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Introduction

Welcome to the 22nd Nordic Conference on Computational Linguistics (NoDaLiDa 2019) held at the
University of Turku in the beautiful city of Turku in Finland, on September 30-October 2, 2019. The
aim of NoDaLiDa is to bring together researchers in the Nordic countries interested in any aspect related
to human language and speech technologies. It is a great honor for me to serve as the general chair of
NoDaLiDa 2019.

NoDaLiDa has a very long tradition. It stems from a working group initiative led by Sture Allen, Kolb-
jorn Heggstad, Baldur Jonsson, Viljo Kohