäähy Karalahti, Jokerit 2min 51.53
E17 Jäähy Birch, HIFK 2min 57.40
E18 Jäähy jr, Jokerit 2min 59.21
E19 Jäähy Tomi Mäki, Jokerit 2min 59.33
E20 Maali 2–4 av, tm Jeremy Dehner, Jokerit (None) 59.55
E21 Torjunnat Brad Thiessen, HIFK 27 torjuntaa
E22 Torjunnat Leland Irving, Jokerit 22 torjuntaa

Generated game report with manual corrections:
Jokerit löi HIFK:n 4–2 (1–1, 2–1, 1–0). 
Jokerit meni avauserässä 1–0 -johtoon Antti Tyrväinensen osumalla. 
HIFK:n Juuso Puustinen iski 1–1 -tasoituksen ajassa 7.12. 
Toisessa erässä Jokerien Steve Moses iski 2–1 -johdon. 
Toisessa erässä Jokerit meni 3–1 -johtoon. 
HIFK:n Trevor Gillies joutui suihkuun.
HIFK:n Iiro Pakarinen kavensi 2–3:een ajassa 34.11 alivoimalla.
2-4 -osuman iski Jokerien Jeremy Dehner Dehner. 
HIFK:n maalivahti Brad Thiessen torjui 27 kiekkoa.
Jokerien maalivahti Leland Irving torjui 22 kiekkoa.

Literal English translation of generated report:
Jokerit beat HIFK 4–2 (1–1, 2–1, 1–0).
Jokerit went in the opening period to a 1–0 lead due to Antti Tyväinen goal score.
HIFK’s Juuso Puustinen scored a 1–1 tie at 7.12.
In the second period Jokerit’s Steve Moses scored a 2–1 lead.
In the second period Jokerit went to a 3–1 lead.
HIFK’s Trevor Gillies was sent to the shower.
Iiro Pakarinen narrowed to 2–3 at 34.11.
The 2-4 goal was scored by Jokerit’s Dehner Dehner.
HIFK’s goalkeeper Brad Thiessen saved 27 pucks.
Jokerit’s goalkeeper Leland Irving saved 22 pucks.

Figure 4: Generated reports with manual corrections for two example games. Insertions in manual
corrections are marked in green and deletions in red and struck through. English translations are based on
original, uncorrected generation output. English translations for input events: Lopputulos (End result),
Maali (Goal), Jäähy (Penalty), Torjunnat (Saves), ja (overtime), yv (power play), av (short-handed), tm
(empty net).

inary experiments to generate whole news texts
at once, as well as sentences combining several
events, nevertheless with results far from useful.
This is likely due to the relatively small number
of training examples where a single sentence ac-
counts for several distinct events. We will focus
on this problem in our future work, investigating
methods which would allow pre-training the gen-
eration model so as to be able to successfully ac-
cept several events on its input.

The new dataset, the original news corpus and
the source code of the model are available for re-
search use. 8

8https://github.com/scoopmatic/
finnish-hockey-news-generation-paper
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Abstract
Historical cryptology is the study of his-
torical encrypted messages aiming at their
decryption by analyzing the mathematical,
linguistic and other coding patterns and
their historical context. In libraries and
archives we can find quite a lot of ciphers,
as well as keys describing the method used
to transform the plaintext message into a
ciphertext. In this paper, we present work
on automatically mapping keys to ciphers
to reconstruct the original plaintext mes-
sage, and use language models generated
from historical texts to guess the underly-
ing plaintext language.

1 Introduction

Hand-written historical records constitute an im-
portant source, without which an understanding of
our society and culture would be severely limited.
A special type of hand-written historical records
are encrypted manuscripts, so called ciphers, cre-
ated with the intention to keep the content of the
message hidden from others than the intended re-
ceiver(s). Examples of such materials are political,
diplomatic or military correspondence and intel-
ligence reports, scientific writings, private letters
and diaries, as well as manuscripts related to se-
cret societies.

According to some historians’ estimates, one
percent of the material in archives and libraries are
encrypted sources, either encrypted manuscripts
called ciphertexts, decrypted or original plain-
text, and/or keys describing how the encryp-
tion/decryption is performed. The manuscripts are
usually not indexed as encrypted sources (Láng,
2018), which makes it difficult to find them un-
less you are lucky to know a librarian with exten-
sive knowledge about the selection of the partic-
ular library you are digging in. In addition, re-
lated ciphertexts, plaintexts and keys are usually

not stored together, as information about how the
encrypted sources are related to each other is lost.
If the key has not been destroyed over time – unin-
tentionally, or intentionally for security reasons –
it is probably kept in a different place than the cor-
responding ciphertext or plaintext given that these
were probably produced in different places by dif-
ferent persons, and eventually ended up in differ-
ent archives. Information about the origin of the
ciphertext and key, such as dating, place, sender
and/or receiver, or any cleartext in the manuscript,
might give some important clues to the probability
that a key and a ciphertext originate from the same
time, and persons. However, information about
metadata is far from enough to link the related en-
crypted sources to each other. It is a cumbersome,
if not impossible, process for a historian to try to
map a bunch of keys to a pile of ciphertexts scat-
tered in the archive in order to try to decrypt these
on the basis of the corresponding key. Further, the
cryptanalyst might reconstruct a key given a ci-
phertext, and the reconstructed key might be ap-
plicable to other ciphertexts as well thereby pro-
viding more decrypted source material.

In this paper, we present work on automatically
mapping ciphertext sequences to keys to return
the plaintext from the ciphertext based on sim-
ple and homophonic substitution from Early Mod-
ern times. We measure the output of the map-
ping by historical language models developed for
14 European languages to make educated guesses
about the correct decryption of ciphertexts. The
method is implemented in a publicly available on-
line user interface where users can upload a tran-
scribed key and a ciphertext and the tool returns
the plaintext output along with a probability mea-
sure of how well the decrypted plaintext matches
historical language models for these European lan-
guages.

In Section 2, we give a brief introduction to
historical cryptology with the main focus on en-
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crypted sources and keys. Section 3 describes the
method for mapping ciphers to their correspond-
ing keys. The experimental results are presented
in Section 4 and discussed in Section 5. Finally,
we conclude the paper in Section 6.

2 Historical Cryptology

Ciphers use a secret method of writing, based on
an encryption algorithm to generate a ciphertext,
which in turn can be used to decrypt the message
to retrieve the intended, underlying information,
called the plaintext. A cipher is usually operated
on the basis of a key. The key contains information
about what output the cipher shall produce given
the plaintext characters in some specific language.

Historical cryptology is the study of encoded
or encrypted messages from our history aiming at
the decryption by analyzing the mathematical, lin-
guistic and other coding patterns and their histo-
ries. One of the main and glorious goals is to de-
velop algorithms for decryption of various types of
historical ciphers, i.e. to reconstruct the key in or-
der to retrieve the corresponding plaintext from a
ciphertext. The main focus for cryptanalysts has
been on specific ciphers, see e.g. (Bauer, 2017;
Singh, 2000) for nice summaries, while systematic
decryption of various cipher types on a larger scale
has been paid less attention to (see e.g. Knight
et al. (2006); Nuhn and Knight (2014); Ravi and
Knight (2008)). Historians, on the other hand, are
searching for ciphertexts and keys in libraries to
reveal new, important and hitherto hidden infor-
mation to find new facts and interpretations about
our history. Another, less observed goal within
historical cryptology is therefore to map the en-
crypted sources, the original keys and correspond-
ing ciphertexts.

There are many different types of ciphers
used throughout our history (Kahn, 1996). In
early modern times, when encryption became fre-
quently used in Europe, ciphers were typically
based on transposition, where the plaintext charac-
ters are reordered in a systematic way, or substitu-
tion of plaintext characters to transform each char-
acter in the plaintext to another symbol from exist-
ing alphabets, digits, special symbols, or a mixture
of these (Bauer, 2007). More advanced substi-
tution ciphers include homophonic, polygraphic,
and polyalphabetic substitution. In Figure 1, we
show a homophonic substitution cipher with a key,
a short ciphertext and the corresponding plaintext

generated by the key. Each plaintext character,
written in capital letter, has one or several corre-
sponding symbol(s) by which the plaintext char-
acters are substituted to encrypt the message. To
make decryption difficult, the most frequently oc-
curring plaintext characters are usually substituted
with one of several possible symbols.

Figure 1: Ciphertext, key, and the corresponding
plaintext for a homophonic substitution cipher.

Ciphertexts contain symbol sequences with
spaces, or without any space to hide word bound-
aries. Similar to historical text, punctuation marks
are not frequent, sentence boundaries are typically
not marked, and capitalized initial characters in
the beginning of the sentence are usually missing.
We can also find nulls in ciphertexts, i.e. symbols
without any corresponding plaintext characters to
confuse the cryptanalyst to make decryption even
harder.

Keys might contain substitution of not only
characters in the plaintext alphabet, but also
nomenclatures where bigrams, trigrams, syllables,
morphemes, common words, and/or named enti-
ties, typically referring to persons, geographic ar-
eas, or dates, are substituted with certain sym-
bol(s). Diacritics and double letters are usually
not encoded. Each type of entity to be encrypted
might be encoded by one symbol only (unigragh),
two symbols (digraph), three symbols (trigraph),
and so on. For example, the plaintext alphabet
characters might be encrypted with codes using
two-digit numbers, the nomenclatures with three-
digit numbers, space with one-digit numbers, and
the nulls with two-digit numbers, etc. Figure 2
illustrates a key based on homophonic substitu-
tion with nomenclature from the second half of
the 17th century. Each letter in the alphabet has
at least one corresponding ciphertext symbol, rep-
resented as a two-digit number (digraph), and the
vowels and double consonants have one additional
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graphical sign (unigraph). The key also contains
encoded syllables with digraphs consisting of nu-
merals or Latin characters, followed by a nomen-
clature in the form of a list of Spanish words en-
coded with three-digit numbers letters or graphical
signs.

Figure 2: A key from the second half of the 17th
century (Algemeen Rijksarchief, 1647-1698) from
the DECODE database (Megyesi et al., 2019).

One of the first steps, apart from digitization of
the encrypted source, is the transcription of keys
and ciphertext images, before cryptanalysis can be
applied, aiming at the decryption of the ciphertext
to recover the key. However, there are other chal-
lenges that also need attention depending on what
document types that are available and what docu-
ments that need to be recovered. These are:

1. generate ciphertext given a plaintext and a
key (i.e. encryption)

2. reconstruct plaintext from a ciphertext and
a key (less trivial due to unknown plaintext
language and ambiguous code sequences and
nulls)

3. map key and ciphertexts

Next, we will describe our experiments on re-
trieving plaintext from keys given a ciphertext
with the goal to be able to automatically find ci-
phertexts that belong to a particular key.

3 Mapping Ciphers to Keys

3.1 Data
For our experiments on automatically mapping ci-
phertext sequences to key-value pairs, we need ac-
cess to four kinds of input files:

1. a transcribed ciphertext

2. its corresponding key

3. its corresponding plaintext (for evaluation
purposes)

4. a set of language models (for language detec-
tion)

A collection of several hundreds of ciphers and
keys from Early Modern times can be found in the
recently developed DECODE database (Megyesi
et al., 2019).1 The database allows anyone to
search in the collection, whereas upload of new
encrypted manuscripts may be done by registered
users only. The collected ciphertexts and keys
are annotated with metadata including informa-
tion about the provenance and location of the
manuscript, transcription, possible decryption(s)
and translation(s) of the ciphertext, images, and
any additional material of relevance to the partic-
ular manuscript.

Currently, most of the ciphertexts in the DE-
CODE database are still unsolved. Even though
the overall aim of the cipher-key mapping algo-
rithm (CKM) is to automatically try to match these
unsolved ciphertexts to existing keys, we need pre-
viously solved ciphertexts, connected to a key and
a plaintext file, to conduct our experiments. In our
experiments, we thus make use of three previously
broken keys and their corresponding ciphertexts,
written originally during Early Modern times. For
all three manuscripts, the transcribed ciphertext as
well as the key and a plaintext version of the con-
tents are available through the DECODE database.
We also add a fourth decrypted file, the Copiale
cipher (Knight et al., 2011),2 for which both the
ciphertext and the plaintext are accessible through
the DECODE database. This cipher will only be
used for evaluation of the language detection part
of the algorithm. The data collection used for the
experiments is summarized in Table 1, where each
manuscript is described with regard to its cipher
type and plaintext language.

In our experiments, we will use the Barb ci-
pher for initial tests during the development of the
CKM algorithm, hence-forth the training set. This
cipher is based on homophonic substitution with

1https://cl.lingfil.uu.se/decode/
2https://cl.lingfil.uu.se/~bea/

copiale/
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Name Cipher type Plaintext Use
Barb.lat.6956 homophonic, nulls, nomenclature Italian training
Francia-64 homophonic, nulls, nomenclature Italian evaluation
Borg.lat.898 simple substitution Latin evaluation
Copiale homophonic German evaluation (lang. detection)

Table 1: Datasets used for training and evaluation of the CKM algorithm.

nomenclatures, and consists of codes with num-
bers. The codes are 2-digit numbers representing
plaintext characters, syllables and some function
words, and three-digit codes for place and person
names and common words. The cipher also con-
tains two one-digit codes denoting word bound-
aries. The evaluation set on the other hand, con-
sists of two ciphers:

1. the Francia cipher, which has the same cipher
type (homophonic substitution with nulls and
nomenclature) and underlying plaintext lan-
guage (Italian) as the Barb cipher used during
training

2. the more divergent Borg cipher, which is in-
stead a simple substitution cipher with Latin
as the underlying plaintext language

The transcription of the ciphertexts was also re-
trieved from the DECODE database. Each tran-
scription file of a particular cipher (which may
consist of one or multiple images) starts with
comment lines (marked by "#") with information
about the name of the file, the image name, the
transcriber’s id, the date of the transcription, etc.
The transcription is carried out symbol by sym-
bol and row by row keeping line breaks, spaces,
punctuation marks, dots, underlined symbols, and
cleartext words, phrases, sentences, paragraphs, as
shown in the original image. In case cleartext is
embedded in the ciphertext, the cleartext sequence
is clearly marked as such with a language id. For
a detailed description of the transcription, we refer
to Megyesi et al. (2019).

Original and reconstructed keys also follow a
common format, starting with metadata about the
key followed by a description of the code groups.
Each code is described in a separate line followed
by the plaintext entity (character, syllable, word,
etc), delimited by at least one space character.

Figure 3 shows a few lines from the key file be-
longing to the Barb cipher, with codes 1 and 8 de-
noting a word boundary, codes 00 and 02 denoting
the letter a, code 03 denoting the letter o, code 04

#Key
#homophonic with nomenclature
#null = space (word boundary)
1 <null>
8 <null>
00 a
02 a
03 o
04 u/v
...
232 ambasciatore di Spagna

Figure 3: Example format for a transcribed key file
in the Decode database.

denoting either the letter u or the letter v (since
there was often no distinction between these two
letters in historical texts), and code 232 denoting
the whole phrase ambasciatore di Spagna (ambas-
sador of Spain).

3.2 Storing code-value pairs

In the first step of the CKM algorithm, the key file
is processed and the code-value pairs, as well as
the length of the longest code, are stored for fu-
ture reference. The key file is required to be in
plain text format, and with one code-value pair
on each line. Furthermore, the code and its value
should be separated by at least one white space
character. If the key file contains values denot-
ing word delimiters, the script will recognise these
as such if they are written as "null" (in any com-
bination of upper-case and lower-case characters,
so for example "Null" and "NULL" will also be
recognised as word delimiters). Any lines initial-
ized with a hashtag sign ("#") will be ignored, as
containing comments, in accordance with the for-
mat illustrated in Figure 3.

3.3 Mapping ciphertexts to code-value pairs

In the second step, the transcribed ciphertext is
processed, and its contents matched against the
code-value pairs stored in the previous step, to re-
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#002r.jpg
<IT De Inenunchi? 14 Maggio 1628.>
6239675017378233236502343051822004623?

Figure 4: Example of a ciphertext segment in the
Decode database.

veal the underlying plaintext message. In this pro-
cess, three types of input are ignored:

1. text within angle brackets (presumed to con-
tain cleartext segments)

2. lines starting with a hashtag (presumed to be
comments)

3. question marks (presumed to denote the an-
notator’s uncertainty about the transcription)

The first lines from a transcribed ciphertext
file in the Decode database is shown in Figure
4, where the name of the image from which the
transcription has been made is given as a com-
ment (preceded by a hashtag), cleartext is given
within angle brackets, and the annotator’s uncer-
tainty about transcribing the last character on the
line as the digit "3" is signalled by a question
mark.

If the transcribed ciphertext contains word
boundaries in the form of space characters, or if
the code-value pairs stored in the previous step
contain codes for denoting word boundaries, the
ciphertext is split into words based on this infor-
mation, and the remaining mapping process is per-
formed word by word. If no such information ex-
ists, the whole ciphertext is treated as a single seg-
ment, to be processed character by character.

If word boundaries have been detected, for ev-
ery word that is shorter than, or equal in length
to, the longest code in the key file, we check if
the whole word can be matched towards a code.
If so, we replace the ciphertext sequence with the
value connected to that code. If not, or if the word
is longer than the longest code in the key file, we
iterate over the sequence, character by character,
and try to match each character against the key
file. If not successful, we merge the current char-
acter(s) with the succeeding character, and try to
match the longer sequence against the key file,
until we reach a sequence equal in length to the
longest code in the key file. If nothing can be
matched in the key file for the maximum length
sequence, we replace this sequence by a question
mark instead, and move on to the next character.

If sequence equals a code:
Replace sequence by matched value

Else:
While characters in sequence:

If char(s) equals a code:
Replace char(s) by matched value

Else if char length equals
longest code length:

Replace char(s) by ? and
move on to next character

Else:
Merge char with next char
and try again

Figure 5: Algorithm for mapping ciphertext se-
quences to code-value pairs.

This non-greedy search-and-replace mechanism is
applied for the whole word, except for the end of
the word. Since we know that the key in the train-
ing file contains code-value pairs for representing
suffixes, the script checks, in each iteration, if the
remaining part of the word is equal in length to the
longest code in the key file. If so, we try to match
the whole sequence, and only if this fails, we fall
back to the character-by-character mapping. The
whole algorithm for the matching procedure is il-
lustrated in Figure 5.

3.4 Language identification

When the plaintext has been recovered, the next
task is to guess what language the decrypted text is
written in, and present hypotheses to the user. This
is done based on language models for historical
text, derived from the HistCorp collection of his-
torical corpora and tools (Pettersson and Megyesi,
2018).3 We use word-based language models cre-
ated using the IRSTLM package (Federico et al.,
2008), for the 14 languages currently available
from the HistCorp webpage: Czech, Dutch, En-
glish, French, German, Greek, Hungarian, Ice-
landic, Italian, Latin, Portuguese, Slovene, Span-
ish and Swedish. For this particular task, we only
make use of the unigram models, i.e. the sin-
gle words in the historical texts. The plaintext
words generated in the previous steps, by match-
ing character sequences in the ciphertext against
code-value pairs in the key file, are compared to
the words present in the language model for each
of these 14 languages. As output, the script pro-
duces a ranked list of these languages, presenting
the percentage of words in the plaintext file that
are also found in the word-based language model

3https://cl.lingfil.uu.se/histcorp/
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for the language in question. The idea is that if
a large percentage of the words in the decrypted
file are also present in a language model, there is a
high chance that the key tested against the cipher-
text is actually an appropriate key for this particu-
lar text.

3.5 Evaluation

We evaluate our method for cipher-key mapping
based on the percentage of words in the evalua-
tion corpus that are identical in the automatically
deciphered text and in the manually deciphered
gold standard version (taking the position of the
word into consideration). Casing is not considered
in the comparison, since lower-case and upper-
case words are usually not represented by differ-
ent codes in the key files used in our experiments.
Furthermore, some codes may refer to several (re-
lated) values, such as in the example given in Fig-
ure 3 (see further Section 3.2), where the code 04
could correspond either to the letter u or to the
letter v. This also holds for different inflectional
forms of the same lemma, such as the Italian word
for ’this’, that could be questo, questa or questi,
depending on the gender and number of the head
word that it is connected to, and therefore would
typically be represented by the same code. In these
cases, we consider the automatic decipherment to
be correct, if any of the alternative mappings cor-
responds to the form chosen in the gold standard.

The language identification task is evaluated by
investigating at what place in the ranked list of
14 potential languages the target language is pre-
sented.

4 Results

4.1 Cipher-Key mapping

In the first experiment, we tested the CKM algo-
rithm on the Francia cipher (see further Section
3.1); a cipher of the same type as the cipher used
as a role model during the development of the
method. This cipher shares several characteristics
with the training text: (i) it is written during the
same time period, (ii) it is collected from the Vat-
ican Secret Archives, (iii) it is a numerical cipher
with homophonic substitution and nomenclatures,
and (iv) word delimiters are represented in the key.

When comparing the automatically decrypted
words to the words in the manually deciphered
gold standard, approximately 79% of the words
are identical. The cases where the words differ

could be categorized into four different types:

1. Incomplete key: Diacritics
(36 instances)
The key only contains plain letters, without
diacritics. The human transcriber has how-
ever added diacritics in the manually deci-
phered text, where applicable. For example,
the code 9318340841099344 has been inter-
preted by the script as the word temerita. The
human transcriber has added a diacritic to
the last letter a, resulting in the word temer-
itá (’boldness’), even though the key states
a (without accent) as the value for the code
"44".

2. Character not repeated
(27 instances)
In cases where a character should be repeated
in order for a word to be spelled correctly (at
least according to present-day spelling con-
ventions), the human transcriber has in many
cases chosen to repeat the character, even
though this is not stated in the key.

3. Human reinterpretation
(2 instances)
In a few cases where the text contains unex-
pected inflectional forms, such as a singular
ending where a plural ending would be ex-
pected, the human transcriber has chosen the
grammatically correct form, even though the
code in the ciphertext actually is different.

4. Wrong interpretation by the script
(16 instances)
Due to the non-greedy nature of the algo-
rithm, it will sometimes fail to match longer
codes in the key file, when it finds a match for
a shorter code. This could be seen for exam-
ple for prefixes such as buon- in buonissima
(’very good’), and qual- in qualche (’some’).

In a second experiment, we tested the script
against a cipher of another type, the Borg cipher,4

based on simple substitution with a small nomen-
clature, encoded by 34 graphical signs with word
boundaries marked by space. Since this cipher is
based on simple substitution, rather than homo-
phonic substitution, and with word boundaries al-
ready marked, it is less ambiguous than the Fran-
cia cipher. Accordingly, approximately 97% of the

4https://cl.lingfil.uu.se/~bea/borg/
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words in the output from the cipher-key mapping
script are identical to the words in the gold stan-
dard. The mismatches are mainly due to some
word-initial upper-case letters in the ciphertext be-
ing written as the plaintext letter, instead of being
encoded. As an example, the Latin word nucem
(inflectional form of the word ’nut’) would nor-
mally be enciphered as ’9diw1’ in the Borg cipher,
but in one case it occurs instead as ’Ndiw1’. There
are several similar cases for other words through-
out the cipher.

4.2 Language identification

For the language identification task, we can see
from Table 2 that both the Barb cipher and the
Francia cipher are correctly identified as written
in Italian by the CKM algorithm, and the Copiale
cipher is correctly identified as written in German.
These guesses are based on the fact that 79.17%
of the tokens in the automatically recovered ver-
sion of the Barb plaintext, and 80.05% of the to-
kens in the Francia text, could also be found in the
Italian language model, whereas 86.55% of the to-
kens in the Copiale cipher could be matched in the
German language model. As could be expected,
the second best guess produced by the algorithm
for the Italian manuscripts is for the closely re-
lated languages Spanish and Portuguese respec-
tively. More surprisingly, the third best guess
for both these texts is German, with a substantial
amount of the tokens found in the German lan-
guage model as well. A closer look at the German
language model used in our experiments reveals
a possible explanation to this. The German lan-
guage model is based on data from the time period
1050–1914, where the oldest texts contain a sub-
stantial amount of citations and text blocks actu-
ally written in Latin, a language closely related to
Italian. This might also explain why the Borg text,
written in Latin, is identified by the script as writ-
ten in German. The third guess for the Borg text
is Swedish, for which the language model is also
based on very old text (from 1350 and onwards),
with blocks of Latin text in it. The Latin language
model on the other hand is rather small, contain-
ing only about 79,000 tokens extracted from the
Ancient Greek and Latin Dependency Treebank.5

Due to the small size of this language model as
compared to the language models for the other lan-

5https://perseusdl.github.io/treebank_
data/

guages in this study, in combination with the fact
that Latin words occur in older texts for many lan-
guages, it is hard for the script to correctly identify
Latin as the source language.

For the German Copiale cipher, the second best
guess is for Slovene, and the third best guess is for
Swedish. This could be due to the fact that both
Slovene and Swedish were strongly influenced by
the German language in historical times, meaning
that many German and German-like words would
appear in historical Slovene and Swedish texts.

4.2.1 Present-day language models

So far, we have presumed that language models
based on historical text would be best suited for
the task of language identification in the context of
historical cryptology. This is based on the assump-
tion that spelling and vocabulary were different
in historical times than in present-day text, mean-
ing that some words and their particular spelling
variants would only occur in historical text. It
could however be argued that it is easier to find
large amounts of present-day text to build lan-
guage models from. As a small test to indicate
whether or not present-day text would be useful
in this context, we downloaded the Spacy lan-
guage models for present day Italian6 and Ger-
man,7 trained on Wikipedia text, and compared the
coverage in these language models to the coverage
in the historical language models, when applied
to the plaintexts of the Barb, Francia and Copiale
manuscripts.

As seen from Table 3, the percentage of word
forms found in the language models based on
present-day data is considerably lower than for
the historical language models, even though the
present-day data sets are larger. The preliminary
conclusion is that language models based on his-
torical text is better suited for the task at hand,
but present-day language models could also be
useful, in particular in cases where it is hard to
find suitable historical data to train a language
model. More thorough experiments would how-
ever be needed to confirm this.

6https://github.com/explosion/
spacy-models/releases//tag/it_core_news_
sm-2.1.0

7https://github.com/explosion/
spacy-models/releases//tag/de_core_news_
md-2.1.0
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Name Top 3 language models Gold language
Barb-6956 Italian 79.17% Italian

Spanish 66.77%
German 65.73%

Francia-64 Italian 80.05% Italian
Portuguese 72.40%
German 70.22%

Borg.lat.898 German 56.73% Latin
Spanish 55.01%
Swedish 51.50%

Copiale German 86.55% German
Slovene 69.95%
Swedish 57.76%

Table 2: Language identification results.

Name Historical LM Present-day LM
Barb-6956 79.17% 64.11%
Francia-64 80.05% 66.23%
Copiale 86.55% 81.44%

Table 3: Language identification results, comparing language models based on historical text to language
models based on present-day text.

5 Discussion

From our experiments, we can conclude that the
implemented algorithm makes it possible to re-
store the hidden plaintext from ciphertexts and
their corresponding key. For one of the ci-
phers evaluated, 79% of the words were correctly
mapped to the gold standard plaintext words, and
the mismatches were mainly due to diacritics and
repeated characters not being part of the key. This
knowledge could easily be taken into consider-
ation in further development of the algorithm,
where the script could test to add diacritics in
strategic positions and to repeat certain charac-
ters in cases where a specific word could not be
found in a language model (provided that we al-
ready have an educated guess on what language
the underlying plaintext is written in). For the
other cipher evaluated, being an out-of-domain
manuscript of a different cipher type and another
underlying language than the manuscript used dur-
ing training, we got very encouraging results with
97% of the words in the manuscript being cor-
rectly matched, and the mismatches in the remain-
ing words mainly being due to plaintext characters
occurring as part of ciphertext words.

For the language identification task, the results
are mixed. The German and Italian manuscripts

are correctly identified as being written in German
and Italian respectively, whereas the algorithm as-
sumes the Latin text to be written in German. This
indicates that we need to be careful about what
texts to put into the language models. In the cur-
rent experiments, we have simply used the lan-
guage models at hand for historical texts for dif-
ferent languages, without taking into account dif-
ferences in time periods and genres covered, nor
the size of the text material used as a basis for the
language model. Thus, the language models used
in the experiments are very different in size, where
the Latin language model contains about 79,000
tokens, as compared to approximately 124 million
tokens in the German language model. Further-
more, since the language in very old texts is typi-
cally quite different from the language in younger
texts, language models only containing texts from
the time period in which the cipher is assumed to
have been created would better suit our purposes.
In addition, many old texts contain blocks of Latin
words, since this was the Lingua Franca in large
parts of the world in historical times. This re-
sults in many Latin words being found in language
models for other languages as well.

The language detection evaluation also shows
that using language models based on historical text
has a clear advantage over using state-of-the-art
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language models based on present-day language.

6 Conclusion

In this paper, we have presented a study within the
field of historical cryptology, an area strongly re-
lated to digital humanities in general, and digital
philology in particular. More specifically, we have
introduced an algorithm for automatically map-
ping encrypted ciphertext sequences to their cor-
responding key, in order to reconstruct the plain-
text describing the underlying message of the ci-
pher. Since ciphertexts and their corresponding
keys are often stored in separate archives around
the world, without knowledge about which key be-
longs to which ciphertext, such an algorithm could
help in connecting ciphertexts to their correspond-
ing keys, revealing the enciphered information to
historians and other researchers with an interest in
historical sources.
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Abstract 

Human voice provides the means for verbal 

communication and forms a part of personal 

identity. Due to genetic and environmental 

factors, a voice of a child should resemble the 

voice of her parent(s), but voice similarities 

between parents and young children are 

underresearched. Read-aloud speech of 

Finnish-speaking and Russian-speaking 

parent-child pairs was subject to perceptual 

and multi-step instrumental and statistical 

analysis. Finnish-speaking listeners could not 

discriminate family pairs auditorily in an 

XAB paradigm, but the Russian-speaking 

listeners’ mean accuracy of answers reached 

72.5%. On average, in both language groups 

family-internal f0 similarities were stronger 

than family-external, with parents showing 

greater family-internal similarities than 

children. Auditory similarities did not reflect 

acoustic similarities in a straightforward way. 

1 Introduction 

The current paper is based on the research made 

as a master thesis. An overall inspiration comes 

from encountering online the company VocaliD 

Inc., whose aim is to create unique personalized 

voices for text to speech devices (VocaliD, Inc.). 

The author asked herself, “How would a 

(hypothetical) voice of a child, who never had an 

ability to speak, most likely sound?” Intuitively, 

it should somehow resemble the voice of the 

parent(s). However, the up-to-date research does 

not give a direct answer to the question. In the 

present paper, the similarity between parents and 

their young children is also researched from the  
cross-linguistic perspective, comparing two 

prosodically different patterns. 

2 Background 

2.1 Human voice similarities 

Human voice, a sound produced by a 

combination of human organs called vocal 

apparatus, is used by humans to generate speech 

and other forms of vocalizations. Each voice is 

unique due to the physiological factors (e.g., age, 

body size or hormones) and the manner in which 

the  sounds are articulated (consciously or 

unconsciously). Due to the same factors, the 

voice of an individual is subject not only to 

major changes throughout the lifespan (Decoster 

and Debruyne, 2000; Stathopolous et al., 2011), 

but also in everyday communication. Thus, it is a 

source of biological, psychological and social 

(Bogdanova, 2001; Bolinger, 1989) information 

about the speaker. Both related and unrelated 

people can sound alike. In the blood members of 

the same family, the reasons for such similarities 

are both biological (genetic) and environmental. 

The former are reflected not only in the body 

parts but also in structural brain organization 

(Peper et al., 2007; Thompson et al., 2001). The 

latter include socialization and learning by 

imitation (Zuo and Mok, 2015; see also 

Hirvonen, 1970; Bolinger, 1989). Interestingly, 

the prosody of the native language is acquired 

earlier than the segmental phonology  (Iivonen, 

1977) and around two years of age, children are 

able to produce adult-like intonational contrasts 

(Bolinger, 1986). 

Juslin and Scherer (2008) divide the cues for 

voice description into four broad groups, as 

related to 1) fundamental frequency (f0); 2) 

intensity; 3) temporal aspects; 4) voice quality. 

Acknowledging the importance of all the voice 

cues in building voice identity of an individual, 

for the purposes of the current research, f0 (or its 

contour, a sequence of f0 values across an 
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utterance) will be the principal feature in focus. 

F0 analysis is a robust acoustic method of 

speaker identification (Labutin et al., 2007; Rose, 

1999) and the source for prosody generation in 

speech synthesis. Linguistically, f0 encodes 

suprasegmental categories of tone, stress and 

intonation (Rose, 1999). F0 contour is the most 

important physical correlate of intonation 

(Iivonen, 2005).  

Primarily mean f0 shows significantly high 

intra-twin correlation in monozygotic twins, 

(Debruyne et al., 2002; Decoster et al., 2001; 

Fuchs et al., 2000; Przybyla et al., 1992; Van 

Lierde et al., 2005). Dizygotic twins show 

greater discrepancies in f0 than monozygotic 

twins (Debruyne et al., 2002; Przybyla et al., 

1992), but the same f0 variation, which is thus 

considered to correspond to learnt language 

behavior (Debruyne et al., 2002). A variety of 

studies on perceptual similarity also show that 

twins, followed by same-sex siblings, are the 

most difficult to differentiate both for human 

listeners and an automatic system (Decoster et al, 

2001; Feiser and Kleber, 2012; Kushner and 

Bickley, 1995; Nolan et al., 2011; Rose and 

Duncan, 1995; Rose, 1999; San Segundo and 

Kunzel, 2015; Sebastian et al., 2013; Weirich 

and Lancia, 2011). Listeners are also able to 

identify twin and sibling pairs in different tasks, 

and in general rate voices of related speakers 

with higher similarity scores than those of 

unrelated speakers. In most of the experiments, 

longer utterances seem to be more suitable 

stimuli. Albeit one word is enough to distinguish 

unrelated speakers in the study by Weirich and 

Lancia (2011); when the voices are knowingly 

similar-sounding, the task becomes more 

difficult even for familiar listeners (Rose and 

Duncan, 1995; Rose, 1999). F0 seems to be one 

of the most important factors that contribute to 

detect similarity between speakers, on one hand, 

and to determine dissimilarity, on the other.  

2.2 Finnish and Russian prosody/intonation 

A detailed comparison of phonetics, phonology 

and phonotactics is far beyond the scope of the 

current paper. In brief, Finnish is a mora-timed 

language with primary stress is fixed to the initial 

syllable of the word. Russian is stress-timed with 

movable word stress. Unlike Finnish, Russian 

has vowel reduction and no phonological 

durational contrasts (see, e.g., Suomi et al., 2008 

and Zvukovaya forma, 2001-2002, respectively). 

A typical property of Finnish is falling or rising-

falling intonation, steadily and smoothly 

declining, so that Finnish is often called 

prosodically monotone (Suomi et al., 2006; 

2008). Russian language, on the opposite, 

presents a variety of f0 falling and rising 

contrasts with floating intonation center 

(Bryzgunova, 1977; Nikolaeva, 1970; Volskaya, 

2009; see also Ullakonoja et al., 2007 for a 

comparison). Intonation in Russian plays a 

distinctive role in structures, where in Finnish, 

grammatical means are sufficient to express the 

difference and the difference can be 

characterized as mostly pragmatical (de Silva 

and Ullakonoja, 2009). 

3 Method 

3.1 Audio-data collection 

The current paper presents the analysis of data 

collected from three mother-child pairs, whose 

native language is Finnish (parents of mean age 

43.67 y/o, SD=4.93; two girls of 10 and 12 y/o 

and one nine-year-old boy), and four pairs, 

whose native language is Russian (parents of 

mean age 41.5 y/o, SD=2.65 and 12-year-old 

girls). The participants had no history of 

neurological, language or speech deficits, had 

normal or corrected-to-normal vision and were 

right-handed. They were monolingual, with some 

knowledge of foreign languages, but the native 

language being the only one spoken at home.  

The young age of the boy allows to include his 

voice/f0 into analysis together with the girls. 

Mutation, or significant f0 lowering ,shows the 

first signs on average at the age of 10-11 (Hacki 

and Heitmüller, 1999). Additionally, boys before 

puberty might speak at a higher f0 with mothers 

that with fathers (Bolinger, 1989). 

The recording of audio-data consisted of 

reading a text and five short dialogues (20 

sentences of different types in total) and 

producing quasi-spontaneous speech in a picture 

description task, but only the read-aloud speech 

was further analyzed acoustically. 

The members of the same family were 

recorded together. The text was first read by the 

child, then read by the parent in order to promote 

her own way of reading it and decrease the 

imitation effect. The dialogues were read in 

pairs. The recordings were made at 44100 Hz 

sampling frequency, and 16-bit bit depth. The 

263



 

 

files were saved in wav-format1 and later 

segmented into separate sentences. The Finnish 

families are coded with letters H, L and P, and  

the Russian families are coded with letter 

combinations AL, MA, OO and VN.  

3.2 Perceptual experiments 

Young (from 20 to 30 y/o, M=26.08, SD=2.68) 

native speakers of Finnish and Russian (twelve 

and fifteen, respectively, gender-balanced) were 

asked to judge the perceptual similarities in the 

families. They had no history of neurological, 

language, speech or hearing deficits, and had 

normal or corrected-to-normal vision.  

The perceptual experiments in both languages 

consisted of two parts. In the first part, a 

participant first heard an item, pronounced by a 

child, followed by a beep-signal, and then the 

same item, pronounced by two adults, one of 

which was the child’s parent (target) and the 

other served as a distractor. The task was to 

choose the adult, whose voice sounded more 

likely to be that of the child’s parent. In the 

second part, the task was the opposite: to choose 

the child, whose voice sounded more likely to be 

that of the adult’s offspring. There were training 

trials in each part, and the test trials (36 as 3 

families x 6 items x 2 in Finnish, and 40 as 4 

families x 10 items in Russian) were randomized 

and could be repeated three times each. Scoring 

was binary. The audio was presented binaurally, 

the experiments were conducted in a quiet 

environment.  

3.3 Instrumental and statistical analysis 

First, all the segmented sentences were compared 

pairwise in the same family in order to find 

auditory and gross f0 curve similarities. The 

corresponding recordings were annotated in 

TextGrid files. All the selected sentences in 

Finnish resulted to follow a falling pattern (see 

Iivonen, 1978; Anttila, 2009) and therefore were 

annotated at syllable and word level only, 

without distinguishing between sentence types. 

Annotation of the Russian data included the 

following: (1) section: (prepeak) – peak – (tail); 

 

1   Recording, segmentation, instrumental analysis 

and perceptual experiment were carried out via Praat 

(Boersma and Weenink, 2017). 

 

(2) movement: rise/fall/rise-fall; (3) position: 

non-final/focus (the part containing IC of the 

sentence)/final; (4) group: subject or predicate; 

(5) orthographic word; (6) sentence type. 

Segmenting sentences into positions adapts the 

principle of additional syntagmatic segmentation 

(Bryzgunova, 1977). Segmenting into sections 

adapts the principle of a tone unit  structure (see 

Brazil et al., 1980; Crystal, 2003): a prepeak 

corresponds to the pre-head and head, and a peak 

corresponds to the nucleus. After comparing the 

f0 contours inside each word for the Finnish 

data, and inside each position for the Russian 

data, the most similar pairs of sentences were 

chosen for the following analysis. 

The f0 contours of the sentences were 

described through the following values: 

maximum f0 of the first syllables, min f0 of the 

other syllables for the Finnish data; maximum f0 

of the peaks, mean and minimum f0 of the 

prepeaks and tails for the Russian data.  

Since the selected Finnish sentences had 

different number of words and the words had 

different number of syllables, an equal 

framework of five three-syllable words was 

created. Thus, each word was represented by 

three data points, hereinafter referred to as 

syllables (1-3), unless otherwise specified. The 

syllables represent raw initially extracted values 

or means of the adjacent values that were close 

to each other. The same principle of “adjacent 

similarities” was applied to make five-word 

sentences out of six-word sentences. Missing 

values of the syllables were added manually 

following the dependencies shown between the 

similarly positioned syllables in the speech of the 

speaker. Such manipulations were applied within 

identical patterns in family pairs. 

Statistical analysis was performed in R (R 

Core Team, 2017). For the purposes of the 

current study, analysis of variance (ANOVA) 

and a posthoc Tukey's Honest Significant 

Difference (THSD) tests were used. All the tests 

were carried out at 95% confidence. The graphs 

were created via ggplot function (Wickham, 

2009). 

As shown by ANOVA tests, in the Finnish 

data word position had a statistically significant 

effect (p-values (p) less than 0.05) on the raw f0 

values, while the interaction word*sentence did 

not (p’s greater than 0.1). Therefore, the words 

from different sentences were compared to each 
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other in accordance with their position (1-5). In 

the Russian data, the position*sentence 

interaction was similarly non-significant (p’s 

greater than 0.1), but the effect of the position 

was significant (p’s less than 0.05) for six out of 

eight speakers. The comparison of the same 

positions from different sentences was 

nevertheless applied to all the analyzed data. 

The f0 features were scanned for similarities 

within each family (general speech rhythm 

comparison). However, each child within a 

language group was not only compared to their 

parent, but to all the parents in question (and vice 

versa) by means of ratios, calculated dividing the 

f0 values of each word/position from the selected 

sentences pronounced by an adult by the f0 

values of the same words/positions from every 

selected sentence produced by children, data 

point by data point. The ratios were selected for 

the further analysis on the grounds of their 

homogeneity (0.1 as the maximum difference 

between the values) within a word/position and, 

additionally, visual similarity between f0 curves. 

The exception was made for some individual 

high peaks in the Russian data. The ratios were 

considered acceptable if the peak value was more 

than two standard deviations higher than the 

adjacent segments in the data from both speakers 

in question. 

Finally, the selected ratios were reviewed 

word by word or position by position, focusing 

on the statistical differences in each pair of 

speakers. The ratios without significant 

differences were clustered together. The clusters 

were characterized with a coefficient, which was 

the mean of the clustered ratios, and strength,  

which was the number of clustered ratios. The 

latter was interpreted as the strength of similarity 

between the speakers. The strongest clusters 

from each pair of speakers were further 

compared to each other and used for creation of 

the “sentence maps”, examples of which are 

presented in the following section. 

4 Results 

4.1  Perceptual experiments 

In the Finnish data, none of the explanatory 

variables or their interactions show significant 

effect on the results (p’s greater than 0.1 in a 

series of ANOVA tests). In the parent-matching 

task, mean accuracy per target ranges from 50% 

to 61.8%, M=56%, SD=5.9%; and the accuracy 

of answers per participant ranges from 44.4% to 

63.9%, M=56%, SD=6.5%. In the child-

matching task, mean accuracy per target ranges 

from 51.4% to 57.6%, M=53.5%, SD=3.6%; and 

the accuracy of answers per participant ranges 

from 33% to 72%, M=53.5%, SD=1.7%. 

In the Russian data, the accuracy of answers 

per participant ranges from 50% to 77.5%, 

M=65%, SD=8.9% in the parent-matching task; 

from 50% to 80%, M=66.8%, SD=7% in the 

child matching task. The ANOVA tests show a 

significant effect of the target on the answer 

accuracy in both tasks (p’s less than 0.01). In the 

parent-matching task, mean accuracy of answers 

for target AL (42%) is significantly lower than 

for the other targets (range from 68% to 78.7%, 

M=72%, SD=5.8%). In the child-matching task, 

mean accuracy of answers for target MA (49.3%) 

is significantly lower than for the other targets 

(range from 71.3% to 76.7%, M=73%, 

SD=2.9%). In the child-matching task, there is 

also a significant effect of the distractor: mean 

accuracy of answers with VN distractor is higher 

than with AL-distractor, adjusted p=0.04. Item 

and item*target interaction have statistically 

significant effect in both parts of the experiment: 

F=3.392, p=0.005, Df=5 and F=9.972, p =2.63e-

14, Df=4, respectively, in the parent-matching-

task; F=5.082, p=4.96e-04, Df=4 and F=7.448, 

p=2.44e-10, Df=9, respectively, in the child-

matching task. THSD test shows that for every 

target the distribution of mean accuracy among 

the items is different. In other words, the same 

item corresponds to different mean accuracy for 

different targets. 

The effect of language on the results of the 

perceptual experiment is obvious (F=26.73, 

p=2.57e-07, Df=1 in the ANOVA test). Task (F 

value=0.074; p=0.785) and interaction 

task*language (F=1.549; p=0.213, Df=1) do not 

show a significant effect on the results 

4.2 Family-internal f0 similarities 

For each Finnish speaker, ANOVA test shows a 

significant effect of the syllable and word, but 

not of their interaction on the f0. The adjacent 

similarities between the words and syllables 

inside the words are based on the difference 

between mean f0 values.  

 

 

265



 

 

Figure 1 presents the similarities graphically: 

if the difference between mean f0 values is not 

statistically significant (adjusted p greater than 

0.05 in a THSD test), the adjacent 

syllables/words are united with a circle. The 

adjusted p’s at the edge of significance are 

marked with symbols. 

 

Certain syllable groupings seem to appear 

mostly as a feature of the language, not showing 

great differences among all the speakers, while 

the word groupings seem to be more 

characteristic of a speaker. The absolute values 

of the mean f0 differences between syllables do 

not seem to differ that much from each other; 

however, the statistical significance of the 

difference between syllable 2 and syllable 3 

varies for every speaker. The strongest child-

parent similarity is found in L-family, while in 

families H and P parents’ adjusted p-values are at 

the edge of significance in comparison to the 

children’s. Majorly, the strongest adjacent 

similarities in children and their parents resemble 

each other, while the differences are found in the 

weakest ones. However, the child-parent  

dissimilarities manifest themselves differently 

among the families. 

For each Russian speaker, the ANOVA tests 

do not show a significant effect of the move, so 

all the curve shapes inside each position are 

analyzed together. There is a significant effect of 

the section and position on the f0 values. For 

some speakers, the ANOVA tests also show 

effect of the group, but a series of THSD tests 

reveal that the underlying difference is between 

the positions. Similarly to the Finnish data, the 

similarities between the positions and sections 

inside the positions are based on the difference 

between mean f0 values. Figure 2 presents the 

similarities graphically.  

 

Three out of four families show similar 

patterns of gross similarities among the 

positions, and each family has its own 

similarities and differences inside positions and 

cross-positionally. All of the significant 

differences have the same direction (sign) in both 

speakers of each pair.  

4.3 Cluster analysis and sentence maps 

In the Finnish data, the ANOVA test shows a 

significant effect of relationship between an adult 

and a child on the strength of clustered ratios: 

F=47.15, p=4.03e-11, Df=1. According to a 

THSD test, the mean strength of the same 

family-internal clusters is greater than that of the 

different pairs by 1.43. In fact, family-internal 

similarities on average are either stronger (H-

family members, P-child) or non-significantly 

different (L-family members, P-parent) in 

comparison to the respective member’s external 

similarities. The similarities with alien family 

members can be weaker (importantly, it holds 

absolutely true for L-parent) or non-significantly 

different in comparison to the latter’s family-

internal similarities. In a word-wise comparison, 

the similarities in families are in total stronger 

than the similarities of their members with the 

others in 55%, non-significantly different in 30% 

and weaker in 15% of the cases.  

In the Russian data, The ANOVA test also 

shows a significant effect of the relationship 

between an adult and a child on the strength of 

clustered ratios: F=149.6; p<2e-16, Df=1. 

According to a THSD test, mean strength of the 
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family-internal clusters is greater than that of the 

unrelated speakers by 3.47. Family-internal 

similarities on average are either stronger 

(AL-family members, VN-family members, 

OO-parent) or non-significantly different 

(MA-family members, OO-child) in comparison 

to the respective member’s external similarities. 

The similarities with alien family members can 

be weaker (importantly, it holds absolutely true 

for MA-family members) or non-significantly 

different in comparison to the latter’s family-

internal similarities. In a position-wise 

comparison, the similarities in families in total 

are stronger than the family-external similarities 

of their members in 81%, non-significantly 

different in 8% and weaker in 11% of the cases. 

Besides the strength of the clusters 

(similarities), their coefficients and the 

homogeneity of the latter through a sentence are 

an important factor of the parent-child 

resemblance for both Finnish and Russian 

speakers. Figure 3 displays the sentence map of 

H-parent – H-child (HH) clusters. 

For HH speaker combination, maximum 

possible word grouping is five words, clusters 

[1B + 2A* + 3D + 4C + 5C] with the mean 

syllable-wise coefficients [0.755; 0.746; 0.745]. 

The difference of 0.03 between the means of 1B 

and 2A, however, is at the edge of significance, 

adjusted p=0.03; while in the rest of the pair-

wise comparisons adjusted p’s are greater than 

0.1. The total strength of the grouped clusters, or 

the sum of the maximum cluster strengths from 

each element, equals 28.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4 displays the sentence map of AL-

parent  - AL-child (ALAL) clusters. For ALAL 

speaker combination, maximum possible 

position grouping is clusters [non-final C, focus 

A, final A] with the mean section-wise 

coefficients [0.716; 0.725; 0.733; 0.723; 0.713]. 

The total strength of the grouped clusters equals 

27. 

Relation (F=157.17, p-value<2e-16, Df=1; 

F=144.44, p-value <2e-26, Df=1), language 

(F=31.49, p=2.95e-08, Df=1; F=6.915, p=0.01), 

and relation*language  interaction (F=33.19, 

p=1.28e-08, Df=1; F=4.235, p=0.042, Df=1) 

have a significant effect both on the strength of 

the clusters (adult-child similarity) and total 

strength of groupings (statistic values given 

respectively). For both measures, the strength is 

greater in pairs of the same family members in 

general, family-internally greater in Russian, and 

family-externally greater in Finnish. The 

(relative) number of grouped elements is also  

higher in pairs of the same family members in 

total (adjusted p=0.002), but family-internally is 

higher in Finnish, and family-externally higher in 

Russian. It is important to note that a grouping in 

the Russian data does not correspond to a 

sentence in the same sense that a grouping in the 

Finnish data. In Russian, neither the number of 

data points in positions (three or five), nor the 

number and the order of the latter are fixed. In 

Finnish, on the opposite, the framework used in 

the current study reflects the permanent number 

and the order of the words and syllables. 
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4.4 Relationship between the perceptual 

experiments and instrumental analysis 

ANOVA tests, run with the binary result of the 

perceptual test as a dependent variable, and the 

total strength of groupings divided into two 

explanatory variables, similarity (family-internal) 

and distracting power (family-external), show the 

only significant effect of the similarity on the 

accuracy results in the child-matching task in 

Russian (F=13.3, p=3.00e-04, Df=1), which 

reflects that significantly lower accuracy for 

target MA is associated with its low similarity 

coefficient. 

The only significant correlation found between 

the total strength of family-internal groupings 

and mean accuracy in perceptional experiment 

for the corresponding target is in the subset of 

the child-matching task in Finnish: r=0.87, 

rs=0.87. 

5 Discussion 

In the current study, the possibility to 

perceptually distinguish between the members of 

the same family and unrelated adult-child pairs 

in an XAB paradigm appears to be language 

dependent. Finnish naïve unfamiliar listeners do 

not attribute adults or children to a particular 

alien family more than to their own one, but 

rather they cannot draw any conclusions on 

perceptual (dis)similarity.  

In Russian, the accuracy of answers depends 

on the target family. Interestingly, the families 

with the chance-level results are different in the 

two tasks. For the rest of the targets, 

respectively, the accuracy is above chance 

(M=72.5%), and comparable to the results of 

perceptual identification of twin- and same-

gender sibling pairs in voice trios (Decoster et 

al., 2010; Feiser and Kleber, 2012). The same 

item can correspond to different mean accuracy 

for different target families. Thus, rephrasing 

Rose and Duncan’s (1995) conclusion, some 

voices and some tokens of the same utterance 

may differ in the identification of the adult-child 

relationship.  

In total, despite some strong family-external 

similarities, family-internal f0 contour 

similarities are consistently significantly stronger 

than family-external in both language groups 

separately and together. The numerical 

coefficients of family similarity are not 

language-specific. However, due to the 

language-conditioned differences in applied 

frameworks, it might not be reasonable to 

compare the strengths of pair similarities 

between language groups. 

In Finnish, both the syllable position in a word 

and the word position in a sentence have a 

significant effect on f0 in the proposed five-word 

three-syllable sentence framework. Unlike  the 

adjacent similarities between syllables, which 

look rather as a language property, adjacent word 

similarity represents a gross picture of f0 falling 

in the sentence and therefore to a certain extent 

reflects the individual’s speech rhythm. Two out 

of three participating families (H and P) 

demonstrate strong parent-child resemblance in 

adjacent word similarities and consistently strong 

internal similarity in the final coefficient 

groupings. However, the similarity in the final 

coefficient groupings of the third family (L) also 

shows a tendency to be stronger or more 

consistent than its members’ external similarities 

(especially those of L-parent). Whether the 

reason of this distinction lies in L-child’s older 

age, smaller parent-child age difference, L-

parent’s hearing disadvantage (self-reported 

tinnitus) or other, remains unclear.  

In Russian, both position and section have a 

significant effect on f0 in the proposed three-

position three-section framework (changeable 

number and order of positions in a sentence). 

The similarities of the sections inside and across 

positions, as well as of the positions among 

themselves are believed to reflect the 

individual’s speech rhythm. Parent-child 

resemblance range from nearly identical in two 

families (OO and VN), slightly less similar in 

one family (AL) and showing the greatest 

dissimilarity in the other (MA). The latter family 

is also characterized by the weakest internal 

similarity in the final coefficient groupings, 

which are, however, in five out of six cases 

stronger than the family-external similarities of 

its members.  

Interestingly, the parents’ family-internal 

similarities are always stronger or/and more 

consistent than their similarities to alien children, 

which is not always the case the other way 

around. Hence, the individual characteristics of 

adult’s f0 contours pervasively appear in the 

speech of their children, but children can 

noticeably demonstrate features that are found in 
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other adult speakers of the same language, which 

is most probably reflecting the classic extremes, 

biology and socialization (Bolinger, 1989) in 

parent-child intonation similarities. 

The accuracy of the Finnish-speaking 

listeners’ performance in the perceptual 

experiment shows no dependency on the target, 

nor on the distractor in a trio of voices, albeit 

family-internal and external similarities vary. 

The correlation (r=0.87, rs=0.87) found between 

the similarity strength and mean accuracy of 

answers in the child-matching (always second) 

task might signal that the participants get used to 

the material and are attempting to base the 

decision, which child sounds more like the 

adult’s offspring, on family-internal f0 

similarities. However, it seems that either the 

similarities, as proposed by the current 

framework, are not prominent enough or the 

listeners rely on other voice cues. 

The results of the perceptual experiment on 

Russian seem to interestingly reflect the 

specificity of an XAB discrimination paradigm. 

Selecting the answer between A and B, listeners 

in fact make a decision about X. In the parent-

matching task, listeners do not choose the parent 

(A or B) but attribute the child (X) to one of the 

adults. Albeit AL-family demonstrates high 

internal similarity in acoustic analysis, AL-

parent’s external similarities are also strong. 

Thus, a listener cannot “learn” within the task to 

map the features exclusively of AL-child to AL-

parent and gives more incorrect answers for 

target AL. The low internal similarity of MA-

family does not bring the accuracy for MA-target 

down because MA-parent’s external similarities 

are weaker. In the child-matching task, on the 

opposite, a listener cannot “learn” within the task 

to map the features exclusively of  MA-parent to 

MA-child due to a combination of low internal 

similarity strength per se and the differences 

between it and the average external similarity of 

MA-child. It is also important to note that 

proposed explanation concerns only the average 

results of the perceptual experiment. Not all the 

sentences from the perceptual experiment were 

acoustically analyzed, which means that they 

reflect less f0 contour similarities than the 

selected ones. Half of the non-selected sentences 

correspond to quite high accuracy results 

(median 68.9%). Hence, although the f0 contour 

similarities between Russian-speaking parents 

and children contribute to identification of family 

pairs in a trio of voices by non-familiar listeners, 

the relationship is not linear, may have certain 

thresholds and involve other voice cues.  

6 Conclusion 

The current paper presents an attempt to find f0 

contour similarities between parents and their 

young children. 

The authors fully acknowledge the  limitations 

of the present study. Analyzed data are limited in 

their amount, on the one hand, and to read-aloud 

speech, on the other. The recording scripts do not 

necessarily reflect naturally occurring utterances 

in terms of pragmatic, which plays an especially 

important role in Finnish. The f0 contours are 

analyzed mostly in their static parameters, nor 

are other voice cues analyzed as possible 

contributors to perceptual similarity.  

However, the presented findings can be used 

for the further research on perceptual and 

acoustic voice similarities between parents and 

young children or, broader, family members of 

different age (and gender). 
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Abstract

Cross-modality between vision and lan-
guage is a key component for effective
and efficient communication, and human
language processing mechanism success-
fully integrates information from various
modalities to extract the intended mean-
ing. However, incomplete linguistic in-
put, i.e. due to a noisy environment, is
one of the challenges for a successful com-
munication. In that case, incompleteness
in one channel can be compensated by
information from another one (if avail-
able). In this paper, by employing a visual-
world paradigm experiment, we investi-
gated the dynamics between syntactically
possible gap fillers for incomplete German
sentences and the visual arrangements and
their effect on overall sentence interpreta-
tion.

1 Introduction

In recent years, a growing body of literature has
investigated how and to what extent cross-modal
interaction contributes to natural language under-
standing. Human language processing system in-
tegrates information from various modalities to
extract the meaning of the linguistic input ac-
curately, but the contribution of cross-modality
to a successful communication goes beyond it.
It facilitates early reference resolution while the
sentence unfolds and allows disambiguation even
without realizing that another (linguistic) interpre-
tation would be possible, e.g. see (Altmann and
Mirković, 2009; Knoeferle et al., 2005; Tanen-
haus et al., 1995). Furthermore, it also prepares
the grounds for the re-construction of the mean-
ing from noisy/missing input. When the environ-
ment is noisy, or the communication partner suf-
fers from a motor or cognitive impairment, text

completion/prediction becomes a crucial element
of a communication. Instead of waiting for or
requesting spoken input, combining the uncertain
information from the linguistic channel with in-
formation from the visual one increases the flu-
ency and the effectiveness of the communication
(Garay-Vitoria and Abascal, 2004).

In this study, by conducting an experiment with
human-subjects, we address the problem of com-
pensating the incompleteness of the verbal chan-
nel by additional information from visual modal-
ity. Investigating how humans reconstruct the
meaning from a noisy data provides insights about
how to incorporate human-like processing into
communication systems. The psycholinguistic ex-
periments help us to understand baseline prefer-
ences and the underlying mechanism of gap con-
struction processes for meaning extraction. This
capability for multi-modal integration can be a
very specific yet crucial feature in resolving ref-
erences and/or performing commands for i.e. a
helper robot that aids people in their daily activ-
ities.

2 Meaning Recovery

The task of extracting meaning from a noisy in-
put has been widely addressed by uni-modal ap-
proaches. In a uni-modal way, re-construction can
be guided by e.g. morphological, syntactic, and
semantic properties. In that case, a probability of
a syntactic category in a certain context can be ob-
tained from a language model (Asnani et al., 2015;
Bickel et al., 2005). For example, using N-grams
is a popular method for this task since they pro-
vide very robust predictions for local dependen-
cies. However, their power is less when it comes
to dealing with long-range dependencies. On the
other hand, as several studies (Mirowski and Vla-
chos, 2015; Gubbins and Vlachos, 2013) show, a
language model employing the syntactic depen-
dencies of a sentence brings the relevant contexts
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closer. Using the Microsoft Research Sentence
Completion Challenge (Zweig and Burges, 2012),
Gubbins and Vlachos (2013) have showed that in-
corporating syntactic information leads to gram-
matically better options for a semantic text com-
pletion task. Semantic classification (e.g. ontolo-
gies) and clustering can also be used to derive pre-
dictions on the semantic level for meaning recov-
ery. However, when it comes to the description
of daily activities, contextual information coming
from another modality would be more beneficial,
since linguistic distributions alone could hardly
provide enough clues to distinguish the action of
bringing a pan from bringing a mug, which is a
crucial difference for e.g. helper robots.

Cross-modal integration of two modalities can
be addressed by various methods in a range from
simply putting all features from both modali-
ties together and then train a model to learn
the associations, to more complex structures,
e.g. relating uni-modal features from sev-
eral modalities on a conceptual level by using
common representations. Considering that the
task of meaning extraction may benefit from
not only low-level but also high-level knowl-
edge representations, one meaningful method
would be to utilize a triplet notation, consisting
of (argument, relation type, predicate) where
relation type is one of a predefined set of ac-
cepted relations, such as AGENT or THEME while
Predicate and Argument are tokens of the in-
put sentence. Within this framework, the re-
construction of content words can be formalized
as recovering/predicting the predicates or argu-
ments of a sentence. To put it simply, a sentence
like “the woman carries ....” can be formulated
into two triplets; (womani,AGENT, carry) and
(unknowni, THEME, carry). Here the task is to
determine the unknown entity which has directly
related to the carry action and indirectly to the
agent woman. In case the contextual information
provided by the visual environment contains ad-
ditional information (e.g. a scene that depicts a
woman with a grocery bag), the missing part can
be successfully filled.

Salama et al. (2018) address the problem of in-
complete linguistic input referring to daily envi-
ronment context by utilizing a context-integrating
dependency parser. Their focus was to recover
content words like nouns, adjectives and verbs
given the contextual features (e.g. object prop-

erties, spatial relations among the objects or the-
matic roles). The results indicate that giving a
strong influence to contextual information helps to
fill a majority of gaps correctly.

While re-construction of content words is
mostly about finding out either the argument or the
predicate based on the relation between each other,
re-construction of grammatical words is to deter-
mine the relation between argument and predi-
cate. Furthermore, re-construction of grammatical
words could be more challenging since they tend
to occur with higher frequencies than the content
words, yielding a very small type/token ratio (i.e.
weaker a collocational relationship) that makes the
reconstruction of them based on only linguistic
information more difficult. Although this is be-
yond the scope of the current paper, it should be
noted that a full-fledged cross-modal meaning re-
covery system is dependent on a success of visual
relation extraction component as well. The state-
of-art computer vision systems can be considered
more effective to extract spatial relations among
object and object properties compared to relations
between the actors and their actions.

3 Situated Language Comprehension in
a Noisy Setting

The noise in communication could be originated
from various channels and sources. First of all,
it can be a linguistic noise (e.g. spelling mis-
takes, complex attachments), or visual ambiguities
(e.g. clutter of the environment, occlusions) or an
acoustic noise.

The issues of how to comprehend noisy lin-
guistic input and reconstruct the intended meaning
have been addressed by both psycholinguistic and
computational line of research (e.g. (Levy, 2011,
2008)).

According to a noisy-channel account, that
mainly focus on linguistic noise, the sentence
comprehension mechanism integrates all the in-
formation (at the syntactic, semantic and dis-
course level) from the existing words and use this
linguistic evidence to predict the missing parts
and infer the possible meaning (Gibson et al.,
2013). Several studies have shown that in case
of higher degrees of syntactic complexity, hu-
mans tend to choose an interpretation which is
in line with the concurrent visual information or
general world knowledge, even though this inter-
pretation requires to accept grammatically unac-
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ceptable syntactic structures (Johnson and Char-
niak, 2004; Christianson et al., 2001; MacWhin-
ney et al., 1984). Cunnings (2017)’s study on lan-
guage learners also indicated when the perceiver
processes (syntactically) noisy linguistic input, the
other linguistic and non-linguistic constraints are
prioritized compared to syntactic ones.

Based on noisy-channel framework, Levy
(2008) proposes a probabilistic model of language
understanding regarding situations where there are
uncertainty about word-level representations. He
addresses the problem in two different levels; a
global inference that can be reached after process-
ing the entire input, and incremental inference that
is formed (usually) word-by-word the sentence
unfolds. The main contribution of the proposed
method is that it takes into account the prior and
posterior probabilities calculated based on both
linguistic and non-linguistic evidence, including
e.g. the expectations about speaker’s grammatical
competence or about the environmental condition
that can hinder the speech signals.

Gibson et al. (2013) describes language under-
standing as rational integration of noisy evidence
and semantic expectations. In their study, they
test their predictions by conducting reading ex-
periments, in which mostly the prepositions in
the sentences were altered (by deletion or inser-
tion) keeping content-word same across condi-
tions. For example, an ungrammatical sentence
“The mother gave the candle the daughter” can
be easily treated as plausible by inserting to be-
fore “the daughter”. The higher prior probability
of the latter version of the sentence compared to
that of the former one pulls the sentence meaning
towards itself.

4 Negation Processing

One interesting question regarding the task of
meaning recovery is how to recover a meaning
communicated with a sentence that involves un-
clear negated statement.

Since negation is considered as a higher order
abstract concept, it has its own uniqueness as a
grammatical category. Identifying the scope and
focus of negation is one of the challenging issues
that gets particular attention from the NLP com-
munity (e.g. SEM 2012 shared task, Morante and
Blanco (2012)). From a psycholinguistic perspec-
tive, the core discussion lies around whether both
negated and actual situation of content is simu-

lated or only the actual one. However, regardless
of how this process happens, the literature agrees
on that sentences containing negation are harder to
interpret than affirmative sentences (Orenes et al.,
2014; Khemlani et al., 2012; Kaup et al., 2006;
Lüdtke and Kaup, 2006; Carpenter and Just, 1975;
Clark and Chase, 1972).

It has been conclusively shown that a negative
sentence is processed by first simulating the pos-
itive argument. For example, after reading a neg-
ative sentence “The bird was not in the air”, a
response to image that depicts a flying bird was
faster than to a image of a bird at rest, (Zwaan,
2012). In addition to an overall processing diffi-
culties that negation entails, it has been also shown
that it is only integrated into the sentence meaning
at a later point (Lüdtke et al., 2008).

On the other hand, there are also some evi-
dence that indicates that when negation is sup-
ported by right contextual support, the positive ar-
guments is no longer need to be represented, yield-
ing faster verification compared to no-context sit-
uations (Tian et al., 2016; Dale and Duran, 2011;
Nieuwland and Kuperberg, 2008).

5 Experiment

This study focuses on humans’ preferences for the
reconstruction of unclear sentence parts (in Ger-
man) by using visual-world paradigm. Moreover,
the effect of contextual information on situated
reference resolution and on gap re-construction
has been also manipulated by restricting the affor-
dances of the locative object in one of the visual
arrangements.

Gibson et al. (2013) list four different criteria
of language processing system that have an im-
pact on meaning recovery; (i) how close the literal
sentence is to the plausible alternative, (ii) what
kind of change is involved (insertion or deletion),
(iii) the expectations about the corruption (noise-
rate), and (iv) the plausibility of implausible sen-
tences based on context or speaker-based. Basi-
cally by keeping all the criteria described by Gib-
son et al. (2013) constant, we focus, in this ex-
periment, on obtaining prior probabilities of three
types of grammatical words; two common prepo-
sition of location (on and next to) and negation par-
ticle (not). All sentences are syntactically plau-
sible regardless from which focus-of-interest gap
filler is used and their semantic plausibility is
dependent on the information coming from the
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visual-world. Here in this current paper, we fo-
cus more on how meaning recovery is affected by
negation, instead of detailed discussion into nega-
tion processing. Thus we kept the focus of nega-
tion constant among conditions, and the scene has
been designed to have low referential competition
(i.e. there are two tables in the scene, making
the decision a binary task instead of a multinomial
one).

The task is simply, hearing a sentence that com-
municates the intended meaning and process it and
extract the meaning as close as possible to the in-
tended one (Shannon, 1948). The goals that need
to determined are;

• the re-construction of the gap-word

• full-sentence interpretation (“which object
needs to be moved, and where to”)

5.1 Participants
20 students (native speakers of German) partici-
pated in the experiment (Mean age = 23.8, SD =
3.1). They were paid or given a course credit to
participate. The entire experiment took approxi-
mately 45 minutes for each participant including
the familiarization and instruction sessions.

5.2 Material
Linguistic Material. In their complete form with-
out a gap, all sentences have the same structure
except the negation/preposition part (NEG/PP) as
given below. The sentences start with a verb in
an imperative form preceding an object (NP) and
a prepositional phrase that specifies the goal loca-
tion (PP). Then the sentence continues with a dis-
fluency (umm) and a repair/complement part con-
sisting of a negation or one of the two preposition
of location. Our focus-of-interest gap fillers are
(nicht (not), auf(on), neben (next to). These are
chosen since they can fill the same position inter-
changeably.

• Stell den Becher auf den Tisch, umm
[auf/nicht/neben] den blauen.
put the mug on the table, umm [on/not/next
to] the blue one.

The choice of filler-word given the visual in-
formation determines which object that the re-
pair/complement part is attached to. In this set-
ting, the repair/complement may have three differ-
ent syntactic roles; referring back to the OBJECT

which is the mug (with not), referring back to the
ADVERBIAL which is the table (with both on
and not) or providing new complementary AD-
VERBIAL which is an another mug (with next
to). Due to filling different roles, all possible lin-
guistic interpretations require different parsing re-
sults. In all cases, the object referred to in the
repair/complement part shares either the property
(e.g. blue) or the object class (e.g. mug) with the
target object or location.

Pre-prossessing of the spoken material. The
sentences were recorded by a male native speaker
of German at a normal speech rate. Intona-
tional differences between different linguistic en-
tities have been found to have a significant effect
on reference resolution (Coco and Keller, 2015;
Snedeker and Trueswell, 2003). Therefore, we
avoided unequal intonational breaks that may bias
the interpretation. The breaks separating phrases
were equalized.

A constant background noise (a sound record-
ing from a restaurant) was added to an entire spo-
ken sentence with the Audacity software 1. In or-
der to mask the target word completely, the vol-
ume of the NEG/PP part starting from the inter-
jection (umm) was gradually decreased till the end
of the gap-word. Concurrently, the volume of the
background noise was increased during this seg-
ment.

Scenes. In order to accommodate the intended
interpretation(s) and to eliminate others, the ob-
ject properties and their spatial relations among
each other have been systematically manipulated
for each scene. Although, other many more differ-
ent visual arrangements could be possible, for the
sake of systematicity, we have narrowed our visual
conditions down to five scene arrangements, see
Figure 1. Scene-1 conveys all possible interpreta-
tions for all the focus-of-interest fillers. Scene-2A
and Scene-2B allows only on and not. However,
the availability of the location signaled by on is
occupied by another object in Scene-2B. The last
two visual arrangements allows only one interpre-
tation; signaled by not in Scene-3A and by next to
in Scene-3B. The number of objects in the scenes
was limited to eight and one additional object has
been used in Scene-2B. For each visual condition,
six different visual scene were designed resulting
30 main-trial scene. The 2D visual scenes were

1http://www.audacityteam.org/ - retrieved on 21.11.2018
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created with the SketchUp Make Software 2.
To prevent participants’ associating the focus-

of-interest gap fillers with a particular visual ar-
rangement, additional slightly changed sentences
and scenes were introduced as filler items.

5.3 Procedure

Using the visual-world paradigm, we presented
participants visual scenes with accompanying spo-
ken sentences. We employed a simple “look-and-
listen” experiment following clicking tasks to get
user’s preferences. The experiment started with
filling out the written consent and demographic
data form. Afterwards, the instructions were given
in written format, preceding the 3 familiarization
trials.

The participants were instructed that multi-
modal stimuli always contain some background
noise, and at one point, one word will be impossi-
ble to hear. Then they are expected to choose the
gap-filler word and click on the target object and
location communicated in the sentence. It was told
that target object is always located on the middle
stand and needs to be moved to one of the white
trays on the scene located on various places. In
order to be able to separate the task of identifying
object from identifying location, target objects and
locations are presented in a specific layout.

The stimuli were displayed on an SR Eyelink
1000 Plus eye tracker integrated into a 17 mon-
itor with a resolution of 1280 x 1024 pixels. We
utilized a total of 53 visual displays with accompa-
nying spoken utterances (3 familiarization, 30 test
trials and 20 fillers). Each trial began with a a drift
correction and the presentation of a simple fixa-
tion cross for 2 sec, located at the middle-bottom
of the screen. Afterwards, a 5 sec of visual pre-
view before the onset of the spoken sentence was
given. The preview gives a comprehender time to
encode the visual information in advance of the
linguistic information being presented. So, visual
attention is intended to be free of recognizing the
objects of the visual context during language pro-
cessing. Then, the spoken sentence was presented
accompanying the visual stimulus. A trial ended
2 sec after the offset of the sentence. Participants
were asked to examine the scene carefully and at-
tend the information given in the audio. The order
of stimuli was randomized for each participant.

After the sentence is completed, the scene dis-

2http://www.sketchup.com/ - retrieved on 06.05.2018

appears and the participants are asked to click their
preference for the gap position among five op-
tions. They were also informed about that the gap
could be accurately filled by more than one op-
tion. These options are “nicht (not)”, “neben (next
to)”, “auf (on)”, “mit (with)”, and “den/das/die
(the)3”. Whereas the focus-of interest gap-fillers
are syntactically acceptable for the gap posi-
tion, two other grammatical words were provided
among the options as distractors; mit (with) and
den/das/die (the). In German, the preposition mit
(with) requires a dative object, therefore the gen-
der of the following article should be different
than the nominative or accusative forms of the ar-
ticle in the repair/complement part. Furthermore,
den/das/die (the) can be understood in two ways,
either as a repetition of the definite article or as a
relative pronoun. In the former case, as a gap filler,
it does not provide any additional information. On
the other hand, the lack of relative clause verb
makes the second interpretation unacceptable.

After the preference has been explicitly made,
the scene appears again so that the participant can
click on the scene to answer two questions respec-
tively; which object is the target? and where is the
target location?.

Although a time-course analysis of fixated
items and locations when the sentence unfolds
is very relevant in understanding the underlying
mechanisms of language processing, in this paper,
we narrow down our scope into participants’
explicitly made choices after each multi-modal
stimulus.

Our hypothesizes are listed as

- Syntactically all gap positions require one
insertion to correctly accommodate the in-
tended meaning, however unlike preposition
of locations, negation operation is considered
as a high-level (abstract) concept. Therefore,
the sentences with on and next to should be
more easier to disambiguate, therefore more
preferred compared to ones with not.

- Conceptual information, i.e. target location’s
being not available as illustrated in Figure 1e
may force to change the interpretation, ac-
cordingly the preference, from on to not.

3The respective article/relative pronoun was shown
among options in accordance with the grammatical gender
of the noun it modifies
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(a) Scene-1: on, next to, not

.
(b) Scene-2A: on, not (c) Scene-2B: not, on

(d) Scene-3A: only not (e) Scene-3B:only next to

Figure 1: Sample scenes that illustrate five different visual manipulations

6 Results

In this section, the gap-filler preferences and the
global sentence interpretation by analyzing accu-
rately chosen object given their preference have
been reported. Figure 2 shows the distribution of
the preferences for each visual condition. In total,
participant preferences for 600 trials (20 partici-
pant * 30 scene) were taken into account.

Gap Construction Preferences. The visual
condition Scene-1 was designed to analyze user’s
general tendency among three focus-of interest
gap fillers, since all are equally plausible w.r.t. the
visual context. In this condition, next to was pre-
ferred more in 43.9% of the trials compared to on

(30.8%) and not (20.6%). The other distractor op-
tions were preferred only in 3.7% of trials. The re-
sults of a Friedmans ANOVA indicated that prefer-
ence rates for the three focus-of interest gap fillers
significantly differs (χ2(2) = 8.95, p < .001).
Wilcoxon tests were used to follow up this find-
ing. It seems that this difference among groups is
originated by the difference between not and next
to (z − score = −2.23, p < .0167), with a Bon-
ferroni correction).

The analysis on whether the participant could
choose the object and the location in line with
their explicitly made preference also demonstrated
that all target objects are correctly identified. This
result is highly expected, considering that the
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PP/NEG part does not carry relevant information
for the target identification in this visual setting.
On the other hand, regarding the location, while
100% of the participants, who chose next to, cor-
rectly determine the target location, which is in
line with their preference, this accuracy score is
90.9% for on and it drops drastically to 71.4% for
not.

Figure 2: Preference distributions regarding each
visual condition

The Effect of Contextual Cues. Whether the
availability of a location signaled by one of the
possible gap fillers has an effect on the preferences
has been investigated by a mixed-design ANOVA
comparing the number of preferred option across
two visual arrangements; Scene-2A and Scene-
2B. In these conditions, on and not are the two
only semantically plausible gap fillers. The pro-
portion results indicated that when the two lo-
cations are equally available (Scene-2A), partici-
pants prefer more on as a gap filler (57.5%), and
the option not was chosen in only almost 13.3%
of the trials. On the other hand, while the tar-
geted location referred by the sentence with on re-
pair is occupied (Scene 2B), then the participants’
tendency to prefer not increases considerably by
21%. The preference of next to stays almost the
same across the conditions.

The results of the ANOVA indicated no main
effect of the visual condition (p > .05). How-
ever, the main effect of Preference was signifi-
cant (F (2, 38) = 8.642, p = .001). In gen-
eral, on has been preferred more compared to not
and neben; (F (1, 19) = 10.92, p = .004) and
(F (1, 19) = 11.61, p = .003) respectively. Re-
garding our research question, the interaction ef-
fect between the visual condition and the prefer-
ence is the relevant one, and it displays a signif-
icant interaction (F (2, 38) = 7.79, p = .001).

This indicates that the preference tendencies sig-
nificantly differed in Scene-2A and Scene-2B. To
break down this interaction, contrasts were per-
formed comparing each level of focus-of-interest
preferences across two scene types. These re-
vealed significant interactions when comparing on
and not, (F (2, 38) = 18.98, p < .001). Look-
ing at the interaction graph in Figure 3, this sug-
gests that when the target location signaled by
on is occupied, participants looks for alternatives
and ending up with only other available interpre-
tation in line with not. Moreover, the contrast
between not and next to was significant as well,
(F (2, 38) = 5.30, p < .05).

Figure 3: Mean number of preferred focus-of-
interest fillers across Scene-2A and Scene-2B

Preferences under Restricted Conditions.
The last comparison focuses on the cases, in which
the visual arrangements and the properties of the
objects only allow one interpretation. Scene-3A
favors only the interpretation which is in line with
the use of not as a gap filler. Yet, only in 53.3%
of the trials correct option has been chosen as gap
filler. Despite their conflict with the visual world,
other gap fillers have been chosen in a consider-
able amount; next to (16.7%), on (10.8%), with
(5.8%) and the/that (11.7%). On the other hand,
Scene-3A syntactically allows only next-to. The
results showed that in 72.5% of the trials, par-
ticipants preferred next to. The comparison be-
tween the number of correct preferences across
two visual condition revealed that on average, par-
ticipants make more correct choices when they
see Scene-3B (M = 4.35, SE = 1.72) compared
to Scene-3A (M = 3.20, SE = .41), (t(19) =
−2.31, p < .05).
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7 Conclusion

In this study, by systematic manipulation of visual
scene, we have obtained prior expectations regard-
ing two locative prepositions and negation parti-
cle and we have also demonstrated how contextual
cues pull an interpretation towards one side.

In order to accommodate different interpreta-
tions, five different visual arrangements have been
utilized. Although our investigations into this area
are still ongoing, the results could be a useful
aid for developing models of situated natural lan-
guage understanding that aims to account noisy
data comprehension and meaning recovery. In this
study, we particularly tried to put some spotlight
into the special case “negation” as well.

The results indicate that when the visual world
supports all interpretations, people have tendency
to choose next to as a gap filler, that entails the
repair/complement part referring to another ob-
ject, which is not mentioned in the sentence be-
fore. Their second preference is to attach the
repair part to the prepositional phrase (ADVER-
BIAL) by choosing on as gap filler. This selec-
tion also inherently assumes that the repair part
is an affirmative statement. On the other hand,
even in the cases where not is the only semanti-
cally plausible option as gap filler, the participants
showed hesitance to choose it. This results are also
in line with noisy-channel framework. A sentence
with a gap is more harder to process compared to
a complete sentence, since it requires at least two
sub-tasks to be performed; predicting the gap-filler
given the context and then confirming the inferred
meaning. While the spatial relations like next to
and on are easily graspable from an image, a neg-
ative statement requires additional operation to ac-
count for actual situation, that’s why the listen-
ers may prefer to override contextual expectations
and stick to more easy-to-process one even it se-
mantically, and sometimes syntactically creates a
conflict (Ferreira, 2003). However, this preference
(choosing on over not) still seems to be affected by
the contextual cues like the availability of a target
location.

It should nonetheless be acknowledged that the
systematicity that we had to follow to single out
all other effects becomes a limitation for general-
ization, thus further research is needed to better
understand first the dynamics between the prefer-
ence and the visual arrangements and second the
dynamics between negation in detail and contex-

tual cues. Moreover, none of the visual manipula-
tions in this study was designed to address to ex-
plain the difference between choosing next to and
on. Another set of experiments with reversed or-
der; the first PP with a next to and the complement
part with on would help us to gain some insights
on this issue.
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Abstract
In this paper we introduce a new natu-
ral language processing dataset and bench-
mark for predicting prosodic prominence
from written text. To our knowledge
this will be the largest publicly avail-
able dataset with prosodic labels. We de-
scribe the dataset construction and the re-
sulting benchmark dataset in detail and
train a number of different models rang-
ing from feature-based classifiers to neural
network systems for the prediction of dis-
cretized prosodic prominence. We show
that pre-trained contextualized word rep-
resentations from BERT outperform the
other models even with less than 10% of
the training data. Finally we discuss the
dataset in light of the results and point to
future research and plans for further im-
proving both the dataset and methods of
predicting prosodic prominence from text.
The dataset and the code for the models
are publicly available.

1 Introduction

Prosodic prominence, i.e., the amount of empha-
sis that a speaker gives to a word, has been widely
studied in phonetics and speech processing. How-
ever, the research on text-based natural language
processing (NLP) methods for predicting prosodic
prominence is somewhat limited. Even in the
text-to-speech synthesis domain, with many re-
cent methodological advances, work on symbolic
prosody prediction has lagged behind. We be-
lieve that this is mainly due to the lack of suit-
able datasets. Existing, publicly available anno-
tated speech corpora, are very small by current
standards.

In this paper we introduce a new NLP dataset
and benchmark for predicting prosodic promi-
nence from text which is based on the recently

published LibriTTS corpus (Zen et al., 2019), con-
taining automatically generated prosodic promi-
nence labels for over 260 hours or 2.8 million
words of English audio books, read by 1230 dif-
ferent speakers. To our knowledge this will be the
largest publicly available dataset with prosodic an-
notations. We first give some background about
prosodic prominence and related research in Sec-
tion 2. We then describe the dataset construction
and annotation method in Section 3.

Prosody prediction can be turned into a se-
quence labeling task by giving each word in a text
a discrete prominence value based on the amount
of emphasis the speaker gives to the word when
reading the text. In Section 4 we explain the exper-
iments and the experimental results using a num-
ber of different sequence labeling approaches and
show that pre-trained contextualized word repre-
sentations from BERT (Devlin et al., 2019) outper-
form our other baselines even with less than 10%
of the training data. Although BERT has been pre-
viously applied in various sequence labeling tasks,
like named entity recognition (Devlin et al., 2019),
to the best of our knowledge, this is the first appli-
cation of BERT in the task of predicting prosodic
prominence. We analyse the results in Section
5, comparing BERT to a bidirectional long short-
term memory (BiLSTM) model and looking at the
types of errors made by these selected models. We
find that BERT outperforms the BiLSTM model
across all the labels.

Finally in Section 6 we discuss the methods
in light of the experimental results and high-
light areas that are known to negatively impact
the results. We also discuss the relevance of
pre-training for the task of predicting prosodic
prominence. We conclude by pointing to fu-
ture research both in developing better methods
for predicting prosodic prominence but also to
further improve the quality of the dataset. The
dataset and the PyTorch code for the models are
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available on GitHub: https://github.com/
Helsinki-NLP/prosody.

2 Background

2.1 Prosodic Prominence

Every word and utterance in speech encompasses
phonetic and phonological properties that are not
resulting from the choice of the underlying lex-
ical items and that encode meaning in addition
to that of the individual lexemes. These prop-
erties are referred to as prosody and they de-
pend on a variety of factors such as the seman-
tic and syntactic relations between these items,
and their rhythmic grouping (Wagner and Wat-
son, 2010). Prosodic variation in speech con-
tributes to a large extend to the perception of nat-
ural sounding speech. Prosodic prominence repre-
sents one type of prosodic phenomenon that mani-
fests through the subjective impression of empha-
sis in speech where certain words are interpreted
as more salient within their lexical surrounding
context (Wagner and Watson, 2010; Terken and
Hermes, 2000).

Due to the inherent difficulty in determining
prominence — even for human subjects, see, e.g.,
(Yoon et al., 2004) — the development of auto-
matic tools for the annotation of prominent units
has been a difficult task. This is exemplified
from the large degree of discrepancy observed
between human annotators when labeling promi-
nence where the inter-transcriber agreement can
vary substantially based on a multitude of fac-
tors such as the choice of annotators or annotation
method (Mo et al., 2008; Yoon et al., 2004; Kak-
ouros and Räsänen, 2016). Similarly, in promi-
nence production, certain degree of freedom in
prominence placement and large variability be-
tween styles and speakers (Yuan et al., 2005), ren-
ders the task of prominence prediction from text
very difficult compared to most NLP tasks involv-
ing text only.

2.2 Generating Prominence Annotations

Throughout the literature a number of methods
have been proposed for the labeling of prosodic
prominence. These methods can be roughly cate-
gorized on the basis of the need for training data
(manual prosodic annotations) into supervised and
unsupervised, but crucially, on the basis of the in-
formation they utilize from speech and language
to generate their predictions (prominence labels).

As prominence perception has been found to cor-
relate with acoustic-phonetic features (Lieberman,
1960), with the constituent syntactic structure of
an utterance (Gregory and Altun, 2004; Wagner
and Watson, 2010; Bresnan, 1973), with the fre-
quency of occurrence of individual lexical items
(Nenkova et al., 2007; Jurafsky et al., 2001), and
with the probabilities of contiguous lexical se-
quences (Jurafsky, 1996), automatic methods have
been developed utilizing these features either in
combination or independently (Nenkova et al.,
2007; Kakouros et al., 2016; Ostendorf et al.,
1995; Levow, 2008).

Overall, these features can be largely divided
into two categories: (i) acoustic (derived from
the sound pressure waveform of the speech sig-
nal) and (ii) language (extracted by studying the
form of the language; for instance, semantic or
syntactic factors in the language). Both acous-
tic and language-based features have been shown
to provide good overall performance in detect-
ing prominence (in both supervised and unsuper-
vised cases), where, however, the methods utiliz-
ing acoustic features seem to provide better per-
formance for the unsupervised detection of promi-
nences in speech (Suni et al., 2017; Wang and
Narayanan, 2007; Kakouros and Räsänen, 2016),
with state-of-the-art results reaching high level of
accuracy, close to that of the inter-annotator agree-
ment for the data. While the top-down linguis-
tic information is known to correlate with percep-
tual prominence, in this paper we want to make a
clear distinction between data labelling and text-
based prediction. Thus, in this work, we uti-
lize purely acoustic prominence annotations of the
speech data using the method developed by Suni
et al. (2017) as the prosodic reference.

2.3 Predicting Prosodic Prominence from
Text

To what extent prosodic prominence can be pre-
dicted from textual input only has been a topic of
inquiry in linguistics for a long time. In traditional
generative phonology (Chomsky and Halle, 1968),
accent placement was considered to be fully deter-
mined by linguistic structure, whereas a seminal
work by Bolinger (1972) emphasized the impor-
tance and relevance of the lexical semantic context
as well as the speakers’ intention, positing that,
in general, a mind reading ability may be neces-
sary to determine prominent words in a sentence.
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Figure 1: Continuous Wavelet Transform Annotation method.

non-prominent prominent
sets (clean) speakers sentences words 0 1 2

train-100 247 33,041 570,592 274,184 155,849 140,559
train-360 904 116,262 2,076,289 1,003,454 569,769 503,066

dev 40 5,726 99,200 47,535 27,454 24,211
test 39 4,821 90,063 43,234 24,543 22,286

total: 1230 159,850 2,836,144 1,368,407 777,615 690,122

Table 1: Dataset statistics

As longstanding inquiries hold, the goal of reli-
ably predicting the placement of prominent enti-
ties from information automatically derived from
textual resources is still ongoing.

Several efforts have been made towards this di-
rection, especially in text-to-speech (TTS) syn-
thesis research, where generation of appropriate
prosody would increase both intelligibility and
quality of synthetic speech. Before the deep
learning paradigm shift in NLP, several linguis-
tic features were examined for prominence pre-
diction, including function-content word distinc-
tion, part-of-speech class, and information status
(Hirschberg, 1993). Statistical features like uni-
grams, bigrams, and TF-IDF have also been fre-
quently used (Marsi et al., 2003). Later, the ac-
cent ratio, or simply the average accent status of
a word type in the given corpus, was found to be
a stronger predictor than linguistic features in the
accent prediction task (Nenkova et al., 2007), sug-
gesting that lexical information may be more rel-
evant than linguistic structure for the prominence
prediction task.

Recently, continuous representations of words
have become commonplace in prosody predic-

tion for TTS, though the symbolic level is of-
ten omitted and pitch and duration are predicted
directly using lexical embeddings (Watts, 2012).
Yet, closely related to the proposed method, (Ren-
del et al., 2016) experimented with various lex-
ical embeddings as an input to a Bi-directional
LSTM model, predicting binary prominence la-
bels. Training on a proprietary, manually an-
notated single speaker corpus of 3730 sentences,
they achieved an F-score of 0.71 with Word2Vec
(Mikolov et al., 2013) embeddings, with a clear
improvement over traditional linguistic features.

3 Dataset

We introduce, automatically generated, high qual-
ity prosodic annotations for the recently published
LibriTTS corpus (Zen et al., 2019). The LibriTTS
corpus is a cleaned subset of LibriSpeech corpus
(Panayotov et al., 2015), derived from English au-
diobooks of the LibriVox project.1 We selected the
‘clean’ subsets of LibriTTS for annotation, com-
prising of 262.5 hours of read speech from 1230
speakers. The transcribed sentences were aligned

1https://librivox.org
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Token Tell me you rascal , where is the pig ?
Discrete label 2 0 0 0 NA 2 0 0 1 NA
Real-valued label 1.473 0.333 0.003 0.167 NA 2.160 0.006 0.037 0.719 NA

Table 2: Example sentence with the annotation from the dataset. Discrete prominence values were used
in the experiments of this paper. The real-valued labels are used for generation of the discrete labels,
however, they could also be used directly for prominence prediction.

with the Montreal forced aligner (McAuliffe et al.,
2017), using a pronunciation lexicon and acous-
tic models trained on the LibriSpeech dataset.
The aligned sentences were then prosodically an-
notated with word-level acoustic prominence la-
bels. For the annotation, we used the Wavelet
Prosody Analyzer toolkit2, which implements the
method described in (Suni et al., 2017). Briefly,
the method consists of 1) the extraction of pitch
and energy signals from the speech data and du-
ration from the word level alignments, 2) filling
the unvoiced gaps in extracted signals by inter-
polation followed by smoothing and normalizing,
3) combining the normalized signals by summing
or multiplication, and 4) performing a continuous
wavelet transform (CWT) on the composite signal
and extracting continuous prominence values as
lines of maximum amplitude across wavelet scales
(see Figure 1). Essentially, the method assumes
that the louder, the longer, and the higher, the more
prominent. On top of this, the wavelet transform
provides multi-resolution contextual information;
the more the word stands out from its environ-
ment in various time scales, the more prominent
the word is perceived.

For the current study, continuous prominence
values were discretized to two (non-prominent,
prominent) or three (non prominent, somewhat
prominent, very prominent) classes. The binary
case is closely related to the pitch accent de-
tection task, aiming for results comparable with
the majority of the literature on the topic. The
weights in constructing the composite signal and
discretization thresholds were adjusted based on
The Boston University radio news corpus (Os-
tendorf et al., 1995), containing manually anno-
tated pitch accent labels. This corpus is often
used in the evaluation of pitch accent annotation
and prediction quality, with the current annotation
method yielding state-of-the-art accuracy in word
level acoustic-based accent detection, 85.3%, us-

2https://github.com/asuni/wavelet_
prosody_toolkit

ing weights 1.0, 0.5 and 1.0 for F0, energy and
duration respectively, and using multiplication of
these features in signal composition. For three-
way discretization, the non-prominent / promi-
nent cut-off was maintained and the prominent
class was split to two classes of roughly equal
size. Statistics of the resulting dataset are de-
scribed in table 1. The full dataset is available
for download here: https://github.com/
Helsinki-NLP/prosody. Although not dis-
cussed in this paper, the described acoustic annota-
tion and text-based prediction methods can be ap-
plied to prosodic boundaries too, and the bound-
ary labels will be included in the dataset at a later
stage.

4 Experiments

In this section we describe the experimental setup
and the results from our experiments in predicting
discrete prosodic prominence labels from text us-
ing the corpus described above.

4.1 Experimental Setup

We performed experiments with the following
models:
• BERT-base uncased (Devlin et al., 2019)
• 3-layer 600D Bidirectional Long Short-Term

Memory (BiLSTM) (Hochreiter and Schmid-
huber, 1997)
• Minitagger (SVM) (Stratos and Collins,

2015) + GloVe (Pennington et al., 2014)
• MarMoT (CRF) (Mueller et al., 2013)
• Majority class per word
The models were selected so that they cover

a wide variety of different architectures from
feature-based statistical approaches to neural net-
works and pre-trained language models. The mod-
els are described in more detail below.

We use the Huggingface PyTorch im-
plementation of BERT available in the
pytorch transformers library,3 which

3https://github.com/huggingface/
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we further fine-tune during training. We take
the last hidden layer of BERT and train a single
fully-connected classifier layer on top of it,
mapping the representation of each word to the
labels. For our experiments we use the smaller
BERT-base model using the uncased alternative.
We use a batch size of 32 and fine-tune the model
for 2 epochs.

For BiLSTM we use pre-trained 300D GloVe
840B word embeddings (Pennington et al., 2014).
The initial word embeddings are fine-tuned dur-
ing training. As with BERT, we add one fully-
connected classifier layer on top of the BiLSTM,
mapping the representation of each word to the la-
bels. We use a dropout of 0.2 between the layers of
the BiLSTM. We use a batch size of 64 and train
the model for 5 epochs.

For the SVM we use Minitagger4 implemen-
tation by Stratos and Collins (2015) using each
dimension of the pre-trained 300D GloVe 840B
word embeddings as features, with context-size 1,
i.e. including the previous and the next word in the
context.

For the conditional random field (CRF) model
we use MarMot5 by Mueller et al. (2013) with
the default configuration. The model applies stan-
dard feature templates that are used for part-of-
speech tagging such as surrounding words as well
as suffix and prefix features. We did not opti-
mize the feature model nor any of the other hyper-
parameters.

All systems except the Minitagger and CRF are
our implementations using PyTorch and are made
available on GitHub: https://github.com/
Helsinki-NLP/prosody.

For the experiments we used the larger train-360
training set. We report both 2-way and 3-way clas-
sification results. In the 2-way classification task
we take the three prominence labels and merge la-
bels 1 and 2 into a single prominent class.

4.2 Results

All models reach over 80% in the 2-way classi-
fication task while 3-way classification accuracy
stays below 70% for all of them. The BERT-
based model gets the highest accuracy of 83.2%
and 68.6% in the 2-way and 3-way classification
tasks, respectively, demonstrating the value of a

pytorch-transformers
4https://github.com/karlstratos/

minitagger
5http://cistern.cis.lmu.de/marmot/

pre-trained language model in this task. The 3-
layer BiLSTM achieves 82.1% in the 2-way classi-
fication and 66.4% in the 3-way classification task.

The traditional feature-based classifiers perform
slightly below the neural network models, with
the CRF obtaining 81.8% and 66.4% for the two
classification tasks, respectively. The Minitagger
SVM model’s test accuracies are slightly lower
than the CRF’s with 80.8% and 65.4% test accu-
racies. Finally taking a simple majority class per
word gives 80.2% for the 2-way classification task
and 62.4% for the 3-way classification task. The
results are listed in Table 3. The fairly low results
across the board highlight the difficulty of the task
of predicting prosodic prominence from text.

To better understand how much training data is
needed in the two classification tasks, we trained
selected models with different size subsets of the
train-360 training data. The selected subsets were:
1%, 5%, 10%, 50% and 100% of the training ex-
amples (token-label pairs). Figures 2 and 3 contain
the learning curves for the 2-way and 3-way clas-
sification tasks, for all the models except for the
majority and random baselines.

For all models and for both of the classifica-
tion tasks we notice that they achieve quite high
test accuracy already with a very small number
of training examples. For most of the models the
biggest improvement in performance is achieved
when moving from 1% of the training examples
to 5%. All models have reached close to their
full predictive capacity with only 10% of the train-
ing examples. For example, BERT achieves 2-way
classification test accuracy of 82.6% with 10% of
the training data, which is only -0.6% points lower
than the accuracy with the full training set. In the
3-way classification task 10% of the training data
gives 67.1% for BERT, which is -1.7% points be-
low the accuracy with the full training set.

Interestingly, in the 2-way classification task the
BiLSTM model shows a slightly different learning
curve, having already quite a high performance
with just 1% of the training data, but then mak-
ing no improvement between 1% and 5%. How-
ever, between 5% and 100% the BiLSTM model
improvement is almost linear.

As the proposed dataset has been automatically
generated as described in Section 3, we also tested
the best two models, BERT and BiLSTM, with a
manually annotated test set from The Boston Uni-
versity radio news corpus (Ostendorf et al., 1995).
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Model Test accuracy (2-way) Test accuracy (3-way)
BERT-base 83.2% 68.6%
3-layer BiLSTM 82.1% 66.4%
CRF 81.8% 66.4%
SVM+GloVe 80.8% 65.4%
Majority class per word 80.2% 62.4%
Majority class 52.0% 48.0%
Random 49.0% 39.5%

Table 3: Experimental results (%) for the 2 and 3-way classification tasks.

For this experiment we trained the models using
the train-360 training set (as above) replacing only
the test set. The results of this experiment are
shown in Table 4. The good results6 from this ex-
periment provide further support for the quality of
the new dataset. Notice also that the difference
between BERT and BiLSTM is much bigger with
this test set (+3.9% compared to +1.1%). This dif-
ference could be due to the genre difference be-
tween the two test sets, with the Boston Univer-
sity news corpus being more contemporary com-
pared to the source for our proposed dataset (pre-
1923 books). This point will be further discussed
in Section 6.

Model vs expert vs acoustic
BERT-base 82.9% 82.1%
3-layer BiLSTM 79.0% 79.3%

Table 4: Test accuracies (%) for the Boston Uni-
versity radio news corpus (2-way classification).
expert = expert annotated perceptual prominence
labels, acoustic = our acoustic prominence labels

5 Analysis

The experimental results show that although pre-
dicting prosodic prominence is a fairly difficult
task, pre-trained contextualized word representa-
tions clearly help, as can be seen from the results
for BERT. The difference between BERT and the
other models is clear if we compare the other mod-
els with BERT fine-tuned with a small fraction of
the training data. In fact, BERT already outper-
forms the other models with just 5% of the training
examples in the 2-way classification case and with
10% of the training data in the 3-way classification

6Better results have been reported on Boston dataset us-
ing lexical features, but there are methodological concerns
related to cross-validation training and speakers reading the
same text, see discussion on (Rosenberg, 2009).
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case. This can be seen as an indication that BERT
has acquired implicit semantic or syntactic infor-
mation during pre-training that is useful in the task
of predicting prosodic prominence.

To gain a better understanding of the types of
predictive errors BERT makes, we look at the con-
fusion matrices for the two classification tasks and
compare those with the confusion matrices for the
BiLSTM.

The 3-way classification confusion matrices are
more informative as they allow comparison of the
two models with respect to the predicted label in
cases of error. Figure 4 contains the 3-way classi-
fication confusion matrix for BERT and Figure 5
for the BiLSTM model.

Figure 4: 3-way classification task confusion ma-
trix for BERT.

Figure 5: 3-way classification task confusion ma-
trix for BiLSTM.

In the 3-way classification task, when the gold
label is 0 (non prominent) BERT makes more
errors with prediction being 2 (very prominent)
compared to the BiLSTM model. However, when
the gold label is 2 (very prominent) BiLSTM
makes more predictions with 0 (non prominent)
compared to BERT. In general for 0 labels BERT
seems to have higher precision and BiLSTM better
recall, whereas for label 2 BERT has clearly higher
recall and precision. Both models have low preci-
sion and recall for the less distinctive prominence
(label 1). It seems that the clearest difference be-
tween the two models is in their ability to predict
high prominence (label 2).

We also provide the confusion matrices for the
2-way classification task for the two models. Fig-
ure 6 contains the 2-way classification confusion
matrix for BERT and Figure 7 for the BiLSTM
model. Here BERT has slightly higher precision
and recall across both of the labels.

Figure 6: 2-way classification task confusion ma-
trix for BERT.

Figure 7: 2-way classification task confusion ma-
trix for BiLSTM.

6 Discussion

We have shown above that prosodic prominence
can reasonably well be predicted from text us-
ing different sequence-labelling approaches and
models. However, the reported performance is
still quite low, even for state-of-the-art systems
based on large pre-trained language models such
as BERT. We list a number of reasons for these
shortcomings below and discuss their impact and
potential mitigation.

Although the annotation method has been
shown to be quite robust, errors in automatic align-
ment, signal processing, and quantization intro-
duce noise to the labels. This noise might not be
detrimental to the training due to dataset size, but
the test results are affected. To measure the size of
this effect, manual correction of a part of the test
set could be beneficial.

It is well known that different speakers have
different accents, varying reading proficiency, and
reading tempo, which all impact the consistency of
the labeling as the source speech data contains in
total samples from over 1200 different speakers.
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REF: One way led to the left and the other to the right straight up the mountain .
BERT: One way led to the left and the other to the right straight up the mountain .

REF: In the next moment he was concealed by the leaves .
BERT: In the next moment he was concealed by the leaves .

REF: I had to read it over carefully , as the text must be absolutely correct .
BERT: I had to read it over carefully , as the text must be absolutely correct .

REF: Where were you when you began to feel bad ?
BERT: Where were you when you began to feel bad ?

REF: He is taller than the Indian , not so tall as Gilchrist .
BERT: He is taller than the Indian , not so tall as Gilchrist .

Table 5: Typical 3-way prominence predictions of BERT compared to reference labels.

Given that inter-speaker agreement on pitch ac-
cent placement is somewhere between 80 and 90%
(Yuan et al., 2005), we cannot expect large im-
provements without speaker-specific modelling.

The source speech data contains multitude of
genres ranging from non-fiction to metric poems
with fixed prominence patterns and children’s sto-
ries with high proportion of words emphasized.
The difference in genres could impact the test
results. Moreover, the books included in the
source speech data are all from pre-1923, whereas
BERT and GloVe are pre-trained with contem-
porary texts. We expect that the difference be-
tween BERT and other models would be higher
with a dataset drawn from a more contemporary
source. As noted in Section 3, the difference be-
tween BERT and BiLSTM is much bigger with
the The Boston University radio news corpus test
set (+3.9% compared to +1.1% with our test set).
This could be due to the genre, with The Boston
University radio news corpus being derived from
a more contemporary source.

Overall, our results for BERT highlight the im-
portance of pre-training of the word representa-
tions. As we noticed, already with as little as 10%
of the training data, BERT outperforms the other
models when they are trained on the entire train-
ing set. This suggests that BERT has implicitly
learned syntactic or semantic information relevant
for the prosody prediction task. Our results are
in line with the earlier results by Stehwien et al.
(2018) and Rendel et al. (2016) who showed that
pre-trained word embeddings improve model per-
formance in the prominence prediction task. Ta-
ble 5 lists five randomly selected examples from
the test set and shows the prominence predictions

by BERT compared to the reference annotation.
These examples indicate that even if the overall
accuracy of the model is not high, the predictions
still look plausible in isolation.

Finally, the classifiers in this paper are trained
on single sentences, losing any discourse-level in-
formation and relations to surrounding context.
Increasing the context to contain, e.g., also pre-
vious sentences could improve the results.

7 Conclusion

In this paper we have introduced a new NLP
dataset and benchmark for predicting prosodic
prominence from text, which to our knowledge is
the largest publicly available dataset with prosodic
labels. We described the dataset creation and the
resulting benchmark and showed that various se-
quence labeling methods can be applied to the
task of predicting prosodic prominence using the
dataset.

Our experimental results show that BERT out-
performs the other models with just up to 10% of
the training data, highlighting the effectiveness of
pre-training for the task. It also highlights that
the implicit syntactic or semantic features BERT
has learned during pre-training are relevant for the
specific task of predicting prosodic prominence.

We also discussed a number of limitations of
the automatic annotation system, as well as our
current models. Based on this discussion, and
more broadly, on the findings of this paper, we
want to focus our future research activities in
two fronts. Firstly, we will further develop the
dataset annotation pipeline, improving the qual-
ity of prominence annotation and adding prosodic
boundary labels. Secondly, we will further de-
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velop methods and models for improved predic-
tion of prosodic prominence. In particular, as
our results have shown that pre-training helps
in the task, fine-tuning BERT with data involv-
ing features that are known to impact prosodic
prominence (like part-of-speech tagged data) be-
fore training on the prosody dataset could help to
improve the model performance. Furthermore, we
will look at speaker-aware models, genre adap-
tation, and models for increased context. And,
finally, our ultimate goal is to incorporate these
methods into the development of a state-of-the-art
text-to-speech synthesizer.
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Antti Suni, Juraj Šimko, Daniel Aalto, and Martti
Vainio. 2017. Hierarchical representation and esti-
mation of prosody using continuous wavelet trans-
form. Computer Speech & Language, 45:123–136.

Jacques Terken and Dik Hermes. 2000. The perception
of prosodic prominence. In Prosody: Theory and
experiment, pages 89–127. Springer.

Michael Wagner and Duane G Watson. 2010. Ex-
perimental and theoretical advances in prosody: A
review. Language and cognitive processes, 25(7-
9):905–945.

Dagen Wang and Shrikanth Narayanan. 2007. An
acoustic measure for word prominence in sponta-
neous speech. IEEE transactions on audio, speech,
and language processing, 15(2):690–701.

Oliver Watts. 2012. Unsupervised Learning for Text-
to-Speech Synthesis. Ph.D. thesis, University of Ed-
inburgh.

Tae-Jin Yoon, Sandra Chavarria, Jennifer Cole, and
Mark Hasegawa-Johnson. 2004. Intertranscriber re-
liability of prosodic labeling on telephone conversa-
tion using tobi. In Eighth International Conference
on Spoken Language Processing.

Jiahong Yuan, Jason M Brenier, and Daniel Jurafsky.
2005. Pitch accent prediction: Effects of genre and
speaker. In Ninth European Conference on Speech
Communication and Technology.

Heiga Zen, Viet Dang, Rob Clark, Yu Zhang,
Ron J Weiss, Ye Jia, Zhifeng Chen, and Yonghui
Wu. 2019. LibriTTS: A corpus derived from
LibriSpeech for text-to-speech. arXiv preprint
arXiv:1904.02882.

290



Short Papers



Toward Multilingual Identification of Online Registers

Veronika Laippala1, Roosa Kyllönen1, Jesse Egbert2, Douglas Biber2, Sampo Pyysalo3

1 School of Languages and Translation Studies, University of Turku
2 Applied Linguistics, Northern Arizona University

3 Department of Future Technologies, University of Turku
1,3 first.last@utu.fi, 2 first.last@nau.edu

Abstract
We consider cross- and multilingual text
classification approaches to the identifica-
tion of online registers (genres), i.e. text
varieties with specific situational charac-
teristics. Register is arguably the most
important predictor of linguistic variation,
and register information could improve the
potential of online data for many appli-
cations. We introduce the Finnish Cor-
pus of Online REgisters (FinCORE), the
first manually annotated non-English cor-
pus of online registers featuring the full
range of linguistic variation found online.
The data set consists of 2,237 Finnish
documents and follows the register taxon-
omy developed for the Corpus of Online
Registers of English (CORE), the largest
manually annotated language collection of
online registers. Using CORE and Fin-
CORE data, we demonstrate the feasibil-
ity of cross-lingual register identification
using a simple approach based on convo-
lutional neural networks and multilingual
word embeddings. We further find that
register identification results can be im-
proved through multilingual training even
when a substantial number of annotations
is available in the target language.

1 Introduction

The massive amount of text available online in
dozens of languages has created great opportuni-
ties for Natural Language Processing (NLP). For
instance, methods such as machine translation, au-
tomatic syntactic analysis and text generation have
benefited from the large-scale data available on-
line (Tiedemann et al., 2016; Zeman et al., 2018;
Devlin et al., 2018).

However, the diversity of online data is also
a challenge to its use. Documents have little or

no information on their communicative purpose
or, specifically, on their register (genre) (Biber,
1988). Register – whether a document is a blog,
how-to-page or advertisement – is one of the most
important predictors of linguistic variation and af-
fects how we interpret the text (Biber, 2012). Au-
tomatic identification of registers could thus im-
prove the potential of online data, in particular
for linguistically oriented research (Webber, 2009;
Giesbrecht and Evert, 2009).

However, the automatic identification of regis-
ters has proven to be difficult. Studies of Web
Genre Identification (WGI) have been limited by
small and scattered data sets which have resulted
in lack of robustness and generalization of the
models (Sharoff et al., 2010; Petrenz and Web-
ber, 2011; Pritsos and Stamatatos, 2018; Asheghi
et al., 2014). Furthermore, although online data
is available in many languages and NLP systems
are increasingly focused on multilingual settings
(e.g., Zeman et al. (2018)), WGI studies have fo-
cused nearly exclusively on English texts. The
only large-scale data set representing the full range
of online registers is CORE — the Corpus of On-
line Registers of English — which is based on
an unrestricted sample of English documents from
the searchable web (Egbert et al., 2015).

In this paper, we extend the scope of modeling
online registers to cross- and multilingual settings.
We 1) present the first non-English data set of on-
line registers with manual annotations, 2) show
that it is possible to identify online registers in
a cross-lingual setting, training only on English
data while predicting registers also in Finnish,
and 3) demonstrate that multilingual training can
improve register identification performance even
when a substantial number of target language an-
notations are available. Our approach is based on
convolutional neural networks (Kim, 2014) and
multilingual word embeddings (Conneau et al.,
2018).
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2 Previous Work

In WGI, reported performance is often very high
due to small and skewed corpora. With six widely
used online register corpora composed of 7-70
classes, the best accuracy achieved by Sharoff
et al. (2010) was 97% with character n-grams.
Similarly, Pritsos and Stamatatos (2018) achieved
an F1-score of 79% using two of the same cor-
pora. However, the authors noted that their classi-
fier models identified specific corpus topics rather
than generalizable register features. This was
further confirmed by Petrenz and Webber (2011)
who showed that the applied system performances
dropped drastically when the topic distribution of
the target data was changed after training.

Using the larger Leeds Web Genre (LWG) cor-
pus (Asheghi et al., 2016) of 3,964 documents,
Asheghi et al. (2014) showed that online regis-
ters can be identified in a representative collec-
tion. Their best accuracy was 78.9% on 15 classes
based on plain texts and 90.1% based on a semi-
supervised graph-based method. However, as the
LWG corpus represents only registers exclusive
to the web and is compiled by manually select-
ing the texts, it does not feature the full range of
linguistic variation online. By contrast to LWG,
CORE (Egbert et al., 2015) is based on an un-
restricted sample of the web. Biber and Egbert
(2016) evaluated automatic CORE register detec-
tion performance with stepwise discriminant anal-
ysis, achieving 34% precision and 40% recall.

In previous studies, crosslingual models have
been developed using various methods. Andrade
et al. (2015), Shi et al. (2010) and Lambert (2015)
applied bilingual dictionaries and machine trans-
lation to generate target language models in cross-
lingual topic detection and sentiment analysis.
Many recent neural approaches use multilingual
embeddings to build the document representa-
tions. Approaches such as that of Klementiev
et al. (2012) are based on either the combination of
multilingual word embeddings or directly learned
sentence embeddings. Schwenk and Li (2018)
compared their performance in genre classifica-
tion of a multilingual Reuters corpus, using word
embeddings generated by Ammar et al. (2016)
and combined to document representations using
a one-layer convolutional network and an LSTM-
based system as proposed by Schwenk and Douze
(2017), finding out that the system based on word
embeddings achieved the best performance.

Register English Finnish
Narrative 12,541 (50%) 778 (35%)
Opinion 3,960 (16%) 339 (15%)
D-Informational 3,195 (13%) 379 (17%)
Discussion 2,697 (11%) 140 (6%)
How-to 955 (4%) 144 (7%)
Info-Persuasion 684 (3%) 446 (20%)
Lyrical 576 (2%) 0 (0%)
Spoken 304 (1%) 11 (0%)
Total 24,912 2,237

Table 1: The sizes of the register classes in the two
data sets. The proportions of the classes are given
in parentheses.

3 Data

The data for our study come from two sources.
The English CORE consists of 48,571 documents
coded by four annotators, who used a taxonomy
developed in a data-driven manner to cover the
full range of linguistic variation found in the In-
ternet. The taxonomy is hierarchical and con-
sists of eight main registers divided into 33 sub-
registers. The Narrative main register includes
sub-registers such as News, Short stories and Per-
sonal blogs. The Opinion main register con-
sists of texts expressing opinions, such as Opinion
blogs and Reviews. Informational description (D-
Informational) covers informational registers such
as Descriptions of a thing and Research articles.
The Discussion class includes various discussions
such as Discussion forums and Question / answer
forums. The How-to / Instructional main reg-
ister consists of sub-registers providing different
kinds of instructions, such as actual How-to pages,
Recipes and Technical support pages. The Infor-
mational persuasion (Info-Persuasion) main regis-
ter covers texts that use facts to persuade, such as
Editorials and Descriptions with intent to sell. Fi-
nally, the Lyrical main register includes, e.g., Song
lyrics and Poems, and the Spoken main register,
e.g., Interviews and Video transcripts. For a de-
tailed description of the CORE annotation process
and corpus quality, we refer to Egbert et al. (2015).

The Finnish data is based on a sample of
the Finnish Internet Parsebank (Luotolahti et al.,
2015), a web-crawled corpus that currently con-
sists of nearly 4 billion words. The annotations
were done jointly by a supervisor and a dedicated
annotator. The Finnish annotations aim to follow
the CORE annotation guidelines as closely as pos-
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Figure 1: Illustration of text classification approach. Tokens are prefixed with language tags to differ-
entiate e.g. the English word on from the Finnish word on ‘is’. Multilingual word vectors are used and
the same network applied regardless of language to allow cross-lingual and multilingual training and
classification. (Following in part Kim (2014))

sible. The process advances through a decision
tree, where the annotator 1) evaluates the mode of
the text (spoken or written), 2) determines whether
the text is interactive (multiple authors) or non-
interactive (one author) and 3) identifies the gen-
eral register of the text. Finally, the most accurate
sub-register is selected if applicable. If the text
appears to have more than one appropriate regis-
ter, the annotator may choose up to three registers.
Texts with several registers are called hybrid texts.

In this paper, we focus on the main register
level because of the small size of the Finnish data
set. Furthermore, to simplify the task setting, we
use only the CORE documents for which at least
three out of four annotators agreed on the register,
thus excluding English hybrid texts, and similarly
exclude the Finnish documents that were identi-
fied as hybrids. Finally, as the numbers of an-
notated Finnish texts in the main registers Spoken
and Lyrical were too low for meaningful evalua-
tion (11 and 0, respectively), these registers were
excluded from the experiments.

The distribution of documents in the data used
in our experiments is shown in Table 1. We note
that the classes are very unevenly distributed, and
the distributions are quite different in the two lan-
guages. In English, Narrative represents half of
the data, with Opinion being the second most fre-
quent with 16%. For Finnish, Narrative covers
only 35%, and the second most frequent register
is Informational persuasion, at 20%. For English,
this is one of the least frequent classes, with only
3% of the data.

Both data sets were split into training, develop-
ment and test sets using a stratified 70%/10%/20%
split. The test data was held out during method de-
velopment and parameter selection and only used
for the final experiments.

4 Methods

Our approach is based on a simple convolutional
neural network (CNN) architecture following Kim
(2014) and illustrated in Figure 1. Documents
are first tokenized using the Turku Neural Parser
(Kanerva et al., 2018) trained on language-specific
Universal Dependencies (Nivre et al., 2016) re-
sources. The input is represented as a word vec-
tor sequence to a convolution layer with ReLU
activation, followed by max-pooling and a fully-
connected output layer. Similarly to Schwenk and
Li (2018), we use pretrained multilingual word
embeddings for multi- and cross-lingual classifi-
cation; to differentiate between the same word
forms in different languages, we simply prefix a
language tag to each token and modify word vec-
tor indexing analogously. We use English and
Finnish word vectors from the Multilingual Un-
supervised and Supervised Embeddings (MUSE)
library1 (Conneau et al., 2018) in all experiments.
As MUSE word vectors are uncased, we lowercase
text following tokenization.

Based on initial experiments on the develop-
ment set, we set the maximum number of word
vectors to 100000, the number of CNN filters to

1https://github.com/facebookresearch/
MUSE
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Setting Monolingual Cross-/Multilingual
Method fastText CNN CNN

Training data Finnish English Finnish English English En + Fi
Test data Finnish English Finnish English Finnish Finnish

D-Informational 67.1% 93.9% 75.4% 94.1% 69.0% 75.4%
Discussion 86.5% 93.3% 83.1% 96.5% 80.1% 86.5%

How-to 84.6% 94.9% 88.3% 94.8% 82.9% 89.7%
Info-Persuasion 84.5% 93.2% 84.7% 95.2% 74.0% 85.5%

Narrative 76.3% 91.9% 85.2% 92.7% 79.8% 86.3%
Opinion 78.2% 86.6% 86.2% 88.2% 85.8% 88.3%
Average 79.5% 92.3% 83.8% 93.6% 78.6% 85.3%

Table 2: Evaluation results (AUC scores) in mono-, cross-, and multilingual training settings.

128, the filter size to one word, and froze the
word vector weights. Wider filters and word vec-
tor fine-tuning appeared to give modest benefit in
monolingual settings, and reduced performance in
cross-lingual settings. The latter results were ex-
pected given that wider filters capture aspects of
word order that are not consistent cross-lingually,
and fine-tuned word vectors may no longer align
across languages. Input texts are padded or trun-
cated to 1000 tokens. We train the CNN for 10
epochs using Adam with the default settings sug-
gested by Kingma and Ba (2014). We refer to Kim
(2014) and Conneau et al. (2018) for further infor-
mation on the model and word vectors, and our
open-source release2 for implementation details.

For reference, we also report results using fast-
Text (Joulin et al., 2016), a popular text classifi-
cation method based on word vector averages that
emphasizes computational efficiency. We initial-
ize fastText with the same word vectors and train
for the same number of epochs as the CNN, and re-
tain its parameters otherwise at their defaults. As
fastText does not support cross-lingual classifica-
tion, we only use it in the monolingual setting.

The class disbalance and the different class dis-
tributions in the two languages represent chal-
lenges for cross-lingual generalization and evalu-
ation. We opted to focus on ranking and evalu-
ate performance for each register in a one-versus-
rest setting using the distribution-independent area
under the receiver operating characteristic curve
(AUC) measure. Additionally, to account for ran-
dom variation from classifier initialization, we re-
peat each experiment ten times and report averages
over these runs.

2https://github.com/TurkuNLP/
multiling-cnn

5 Results

The primary results are summarized in Table 2.
First, we briefly note that in a monolingual setting,
the CNN and fastText results are broadly com-
parable, with the CNN achieving slightly higher
performance for both English and Finnish overall
as well as for most individual classes. This con-
firms that the somewhat restricted nature of the
CNN (e.g. frozen word vector weights) does not
critically limit its performance at the task. As ex-
pected, performance is notably higher for English,
which has more than 10 times the number of an-
notated examples for Finnish.

In the cross-lingual setting, we find that when
trained on English data and tested on Finnish,
the CNN clearly outperforms the random base-
line (50%) for all classes, confirming the basic
feasibility of the approach to cross-lingual regis-
ter identification. As expected, performance is be-
low the comparable monolingual results (Finnish-
Finnish), but the differences are encouragingly
small; in particular, the cross-lingual CNN perfor-
mance is very close to the monolingual fastText
baseline.

The best results for Finnish are achieved when
training on the combination of English and Finnish
data, both overall as well as for most individual
classes. Given the different languages and inde-
pendent development histories of these two cor-
pora, it is far from given that this corpus combi-
nation would be successful, and this result is very
positive in indicating both the basic compatibility
of these specific resources as well as the broader
ability to generalize the CORE register classifica-
tion and annotation strategy to new languages.

To gain further insight into the effectiveness of
multilingual training, we evaluated Finnish regis-
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Figure 2: Average AUC for Finnish register pre-
diction when training with varying proportions
of Finnish training data, contrasting performance
with and without additional English training data.

ter classification performance using subsets (10%,
20%, . . . ) of the Finnish training data both in the
monolingual (Finnish only) and multilingual (En-
glish and Finnish) training settings. All of the En-
glish training data was used in the latter setting.
The results, summarized in Figure 2, show that
with these corpora, multilingual training is bene-
ficial regardless of the size of available target lan-
guage data, and that zero-shot cross-lingual clas-
sification (no target language data) outperforms
monolingual classification with up to 900 exam-
ples of target language data.

6 Discussion and future work

In this paper, we explored the identification of reg-
isters in Internet texts in cross- and multilingual
settings. We introduced FinCORE, the first non-
English corpus annotated following the guidelines
of the CORE corpus, the largest online register
corpus representing the full range of linguistic
variation found online. Evaluation using a sim-
ple CNN with multilingual word vectors indicated
that cross-lingual register classification is feasible,
and that combination of the large CORE corpus
data with smaller target language data further ben-
efits classification performance. This positive re-
sult also confirmed the compatibility of the En-
glish and Finnish corpus annotations.

While our study has only considered a single
language pair, we note that the general approach
is immediately applicable to any language for
which a tokenizer and multilingual word vectors
are available, including 30 languages in MUSE at
the time of this writing. As the approach avoids

many language-specific features (e.g. word order)
and is demonstrated on a pair of languages that are
not closely related, we are optimistic regarding its
ability to generalize to other languages.

This is an early study in a relatively new area
and leaves open several avenues to explore. For
example, our approach is based on a straightfor-
ward application of convolutional neural networks
for text classification, and it is likely possible to
improve performance through further model de-
velopment and parameter optimization. Future
work should also consider the effectiveness of
more advanced deep learning methods, such as
multilingual transformer architectures. In current
and planned future work, we are building on these
initial results to address additional languages as
well as the full CORE register hierarchy.

All of the data and methods newly in-
troduced in this work are available under
open licenses from https://github.com/
TurkuNLP/FinCORE.
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Abstract

We present a system for Natural Language
Inference which uses a dynamic semantics
converter from abstract syntax trees to Coq
types. It combines the fine-grainedness of
a dynamic semantics system with the pow-
erfulness of a state-of-the-art proof assis-
tant. We evaluate the system on all sec-
tions of the FraCaS test suite, excluding
section 6. This is the first system that does
a complete run on the anaphora and ellip-
sis sections of the FraCaS. It has a better
overall accuracy than any previous system.

1 Introduction

Natural Language Inference (NLI) is the task of
determining of whether an NL hypothesis H fol-
lows from an NL premise(s) P. NLI has received a
lot of attention in the Computational Semantics lit-
erature and has been approached using a variety of
techniques, ranging from logical approaches (Bos,
2008; Mineshima et al., 2015; Abzianidze, 2015;
Bernardy and Chatzikyriakidis, 2017), all the way
to the recent Deep Learning (DL) models for NLI.
The latter approaches, following a general trend
in NLP, have been dominating NLI and a num-
ber of impressive results have been produced (Kim
et al., 2018; Radford et al., 2018; Liu et al., 2019).1

State-of-the-art DL systems achieve an accuracy
of around 0.9 when tested on suitable datasets.
However, the datasets that are used are assuming
a definition of inference that can be thought to be
‘looser’ or less precise compared to the definition
assumed in platforms based in logical approaches
(Bernardy and Chatzikyriakidis, 2019). For ex-
ample, consider the following example from the
SNLI dataset, predominatly used to test DL ap-
proaches:

1These are the three systems with the best results on SNLI
in increasing order at the time of writing.

(1) P A man selling donuts to a customer during
a world exhibition event held in the city of
Angeles.
H A woman drinks her coffee in a small cafe.
Label: Contradiction [SNLI]

In (1), a number of non-trivial assumptions have
to be made in order to arrive at a contradiction:
a) the two situations described have to be taken to
refer to the same situation in order to judge that
the latter contradicts the former, b) the indefinite
article in the premise has to be identified with the
indefinite article in the hypothesis. (Additionally
considering that a person cannot be a man sell-
ing donuts and a woman drinking coffee at the
same time.) While this can be part of the reason-
ing humans perform, it is not the only possibility.
More precise, logical reasoning is also a possibil-
ity, and will render the above label as unknown.
Furthermore, reasoning can get very fine-grained
as the Contained Deletion ellipsis example (2) be-
low shows:

(2) P1 Bill spoke to everyone that John did [el-
liptic V2].
P2 John spoke to Mary.
Q Did Bill speak to Mary?
H Bill spoke to Mary.
Label: Yes [FraCas 173]

For this reason, and despite the dominance of
DL approaches in pretty much all NLP tasks, logi-
cal approaches continue to be developed and eval-
uated on datasets like the FraCaS test suite and
the SICK dataset (Marelli et al., 2014). Bernardy
and Chatzikyriakidis (2017) define a correspon-
dence between abstract syntax parse trees of the
FraCas examples, parsed using the Grammatical
Framework (GF, Ranta (2011)), and modern type-
theoretic semantics that are output in the Coq
proof assistant (the FraCoq system). The accu-
racy is 0.85 for 5 sections of the FraCaS test suite.
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The LANGPRO system presented by Abzianidze
(2015) is based on a Natural Logic tableau theo-
rem prover. It achieves an accuracy of .82 on the
SICK dataset.

In this paper, we concentrate on this sort of
fine-grained, logical reasoning. In particular, we
present a logic-based system that deals with many
linguistic phenomena at the same time. It is the
first system covering the sections on ellipsis and
anaphora in the FraCaS test suite and has the best
coverage and accuracy on the overall test suite.

2 Background

GF In GF, abstract syntax is comprised of: a) a
number of syntactic categories, and b) a number
of syntactic construction functions. The latter pro-
vide the means to compose basic syntactic cate-
gories into more complex ones. For example, con-
sider the constructor: AdjCN : AP → CN →
CN . This expresses that one can append an ad-
jectival phrase to a common noun and obtain a
new common noun. Furthermore, GF is equipped
with a library of mappings from abstract syntax to
the concrete syntax of various natural languages.
These mappings can be inverted by GF, thus offer-
ing parsing from natural text into abstract syntax.
However, in this project we skip the parsing phase
and use the parse trees constructed by Ljunglöf
and Siverbo (2011), thereby avoiding any syntac-
tic ambiguity.

Coq Coq is an interactive theorem prover (proof
assistant) based on the calculus of inductive con-
structions (CiC), i.e. a lambda calculus with de-
pendent types. Coq is a very powerful reasoning
engine that makes it fit for the task of NLI, when
the latter is formalized as a theorem proving task.
It supports notably dependent typing and subtyp-
ing, which are instrumental in expressing NL se-
mantics.

Dynamic Monadic Semantics Dynamic
Monadic Semantics have been proven to be
an effective way of dealing with anaphora and
ellipsis. There are a number of approaches using
monads or other equivalent constructions (e.g.
continuations as in the work of de Groote (2006))
for anaphora and ellipsis Shan (2002); Unger
(2011); Barker and chieh Shan (2004); Qian et al.
(2016); Charlow (2017). In this paper, we follow
the approach described in Bernardy et al.. More
details are given in the next section.

3 Overview of the system

Our system consists of two main parts.

1. A converter from syntax trees to types. The
syntax trees follow the GF formalism, and the
types follow the Coq formalism. The con-
verter itself is a Haskell Program, which im-
plements a dynamic semantics and comprises
the bulk of our system.

2. A number of type-theoretical combinators,
that encode semantical aspects which have no
influence on the dynamic part. Such aspects
include the treatment of adjectives (intersec-
tive, subsective, etc.) and adverbs (veridical
or not).

The architecture is represented schematically in
Figure 1.

All the underlying systems (GF, Haskell, Coq)
are based on lambda calculi with types. We take
advantage of typing, ensuring that each translation
preserve typing, locally:

1. Every GF syntactic category C is mapped to
a type noted JCK.

2. GF Functional types are mapped composi-
tionally : JA→ BK = JAK→ JBK

3. Every GF syntactic construction function (f :
X) is mapped to a function JfK such that
JfK : JXK.

4. GF function applications are mapped compo-
sitionally: Jt(u)K = JtK(JuK).

Because all systems embed the simply-typed
lambda calculus, ensuring type-preservation lo-
cally means that types are preserved globally.
Therefore, we are certain that every GF syntax tree
can be mapped to Haskell, and eventually Coq,
without error.

The dynamic semantics follows a monadic
structure, as pioneered by Shan (2002). There are
two kinds of effects carried by the monad. The
first one comprises a series of updates and queries
of stateful elements. There is one piece of up-
dateable state for every element which can be re-
ferred to by anaphoric expressions. These can be
the usual ones (like NPs), but also less usual ones
(like 2-place verbs, or a quantity — which we il-
lustrate below). The other kind of effects is non-
determinism. We use non-determinism to model
the property that linguistic expressions can have
several interpretations. The monadic structure al-
lows to locally express that a given expression has
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text AST Probabilistic program result in (0, 1)
GF

Haskell inter-
preter Coq

Syntax
Dynamic Semantics

Additional Semantics∗

Figure 1: Phases in our system. (∗) At the level of Coq, we handle the details of the adverbial (veridi-
cality properties) and adjectival semantics (division into subsective, extentional, non-committal, etc.
categories.)

several meanings; the monadic bind ensures that
all combinations of meanings are considered at the
top-level, combinatorially. This dynamic seman-
tics allows us to model many phenomena in a pre-
cise way.

Anaphora Thanks to the above system, we can
handle many anaphoric cases, including E-Type
and Donkey anaphora. Indeed, even objects which
have no syntactic representation can be added to
the environment. We follow here the general
monadic semantics approach as outlined by Unger
(2011). However, we use a more general scope-
extension mechanism, which allows us to support
examples like the following:

(3) P1 Every committee has a chairman.
P2 He is appointed its members.
H Every committee has a chairman appointed
by members of the committee.
Label: YES [FraCaS 122]

In the above example, the pronoun “he” is allowed
to refer to the object quantified over by “every”,
whose scope is extended accordingly. We describe
the anaphora resolution system in every detail in a
manuscript (Bernardy et al.).

Ellipsis Ellipsis is handled in essentially the
same way as anaphora. This method is made es-
pecially straightforward thanks to using GF syntax
trees, which require an explicit argument for each
predicate. Thus, ellipsis are made explicit by the
parsing phase. Such ellptic expressions are han-
dled in the same way as anaphora. For example,
in (2) repeated below as (4), the argument of “did”
is explicitly marked as an elliptic V2, which we
resolve to “speak” in that context:

(4) P1 Bill spoke to everyone that John did [el-
liptic V2].
P2 John spoke to Mary.
Q Did Bill speak to Mary?
H Bill spoke to Mary.
Label: Yes [FraCas 173]

Definites A naive way to handle definites is us-
ing an existential type. However, if the semantics
does not feature a dynamic element, then the ex-
istential quantification is introduced locally. This
means that the quantifier can be introduced in the
wrong Context. Consider the phrase “everyone
pets the dog”. The structure of the interpretation
would be ∀x.person(x)→ ∃y.dog(y)∧pet(x, y).
Instead, our take is that definites should be treated
as an anaphoric expression with an implicit refer-
rent. That is, if the referent is not found in the
discourse, then it will be forcibly introduced, us-
ing an existential type, at the top-level of the ex-
pression. To be able to do this, we record all def-
inites without referent, using another portion of
the environment (using a monadic effect). For the
above example, we obtain the desired interpreta-
tion: ∃y.dog(y) ∧ (∀x.person(x)→ pet(x, y)).

Phrasal comparatives Previous attempts to
tackle the section of the FraCaS test suite devoted
to comparatives showed that handling them is not
easy. Our strategy here is to leverage our dynamic
semantics, revealing an anaphoric element of com-
paratives. Indeed, consider the hypothesis of (Fra-
CaS 239): “ITEL won more orders than APCOM
lost.” We postulate that this sentence is equivalent
to the following two separate parts: “APCOM lost
zero or more orders. ITEL won more orders [than
some elliptic quantity].” A quantity is introduced
every time we talk about some quantity (indexed
by a CN, in this case “orders”), and it can be re-
ferred to by a comparative, later in the discourse.
Using this idea, we can go one level deeper in the
interpretation of our example: “APCOM lost θ or-
ders. θ ≥ 0. ITEL won at least θ+1 orders.”. We
see here how the quantities are introduced. They
are added to the environment so that, they can be
referred to as elliptic quantity expressions.2 Fi-

2The degree parameter assumption is not new in the
formal semantics literature (Cresswell, 1976; Heim, 2000;
Kennedy, 2007; Chatzikyriakidis and Luo, 2017) among
many others. The specific details and computational imple-
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nally, “more” is systematically intepreted as “at
least ¡elliptic quantity¿+1”. This treatment, which
we illustrated here on an example, is systematic in
our implementation.

Adjectives We interpret gradable adjectives us-
ing a pair of a measure m : objects → Z and
a threshold τ : Z, where Z is treated as an ab-
stract ordered ring by Coq. (This structure has
no dynamic aspect in our model, and thus is en-
tirely handled within Coq.) For subsective adjec-
tives, τ will additionally depend on the class of the
object in question. This structure has the benefit
that opposite adjectives can be easily represented
(measures are opposites ∀x.m1x = ¬m2x and
thresholds do not overlap τ1 + τ2 > 0). Formal-
ization aside, this idea is reminiscent of degree-
based approaches to gradable adjectives of Cress-
well (1976); Kennedy (2007). Additionally adjec-
tival predicates, as present in the FraCaS suite, are
interpreted as linear inequations inZ. Solving sys-
tems of such inequations is decidable. Indeed, the
tactic that Coq offers for this purpose can solve all
such problems in the FraCaS suite, automatically.

Adverbs Another point, of minor theoretical im-
portance but major practical one, is our handling
of adverbial phrases. We interpret adverbs (and
in general all adverbial and prepositional phrases)
as VP-modifiers: Adv = V P → V P , where
V P = object → Prop. However, applying ad-
verbs to verb-phrases heavily complicates the Coq
proofs, because such phrases can contain quanti-
fiers. Therefore, we instead move the adverbs, so
that they apply to (atomic) verbs only. Proofs can
then be simplify accordingly.

4 Results and evaluation

We evaluated FraCoq against 8 sections of the Fra-
CaS test suite, for a total of 259 cases. We ex-
cluded only section 7, “temporal reference”. The
reason for doing so is that, in our view, it contains
too many examples which require ad-hoc treat-
ment, and thus makes little sense to include with-
out complementing it with a more thorough suite
which captures a more complete landscape of the
phenomena that section 7 touches.

FraCaS classifies each problem as either entail-
ment (YES), entailment of the opposite (NO) or no
entailment (UNK). In this work, we have amended
the FraCaS suite to correct a few problems. First,

mentation, however, are.

test case new class comment
005 UNK missing hypothesis: there are

italian tenors
056 Yes Already identified as such by

MacCartney
069 Unk Mary could have used some-

one else’s workstation
119 Unk ibid.
181 Yes for the same reason as 180
226 Yes

Table 1: Overruled FraCaS cases

certain test case are not formed correctly. Those
were already identified by MacCartney and Man-
ning (2007) as such (using an “undef” labelling),
and we removed those. Second, a few test cases
occur twice in the suite, but with two different
labellings (one YES and one UNK), with an an-
notation that those labellings correspond to differ-
ent readings. However, elsewhere in the suite, if
a problem has several readings but only one has
entailment, it occurs only once and is marked as
YES. To make the test suite consistent, if one read-
ing yields entailment we have always considered
it as YES. We have also removed case 199 (which
appears to be vacuous). Finally we changed the
labelling of 6 cases which appeared to have been
misclassified. We note that the majority of the
mistaken classifications occur in sections 3 and
4, which have not been previously attempted and
thus, we propose, have not been properly scruti-
nized. In terms of comparison, this only has a mi-
nor effect, since our system is the first system to
run sections 3 and 4.

Our system classifies a case as YES if a proof
can be constructed from the premises to the hy-
pothesis, NO if a proof of the negated hypothesis
can be constructed and UNK otherwise. Because
we work with a non-decidable logic, one cannot in
general conclude decisively that no proof exists.
Thus, we consider here that no proof exists if it
cannot be constructed with reasonable effort. In
particular, we test at the minimum that the auto-
matic proof search built in Coq does not succeed
before classifying a problem as UNK.3

Table 2 shows a considerable improvement over
earlier approaches in terms of coverage, with three
more sections covered over previous approaches.
We thus cover 259 out of 337 cases (77%), com-
pared to at most 174 cases (52%) in previous work.
Additionally, our system performs generally the

3The other way this can be done is by introducing a time-
out as Mineshima et al. (2015) have done.
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Section #cases Ours FC MINE Nut Langpro
Quantifiers 75 .96 .96 .77 .53 .93

74 44

Plurals 33 .82 .76 .67 .52 .73
24

Anaphora 28 .86 - - - -
Ellipsis 52 .87 - - - -
Adjectives 22 .95 .95 .68 .32 .73

20 12

Comparatives 31 .87 .56 .48 .45 -
Temporal 75 - - - - -
Verbs 8 .75 - - - -
Attitudes 13 .92 .85 .77 .46 .92

9

Total 337 .89 .83 .69 .50 .85
259 174 174 174 89

Table 2: Accuracy of our system compared to oth-
ers. “Ours” refers to the approach presented in this
paper. When a system does not handle the nomi-
nal number of test cases (shown in the second col-
umn), the actual number of test cases attempted
is shown below the accuracy figure, in smaller
font. “FraCoq” refers to the work of Bernardy
and Chatzikyriakidis (2017). “MINE” refers to the
approach of Mineshima et al. (2015), “NUT” to
the CCG system that utilizes the first-order auto-
mated theorem prover nutcracker (Bos, 2008), and
“Langpro” to the system presented by Abzianidze
(2015). A dash indicates that no attempt was made
for the section.

best in terms of accuracy. In particular, section 6
largely improves in accuracy, which we attribute to
our dynamic semantics analysis of comparatives.

error analysis Our system fails to correctly
classify 28 cases out of 259. We give here a sum-
mary of the missing features which are responsi-
ble for the failures. The biggest source of error is
incomplete handling of group readings. (FraCaS
013, 014, 046, 084, 111, 124, 126, 127, 137, 171,
172, 191, 193, 195, 243, 250, 333, 346). These are
cases where a syntactic conjunction of individuals
is treated as a semantic group, or where precise
counting of the members of a group is necessary.
Other problematic cases include definite plurals
with no universal readings (091, 094, 095). Ad-
ditionally, neither measure phrases (242) nor at-
tributive comparatives (244, 245) are handled.

5 Conclusions and Future Work

We presented a system converting GF trees to Coq
types using dynamic semantics. The system out-
performs the state of the art in logical approaches
when tested on the FraCaS and is the only sys-

tem to date to perform a run on the FraCaS el-
lipsis/anaphora section. The system is precise
enough to form the start of a precise NL reasoner
for controlled domains. In the future, we plan to
extend the system to cover the remaining section
of the FraCaS (tense/aspect), and also develop a
more applied version to perform reasoning on con-
trolled NL domains.
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Abstract
We investigate different ensemble learn-
ing techniques for neural morphologi-
cal inflection using bidirectional LSTM
encoder-decoder models with attention.
We experiment with weighted and un-
weighted majority voting and bagging. We
find that all investigated ensemble meth-
ods lead to improved accuracy over a base-
line of a single model. However, contrary
to expectation based on earlier work by
Najafi et al. (2018) and Silfverberg et al.
(2017), weighting does not deliver clear
benefits. Bagging was found to underper-
form plain voting ensembles in general.

1 Introduction

Natural language processing (NLP) systems for
languages which exhibit rich inflectional morphol-
ogy often suffer from data sparsity. The root
cause of this sparsity is a prohibitively high type-
token ratio which is typical for morphologically
complex languages. A common way to allevi-
ate the problem is to incorporate modeling of in-
flectional morphology instead of building purely
word-based NLP systems—by representing word
forms as combinations of a lemma and mor-
phosyntactic description, data sparsity is reduced
both in analysis and generation tasks.

Morphology-aware language generation sys-
tems usually require a component which gen-
erates inflected word forms from lemmas and
morphosyntactic descriptions. Such a compo-
nent is called a morphological inflection (MI)1

model. For example, given the Italian verb man-
giare ’to eat’ and the morphosyntactic description
V;IND;FUT;1;SG, an MI system should gener-
ate the 1st person singular future indicative form
mangerò as output.

1Sometimes also called morphological reinflection (Cot-
terell et al., 2016)

Traditionally, rule-based methods have been ap-
plied in morphological inflection and analysis. Re-
cently, machine learning methods have also gained
ground in this task. Especially deep learning
methods have delivered strong results in MI (Cot-
terell et al., 2017, 2018). Starting with the work
by Kann and Schütze (2016), the predominant
approach has been to use a bidirectional RNN
encoder-decoder system with attention. While
neural encoder-decoder systems have been suc-
cessfully applied to the MI task and many pa-
pers have investigated simple model ensembles us-
ing unweighted majority voting, few studies have
fully investigated ensembles of neural systems.
Weighted model ensembles for MI are proposed
by Najafi et al. (2018) and Silfverberg et al. (2017)
but neither provides a detailed analysis of model
ensembles. This paper compares the performance
of different model ensembles for MI.

We explore methods which use unweighted and
weighted voting strategies to combine outputs of
different models. We also investigate different
ways of training the component models in the en-
semble using both random initialization of model
parameters and varying the training data using
bootstrap aggregation commonly known as bag-
ging (Breiman, 1996). Bagging is a popular en-
semble method where new training sets are created
by resampling from an existing training set. Both
bagging and majority voting are known to reduce
the variance of the model. This makes them suit-
able for neural models which are known to obtain
high variance (Denkowski and Neubig, 2017).

Due to practicality concerns, we limit the scope
of the paper to methods which can combine exist-
ing models without changes to model architecture.
Therefore, we do not explore merging model pre-
dictions during beam search in decoding or aver-
aging model parameters.

We perform experiments on a selection of ten
languages: Arabic, Finnish, Georgian, German,
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Hindi, Italian, Khaling, Navajo, Russian, and
Turkish. Our experiments on this morphologi-
cally and areally diverse set of languages show
that model ensembles tend to deliver the best re-
sults confirming results presented in earlier work.
However, our findings for weighted ensembles and
bagging are largely negative. Contrary to expecta-
tion based on the work by Najafi et al. (2018) and
Silfverberg et al. (2017) weighting did not deliver
clear benefits over unweighted model ensembles.
Bagging, in general, does deliver improvements in
model accuracy compared to a baseline of a sin-
gle model but does not outperform plain majority
voting.

2 Related Work

Following Kann and Schütze (2016) and many
others, we explore learning of MI systems in the
context of bidirectional LSTM encoder-decoder
models with attention. Several papers have em-
ployed straightforward majority voting for the task
of MI (Kann and Schütze, 2016; Kann et al., 2018;
Makarov and Clematide, 2018; Kementchedjhieva
et al., 2018; Sharma et al., 2018). However, work
on more advanced ensembling methods is scarce
for the MI task.

Najafi et al. (2018) and Silfverberg et al. (2017)
explored weighted variants of majority voting.
Both of these approaches are based on weighting
models according to their performance on a held-
out development set. Silfverberg et al. (2017) use
sampling-based methods for finding good weight-
ing coefficients for the component models in an
ensemble. Najafi et al. (2018) instead simply
weight models according to their accuracy on the
development set. We opt for using the latter
weighing scheme in our experiments because Sil-
fverberg et al. (2017) report that the sampling-
based method can sometimes overfit the develop-
ment set which leads to poor performance on the
test set. Najafi et al. (2018) combined different
types of models, both neural and non-neural, in
their ensemble but we apply their technique in a
purely neural setting.

Ensemble learning has received more atten-
tion in the field of neural machine translation.
A common approach is to combine predictions
of several models in beam search during decod-
ing (Denkowski and Neubig, 2017). Another ap-
proach is to train several models and then distill
them into a single model (Denkowski and Neu-

big, 2017). The simplest approach to distillation is
to average the parameters of the different models.
While these techniques could be applied in MI, the
focus of this paper is to explore ensemble methods
which do not require any changes to the underly-
ing model architecture. Therefore, such methods
fall outside of the scope of our work.

3 Task and Methods

We formulate the MI task as a sequence-to-
sequence translation task. The input to our model
consists of the characters in the lemma of a word
and the grammatical tags in its morphosyntactic
description. The output form is the inflected word
form represented as a sequence of characters. For
example:

Input: m, a, n, g, i, a, r, e, +V, +IND, +FUT, +1, +SG
Output: m, a, n, g, e, r, ò

The remainder of this section describes the neu-
ral encoder-decoder models used in our experi-
ments, the ensemble learning methods and our
approach to weighting the component models of
model ensembles.

3.1 Encoder-Decoder Architecture

We use a standard bidirectional LSTM encoder-
decoder with attention. The character embed-
dings for input and output characters are 100-
dimensional. The embeddings are processed by a
1-layer bidirectional LSTM encoder (BRNN) with
hidden state size 300. The encoder representations
are then fed into a 1-layer LSTM attention decoder
with hidden state size 300.

3.2 Ensembles

An ensemble consists of a set of individually
trained models whose predictions are combined
when classifying novel instances or generating se-
quences. The aim is to combine the models in a
way which delivers better performance than any
of the models individually.

Majority Voting Our first ensemble learning
technique is majority voting. We train N models
on the entire training data with different random
initializations of model parameters. During test
time, we apply each of the models on a given test
input form and then perform voting among model
outputs. In case of a tie, the final output is chosen
randomly among the most frequent predictions.
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ARA FIN GEO GER HIN ITA KHA NAV RUS TUR
Best baseline model 93.40 94.00 99.10 91.60 100.00 98.00 99.90 91.30 91.50 98.00
Baseline mean 92.74 93.45 98.69 90.78 100.00 97.27 99.44 89.63 90.60 97.43
MV 10.NMV *94.60 *95.40 *99.40 *92.70 100.00 *98.00 *99.80 *94.00 *92.60 *98.40
MV 10.WMV *94.80 *94.90 *99.40 *92.80 100.00 *98.00 *99.80 *94.20 *92.80 *98.40

High Bagging 10.NMV 93.90 95.30 99.10 92.10 100.00 97.60 99.70 91.10 92.10 98.00
Bagging 10.WMV 94.00 95.20 99.10 92.50 100.00 97.80 99.60 91.40 91.90 98.00
Bagging 100.NMV 94.50 95.30 98.90 92.80 100.00 97.70 99.50 92.50 92.40 98.00
Bagging 100.WMV 94.50 95.40 98.90 92.90 100.00 97.70 99.50 92.50 92.40 98.20
Best baseline model 76.80 75.60 92.50 78.60 98.10 92.10 90.00 47.30 78.00 86.90
Baseline mean 74.13 71.89 92.14 75.80 96.91 90.21 88.95 43.68 76.60 84.95
MV 10.NMV *80.80 *80.70 *93.50 *80.30 *98.50 *93.10 *91.70 *52.50 *83.00 *88.70
MV 10.WMV *80.80 *80.80 *93.40 *80.70 *98.60 *93.00 *91.50 *52.70 *82.90 *88.60

Medium Bagging 10.NMV 74.40 72.90 93.50 77.70 97.80 91.50 84.00 46.50 76.50 86.80
Bagging 10.WMV 75.60 74.00 93.40 78.00 97.80 92.00 84.10 47.30 76.60 87.10
Bagging 100.NMV 78.90 74.50 93.20 79.00 97.70 91.50 85.20 51.80 78.50 88.40
Bagging 100.WMV 79.10 74.50 93.20 79.10 97.70 91.40 85.50 52.10 78.50 88.40
Best baseline model 0.40 1.30 40.26 21.38 21.78 13.29 6.59 1.70 8.29 7.29
Baseline mean 0.23 0.80 33.18 15.92 15.81 8.72 3.16 1.39 5.93 2.77
MV 10.NMV 0.20 *1.40 *49.80 *25.67 *22.58 *15.00 *4.30 *1.80 10.30 *5.20
MV 10.WMV 0.20 *1.50 *49.50 *26.07 *22.98 *17.38 *5.59 *1.80 *11.30 *7.39

Low Bagging 10.NMV 0.09 0.00 9.79 1.30 8.49 0.30 0.80 0.70 0.80 0.00
Bagging 10.WMV 0.01 0.00 13.89 2.50 8.99 1.10 0.30 0.80 0.90 0.20
Bagging 100.NMV 0.00 0.00 17.18 2.30 10.59 0.80 1.10 0.60 2.60 0.20
Bagging 100.WMV 0.00 0.00 19.20 4.00 12.29 1.40 1.30 0.80 2.90 0.60

Table 1: Accuracies (%) of bagging and majority voting ensembles and best baseline models, and baseline model means for
Arabic (ARA), Finnish (FIN), Georgian (GEO), German (GER), Hindi (HIN), Italian (ITA), Khaling (KHA), Navajo (NAV),
Russian (RUS) and Turkish (TUR). Ensemble size (10 or 100) and majority voting type (NMV or WMV) are marked after the
ensemble type (Majority voting (MV) or Bagging). Significant improvements over the baseline mean at the 95% confidence
level as measured by a two-sided t-test are indicated by asterisk (*).

Bagging Our second ensemble learning tech-
nique is bagging. Here we resample N new train-
ing sets from our existing training set and use
those to train N models. The aim is to create
a more diverse collection of models than can be
accomplished simply by varying model initializa-
tion. After training the N models, we then apply
majority voting on their output during test time.

A standard way to create a bagging ensemble is
to generate each of the new training sets by draw-
ing |D| samples with replacement from the origi-
nal training set D. It can be shown that this gives
on average 0.63|D| different examples in each of
the new data sets (Efron and Tibshirani, 1993).

Weighting Models We compare straightforward
majority voting and bagging to weighted voting.
The key difference here is that models now get a
fractional vote in the interval [0, 1] based on the
model weight. The model weight is determined
by the accuracy of the model on a held-out set.
For example, if a model’s accuracy is 87%, its
weight in voting is 0.87. Regular majority vot-
ing corresponds to assigning the weight 1 to each
model. We denote the two different voting strate-
gies by NMV for naive majority voting and WMV
for weighted majority voting.

4 Experiments

4.1 Data
We use data for 10 different languages from
CoNLL-SIGMORPHON 2017 Task 1 dataset
(Cotterell et al., 2017) to train and evaluate mod-
els. The languages are Arabic (ARA), Finnish
(FIN), Georgian (GEO), German (GER), Hindi
(HIN), Italian (ITA), Khaling (KHA), Navajo
(NAV), Russian (RUS) and Turkish (TUR). The
language set is diverse in terms of morphological
structure and encompasses diverse morphological
properties and inflection processes.

The shared task data sets are tab separated files
with three columns: lemma, inflected form, and
morphosyntactic description. For example,

überbewerten überbewerteten V;IND;PST;3;PL

The data sets are sparse in the sense that they in-
clude only a few inflected forms for each lemma
instead of complete inflectional paradigms.

For all languages, we perform experiments us-
ing the official shared task data splits. We train
for the high training data setting (10,000 training
examples), medium setting (1,000 training exam-
ples) and low setting (100 training examples). Ad-
ditionally, we use the official shared task develop-
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ment set to tune models and the test sets for final
evaluation.

4.2 Experimental Setup

Baseline For baseline experiments, 10 inflection
models were trained for each language with dif-
ferent random initial values for the model param-
eters. We trained models both for the high and
medium training data settings. Model parameters
were optimized using the Adam optimization al-
gorithm (Kingma and Ba, 2014) and we used mini-
batches of 64 examples during training.

According to preliminary experiments, the de-
velopment accuracy and perplexity for each lan-
guage converged around 6,000-10,000 training
steps for each dataset, where one training step cor-
responds to updating on model parameters for a
single minibatch (64 items). To ensure conver-
gence for all languages, we therefore trained all
models for 12,500 training steps. We do not em-
ploy character dropout. All our models are im-
plemented using the OpenNMT neural machine
translation toolkit (Klein et al., 2017).

Ensembles The 10 baseline models of each lan-
guage and training data setting were used to form
voting ensembles. We applied both naive majority
voting and weighted majority voting.

For bagging, two experiments are conducted on
the high, medium and low training data setting. In
the first experiment, we form 10 training sets by
resampling from the original training sets. In the
second one, we form 100 new training sets by re-
sampling. Each of the sampled training sets has
the same size as the original training set for the
high, medium and low setting, respectively. Sub-
sequently, we train models on each of the newly
formed training sets. In addition to using different
data for training, diversity between the ensemble
members is ensured by different random initial-
ization of model parameters. In each experiment,
both naive majority voting and weighted major-
ity voting are applied to outputs of each model to
form two ensembles for each language.

4.3 Results

Table 1 shows results for all experiments. On the
whole, ensembles delivered improvements with
regard to the baseline of a single model. This
holds true both when comparing to the mean ac-
curacy of the 10 individual baseline models and
when comparing to the best individual baseline

model. In general, the best accuracies were ob-
tained by naive and weighted majority voting en-
sembles. For the high, medium and low settings,
we obtain small improvements by weighting both
majority voting and bagging ensembles. However,
in most cases these improvements are not statisti-
cally significant at the 95% confidence level.

In most cases, the results of the bagging ex-
periments were worse than results for both naive
and weighted majority voting ensembles. For the
high training data setting, accuracies delivered by
bagging ensembles were similar or slightly worse
than results for plain naive and weighted majority
voting ensembles. However, in the medium data
setting, differences in accuracy between majority
voting and bagging ensembles are larger. For ex-
ample, the difference between the best bagging
model and best plain voting model is greater than
2%-points for three languages (KHA, NAV, RUS).
For the medium data setting, bagging did not de-
liver consistent improvements over the baseline of
a single model although we do get an improve-
ment for 5 languages (ARA, GEO, GER, NAV,
RUS and TUR). For the low training data set-
ting, the bagging ensembles clearly underperform
weighted and unweighted majority voting and the
baselines for all languages. In general, bagging
ensembles consisting of 100 models did deliver
improvements upon ensembles consisting of 10
models.

5 Discussion and Conclusions

Our results demonstrate that an ensemble of mod-
els trained in parallel nearly always outperforms
a single model. Contrary to earlier findings by
Najafi et al. (2018) and Silfverberg et al. (2017),
we do not see clear improvements from weight-
ing models in ensembles. One reason for this dis-
crepancy may be that Najafi et al. (2018) trained
a diverse ensemble of both non-neural and neural
models, whereas, all of our models have the same
underlying architecture.

Bagging does not deliver clear improvements
over majority voting in the high and medium train-
ing data setting. Instead it often underperforms
the baseline of a single model on medium training
sets of 1,000 training examples. For larger training
sets of 10,000 examples, bagging typically out-
performs the baseline models but its performance
still lags behind weighted and unweighted major-
ity voting ensembles. This can partly be explained
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by the fact that each individual model in a bagging
ensemble is trained on a subset containing approx-
imately 60% of all training examples. Therefore,
individual models in the ensemble are likely to be
weaker than models trained on the entire training
set because even our largest training set of 10,000
examples is still relatively small.

In the low training data setting of 100 training
examples, bagging substantially underperforms
the baselines. Here overfitting becomes a severe
problem. Each of the component models in the en-
semble, therefore, delivers very poor performance
compared to the baselines resulting in poor perfor-
mance for the entire ensemble.

We observe moderate improvements when the
number of models in the bagging ensemble was
increased from 10 to 100. Therefore, we believe
that bagging could eventually outperform major-
ity voting in the high and medium data setting
when the number of models in the ensemble is in-
creased. However, the moderate gains suggest that
the number of models that is required may be quite
large.
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Abstract
Lemmatization, finding the basic morpho-
logical form of a word in a corpus, is
an important step in many natural lan-
guage processing tasks when working with
morphologically rich languages. We de-
scribe and evaluate Nefnir, a new open
source lemmatizer for Icelandic. Nefnir
uses suffix substitution rules, derived from
a large morphological database, to lem-
matize tagged text. Evaluation shows that
for correctly tagged text, Nefnir obtains an
accuracy of 99.55%, and for text tagged
with a PoS tagger, the accuracy obtained
is 96.88%.

1 Introduction

In text mining and Natural Language Processing
(NLP), a lemmatizer is a tool used to determine
the basic form of a word (lemma). Lemmatization
differs from stemming in the way this base form is
determined. While stemmers chop off word end-
ings to reach the common stem of words, lem-
matizers take into account the morphology of the
words in order to produce the common morpho-
logical base form, i.e., the form of the word found
in a dictionary. This type of text normalization
is an important step in pre-processing morpholog-
ically complex languages, like Icelandic, before
conducting various tasks, such as machine trans-
lation, text mining and information retrieval.

To give an example from the Icelandic lan-
guage, lemmatization helps find all instances of
the personal pronoun ég “I” in a text corpus, taking
into account all inflectional forms (ég, mig, mér,
mín, við, okkur, and okkar). These variations of
each word can be up to 16 for nouns and over a
hundred for adjectives and verbs. The value of be-
ing able to reduce the number of different surface
forms that appear for each word is therefore evi-
dent, as otherwise it is hard or even impossible to

correctly determine word frequency in a corpus, or
to look up all instances of a particular term.

In this paper, we describe and evaluate Nefnir
(Daðason, 2018), a new open source lemmatizer
for Icelandic. Nefnir uses suffix substitution rules
derived (learned) from the Database of Modern
Icelandic Inflection (DMII) (Bjarnadóttir, 2012),
which contains over 5.8 million inflectional forms.

This new lemmatizer was used for large-scale
lemmatization of the Icelandic Gigaword Corpus
(Steingrímsson et al., 2018) with promising re-
sults, but a formal evaluation had not been car-
ried out. Our evaluation of Nefnir indicates that,
compared to previously published results, it ob-
tains the highest lemmatization accuracy of Ice-
landic, with 99.55% accuracy given correct part-
of-speech (PoS) tags, and 96.88% accuracy given
text tagged with a PoS tagger.

2 Related work

The most basic approach to lemmatization is a
simple look-up in a lexicon. This method has the
obvious drawback that words that are not in the
lexicon cannot be processed. To solve this, word
transformation rules have been used to analyze the
surface form of the word (the token) in order to
produce the base form. These rules can either be
hand-crafted or learned automatically using ma-
chine learning.

When hand-crafting the rules that are used to
determine the lemmas, a thorough knowledge of
the morphological features of the language is
needed. This is a time-consuming task, further
complicated in Icelandic by the extensive inflec-
tional system (Bjarnadóttir, 2012). An example
of a hand-crafted lemmatizer is the morphologi-
cal analyzer that is part of the Czech Dependency
Treebank (Hajič et al., 2018).

Machine learning methods emerged to make the
rule-learning process more effective, and various
algorithms have been developed. These methods
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rely on training data, which can be a corpus of
words and their lemmas or a large morphological
lexicon (Jongejan and Dalianis, 2009). By ana-
lyzing the training data, transformation rules are
formed, which can subsequently be used to find
lemmas in new texts, given the word forms.

In addition, maching learning lemmatizers
based on deep neural networks (DNNs) have re-
cently emerged (see for example finnlem (Myr-
berg, 2017) for Finnish and LemmaTag (Kon-
dratyuk et al., 2018) for German, Czech and Ara-
bic). Along with the best rule-derived machine
learning methods, these are now the state-of-the-
art approaches to lemmatizers for morphologically
complex languages.

The biggest problem in lemmatization is the is-
sue of unknown words, i.e. words not found in
the training corpus or the underlying lexicon of
the lemmatizer. This has been handled in various
ways, such as by only looking at the suffix of a
word to determine the lemma, thereby lemmatiz-
ing unseen words that (hopefully) share the same
morphological rules as a known word (Dalianis
and Jongejan, 2006). DNN-based lemmatizers
may prove useful in solving this issue, as they
have their own inherent ways of handling these
out-of-vocabulary (OOV) words, such as by us-
ing character-level context (Bergmanis and Gold-
water, 2018).

Previous to Nefnir, two lemmatization tools
had been developed for Icelandic. We will now
briefly mention these lemmatizers, before describ-
ing Nefnir further.

2.1 CST Lemmatizer

The CST Lemmatizer (Jongejan and Dalianis,
2009) is a rule-based lemmatizer that has been
trained for Icelandic on the Icelandic Frequency
Dictionary (IFD) corpus, consisting of about
590,000 tokens (Pind et al., 1991). This is a
language-independent lemmatizer that only looks
at the suffix of the word as a way of lemmatizing
OOV words, and can be used on both tagged and
untagged input.

The authors of Lemmald (see Section 2.2)
trained and evaluated the CST Lemmatizer on the
IFD and observed a 98.99% accuracy on correctly
tagged text and 93.15% accuracy on untagged text,
in a 10-fold cross-validation, where each test set
contained about 60,000 tokens. Another evalu-
ation of this lemmatizer for Icelandic (Cassata,

2007) reports around 90% accuracy on a random
sample of 600 words from the IFD, when the in-
put has been PoS tagged automatically (with a tag-
ging accuracy of 91.5%). The PoS tagger used
was IceTagger (Loftsson, 2008), which is part of
the IceNLP natural language processing toolkit
(Loftsson and Rögnvaldsson, 2007). These results
indicate that the accuracy of this lemmatizer is
very dependent upon the tags it is given. To our
knowledge, the Icelandic CST Lemmatizer model
is not openly available.

2.2 Lemmald

The second tool is Lemmald (Ingason et al., 2008),
which is part of the IceNLP toolkit. It uses a
mixed method of data-driven machine learning
(using the IFD as a training corpus) and linguis-
tic rules, as well as providing the option of look-
ing up word forms in the DMII. Given correct PoS
tagging of the input, Lemmald’s accuracy mea-
sures at 98.54%, in a 10-fold cross-validation. The
authors note that the CST Lemmatizer performs
better than Lemmald when trained on the same
data, without the added DMII lookup. The DMII
lookup for Lemmald delivers a statistically sig-
nificant improvement on the accuracy (99.55%),
but it is not provided with the IceNLP distribu-
tion, so this enhancement is not available for pub-
lic use. When used for lemmatization of the Ice-
landic Tagged Corpus (MÍM) (Helgadóttir et al.,
2012), the lemmatization accuracy of Lemmald
was roughly estimated at around 90%.1

3 System Description

The main difference between Nefnir and the two
previously described lemmatizers for Icelandic,
CST Lemmatizer and Lemmald, is that Nefnir de-
rives its rules from a morphological database, the
DMII, whereas the other two are trained on a cor-
pus, the IFD. Note that the IFD only consists of
about 590,000 tokens, while the DMII contains
over 5.8 million inflectional forms.

Nefnir uses suffix substitution rules, derived
from the DMII to lemmatize tagged text. An ex-
ample of such a rule is (ngar, nkfn, ar→ur), which
can be applied to any word form with the suffix
ngar that has the PoS tag nkfn (a masculine plu-
ral noun in the nominative case), transforming the
suffix from ar to ur. This rule could, for example,

1See https://www.malfong.is/index.php?
lang=en&pg=mim
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be applied to the word form kettlingar “kittens”
to obtain the corresponding lemma, kettlingur.
Words are lemmatized using the rule with the
longest shared suffix and the same tag.

Each inflectional form in the DMII is annotated
with a grammatical tag and lemma. As the DMII
is limited to inflected words, the training data is
supplemented with a hand-curated list of approxi-
mately 4,500 uninflected words (such as adverbs,
conjunctions and prepositions) and abbreviations.

To account for subtle differences between the
tagsets used in the DMII and by the Icelandic PoS
taggers, Nefnir translates all tags to an intermedi-
ate tagset which is a subset of both.

Rules are successively generated and applied to
the training set, with each new rule minimizing the
number of remaining errors. Rules continue to be
generated until the number of errors cannot be re-
duced. The process is as follows:

1. Initially, assume that each word form is iden-
tical to its lemma.

2. Generate a list of rules for all remaining er-
rors.

3. Choose the rule which minimizes the num-
ber of remaining errors and apply it to the
training set, or stop if no improvement can
be made.

4. Repeat from step 2.
Rules are only generated if they can correctly

lemmatize at least two examples in the training set.
A dictionary is created for words which are incor-
rectly lemmatized by the rules, for example be-
cause they require a unique transformation, such
as from við “we” to ég “I”. Once trained, Nefnir
lemmatizes words using the dictionary if they are
present, or else with the most specific applicable
rule.

A rule is generated for every suffix in a word
form, with some restrictions. For base words,
Nefnir considers all suffixes, from the empty string
to the full word. For skó “shoes”, an inflected
form of the word skór “shoe”, rules are gener-
ated for the suffixes ε, ó, kó and skó. However,
Nefnir does not create rules for suffixes that are
shorter than the transformation required to lemma-
tize the word. For example, for bækur “books”,
which requires the transformation ækur→ók (the
lemma for bækur is bók), only the suffixes ækur
and bækur are considered.

Compounding is highly productive in Icelandic
and compound words comprise a very large por-

tion of the vocabulary. This is reflected in the
DMII, where over 88% of all words are com-
pounds (Bjarnadóttir, 2017). Any of the open
word classes can be combined to form a com-
pound, and there is no theoretical limit to how
many words they can consist of. Due to the abun-
dance of compounds in the training data, and the
freedom with which they can be formed, Nefnir
places additional restrictions on which suffixes to
consider when generating rules for them. Suffixes
for the final part of a compound are generated in
the same manner as for base words, growing part
by part thereafter. For example, the compound
word fjall+göngu+skó “hiking boots” would yield
rules for the suffixes ε, ó, kó, skó, gönguskó and
fjallgönguskó. Allowing suffixes to grow freely
past the final part of the compound may result in
overfitting as the rules adapt to incidental patterns
in the training data.

4 Evaluation

We have evaluated the output of Nefnir against a
reference corpus of 21,093 tokens and their correct
lemmas.

Samples for the reference corpus were extracted
from two larger corpora, in order to obtain a di-
verse vocabulary:
• The IFD corpus mostly contains literary texts

(Pind et al., 1991). It was first published in
book form and is now available online. This
corpus has been manually PoS tagged and
lemmatized.
• The Icelandic Gold Standard (GOLD) is a

PoS tagged and manually corrected corpus
of around 1,000,000 tokens, containing a bal-
anced sample of contemporary texts from 13
sources, including news texts, laws and adju-
cations, as well as various web content such
as blog texts (Loftsson et al., 2010).

Samples were extracted at random from these
two corpora, roughly 10,000 tokens from each,
and the lemmas manually reviewed, following the
criteria laid out in the preface of the IFD (Pind
et al., 1991).

The incentive when performing the evaluation
was to create a diverse corpus of text samples
containing foreign words, misspellings and other
OOV words. Such words are likely to appear in
real-world NLP tasks, and pose special problems
for lemmatizers. In the proofread and literature-
heavy IFD corpus, which was used for training and
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Gold tags IceTagger tags
Accuracy (%) Errors Accuracy (%) Errors

99.55 94 96.88 658

Table 1: Results of the evaluation, with the accu-
racy and the total number of errors found.

evaluating the previous two lemmatizers, these
OOV words are less prevalent. Consequently, the
test corpus used here is not directly comparable
with the corpus used to evaluate Lemmald and
the CST Lemmatizer for Icelandic. On the other
hand, it is more diverse and offers more challeng-
ing problems for the lemmatizer.

One of the motivations of this work was to de-
termine how well Nefnir performs when lemma-
tizing text which has been PoS tagged automati-
cally, without any manual review, as such manual
labour is usually not feasible in large-scale NLP
tasks. For this purpose, we created two versions of
the test corpus, one with the correct PoS tags, and
another tagged using IceTagger (Loftsson, 2008).
The accuracy of IceTagger is further enhanced us-
ing data from the DMII. Measured against the cor-
rect PoS tags, the accuracy of the PoS tags in the
reference corpus is 95.47%.

Accuracy of the lemmatizaton was measured by
comparing the reference corpus lemmas with the
obtained lemmas from Nefnir. This was done for
both the correctly tagged corpus (gold tags) and
the automatically tagged one (IceTagger tags). As
seen in Table 1, the accuracy for the test file with
the correct PoS tags is 99.55%, with 94 errors in
21,093 tokens. For the text tagged automatically
with IceTagger, the accuracy is 96.88%, with 658
errors.

These results indicate that given correct PoS
tags, Nefnir obtains high accuracy, with under a
hundred errors in the whole corpus sample. This
is comparable to the score reported for Lemmald,
when DMII lookup has been added (99.55%). In
fact, it can be argued that a higher score is hard
to come by, as natural language always contains
some unforeseen issues that are hard to accommo-
date for, such as OOV words, misspellings, col-
loquialisms, etc. When Nefnir bases its lemmas
on the automatically PoS tagged text, the accu-
racy decreases, from 99.55% to 96.88%, resulting
in six times as many errors.

We can classify the errors made by Nefnir into
the following main categories:

1. Foreign words
2. Proper names
3. Two valid lemmas for word form
4. Typos
5. Incorrect capitalization, abbreviations, hy-

phenation, etc.
6. Unknown Icelandic words
7. Wrong PoS tag leads to wrong lemma

The most prevalent error categories when the
PoS tags are correct are foreign words and proper
names, such as foreign names of people, products
and companies. A special issue that often came up
is the cliticized definite article in Icelandic proper
names. This is quite common in organization
names (Síminn, Samfylkingin), titles of works of
art (Svanurinn), names of ships (Vonin), buildings
(Kringlan), etc. Ultimately, it depends on the aim
of the lemmatization how these should be handled,
but in this evaluation we assume as a general rule
that they should be lemmatized with the definite
article (Síminn, and not sími or Sími). The same
applies to the plural, in names such as Hjálmar
“helmets” (band) and Katlar (place name).

In the automatically tagged data, tagging errors
are the most common source of lemmatization er-
rors, such as when læknum (referring to the plu-
ral dative of the masculine noun læknir “doctor”)
is tagged as being in the singular, which leads to
it being incorrectly lemmatized as lækur “brook”.
This was to be expected, as the rules learned from
the DMII rely on the correct tagging of the input.
However, as the authors of Lemmald comment, as
long as the word class is correct, the lemmatizer
can usually still find the correct lemma (Ingason
et al., 2008).

The main reason for the high accuracy in our
view lies in the richness of the DMII data. No
lexicon can ever include all words of a particular
language, as new words appear every day, but most
often, new words in Icelandic are compounds, cre-
ated from words already present in the DMII. This
explains how rare or unknown words such as the
adjective fuglglaður “bird-happy”, which appears
in the corpus data, can be correctly lemmatized us-
ing the suffix rule for glaður “happy”.

As mentioned above, Nefnir, the CST Lemma-
tizer for Icelandic, and Lemmald have not been
evaluated using the same reference corpus. The
accuracy of the three lemmatizers are, therefore,
not directly comparable, but our results indicate
that Nefnir obtains the highest accuracy.

313



5 Conclusion

We described and evaluated Nefnir, a new open
source lemmatizer for Icelandic. It uses suffix sub-
stitution rules, derived from a large morphologi-
cal database, to lemmatize tagged text. Evaluation
shows that Nefnir obtains high accuracy for both
correctly and automatically PoS-tagged input.

As taggers for Icelandic gradually get better, we
can expect to see the lemmatization accuracy go
up as well. Expanding the morphological database
with more proper names may also help to achieve
even higher accuracy.
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Anna Nedoluzhko, Petr Pajas, Jarmila Panevová,
Lucie Poláková, Magdaléna Rysová, Petr Sgall, Jo-
hanka Spoustová, Pavel Straňák, Pavlína Synková,
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Abstract

Social science researchers often use text as
the raw data in investigations: for instance,
when investigating the effects of IMF poli-
cies on the development of countries un-
der IMF programs, researchers typically
encode structured descriptions of the pro-
grams using a time-consuming manual ef-
fort. Making this process automatic may
open up new opportunities in scaling up
such investigations.

As a first step towards automatizing this
coding process, we describe an experiment
where we apply a sentence classifier that
automatically detects mentions of policy
conditions in IMF loan agreements written
in English and divides them into different
types. The results show that the classifier
is generally able to detect the policy con-
ditions, although some types are hard to
distinguish.

1 Introduction

In the social sciences, evaluating policies often re-
lies on text. What is the effect of a high-ranking
politician’s tweet on Wall Street? What is the im-
pact of a new economic treaty on trade between
nations? What part of the treaty or the tweet in-
duced the relevant effect? These types of policy
evaluation questions often require that researchers
identify the relevant text passages in large corpora.

Currently, many researchers in these fields de-
vote considerable amounts of resources to hand-
coding the relevant passages of the entire corpus
of interest (King et al., 2017). For example, so-
cial scientists have recently devoted much atten-
tion to identifying the impact of macroeconomic
policies. These policies affect a population’s liv-
ing conditions both in the short and the long term.

The International Monetary Fund (IMF) has since
the 1980s been involved in setting the macroeco-
nomic policy space for many countries. IMF’s
programs contain many different policies, where
some might be considered more effective than oth-
ers. Researchers have therefore sought to com-
pile structured databases identifying what policies
each IMF program contains. However, this re-
quires that researches sift all these IMF policies
by going through the documents of about 880 pro-
grams, between 1980 and 2014, that have been
implemented in about 130 countries, and qualita-
tively hand-coding them (Daoud et al., 2019; Ken-
tikelenis et al., 2016; Vreeland, 2007).

Accordingly, combining qualitative coding to
guide a machine-learning powered natural lan-
guage processing (NLP) tool to operate on large
textual data will likely produce large benefits for
the social science community. In this paper, we
carry out an experiment that investigates the fea-
sibility of developing such a system. We use the
IMF research domain as a case study to evaluate
the efficacy of our method.

2 Background and Related Work

Textual datasets are often used in investigations in
the social sciences, but such investigations typi-
cally rely on manual qualitative coding, which is
not only labor-intensive but also has the risk of in-
troducing a methodological bias. The principles
of grounded-theory has spurred ethnographic and
other qualitative research. These principles aim
to guide in building social science explanations
from the meaning of a corpus (Strauss and Corbin,
1998). Often, this approach does not aim to build
systematic coding procedures that are meant to be
used in quantitative research. A spin-off of this
qualitative methodology, however, called content
analysis, addresses this gap (Evans and Aceves,
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2016). A variety of content analysis has been used
to produce databases. Two or more researchers are
set to the task of implementing a coding schema
interpreting the text and coding it up by hand. Us-
ing multiple coders help in estimating inter-coder
reliability metrics for qualitative validation. Be-
cause it is labor-intensive, content analysis suits
smaller-sized corpora.

However, with the rise of larger corpora, the
need for automatic content analysis has emerged.
This has led to a number of methodological inno-
vations in the overlap between computer science
and social science. For example, unsupervised
machine learning methods such as topic model-
ing are often used for various social science prob-
lems (Daoud and Kohl, 2016; DiMaggio et al.,
2013; Meeks and Weingart, 2012). These unsu-
pervised methods help reduce the dimensionality
of the data, but they are unsuitable when there
is a clear outcome target – policy text – the re-
searchers desire to code. For these task a num-
ber of supervised machine learning methods have
been proposed (Grimmer and Stewart, 2013; King
et al., 2017). Yet, although a combination of NLP
and machine learning are on the rise in computer
science, they have yet to fully reach their poten-
tial within a social science audience. One way of
demonstrating the potential of applying NLP tech-
niques in the social sciences is to evaluate these
methods in a real application: extracting policy
conditions from IMF reports.

So far, we are aware of no previous work
where automated NLP methods have been ap-
plied to compile IMF policies from program doc-
uments. Most of the research uses qualitative con-
tent analysis (Kentikelenis et al., 2016). Recent
approaches have been based on a combination of
content analysis and a dictionary method to iden-
tify IMF food and agricultural policies (Daoud
et al., 2019). Some unsupervised methods, mainly
different types of topic models, have been applied
to the sister organization of the IMF, namely to
World Bank, to identify overarching topic changes
over time (Moretti and Pestre, 2015).

3 Data and Implementation

3.1 IMF reports

The corpus used in this investigation consists of
loan agreements between countries and the IMF,
all written in English. These agreements form
the policy foundation for the IMF and the recip-

ient government. These agreements outline the
macroeconomic problems that the country is fac-
ing as well as what the IMF expects from the recip-
ient government. These expectations are defined
as a set of policy conditions. The conditions are
typically outlined at the end of the loan document.

3.2 Annotation
A team of researchers have coded the policy con-
ditions qualitatively using content analysis princi-
ples (Kentikelenis et al., 2016). Two researchers
coded all of these policy documents resulting in
over 54,000 individual conditions in about 880
programs over the 1978–2016 period. When they
assigned conflicting codes, these issues were dis-
cussed and resolved by consensus. After all the
polices were coded, the next step was to cate-
gorize all these individual conditions into overar-
ching policy categories. The categories we con-
sider here are policy area, such as finance or en-
vironment, and policy type, such as benchmarks,
performance criteria, etc. This qualitative hand-
annotated data provides the input to our supervised
training.

3.3 Preprocessing
The IMF documents are stored as PDF documents,
some of which required scanning and OCR. The
documents go back to the late 1970s, and the qual-
ity of the OCR’d text is slightly lower in the earlier
documents. Finally, all the documents were con-
verted into plain text using the pdftotext tool.

The documents were then scanned to extract the
text pieces that matched exactly with the hand-
annotated instances. When a text piece consisted
of two or more sentences, it was split up to create
multiple examples of exactly one sentence each.
We did not consider text pieces below the sentence
level. Furthermore, all tokens were lowercased
and all numeric and punctuation symbols were re-
moved. Stop words were not removed.

3.4 Building the Classifiers
We formalized the extraction of policy conditions
as a classification problem on sentences. In the
simplest case, the classifier just spots the men-
tions of policy conditions among a document’s
sentences. We also extended this basic approach to
two different multiclass scenarios, where the pol-
icy conditions are subdivided in different ways.

We implemented the classifiers using the scikit-
learn library (Pedregosa et al., 2011). The clas-
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sifiers use a tfidf-weighted feature representation
based on n-grams of size one and two, without any
feature selection. The classifier is a linear support
vector machine with L2 regularization and a regu-
larization term of 1.0. A one-versus-rest approach
was used for multiclass classification. Preliminary
experiments using a classifier based on BERT (De-
vlin et al., 2019) were less successful.

4 Experiments

We carried out a number of experiments to see
how well the classifier retrieves policy conditions
from the IMF loan agreements, and how well dif-
ferent types of policy areas and policy types can
be distinguished.

4.1 Finding Policy Conditions

In the first experiment, we investigated the
model’s capability of finding mentions of the pol-
icy conditions in the documents. This task was
framed as a binary classification task where an-
notated text pieces were treated as a positive set
while non-annotated pieces constituted a negative
set. The negative examples were subsampled in a
random fashion to create a balance of 20% positive
examples.

We partitioned the data into training sets and
test sets in two different ways. In the first case,
we wanted to see how well the classifier gener-
alizes between different countries. We assigned
the documents corresponding to 80% of the coun-
tries into the training set while the remaining doc-
uments were placed in the test set. In the second
case, we instead considered the question how well
the classifier generalizes to newer documents; in
this case, we used the oldest 80% of the documents
as the training set.

The classifiers were evaluated using precision–
recall curves and average precision scores (AP) to
see how well they perform for different classifica-
tion thresholds. Figure 1 shows the curves and AP
scores obtained for the country-based and time-
based partition schemes, respectively. It is read-
ily apparent that in both cases the model outper-
forms a random-guess baseline, which would give
an AP score of about 0.20. Furthermore, while the
classifier is slightly less accurate when the test set
consists of the newer documents, the difference in
performance appears to be quite small as indicated
by the similar AP scores.

4.2 Classifying the Policy Area
Next, we considered how well the model can clas-
sify a text piece as one of several policy areas.
The data sampling scheme employed in this exper-
iment was similar to the one described in 5.1, with
the main difference that the policy area for each
example was treated as a target attribute to create
a multiclass classification task. Furthermore, the
partitioning of the data into training and test sets
was performed in a random fashion.

Table 1 shows the precision and recall scores
obtained for each individual policy area. The pre-
cision scores are consistently higher than the cor-
responding recall scores. One probable cause for
this tendency is the imbalance between positive
and negative examples in the training set. Table 1
also shows that the results obtained for some pol-
icy areas are remarkably low, with redistributive
policies being the most obvious example. The
most likely explanation for this phenomenon is the
imbalance in the number of training instances per
class. Figure 2 compares the F1 scores for the dif-
ferent policy areas to the number of training ex-
amples. While the curve is not perfectly smooth,
it is clearly visible that the F1 score increases quite
rapidly with the number of training examples, es-
pecially in the lower range of the domain.

Policy area Precision Recall
Debt 1.000 0.280
Environment 0.750 0.353
External 0.875 0.491
Finance 0.824 0.618
Fiscal 0.880 0.523
Institutional 0.958 0.354
Labor 0.864 0.520
Redistributive 0.000 0.000
Privatization 0.745 0.522
Revenues 0.863 0.548
SOE 0.918 0.421
Social 0.833 0.469
Other 1.000 0.158

Table 1: Policy area classification scores.

4.3 Classifying the Type of Condition
In the final experiment, we evaluated how well the
model distinguishes policy conditions by the pol-
icy type: indicative benchmark (IB), prior action
(PA), quantitative performance criterion (QPC),
structural benchmark (SB), or structural perfor-
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Figure 1: Precision–recall curves for detecting policy conditions.
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Figure 2: Classification F1 scores for policy areas
as a function of the number of training examples.

mance criterion (SPC). The partitioning of the data
was done in a similar way as in §4.2, with the only
difference that policy type was designated as the
target attribute. Table 2 shows the precision and
recall scores obtained for each individual policy
type. As in the experiment on classifying exam-
ples according to policy area, the precision scores
are consistently higher than the corresponding re-
call scores and we propose the same explanation
for this phenomenon as in §4.2.

5 Conclusions

We have evaluated a sentence classification ap-
proach as a supporting technology in a social sci-
ence research scenario. Our results are promising
and show that a straightforward sentence classifier
is quite successful in detecting mentions of policy

Policy type Precision Recall
IB 0.955 0.963
PA 0.762 0.535
QPC 0.833 0.269
SB 0.720 0.420
SPC 0.913 0.583

Table 2: Policy type classification scores.

conditions in IMF loan agreements, as well as dis-
tinguishing different policy areas and policy types,
although the rarer classes are more difficult for our
system. This work can be seen as a preparatory
effort for the main goal of automatizing coding-
based methods in social science, and a more am-
bitious goal will be to actually apply the classifier
in a research scenario and see how the conclusions
are affected by the use of an automatic system.

Our use case is just one of many where text
processing methods open up new opportunities
for changing the way social scientists work with
text as research data. Another example is to
identify what policies exist around the world:
UCLA’s WORLD Policy Analysis Center continu-
ously sifts through all the legislation of the world’s
governments to identify the variation of social, en-
vironmental, and economic policies. This includes
identifying policies concerning the level of mini-
mum wage, anti-poverty policies, gender inequal-
ity, and maternal and child health. These coding
procedures require a considerably large team and
training to conduct, and this is another scenario
where NLP techniques could probably facilitate
text-based research in social science.
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Abstract
In this paper, we present a prototype for
an online exercise aimed at learners of En-
glish and Swedish that serves multiple pur-
poses. The exercise allows learners of
these languages to train their knowledge
of particle verbs receiving clues from the
exercise application. At the same time,
we collect information which will help us
judge the accuracy of our graded word
lists. As resources, we use lists with an-
notated levels from the proficiency scale
defined by the Common European Frame-
work of Reference (CEFR) and a multi-
lingual corpus with syntactic dependency
relations and word alignments for all lan-
guage pairs. From the latter resource, we
extract translation equivalents for particle
verb constructions together with a list of
parallel corpus examples that are used as
clues in the exercise.

1 Introduction

Combinations of verbs and particles have been
studied extensively in various aspects, e.g. parti-
cle placement with regard to cognitive processes
(Gries, 2003), the relation between syntactical and
semantic structure (Roßdeutscher, 2011) and their
compositionality with respect to syntactic argu-
ment structure (Bott and Schulte im Walde, 2015).
In the field of language learning, verb-particle
combinations have been investigated in matters of
their use of language learners of English (EFL)
(Gilquin, 2015; Liao and Fukuya, 2004), also in
comparison to native language speakers (Schnei-
der and Gilquin, 2016) and with regard to ped-
agogical suggestions for language learning and
teaching (Gardner and Davies, 2007).

The term ‘phrasal verb’ is used in most publi-
cations to refer to an English verb-particle combi-
nation that "behaves as a semantic unit" (Gilquin,

2015), while for other (mostly Germanic) lan-
guages term such as ‘verb-particle constructions’,
‘verb-particle expressions’ (Toivonen, 2002) or
simply ‘particle verbs’ prevail (Zeller, 2001).
Dehé (2015) compares particle verbs in Germanic
languages and regards these terms as synonyms.
We will thus refer to construction of verb and par-
ticle as particle verbs.

Particle verbs are especially difficult for learn-
ers since they present no discernible pattern in
the selection of the particle. Gardner and Davies
(2007) observe that “many nonnative English
speakers actually avoid using phrasal verbs alto-
gether, especially those learners at the beginning
and intermediate levels of proficiency.” Not all
verbs and particles are equally likely to take part
in particle verbs. In English, “a number of lexical
verbs such as take, get, come, put and go are par-
ticularly productive and frequent when they com-
bine with adverbial particles” (Deshors, 2016).
Gardner and Davies (2007) recommend learners
to memorize those verbs and particles that occur
frequently in verb-particle combinations.

Recently, so-called Games With A Purpose
(GWAPs) (Lafourcade et al., 2015) have been used
to collect information from players while offering
a ludic interface that promotes participation. For
example, JeuxDeMots (Lafourcade and Joubert,
2008; Lafourcade, 2007) has been used to find
lexico-semantic relations between words, Zom-
biLingo (Fort et al., 2014) for the annotation of
dependency syntax in French corpora, RigorMor-
tis (Fort et al., 2018) for the identification of multi-
word expression by (untrained) learners, relying
on their subjective opinion.

With the six reference levels of the Com-
mon European Framework of Reference (CEFR)
(Council of Europe, 2001), henceforth CEFR lev-
els, we can classify learners according to their
level of proficiency. In Section 2.1, we introduce
two resources that we build upon, which provide
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lists of vocabulary units together with their es-
timated distribution over CEFR levels. In Sec-
tion 2.2, we explain how we look up translation
equivalents in several languages in a word-aligned
multiparallel corpus, followed by a manual re-
assessment step described in Section 2.4.

In continuation, we present an application that
implements a gamified exercise based on parti-
cle verbs in English and Swedish, their translation
equivalents and corpus examples that demonstrate
their use in authentic translations (Section 3).
Learners playing the game try to not lose while
the game automatically adapts to their current pre-
dicted knowledge level. The application keeps
track of decisions taken by the user during the
course of the game to provide them with feedback
regarding their language skills, and points to po-
tential weaknesses and (language-specific) factors
for confusions. At the same time, we expect that a
sufficiently large collection of decisions will help
us assess the CEFR levels of our lexical resources
and provide insights for future extensions.

2 Data Preparation

We extract particle verbs for CEFR levels from
A1 to C1 from two lexical resources, one for En-
glish and one for Swedish.1 For each particle verb
that we find in these resources, we look up po-
tential translation variants for several other lan-
guages, from a large multilingual word-aligned
corpus. Since word alignment is less reliable when
it comes to function words, we need to review the
lists of translation variants and adjust word order
and missing function words in multiword variants
manually.

2.1 Lexical Resources

The CEFRLex project2 offers lists of expressions
extracted from graded textbook corpora for differ-
ent languages. The languages currently available
are French, Swedish and English. For this project,
we use the Swedish list SVALex (François et al.,
2016) and the English list EFLLex (Dürlich and
François, 2018) from the CEFRLex project. Each
resource lists single-word and multi-word expres-
sions, as recognized by a syntactic parser, and their
frequency in textbooks of different CEFR levels.
Table 1 shows examples from the EFLLex list.

1No particle verb has been classified as C2.
2http://cental.uclouvain.be/cefrlex/

We extract particle verbs from both lists. For
EFLLex, we use regular expressions to match all
two-word expressions that are tagged as verbs.
Manual inspection of the results shows that most
expressions extracted this way are indeed particle
verbs; we only had to exclude four expressions.3

For SVALex, we consider the subset of expres-
sions tagged as verbal multi-word expressions.
Since not all verbal multi-word expressions are
particle verbs, we cross-check for the existence
of each expression in the upcoming version of
Saldo,4 which includes particle verbs. Upon man-
ual inspection of the resulting list we removed two
reflexive particle verbs.5 In total, we extracted 221
English and 362 Swedish particle verbs. As we
are, among other things, interested in seeing how
CEFR levels correlate with self-proclaimed pro-
ficiency, we assign each particle verb the CEFR
level at which it first occurs in the respective re-
source, as has been previously done in various
other experiments (Gala et al., 2013, 2014; Alfter
et al., 2016; Alfter and Volodina, 2018).

2.2 Translation Equivalents from Parallel
Corpus Data

The exercise is based on finding the correct parti-
cle for a particle verb in the target language based
on translations in the source language. In other
words, it means that, for example, learners of
Swedish (target language) with knowledge of En-
glish (source language) will have to guess Swedish
particle verbs based on English translations. For
identifying translation equivalents in multiple lan-
guages, we use the Sparcling corpus (Graën, 2018;
Graën et al., 2019), which, in addition to stan-
dard annotation such as part-of-speech tagging,
features dependency relations from syntactic pars-
ing in a number of languages (including English
and Swedish) and bilingual word alignment for
all language pairs. We use dependency relations
to identify pairs of particles and their head verb
matching the list that we extracted from EFLLex
and SVALex.

For each occurrence of those pairs in the corpus,
we look up aligned tokens in all other languages
available to spot corresponding translation equiva-
lents. We then filter the aligned tokens for content

3Those are ‘finger count’, ‘deep fry’, ‘go lame’ and ‘tap
dance’, which use other part of speech than particles.

4https://spraakbanken.gu.se/eng/
resource/saldo

5To wit ‘ge sig ut’ ‘go out’ and ‘klamra sig fast’ ‘cling to’.
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Expression PoS A1 A2 B1 B2 C1 C2

video noun 65.19 0 67.87 81.76 111.06 90.93
write verb 758.66 1421.51 1064.47 682.26 1104.72 1053.96
empty adjective 0 28.83 28.65 102.29 37.84 61.88
shopping center noun 0 45.12 9.80 0 15.50 11.45
dream up verb 0 0 0 0 0.82 0.24

Table 1: Example entries from EFLLex.

words, that is, in terms of universal part-of-speech
tags (Petrov et al., 2012), verbs, nouns, adjectives
or adverbs. Functional parts of multi-word ex-
pressions are notoriously misaligned if the syntac-
tic patterns of the corresponding expressions dif-
fer. For instance, English ‘to cry out (for sth.)’
can be expressed in Spanish with the fixed expres-
sion ‘pedir (algo) a gritos’. In this case, we often
see ‘cry’ aligned with ‘pedir’ and ‘gritos’, and the
particle ‘out’ with the preposition ‘a’. A similar
expression is ‘llevar (algo) a cabo’ ‘get through
(sth.)’, where ‘carry’ is aligned with ‘llevar’ and
‘out’ with ‘cabo’; the preposition ‘a’ often remains
unaligned in this case.

By filtering out function words, we systemat-
ically miss any preposition, determiner or parti-
cle that forms part of the equivalent expression.
Not filtering them out, on the other hand, leads
to considerably noisier lists. The missing func-
tional parts need to be added back later and the
set of lemmas needs be put in the preferred lex-
ical order (see Section 2.4). We retrieve lemmas
of the aligned tokens as a set, disregarding their
relative position in the text, and calculate frequen-
cies for each translation equivalent. Translation
equivalents are most frequently single verbs. The
Swedish particle verb ‘ha kvar’ (literally ‘have
left’), for instance, is aligned to the English verbs
‘retain’ 49 times, to ‘maintain’ 31 times and to ‘re-
main’ 26 times.

2.3 Example Sentence Selection
Alongside other options (see Section 3), we want
to provide learners with authentic examples where
the given particle verb is used as translation of
a particular expression in another language. We
typically find several example sentences per trans-
lation correspondence in the Sparcling corpus.
The question now is how to select the most ad-
equate one for the respective learner. In previ-
ous works, we have used the length of the candi-
date sentence pair as ranking criterion, downgrad-

ing those pairs that showed a substantial deviation
in length (Schneider and Graën, 2018; Clematide
et al., 2016).

While there is a substantial amount of previous
work on finding good example sentences for use in
dictionaries (e.g. GDEX (Kilgarriff et al., 2008))
or for language learners (e.g. HitEx (Pilán et al.,
2017)), most of the features they use are language-
specific, such as blacklists, ‘difficult’ vocabulary,
or recognizing and excluding anaphoric expres-
sions without referent in the same sentence.

For the purpose of this study, we have thus
opted for a simple heuristics which works well
across a number of different languages. We use
sentence length and a weighted measure for lex-
ical proficiency required to understand the target
language sentence (since we do not have gradings
for most of the source languages).

2.4 Manual Revision
Manual correction involves the removal of irrele-
vant translations, the re-ordering of words, in case
a particle verb has been aligned to multiple other
words, and the insertion of missing words into the
translation variants (as in ‘llevar a cabo’). In ad-
dition, we judge example sentences with regard to
adequacy.

While the translation candidate extraction could
be restricted to allow only verbal translations for
particle verbs, this is a constraint that we do not
want to impose. Indeed, certain languages tend
towards more nominal ways of expression while
other languages tend towards more verbal ways of
expression (Azpiazu Torres, 2006). Thus, impos-
ing such a constraint could possibly induce non-
idiomatic or unnatural translation candidates.

Having multiple part-of-speech possibilities for
translation variants also allows us to potentially
control the difficulty of the exercise by only giv-
ing verbal translation variants to beginners while,
as the learner progresses and improves, other part-
of-speech variants could be included.
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3 Crowdsourcing and Gamification

We use our gamified system to assess knowl-
edge of language learners in their L2 (English
or Swedish), and to judge the accuracy of the
automatically assigned CEFR labels. The game
presents one base verb each round, together with
a list of particles to choose from and one initial
clue in form of a translation variant for the parti-
cle verb that the player is supposed to guess. The
player can gain points by choosing the right par-
ticle and loose points by choosing a wrong one.
Additional clues can be traded off against points.
These clues can also be example sentences in the
target language or the elimination of several of the
non-fitting particles.

The learner assessment is achieved by monitor-
ing how players of certain self-proclaimed profi-
ciency levels deal with expressions that they are
supposed to master, according to the automatic
CEFR level assignment method. If learners sys-
tematically struggle with expressions of their self-
chosen proficiency level, we assume that they
overvalued their level and provide feedback ac-
cordingly. If they show little or no difficulties
in dealing with expressions deemed of their cur-
rent self-proclaimed proficiency level, we assume
that their actual proficiency is higher, and gradu-
ally increase the challenge by using particle verbs
of higher levels and more difficult clues (e.g. less
frequent translation variants).

The accuracy of the automatically assigned
CEFR labels is measured by aggregating results
over all players. We also take into account re-
sponse times for individual exercises. Signifi-
cantly large deviance from the average answer-
ing time or the average number of points used for
‘trading’ clues for particle verbs of the supposedly
same proficiency level suggests that the particle
verb in question could belong to a different level.

Before the actual game starts, learners have to
choose the language that they want to train. They
are also asked to indicate their mother tongue
and any other languages they know, including a
self-assessment of their proficiency in the respec-
tive languages (beginner, intermediate, advanced).
This rough scale is translated to the levels A1 and
A2, B1 and B2 and C1 respectively.

Having finished the self assessment, the learner
gets a predefined amount of points, as a virtual cur-
rency. More points can be gained each round by
finding the right particle for the given verb with as

few clues as possible. A wrong answer is worth an
equally negative amount of points that could have
been gained by choosing the right answer. We em-
ploy a function to calculate the reward based on
hints used and difficulty of the hints in terms of
language knowledge, i.e. a clue in a lower-rated
language will cost the learner less points than, for
instance, in his mother tongue. The game ends
when the player is out of points or the game is out
of particle verbs. The final score is used to create
an entry on a leaderboard.

4 Discussion and Future Work

With the development of new CEFR graded multi-
word expression lists, including a wider range of
expressions, the exercise can be extended to other
types of expressions. With the advent of CEFR
graded multi-word lists in other languages, the ex-
ercise can also be extended to encompass a more
diverse set of languages.

One aspect that is not specifically addressed
in this study is the issue of polysemy. Indeed,
a particle verb can have multiple meanings, and
thus multiple different translations. This aspect
will prove problematic when the particle verbs are
shown in context, as one has to ensure that both
the original as well as the translation pertain to the
same sense of the expression.

Another question concerns the accuracy of the
automatic assignment of CEFR levels based on the
method used. While we surmise that we can gain
insights about the accuracy of the assigned levels
through the proposed prototype, a separate inves-
tigation should be carried out. One could possibly
compare the automatically assigned levels from
EFLLex to the levels given in English Vocabulary
Profile.6
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Abstract
In this paper we present a new method
to learn a model robust to typos for a
Named Entity Recognition task. Our im-
provement over existing methods helps the
model to take into account the context of
the sentence inside a court decision in or-
der to recognize an entity with a typo.
We used state-of-the-art models and en-
riched the last layer of the neural network
with high-level information linked with
the potential of the word to be a certain
type of entity. More precisely, we utilized
the similarities between the word and the
potential entity candidates in the tagged
sentence context. The experiments on a
dataset of French court decisions show a
reduction of the relative F1-score error of
32%, upgrading the score obtained with
the most competitive fine-tuned state-of-
the-art system from 94.85% to 96.52%.

1 Introduction

Automatic Named Entity Recognition (NER) is a
task that has been tackled and tackled over the
years, because of the multitude of possible appli-
cations that flow from it. It can be useful for en-
tity information extraction (Ferré et al., 2018), for
the creation of Knowledge Bases like DBPedia or
for purposes of pseudonymisation (identification
and replacement) in sensitive documents from the
medical or the legal domain (Neamatullah et al.,
2008).

In our application, the French Courts of Justice
release 3800k court decisions each year. The size
of this number makes the manual de-identification
of each court decision helpless. Hence it is manda-
tory to use natural language processing NER tools
to automatize the operation.

The domain of NER has considerably evolved
in the last several years. The NER models can be

rule-based systems using expert knowledge (Nea-
matullah et al., 2008), hybrid models using lin-
guistics and domain specific cues as features of
a learning method (Sutton and McCallum, 2011;
Bodnari et al., 2013) or end-to-end deep learning
models using distributed learned representations
of words and characters (Peters et al., 2018; Lam-
ple et al., 2016).

Each method has its own advantages and draw-
backs. The rule-based ones allow high precision
but are nonetheless domain-specific, nor robust to
noisy data and costly to design. Hybrid meth-
ods combine the robustness and the high accuracy
of Machine Learning algorithms with the fine-
grained information of external dictionaries or lin-
guistic rules (Cohen and Sarawagi, 2004; Barriere,
2017). The deep learning approaches that achieve
high performances relying on a big amount of
training data are the most efficient nowadays (De-
vlin et al., 2018).

Nevertheless, even the most efficient systems
struggle to manage with some kind of noise: the
typos and misspelling (Kukich, 1992) are com-
mon in real-world tasks, up to 15% of the search
queries (Cucerzan and Brill, 2004), and lower
the performances of the NER systems (Lai et al.,
2015).

In this paper, we propose a new method called
MICA (May I Check Again) that improves the per-
formances of a state-of-the-art NER model using
contextual information by automatically generat-
ing contextual dictionaries of entities. We use a
two-learning-step method that: learns a first NER
neural network model, then uses the first network
to create a list of potential entities that will be used
to create new features for each word in the last
layer of the second NER neural network model.
We chose last layer since those new features con-
tain high-level information regarding our task and
the level of complexity increases with the depth
of neural network (Sanh et al., 2019). Neverthe-
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less, this method can also be used with a simple
NER system like Conditional Random Fields, and
it shows interesting results although not state-of-
the-art.

The use of language-specific knowledge-
source, dictionaries or gazetteers is very common
for this type of task. Neelakantan and Collins
(2015) also proposed to learn dictionaries of en-
tities for NER and we distinguish our work from
theirs by several points. Our method does not aim
to create a dictionary of entities but instead use the
entities detected in the context of each sentence in
order to enhance the NER model.

Finally, we also worked on the language model
embeddings in order to adapt the language models
and embeddings from general domain to the legal
domain. For that, we refined the BiLM Flair em-
beddings (Akbik et al., 2018) and trained the Fas-
text embeddings (Grave et al., 2018) on a dataset
of 660,000 court decisions in order to adapt the
language models and embeddings from general
domain to the legal domain.

2 Sequence Labeling models

The method we are presenting :

1. Learn a Vanilla model for NER

2. For each sentence, create a list of potential
entities using a context window

3. Create a vector of similarity values for each
word between the word and each type of en-
tities

4. Use this vector as a new feature in the last
layer of the new NER neural network

As Vanilla sequence tagger model, we chose to
use the work of Akbik et al. (2018) which obtained
state-of-the-art results for NER, part-of-speech-
tagging and chunking. This method is not spe-
cific to the use of deep learning, though adding
high-level information on the last layer is perfectly
adapted to our problem, but can apply to any se-
quence tagger model.

In order to verify this hypothesis, we also used
MICA with a basic NER model composed of
a Conditional Random Fields using hand-crafted
features as input (Peng and Koborov, 2014).

2.1 Vanilla Model
The Vanilla model consists of a Bidirectional
Long Short Term Memory coupled with a Condi-
tional Random Field output layer (BLSTM-CRF)

(Huang et al., 2015) at the word level. The input
of the BLSTM-CRF is a global vector composed
of the concatenation of three different embedding
vectors (see Equation 1).

Vector Stacking This global vector counts a
contextualized word embedding vector obtained
with a Bidirectional character-level Language
Model and a word embedding vector learned inde-
pendently of the NER task, and a character-level
word embeddings learned jointly with the NER
task, as shown below:

wi =




wFastText
i

wCharBiLM
i

wChar
i


 (1)

where wCharBiLM
i is the precomputed Bidirec-

tional character-level Language Model from Ak-
bik et al. (2018), wFastText

i is the precomputed
FastText from Grave et al. (2018) and wChar

i the
character-level word embedding learned during
the task (Ma and Hovy, 2016).

BLSTM-CRF For each word, we’ll obtain as
output of the BLSTM a vector ri (see Equation
2 where rfi and rbi are respectively the forward and
backward output states).

ri =
[

rfi
rbi

]
(2)

The sequence of ri vectors is used as observa-
tions for the CRF (Lafferty et al., 2001).

More details on the model can be found in (Ak-
bik et al., 2018).

2.2 MICA

Vanilla model Once the training of the Vanilla
NER model over, we create a new model with the
same architecture and initialize its weights with
the ones of the trained Vanilla except for the CRF
last layer.

Similarity Vector For every sentence sent the
new model sees, the Vanilla model sees a bunch of
sentences from its neighborhood and create a dic-
tionary of local entity candidates Dsent (see Equa-
tion 3).
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Dsent =




PER : [c1PER, ..., c
LPER
PER ]

PRO : [c1PRO, ..., c
LPRO
PRO ]

LOC : [c1LOC, ..., c
LLOC
LOC ]

DATE : [c1DATE, ..., c
LDATE
DATE ]


 (3)

We can create for each word wi ∈ sent a vec-
tor si containing the potentiality of a word being
an entity of each type, computing similarity with
the Damerau-Levenshtein distance dL (Damerau,
1964; Levenshtein, 1966), and the longest com-
mon string LCS. The Damerau-Levenshtein dis-
tance is a derivative of the Levenshtein one known
to be useful for misspellings detection. For each
entity type, we compute the Damerau-Levenshtein
similarity between the word wi and the entity can-
didates, and take the maximum value. We also
used a similarity based on the longest common
string between the word and the most similar en-
tity candidate c∗ENT.

si =




max
l

(Lev(wi, c
l
PER)) + LCS(wi, c

∗
PER)

max
l

(Lev(wi, c
l
PRO)) + LCS(wi, c

∗
PRO)

max
l

(Lev(wi, c
l
LOC)) + LCS(wi, c

∗
LOC)

max
l

(Lev(wi, c
l
DATE)) + LCS(wi, c

∗
DATE)




(4)

Enriched CRF Then we stack the vector si to
the previous ri vector which is the input of the
CRF (see Equation 5).

renhanced
i =




rfi
rbi
si


 (5)

2.3 Simple CRF

The MICA method does not necessarily need to
be used with a neural network although it is ap-
propriate, so we also experimented MICA with a
simple NER model. We tested it using a simple
baseline model: a Conditional Random Fields us-
ing classical hand-crafted features as input. We
used all the features of the CONLL 2002 NER Tu-
torial of Peng and Koborov (2014) except the parts
of speech that are not given in our dataset.

The configuration stays the same, with the
handcrafted features vector ri concatenated with
the similarity vector si as input of the CRF.

3 Experiments
We tested three kind of models, that were all
build upon a state-of-the-art performing system
for Named Entity Recognition (Akbik et al., 2018)
that we call Vanilla for reasons of simplicity. The
Vanilla model is a BiLSTM-CRF taking as input
different kinds of embeddings learned on general
text data. We compared the Vanilla model with a
model using embeddings that were fine-tuned or
learned on legal text from the same domain that
the text in our NER dataset. Eventually, we com-
pare those baseline models to our models with the
CRF layer enhanced with high-level similarity in-
formation.

All the models were compared on the same
dataset, with the same split between the train, val-
idation and test datasets. Each set constitutes re-
spectively approximately 80%, 10% and 10% of
the full dataset.

All the models have been implemented using
Pytorch (Paszke et al., 2017) and based on the
Flair toolbox (Akbik et al., 2018). The sim-
ple CRF had been implemented using pycrfsuite
(Peng and Koborov, 2014).

3.1 Dataset

Our dataset is composed of 94 of real court deci-
sions for a total of 11,209 sentences and 276,705
tokens. It has been manually annotated by a
unique law expert regarding the following 4 types
of entities:

1. PER: first and last name of the individuals,

2. PRO: first and last name of the court mem-
bers and attorneys,

3. LOC: addresses concerning birthplaces and
residences,

4. DATE: dates of birth.

Following the protocol of CONLL-2003 (Tjong
et al., 2003), the dataset has been annotated with
the BIO scheme (Ramshaw and Marcus, 1995) and
separated into a train, a development and a test
dataset. The statistics of the subdivided sets are
shown in Table 1.

Examples of decision after anonymization of
the PER, LOC and DATE classes can be found on
the Internet website of Légifrance.

Due to the facts that a second annotation pass
would be costly and that the court decisions follow
a writing protocol familiar to the annotator (expert
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Dataset Train Dev Test Total
# of cases 57 20 17 94
# of sentences 6,989 1,963 2,257 11,209
# of tokens 173,448 42,964 60,293 276,705

Ent

PER 1799 447 629 2875
LOC 468 115 139 722
PRO 750 215 243 1208

DATE 57 9 18 84

Table 1: Description of the dataset of French court
decisions with the associated entities

in law), there is no validation of the expert’s anno-
tations with an inter-agreement score.

Finally, it is important to note that it is a clas-
sical NER problem with four classes, nevertheless
only the PER, LOC and DATE classes are useful
for the de-identification problem.

3.2 Results

Regarding the metrics, we use the ratio of the true
positives over the sums of the: true positives and
false positives (precision), true positives and false
negatives (recall), true positives and false positives
and negatives (accuracy). The F1 is the weighted
harmonic mean of the precision and the recall.

Table 2 reports the models’ performances. First
of all, our MICA enhanced CRF models obtain
the best performances compared to their respec-
tive baselines.

Regarding the CRF-Baseline, the results are still
far from a state-of-the-art system like the Vanilla
model of (Akbik et al., 2018). Nevertheless we
can see that the MICA method is improving the
results, even when applied on a CRF-Baseline.
We can note that for both the CRF-Baseline and
the BLSTM-CRF, when the context window is too
wide, the precision of the system is dropping. For
a window wider than 128, the gain in recall is not
sufficient anymore to counter drop of precision in
order to keep a high F1.

The Vanilla model of (Akbik et al., 2018) ob-
tains the poorest performances, but we can notice
that using embeddings learned on legal domain
rather than general domain helps significantly the
system.

Regarding our proposed models, we can notice
difference of performances regarding the size of
the context used to create the dictionary of entity
candidates (see Equation 3). The best model is
obtained with a context size of 128.

High Recall In the case of de-identification, we
need our systems to reach a high recall in order
to remove any sensible information. As a matter
of fact, our best model allows a reduction of the
relative recall error of 40,90% compared with the
fine-tuned Vanilla model.

3.3 Analysis
When analyzing our models, we witnessed several
cases in which the systems we proposed improved
the results over classical methods. To be more pre-
cise, we present in the subsequent few prediction
divergences between the model using a context of
size 0 and our best model.
Typos Obviously, our system allows to detect
the entities with typos, as shown by the results
highlighted in Table 2. We noticed some relevant
examples of missing spaces like the one below
that were not detected by the model using no
context:

Whereas [MS.LAVERGNE]PER does not justify
her situation ...

Register We noticed that when the register
changes, the system can make mistakes. Espe-
cially when it happens that the entities to detect are
children, they just use the first name to describe
them, which is pretty uncommon for this kind of
formal text. Our system can detect the name when
it is presented for the first time in the text since
there is the formality helping the system to detect
the entity (Example 1), but struggle to detect the
entity when it is in a long sentence without con-
text (Example 2) :

(1) [Jérémy]PER , born on February 19th, 1990.

(2) She states that [Jérémy]PER and [Léo]PER

have expressed the will to ....

One drawback of this method is that if the first
model is predicting a false positive, it is likely that
the new model will also predict that false positive.
Nevertheless, the results do not show that behav-
ior and the rate of false positive is stable. An-
other drawback of our system is its inefficiency
against the same words that were detected by the
first models as different types of entities.

4 Conclusion and Future Works

In this paper, we introduced a new model for
Named Entity Recognition. When tagging a sen-
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Model Context Rec Prec F1 Acc
CRF-Baseline (Peng and Koborov, 2014) 0 79.06 92.77 85.37 74.47

MICA + CRF-Baseline 8 80.31 94.28 86.74 76.58
MICA + CRF-Baseline 128 86.30 93.83 89.91 81.67
MICA + CRF-Baseline 512 87.39 92.30 89.78 81.45

Vanilla (Akbik et al., 2018) 0 92.18 96.52 94.30 89.21
Vanilla + LMfinetuned 0 93.62 96.11 94.85 90.20
MICA + LMfinetuned 0 93.68 97.03 95.33 91.07
MICA + LMfinetuned 1 93.87 97.04 95.43 91.26
MICA + LMfinetuned 8 94.36 96.95 95.64 91.64
MICA + LMfinetuned 32 95.94 96.90 96.42 93.08
MICA + LMfinetuned 128 96.23 96.81 96.52 93.28
MICA + LMfinetuned 256-512 96.34 96.62 96.48 93.20

Table 2: Results with the different models on the test dataset. The Context is in number of sentences.

tence, It uses context elements in order to create
a dictionary of entity candidates. This dictionary
allows to compute a value corresponding to the
potentiality of a word to be an entity of a certain
type using the Damerau-Levenshtein distance and
the longest common string distance to calculate
a similarity coefficient. We tested our model on
a dataset of French court decisions. Our results
show a diminution of the relative recall error of
more than 40% compared to a fine-tuned state-of-
the-art system while also slightly augmenting the
precision.

We have in mind several improvements of our
system, regarding the creation of the entities dic-
tionary, the similarity function and the embed-
dings used.

A possible improvement of our system to ob-
tain a more accurate dictionary of entity candi-
dates could be to use the full document instead of a
document-blind context window to create the dic-
tionary of the entity candidates. We can see that
a window size larger than 128 reduces the perfor-
mance.

Regarding the similarity function, it could be in-
teresting to use the word embeddings generated by
the character embeddings neural network with a
cosine similarity. This would be an improvement
over using only string-based similarities and take
advantage of the robustness to noise of the charac-
ter embeddings.

Recently, (Edizel et al., 2019) proposed a new
method to upgrade the Fastext embeddings in or-
der to make them robust to misspelled words. It
could be interesting to improve our system by re-
placing the classical Fastext embeddings into the

vector of stacked embeddings with the ones of
(Edizel et al., 2019). We leave this improvement
for future work.

Finally, since our system is domain-agnostic
and language-agnostic we strongly want to com-
pare it on other classical open-domain NER
datasets with different languages (Tjong et al.,
2003).
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Abstract
In this paper, we present a Bayesian ap-
proach to natural language semantics. Our
main focus is on the inference task in
an environment where judgments require
probabilistic reasoning. We treat nouns,
verbs, adjectives, etc. as unary predicates,
and we model them as boxes in a bounded
domain. We apply Bayesian learning to
satisfy constraints expressed as premises.
In this way we construct a model, by spec-
ifying boxes for the predicates. The prob-
ability of the hypothesis (the conclusion)
is evaluated against the model that incor-
porates the premises as constraints.

1 Introduction

Goodman et al. (2008) interpret natural language
expressions as probabilistic programs, which are
evaluated through Markov chain Monte Carlo
(MCMC) methods. This technique assigns mean-
ings to various phenomena, including graded ad-
jectives (Lassiter and Goodman, 2017). Bernardy
et al. (2019, 2018) combine this approach with the
idea (present in much recent computational lin-
guistic literature (Mikolov et al., 2013, 2018; Pen-
nington et al., 2014) (but which can be traced back
to Gärdenfors (1990)) that individuals are encoded
as points in a multidimensional space. Using this
approach they construct Bayesian models of in-
ference for natural language. While these models
work well for many cases, they generate serious
complexity problems for others.

In this paper we propose a simplified geomet-
ric model that allows us to reduce the need for
sampling, and the complexity that it can create.
In certain cases we eliminate sampling altogether.
We model properties as (unions of) boxes, and
we identify individuals as points. To estimate the
probability of a predication being true, we deter-
mine the likelihood that an individual, a set of

individuals, or another property is contained in a
box corresponding to a predicate. This framework
gives us a more tractable procedure for evaluating
the probability of sentences exhibiting the same
syntactic and semantic constructions that the ap-
proaches proposed by Bernardy et al. (2019, 2018)
cover, but it extends to all representations of pred-
icates in a probabilistic language.

The alternative system for evaluating arguments
that we propose brings us closer to the prospect of
a wide coverage probabilistic natural language in-
ference system. Such a system will be useful for
the Recognising Textual Entailment task (Dagan
et al., 2009), which encompasses non-logical ar-
guments based on real world knowledge and lexi-
cal semantics. It can also be applied in other NLP
tasks that rely on probabilistic assessment of infer-
ence.

2 Interpretation of predicates as boxes

An underlying assumption of a Bayesian inter-
pretation of natural language is that one has an
(immanent) space of all (relevant) individuals,
and predicates are represented as measurable sub-
spaces of this space.

We treat every linguistic predicate as a box in an
n-dimensional euclidean space. (A scaled n-cube
whose faces are orthogonal to the axes.) To sim-
plify computing the volume of a box, we also take
the underlying space of individuals itself to be a
box of a uniform density. Without loss of general-
ity, we can assume that this box is of dimension 1
in all directions, and it is centred at the origin. We
denote this unit box by U .

Formally, with each predicate P we associate
two vectors of dimension n, P c and P d, where
P c is the centre of the box and P d

i is the (posi-
tive) width of the box in dimension i. Hence, the
subspace associated with P is the subspace S(P )
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given by

P (x) = ∀i.||xi − P c
i || < P d

i

Note that S(P ) itself never extends past the com-
plete space:

S(P ) = U ∩
{
x
∣∣∣∀i.||xi − P c

i || < P d
i

}

(A box could isomorphically be defined using
lower and higher bounds P l and P h with P c =
0.5(P h + P l) and P d = 0.5(P h − P l)).

Typically, P c and P d will be themselves sam-
pled. In our experiments, P c

i is taken in the uni-
form distribution on [0, 1], while 1/P d

i is taken in
a beta distribution with parameters a = 2, b = 8.

2.1 Relative clauses
Boxes are closed under intersections. Thus if we
use the expression P ∧Q to denote the intersection
of the predicates P and Q, we have (P ∧ Q)li =
max(P l

i , Q
l
i) and (P ∧Q)hi = min(P h

i , Q
h
i ). The

centre and the width of the box ((P ∧Q)c and (P ∧
Q)d respectively) are recovered using the habitual
formula.

2.2 Quantifiers
With this in place, we can interpret quantifiers. In
classical formal semantics the phrase “every P is
Q” is interpreted by

∀x.P (x)→ Q(x)

A naive translation of this formula yields:

∀x.(∀i.||xi − P c
i || < P d

i )→ (∀i.||xi −Qc
i || < Qd

i )

Enforcing this condition as such in a proba-
bilistic programming language is expensive. It re-
quires:

1. Sampling an individual x.

2. Verifying if x satisfies the hypothesis (P (x)).
If not, go back to point 1.

3. Check if x satisfies the conclusion (Q(x)). If
not, stop, otherwise loop back to point 1.

Typically this loop is iterated thousands of times,
in order to ensure that we do not miss (too many)
points x where P holds but Q does not. Even
though optimisations are possible in the general
case, the above algorithm is inefficient. The con-
dition that it tests is really intended to check the

inclusion of S(Q) in S(P ). Because both spaces
are boxes, this test can be done without sampling
by checking the following geometric constraint:

∀i.P l
i ≤ Ql

i ∧ P h
i ≤ Qh

i

where P l = P c − P d and P h = P c + P d.

2.3 Generalised quantifiers
Generalised quantifiers can also be efficiently im-
plemented with box models. Consider the phrase
“most P are Q.” Following Bernardy et al. (2019,
2018), “most P are Q” can be interpreted as

V (P ∧Q) ≥ θV (P )

for a suitable proportion θ matching the semantics
of “most” in the context. Here, V (P ) stands for
the measure of S(P ) in the space of individuals.
In general, this measure is given by

V (P ) =

∫
1(P (x))PDFInd(x) dx

with 1(c) being 1 if the condition c is true and 0
otherwise. Considering that individuals are ele-
ments in a high-dimensional space, if either the
density of individuals PDFInd or P (x) is non-
trivial, the above integral is often non-computable
symbolically. (This is the case, for example, if
PDFInd is a Gaussian distribution). Instead it
must be approximated numerically, often using a
Monte Carlo method.

By contrast, if S(P ) is a box in a uniform space,
then we have

V (P ) =
∏

i

(P ∧ U)di

Thus, “most P are Q” is interpreted as follows:
∏

i

(P ∧Q)di ≥ θ
∏

i

P d
i

2.4 Graded predicates
We want our models to support predicates that cor-
respond to comparative degree properties. To ac-
commodate these properties we associate a degree
function with predicates.

The degree to which an individual x satisfies a
property P is

s(P, x) = 1−max

{ ||xi − P c
i ||

P d
i

∣∣∣∣i ∈ [1..n]

}
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This definition entails that the subspace corre-
sponding to a predicate coincides with the space
where its degree of satisfaction is positive. For-
mally:

x ∈ S(P ) iff. s(P, x) > 0

Additionally, the maximal degree of satisfaction is
1.

The phrase “x is taller then y” is interpreted as
x satisfying the Tall predicate to a larger degree
than y:

s(Tall, x) > s(Tall, y).

Predicates formed from positive comparatives
are also boxes. For example, the predicate P (x) =
J“x is taller than k”K for some constant individual
k is a box centered at Tallc and whose widths is
given by

Talld = (1− s(Q, y))P d

2.5 Negation and union
Boxes are closed under intersection, but not un-
der negation nor union. Thus, in general, a pred-
icate is represented by a union of disjoint boxes.
If a predicate can be represented by a single box,
we call it a box-predicate. Measuring the volume
and checking intersection of general predicates is
a straightforward combinatorial extension of the
corresponding box-predicate algorithms.

However, general predicates cannot be associ-
ated with a degree, in the sense of the previous
section – only box-predicates can. This limitation
is in fact a welcome result. It correctly rules out
phrases like “John is more not-tall than Mary” or
“John is more tall or happy than Mary” as infe-
licitous, but sustains “John is shorter than Mary”.
Traditional formal semantic approaches to grad-
able predicates (e.g. Klein, 1980; Kennedy, 2007)
have a problem excluding cases like “John is more
not-tall than Mary.”

3 Comparison with bisected multivariate
Gaussian model

We highlight a few important differences between
the present box model and the bisected multivari-
ate Gaussian model proposed by Bernardy et al.
(2018).

In the Gaussian model, individuals are repre-
sented as vectors, sampled in a multivariate Gaus-
sian distribution of dimension k, with a zero mean
and a unit covariance matrix. A (unary) linguis-
tic predicate is represented as a pair of a bias b

and a vector d: d is obtained by normalising a vec-
tor sampled in the same distribution as individuals,
while b is sampled in a standard normal distribu-
tion. The interpretation of a predicate can be un-
derstood as a hyperplane orthogonal to dwith b be-
ing the shortest distance from the origin to the hy-
perplane. An individual satisfies a predicate P if it
lies on the far side of the hyperplane, as measured
from the origin. Hence, every predicate partitions
the vector space into two parts: one of individu-
als satisfying P , and one of individuals satisfying
not-P .1

In the box model, a linguistic predicate is rep-
resented as a box, and individuals satisfy the pred-
icate if they lie inside the boundary of the box.
Here, individuals are sampled in a uniform distri-
bution. For gradable predicates, we see here an
important difference: in the Gaussian model, an
individual has a higher degree of P if and only
if it lies further from the origin, while in the box
model, having a higher degree of P means lying
closer to the center of the box.

Priors differ between the Gaussian model and
the box model. In the Gaussian model, an arbitrary
individual has a 0.5 chance of satisfying an arbi-
trary predicate when no additional information is
given. In contrast, in the box model, the same sit-
uation has a 0.15 chance of holding. While these
priors are somewhat arbitrarily chosen, they re-
flect the different geometric structures of the two
models. If, in the box model, an arbitrary predi-
cate corresponded to a box covering half the space,
any additional predicate would force intuitively
very non-probable configurations of the space. In
particular, each additional predicate would have a
lower probability of holding for an arbitrary indi-
vidual.

The Gaussian model evaluates the size of
a predicate by estimating the volume of the
space beyond the corresponding hyperplane us-
ing MCMC sampling. Similarly, degrees of predi-
cate inclusion (used for the interpretation of gener-
alised quantifiers) are calculated by estimating the
volume of the overlapping space. Approximation
of the volumes by sampling is required since the
density of individuals in the space is non-trivial.
By contrast, in the box model, the volume of a
predicate extension can be calculated by symbolic

1In a recent work, Bernardy et al. (2019) propose a Gaus-
sian model in which a predicate divides the space into three
disjoint sections, but we set aside a detailed comparison with
that model.
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means, since every such extension is a box, the
surrounding space is bounded, and individuals are
distributed uniformly in this space.

The evaluation of inclusion differs between the
two models. In the Gaussian model, a predicate
P is fully contained in a predicate Q if and only
if the corresponding hyperplanes are parallel and
the distance of P from the origin is greater than
the distance of Q from the origin. This configura-
tion is stochastically impossible to obtain, mean-
ing that the system would fail to evaluate any ar-
gument with “every P is Q” among its premises.
This condition can be relaxed in several ways to
make it satisfiable. Bernardy et al. (2019, 2018)
sample elements from P and check if all satisfy
Q. The issue with this approach is that if the pred-
icate P is far from the origin, then the density of
individuals is so low that sampling does not con-
verge in a reasonable time. Another possibility is
to check that the angle between the planes defin-
ing P and Q is less than a certain threshold α. But
this raises another issue: implication is no longer
transitive (even if the angle between P and Q is
less α and the angle between Q and R is also, it
does not follow that P andR are also separated by
an angle less than α.)

By contrast, the box model interprets inclusion
of P in Q by placing the box for P strictly inside
the boundaries of Q. This is easier to obtain, by
sampling the dimensions for the box P within the
boxQ. As a consequence, any predicate contained
in another predicate has a strictly lower chance of
holding for an arbitrary individual than any arbi-
trary predicate has.

We did a preliminary evaluation of our model
using the testsuite for probabilistic inference de-
veloped by Bernardy et al. (2019). While there
is no gold standard to evaluate against, the results
obtained by our model are more stable than the
ones obtained from the Gaussian model. This is
likely to depend on the indeterminacy introduced
by sampling in the Gaussian model: increasing the
number of samples would improve stability, but
also lead to longer computation times.

4 Related Work

Boxes in Euclidean spaces are simple objects, and
as such they have already been considered as ge-
ometric representations of predicates. Vilnis et al.
(2018) use boxes to encode WordNet lexical en-
tries (unary predicates) in order to predict hyper-

nyms. Like us, they take the distribution in the
vector space to be uniform, and the probability of
a predicate is defined as the volume of the corre-
sponding box. In our work, we use a Bayesian
model. It is best suited to represent a small number
of predicates, and to fully model the uncertainty of
the boundary for each box. Vilnis et al. (2018) opt
for a neural network to learn a large number of box
positions. This is appropriate, given that their data
set is the complete WordNet hypernym hierarchy.
Their model converges on a single mapping of
predicates to precise box boundaries, rather than
to a distribution of such mappings.

We have not yet tested the box representation of
words by Vilnis et al. (2018) for our task, but we
plan to do so in future work. As our approach ap-
plies Bayesian sampling, we will need to modify
the sizes of certain boxes to deal with a data set of
this kind. It is important to recall that because their
representations are learned for the purpose of de-
tecting the WordNet hypernymy, they do not need
to contain any additional lexical information not
required for this task.

5 Future Work and Conclusion

We present an approach to natural language in-
ference based on Bayesian probabilistic semantics
for natural language. It differs from the work of
Bernardy et al. (2019, 2018) in several respects.
The main distinction is that we model predicates
as boxes contained in a unit box, while they use
(infinite) subsets of a vector space equipped with
a Gaussian density. The density of the distribution
in the current approach is uniform, which allows
us to construct a more computationally efficient
system for estimating the probability of the con-
clusion of an argument, given its premises. Our
system is more stable than the one described by
Bernardy et al. (2019) when tested against their
test suite.

We have been relying on expert subjects for
judgments on the strength of probabilistic infer-
ences. In future work, we plan to collect crowd-
sourced data to ground these estimates or try
to crowd source existing categorically annotated
datasets like the FraCas test suite (Cooper et al.,
1996), and use the mean judgments that we obtain
as the target values for our system. Another way
of testing our system would be to evaluate against
the categorically annotated datasets, e.g. the Fra-
CaS test suite. Success in this case would con-
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sist in assigning high probability to yes cases, low
probability to no cases, and intermediate values to
unknown instances.

Instead of boxes, one could use arbitrary convex
polytopes. This would give a more precise, but
more computationally expensive model. We leave
further evaluation of this trade-off to future work.
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Abstract

This paper introduces language processing
resources and tools for Bornholmsk, a lan-
guage spoken on the island of Bornholm,
with roots in Danish and closely related
to Scanian. This presents an overview of
the language and available data, and the
first NLP models for this living, minority
Nordic language.

Sammenfattnijng på borrijnholmst:
Dæjnna artikkelijn introduserer natur-
språgsresurser å varktoi for borrijnholmst,
ed språg a dær snakkes på ön Borrijnholm
me rødder i danst å i nær familia me
skånst. Artikkelijn gjer ed âuersyn âuer
språged å di datan som fijnnes, å di fosste
NLP modællarna for dætta læwenes
nordiska minnretâlsspråged.

1 Introduction

Bornholmsk is a language spoken on Bornholm,
an island in the Baltic Sea, the easternmost land
mass of Denmark.1 Bornholmsk is an endan-
gered language. Inhabitants of Bornholm have
been changing to using standard Danish over the
past century – a development that has escalated
within the last 20 years or so; cf. Larsen (2019).
In total the island has around 40.000 residents,
though there is notable migration to and from the
other Danish islands and the mainland, leading to
a Bornholmer diaspora.

Given the endangered status of the language, it
is important to capture knowledge about it now.
One way of doing this is to create tools for work-
ing with the language. In particular, we attempt to

1Following the most common usage on Bornholm we re-
fer to Bornholmsk as a separate language and not a variant
of Danish. Although Bornholmsk is normally described as
a Danish dialect (the language code for Bornholmsk under
IETF BCP-47 is da-bornholm), this shouldn’t pose any
problems in the context of this paper.

(1) Fârijn
Faren

kjöre
kørte

te
til

böjn
byen

å
og

fikkj
fik

âu
også

ejn
en

fæzelia
utrolig

nætter
pæn

kjâul
kjole

kjefter
købt

te
til

’na
hende

‘The father drove to town and got her a really beautiful
dress’

(2) Horrana
Drengene

hâ
har

løvved
løbet

ætte
efter

dæjn
den

piblijn
pige

hela
hele

dâjn
dagen
‘The boys have run after that girl the entire day’

Figure 1: Sentences in Bornholmsk

build machine translation support for Bornholmsk,
to not only assist with understanding the language,
but also to enable users of it to stick with Born-
holmsk instead of being forced to switch to stan-
dard Danish – a factor in language erosion – while
helping open access to Bornholmsk to those who
use standard Danish. Additionally the develop-
ment of such tools could give higher linguistic sta-
tus to Bornholmsk among its potential users.

Code switching between Danish and Born-
holmsk remains common and has been for some
time (Baumann-Larsen, 1973).

Historically Bornholmsk is categorised as East
Danish (along with the language spoken in Skåne,
Halland and (part of) Blekinge) of which it is the
only representative in present-day Denmark. Ex-
amples of distinctive linguistic features are: 1) the
existence of three grammatical genders (the gen-
der inflection is not limited to the definite article,
but is also manifested in adjectives, past partici-
ples and possessive pronouns). 2) An enclitic form
of the third person personal pronoun, namely mas-
culine -(i)jn “him” and feminine -na “her”. 3) The
occurrence of a in unstressed syllables along with
e (as well as i and u in certain contexts). 4) So-
called “double definiteness” like in Norwegian and
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Swedish. Of other, perhaps less distinctive fea-
tures, one could mention: 5) A special intona-
tion (neither glottal stop nor pitch-accent is used).
6) Two (long) a variants. 7) Palatal variants of g, k,
l and n. 8) A voiced variant of s (z). 9) A more ar-
chaic verbal inflectional system. 10) Different us-
age of the reflexive sig/dem compared to standard
Danish. 11) Many lexical differences compared to
standard Danish (including very common words).
Examples of Bornholmsk are given in Figure 1.

A detailed description of Bornholmsk phonol-
ogy (Lautlehre) and morphology is given by
Thomsen and Wimmer in their introduction to Es-
persen et al. (1908). Shorter, general introductions
and descriptions, some of which are of more pop-
ular nature, are found in Møller (1918, 25–70),
Prince (1924) (many errors and misunderstand-
ings), Rohmann (1928), Koefoed (1944, 1969)
Sonne (1957), and Pedersen (2018). An explo-
ration of the syntax of Bornholmsk can be found
in Pedersen (2009). See also Pedersen (2013, 31–
32) on the s-passive in Bornholmsk.

Compared to other Danish dialects Bornholmsk
has been utilised much more frequently in writing.
The 1920s–1940s is considered the Golden Age
for written Bornholmsk, but the tradition dates
back to the 19th century, and writings in Born-
holmsk have continued to be published until this
day, e.g. in local newspapers. In recent years the
language has also found its way to social media
(generally in a less canonical form). In spite of the
lack of normative (spelling) dictionaries and for-
mal training most speakers of Bornholmsk find it
reasonably easy to read Bornholmsk. The reason
for this is at least fourfold: 1) familiarity/tradition
(users have been exposed to the language in its
written form in newspapers etc.). 2) there is gener-
ally a fairly straightforward mapping between spo-
ken and written Bornholmsk, presumably also to a
greater extent than for other Danish dialects.2 3)
Regional variation is very limited (when excluding
the so-called “Rønna-fint”). 4) Until very recently
the language has changed quite slowly compared
to most other Danish dialects (the sound system
is e.g. still more or less identical to the system
described in Espersen et al. 1908). For the same
reasons most of the orthographic variation found
in actual examples of written Bornholmsk is of a

2If other Danish dialects were to be transcribed using
somewhat similar principles the result would deviate to a
greater or lesser extent from both Bornholmsk and Standard
Danish, depending on the dialect in question.

Name Genre Tokens
Otto J. Lund:
“Brâfolk” å Stommene Fiction 35K
“Lyngblomster” Fiction (poetry) 5.6K
“Vår Larkan ryggar” Fiction 55K

Crawled and scraped text Web & social media 2K

Table 1: Monolingual Bornholmsk data

kind that can be normalised fairly easily without
losing any actual linguistic information.

In this paper, we outline efforts to digitise and
capture Bornholmsk resources, and see what can
be done with the scarce resources currently avail-
able, leading to embeddings, a part-of-speech tag-
ger, and a prototype machine translation system.

2 Corpora

Bornholmsk digital text is generally absent. It has
no data in the UD treebank, nor in CLARIN-DK,
nor the LDC repository. Collection thus proceeded
ad-hoc. Via the web, we compiled an informal
corpus of texts including illustrative examples of
the language (from e.g. Wikipedia pages), po-
ems, song lyrics, social media comments, and sto-
ries. Additionally, some websites include small
introductions to phrases in Bornholmsk for Dan-
ish speakers;3 these serve multiple functions, pro-
viding sentences in the target language, as well
as word:word translations, and finally acting as
sentence-level parallel text data. In addition to ma-
terial collected via the web, we use resources that
have been digitised within the recently resumed
Bornholmsk Ordbog (BO) dictionary project.4

A dictionary in digital format, primarily based
upon Espersen et al. (1908), but supplied with
various other lexicographic resources, has been
compiled by Olav Terkelsen and is available
from http://onpweb.nfi.sc.ku.dk/espersen/

index.html. This material has not been used in
this paper, but since the citations and phrases are
translated into modern standard Danish, they rep-
resent a good candidate for future parallel text.

Other lexical resources have also been digitised,
e.g. LærOrdb (1873), Adler (1856) and the glos-
sary found in Skougaard (1804). Together with
two very large, lexically ordered records of Born-
holmsk,5 primarily composed between 1923 and

3See e.g. Allan B. Hansen’s gubbana.dk.
4For a description of this project, see Kjeldsen (2019).
5These records contain about twice as many lemmata as
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1931 by the three original editors of BO, and the
part of BO which was edited before work on the
project came to a halt in the 1940s, these resources
will be published as a fully searchable meta dictio-
nary in August 2020. For this reason, apart from
a smaller part of the edited part of BO which is
used for training of the MT models (about 3000
sentence pairs), these sources have not been used
in the present project.

Some prose and poems have been digitised,
namely three longer prose texts written by Otto
J. Lund (Mâgårsfolken, Lund 1935b, Enj Gal-
nerojs, Lund 1935a, and Brâfolk å Stommene,
Lund 1941), a number of poems by the same au-
thor, Lyngblomster (Lund, 1930), as well as a col-
lection of folk stories published by J. P. Kuhre in
1938 under the title Borrinjholmska Sansâger has
been used. The latter text collection is of special
value: it is in many respects the best written rep-
resentative of canonical Bornholmsk, the orthog-
raphy used is unusually consistent and each story
is translated to (somewhat old fashioned) standard
Danish, more or less sentence by sentence. Al-
though not identical, the orthographic principles
used by Kuhre are very similar to those used in the
BO dictionary project.

A data statement (Bender and Friedman, 2018)
for these resources is given in the appendices.
The data used in and produced by the dictionary
project will be published under CC BY-SA.

3 Embeddings and Alignment

Given some text in Bornholmsk, we attempted to
induce distributional word embeddings. For this,
we chose FastText (Bojanowski et al., 2017). As
Bornholmsk is a low-resource language, it is im-
portant to be able to connect it to other languages
easily. Standard FastText embeddings are avail-
able for many languages. FastText supports sub-
word embeddings, which are likely to be useful
in a language like Bornholmsk that has a rela-
tively small alphabet, and also have some chance
of compensating for the high data sparsity.

Embeddings are induced with 300 dimensions,
in order to be compatible with the public Com-
mon Crawl-based FastText embeddings. Hav-
ing induced these embeddings for Bornholmsk
ebornholmsk, they are then aligned into the embed-
ded space of Danish from FastText edanish. We try
three alignment methods: (1) unsupervised align-

Espersen’s dictionary.

da-bo bo-da da-bo bo-da
‘hvid’ ‘vid’ ‘morgen’ ‘mârn’

vid hvid mârn morgen
vidd sort Imârn aften
vid- rød mârnmål eftermiddag
vidt gul mârnijn majmorgen
vida hvidfarvet mârna formiddag

Table 2: Closest words after supervised alignment

ment, where matching surface forms are used as
anchor points for the two embedded spaces; (2)
alignment augmented with the 1:1 word dictio-
naries captured earlier, where these translations
are used as anchor points; (3) a mixed alignment,
using both unsupervised and supervised points.
Dictionary words missing from just one language
are inserted into the dictionary using the embed-
ding of anchor point in the other language, post-
alignment. We choose Danish (edanish) as the tar-
get space for Bornholmsk as the two languages are
likely to have some lexical overlap, and there is
vastly more data for Danish.

To align vectors, a transformation is built from
the singular value decomposition of the product of
the target space and the transpose of the source
space (Smith et al., 2017). This orthogonal trans-
formation aligns the source language to the tar-
get, thus mapping Bornholmsk embeddings into
edanish. A test set of 10 % of the bilingual map-
pings was held out for evaluation. In this case,
the mean similarity was 0.3469 for unsupervised
(i.e. lexical match) anchoring, 0.4238 for super-
vised anchoring over translated word pairs, and
0.3959 for the union of unsupervised and super-
vised anchor pairs. We can see that while the un-
supervised alignment is helpful, when supervised
pairs are available, it detracts from performance.
Table 2 shows closest pairs for sample words.

4 Part-of-speech Tagging

Because there is no part-of-speech (PoS)-tagged
data, we must look to resources from other lan-
guages. Using aligned embeddings, it is possi-
ble to train a PoS tagger for one language lsource
where the words are represented in embeddings
space e. By mapping words in sentences in a tar-
get language ltarget into e, these sentences can
be posed to the tagger as if they were in lsource.
This requires that embeddings for both languages,
esource and etarget, are aligned to the general em-
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beddings space e. There is also an assumption that
lsource and ltarget will be sufficiently distribution-
ally and grammatically similar.

One is more likely to encounter new words dur-
ing tagging when training data is limited, so a PoS
tagger that tolerates previously-unseen words is
preferable. The structbilty tagger6 uses a bidi-
rectional LSTM with language modelling as aux-
iliary loss function and achieves good accuracy on
unknown words (Plank et al., 2016).

The source language evaluated is Danish and
training and validation data is taken from the Uni-
versal Dependencies corpus (Nivre et al., 2016).
Sans PoS-annotated Bornholmsk, we give exam-
ple tagged sentences. Many structures and words
picked up correctly, despite absent training data
and a very small monolingual dataset for embed-
ding induction. However, basic structures are oc-
casionally missing (cf. #3).

1) Hanj/PROPN fijk/VERB dask/NOUN
på/ADP sinj/ADJ luzagâda/NOUN

2) de/PRON ska/VERB varra/X så/ADV
galed/ADJ ,/PUNCT sa/SCONJ de/PRON am-
mar/VERB ijkkje/ADV ./PUNCT

2) Hon/PROPN ve/X hâ/X ham/PRON
som/ADP kjærest/NOUN

5 Danish-Bornholmsk Translation

Despite the low-resource situation, there is some
useful data for developing Bornholmsk-Danish
translation. These vary in term: Full translations
of a few songs and poems can be found, which are
parallel line-by-line. Snippets of words giving ex-
ample uses in various informal 1:1 word-level dic-
tionaries are also available – as well as the word
mappings themselves.

We used Kuhre’s folk stories as parallel Danish-
Bornholmsk text. Further, we used entries from
the nascent Bornholmsk Ordbog, which includes a
number of genuine examples of how the language
might be used. Noisier and non-canonical web
data were included, to improve vocabulary cov-
erage. The monolingual corpora is the basis for
word embeddings, in this case with GloVe (Pen-
nington et al., 2014) in 50 dimensions.

The Kuhre text is in an older form of Danish,
some spelling reforms ago. Specifically, vowels
are annotated differently (aa and ee vs. å and é),

6https://github.com/bplank/bilstm-aux.
7These entries contain optional terms that are both ex-

panded & omitted to create additional training data.

and nouns have a capital initial. This data is copied
with case removed, and with the vowels converted
to the modern format, so that the resulting model
is not too surprised by modern Danish.

The Bornholmsk Ordbog is a work in progress,
i.a. containing usage examples such as:
<bællana hadde âgebakka hærudanforr i vijn-

ters {børnene havde kælkebakke herudenfor
(huset) i vinters}>

These are converted into plaintext and used as
supporting parallel examples. Table 3 gives an
overview of the parallel text used.

5.1 Experimental Setup
We trained a translation model with Open-
NMT (Klein et al., 2017) using all parallel text.
The Bornholmsk side of this was combined with
the Bornholmsk monolingual texts to build a lan-
guage model and embeddings. Test and validation
data were both 500 pairs taken from the input data.
Parameters included: Glorot initialization, locked
to the encoding vectors, dropout at 0.4, an average
decay of 1e-4, and validation every 4000 steps.

5.2 Pilot Results
The translation performed reasonably, given the
very small training data size. Examples:
Danish: der stod en lys sky på en mørk baggrund .
Output: dær sto en art sjy på ejn âzstæl .
Reference: dær sto et lyst sjy på ejn morkjer bâggrujnn .

Danish: Vil du have lidt brød
Output: Vil du hâ lid brø
Reference: Ve du hâ lid brø

Danish: bliver der så at de alle kan komme op og køre?
Output: bler dær så a di ajle ver opp å kjöra ?
Reference: bler dær sa di ajle kajn komma opp å âga ?

Danish: hesten satte bagkoden så hårdt i stenen , at der er
mærke efter det endnu .
Output: hæstijn satte bâgkodan så hårt i stenijn , at dær e
mærke ætte dæjn len .
Reference: hæstijn satte bâgkodan så hårt i stenijn , at dær e
mærke ætte ’d inu .

Danish: Hvor står mit klapbord
Output: Vor fâr minj dâuestola
Reference: Vor står mit flojbor

Due to the relatively small size of the datasets
involved today, we do not report an evaluation
metric score. However, we do provide a qualita-
tive evaluation with examples.

There are many unknown words, also in the ref-
erence data. These words are mostly a factor of
the limited corpus size, and will become rarer as
the amount of digitised Bornholmsk increases.
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Name Genre Sentence pairs Tokens (da) Tokens (da-bornholm)
Borrinjholmska Sansâger (Kuhre) Fiction 1K 29.1K 30.2K
Bornholmsk Ordbog: citations Dictionary 3.6K7 41.9K 34.2K
Gubbana.dk Web data 1.4K 8.3K 8.0K
Web scrape Web data <1K <1K <1K

Table 3: Parallel corpora for Bornholmsk-Danish

Another result of the low volume of training
data is that there are few points in the embeddings.
This means that the nearest neighbour may actu-
ally have a quite different meaning to the target.
Thus, qualitatively, when the model gets things
wrong, it will tend to get them really wrong.

Despite its small size and different training
genre, the model was also capable of produc-
ing tolerable output given colloquial modern Dan-
ish. Some Danish spellings creep through and the
phrasing is imprecise, but nevertheless, a rough
mapping is available between the two languages:
Danish: Hej , hvad hedder du ?
Model output: Te , va heder du ?
Correct Bornholmsk: Hai , va heder du ?

Danish: Det er Mads og han er en god dreng.
Model output: Ded e slæføre å hajn e en go majn.
Correct Bornholmsk: De(d) e Mads å hajn e ejn goer horra.

Danish: København er en af de større byer – faktisk den
største .
Model output: København e en majed råganat !
Correct Bornholmsk: Kjøvvenhawn e ejn å di storre byana –
fakta dæjn storsta .

6 Related Work

There is no former work that we are aware of on
NLP for Bornholmsk. The closest resource is an
openly-available toolkit for Danish, DKIE (Der-
czynski et al., 2014), which is designed for the
GATE platform (Cunningham et al., 2012), though
even for Danish work is scarce (Kirkedal et al.,
2019). Written Bornholmsk corpora are also rare;
these exist almost entirely in smaller collections,
some of which have been built with great care.

Two other Scandinavian tongues as small as
Bornholmsk have had quite different stories.
Faroese (ISO639: fao; BCP-47: fo-FO) is spo-
ken by about 72000 people, many of whom live
in the Faroes; it has a fairly long written tradi-
tion and is actively published in. It has some NLP
visibility, being present in the Universal Depen-
dencies treebanks, and a steady if slow stream of
NLP research includes the language (e.g. Richter
et al. (2018)). In contrast, Scandoromani (ISO639:
rmg/rmu) has many fewer speakers than Born-
holmsk; its original grammar has been overtaken

by that of the dominant languages in the regions
where it is spoken and is thus lost. There are nev-
ertheless efforts to document the remnants of this
tongue (Carling et al., 2014).

No machine translation is available for Scan-
doromani or Faroese. The Faroes built an inno-
vative solution to this where phrases to be trans-
lated are distributed to citizens, who film them-
selves saying the translation, making essentially a
translation memory (Kay, 1997) for Faroese.8

7 Conclusion

This work introduced resources and tools for do-
ing natural language processing for Bornholmsk,
an endangered Nordic language. Contributions in-
cluded corpus creation, corpus collection, basic
NLP resources, and a pilot translation model. The
corpora are licensed separately; the NLP embed-
dings and models are available openly via ITU
Copenhagen’s NLP group page, https://nlp.

itu.dk/resources/, and the public domain texts
are available from this paper’s authors. Future
work should focus on digitising more text (incl.
lexicographic resources); on making the best use
possible out of the available corpora; on tuning
models to perform better on the existing data;
on increasing awareness around Bornholmsk; on
helping learn Bornholmsk; and on making it pos-
sible for Bornholmsk-speakers to work digitally in
Bornholmsk instead of Danish.
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Appendix 1: Data Statement

Curation rationale Collection of Bornholmsk
documents and parallel texts from speakers who
have had Bornholmsk as their (dominant) L1.

Language variety BCP-47: da-DK-bornholm

Speaker demographic

• Speakers of Bornholmsk

• Age: mostly 60+

• Gender: male and female.

• Race/ethnicity: mostly of Scandinavian de-
scent.

• Native language: Danish (Bornholmsk).

• Socioeconomic status: various.

• Different speakers represented: unknown.

• Presence of disordered speech: Generally not
prevalent.

Annotator demographic

• Age: 30+

• Gender: male and female.

• Race/ethnicity: white northern European.

• Native language: Danish (Bornholmsk).

• Socioeconomic status: unknown.

Speech situation Literary works, with some ad-
hoc collections and samples of the language.

Text characteristics Mostly literary works.

Provenance Original authors are credited in this
work.
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Abstract
Endangered Uralic languages present a
high variety of inflectional forms in their
morphology. This results in a high num-
ber of homonyms in inflections, which in-
troduces a lot of morphological ambigu-
ity in sentences. Previous research has
employed constraint grammars to address
this problem, however CGs are often un-
able to fully disambiguate a sentence, and
their development is labour intensive. We
present an LSTM based model for auto-
matically ranking morphological readings
of sentences based on their quality. This
ranking can be used to evaluate the exist-
ing CG disambiguators or to directly mor-
phologically disambiguate sentences. Our
approach works on a morphological ab-
straction and it can be trained with a very
small dataset.

1 Introduction

Most of the languages in the Uralic language fam-
ily are endangered. The low number of speak-
ers, limited linguistic resources and the vast com-
plexity in morphology typical to these languages
makes their computational processing quite a chal-
lenge. Over the past years, a great deal of work
related to language technology for endangered
Uralic languages has been released openly on
the Giellatekno infrastructure (Moshagen et al.,
2014). This includes lexicographic resources, FST
(finite-state transducer) based morphological ana-
lyzers and CG (constraint grammar) disambigua-
tors.

Despite being a great resource, the Giellatekno
infrastructure has tools and data originating from
different sources by different authors. Recent re-
search conducted with the resources for Komi-
Zyrian, Skolt Sami, Erzya and Moksha has identi-
fied a need for proper evaluation of the resources

available in the infrastructure, as they are not free
of errors (Hämäläinen et al., 2018; Hämäläinen,
2018).

This paper presents a method to learn the mor-
phosyntax of a language on an abstract level by
learning patterns of possible morphologies within
sentences. The resulting models can be used
to evaluate the existing rule-based disambigua-
tors, as well as to directly disambiguate sentences.
Our work focuses on the languages belonging to
the Finno-Permic language family: Finnish (fin),
Northern Sami (sme), Erzya (myv) and Komi-
Zyrian (kpv). The vitality classification of the
three latter languages is definitely endangered
(Moseley, 2010).

2 Motivation

There are two main factors motivating this re-
search. First of all, data is often very scarce when
dealing with endangered Uralic langauges. Apart
from Northern Sami, other endangered Uralic lan-
guages may have a very small set of annotated
samples at best, and no gold standard data at worst.
As a result, evaluating disambiguated sentences
can often only be conducted by consulting native
speakers of the language or by relying on the re-
searcher’s own linguistic intuition.

Secondly, canonical approaches involving Part-
of-Speech (POS) tagging will not suffice in this
context due to the rich morphology of Uralic lan-
guages. For example the Finnish word form voita
can be lemmatized as voi (the singular partitive of
butter), vuo (the plural partitive of fjord), voittaa
(the imperative of win) or voitaa1 (the connegative
form of spread butter).

The approach described in this paper, addresses
these two issues, as we use a generalized sen-
tence representation based on morphological tags
to capture morphological patterns. Moreover, our

1A non-standard form produced by the Finnish analyzer
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models can be trained on low resource langauges,
and models that have been trained on high re-
source languages can be applied to low or no re-
source languages with reasonable success.

3 Related Work

The problem of morphological tagging in the
context of low-resource languages has been ap-
proached using parallel text (Buys and Botha,
2016). From the aligned parallel sentences, their
Wsabie-based model can learn to tag the low-
resource language based on the morphological
tags of the high-resource language sentences in
the training data. A limitation of this approach is
the morphological relatedness of the high-resource
and low-resource languages.

A method for POS tagging of low-resource
languages has been proposed by Andrews et al.
(2017). They use a bi-lingual dictionary between
a low and high-resource language together with
monolingual data to build cross-lingual word em-
beddings. The POS tagger is trained on an LSTM
neural network, and their approach performs con-
sistently better than the other benchmarks they re-
port.

Lim et al. (2018) present work conducted on
syntactically parsing Komi-Zyrian and Northern
Sami using multilingual word-embeddings. They
use pretrained word-embeddings for Finnish and
Russian, and train word-embeddings for the low-
resource languages from small corpora. These in-
dividual word-embeddings are then projected into
a single space by using bilingual dictionaries. The
parser was implemented as an LSTM model and it
performed better in a POS tagging task than in pre-
dicting syntactic relations. The key finding for our
purposes is that including a related high-resource
language (Finnish in this case) improved the accu-
racy.

DsDs (Plank and Agić, 2018) is a neural net-
work based POS tagger for low-resource lan-
guages. The idea is to use a bi-LSTM model to
project POS tags from one language to another
with the help of word-embeddings and lexical in-
formation. In a low-resource setting, they find that
adding word-embeddings boosts the model, but
lexical information can also help to a smaller de-
gree.

Much of the related work deals with POS tag-
ging. However, as the Uralic languages are mor-
phologically rich, a full morphological disam-

biguation is needed in order to improve the per-
formance of higher-level NLP tools. In addition,
we do not want to assume bi-lingual parallel data
or access to word embeddings as we want our ap-
proach to be applicable for truly endangered lan-
guages with extremely limited resources.

4 The Rule-based Tools and Data

We use the morphological FST analyzers in the
Gieallatekno infrastructure to produce morpholog-
ical readings with UralicNLP (Hämäläinen, 2019).
They operate on a word level. This means that
for an input word form, they produce all the pos-
sible lemmas together with their parts-of-speech
and morphological readings, without any weights
to indicate which reading is the most probable one.

The existing CG disambiguators get the mor-
phological readings produced by the FST for each
word in a sentence and apply their rules to re-
move the non-possible readings. In some cases,
a CG disambiguator might produce a fully disam-
biguated sentence, however these models are often
unable to resolve all morphological ambiguity.

In this paper, we use the UD Treebanks for our
languages of interest. For Finnish, we use Turku
Dependency Treebank (Haverinen et al., 2014)
with 202K tokens (14K sentences). The Northern
Sami Treebank (Sheyanova and Tyers, 2017) is the
largest one for the endangered languages with 26K
tokens (3K sentences). For Komi-Zyrian, we use
the Komi-Zyrian Lattice Treebank (Partanen et al.,
2018) of 2K tokens (189 sentences) representing
the standard written Komi. The Erzya Treebank
(Rueter and Tyers, 2018) is the second largest en-
dangered language one we use in our research with
15k tokens (1,500 sentences).

5 Sentence Representation

We represent each word as a non-empty set of
morphological tags. This representation does not
contain the word form itself nor its lemma, as
we aim for a more abstract level morphologi-
cal representation. This representation is meant
to capture the possible morphologies following
each other in a sentence to learn morphosyntactic
inter-dependencies such as agreement rules. This
level of abstraction makes it possible to apply the
learned structures for other morphosyntactically
similar languages.

As we are looking into morphosyntax, we train
our model only with the morphosyntactically rele-
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vant morphological tags. These are case, number,
voice, mood, person, tense, connegative and verb
form. This means that morphological tags such as
clitics and derivational morphology are not taken
into account. We are also ignoring the dependency
information in the UD Treebanks as dependencies
are not available for text and languages outside of
the Treebanks due to the fact that there are no ro-
bust dependency parsers available for many of the
endangered Uralic language.

Each sentence is simply a sequence of mor-
phological tag sets, represented as a sequence
of integers with a special token SP demar-
cating spaces between words. For exam-
ple the sentence ”Nyt on lungisti ottamisen
aika.” (now it is time to relax), is encoded
as [150,SP, 121, 138, 168, 178, 205, 214, 221,SP
150,SP, 25, 138, 158,SP, 31, 138, 158,SP, 165].

Equation 1 is used to measure the distance be-
tween two sentences containing nwords, where xi
denotes set of morphological tags associated with
the ith word in x, || · || denotes the number of
elements in a set, and 4 denotes the symmetric
difference of two sets. This distance measure is
used to approximate the quality of different read-
ings, based on the assumption that the quality of
a reading decreases as its distance from the gold
standard sentence increases.

distance(a, b) =
n∑

i=1

||ai4bi|| (1)

6 Model

We implement our models using Keras (Chollet
et al., 2015), which are trained to rank two sen-
tences encoded as described in Section 5. The
model is comprised of a Long Short Term Mem-
ory (LSTM) (Hochreiter and Schmidhuber, 1997)
layer π and a feed-forward layer φ. Given two sen-
tences a and b, the LSTM layer is used to pro-
duce the n-dimensional vectors π(a) and π(b),
which are concatenated and passed through the
feed-forward layer to produce a single scalar value
φ(π(a), π(b)) indicating the preferred sentence.
We train each model with early stopping based
on the validation accuracy with a patience of 10
epochs. We use the Adam optimizer (Kingma and
Ba, 2014), train the model with batches of size 32,
and set n = 128.
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Figure 1: The frequency with which the gold stan-
dard sentence is ranked in the top-k with 1000 tri-
als per model averaged over 10 data splits.

7 Evaluation

We produce all the morphological readings for
each word in a gold standard sentence (GSS) using
FST analyzers, and construct incorrect sentences
(INS) of varying quality by randomly selecting
a reading for each word. In order to provide a
detailed evaluation, we categorize each sentence
based on their distance from the GSS using the
ranges [[0, 1), [1, 10), [10, 20), [20,+∞)], which
we will refer to as categories G,1,2, and 3. By con-
struction, category G only contains GSS. These
ranges were chosen so that each bin contains ap-
proximately the same number of sentences. We
measure the accuracy of the model for each of the(4
2

)
= 6 possible types of comparisons between

sentence categories. To create training, validation
and testing data, the set of GSS are randomly split
before generating INS. In cases where two lan-
guages are used to train the model, the training
data consists of an even number of comparisons
from each language to ensure that a larger lan-
guage does not dominate a smaller language.

Since we are interested in exploring the viabil-
ity of using high resource to disambiguate low re-
source languages, we evaluate the models by train-
ing on each language and each possible combina-
tion of languages, resulting in 4+

(4
2

)
= 10 distinct

models.

8 Results

In order to ensure that our results are not the arti-
fact of a particular data split, we train each model
on 10 random splits of the data. The average ac-
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kpv sme fin myv
model Gv1 Gv2 Gv3 1v2 1v3 2v3 Gv1 Gv2 Gv3 1v2 1v3 2v3 Gv1 Gv2 Gv3 1v2 1v3 2v3 Gv1 Gv2 Gv3 1v2 1v3 2v3
kpv .93 .97 .97 .79 .95 .77 .53 .62 .66 .56 .60 .54 .62 .65 .68 .59 .64 .58 .65 .72 .77 .64 .71 .62
myv .59 .68 .68 .66 .76 .62 .18 .13 .10 .40 .32 .40 .66 .65 .68 .56 .61 .56 .95 .99 .99 .78 .92 .76
sme .65 .70 .70 .55 .56 .52 .93 .98 .99 .73 .89 .71 .57 .59 .61 .56 .58 .56 .22 .14 .10 .39 .31 .40
fin .49 .60 .66 .60 .70 .60 .44 .58 .68 .58 .67 .57 .88 .95 .98 .72 .85 .70 .70 .74 .74 .62 .67 .59

kpv+myv .92 .97 .99 .79 .96 .79 - - - - - - - - - - - - .92 .98 .99 .80 .93 .77
kpv+fin .90 .95 .99 .77 .95 .78 - - - - - - .87 .94 .97 .72 .85 .69 - - - - - -

kpv+sme .91 .95 .97 .73 .89 .69 .91 .97 .99 .73 .86 .69 - - - - - - - - - - - -
myv+fin - - - - - - - - - - - - .83 .90 .94 .69 .82 .69 .93 .98 .99 .79 .91 .75

myv+sme - - - - - - .89 .95 .97 .73 .86 .70 - - - - - - .86 .94 .96 .75 .87 .72
sme+fin - - - - - - .90 .96 .98 .73 .88 .71 .86 .93 .97 .73 .85 .71 - - - - - -

Table 1: Model accuracy averaged over 10 data splits with 1000 trials per model.

curacy across data splits is shown in in Table 1,
where the accuracy of a single model with respect
to a single comparison type is calculated based on
1000 comparisons. The mean standard error was
0.008, and the maximum standard error was 0.054
for these measurements. Figure 1 shows the per-
centage of times the GSS is ranked in the top-k
sentences, given a set of 20 sentences containing
19 randomly selected INS. The

(20
2

)
= 190 pair-

wise rankings are aggregated using iterative Luce
Spectral Ranking algorithm (Maystre and Gross-
glauser, 2015).

9 Discussion and Future Work

The results in Table 1 demonstrate that our mod-
els are as effective for extremely low resource lan-
guages like Komi-Zyrian (kpv) as they are for high
resource languages like Finnish (fin). Further-
more, there is evidence that training on a higher
resource langauge that is genealogically related to
a low resource langauge is a viable option. For
example, the models trained on Finnish (fin) data
performed relatively well when tested on the Erzya
(myv) data. In cases where languages are not ge-
nealogically close to each other, such as North-
ern Sami (sme) and Erzya (myv), models perform
very poorly when trained on one of these lan-
gauges and tested on another.

According to the results, the most difficult com-
parisons are 1v2 and 2v3. Since Equation 1 is
only a proxy for sentence quality, it is possible
that for some number of comparisons category 1
sentences are actually lower quality than category
2 sentences. In contrast, Gv1, Gv2, and Gv3 are
comparisons against GSS, which are guaranteed
to be correct. Consequently, it seems reasonable
to conclude that this decrease in performance is
partially due to deficiencies in measuring sentence
quality.

Figure 1 demonstrates that pairwise rankings
can be aggregated to reliably rank sentences based
on their quality, as the GSS was frequently in the
top-k sentences for small values of k. For exam-
ple, the kpv, myv and sme models ranked the GSS
in the top 3 roughly 86 percent of the time.

Future work may involve experiments with very
closely related languages. For instance, out of 9
Sami languages, North Sami is the only one with
a UD Treebank. Testing the performance of our
system on the other Sami languages while training
on North Sami is one of our goals for the future
research. However, as due to the lack of gold an-
notated data, we need to recruit nearly native or
native speakers with linguistic knowledge to eval-
uate our system. This is a time consuming task
and it is outside of the scope of this paper.

10 Conclusion

Uralic languages exhibit a high degree of mor-
phological ambiguity, and resources for these lan-
guages are often limited, posing difficulties for
traditional methods that have been employed suc-
cessfully on other languages. In order to mitigate
these issues, we proposed a representation based
on the morphological tags associated with each
word in a sentence.

Our experimental results demonstrate that an
LSTM based model can accurately rank alter-
nate readings of a single sentence, even when the
model is trained on an extremely low-resource
language. This technique requires much less ef-
fort than developing complex rule-based grammar
models for an endangered languages, as our model
can be trained on a small set of gold-standard ex-
amples. Furthermore, a trained model can be used
to disambiguate morphological readings produced
by an FST analyzer or to evaluate the output of a
CG model.
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Abstract
This paper describes an evaluation of
five data-driven Part-of-Speech (PoS) tag-
gers for spoken Norwegian. The tag-
gers all rely on different machine learn-
ing mechanisms: decision trees, hidden
Markov models (HMMs), conditional ran-
dom fields (CRFs), long-short term mem-
ory networks (LSTMs), and convolutional
neural networks (CNNs). We go into some
of the challenges posed by the task of tag-
ging spoken, as opposed to written, lan-
guage, and in particular a wide range of
dialects as is found in the recordings of the
LIA (Language Infrastructure made Ac-
cessible) project. The results show that
the taggers based on either conditional
random fields or neural networks perform
much better than the rest, with the LSTM
tagger getting the highest score.

1 Introduction

The most commonly used PoS tagger for Norwe-
gian is the the Oslo-Bergen tagger (OBT); a Con-
straint Grammar tagger for Bokmål and Nynorsk
(Johannessen et al., 2012), the two written stan-
dards that exist for written Norwegian. For spo-
ken language transcribed into Bokmål, the sta-
tistical NoTa tagger was developed and trained
on Bokmål transcriptions from Oslo and the sur-
rounding area (Nøklestad and Søfteland, 2007).
A recent infrastructure project, LIA (Language
Infrastructure made Accessible) has produced a
large number of dialect transcriptions in Nynorsk,
the other written standard. This creates a need for
a new tagger that works on this written standard
and that can also handle a diverse data set contain-
ing a wide range of dialects.

In this paper we will first describe the LIA di-
alect transcriptions and then the manually anno-

tated training material for Nynorsk as well as some
challenges in annotating spoken language. After-
wards we will describe a number of experiments
with five different open source taggers.

2 Dialect transcriptions

The audio files were recorded between 1950 and
1990 in order to explore and survey the many
different dialects in Norway. Most of the infor-
mants are older people and native speakers of their
dialect. Typically, the recordings are interviews
about old trades such as agriculture, fishing, log-
ging and life at the summer farm. Other topics
are weaving, knitting, baking or dialects. Some-
times the research questions also concern person
or place names. The recordings are semi-formal
to informal and often take place in an informant’s
home.

The original LIA transcriptions are semi-
phonetically transcribed (Hagen et al., 2015). Ex-
ample (1) below shows the semi-phonetic and nor-
malized transcription. To make the transcriptions
searchable and suitable for automatic tagging, they
are semi-automatically transliterated to Nynorsk
by the Oslo Transliterator, which is trained on
more than 200 Norwegian dialects.

(1) hann
han

e
er

flinngke
flink

te
å

driva
drive

garen
garden

‘He is good at running the farm.’

Øvrelid et al. (2018) note that the segmentation
heuristic in this material is such that segments do
not necessarily correspond to sentences, but rather
to (conversational) meaningful units.

3 The Training Corpus, Dialects and
Spoken language PoS

The starting point was the annotation scheme of
the Norwegian Dependency Treebank (NDT) de-
scribed by Solberg et al. (2014). This is an ex-
tension of the OBT scheme (which is based on
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(Faarlund et al., 1997)) with additions necessary
for NDT. Table 1 shows the PoS tag set of the
training corpus.

PoS tag Description
adj Adjective
adv Adverb
det Determiner
inf-merke Infinitive marker
interj Interjection
konj Conjunction
nol Hesitation
pause Pause
prep Preposition
pron Pronoun
sbu Subordinate conjunction
subst Noun
ufullst False start
verb Verb

Table 1: The PoS tag set of the training corpus.

In addition to the traditional PoS classes, there
is one for hesitations nol, one for pauses pause
and one for false starts ufullst. Unlike the classi-
fication in British National Corpus where all these
unclassified words seem to be classified as UNC
(Burnard (2007))1 this solutions gives us the pos-
sibility to experiment with the different types of
pauses, hesitations etc., see the result chapter and
the description of the different categories further
below.

The manually corrected training corpus con-
tains 163,687 tokens from 37 transcriptions and 29
dialects as listed in table 2, whereas the geograph-
ical distribution of the data is shown in figure 1.

1See in particular chap. 6 Wordclass Tagging in BNC XML

Figure 1: The map shows the locations of the 29
dialects in the training corpus.

Next we discuss some challenges encountered
in spoken language when moving from an annota-
tion scheme primarily developed for written lan-
guage. Or as Miller and Weinert (1998) put it:
“The terms ‘spoken language’ and ‘written lan-
guage’ do not refer merely to different mediums
but relate to partially different systems of mor-
phology, syntax, vocabulary, and the organization
of texts.”

Transcription was conducted in accordance
with transcription guidelines (Hagen et al., 2015)
that stipulate a strict, verbatim representation of
speech, regardless of fluency or perceived correct-
ness. Some frequent categories of phenomenon in
speech have to be considered in this respect:

Disfluency (as described in Shriberg (1996)) is a
category that goes beyond PoS tags, but has some
relevance at the word level. For example, incom-
plete or interrupted words, i.e. false starts of dif-
ferent kinds, have to be tagged, and while such
words are transcribed as far as possible, interrup-
tion and incompleteness are marked with a hyphen
- (see example 2). False starts are marked with the
tag ufullst ‘incomplete’. Pauses, which we tran-
scribe with the ‘#’ symbol, are stops or interrup-
tions in the speech flow of the speaker. We have
marked them with the tag pause. Filled pauses or
hesitations are standardized as ee and tagged nol.
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Dialect area # segments # tokens
Austevoll 1193 11191
Bardu 560 4205
Bergen 993 10416
Bolsøy 645 6669
Brandbu 404 6112
Eidsberg 679 5880
Farsund 351 3707
Flakstad 1201 11080
Flå 149 2808
Førde 332 3175
Fredrikstad 554 7676
Froland 378 6660
Giske 874 10821
Gjesdal 415 4101
Gloppen 526 5724
Gol 158 2414
Hemsedal 244 4436
Herad 214 2186
Hjartdal 354 4032
Høyanger 330 4357
Kristiansand 259 3713
Lierne 365 3867
Skaun 482 4661
Trondheim 216 3392
Vardø 481 6055
Ål 542 8685
Åmli 212 3128
Åmot 423 5123
Åsnes 466 7413
Total 14000 163687

Table 2: The manually corrected training corpus
contains tokens from 37 transcriptions and 29 di-
alects.

(2) så
so

det
it

var
was

ganske
very

m-
ufullst

#
pause

ee
nol

mange
many

der
there

‘There were a lot of people there.’

Another challenge is frequent and form-
identical words. For example, sentential connec-
tives or conjunctions are a well delimited group of
words in written Norwegian. In spoken Norwe-
gian, however, the usage patterns of certain words
have yet to be examined, and the difference be-
tween certain conjunctions and pragmatic mark-

ers/particles is somewhat unclear.2. For instance,
så seems to take on multiple functions:

(3) så
so

Kari
Kari

løp
ran

fort
fast.

‘so Kari ran fast.’

The next two examples illustrate another chal-
lenge. Adverbs, interjections and particles are far
more common in spoken language than in written
text. The pragmatic particle lell probably has a
function like the adverb heller (‘just as well’), or
some sort of particle. Then in example (5) we see a
somewhat similar use pattern, but with a token that
is form-identical with the conjunction eller (‘or’).
In both cases, we have chosen to tag the words as
adverbs.

(4) men
but

huttetu
my

eg
I

greidde
could

nå
PART

ikkje
not

å
TO

sjå
see

på
on

det
it

lell
PART

‘oh my I couldn’t look at it.’

(5) er
is

det
it

langt
long

for
for

deg
you

å
TO

reise
travel

til
to

#
pause

til
to

jobben
work

da
then

eller?
or?

‘do you have a long travel to work?’

Håberg (2010) describes and analyzes what is
known as the preproprial article, which is form-
identical with the third person pronoun:

(6) så
so

dæ
then

skræiv
wrote

hu
she

F1
F1

en
a

særåppgave
paper

omm
about

dæ
you

‘Then F1 wrote a paper about you.’

The analysis given by Håberg (2010) states that
the function of the preproprial article is more akin
to that of a determiner, and therefore constitutes an
ambiguity between the tags det and pron. In both
of the cases above a heuristic that only considered
form was employed, i.e. the preproprial article is
tagged pron. Note also that the preproprial article
is close to non-existent in written language.

Other problems that can be considered are vari-
able word order in embedded structures (Rognes,
2011) or form-identical subjunctions and preposi-
tions (Huus, 2018). To draw an intermediate con-
clusion, we can say that an investigation like that
of Hohle (2016) is called for with regard to spoken
language.

2Several case studies can be found in the special issue
on pragmatic particles of The Norwegian Linguistic Journal
http://ojs.novus.no/index.php/NLT/issue/view/196/showToc
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4 Taggers

In order to find the most suitable tagger, an ar-
ray of different taggers from different paradigms
were tested. In the following, we give a short de-
scription of the systems in use in the present paper,
along with references to them.

TreeTagger3 In order to keep some continu-
ity with the aforementioned NoTa tagger, new
models were induced for the TreeTagger. Tree-
Tagger is based on the decision tree paradigm
(Schmid, 1999), and was shown by (Nøklestad and
Søfteland, 2007) to be the best performing system
for the NoTa data set.

TnT4 is a second order HMM tagger (Brants,
2000). It has been used on multiple occasions (see
Hohle et al. (2017), Velldal et al. (2017)) to tag
Norwegian. It is therefore natural to include it
among the systems in the present paper.

MarMoT5 is a generic CRF tagger (Müller
et al., 2013), and is widely used as a baseline tag-
ger. It can with relative ease be extended to include
morphological tags as well which is a natural next
step for the present work.

Bilstm-aux6 is a bidirectional LSTM tagger
with auxiliary loss that has been shown to work
well for Norwegian (Plank et al., 2016). Plank et
al. (2016) report a tagging accuracy of 98.06% for
the Norwegian part of the Universal Dependency
Treebanks v1.2 (Nivre et al., 2015). The Norwe-
gian UD part is the NDT mentioned earlier, con-
verted to the UD standard (see (Øvrelid and Hohle,
2016; Øvrelid et al., 2018)).

Sclem2017-tagger7 is a general purpose tagger
utilizing a CNN with a character composition
component and a context encoder (Yu et al., 2017).
Yu et. al (2017) report a accuracy of 97.65% for
Norwegian UD.

5 Results

In the current work, we only tested the perfor-
mance of the taggers on the entire corpus, not on
individual dialects, for several reasons:

3https://www.cis.uni-muenchen.de/ schmid/tools/TreeTagger/
4http://www.coli.uni-saarland.de/ thorsten/tnt/
5https://github.com/muelletm/cistern/tree/master/marmot
6https://github.com/bplank/bilstm-aux
7https://github.com/EggplantElf/sclem2017-tagger

First, there is considerable variation in the
amount of material we have for the different di-
alects, preventing a balanced comparison between
dialects. Furthermore, for many of the dialects the
size of the material is too small to yield a reliable
evaluation. Finally, the transcription into standard
orthography by necessity removes parts of what
distinguishes the dialects, in particular with re-
spect to morphological features, and the amount of
normalization is highest for those dialects that dif-
fer the most from standard written Nynorsk, again
preventing a fair comparison of dialects.

All systems were evaluated intrinsically using
10-fold cross validation and reported with accu-
racy. Care has been taken to ensure that each fold
has the relative equal distribution of dialects as
the whole data set to prevent skewed folds. Af-
ter splitting the whole data set (80-10-10) evenly
w.r.t. dialects and distributing the 80% portion into
10 folds each with a hold out portion, the data was
randomized. Table 3 shows the calculated accu-
racy for all the systems with the respective stan-
dard deviation for the ten folds. As is evident,
the top performing taggers have relatively similar
scores, but according to McNemars test, Bilstm-
aux performs significantly better than the next best
tagger, MarMoT (p < 0.05), and it also shows a
somewhat smaller standard deviation. For the best
system we also add a table for each PoS tags pre-
cision and recall (Table 4).

System Accuracy (std.)
TreeTagger 95.16 (0.0020)
TnT 93.18 (0.18)
MarMoT 97.25 (0.14)
Sclem2017 97.16 (0.15)
Bilstm-aux 97.33 (0.11)

Table 3: The PoS accuracy and standard deviation
for the 10-fold cross validation for each system.

Both Sclem2017 and Bilstm-aux are evaluated
with their integrated test function, whereas Mar-
Mot and TreeTagger are evaluated with an ad hoc
python script. What sets these systems apart is the
fact that the neural networks are given a develop-
ment set at training time for early stopping pur-
poses, while MarMot demands brown-like clusters
induced with Marlin 89

8https://github.com/muelletm/cistern/tree/master/marlin
9Marlin was trained with the Nynorsk part of the Habit

corpus and the Norwegian Newspaper Corpus.
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(Martin et al., 1998; Müller and Schütze, 2015).
This is most likely one of the reasons it performs
so well compared to the neural taggers, and call
for an investigation of neural taggers with pre-
training as well, i.e. neither of the neural taggers
was trained with pre-trained word embeddings.

PoS tag Presicion Recall
adj 89.45 90.87
adv 96.64 94.90
det 94.03 92.95
inf-merke 97.07 98.17
interj 99.32 99.08
konj 96.42 97.95
nol 100 100
pause 100 100
prep 97.77 98.11
pron 98.53 98.65
sbu 92.05 91.97
subst 95.85 96.86
ufullst 97.81 99.06
verb 98.20 98.20

Table 4: The precision and recall (averaged
across all 10 folds) for the best performing system:
Bilstm-aux (Plank et al., 2016)

5.1 Removal of pauses, hesitations and
pauses+hesitations

In the style of Nøklestad and Søfteland (2007),
evaluations where different speech specific tokens
were removed were also carried out. Nøklestad
and Søfteland (2007) report that this in fact low-
ered the performance of the systems they tested.
The results that were obtained from the two best
performing systems in the present paper are found
in Table 5.

System Accuracy (std.)
MarMoThesitations 97.19 (0.001)
Bilstm-auxhesitations 97.27 (0.1)
MarMoTpauses 97.08 (0.001)
Bilstm-auxpauses 97.17 (0.14)
MarMoThesitations+pauses 97.03 (0.001)
Bilstm-auxhesitations+pauses 97.07 (0.18)

Table 5: The PoS accuracy and standard devia-
tion for the 10-fold cross validation with speech
specific tokens removed. The subscripts indicate
what kinds of tokens are removed in each case.

The accuracy deteriorates as speech specific to-

kens are removed, and for both systems removal
of pauses have a greater impact on the accuracy
than hesitations. This supports the findings by
(Strangert et al., 1993) that pauses tend to occur
at important positions in an utterance, including
syntactic boundaries, and hence may provide im-
portant clues about the syntactic structure.

6 Conclusions and Further Work

The present paper has reported on new results for
PoS tagging of Norwegian dialect data. It has also
shown that, among the tagger technologies tested,
the ones based on CRFs or neural networks show
the best performance on this task.

A subset of the training material in this paper
constitutes the LIA Treebank of Spoken Norwe-
gian Dialects and it would be interesting to investi-
gate whether removal of other phrasal disfluencies
than the ones already tested would have an impact
on the final accuracy score (see Dobrovoljc and
Martinc (2018) and references therein). It would
also be worth the effort to see whether neural tag-
gers respond better if the input is semi-phonetic
rather than normalized. Finally, if we are able to
produce a considerable amount of material for a
set of dialects, transcribed in a way that is more
faithful to the peculiarities of each dialect, it would
be interesting to test and compare the performance
of the taggers on individual dialects.
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Abstract

Danish is a North Germanic language
spoken principally in Denmark, a coun-
try with a long tradition of technologi-
cal and scientific innovation. However,
the language has received relatively lit-
tle attention from a technological perspec-
tive. In this paper, we review Natural Lan-
guage Processing (NLP) research, digital
resources and tools which have been de-
veloped for Danish. We find that availabil-
ity of models and tools is limited, which
calls for work that lifts Danish NLP a step
closer to the privileged languages.

Dansk abstrakt: Dansk er et nordger-
mansk sprog, talt primært i kongeriget
Danmark, et land med stærk tradition for
teknologisk og videnskabelig innovation.
Det danske sprog har imidlertid været
genstand for relativt begrænset opmærk-
somhed, teknologisk set. I denne artikel
gennemgår vi sprogteknologi-forskning,
-ressourcer og -værktøjer udviklet for
dansk. Vi konkluderer at der eksisterer
et fåtal af modeller og værktøjer, hvilket
indbyder til forskning som løfter dansk
sprogteknologi i niveau med mere priv-
iligerede sprog.

1 Introduction

Danish is the majority language of the King-
dom of Denmark, a country of around six mil-
lion people, with five written languages across its
many islands (others including Færøysk, Kalaal-
lisut, Tunumiit oraasiat, and Borrinjholmsk (Der-

†: Research Scientist at Interactions LLC.
: These authors contributed to the paper equally.

czynski and Kjeldsen, 2019)). Despite its privi-
leged place in the world, Denmark has not kept
up pace with comparable countries in developing
language technology. Few systems are designed
explicitly for Danish; rather, general-purpose sys-
tems might be run on Danish and results produced
for it as a by-product of larger studies. This sup-
poses having adequate developed datasets. As
a result, language technology does not have as
prominent a place in Denmark as it might in other
countries. This paper gives an overview of NLP
models, tasks and datasets for Danish.

Traditionally, the country has created cor-
pora, lexicographic resources, and other sym-
bolic knowledge through government sponsor-
ship. This has led to excellent research at the
Dansk Sprognævn (dsn.dk) and by CLARIN DK
(clarin.dk), who have both consistently pro-
duced volumes of quality Danish data within their
remit. This paper examines NLP from perhaps the
opposite direction: our study is task-driven instead
of corpus-driven, meaning we pragmatically con-
sider what NLP technology exists, how it is repre-
sented in the scope of Danish, and, where appro-
priate, what might help improve the situation.

While Denmark has multiple languages (as
above), Danish also has multiple language variants
– for example ømålsdansk, which encompasses all
from the absence of stød (Hansen, 1943; Basbøll,
2005) in fynsk, to københavnsk, with its quirks,
like the use of forrasten in place of standard Dan-
ish forræsten (Institut for Dansk Dialektforskning,
1992-). This study ignores these variants, focusing
on standard Danish. We recognise that this choice
perpetuates the erosion of other tongues within
Denmark but, at the same time, we are aware of
how the high prevalence of English in the country
similarly erodes access to good NLP for Danish
users – and addressing the lacunae of latter is the
primary concern for this paper.
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We present an overview of the status of Dan-
ish on a sample of NLP tasks drawn from the
“NLP Progress” list,1 automatic speech recogni-
tion and speech synthesis, organized thematically.
This work considers speech to be natural language
and applications such as automatic speech recog-
nition and speech synthesis as NLP tasks.

2 Syntactic Tasks

Starting at the most basic linguistic hierarchy is of-
ten to identify the syntactic structure of a sentence.

2.1 Part-of-speech tagging

PoS tagging is the task of assigning abstract basic
syntactic categories to every token. PoS tagging
is one of the cornerstone NLP tasks and typically
one of the first to be addressed for a new language.
Consequently, PoS tagging schemes and corpora
have emerged for a variety of languages, including
Danish (Bilgram and Keson, 1998).

Typically, each annotation effort developed
their own annotation guidelines. Early work
on Danish included over 100 fine-grained PoS
tags (Bilgram and Keson, 1998). A recent ini-
tiative, the Universal Dependencies (UD) (Nivre
et al., 2016), initiated a new broadly-adopted
model to homogenize prior diverging efforts. By
sacrificing detail for standardisation, UD proposes
a unified annotation scheme for syntactic annota-
tion of dependency trees including PoS tags and
morphological features, which maximizes paral-
lelism between languages while still allowing for
language-specific annotations. For PoS, the UD
scheme consists of 17 universal PoS tags.2 The
latest UD release (v2.4) covers 83 languages. UD
has been widely adopted in both academia and in-
dustry (Nivre et al., 2016; Bohnet et al., 2018).

Two existing Danish-specific PoS taggers exist
under restricted access (Asmussen, 2015). They
include mostly rule-based systems accessible via
an online interface: the Brill PoS tagger developed
by the Centre for Language Technology3 and a
tagger developed by GrammarSoft. In contrast,
many general purpose tagging tools are widely
available as open-source taggers.4 The current
best systems rely on deep learning implement-
ing bidirectional LSTM architectures (Plank et al.,

1
https://nlpprogress.com/

2
universaldependencies.org/u/overview/morphology.html

3
https://cst.dk/online/pos_tagger/

4
https://github.com/bplank/bilstm-aux/

2016; Bohnet et al., 2018). They reach accura-
cies in the high 90s for Danish, i.e 96% on UD
Danish (Plank et al., 2016). Contrary to major
languages such as English, there is a lack of data
for PoS annotated data for non-canonical domains
like social media or specialized medical data.

2.2 Dependency Parsing

Dependency parsing is the task of identifying the
syntactic structure of a sentence. In dependency
parsing, the syntactic structure is expressed as a set
of bilexical head-modifier relationships called de-
pendencies, e.g., subj(Anna, sings). The set of
dependencies forms a tree structure, thereby yield-
ing a structured prediction problem.

The first Danish treebank is the Copenhagen
Dependency Treebank (CDT) (Kromann et al.,
2003). It consists of 100k tokens of syntactially-
annotated data from the Parole corpus (Bilgram
and Keson, 1998). The Danish UD treebank
(Danish-DDT) is a conversion of the Copen-
hagen Dependency Treebank to UD (Johannsen
et al., 2015). In recent evaluations, labeling accu-
racies of 86% were reported for Danish UD depen-
dency parsing (Zeman et al., 2018), mainly over
news articles. Overall, Danish dependency pars-
ing has received the most attention.

3 Semantic Tasks

The processing tasks that depend on the meanings
of a target text are gathered in this section. While
a broad area of NLP, including meaning represen-
tation, commonsense reasoning, automatic sum-
marization, spatial and temporal information ex-
traction, and linguistic inference, we focus areas
where some work on Danish exists: recognising
name mentions and supersenses, handling clinical
text, and sentiment extraction.

3.1 Named Entity Recognition and Senses

Picking up on specifically named items, like
names of people, places and organizations, can
lead to useful analyses; this is called Named En-
tity Recognition (NER). For some genres and lan-
guages, NER has advanced to high accuracies (e.g.
English Newswire). For others, the technology is
less advanced. It is a more coarse-grained task
than sense tagging which has received attention in
Danish (Alonso et al., 2015; Pedersen et al., 2015).

Many NER results for Danish are outdated and
based on closed, systems. E.g., Bick (2004) offers

357



details of a system trained on 43K tokens but re-
ports no F1. One has to pay for this tool and the
data is not open. Johannessen et al. (2005) men-
tion efforts in Danish NER but the research lies
behind a paywall that the authors do not have ac-
cess through, and we failed to find other artefacts
of this research. More recently, Derczynski et al.
(2014) describe a dataset used to train a recog-
nizer that is openly available in GATE (Cunning-
ham et al., 2012). Current efforts focus on address-
ing the problem of data sparsity and on providing
accessible tools (Plank, 2019; Derczynski, 2019),
including as part of the ITU Copenhagen open tool
set for Danish NLP.5

In contrast, for English, F1 scores are in
the mid-90s (e.g., 94.03 from Chiu and Nichols
(2016)). Researchers have since moved on to
more exotic challenges, such as nested entities,
emerging entities, and clinical information extrac-
tion (Katiyar and Cardie, 2018; Derczynski et al.,
2017; Wang et al., 2018).

To improve Danish NER seems simple: we
need open tools and annotated data. Fortunately,
the landscape for Danish NER is somewhat bar-
ren, and so first movers have an advantage. Openly
contributing such a dataset to a shared resource
would mean that Danish NER would be included
in multilingual NER exercises, thus enabling the
rest of the world to also work on improving entity
recognition for Danish.

3.2 Clinical IE

The language used in biomedical and clinical ap-
plications has its own nuance. Technical terms
abound, and dialects vary between specialisations
and even from institution to institution. Patient
record notes have the potential for particularly
broad variations: they are uncurated, they are not
designed for publication, and the target audience
tends to be quite similar to the target author, thus
permitting greater use of idiosyncratic language.
These factors make text in this domain hard to deal
with for standard tools. They also make it difficult
to use transfer approaches from other languages.
For example, while one might reasonably be able
to use belles lettres in English to better process
belles lettres in Danish, the idiosyncracies in clin-
ical notes mean that one language’s clinical note
data is unlikely to hugely help understanding clin-
ical notes in other languages.

5See nlp.itu.dk/resources/ and github.com/ITUnlp

Danish clinical NLP lags behind that for other
languages, even when English is taken out of
the picture, with for example four times as many
Pubmed references to Swedish clinical processing,
and twice as many to Finnish, than exist for Danish
clinical NLP (Névéol et al., 2018). Work relies on
older technology, not exploiting the higher perfor-
mance of deep learning (Eriksson et al., 2013). Ef-
forts to improve on this situation are hampered by
the data being tightly closed to NLP researchers,
compared to the situation in Sweden and Fin-
land – this despite Denmark having an unusally
rich archive of clinical data, which is “gathering
dust” (Reiermann and Andersen, 2018).

There is limited Danish clinical data (Pantazos
et al., 2011), but basic tasks such as entity recog-
nition are not yet in place. Adverse drug reaction
extraction tools have been built (Eriksson et al.,
2013), achieving an F1 of 0.81 on psychiatric host-
pial patient records, compared to an F1 of 0.87 for
English on the more difficult task of multi-genre
records (Huynh et al., 2016). Clinical timeline ex-
traction (Sun et al., 2013; Bethard et al., 2016) is
absent for Danish.

To improve the situation for people whose med-
ical data is stored in Danish, both the institutional
access problem and the technology development
problems need to be addressed. Fortunately, re-
search into clinical NLP for other languages is
quite advanced, making it easier to catch up.

3.3 Sentiment Extraction

Sentiment analysis is a long-standing NLP task for
predicting the sentiment of an utterance, in general
or related to a target (Liu, 2012). It has been inves-
tigated for non-formal text, which presents its own
hurdles (Balahur and Jacquet, 2015), leading to a
series of shared tasks (Rosenthal et al., 2015).

The afinn tool (Nielsen, 2011) performs sen-
timent analysis using a lexicon consisting of 3552
words, labelled with a value between -5 (very neg-
ative) and 5 (very positive). This approach only
considers the individual words in the input, and
therefore the context is lost.

Full-text annotations for sentiment in Danish
have appeared in previous multilingual work, in-
cluding systems reaching F-scores of 0.924 on
same-domain Trustpilot reviews and 0.462 going
across domains (Elming et al., 2014). Alexan-
dra Institute offer a model6 based on Facebook’s

6See https://github.com/alexandrainst/danlp
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LASER multilingual sentiment tool.7 This is total
of Danish sentiment text tools, and all are included
incidentally as part of multilingual efforts.

4 Machine Translation

Machine translation (MT) is the automatic trans-
lation from one language to another. MT typically
thrives on sentence-aligned data, where sentences
in the source language are paired with their trans-
lation in the target language. Tools specifically de-
signed in Denmark for Danish are not open and of-
ten only translate one way;8 this makes them im-
possible to benchmark.

On the other hand, it is rare that translation
tools include Danish in evaluations. Popular pairs
are en-fr, en-de, en-zh and en-ja, which tend
to be present in most large-scale research exer-
cises (Johnson et al., 2017; Chen et al., 2018).
When Danish does appear, it is typically in or-
der to make a linguistic point, rather than im-
prove MT for Danish-speakers (Vanmassenhove
et al., 2018). However, even given that, there is
a relatively large amount of Danish parallel text
(that MT relies on): Opus9 reports 63M sentences
for English-Danish, 70M for English-Swedish,
117M for English-German, and 242M for English-
French. A large amount of the Danish data comes
from colloquial, crowdsourced sites like Open-
Subtitles.net and Tatoeba. Just as it’s incidental
that Danish is included in these (i.e. their trans-
lations is not purpose-created for Danish, which
is a signal of quality), there are also no dedicated
Danish parallel texts listed on CLARIN.eu.10 The
result is thus that Danish MT is missing focused
technology, and focused corpora, specifically de-
signed to give correct Danish translations.

5 Speech Technology

Automatic speech recognition (ASR) converts
spoken utterances to text. Converting text to spo-
ken utterances is known as speech synthesis or
text-to-speech (TTS) systems.

5.1 Automatic speech recognition
Danish ASR has received limited attention from
a research perspective. In terms of data, Dan-
ish should be considered a medium-resource lan-
guage largely due to the access to the open-domain

7See https://github.com/facebookresearch/LASER
8See https://visl.sdu.dk/visl/da/tools/
9See http://opus.nlpl.eu/

10See www.clarin.eu/resource-families /parallel-corpora

speech corpus known as Språkbanken,11 which
contains 300 hours of phonetically-balanced ASR
training data and 50 hours of test data – as well
as data for telephony and dictation. The data is
read-aloud speech which assures a good corre-
spondence between text and speech. However, this
genre does not contain examples of many issues in
realistic speech like dysfluencies, restarts, repairs
and foreign accents. ELRA hosts the Speech-
Dat/Aurora, EUROM1 and Collins data collec-
tions behind a paywall, but these do not contain
a substantial amount of spontaneous speech; ac-
cess to realistic spontaneous speech is extremely
limited for Danish languages. This is a barrier to
research and development for Danish ASR. Creat-
ing these resources from scratch is expensive and
cannot be undertaken by start-ups, SMEs or single
research groups without substantial backing.

In terms of available software or systems, a
speech recogniser training recipe based on the
Kaldi toolkit (Povey et al., 2011) is available on-
line.12 This is a hybrid DNN-HMM system that
requires a phonetic transcription, but if we desire
to train end-2-end ASR systems, phonetic tran-
scription is not necessary and we can take an
off-the-shelf toolkit like OpenSeq2Seq (Kuchaiev
et al., 2018) and train an off-line system.13

Google, Nuance, IBM and Danish companies like
MIRSK, Dictus and Corti develop Danish ASR;
Dictus and Mikroværkstedet also have TTS solu-
tions. Dictus recently released Dictus Sun14 which
will be used at the Danish parliament to draft
speech transcriptions.

ASR system performance depends on language
models. As speech genre is important for acoustic
model performance, so language models trained
on newswire, Wikipedia, Twitter data or similar
will not work as well as language models trained
on speech transcriptions. Dictus Sun has access to
11 years of transcribed speeches and so may work
well for monologues in that domain, but we have
not been able to test the system and cannot know
its performance on spontaneous speech.

A lot of medium quality transcribed data is bet-
ter than a little perfectly transcribed data and cre-
ating more data rather than correcting existing
transcriptions provides better performance (Sper-
ber et al., 2016; Novotney and Callison-Burch,

11See github.com/fnielsen/awesome-danish for links.
12
github.com/kaldi-asr/kaldi/tree/master/egs/sprakbanken.

13Offline means it cannot recognise speech in real-time.
14
https://www.dictus.dk
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2010). This was used to create the Fisher cor-
pus, a standard benchmark (Cieri et al., 2004). We
recommend this approach, coupled with release of
publicly-owned parallel data (e.g. subtitles & au-
dio from Danmarks Radio archives; Danish parlia-
ment speeches with transcriptions).

5.2 Speech synthesis.
The synthesisers available online are eSpeak and
Responsive Voice.15 Språkbanken contains a sec-
tion of data that can be used to train a speech
synthesiser. Recently, toolkits to train DNN-
based speech synthesisers have become available
online16 because they can be trained on aligned
speech and text data like ASR systems, but we
are not aware of any systems or recipes to train
Danish speech synthesisers. A first step would
be to develop a synthesiser on the TTS part of
Språkbanken and then the ASR part.

6 Discussion and Conclusion

This paper discussed a range of NLP tasks and
available technologies. It is a not an exhaustive
survey of Danish NLP tools: good resources and
resource lists can be found out on the web. Rather,
we focus on academic research and pressing tasks.

Danish language technology remains nascent.
Corpora are somewhat available, but not guided
by modern technological advances. The argument
of a national report on language technology, par-
allel to and independent of this paper, was that
more data is needed (DSN, 2019). In the era of
deep learning, which a major part of contemporary
NLP relies upon, we need huge datasets. These do
not exist on the same scale as in privileged lan-
guages. Danish language text needs to be anno-
tated, but because in the Danish context annota-
tion is very expensive and doesn’t scale (cf. e.g.
annotation for the world’s second language, En-
glish), one must be careful about where effort is al-
located. The exact kinds of annotation must be led
by modern NLP research to have the most impact,
listening to advances in the field. We recommend
a top-down approach, basing choices for develop-
ment on those where they are found to be lacking
for a certain specific applied goals. For example,
modern and colloquial parallel corpora will serve
to improve the standard of machine translations
that Danish speakers experience daily; sentiment

15See https://responsivevoice.org/
16For example github.com/NVIDIA/tacotron2, github.com/

r9y9/deepvoice3_pytorch, github.com/CSTR-Edinburgh/merlin.

and NER datasets and benchmarks for Danish
will enable the innovation and technology projects
that often serve to spark local industrial interest
in NLP; high-vocabulary-coverage contextual em-
beddings for Danish will enhance performance
of contemporary machine learning approaches in
both research and in innovation; including Dan-
ish in NLI datasets will drive forward progress on
Danish as the NLP world works on multilingual
reasoning and inference. A bottom-up approach,
constructing a set of resources with the eventual
goal of assembling a large, complex system, risks
failing to match opportunities in Denmark and the
broader NLP community. We draw an analogy be-
tween these approaches and the choice of being
market-led or product-led. Product-led organisa-
tions specialise in producing one kind of product
and do it very well. In contrast, market-led busi-
nesses learn their market and provide what their
market wants. The bottom-up approach to struc-
turing and funding NLP research is similar to be-
ing product-led. The resources are good, but there
can be a disconnect with important parts of the
community, making it a risky strategy. The present
lacunae are a symptom of this strategy.

We propose that Danish language technology
is steered in directions that directly support and
engage with the global frontier in NLP. Danish
syntactic tools, Danish semantic processing, and
applied Danish NLP comprise the core pillars of
such a strategy. As this paper shows, much ex-
isting Danish NLP is included incidentally as part
of multilingual efforts. This means that Denmark
has lost ownership and control of important parts
of Danish NLP, and Danish speakers risk experi-
encing substandard technology as a result.

In the mean time, Danish NLP – intrinsically
interdisciplinary – remains absent from local re-
search agendae and so continues to languish; it is
really this technology that we need if Danish users
are to enjoy the benefits that NLP can deliver.
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Abstract

We report on work in progress which con-
sists of annotating an Icelandic corpus for
named entities (NEs) and using it for train-
ing a named entity recognizer based on
a Bidirectional Long Short-Term Mem-
ory model. Currently, we have annotated
7,538 NEs appearing in the first 200,000
tokens of a 1 million token corpus, MIM-
GOLD, originally developed for serving as
a gold standard for part-of-speech tagging.
Our best performing model, trained on
this subset of MIM-GOLD, and enriched
with external word embeddings, obtains
an overall F1 score of 81.3% when cate-
gorizing NEs into the following four cat-
egories: persons, locations, organizations
and miscellaneous. Our preliminary re-
sults are promising, especially given the
fact that 80% of MIM-GOLD has not yet
been used for training.

1 Introduction

Named Entity Recognition (NER) is the task of
identifying named entities (NEs) in text and label-
ing them by category. Before the work presented
in this paper, no labeled data sets for NER existed
for Icelandic. On the other hand, NER data sets
exist for various other languages, e.g. for Span-
ish and Dutch (Tjong Kim Sang, 2002), for En-
glish and German (Tjong Kim Sang and De Meul-
der, 2003), and for seven Slavic languages (Pisko-
rski et al., 2017). In all these data sets, NEs
have been categorized into the following four cat-
egories: PER (person), LOC (location), ORG (or-
ganization), and MISC (miscellaneous), accord-
ing to the CoNLL shared task conventions (Tjong
Kim Sang, 2002).

The work in progress described in this paper
is twofold. The first part consists of categorizing

NEs in an Icelandic corpus, MIM-GOLD, contain-
ing about 1 million tokens, that has been devel-
oped to serve as a gold standard for training and
evaluating part-of-speech (PoS) taggers (Loftsson
et al., 2010). In the second part, MIM-GOLD
is used to train and evaluate a named entity rec-
ognizer by applying a Bidirectional Long Short-
Term Memory (BiLSTM) model (Hochreiter and
Schmidhuber, 1997; Schuster and Paliwal, 1997).
Our work will result in the first annotated Icelandic
training corpus for NER and the first named entity
recognizer for Icelandic based on machine learn-
ing (ML).

Currently, we have categorized 7,538 NEs ap-
pearing in the first 200,000 (200K) tokens of
MIM-GOLD with the commonly used four NE
categories: PER, LOC, ORG and MISC. Our best
performing BiLSTM model, trained on this sub-
set of MIM-GOLD, and enriched with external
word embeddings (representations of words in n-
dimensional space), obtains an overall F1 score of
81.3%. Given the fact that 80% of MIM-GOLD
has not yet been used for training, this preliminary
result is promising and indicates that we may be
able to develop a high accuracy named entity rec-
ognizer for Icelandic.

2 Background

In the last few years, neural network methods
and deep learning have become the prevalent ML
method in NER (Collobert et al., 2011; Yadav
and Bethard, 2018). The main advantage of these
methods is that they typically do not need domain-
specific resources like lexicons or gazetteers (lists
containing names of known entities) and features
are normally inferred automatically as opposed to
being learned with the help of hand-crafted feature
templates as in feature-engineered systems.

Commonly used neural network architectures
for NER include convolutional neural networks
and recurrent neural networks (RNNs), along with
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other ML methods, such as conditional random
fields (Lafferty et al., 2001), which have been im-
plemented as layers in neural network architec-
tures (Lample et al., 2016) and used for NER
tasks in under-resourced languages such as Persian
(Poostchi et al., 2018).

Various studies show that pre-trained character
and word embeddings are beneficial for NER tasks
(Demir and Özgür, 2014; Wu et al., 2015; Dernon-
court et al., 2017). This is especially relevant for
morphologically rich languages without large an-
notated datasets, such as Icelandic, since they offer
a way to obtain subword information that cannot
be inferred from the training corpus alone (Laf-
ferty et al., 2001). Word embeddings have also
been used to construct multilingual NER systems
with minimal human supervision (Al-Rfou et al.,
2014).

2.1 NeuroNER

Neural networks can be complicated and challeng-
ing to use, even for experts. NeuroNER (Dernon-
court et al., 2017) is an easy-to-use tool for NER
based on a bidirectional RNN. An RNN is a neu-
ral network that is specialized for processing a se-
quence of values. A bidirectional RNN combines
an RNN that moves forward in a sequence with
another RNN that moves backward. The specific
type of a bidirectional RNN used in NeuroNER
is a BiLSTM model, which is capable of learning
long-term dependencies.

The BiLSTM model in NeuroNER contains
three layers: 1) a character-enhanced word-
embedding layer, 2) a label prediction layer, and
3) a label sequence optimization layer (Dernon-
court et al., 2016). The first layer maps each token
to a vector representation using two types of em-
beddings: a word embedding and a character-level
token embedding. The resulting embeddings are
then fed into the second layer which outputs the
sequence of vectors containing the probability of
each label for each corresponding token. Finally,
the last layer outputs the most likely sequence of
predicted labels based on the output from the pre-
vious label prediction layer.

Instead of implicitly learning the word embed-
dings, NeuroNER allows users to provide their
own external (pre-trained) word embeddings (see
Section 4).

NeuroNER enables users to annotate a corpus
for NEs by interfacing with the web-based anno-

tation tool BRAT (Stenetorp et al., 2012), and use
the annotated corpus to train a named entity rec-
ognizer.

2.2 NER for Icelandic

As mentioned in Section 1, no labeled Icelandic
data set for NER existed before our work started.
Annotating a training corpus of a viable size for
NER can be time-consuming task even if semi-
automatic methods are used (Lample et al., 2016;
Piskorski et al., 2017). Presumably, this is why no
NER tools based on ML had been developed for
Icelandic.

A rule-based named entity recognizer for Ice-
landic, IceNER, is part of the IceNLP toolkit
(Loftsson and Rögnvaldsson, 2007). It has been
reported to reach F1 score of 71.5% without
querying gazetteers, and 79.3% using a gazetteer
(Tryggvason, 2009).

Greynir is an open-source NLP tool and web-
site that parses sentences and extracts informa-
tion from Icelandic news sites (Þorsteinsson et al.,
2019). One of the features of Greynir is a rule-
based named entity recognizer used to find and la-
bel person names in the news texts. The accuracy
of this named entity recognizer has not been eval-
uated.

3 Developing the Training Corpus

The MIM-GOLD corpus is a balanced corpus of
1 million tokens of Icelandic texts, written in
2000-2010, from 13 different sources, including
news texts, speeches from the Icelandic Parlia-
ment, laws and adjucations, student essays, and
various web content such as blogs and texts from
websites (Loftsson et al., 2010).1 The texts have
been tokenized and automatically PoS-tagged us-
ing the tagset developed for the Icelandic Fre-
quency Dictionary corpus (Pind et al., 1991), with
subsequent manual corrections (Helgadóttir et al.,
2014). Note that MIM-GOLD is tagged for proper
nouns, but does not contain any categorization of
the proper nouns.

In order to reduce the work of categorizing Ice-
landic proper nouns in MIM-GOLD, we gathered
official gazetteers of persons, organizations and
place names, and used them as input to an auto-
matic pre-classification program. Thereafter, we
manually reviewed and corrected the results.

1Available for download from http://malfong.is
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Category Count %

PER 3,045 40.4
LOC 1,748 23.2
ORG 1,768 23.4
MISC 977 13.0
Total 7,538 100.0

Table 1: Number of NEs in the 200K token train-
ing corpus.

Foreign tokens in the MIM-GOLD are all as-
signed the same tag with no further distinction,
and since a large portion of them are NEs, they
were reviewed and classified manually.

To make the review and correction process more
efficient, we used the BRAT annotation tool (see
Section 2). We use the IOB (inside, outside, be-
ginning) format as used in the CoNLL data sets
(Tjong Kim Sang, 2002).

At the time of writing, we have categorized
7,538 NEs appearing in the first 200K tokens of
MIM-GOLD with the commonly used four cate-
gories: PER, LOC, ORG and MISC (see Table 1).

The annotated corpus was reviewed by a single
linguist (first author), using the following defini-
tions for each of the four categories:

• Persons: Names of humans and other beings,
real or fictional, deities, pet names.

• Locations: Names of locations, real or fic-
tional, i.e. buildings, street and place names,
both real and fictional. All geographical and
geopolitical entities such as cities, countries,
counties and regions, as well as planet names
and other outer space entities.

• Organizations: Icelandic and foreign com-
panies and other organizations, public or pri-
vate, real or fictional. Schools, churches,
swimming pools, community centers, musi-
cal groups, other affiliations.

• Miscellaneous: All other capitalized nouns
and noun phrases, such as works of art, prod-
ucts, events, printed materials, vessels and
other named means of transportation, etc.

4 Training and Evaluation

The training corpus was arranged into two sets
of different sizes, 100K and 200K tokens, each
split into training (80%), validation (10%) and test

W. embeddings Implicit External
Corpus size 100K 200K 100K 200K

PER 71.8 76.1 95.2 93.3
LOC 61.8 65.6 81.8 85.6
ORG 23.5 40.5 62.7 69.2
MISC 3.2 28.3 14.8 41.5
Overall 55.5 61.8 80.6 81.3

Table 2: F1 scores (%) of four different training
configurations.

(10%) sets. Four different models were trained
and evaluated, for the two different training set
sizes and for both implicitly and externally trained
word embeddings.

We pre-trained our own word embeddings of
200 dimensions using about 543 million tokens
from a large unlabelled corpus, the Icelandic Gi-
gaword Corpus (Steingrímsson et al., 2018), using
a Word2Vec architecture (Mikolov et al., 2013).

All the parameters in NeuroNER’s configura-
tion file, controlling the structure of the model,
along with the hyperparameters directed towards
the learning process, were left at their default
values. The only exception to this is the to-
ken_embedding_dimension parameter, controlling
the length of the word vectors. This value was in-
creased from 100 to 200 for the external word em-
beddings.

In the training, early stop was applied by default
when no improvement had been seen on the vali-
dation set for ten consecutive epochs. The model
used is based on the network weights taken from
the epoch where the F1 score last peaked for the
validation set.

Evaluation was done automatically by Neuro-
NER according to CoNLL practices, which means
that to score a true positive, both the NE category
and the token boundaries need to be correct.

The F1 scores for the models of the four train-
ing configurations, i.e. for the two training cor-
pora sizes, with implicit and external word embed-
dings, are shown in Table 2. The best performing
model is the one trained on 200K tokens and using
external pre-trained word embeddings, achieving
an overall F1 score of 81.3%.

5 Discussion

The results presented in Section 4 are promising,
especially given the few NEs found in the 200K
tokens of the training corpus (see Table 1).
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Table 2 shows that, using implicitly trained
word embeddings, the F1 score increases consid-
erably when doubling the corpus size, i.e. from
55.5% to 61.8%. This was to be expected, as the
training set in the 100K token corpus only con-
tains around 80K tokens, and has thus a very lim-
ited number of NE examples to learn from. When
further increasing the training corpus, we expect
this trend to continue.

However, a more effective approach to in-
crease the accuracy proved to be incorporating
pre-trained word embeddings. In that case, the
F1 score increases to 81.3% when using the 200K
corpus. In what follows, we refer to this best per-
forming model as 200K_External.

Most studies on the benefits of word embed-
dings in NER tasks do not report more than a few
percent points increase in F1 score by introduc-
ing pre-trained word embeddings. Intuitively, we
deduce that the main reason we are experiencing
this huge benefit of pre-trained word embeddings
is the small size of our training corpus. For a small
training set, the model will more often encounter
unseen words in the test set. In our 200K cor-
pus, 60% of the incorrectly labeled words had not
been seen in the training set. When the large col-
lection of word embeddings is added to the pool,
the chances that a word is known increase substan-
tially.

Another reason as to why word embeddings
from a large external corpus are so beneficial for
our model may be the underlying language. Ice-
landic, a morphologically rich language, presents
special challenges for various NLP tasks, such
as NER. Nouns, generally the building blocks of
NEs, have up to 16 unique inflectional forms, and
verbs and adjectives can have over a hundred dif-
ferent forms. This greatly increases the vocabu-
lary size of a corpus, and causes a problem with
data sparsity, as pointed out by Demir and Özgür
(2014), for the case of Turkish and Czech. The im-
plication is that a NER system may not recognize a
NE in the test set even if it has seen it in a different
form in the training set.2 We could try to lemma-
tize the tokens in the training corpus and use the
normalized output for building the NER model,
but then we would lose important contextual in-
formation about the NEs and their neighbors. The

2For example, the Icelandic person name “Egill” (nom-
inative) may be tagged as such in the training set and then
appear as “Egil” (accusative),“Agli” (dative), or “Egils” (gen-
itive) in the test set.

pre-trained word embeddings contribute many ex-
amples to the model of different word forms that
do not appear in the training set, and the likelihood
of correctly labeling them increases as a result.

With a larger corpus, say by doubling it once
again, we believe, from the trend, that the F1

score without external embeddings might end up
between the earlier score (61.8%) and the one ob-
tained by 200K_External (81.3%). On the other
hand, the results with pre-trained embeddings in-
dicate a much slower increase in F1 score when
increasing the size of the corpus (from 80.6% to
81.3% when increasing the corpus size from 100K
to 200K). This might indicate that we are ap-
proaching the upper limit with regard to the F1

score.
NeuroNER has achieved 90.5% F1 score for

English on the CoNLL data set (Dernoncourt
et al., 2017). This English data set contains 35,089
NEs (Tjong Kim Sang and De Meulder, 2003)
whereas our 200K Icelandic training corpus con-
tains only 7,538 NEs. Therefore, we are optimistic
that increasing the training corpus size for Ice-
landic will further increase the overall F1 score, al-
beit we do not expect getting close to the score for
English, which is a morphologically simple lan-
guage compared to Icelandic.

5.1 Accuracy for Different Categories

Table 2 shows a considerable difference in the ac-
curacy of different categories. Especially promis-
ing are the results for the PER category, with F1

score of 93.3% for 200K_External. The recall
for PER is high, 94.85%, which means that only
about 5% of the person names in the test set were
not identified. Several factors may explain the top
performance in this category. Most importantly,
person names are by far the most frequent entity
type in the training corpus, almost double that of
the LOC and ORG categories (see Table 1). Per-
son names are often constructed in a similar man-
ner, with Icelandic full names usually composed of
one or two given names and a surname ending in
-son or -dóttir “daughter”. Furthermore, they are
almost always capitalized, and since they are not
unique (many people can have the same name),
each person name is bound to appear more often
than, for example, each organization name.

200K_External also performs quite well on the
LOC category (85.6%). It is the nature of a corpus
sampled from any geographic area that some lo-
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Predicted categories
LOC MISC ORG PER O

LOC 161 3 11 8 5
MISC 7 87 26 14 68
ORG 19 6 174 4 21
PER 0 3 1 568 16

O 1 46 33 12 19,245

Table 3: Confusion matrix for the classification
of the test set in 200K_External. True categories
are shown vertically, predicted categories horizon-
tally. The O category denotes “outside”, i.e. that
the corresponding token is not a part of a NE.

cations appear more often than others, in this case
Ísland “Iceland” and Reykjavík, to name two of the
most common. This means that during testing, the
system is much more likely to label them correctly,
because they are likely to have been found during
training. Another property of place names is that
they tend to be single word entities, and are capi-
talized, with a few exceptions. As a result, detect-
ing word boundaries becomes less of a challenge.

The LOC and ORG categories are equally com-
mon in the corpus, but the accuracy for ORG
(69.2%) is significantly worse. In the ORG cat-
egory, word boundaries are a problem, as orga-
nizations are often composed of more than one
word, not necessarily capitalized, e.g. Samband
lífeyrisþega ríkis og bæja “Organization (of) pen-
sioners (of) state and towns”. Furthermore, some-
times it can be hard to decide whether an entity
is an organization name or a product, which may
cause overlap with the MISC category.

The MISC category was the most problematic
one for 200K_External, with F1 score of only
41.5%. Recall is particularly low (33.6%), mean-
ing many MISC entities are not found, and preci-
sion is not particularly high either (54.17%), thus
many entities are mislabeled.

The confusion matrix (see Table 3) from the
classification of the test set in 200K_External
shows how many of the tokens in the test set were
correctly labeled (the diagonal line running from
the top left corner to the bottom right), and where
mislabeling occurs. The MISC category contains
the most outliers, with a total of 115 NEs misla-
beled out of 202 in total. In the PER category
only 20 NEs out of 588 are mislabeled. There
are only around 1000 MISC entities in the whole
200K corpus, and a lot of variation in how they are

constructed, which makes detecting them harder,
even for human annotators. Some are long book or
movie titles, some are complicated product names
with numbers and hyphens, and there is no corre-
lation within the category. This is the category that
tends to score lowest in most NER models, but a
substantially larger corpus should lead to some im-
provement.

6 Conclusion

We have described work in progress consisting of
annotating the MIM-GOLD corpus for NEs and
using it to train a named entity recognizer based
on a BiLSTM model. By only categorizing about
20% of the NEs found in MIM-GOLD, the best
resulting model, enriched with external word em-
beddings, achieves an overall F1 score of 81.3%.
We are optimistic that we can further increase the
F1 score for Icelandic by increasing the training
corpus size. Currently, the number of NEs found
in our training corpus (7,538) is only about 1/5
of the training examples provided in the English
CoNLL data set.

In future work, we will continue categorizing
NEs in MIM-GOLD, such that we will be able
to use 100% of the corpus to train NER mod-
els for Icelandic. We are also working on adding
categories for numerical units, such as dates and
prices. The annotated corpus will be publicly re-
leased, in order to serve as a valuable asset for fur-
ther research on NER for Icelandic. The resulting
NER models will also be made available for public
use.

In addition to further developing our BiLSTM
model and testing different configurations, we in-
tend to develop models based on other ML tech-
niques, for the sake of comparison, as well as be-
ing able to combine various different classifiers.

As mentioned in Section 2, different word
and character representations have shown promise
when developing NER models. In this preliminary
work we used the Word2Vec architecture, which
resulted in a large improvement, but in the fu-
ture we intend to measure how some of the other
word and character representation methods com-
pare, e.g. contextual word embeddings such as
ELMo (Peters et al., 2018) and flair (Akbik et al.,
2018).
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Abstract

Named Entity Recognition (NER) has
greatly advanced by the introduction
of deep neural architectures. How-
ever, the success of these methods
depends on large amounts of train-
ing data. The scarcity of publicly-
available human-labeled datasets has
resulted in limited evaluation of exist-
ing NER systems, as is the case for
Danish. This paper studies the effec-
tiveness of cross-lingual transfer for
Danish, evaluates its complementarity
to limited gold data, and sheds light on
performance of Danish NER.

1 Introduction

Named entity recognition is a key step for
natural language understanding (NLU), and
important for information extraction, relation
extraction, question answering and even pri-
vacy protection. However, the scarcity of
publicly-available human annotated datasets
has resulted in a lack of evaluation for lan-
guages beyond a selected set (e.g., those cov-
ered in early shared tasks like Dutch, German,
English, Spanish), despite the fact that NER
tools exists or recently emerged for other lan-
guages. One such case is Danish, for which
NER dates back as early as (Bick, 2004) and
tools exist (Bick, 2004; Derczynski et al.,
2014; Johannessen et al., 2005; Al-Rfou et al.,

2013) but lack empirical evaluation.
Contemporarily, there exists a surge of in-

terest in porting NLU components quickly
and cheaply to new languages. This in-
cludes cross-lingual transfer methods that ex-
ploit resources from existing high-resource
languages for zero-shot or few-shot learning.
This line of research is blooming, particularly
since the advent of neural NER, which holds
the state of the art (Yadav and Bethard, 2018).
However, neither neural tagging nor cross-
lingual transfer has been explored for Danish
NER, a gap we seek to fill in this paper.

Contributions We present a) publicly-
available evaluation data to encourage
research on Danish NER; b) an empirical
comparison of two existing NER systems for
Danish to a neural model; c) an empirical
evaluation of learning an effective NER
tagger for Danish via cross-lingual transfer
paired with very little labeled data.

2 Approach

We investigate the following questions: RQ1:
To what extent can we transfer a NER tagger
to Danish from existing English resources?
RQ2: How does cross-lingual transfer com-
pare to annotating a very small amount of in-
language data (zero-shot vs few-shot learn-
ing)? RQ3: How accurate are existing NER
systems for Danish?
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2.1 NER annotation

To answer these questions, we need gold an-
notated data. Access to existing resources is
limited as they are not available online or be-
hind a paywall. Therefore, we annotate NERs
on top of publicly available data.1

In line with limited budget for annotation
(Garrette and Baldridge, 2013), we add an an-
notation layer for Named Entities to the de-
velopment and test sets of the Danish sec-
tion of the Universal Dependencies (UD) tree-
bank (Nivre et al., 2016; Johannsen et al.,
2015). To answer RQ2, we further annotate
a very small portion of the training data, i.e.,
the first 5,000 and 10,000 tokens. Examples
are shown in Figure 1. Dataset statistics are
provided in Table 2.

The Danish UD treebank (Danish-DDT)
is a conversion of the Copenhagen Depen-
dency Treebank (CDT). CDT (Kromann et al.,
2003) consists of 5,512 sentences and 100k
tokens, originating from the PAROLE-DK
project (Bilgram and Keson, 1998). In con-
trast to original CDT and the PAROLE to-
kenization scheme, starting from the Danish
UD has the advantage that it is closer to every-
day language, as it splits tokens which were
originally joined (such as ‘i alt’).

We follow the CoNLL 2003 annotation
guidelines (Tjong Kim Sang and De Meul-
der, 2003) and annotate proper names of four
types: person (PER), location (LOC), orga-
nization (ORG) and miscellaneous (MISC).
MISC contains for example names of prod-
ucts, drinks or film titles.

2.2 Cross-lingual transfer

We train a model on English (a medium and
high resource setup, see details in Section 3)
and transfer it to Danish, examining the fol-
lowing setups.

1https://github.com/
UniversalDependencies/UD_Danish-DDT

B-LOC O O O O O O O
Rom blev ikke bygget på èn dag .

O O O B-PER O O B-MISC I-MISC
vinyl , som Elvis indspillede i Sun Records

Table 1: Example annotations.

Evaluation Training
DEV TEST TINY SMALL

Sentences 564 565 272 604
Tokens 10,332 10,023 4,669 10,069
Types 3,640 3,424 1,918 3,525
TTR 0.35 0.34 0.41 0.35
Sent.w/ NE 220 226 96 206
Sent.w/ NE% 39% 34% 35% 34%
Entities 348 393 153 341

Table 2: Overview of the annotated Danish
NER data. Around 35%-39% of the sentences
contain NEs. TTR: type-token ratio.

• Zero-shot: Direct transfer of the English
model via aligned bilingual embeddings.
• In-Language: Training the neural model

on very small amounts of in-language
Danish training data only. We test two
setups, training on the tiny data alone; or
with unsupervised transfer via word em-
bedding initialization (+Poly).
• Few-shot direct transfer: Training the

neural model on English and Danish
jointly, including bilingual embeddings.
• Few-shot fine-tuning: Training the neu-

ral model first on English, and fine-
tuning it on Danish. This examines
whether fine-tuning is better than train-
ing the model from scratch on both.

3 Experiments

As source data, we use the English CoNLL
2003 NER dataset (Tjong Kim Sang and
De Meulder, 2003) with BIO tagging.

We study two setups for the source side:
a MEDIUM and LARGE source data setup.
For LARGE we use the entire CoNLL 2003
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neural in-lang. neural transfer
TnT plain +Poly +MEDIUM src +LARGE src FINETUNE

zero-shot — — — 58.29 61.18 —

TINY 37.48 36.17 56.05 67.14 67.49 62.07
SMALL 44.30 51.90 67.18 70.82 70.01 65.63

Table 3: F1 score on the development set for low-resource training setups (none, tiny 5k or
small 10k labeled Danish sentences). Transfer via multilingual embeddings from MEDIUM

(3.2k sentences, 51k tokens) or LARGE English source data (14k sentences/203k tokens).

training data as starting point, which contains
around 14,000 sentences and 200,000 tokens.
To emulate a lower-resource setup, we con-
sider a MEDIUM setup, for which we employ
the development data from CoNLL 2003 as
training data (3,250 sentences and 51,000 to-
kens). The CoNLL data contains a high den-
sity of entities (79-80% of the sentences) but
is lexically less rich (TTR of 0.11-0.19), com-
pared to our Danish annotated data (Table 2),
which is orders of magnitudes smaller, lexical
richer but less dense on entities.

Model and Evaluation We train a bilstm-
CRF similar to (Xie et al., 2018; Johnson
et al., 2019). As pre-trained word embed-
dings we use the Polyglot embeddings (Al-
Rfou et al., 2013). The word embeddings
dimensionality is 64. The remaining hyper-
parameters were determined on the English
CoNLL data. The word LSTM size was
set to 50. Character embeddings are 50-
dimensional. The character LSTM is 50 di-
mensions. Dropout was set to 0.25. We use
Stochastic Gradient Descent with a learning
rate of 0.1 and early stopping. We use the
evaluation script from the CoNLL shared task
and report mean F1 score over three runs.

Cross-lingual mapping We map the exist-
ing Danish Polyglot embeddings to the En-
glish embedding space by using an unsu-
pervised alignment method which does not

require parallel data. In particular, we
use character-identical words as seeds for
the Procrustes rotation method introduced in
MUSE (Conneau et al., 2017).

4 Results

Table 3 presents the main results. There are
several take-aways.

Cross-lingual transfer is powerful (RQ1).
Zero-shot learning reaches an F1 score of 58%
in the MEDIUM setup, which outperforms
training the neural tagger on very limited gold
data (plain). Neural NER is better than tra-
ditional HMM-based tagging (TnT) (Brants,
2000) and greatly improves by unsupervised
word embedding initialization (+Poly). It
is noteworthy that zero-shot transfer benefits
only to a limiting degree from more source
data (F1 increases by 3% when training on all
English CoNLL data).

To compare cross-lingual transfer to limited
gold data (RQ2), we observe that training the
neural system on the small amount of data to-
gether with Polyglot embeddings is close to
the tiny-shot transfer setup. Few-shot learning
greatly improves over zero-shot learning. The
most beneficial way is to add the target data to
the source, in comparison to fine-tuning. This
shows that access to a tiny or small amount of
training data is effective. Adding gold data
with cross-lingual transfer is the best setup.
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DEV All PER LOC ORG MISC

Majority 44.8 61.8 0.0 0.0 —
DKIE 55.4 65.7 58.5 20.3 —
DKIE July 23 58.9 68.9 63.6 23.3
Polyglot 64.5 73.7 73.4 36.8 —
Ours 70.8 83.3 71.8 60.0 23.9

TEST All PER LOC ORG MISC
Polyglot 61.6 78.4 69.7 24.7 —
Ours 66.0 86.6 63.6 42.5 24.8

Table 4: F1 score on the Danish dev set.

In both MEDIUM and LARGE setups are fur-
ther gains obtained by adding TINY or SMALL

amounts of Danish gold data. Interestingly, a)
fine-tuning is less effective; b) it is better to
transfer from a medium-sized setup than from
the entire CoNLL source data.

Existing systems (RQ3) perform poorly
(Table 4). Polyglot (Al-Rfou et al., 2013) is
better than DKIE (Derczynski et al., 2014).
Our best system is a cross-lingual transfer
NER from MEDIUM source data paired with
SMALL amounts of gold data. Per-Entity
evaluation shows that ours outperforms Poly-
glot except for Location, which is consistent
across evaluation data (Table 4). Overall we
find that very little data paired with dense rep-
resentations yields an effective NER quickly.

5 Related Work

Named Entity Recognition has a long history
in NLP research. While interest in NER origi-
nally arose mostly from a question answering
perspective, it developed into an independent
task through the pioneering shared task orga-
nized by the Message Understanding Confer-
ence (MUC) (Grishman and Sundheim, 1996;
Grishman, 1998). Since then, many shared
task for NER have been organized, includ-
ing CoNLL (Tjong Kim Sang and De Meul-
der, 2003) for newswire and WNUT for so-
cial media data (Baldwin et al., 2015). While

Danish NER tools and data exists (Bick, 2004;
Derczynski et al., 2014; Johannessen et al.,
2005; Al-Rfou et al., 2013), there was a
lack of reporting F1 scores. Supersense tag-
ging, a task close to NER has received atten-
tion (Martı́nez Alonso et al., 2015).

The range of methods that have been pro-
posed for NER is broad. Early methods
focused on hand-crated rule-based methods
with lexicons and orthographic features. They
were followed by feature-engineering rich
statistical approaches (Nadeau and Sekine,
2007). Since the advent of deep learning and
the seminal work by (Collobert et al., 2011),
state-of-the-art NER systems typically rely on
feature-inferring encoder-decoder models that
extract dense embeddings from word and sub-
word embeddings, including affixes (Yadav
and Bethard, 2018), often outperforming neu-
ral architectures that include lexicon informa-
tion such as gazetteers.

Recently, there has been a surge of interest
in cross-lingual transfer of NER models (Xie
et al., 2018). This includes work on trans-
fer between distant languages (Rahimi et al.,
2019) and work on projecting from multiple
source languages (Johnson et al., 2019).

6 Conclusions

We contribute to the transfer learning litera-
ture by providing a first study on the effec-
tiveness of exploiting English NER data to
boost Danish NER performance.2 We pre-
sented a publicly-available evaluation dataset
and compare our neural cross-lingual Dan-
ish NER tagger to existing systems. Our ex-
periments show that a very small amount of
in-language NER data pushes cross-lingual
transfer, resulting in an effective Danish NER
system.

2Available at: https://github.com/
ITUnlp/transfer_ner
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Abstract

The use of a linking element between
compound members is a common phe-
nomenon in Germanic languages. Still,
the exact use and conditioning of such
elements is a disputed topic in linguis-
tics. In this paper we address the issue
of predicting the use of linking elements
in Danish. Following previous research
that shows how the choice of linking el-
ement might be conditioned by phonol-
ogy, we frame the problem as a language
modeling task: Considering the linking el-
ements -s/-∅ the problem becomes pre-
dicting what is most probable to encounter
next, a syllable boundary or the joining el-
ement, s. We show that training a lan-
guage model on this task reaches an ac-
curacy of 94 %, and in the case of an
unsupervised model, the accuracy reaches
80 %.

1 Introduction

In Danish, Norwegian and Swedish, as well as
in other Germanic languages, a common way of
forming new words is by compounding. Here,
novel words can be formed by combining already
known words with an addition of a linking ele-
ment between the components. Within linguis-
tic research this linking element is somewhat of
a puzzle: First of all, several languages within
the Germanic family seem to share similar link-
ing elements (Fuhrhop and Kürschner, 2014). The
origin of these elements are however disputed
(Nübling and Szczepaniak, 2013). Even if we as-
sume a common origin, the use and distribution
of single elements have changed among daugh-
ter languages, and we often find contradicting ex-
amples e.g., when comparing Ge. Volk-s-musik
and Da. folk-e-musik ’folk music’ (Fuhrhop and

Kürschner, 2014). Secondly, even though the
choice of a linking element may be clear to the
individual speaker, linguists still struggle to es-
tablish rules for when the individual elements oc-
cur. In Danish, the linking element is decided
from the first member of a compound. But when
looking for rules that systematize what words
take which element, only few guidelines are given
(Hansen and Heltoft, 2011). Interestingly, recent
studies on linking elements in German suggest
that the choice of linking element is at least par-
tially phonological, determined by features such
as stress (Nübling and Szczepaniak, 2013).

Compounding has received attention in lan-
guage technology as well, since it is the essence
of one of the main challenges within this field:
that language is productive. Within the area of sta-
tistical machine translation, segmentation of com-
pounds into units is an important task, e.g., when
translating compound words from German to En-
glish where compounding is not productive (Sag
et al., 2002). Similarly, when translating En-
glish multiword expressions (MWE) into German,
methods for synthesis or generation of compounds
are called for (Stymne et al., 2013). Here the
choice of a correct linking element becomes an
issue. In the work by Cap and Fraser (2014)
they rely on a rule-based morphological analyzer
for German to generate the correct compounding
form. Here they report that on a reference set of
283 correctly identified compounds 44 had an in-
correct linking element. Recent work by Matthews
et al. (2016) proposes a translation model from En-
glish MWE to German compounds that allows for
modeling linking elements. In their work, they
report a high recall score when generating novel
compounds. Their error analysis show that their
model has issues when choosing linking elements
(e.g., when generating Kirchentürme instead of the
correct Kirchtürme ’church towers’), but they do
not further provide any metrics on this subtask.
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In this paper we wish to see how well a sim-
ple character-based language model is able to pre-
dict the usage of linking elements in Danish. More
specifically we will look at the case of predicting
occurrence of two elements -s and -∅ (tradition-
ally referred to as a nulfuge ’zero link’) in Danish
noun-noun compounds.

2 The linking element in Danish

In Danish, a compound is formed by attaching a
linking element to the stem of its first member.
Table 1 shows a list of the most common link-
ing elements. The choice of linking element in
a compound is determined by the first member.
While most nouns only have one possible link-
ing element, we do find alternation: First of all,
a noun may have more competing elements that
are used in connection with certain second mem-
bers. An example is the noun båd ’boat’ to which
different elements can be attached depending on
the compound (båd-skat ’boat tax’, but båd-e-
byggeri ’boat building’). Secondly, some nouns
have alternating linking elements that can be used
interchangeably as in aluminium(s)rør ’aluminum
tube’.

Hansen & Heltoft (2011) present rules only for
cases where the linking element -s is used: Usu-
ally an -s occurs when the first member is a com-
pound, but many exceptions can be added to this
rule. Moreover, words derived with the suffixes
-(n)ing, -ion, and -tek always get an -s.

LE Example
-s idræt idrætsdag ’sports day’
-∅ ankel ankelled ’ancle joint’
-e mælk mælkepulver ’milk powder’
-er student studenterhue ’graduation hat’
-n rose rosenbed ’rose bed’

Table 1: Linking elements (LE) in Danish. The
elements above the separator are considered pro-
ductive while the elements below are only found
in isolated forms (Hansen and Heltoft, 2011).

In some dialects the use of -s is preferred in-
stead of the unmarked -∅ in some cases. This
could suggest that phonology does play a role in
the choice of linking element as was also proposed
by Nübling and Szczepaniak (2013) in the case of
German. Following this suggestion, we focus on
the two linking elements -s and -∅ in order to ex-
plore how well the choice between these elements

can be predicted using a character-based language
model.

3 The task

We formulate the problem of determining the cor-
rect linking element of a noun as a language mod-
eling task over the characters of a word: Given a
word as a sequence of characters, what is the most
probable element to come next, assuming that the
word continues? Thus, when trying to determine
whether a noun should take -s or -∅, the problem
becomes to estimate what would be most probable
to observe next: an s or a syllable boundary?

The intuition behind this approach is, assuming
that some underlying phonological process gov-
erns the choice of linking elements, then, learning
the distribution over the sounds or characters of
a word (including the two linking elements—the
sound s and a syllable boundary), will help us to
predict what element will occur as the linking ele-
ment of the first member of a compound.
Data The dataset that we use for the task is
Retskrivningsordbogen (RO) (Jervelund, 2012),
which is the main source for official orthography
in Danish with over 61, 000 entries in total. In RO,
all words are marked with syllable boundaries (in-
dicated by a + in the text string) and information
on what linking element(s) the word takes as a first
member of a compound. From RO we extract the
syllabified forms of nouns with linking element -
s/-∅ (excluding nouns with alternate linking ele-
ments), providing us with a dataset of 6,880 in-
stances of nouns and linking elements.

4 Experiments

We introduce two models to approach the problem
and two baselines from which we make our con-
clusions. First, we investigated whether character-
based language models would be able to estimate
the correct linking element of a word. To this end,
we trained a language model on syllabified words
together with their linking element (s/+). Sec-
ond, we approached the problem in an unsuper-
vised manner, training a general language model
on syllabified words, without providing any spe-
cific information on linking elements.

In both experiments the models are evaluated
as a prediction task on how well they are able
to predict the correct linking element of a word
by weighing the estimated probabilities of observ-
ing an s or a syllable boundary (+) in the end of
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Training objective Input Training signal Prediction task Correct answer
Language model, unsupervised ˆi+dræt P (s) > P (+)? True
Language model, unsupervised ˆan+kel P (s) > P (+)? False
Language model, supervised ˆi+dræt$ s P (s) > P (+)? True
Language model, supervised ˆan+kel$ + P (s) > P (+)? False

Table 2: Examples of input, training signals and prediction task for the supervised and unsupervised
approaches. Adapted from (Linzen et al., 2016).

a word. In order to validate the performance of
our models, we employ 5-Fold Cross-Validation
on the set of -s/-∅ nouns from RO. For each it-
eration, we train a model with four folds and we
divide the remaining fold equally for development
and test.

4.1 Experiment 1: Supervised approach

In the first experiment, we train a character-based
Recurrent Neural Network (RNN) language model
on the entire set of -s/-∅ nouns from RO, including
the linking element at the end of each instance.

We use a two-layer RNN with LSTM that re-
ceives an embedded representation of the charac-
ters with 128 dimensions, which are learned while
training. Each LSTM layer has 64 dimensions and
predictions are made using a softmax over the vo-
cabulary of characters. We train the model using
Stochastic Gradient Descent with cyclical learn-
ing rate (Smith, 2015) using the DyNet framework
(Neubig et al., 2017).

As Table 2 shows, besides a beginning-of-word
symbol (ˆ), we also add an end-of-word symbol
(EOW) ($) to the input. We expect that this ad-
dition will improve the performance of the model,
as it helps to supervise the training signal more
clearly by restricting the distribution of s and +
as compounding elements to occur only after the
EOW symbol. However, this approach also adds
noise to the signal as the original sequence of char-
acters is altered.

4.2 Experiment 2: Unsupervised approach

In the second experiment, we train an RNN iden-
tical to that in the first experiment, but without
including any specific information on linking el-
ements. Thus, at test time, this model has not been
trained on nouns and linking elements, but would
estimate the probabilities, P (s) and P (+), from
the distribution of s and + word-internally. The
model is trained on the words from RO that are
not included within the set of -s/-∅ nouns. The

difference between the two models is summarized
in Table 2.

4.3 Baseline

For each of the experiments we create two base-
lines. The first baseline common to both experi-
ments chooses the most frequent linking element
from the dataset. In the supervised approach, this
means choosing the most frequent label from the
training set. In the unsupervised case, this corre-
sponds to the most frequent character (as it does
not have access to labeled examples). In the sec-
ond baseline we create an iterative back-off model
that attempts to match the input word with already
observed sequences of syllables from the training
set.

For the supervised model, the reason that we
create this baseline is because we know the rime
of a word may be predictive for the choice of link-
ing element. Thus, the back-off model starts by
trying to retrieve the whole word in order to test
if this was observed during training. If not, it will
try to match iteratively shorter sequences of sylla-
bles until a matching rime is found. If a match is
found the most frequent case of linking element is
predicted. If no match is encountered, the model
will back-off to the most frequent strategy.

The back-off model in the unsupervised case is
similar. Here, the only difference is that we do not
look for rimes, but all of the possible continuous
subsequences of syllables. This is done in order to
test how well a model performs in determining the
joining element by remembering exact sequences
of possible syllables word internally.

5 Results

The results from the two experiments are pre-
sented in Table 3. Starting with the results from
Experiment 1 using the supervised approach, we
see that the supervised LM reaches 0.94 for both
accuracy and f1, which is higher than both of
the baselines we provided. Looking more closely
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Set Support
Supervised LM Baseline I Baseline II

avg std avg std avg std
accuracy

all 3440
0.94 0.009 0.56 0.023 0.83 0.023

f1 0.94 0.009 0.36 0.009 0.81 0.023
accuracy

seen 2977
0.95 0.009 0.62 0.019 0.93 0.013

f1 0.94 0.009 0.38 0.007 0.92 0.014
accuracy

unseen 463
0.90 0.024 0.17 0.028 0.17 0.028

f1 0.82 0.050 0.15 0.021 0.15 0.021
f1 (-∅)

unseen
383 0.94 0.014 0.00 0.000 0.00 0.000

f1 (-s) 80 0.71 0.088 0.29 0.042 0.29 0.042

Set Support
Unsupervised LM Baseline I Baseline II
avg std avg std avg std

accuracy
all 3440

0.80 0.011 0.44 0.023 0.82 0.001
f1 0.80 0.011 0.30 0.011 0.82 0.001

accuracy
seen 3287

0.80 0.010 0.41 0.022 0.82 0.001
f1 0.80 0.010 0.29 0.011 0.82 0.001

accuracy
unseen 153

0.87 0.061 0.88 0.035 0.88 0.035
f1 0.66 0.126 0.47 0.010 0.47 0.010

f1 (-∅)
unseen

135 0.96 0.035 0.94 0.020 0.94 0.020
f1 (-s) 18 0.39 0.219 0.00 0.000 0.00 0.000

Table 3: Results for the supervised and unsupervised approaches and their baselines.

into the results, we divide the test instances into
two subsets, seen and unseen words, indicat-
ing whether words with the same rime were found
during training. Considering the seen words, the
LM only has a small gain compared to Baseline II,
which was the baseline that used observed rimes
to determine the linking element of a word. Con-
trarily, if we observe the set of unseenwords, the
gain is much higher. However, this set of words is
imbalanced with respect to what linking elements
are represented. This is reflected in the low accu-
racy score of 0.17 of both baselines, that in these
cases choose the most frequent linking element
observed in the training set (s). If we compare the
f1 score for this set of words to the f1 score of the
seen, the performance is lower. This is due to the
model being worse at predicting the occurrence of
-s in the unseen examples where it only reaches
an f1 score of 0.71.

Turning to the results of the second experiment,
Baseline II clearly outperforms Baseline I except
for in the unseen cases, where the two baselines
have the same strategy of choosing the most fre-
quent of the characters in the training data. Fur-
thermore, we observe that the unsupervised LM
performs similarly to Baseline II overall. In the
specific case of the unseen words, we can observe

that the f1 score is moderately higher. Here the
model does find a strategy of predicting a joining
element (in contrast to the two baselines that al-
ways choose -∅), however, the f1 score of -s is still
quite low. This is similar to the behavior of the su-
pervised model on its unseen test instances. How-
ever, the individual results for -s in these cases are
supported by relatively few instances (80 and 18
examples in the supervised and unsupervised ex-
periments respectively) which is also reflected in
high standard deviations.

6 Discussion

By providing a character-based language model
with tagged data consisting of words and their
joining elements, the model performs well on the
test set. This is the case for words that are simi-
lar to the ones observed during training. But also,
the model is able to generalize to words with pre-
viously unseen structure.

In the unsupervised approach, in which we did
not provide any information on joining elements,
the model still performs well. However, it does not
outperform the baseline that retrieves sequences
observed while training. This means that we can-
not say that the representations learned by this
model are more powerful than simply recalling ob-
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served sequences. Nevertheless, the model is able
to predict the joining element in some cases of un-
seen rimes.

7 Conclusion & future work

In this paper we approached the issue of predicting
the linking element of Danish -s/-∅ compounds
using a character-based language model. When
using a language model trained of examples of
words and linking elements, we reach an accuracy
of 94 %. Using a language model that has never
seen tagged examples reaches an accuracy of 80 %
on the same task. These are promising results, but
we need further error analysis to better understand
the examples in which language modeling is strug-
gling to identify the correct elements.

To pursue the approach of language model-
ing further, one future line of work would be to
add more information to the training signal. As
mentioned in the introduction, features such as
stress may be an important factor in the phonolog-
ical processes determining what linking element
is chosen. Such information is not immediately
apparent using the orthographic representation of
a word as was used in this experiment. In this
respect, it would be interesting to see how the
models perform using phonetic transcriptions in-
stead. Since such transcription is expensive, one
could try to construct this level using grapheme-
to-phoneme conversion software. As an alterna-
tive one could also attempt to reproduce the ex-
periment using speech data.

In this paper we used a dictionary of words as
training corpus. An alternative would be to use a
collection of text in which information about word
frequency would be included. This, in turn, might
result in a different model that would be interest-
ing to compare to the one presented above.

Furthermore, it would be interesting to see how
well this approach is able to predict other linking
elements in Danish, as well as in other languages.
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Abstract

This article reports an ongoing project
aimed at analyzing lexical and grammat-
ical competences of Swedish as a Second
language (L2). To facilitate lexical anal-
ysis, we need access to linguistic infor-
mation about relevant vocabulary that L2
learners can use and understand. The fo-
cus of the current article is on the lexical
annotation of the vocabulary scope for a
range of lexicographical aspects, such as
morphological analysis, valency, types of
multi-word units, etc. We perform parts of
the analysis automatically, and other parts
manually. The rationale behind this is that
where there is no possibility to add infor-
mation automatically, manual effort needs
to be added. To facilitate the latter, a
tool LEGATO has been designed, imple-
mented and currently put to active testing.

1 Introduction

Lexical competence has been acknowledged as
one of the most important aspects of language
learning (e.g. Singleton, 1995; Milton, 2013;
Laufer and Sim, 1985). Some claim that we
need to understand 95–98% of the words in a
text to manage reading comprehension tasks (cf.
Laufer and Ravenhorst-Kalovski, 2010; Nation,
2006; Hsueh-Chao and Nation, 2000). It has also
been observed that vocabulary is actively taught
at all levels of L2 proficiency courses with a ten-
dency to be dominating at more advanced levels
in comparison to other linguistic skills, see for ex-
ample findings from a course book corpus COC-
TAILL (Volodina et al., 2014, p.140). Lexical fea-
tures have also been found to be one of the best
predictors in text classification studies (e.g. Pilán
and Volodina, 2018; Xia et al., 2016; Vajjala and
Meurers, 2012) with important implications to the

area of educational NLP. Deciding on which vo-
cabulary to use and include is thus an important
part of teaching a foreign language, in designing
course materials and tests. In theoretical descrip-
tions of L2 acquisition, lexical knowledge was
previously "side-lined" according to Milton, but
within academic circles its place has been "signifi-
cantly revised" and received an increasing amount
of interest over recent decades (Milton, 2013).

There are multiple characteristics of vocabu-
lary that are interesting from the point of view
of both theoretical analyses, as well as for peda-
gogical and NLP-based applications. Such char-
acteristics include, among others, vocabulary size
& breadth (e.g. Nation and Meara, 2010; Milton,
2013), corpus frequency (Dürlich and François,
2018; François et al., 2016), word family relations
(Bauer and Nation, 1993), syllable structure, mor-
phological characteristics, semantic relations, top-
ical domain categorization (Alfter and Volodina,
2018), and many others (e.g. Capel, 2010, 2012).

While frequency information comes from cor-
pora, most linguistic characteristics are non-trivial
to acquire by automatic methods and require ei-
ther manual effort or access to manually prepared
resources – lexicons being the most extensive and
reliable sources for that. However, dictionaries
and lexicons are often proprietary resources (e.g.
Sköldberg et al., 2019), which complicates auto-
matic lexicon enrichment. Among freely avail-
able lexicons for Swedish, we can name Saldo
(Borin et al., 2013), Swesaurus (Borin and Fors-
berg, 2014), Lexin (Hult et al., 2010) and a few
other resources provided through Språkbanken’s
infrastructure Karp (Borin et al., 2012), although,
even there many aspects of vocabulary are not doc-
umented, e.g. the transitivity of verbs, the mor-
phological structure of the words (root, prefix, suf-
fix) or the topical domain of the words.

To circumvent the problem of access to the in-
formation that may prove crucial in the context
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of the current project for the three outlined ar-
eas of application (theoretical studies, pedagogical
studies/applied linguistics and educational NLP),
we have initiated semi-automatic annotation of
learner-relevant vocabulary interlinking available
resources with manual controls of those, and
adding missing aspects manually. The work is on-
going, and below we present the reasoning around
this annotation process and the main components
of the system that facilitate that.

2 Second language profiles project

In the current project, Development of lexical and
grammatical competences in immigrant Swedish
funded by Riksbankens Jubileumsfond, the main
aim is to provide an extensive description of the
lexical and grammatical competence learners of
L2 Swedish possess at each CEFR1 level, and to
explore the relation between the receptive and pro-
ductive scopes. The exploration of the grammat-
ical and lexical aspects of L2 proficiency is per-
formed based on two corpora, COCTAILL (Volo-
dina et al., 2014), a corpus of course books used in
teaching L2 Swedish and the SweLL-pilot (Volo-
dina et al., 2016a), a corpus of L2 Swedish es-
says. The corpora are automatically processed us-
ing the SPARV pipeline (Borin et al., 2016), and
include, e.g., tokenization, lemmatization, POS-
tagging, dependency parsing, and word sense dis-
ambiguation.

3 LEGATO tool

LEGATO2 - LExicoGraphic Annotation TOol -
is a web-based graphical user interface that al-
lows for manual annotation of different lexico-
graphic levels, e.g. morphological structure (root,
affix etc), topic, transitivity, type of verb (e.g. aux-
iliary, motion verb), etc. The interface shows a
lemgram for a given word sense, the part of speech
and the CEFR level, as well as the Saldo sense and
the primary and secondary sense descriptors used
in Saldo (Borin et al., 2013), and up to three ex-
ample sentences taken from the COCTAILL cor-
pus. If there are fewer than three sentences avail-
able at the target CEFR level, the maximum num-
ber of sentences found is shown. It also features
search, filter and skip functionalities as well as ex-

1CEFR = Common European Framework of Reference
(Council of Europe, 2001)

2https://spraakbanken.gu.se/larkalabb/
legato; user "test" for testing purposes

ternal links to other information sources such as
Karp (Ahlberg et al., 2016); SAOL, SO & SAOB
via svenska.se (Malmgren, 2014; Petzell, 2017);
and the Swedish Academy’s Grammar (SAG, the
main grammar of the Swedish language) (Teleman
et al., 1999). Figure 1 shows the user interface for
the annotation of nominal type category.

3.1 Data for lexicographic annotation

For lexical analysis, we generate word lists
(SenSVALex and SenSweLLex) based on senses
from the two linguistically annotated corpora, both
lists being successors of the lemgram-based ones
from the same corpora (François et al., 2016; Volo-
dina et al., 2016b). The lists contain accompany-
ing frequency information per CEFR level accord-
ing to the level assigned to the texts/essays where
they first appear. In practical terms, the task of
preparing a resource for lexical studies involves:
1. labeling all items for their "target" level of pro-
ficiency – that is, the level at which the item is ex-
pected to be understood (receptive list) or actively
used (productive list). The CEFR level of each
item is approximated as the first level at which the
item appears, i.e. the level would be B2 for entry
X if it was first observed at level B2 (cf. Gala et al.,
2013, 2014; Alfter and Volodina, 2018).
2. interlinking items with other resources for en-
richment, e.g. adding information on adjective de-
clension
3. manually controlling the previous step for a
subset of items to estimate the quality
4. setting up an annotation environment for adding
missing information.

While (1) above has been partially addressed
by Alfter et al. (2016) and Alfter and Volodina
(2018), steps (2–4) are described shortly in the
sections below.

3.2 Automatic enrichment

An overview of linguistic aspects annotated using
LEGATO is provided in Table 1. All aspects are
kept as close as possible to the terminology and the
description of Swedish grammar in SAG (Teleman
et al., 1999). A subset of those aspects, marked as
A or A-M in Table 1 (column "Mode") are anno-
tated automatically using a range of available re-
sources mentioned in the column "Resources for
auto-enrichment". Other aspects are added manu-
ally (M) following guidelines3 explaining choices

3https://urlzs.com/PZoRm
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Aspect Explanation / choices Mode Resources for
auto-enrichment

1 Adj/adv structure comparisons: periphr.: (mer/mest) en-
tusiastisk; morph.: vacker-vackrare-
vackrast; irreg.: god-bra-bäst

A-M2 Saldo-Morphology

2 Adj declension decl. 1 & 2, irregular, indeclinable A-M Saldo-Morphology

3 Morphology 1 word analysis for morphemes: M3

oändlig: prefix:o-; root:-änd-; suffix:-lig

4 Morphology 2 word-building: root, compound, deriva-
tion, suppletion, lexicalized, MWE1

M

5 MWE type taxonomy under development M

6 Nom declension decl. 1-6, extra A4 Saldo-Morphology

7 Nom gender common, neuter, both, N/A A Saldo-Morphology

8 Nom type abstract–concrete, (un)countable,
(non)collective, (in)animate, proper
name, unit of measurement

M

9 Register neutral, formal, informal, sensitive M

10 Synonyms free input, same word class A-M Swesaurus

11 Topics/domains general + 40 CEFR-related topics5 A-M Lexin, COCTAILL

12 Transitivity (in-, di-)transitive, N/A A-M SAOL (under negotiation)

13 Verb category lexical, modal, auxiliary, copula, recip-
rocal, deponent

M

14 Verb conjugation conjugations 1-4, irregular, N/A A Saldo-Morphology

15 Verb action type motion, state, punctual, process6 M

Table 1: Linguistic aspects added to SenSVALex and SenSweLLex items
1MWE = Multi-Word Entity; 2Manual based on automatically enriched input; 3Manual; 4Automatic;
5Topics come from the CEFR document (Council of Europe, 2001), COCTAILL corpus (Volodina et al.,
2014), and some other resources; 6Incl. limited and unlimited process verbs

and argumentation based on SAG and other work
on the Swedish language and linguistic description
in general.

To augment SenSVALex & SenSweLLex, we
use different resources. Besides the information
already present in these lists (word senses, Saldo
descriptors, automatically derived CEFR level,
part-of-speech), we use Saldo / Saldo morphology
(Borin et al., 2013), Swesaurus (Borin and Fors-
berg, 2014), Lexin (Hult et al., 2010) and poten-
tially SAOL (Malmgren, 2014) to enrich the lists.

Saldo morphology is used to add nominal gen-
der, nominal declension and verbal conjugation.

Adjectival declension and adjectival (and adver-
bial) structure are derived from the comparative
and superlative forms given in Saldo morphology
and checked manually. Synonyms are added using
Swesaurus. Other named resources are planned
for enriching topics and transitivity patterns. The
remaining categories are left to be manually anno-
tated.

3.3 Tool functionality
LEGATO offers a range of useful functionali-
ties. It allows moving forward as well as back-
wards through the list; to search through the list
of word senses to be annotated and to filter by
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certain criteria; to skip words you are uncertain
about. Items that are skipped are added to a ded-
icated ‘skip list’ which makes it is easy to come
back to these items. It also keeps track of your
progress, allowing the annotator to close the inter-
face, come back at a later time and continue where
they left. Finally, it includes (automatically gen-
erated) links to different external resources such
as Saldo (through Karp), Wiktionary, svenska.se,
Lexin, synonymer.se, Korp and SAG.

For user friendliness, we keep guidelines, issue-
reporting and lookup/reference materials linked to
the front page of the tool. It is possible to leave
comments, start issues/discussion threads, as well
as see an overview of all completed tasks and tasks
that are remaining.

3.4 Piloting the tool
To test LEGATO’s functionality as well as to con-
trol that the automatic linking of items is suffi-
ciently reliable, we carried out an experiment with
100 SenSVALex items, divided equally between
nouns, verbs, adjectives and adverbs. The se-
lected words represent all the CEFR levels avail-
able in the COCTAILL corpus, various morpho-
logical paradigms and other types of linguistically
relevant patterns as shown in Table 1.

In order to test the tool, two of the authors vol-
unteered as annotators. After gathering data from
the intial test phase, we calculated inter-annotator
agreement (IAA) between the automatic analysis
and annotator one (IAA 1), as well as the inter-
annotator agreement between annotator one and
annotator two (IAA 2). Table 2 shows Cohen’s
κ4 for the various categories. For IAA 1, only
categories where annotator one had completed all
tasks, and where automatic enrichment was used,
were taken into account. For IAA 2, only cate-
gories where both of the annotators had completed
all tasks were taken into account. This explains
why some of the values are missing in the Table.

As can be gathered from Table 2, categories
with closed answers, e.g. only one possible answer
value, lead to higher agreement (nominal declen-
sion, nominal gender, verbal conjugation), while
categories that allow multiple answers or free-text
input show less agreement (nominal type, adjec-
tival adverbial structure, morphology 1). For ex-
ample, for nominal type, if one annotator selects

4While values between 0.40 and 0.60 are generally con-
sidered borderline, values of 0.75 and above are seen as good
to excellent.

Category IAA 1 IAA 2

nominal declension (6) 0.85 0.80
nominal gender (7) 0.82 0.73
nominal type (5) 0.20
verbal conjugation (14) 0.82 0.94
adjectival declension (2) 0.49
adjectival adverbial structure (1) 0.39
morphology 1 (3) 0.48

Overall κ 0.73 0.60

Table 2: Inter-annotator agreement. Numbers in
brackets (Column 1) refer to the numbering of cat-
egories in Table 1

“abstract, countable, inanimate" and another anno-
tator select “concrete, countable, inanimate", this
would be counted as disagreement. In order to ad-
dress such problems, one would have to calculate
partial agreement. One notable exception is adjec-
tival declension, which only allows one value, but
has low agreement between the automatic analysis
and annotator one. This discrepancy could stem
from the fact that all forms in Saldo morphology
are automatically expanded, according to regular
morphology, thus potentially producing forms that
are incorrect.

As a result of the IAA calculations, a subset
of categories has been deemed reliable enough to
be added automatically (categories 6, 7, 14 in Ta-
ble 1), and another subset will be offered in a semi-
automatic way, where a manual control check will
be performed (categories 1, 2, 10, 11, 12 in Ta-
ble 1).

The experiment with the 100 items has also
helped us set up and refine guidelines for more ex-
tensive annotation by project assistants, as well as
improve the functionality of the tool.

3.5 Technical details

LEGATO is a module integrated with the Lärka-
Labb5 platform. Like its parent platform, the
LEGATO front-end is written in TypeScript and
HTML using the Angular (previously called An-
gular 2) framework6. The back-end is written in
Python 2. Data is stored in MySQL format.

Data preparation (i.e. automatic enrichment, see
Section 3.2) is done outside of the LEGATO plat-
form using a set of dedicated scripts. In a multi-

5https://spraakbanken.gu.se/larkalabb
6https://angular.io

385



Figure 1: LEGATO graphical user interface

step process, these scripts (1) create the sense-
based word list, (2) add Saldo primary and sec-
ondary descriptors, (3) add further information
such as synonyms and nominal gender by link-
ing lexical resources based on lemgram, sense
and part-of-speech tuples and (4) add example
sentences. The resulting data is played into the
databases on the server side to reduce the num-
ber of API calls and reduce runtime. As some of
these scripts have a rather long runtime (the aver-
age time per entry for example selection is 0.66
seconds on an Intel Core i5-5200U processor, re-
sulting in about 3 hours total for the whole list),
they are not distributed as an integrated part of
LEGATO and we do not consider advisable to in-
tegrate them into the LEGATO platform. How-
ever, the code for running interlinking can be made
available for reuse.

4 Concluding remarks

We are currently exploring a possibility of using
Lexin (Hult et al., 2010) and COCTAILL (Volo-
dina et al., 2014) to automatically derive topical
domains for vocabulary items. Furthermore, fruit-
ful negotiations are ongoing on a potential access

to parts of the SAOL database (Malmgren, 2014)
for semi-automatic support of annotation of tran-
sitivity patterns.

A full-scale annotation of the two lists is
planned for the near future, with the results (i.e. a
full resource) expected by the end of 2019. Once
the resources are richly annotated, we expect to
perform both quantitative and qualitative analysis
of L2 lexical competence. The LEGATO tool will
have a thorough testing during that time and we
hope this will lead to further improvements of the
tool.

Since Legato is a module in a highly intricate
and interlinked system Lärka, we do not deem
it reasonable to release the code for this module
only. However, in the future, we would like to
make the platform available to other users by al-
lowing them to upload their own data and define
what they want to annotate.
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Abstract
This paper presents a flexible and pow-
erful system for creating parallel corpora
and for running neural machine translation
services. Our package provides a scalable
data repository backend that offers trans-
parent data pre-processing pipelines and
automatic alignment procedures that fa-
cilitate the compilation of extensive par-
allel data sets from a variety of sources.
Moreover, we develop a web-based inter-
face that constitutes an intuitive frontend
for end-users of the platform. The whole
system can easily be distributed over vir-
tual machines and implements a sophisti-
cated permission system with secure con-
nections and a flexible database for stor-
ing arbitrary metadata. Furthermore, we
also provide an interface for neural ma-
chine translation that can run as a service
on virtual machines, which also incorpo-
rates a connection to the data repository
software.

1 Introduction

Parallel corpora are tremendously useful for a va-
riety of tasks. Their natural home is the devel-
opment of machine translation (MT) where data-
driven approaches such as neural MT are data-
hungry and still most language pairs and tex-
tual domains are under-resourced. Besides MT,
there is also plenty of other work that exploits
parallel corpora for, e.g., annotation projection
(Tiedemann and Agić, 2016), representation learn-
ing (Artetxe and Schwenk, 2018), word sense
disambiguation (Lefever, 2012), discovery of id-
iomatic expressions (Villada Moirón and Tiede-
mann, 2006) and automatic paraphrase detection
(Sjöblom et al., 2018). Finally, we should not
forget translation studies (Doval and Sánchez Ni-
eto, 2019) and computer-aided language learning

(Frankenberg-Garcia, 2005) as additional applica-
tion areas.

We have a long tradition in collecting and pro-
viding parallel corpora for the public use. OPUS1

has become the major hub for such data sets and
we are now in the process of developing software
that makes it easier for external collaborators to
contribute to the collection. For this purpose, we
have created the OPUS resource repository toolkit
that we introduce in this paper. The purpose of
this software package is to implement a scalable
data processing pipeline that can be accessed via
intuitive interfaces and powerful and secure APIs.

Figure 1 illustrates the overall architecture of
the repository software. The package is divided
into a distributed backend that combines stor-
age servers, metadata databases, a cluster of pre-
processing nodes, and a frontend that provides the
interface to the backend via secure HTTPS con-
nections. More details about both parts will be
given further down.

Finally, we also implement a translation tool
that connects to the repository software. The main
purpose of that tool is to serve translation engines
that can be trained on parallel data from the repos-
itory or other sources via a clean web-interface
with options for donating data to the project. More
details are given in section 3.2.

The software itself is available as open source
from github2 and we provide a public instance
of the toolkit from http://opus-repository.

ling.helsinki.fi/. The implementation of the
online translator is also available3 and currently
we run an instance for the translation between
Scandinavian languages (Swedish, Danish, Nor-
wegian) and Finnish.4

1http://opus.nlpl.eu
2https://github.com/Helsinki-NLP/OPUS-repository
3https://github.com/Helsinki-NLP/OPUS-translator
4https://translate.ling.helsinki.fi
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Figure 1: Overall architecture of the OPUS resource repository software.

2 Resource Repository Backend

The backend of the resource repository is based
on software development for LetsMT! (Vasiļjevs
et al., 2012), a project within the ICT Policy
Support Programme of the European Commis-
sion.5 The basic architecture of the OPUS re-
source repository is the same as in the package de-
veloped in that project but the software has been
updated and extended in various ways:

• The job scheduler now uses SLURM6 for
workload management and the distribution of
jobs over connected nodes in the cluster.

• The storage servers rely on git as their default
data repository backend. Other backends are
also still supported such as SVN repositories
and plain file systems without revision con-
trol. We also support the connection to a re-
mote git server for automatic replication and
backups of the data.

• The software has been updated to run on
Ubuntu servers with the current versions
of software libraries and tools. This up-
date included numerous bug fixes and per-
formance optimizations to reduce bottlenecks
and memory leaks in the backend.

• The data processing pipeline has been im-
proved in various ways, e.g. integrating mod-
ern language identifiers (langid.py (Lui and

5http://project.letsmt.eu
6https://slurm.schedmd.com

Baldwin, 2012) and CLD27) and robust doc-
ument conversion tools such as ApacheTika8

running in server mode.

• The APIs have been extended with many
additional functionalities. This includes
changes to the job control API, metadata
search and the storage API. We now also
support the creation of translation mem-
ories for better interoperability. More
details can be found in the online docu-
mentation of the repository software at
https://github.com/Helsinki-NLP/

OPUS-repository/tree/master/doc

• New sentence alignment modes have been
added, word alignment using eflomal9

(Östling and Tiedemann, 2016) has been in-
tegrated and an experimental call for setting
up interactive sentence alignment has been
added.

An important feature for the backend is scala-
bility. The system has been designed in a mod-
ular way to ensure that additional servers can be
connected to the network to adjust for increasing
workloads. Figure 1 shows the overall picture of
the backend architecture. The main server pro-
vides the REST API that can be accessed from
the outside for the different actions and requests

7https://github.com/CLD2Owners/cld2
8https://tika.apache.org
9https://github.com/robertostling/eflomal
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to be send to the system. It also serves the meta-
data DB that stores the essential information for
all data records, users and permissions. The ac-
tual data sets can be distributed over several stor-
age servers. In the basic setup, they will also be
placed on the main backend server with local git
repository on mounted file systems. Communica-
tion between all nodes in the backend and from the
frontend to the backend is done via secure HTTPS
connections with signed certificates and private
keys. The main bottleneck for the repository is
data pre-processing and alignment. For scalability
and robustness we, therefore, implement a work-
load manager based on SLURM that can distribute
data processing tasks to various worker clients in
the backend cluster. Those workers communicate
with the SLURM server and with the storage and
metadata servers via the repository API.

The metadata DB is based on a flexible key-
value store using TokyoTyrant and TokyoCabi-
net10. It enables fast access and complex queries
about data records and configurations. It scales
well to large numbers of data records and pro-
vides the essential functionality that we require in
a system, which will be further enhanced in the fu-
ture and that requires extensive meta-information,
which is not pre-defined and strictly categorical.
The key-value store allows arbitrary data records
to be connected with any data record in the repos-
itory. It is also used to control jobs and process
configurations.

Each backend client includes the software nec-
essary for converting and processing data includ-
ing language identification, data validation, text
extraction, sentence boundary detection, tokeniza-
tion and sentence alignment. The result of this
conversion process is a unified format for paral-
lel corpora based on XCES Align for the standoff
sentence alignment and a standalone XML format
for encoding the textual documents. With this, we
follow the structure of OPUS to be immediately
compatible with that data source.

The repository software and pre-processing
pipelines received substantial improvements. The
system now runs ApacheTika servers for ro-
bust document conversion, another server for lan-
guage identification based on langid.py and CLD2
and the system supports pre-processing with UD-
compatible models using UDpipe (Straka and
Straková, 2017) with pre-trained models from

10https://fallabs.com/tokyotyrant/

the universaldependencies project.11 In the basic
setup, this includes sentence boundary detection
and tokenisation but even full parsing is supported.
Alternative pre-processing tools are also available
such as the Moses tokenizers (Koehn et al., 2007)
and OpenNLP pre-processing modules.12 Addi-
tional tools may be added later on.

A final feature is the automatic word aligner
based on eflomal and pre-trained models from the
OPUS project. The system can use model priors
derived from existing OPUS data to reliably align
even the smallest document pair that arrives in the
repository. This is, however, an experimental fea-
ture and not enabled by default.

The backend provides a number of complex
APIs that control the system. Those APIs are only
accessible via verified connections. The frontend
implements the public interface that allows exter-
nal users to communicate with the system. This
interface supports the essential functionality of the
system. Details will be given in the following sec-
tion.

3 Interfaces

The project includes open source online inter-
faces for the resource repository backend13 and
for a translation system.14 Both of the interfaces
are written in Python using the Flask web frame-
work15 and our running instances are accessible
via any common web browser. Users can regis-
ter on either website and the same account may
be used to login to both of these services. Using
the translator is possible without a user account,
but gaining access to the repository requires being
logged in as a registered user.

3.1 Online repository
The online repository website is a graphical user
interface for the resource repository API. With the
API, one can upload documents, that are transla-
tions of each other, and the backend aligns them
on the sentence level. The interface enables the
use of the API without certification and command
line operations. In practice, whenever a user takes
an action on the repository website, a command
line request is sent to the API. The API sends a re-
sponse, which is parsed and displayed on the web-

11https://universaldependencies.org
12https://opennlp.apache.org
13https://github.com/Helsinki-NLP/OPUS-interface
14https://github.com/Helsinki-NLP/OPUS-translator
15http://flask.pocoo.org/
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Figure 2: A screenshot of the OPUS resource repository interface.

site in an appropriate way depending on the type
of request. Anytime a web page or a part of a web
page is generated, all the data, that is presented, is
received from the API, e.g. lists of corpora, docu-
ments, jobs or users.

In order to use the interface, one must first reg-
ister to the website and login. Once logged in,
users may create new corpora with metadata and
settings, which can be edited later. User groups
can also be created, and a corpus may be set to
be accessible to only a specific group. Users can
upload translated documents to a corpus, which
are then aligned in the backend. Currently, the
allowed document formats are PDF, DOC, TXT,
XML, HTML and EPUB. Multiple files may be
uploaded at once using TAR, TAR.GZ, or ZIP
archives. All uploaded documents and the result-
ing alignment files are browsable using the tree file
system on the interface. Figure 2 shows an exam-
ple. The website also has a function to search for
public corpora and to clone them for further use.

3.2 Online translator

The current translation application runs two mul-
tilingual translation models: Finnish to Dan-
ish/Norwegian/Swedish (fi-da/no/sv) and Dan-
ish/Norwegian/Swedish to Finnish (da/no/sv-fi).
The models are trained using the Marian Neu-
ral Machine Translation framework (Junczys-
Dowmunt et al., 2018) and they run using
the framework’s web-socket server feature. To
translate a text, a source language is first se-
lected from two options: Finnish or Dan-
ish/Norwegian/Swedish. The source language can

also be automatically detected. Language detec-
tion is performed using pycld2 Python bindings16

for Google Chromium’s Compact Language De-
tector 2.17 The target language is chosen from
Finnish, Danish, Norwegian, or Swedish. Once
the source and target languages are selected and
an input text is entered, the text can be trans-
lated. If the source language is Finnish and the
target language is either Danish, Norwegian or
Swedish, the source sentence is translated with fi-
da/no/sv model. If the source language is Dan-
ish/Norwegian/Swedish and the target language is
Finnish, da/no/sv-fi model is used. The result-
ing translation is represented on the web page. A
screenshot of the interface is shown in Figure 3.

The online translator includes a feature to do-
nate more training data. There are three different
options to upload data. The first option is to upload
translation memories, which can be either TMX or
XLIFF files. The second option is to upload doc-
uments that are translations of each other and the
files must be in XML, HTML, TXT, PDF, DOC,
SRT, RTF or EPUB format. In the third option,
the user enters two URLs, which point to two web
pages that are translations of each other. When up-
loading translated files or entering translated web
pages, the user has an option to receive a TMX file
created from their contributed data.

4 Conclusions

This paper presents a new public resource repos-
itory for creating and managing parallel corpora

16https://pypi.org/project/pycld2/
17https://github.com/CLD2Owners/cld2
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Figure 3: A screenshot of the translator interface.

with a scalable backend and intuitive interfaces. A
translation demonstrator is also provided and the
software is released as open source.
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Abstract 

We present a new method for preparing a 

lexical-phonetic database as a resource for 

acoustic model training. The research is an 

offshoot of the ongoing Project Ravnur 

(Speech Recognition for Faroese), but the 

method is language-independent. At 

NODALIDA 2019 we demonstrate the 

method (called SHARP) online, showing how 

a traditional lexical-phonetic dictionary (with 

a very rich phone inventory) is transformed 

into an ASR-friendly database (with reduced 

phonetics, preventing data sparseness). The 

mapping procedure is informed by a corpus 

of speech transcripts. We conclude with a 

discussion on the benefits of a well-thought-

out BLARK design (Basic Language 

Resource Kit), making tools like SHARP 

possible. 

1 Introduction 

We introduce a new method for pre-processing 

phonetic databases for use in ASR development. 

Our research, to be presented at NODALIDA 

2019, is an offshoot of the ongoing Faroese ASR 

project (automatic speech recognition) called 

Ravnur. After giving some background on the 

project proper, we turn to the main focus of the 

present paper: the algorithm SHARP. 

We first introduce the Ravnur components 

and the principles behind them (section 2), and 

then go into details with SHARP (section 3). In 

conclusion we offer some remarks on the 

challenges and advantages of developing an 

‘eco-system’ of inter-dependent language 

technology resources. 

Project Ravnur was initiated in January 2019 

with the purpose of creating all the necessary 

constituents for developing high quality ASR for 

Faroese. One of the challenges of ASR for small 

languages is the sparsity of language resources, 

making the development of such resources a vital 

part of the project (Nikulasdóttir et al., 2018). 

Existing speech and language materials for 
Faroese have been developed for other purposes 

(Helgason et al., 2005; Johannesen et al., 2009; 

Hansen, 2014; Bugge, 2018; Debess, 2019), but 

these alone are insufficient in size, quality and/or 

availability. Beginning almost from scratch 

allowed us the advantage of establishing rational 

and explicit principles for all aspects of data 

collection, annotation, and processing. 

2 The Faroese BLARK 

A BLARK (Basic Language Resource Kit) is 

defined as the minimal set of language resources 

necessary for developing language technology 

for a particular language (Krauwer, 2003; 

Maegaard et al., 2006). Although the BLARK is 

not the main theme of this paper, it is detailed 

below as a prerequisite to the following section 

on SHARP. 

2.1 Inter-dependent language resources 

Only non-proprietary file formats are used (txt, 

csv, html, rtf, textGrid, wav, flac). 

  

• SAMPA: the phonetic inventory is inspired 

by the SAMPA initiative providing 

computer-readable phonetic alphabets 1 . 
Following the tradition within Faroese 

phonetic research and description, our 

SAMPA includes the most common, salient, 
and distinctive phones and diacritics 

(Rischel, 1964; Helgason, 2003; Árnason, 

2011; Thráinsson et al., 2012; Knooihuizen, 

2014; Petersen and Adams, 2014; Weyhe, 

 
1 According to John Wells, the founding father of the 

international SAMPA initiative, the project is long closed, 

the website no longer maintained. As recommended by 

Wells (p.c.), we hereby put our suggestion for a Faroese 

SAMPA definition forward, inviting future projects to use it 

as a reference. The phone table (and documentation) is 

available at https://lab.homunculus.dk/Ravnshornid 
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2014). Our work is closely coordinated with 

the (now completed) Faroese TTS project 

(Helgason and Gullbein, 2002; Helgason et 

al., 2005). 

• PoS: the tagset for Faroese complies with the 

Pan-European PAROLE meta-tagset 

(Bilgram and Keson, 1998). 

• Dictionary: the dictionary encompasses 

largely all function words and irregular 

content words, and a substantial part of 

highly frequent content words. Each entry 

includes pronunciation, PoS, and frequency 

information. The dictionary is versatile by 

design and can be used for many purposes 

including traditional lexicographic editions, 

teaching materials (e.g. CALL and CAPT), 

TTS development, interactive voice-response 

systems, and more. The dictionary currently 

holds about 3,000 entries, aiming at 25,000 

by January 2021. 

• Speaker sessions: transcripts of speech 

recordings documenting the phonetic and 

prosodic variation of modern Faroese. 

Reading materials comprise a word list, a 

closed vocabulary reading (numerals 1-100, 

calculator commands), a phrase list (eliciting 

prosodic variation, intonation patterns, etc.), 

and a few samples of connected text (2-5 

minutes each). Each session produces 

roughly 20 min. of speech. The speech 

corpus currently holds 8 hours of speech (26 

speakers), aiming at 200 hours by January 

2021 (project end). All acknowledged 

contemporary dialects of Faroese 

(Thráinsson et al., 2012) are covered. 

• Transcript Corpus: the recordings are 

transcribed manually by multiple transcribers 

(orthography and SAMPA) and time coded 

according to the Ravnur conventions 

(https://lab.homunculus.dk/Ravnshornid). 

Phonetic transcription of speech production 

is carried out by trained phoneticians. 

• Background Text Corpus: at present, the 

background corpus holds 13M words (formal 

and informal styles). Some of the material is 

collected in collaboration with Sjúrður 

Gullbein from the TTS project and Hjalmar 

P. Petersen from the University of the Faroe 

Islands. 

• Background Speech Corpus: the background 

speech corpus consists of audiobooks and 

material from UiO (Johannesen, 2009; 

Johannesen et al., 2009) and elsewhere. 

• Tools: the text and speech tools developed in 

Project Ravnur can be accessed at 

(https://lab.homunculus.dk/Ravnshornid). 

2.2 Consistency Principle 

All BLARK components relate to and depend on 

each other: each word appearing in a transcript 

must correspond to a lexical entry. Each 

manuscript (for recording sessions) must 

represent all SAMPA phones, and so forth. The 

Consistency Principle allows the BLARK to 

develop like an eco-system where the individual 

components feed off and grow from each other in 

an iterative process.  

3 Garnishing the dictionary 

We are now in a position to discuss the SHARP 

algorithm for optimizing lexical-phonetic 

information prior to the training of ASR acoustic 

models. 

3.1 Phone inventories 

When phoneticians need to represent 

pronunciation phenomena in symbolic form, they 

largely follow one of two strategies, either 

abstracting over speakers and contexts (the 

lexical approach) or sampling actual speech 

productions (the descriptive approach). ASR 

projects typically apply the lexical strategy only, 

shying away from the burden of phonetic 

transcription. Since classical phonetic 

dictionaries (complying with structuralist 

minimal-pair tests) are usually considered too 

rich for ASR purposes, lexical-phonetic forms 

are reduced prior to acoustic training, deleting 

certain phone types and collapsing others. To the 

best of our knowledge, the concrete reduction 

procedure is most often based on technological 

considerations or gut feeling rather than 

linguistic principle. 

 By way of an example, most popular 

commercial ASR applications for Danish allow 

users to supply phonetics for new lexical 

insertions, but in impoverished form without 

symbols for stød, accent, prolongations, 

assimilations, and only a subset (not a very 

rational one) of the Danish vowel inventory. 

Such linguistically unwarranted restrictions limit 

the general usability of the users’ accumulated 

lexical contribution, in effect tying it to a 

particular ASR product. 

 Thus, in keeping with the Consistency 
Principle, we needed to devise a principle-based 

procedure allowing us to maintain the versatility 
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of the dictionary and yet provide the reduced 

phonetic forms required for acoustic training. 

Our solution, called SHARP, utilizes the 

transcript corpus for deriving a reduced SAMPA 

in a non-destructive way. 

 
Lex Trsc  

X → X opposed phones MATCH 

X Y → Y X adjacent phones ‘swapped’ 

X Y → Y 1 phone skipped 

X Y Z → Z 2 phones skipped 

X Y Z → W Z 2+1 phones skipped 

X Y V Z → Z 3 phones skipped 

X Y V Z → W Z 3+1 phones skipped 

X → Y two opposed phones skipped 

X → _ fallback rule: IGNORE 

Table 1. Transduction rules. Lex = lexical-
phonetic tier, Trsc = transcript tier. Rules also 

apply in mirrored versions (e.g. Y → X Y). 

Transduction of identical strings uses the 

MATCH rule only. The IGNORE rule ensures 

completion (_ is the empty string). The term 

‘skipped’ is used for symbols only occurring in 

one tier. 

3.2 The phonetic mapping 

As mentioned above, each word appearing in the 

Transcript Corpus is also represented in the 

Dictionary. We can therefore align the phonetic 

representation of any phrase appearing in a 

transcript with its corresponding lexical 

projection. For alignment of phone strings, we 

employ a finite state transducer (FST) with 

limited look-ahead. Pairs of phone strings are 

traversed left-to-right applying the transduction 

rules in table 1. 

Consider the alignment of two phonetic 

renderings of “vónandi er hann ikki koyrdur útav” 

hopefully he hasn’t driven off (the road), one 

lexical and one descriptive. 

 

  Lex:  [vOWnandIerhanIHdZIkOrdur0WdEAv] 

 Trsc:  [vOWnandIer anIS   kORDIRU dEAv]  

 

Observe that this alignment corresponds to the 

FST transitions (h→_), (H→S), (dZI→_), (r→R), 

(d→D), (u→I), (r→R), and (0W→U). 

 

Repeating the alignment procedure for all 

phrases in the Transcription Corpus, a list of rule 

instances develops. A sample from the rule list 

(excluding instances of the MATCH rule) is 
shown below, with the number of instances. 

 

 

128     (j → _) 

96      (I → _) 

80      (U → I) * 

68      (r → _) 

58      (I → 3) 

58      (r → R) 

43      (U → _) * 

36      (U → 3) * 

32      (d → _) 

32      (i → I) 

25      (d → D) 

22      (E A → a) 

21      (E A d → a) 

Consider the three starred rules, all concerning 

the lexical phone [U], in 80 cases pronounced as 

[I], in 36 cases as [3], and in 43 cases not 

pronounced at all. There are several (less 

frequent) (U→X) rules for (X≠U). In comparison, 

the MATCH rule (U→U) has only 63 occurrences, 

contributing to the general impression that [U] is 

an unstable phone exposed to pronunciation 

variation.2 

 Several other phones are shown to be 

unstable in this sense, evident in rules such as 

(‘→_), (5→_), (j→_), (4→E), (w→_), (u→o). Such 

rules we shall call skewed. Formally, skewed 

rules are determined by  

 

 count(X→X) < ∑count(X→Y) for all (Y≠X).  
 

3.3  Generations 

Skewed rules are interpreted in SHARP as 

transformation rules and are applied everywhere 

in the Dictionary and Transcription Corpus (in 

size-order), creating new tiers of phonetic forms. 

In some cases, phone symbols are cut out of the 

SAMPA renderings (like (5→_)), in other cases 

two phones are collapsed into one (e.g. (u→o)), 

effectively reducing the cardinality of the phone 
inventory. We call this new lexical tier of 

transformed phonetic forms the Generation-1 tier 

(or simply G1). 

 The transduction procedure is repeated using 

G1 as lexical forms, producing a G2 tier, and so 

forth. With each new generation, the cardinality 

of the phone table decreases (often by 1-3 items) 

while the average inhabitation (number of 

exemplars) in the remaining types increases. 

 
2  Observe that rule types (X→_) outnumber the mirror 

form (_→X), as a sign of a general fact: phonetic 

dictionaries aim at a high degree of articulatory explicitness 

while speech production show exactly the opposite 

tendency. 
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 At G12 the iteration stops naturally as no 

more skewed transduction rules can be found. At 

this point, 24 out of the original 45 SAMPA 

symbols are still present. It is an important 

observation, though, that the meaning of each 

remaining symbol at this point has changed. The 

symbols can therefore no longer be expected to 

represent the usual phonetic flavours. 

3.4 Turning to ASR 

Acoustic models for ASR are trained on sound 

samples, phonetically labeled. Two 

complementary factors affect the training 

efficiency, parsimony (a smaller set of labels 

provides more robust training) and 

discrimination (a larger set preserves more 

phonetic distinctions).  

 Since we now have a procedure for gradually 

reducing the phonetic richness as controlled by 

(the transcription of) actually occurring speech 

production, the next step is to evaluate the G0, 

G1, … G12 phonetic forms for training acoustic 

models. We use the sphinxtrain engine (ver. 

5prealpha, cf. https://github.com/cmusphinx/), 

employing a standard ten-fold cross validation 

regime to yield statistically valid test figures.3 

3.5 Preliminary results 

Our initial results are encouraging if preliminary. 

Using our current smallish dictionary of 2990 

entries and 1366 spoken phrases only, our 

acoustic models do not reach impressive results 

in terms of absolute WER figures (word-error 

rate). However, as our performance measures are 

reasonably consistent (cf. the narrow error bars 

in fig.1) it still makes sense to compare learning 

sessions across SHARP-generations. 

 From an initial WER at 50.2%, error rates 

improve rapidly: WERG1=41.2%, WERG2=31.6%, 

WERG3=25.6%, …, WERG7=13.8%. Of course, 

this impressive recovery is owed to the very poor 
outset, and also to an atypical ASR setup based 

on small linguistic databases. We do not know 

yet to what extent the SHARP algorithm will 

remain relevant in more realistic scenarios. 

However, it seems safe to conclude that SHARP 

may offer a relief to very small ASR projects in 

distress. 

 

 
3 For the sake of reproducibility, we use a flat language 

model with minimum likelihood (0%) for all n-grams (n>1) 

and equal likelihood for individual words. 

 
Figure 1. ASR results trained on SHARPened 

lexical-phonetic forms. The graph shows Word-

error rates (WER) for each SHARP generation. 

Error bars: standard deviation for data sets after 

ten-fold cross validation. Average WER keeps 

improving somewhat in generations >7, however 

less significantly so as error margins increase. 

 

 Our work is clearly in progress, and the 

specifics of the SHARP implementation are 

bound to change as our BLARK matures. Among 

many new features we would like to test context 

sensitive transformation rules (X A Y→X B Y) as 

used by phonologists. However, this step (and 

many others) make sense only for much larger 

pools of phonetic samples. 

4 Concluding remarks 

Much R&D in speech technology has been 

hampered by implicit or explicit obligations to 

recycle existing, often inadequate, databases. 

One example is the government-supported 

Danish ASR project in the mid-2000s leaning on 

mediocre speech data from NST, lexical data 

from the Danish TTS project and various sources 

unrelated to the project objectives (cf. 

Kirchmeier et al 2019). Recognition rates never 

met international standards, much labour was 

wasted on smartening up poor data, and yet the 

delivered modules could not, for legal reasons, 

be shared publicly. 

In contrast, the Faroese ASR project, starting 

afresh, could adopt strict consistency principles 

to be followed by all, from lexicographers to 

field workers. Carefully synchronized lexical and 

descriptive procedures paved the way for the 

SHARP tool presented in this paper, exploiting 

the complementarity of theory-driven and data-

driven phonetics and getting the most out of our 

smallish, but undefiled databases. 

“More data will solve any problem”, 

“Principles are for sissies”, “Fire your 
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linguists!”. Such fresh attitudes are currently 

shared by many developers. We invite the 

serious ASR manufacturer to rediscover the 

power of linguistic precision. 

Acknowledgments 

Project Ravnur wishes to personally thank Karin 

Kass for her never-failing entrepreneurship and 

diligence. We also wish to thank a number of 

investors from the Faroese society.  

References 

Anna Björk Nikulasdóttir, Inga Rún Helgadóttir, 

Matthías Pétursson and Jón Guðnason. 2018. Open 

ASR for Icelandic: Resources and a Baseline 

System. In Proceedings of the 11th International 

Conference on Language Resources and 

Evaluation, pages 3137-3142. 

Bente Maegaard, Steven Krauwer, Khalid Choukri 

and Lise Damsgaard Jørgensen.  2006. The 

BLARK concept and BLARK for Arabic. In 

Proceedings of the 5th International Conference on 

Language Resources and Evaluation, pages 773-

778.  

Edit Bugge. 2018. Attitudes to variation in spoken 

Faroese. Journal of Sociolinguistics 22(3):312-330. 

Eivind Weyhe. 2014. Variatión av i og u í 

herðingarveikari støðu í føroyskum. Fróðskaparrit, 

61:116-136. Fróðskapur, Tórshavn, Faroe Islands.  

Höskuldur Thráinsson, Hjalmar P. Petersen, Jógvan í 

Lon Jacobsen and Zakaris Hansen. 2012. Faroese, 

an overview and reference grammar, 2nd edition. 

Fróðskapur, Tórshavn, Faroe Islands, and 

Linguistic Institute, University of Iceland, 

Reykjavík, Iceland.  

Iben Nyholm Debess. 2019. FADAC Hamburg 1.0. 

Guide to the Faroese Danish Corpus Hamburg. 

Kieler Arbeiten zur skandinavistischen Linguistik 

6. Institut für Skandinavistik, Frisistik und 

Allgemeine Sprachwissenschaft (ISFAS), FID 

Northern Europe https://macau.uni-

kiel.de/receive/macau_publ_00002318 

Janne Bondi Johannesen. 2009. A corpus of spoken 

Faroese. Nordlyd, 36(2):25-35.  

Janne Bondi Johannesen, Joel Priestly, Kristin Hagen, 

Tor Anders Åfarli and Øystein Alexander 

Vangsnes. 2009. The Nordic Dialect Corpus - an 

Advanced Research Tool. In Kristiina Jokinen and 

Eckhard Bick (eds.). 2009. NEALT Proceedings 

Series, 4:73-80.  

Jonathan Adams and Hjalmar P. Petersen. 2014. A 

Language Course for Beginners, 3rd edition. Stiðin, 

Tórshavn, Faroe Islands.  

Jørgen Rischel. 1964. Toward the Phonetic 

description of Faroese vowels. Fróðskaparrit, 

13:99-113.  

Kirsti Dee Hansen. 2004. FTS - Føroyskt 

TekstaSavn/færøsk talekorpus. In Henrik Holmboe 

(ed.). 2005. Nordisk sprogteknologi 2004 - Årbog 

for Nordisk Sprogteknologisk Forskningsprogram 

2000-2004, pages 47-50. 

Kristján Árnason. 2011. The Phonology of Icelandic 

and Faroese. Oxford University Press, Oxford, UK.  

Pétur Helgason. 2003. Faroese Preaspiration. In 

Proceedings of the 15th International Congress of 

Phonetic Sciences, pages 2517-2520. Universidad 

Autònoma de Barcelona, Barcelona, Spain.  

Pétur Helgason and Sjúrður Gullbein. 2002. 

Phonological norms in Faroese speesch synthesis. 

In Proceedings of the International Conference on 

Spoken Language Processing, pages 2269-2272, 

Denver, Colorado.  

Pétur Helgason, Sjúrður Gullbein and Karin Kass. 

2005. Færøsk talesyntese: Rapport marts 2005. In 

Henrik Holmboe (ed.). 2005. Nordisk 

sprogteknologi 2005 - Årbog for Nordisk 

Sprogteknologisk Forskningsprogram 2000-2004, 

pages 51-58.  

Remco Knooihuizen. 2014. Variation in Faroese and 

the development of a spoken standard: In search of 

corpus evidence. Nordic Journal of Linguistics, 

37(1):87-105.  

Sabine Kirchmeier, Peter Juel Henrichsen, Philip 

Diderichsen and Nanna Bøgebjerg Hansen. 2019. 

Dansk Sprogteknologi i Verdensklasse. 

Steven Krauwer. 2003. The Basic Language Resource 

Kit (BLARK) as the First Milestone for the 

Language Resources Roadmap. In Proceedings of 

the International Workshop “Speech and 

Computer”, SPECOM 2003, Moscow, Russia.  

Thomas Bilgram and Britt Keson. 1998. The 

Construction of a Tagged Danish Corpus. 

Proceedings of the 11th Nordic Conference of 

Computational Linguistics, NODALIDA 1998, 

pages 129-139. 

399



Docria: Processing and Storing Linguistic Data with Wikipedia

Marcus Klang
marcus.klang@cs.lth.se

Lund University
Department of Computer Science

S-221 00 Lund, Sweden

Pierre Nugues
pierre.nugues@cs.lth.se

Lund University
Department of Computer Science

S-221 00 Lund, Sweden

Abstract

The availability of user-generated con-
tent has increased significantly over time.
Wikipedia is one example of a cor-
pus, which spans a huge range of top-
ics and is freely available. Storing and
processing such corpora requires flexi-
ble document models as they may con-
tain malicious or incorrect data. Docria
is a library which attempts to address
this issue with a model using typed
property hypergraphs. Docria can be
used with small to large corpora, from
laptops using Python interactively in a
Jupyter notebook to clusters running map-
reduce frameworks with optimized com-
piled code. Docria is available as open-
source code at https://github.
com/marcusklang/docria.

1 Introduction

The availability of user-generated content has in-
creased significantly over time. Wikipedia is one
example of a corpus, which spans a huge range
of topics and is freely available. User-generated
content tests the robustness of most tools as it
may contain malicious or incorrect data. In ad-
dition, data often comes with valuable metadata,
which might be semi-structured and/or incom-
plete. These kinds of resources require a flexible
and robust data model capable of representing a
diverse set of generic and domain-specific linguis-
tic structures.

In this paper, we describe a document model
which tries to fill the gap between fully structured
and verifiable data models and domain-specific
data structures. This model, called Docria, aims at
finding a tradeoff between the rigidity of the for-
mer and the specificity of the latter. To show its
merits, we contrast the application of fully struc-

tured data models to practical noisy datasets with
the simplicity of Docria.

2 Related Work

Linguistically annotated data have been stored in
many different formats, often developed to solve
practical problems. We can group prior work into
three categories:

Formats – the technical formats which are used
to serialize the data;

Document models – conceptual descriptions of
how the data is connected, often mapped to
concrete software implementations;

Applications and tooling – user-facing applica-
tions for annotation, search, etc.

in this section, we will focus on the low-level
formats and libraries to parse and access the data
contained within.

Pustylnikov et al. (2008), in their work on uni-
fying 11 treebanks, made a summary of formats
typically used, which shows a dominance of XML
variants and CoNLL-like formats. We examine
some of them here.

Tabular annotation. The tabular annotation in
plain text is one of the simplest formats: One to-
ken per line and white space separation for the data
fields connected to the token followed by a dou-
ble line separation to mark a sentence. This kind
of format was used first in the CoNLL99 task on
chunking (Osborne, 1999) and then on subsequent
tasks. Its main merits are the ease of use with re-
gards to writing parsers and its readability without
documentation.

Universal Dependencies (Nivre et al., 2019) is
an example of a recent project for multilingual cor-
pora using this format. It defines a variant called
CoNLL-U, an adaption of the format used in
CoNLL-X shared task on multilingual dependency
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parsing (Buchholz and Marsi, 2006). CoNLL-U
includes field descriptions at the start of a docu-
ment using hashtag (#) comments, adds subword
support, and a field, if used, would allow for unto-
kenization by including information about spacing
between tokens.

CoNLL-* formats are tightly connected to data
used in the shared tasks. Variations of these plain-
text formats in the wild have no real standard and
are mostly ad-hoc development. The field separa-
tion is a practical aspect, which may vary: spaces
or tabulations. Depending on the corpus, these
are not interchangeable as the token field might
include ordinary spaces as part of the data field.

Semi-structured formats. Semi-structured for-
mats specify stricter rules and a frequent choice
is to follow the XML syntax to implement them
(Bray et al., 2008). XML is hierarchical and can
support higher-order structures such as sections,
paragraphs, etc. XML has been used successfully
in the development of the TIGER Corpus (TIGER
XML) (Brants et al., 2002) and the Prague Depen-
dency Treebank (PML) (Hajič et al., 2018).

The XML annotation relies on a schema defin-
ing its content on which programs and users must
agree. Aside from TIGER XML and PML, the
Text Encoding Initiative (TEI) and FoLiA XML
(van Gompel and Reynaert, 2013) are general pur-
pose XML schema definitions focused on linguis-
tic and text annotation. TEI and FoLiA provide ex-
tensive documentation and guidelines on how data
should be represented in XML.

Graph formats. From primarily hierarchical
formats, the NLP Interchange Format (NIF) pro-
vides a graph-oriented way of connecting infor-
mation which builds on existing standards such as
LAF/GrAF, RFC 5147, and RDF. The main inno-
vation in NIF is a standardized way of referring to
text with offsets also known as a stand-off anno-
tation. NIF is similar to WIKIPARQ (Klang and
Nugues, 2016).

3 Docria

Docria is a document model based on typed prop-
erty hypergraphs. We designed it to solve scala-
bility and tooling problems we faced with the au-
tomatic processing and annotation of Wikipedia.
This corresponds notably to:

• The lack of document models and storage so-
lutions that could fit small and large corpora

and that could be compatible with research
practices;

• The impossibility to use the same document
model with potentially costly large-scale ex-
traction algorithms on a cluster with a map-
reduce computing framework such as Apache
Spark.

Motivation. These aspects were dominant in the
construction of Docria, for which we set a list of
requirements:

Openness – release the library as open source1;
share processed corpora such as Wikipedia in
formats used by this library; invite others to
use the library for various tasks;

Scalability – from small corpora using a few lines
of code to show a concept on a laptop to
large-scale information extraction running on
multiple computers in a cluster with opti-
mized code;

Low barrier – progressive learning curve, sensi-
ble defaults, no major installations of services
or configurations. Specifically, we wanted to
reduce barriers when we shared larger cor-
pora with students for use in project courses;

Flexibility – capable of representing a diverse set
of linguistic structures, adding information
and structures progressively, changing struc-
ture as needed;

Storage – reducing disk-space and bandwidth re-
quirements when distributing larger corpora.

Design. To meet these goals, we implemented
Docria in both Python and Java with a shared con-
ceptual model and storage format. One of the user
groups we had in mind in the design step was
students in computer science carrying a course
project. As our students have programming skills,
we elected a programmer-first approach with a fo-
cus on common tasks and algorithms and a tooling
through an API.

Python with Jupyter notebooks provides an in-
teractive Read-Evaluate-Print-Loop (REPL) with
rich presentation possibilities. We created exten-
sions for it to reduce the need for external tool-
ing and so that with a few lines of code, a pro-
grammer can inspect the contents of any Docria

1https://www.github.com/marcusklang/
docria
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Figure 1: Docria data model

document. Through a matching implementation
in Java, Docria provides a path to scale up when
needed, as specific tasks can be orders of magni-
tudes faster than with a CPython implementation.

Docria documents consist of text collections
and layers, shown in Figure 1. Text collections
allow for multiple representations of a single text.
A layer is a collection of nodes. These nodes can
have fields which refer to the text collections. One
particular restriction we impose is that a user must
define a schema per layer. This is essential for in-
trospection and verification of the data contained
in documents. The schema defines the available
fields and their data type with support for meta-
data.

Datatypes. The datatypes include basic types
such as Boolean, integer, float, and string. Ad-
vanced types include text spans, node spans, node
references, and node array references, which en-
able a programmer to represent graph structures.
Field types, which are node references, must spec-
ify a target layer. In addition, this restriction re-
sults in well-defined dependencies between layers,
which can be used in the future for partial docu-
ment reconstruction when reading.

Using a relational database analogy, layers cor-
respond to tables; they contain nodes which are
equivalent to rows with fields, which are typed
columns with specialized support for references to
other nodes in other layers.

Stand-off references. Docria uses stand-off ref-
erences in which we separate text from linguistic
layers. These layers refer to ranges in the origi-
nal text. To simplify the implementation and re-

duce sources of common bugs, the text string is
split into pieces according to the offsets and stores
text as a list of substrings, which is reconstructed
without a loss by a join. Offsets, when serialized,
only refer to spans of substrings. Software imple-
mentations can reconstruct offsets by computing
the actual substring length and creating a lookup
table. This will generate correct offsets even if
the in-memory representation of a string differs,
which is the case with standard strings in Java and
Python 3.

Binary format. For the binary format, we
selected MessagePack. MessagePack is self-
describing, has an open well-defined specification,
and has multiple open-source implementations in
a diverse set of programming languages. The bi-
nary format can be used on a per document ba-
sis or in an included collection container, which
writes multiple binary documents in sequence.
This binary format was also designed to allow for
a quicker content listing by separating content into
compartments which can be read independently:
document properties, schema, text, and layer data.

The Wikipedia corpus. We used the official
REST API provided by Wikimedia and a page
listing from the official dump page to collect the
Wikipedia corpus. We downloaded all the pages
in HTML format from this page listing in Octo-
ber 2018. This HTML format was processed and
converted into a DOM using JSoup. Using recur-
sive rules, we transformed the DOM into a flat
text representation with structural layers referring
to ranges such as section, paragraph, and anchors.
Furthermore, we linked anchors to Wikidata by
translating page targets to Q-numbers where avail-
able. We also retained formatting, such as bold
and italics. We stored all this information using
Docria.

In this dump, there are 5,405,075 pages exclud-
ing redirections.

4 Evaluation

We applied the spaCy library2 to annotate all the
English Wikipedia pages with parts of speech, en-
tities, and dependency graphs, and we made the
result available at http://fileadmin.cs.
lth.se/papers/nodalida2019/. On av-
erage, each page of the corpus, after annotation,

2https://spacy.io/
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contains 72.2 sentences, 901.8 tokens, 144.8 enti-
ties, and 4,383 characters.

We used this annotated corpus to evaluate the
technical aspects of Docria and compare them to
XML. We chose XML as it is pervasive in the liter-
ature and capable of representing all the structures
present in Wikipedia.

We selected FoLiA as the XML format. FoLiA
is well-defined, has good tooling, defines a diverse
set of structural annotations which covers most, if
not all, aspects of Wikipedia. FoLiA also has an
official Python library, which we used to read doc-
uments.

Millions of XML files can be stored uncom-
pressed in a file system. However, this often
results in considerable overhead in terms of ac-
cess times and reading and is therefore not prac-
tical for efficient processing. In addition, XML is
verbose and contains redundant information. All
this makes compression and streaming a neces-
sity when storing and processing millions of doc-
uments.

To compare FoLiA XML with Docria, we chose
to use a sequential tarball format with a bzip2
compression. We chose this format as it pro-
vided the most similar way to store documents
in sequence applicable to both FoLiA XML and
Docria. We created one XML file per article in-
memory and saved them in a sequence using the
tarfile API of Python. The structures we included
for the comparison were section, paragraph, enti-
ties, tokens with their part of speech and lemma,
and dependency relations.

5 Benchmark

We stored the Wikipedia corpus in 432 parts, con-
taining on average 12,512 pages per part. Due to
time constraints, the metrics below are computed
using only 64 of the 432 parts.

First, we measured the difference in size when
compressed: FoLiA XML files are on average 2.47
times larger than the matching Docria files. The
compressed Docria parts have a mean size of 85.0
MB3 compared to 209.8 MB for the compressed
FoLiA XML parts. This translates to a compressed
size of 6.8 kB resp. 16.8 kB on average per page.

Secondly, we measured the cost of decompress-
ing the files in memory. Reading a single bzip2
Docria compressed file without any processing
and a 1 MB buffer requires, on an Intel Xeon at

31 MB = 1,000,000 bytes

3.40 GHz, 16.3 sec ± 18.9 ms compared to 104
seconds ± 136 ms to read FoLiA XML, both av-
eraged over 7 runs. Reading compressed FoLiA
XML over binary Docria tar-files is on average 6.4
times slower.

Uncompressed Folia XML documents are on
average 9.5 times larger per document with a mean
size of a page of 314.5 kB vs. 32.1 kB for Docria.
For comparison, the mean average size of raw
UTF-8 encoded text is of 4.4 kB per page. Put
another way, using the plain text as starting point,
Docria has an annotation overhead of 7.6 times vs.
69.6 times for XML.

6 Programming Examples

In this section, we show programs for three basic
operations:

1. Create a new document and add a token with
part-of-speech annotation.

2. Read a sequential tarball and print all the to-
kens of all the sentences of the corpus;

3. Read a sequential tarball and extract the enti-
ties of type person.

Create a document and add a part of speech.
We first create a document from a string and we
add a token layer. We then add a node to this layer,
spanning the 0..4 range and we annotate it with a
part of speech using the add() method as this:

# Initial include
from docria import Document, \

DataTypes as T

# Create a document
doc = Document()

# Add main text
doc.maintext = "Lund University"

# Create a token layer with two fields
doc.add_layer("token",

pos=T.string, text=T.span)

# The token layer, when displayed
# in a Jupyter notebook, will be
# rendered as a HTML table.
tokens = doc["token"]

# Adding a token node
# referencing range 0:4
token = tokens.add(
pos="PROPN",
text=doc.maintext[0:4]

)
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Print the tokens. We assume we have a tarball
of documents segmented into sentences and to-
kens, and annotated with the parts of speech. We
read the tarball with TarMsgpackReader and
we access and print the sentences, tokens, and
parts of speech using the Python dictionary syn-
tax.

from docria.storage \
import TarMsgpackReader

with TarMsgpackReader(
"enwiki00001.tar.bz2",
mode="r|bz2") as reader:

for rawdoc in reader:
# Materialize document
doc = rawdoc.document()

# Lists all layers with field
# types and metadata
doc.printschema()

# Print the original text
# Equivalent to doc.text["main"]
print(doc.maintext)

for sentence in doc["sentence"]:
# Print the full sentence
print(sentence["tokens"].text())

for tok in sent["tokens"]:
# Form <TAB> part-of-speech
print("%s\t%s" %

(tok["text"], tok["pos"])

Extract entities of a certain type. We assume
here that the tarball is annotated with entities
stored in an ENTITY layer. We read the tarball
and access the entities. We then extract all the en-
tities of category PERSON:

with TarMsgpackReader(
"enwiki00001.tar.bz2",
mode="r|bz2") as reader:

for rawdoc in reader:
# Materialize document
doc = rawdoc.document()

# Get the entity layer
entities = doc["entity"]

# Filter out PERSON in entity
# layer having field label
# equal to PERSON
query = (entities["label"]

== "PERSON")

for person in entities[query]:
# Tokens represents potentially
# many tokens, text()
# transforming it to a string
# from the leftmost
# to the rightmost token.
print(person["tokens"].text())

7 Discussion

When converting the Wikipedia corpora to fit the
FoLiA XML format, we had issues identifying a
suitable span annotation for the Wikipedia anchor
link. We decided to associate it with the FoLiA
XML entity type.

In addition, when using stand-off annotations,
some documents did not pass validation with off-
set errors, possibly due to normalization issues
common to Wikipedia text. This gives an argu-
ment that these kinds of formats do not work re-
liably with noisy datasets. We instead included
the sentences as text and used the nospace attribute
to allow untokenization, which does increase ver-
bosity slightly.

Initially, we used the official foliapy library, but
we were unable to get a decent performance with
it, potentially addressed in the future. We resorted
to using the LXML DOM matching example doc-
uments with Folia. To ensure correctness, we ver-
ified samples of our XMLs using foliavalidator.
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Abstract

This paper describes the design and use
of the graph-based parsing framework and
toolkit UniParse, released as an open-
source python software package devel-
oped at the IT University, Copenhagen
Denmark. UniParse as a framework
novelly streamlines research prototyping,
development and evaluation of graph-
based dependency parsing architectures.
The system does this by enabling highly
efficient, sufficiently independent, read-
able, and easily extensible implementa-
tions for all dependency parser compo-
nents. We distribute the toolkit with ready-
made pre-configured re-implementations
of recent state-of-the-art first-order graph-
based parsers, including highly efficient
Cython implementations of feature en-
coders and decoding algorithms, as well as
off-the-shelf functions for computing loss
from graph scores.

1 Introduction

Motivation. While graph-based dependency
parsers are theoretically simple models, extensi-
ble and modular implementations for sustainable
parser research and development have to date been
severely lacking in the research community. Con-
tributions to parsing research generally centres
around particular components of parsers in isola-
tion, such as novel decoding algorithms, novel arc
encodings, or novel learning architectures. How-
ever, due to perceived gains in performance or
due to the lack of foresight in writing sustainable
code, these components are rarely implemented
modularly or with extensibility in mind. This
applies to prior sparse-feature dependency parsers
(McDonald and Pereira (2006)’s MST parser),
as well as recent state-of-the-art neural parsers

(Kiperwasser and Goldberg, 2016; Dozat and
Manning, 2017). Implementations of parser
components are generally tightly coupled to one
another which heavily hinders their usefulness in
future research.

With UniParse, we provide a flexible, highly
expressive, scientific framework for easy, low-
barrier of entry, highly modular, efficient devel-
opment and fair benchmarking of graph-based
dependency parsing architectures. With the
framework we distribute pre-configured state-of-
the-art first-order sparse and neural graph-based
parser implementations to provide strong base-
lines for future research on graph based depen-
dency parsers.

Novel contributions

• We align sparse feature and neural research
in graph-based dependency parsing to a com-
mon terminology. With this shared termi-
nology we develop a unified framework for
the UniParse toolkit to rapidly prototype new
parsers and easily compare performance to
previous work.
• Prototyping is now rapid due to modular-

ity: parser components may now be devel-
oped in isolation, with no resulting loss in
efficiency. Measuring the empirical perfor-
mance of a new decoder no longer require
implementing an encoder, and investigating
the synergy between a learning strategy and
a decoder no longer requires more than a flag
or calling a library function.
• Preprocessing is now made explicit within

its own component and is thereby adequately
isolated and portable.
• The evaluation module is now easy to read

and fully specified. We specify the subtle
differences in computing unlabeled and la-
beled arc scores (UAS, LAS) from previous
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literature and have implemented these in Uni-
Parse in an explicit manner.
• To the best of our knowledge, UniParse is

the first attempt at unifying existing de-
pendency parsers to the same code base.
Moreover, UniParse is to our knowledge
the first attempt to enable first-order sparse-
feature dependency parsing in a shared
python codebase.

We make the parser freely available under a GNU
General Public License1.

2 Terminology of a unified dependency
parser

Traditionally, a graph-based dependency parser
consists of three components. An encoder Γ, a set
of parameters λ, and a decoder h. The possible
dependency relations between all words of a
sentence S are modeled as a complete directed
graph GS where words are nodes and arcs are the
relations. An arc in GS is called a factor which Γ
associates with a d-dimensional feature vector, its
encoding. The set of parameters λ are then used
to produce scores from the constructed feature
vectors according to some learning procedure.
These parameters are optimized over treebanks.
Lastly a decoder h is some maximum spanning
tree algorithm with input GS and scores for
factors of GS given by λ; it outputs a well-formed
dependency tree, which is the raw output of a
dependency model.

Recent work on neural dependency parsers
learns factor embeddings discriminatively along-
side the parameters used for scoring. The result is
that Γ and λ of dependency parsers fuse together
into a union of parameters. Thus, in this work
we fold the notion of encoding into the parameter
space. Now, for the neural models, all parameters
are trainable, whereas for sparse-feature models,
the encodings of sub-sets of arcs are non-trainable.
So the unified terminology addresses only param-
eters λ and a decoder h.

3 API and the joint model architecture

We provide two levels of abstraction for imple-
menting graph-based dependency parsers. First,
our descriptive high-level approach focuses on ex-
pressiveness, enabling models to be described in

1github.com/danielvarab/uniparse

just a few lines of code by providing an interface
where the required code is minimal, only a means
to configure design choices. Second, as an alter-
native to the high-level abstraction we emphasise
that parser definition is nothing more than a com-
position of pre-configured low-level modular im-
plementations. With this we invite cherry picking
of the included implementations of optimised de-
coders, data preprocessors, evaluation module and
more. We now briefly overview the basic use of
the joint API and list the central low-level mod-
ule implementations included with the UniParse
toolkit.

Elementary usage (high level). For ease of use
we provide a high-level class to encapsulate neu-
ral training. Its use results in a significant reduc-
tion in the amount of code required to implement
a parser and counters unwanted boilerplate code.
It provides default configurations for all included
components, while enabling custom implementa-
tion whenever needed. Custom implementations
are only required to be callable and adheres to
the framework’s function definition. The mini-
mum requirement with the use of this interface is a
parameter configuration, loss function, optimizer,
and batch strategy. In Listing 1 we show an exam-
ple implementation of Kiperwasser and Goldberg
(2016)’s neural parser in only a few lines. The full
list of possible arguments along with their inter-
faces can be found in the toolkit documentation.

Vocabulary. This class facilitates preprocessing
of CoNLL-U formatted files with support for out-
of-vocabulary management and alignment with
pre-trained word embeddings. Text preprocessing
strategies have significant impact on NLP model
performance. Despite this, little effort has put
into describing such techniques in recent litera-
ture. Without these details preprocessing becomes
yet another hyper-parameter of a model, and ob-
fuscates research contribution. In the UniParse
toolkit, we include a simple implementation for
recently employed techniques in parsing for token
cleaning and mapping.

Batching. UniParse provides functionality to or-
ganise tokens into batches for efficient compu-
tation and learning. We provide several con-
figurable implementations for different batching
strategies. This includes 1. batching by sentence
length (bucketing), 2. fixed-length batching with
padding, and 3. clustered-length batching as seen
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1 from uniparse import *
2 from uniparse.models import *
3
4 vocab = Vocabulary().fit(train)
5 params = KiperwasserGoldberg()
6 model = Model(params,
7 decoder="eisner",
8 loss="hinge",
9 optimizer="adam",

10 vocab=vocab)
11 metrics = model.train(train, dev,
12 epochs=30)
13 test_metrics = model.evaluate(test)

Algorithm en ud en ptb sents/s

Eisner (generic) 96.35 479.1 ∼ 80
Eisner (ours) 1.49 6.31 ∼ 6009
CLE (generic) 19.12 93.8 ∼ 404
CLE (ours) 1.764 6.98 ∼ 5436

Figure 1: (Right code snippet) Implementation of Kiperwasser and Goldberg (2016)’s neural parser in
only a few lines using UniParse.
(Right table and left figure) Number of seconds a decoder takes to decode an entire dataset. Score
matrices are generated uniformly in the range [0, 1]. The random generated data has an impact on CLE
due to its greedy nature; The figure demonstrates this by the increasingly broad standard deviation band.
Experiments are run on an Ubuntu machine with an Intel Xeon E5-2660, 2.60GHz CPU.

in the codebase for Dozat and Manning (2017)2

(this is not described in the published work). With
unobtrusive design in mind any alternative custom
batching strategy may be employed directly, no in-
teraction with the framework is needed.

Decoders We include optimised Cython imple-
mentations of first-order decoder algorithms with
the toolkit. This includes Eisner’s algorithm (Eis-
ner, 1996) and Chu-Liu-Edmonds (Chu and Liu,
1965; Edmonds, 1967; Zwick, 2013). In Figure
1 we compare the performance of our decoder
implementations against pure python implementa-
tions3 on randomised score input. Our implemen-
tations outperform a pure python implementations
by a order of several magnitudes.

Evaluation. UAS and LAS are central depen-
dency parser performance metrics, measuring un-
labeled and labeled arc accuracy respectively with
UAS = #correct arcs

#arcs and LAS = #correctly labeled arcs
#arcs .

Unfortunately, there are also a number unreported
2https://github.com/tdozat/Parser-v1
3https://github.com/

LxMLS/lxmls-toolkit/blob/
1bdc382e509d24b24f581c1e1d78728c9e739169/
lxmls/parsing/dependency_decoder.py

preprocessing choices preceding the application
of these metrics, which renders direct comparison
of parser performance in the literature futile, re-
gardless of how well-motivated these preprocess-
ing choices are. These are generally discovered
by manually screening the code implementations
when these implementations are made available to
the research community. Two important variations
found in state-of-the-art parser evaluation are the
following.

1. Punctuation removal. Arcs incoming to any
punctuation are somtimes removed for eval-
uation. Moreover, the definition of punctu-
ation is not universally shared. We provide
a clear python implementation for these met-
rics with and without punctuation arc dele-
tion before application, where the definition
of punctuation is clear: punctuation refers to
tokens that consist of characters complying
to the Unicode punctuation standard.4 This
is the strategy employed by the widely used
Perl evaluation script, which to our knowl-
edge, originates from the CoNLL 2006 and

4https://www.compart.com/en/unicode/
category
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Parser configurations Dataset UAS wo.p..
original

LAS wo.p.
original

UAS
wo.p.

LAS
wo.p.

UAS
w.p.

LAS
w.p.

Kiperwasser and Goldberg en ud — — 87.71 84.83 86.80 85.12
(2016) en ptb 93.32 91.2 93.14 91.57 92.56 91.17

da — — 83.72 79.49 83.24 79.62
Dozat and Manning en ud — — 91.47 89.38 90.74 89.01

(2017) en ptb 95.74 95.74 95.43 94.06 94.91 93.70
da — — 87.84 84.99 87.42 84.98

MSTparser en ud — — 75.55 66.25 73.47 65.20
(2006) + extensions en ptb — — 76.07 64.67 74.00 63.60

da — — 68.80 55.30 67.17 55.52

Table 1: UAS/LAS for included parser configurations. We provide results with (w.p.) and without (wo.p.)
punctuation. For the English universal dependencies (UD) dataset we exclude the github repository suffix
EWT. Regarding (Dozat and Manning, 2017), despite having access to the published TensorFlow code
of we never observed scores exceed 95.58.

2007 shared tasks.5 We infer this from refer-
ences in (Buchholz and Marsi, 2006).

2. Label prefixing. Some arc labels are “com-
posite”, their components separated by a
colon. An example from the English Uni-
versal Dependencies data set is the label
obl:tmod. The official CoNLL 2017
shared-task evaluation script6 allows partial
matching of labels based on prefix matches
for components, for example matching to
obl of obl:tmod giving full points. We in-
clude this variant in the distributed UniParse
evaluation module.

Loss Functions. Common loss functions apply
to scalar values, or predictions vectors represent-
ing either real values or probabilities. However
loss functions for dependency parsers are unortho-
dox in that they operate on graphs, which has
been dealt with in various creative ways over the
years. We include a set of functions that apply to
first-order parser graphs which are represented as
square matrices. In the future we hope to expand
this set for first-order, as well as explore higher-
order structures.

Callbacks. While we have done our uttermost
to design UniParse in a unobtrusive manner, few
limitations may occur when developing, and es-
pecially during exploration of model configura-
tions when using the high-level model class. This
could be the likes of manual updating of optimis-
ers learning rates during training, or logging gran-

5https://depparse.uvt.nl/SoftwarePage.
html#eval07.pl

6https://universaldependencies.org/
conll17/baseline.html

ulated loss and accuracy. To accommodate this we
include callback functionality which hooks into
the training procedure enabling users to do the last
few things perhaps inhibited by the framework.
We include a number of useful pre-implemented
callback utilities, such as a Tensorboard logger7,
model saver, and a patience mechanism for early
stopping.

Included parsers. We include three state-of-
the-art first-order dependency parser implementa-
tions as example configurations of UniParse: Mc-
Donald and Pereira (2006)’s MST sparse-feature
parser 8, Kiperwasser and Goldberg (2016) and
Dozat and Manning (2017)’s graph-based neu-
ral parsers. Experiments are carried out on En-
glish and Danish: the Penn Treebank (Marcus
et al., 1994) (en ptb, training on sections 2-21, de-
velopment on section 22 and testing on section
23), converted to dependency format following
the default configuration of the Stanford Depen-
dency Converter (version≥ 3.5.2), and the English
(en ud), and Danish (da) datasets from Version 2.1
of the Universal Dependencies project (Nivre et
al., 2017). Table 1 shows how our parser con-
figurations perform compared with the originally
reported parser performance.

7github.com/tensorflow/tensorboard
8Note that this MST parser implementation consists of a

restricted feature set and is only a first-order parser, as proof
of concept.
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4 Concluding remarks

In this paper, we have described the design and
usage of UniParse, a high-level un-opinionated
framework and toolkit that supports both feature-
based models with on-line learning techniques,
as well as recent neural architectures trained
through backpropagation. We have presented the
framework as answer to a long-standing need for
highly efficient, easily extensible, and, most of
all, directly comparable graph-based dependency
parsing research.

The goal of UniParse is to ease development
and evaluation of graph-based syntatic parsers.
Future work includes extending UniParse to a gen-
eral parsing pipeline from raw text.
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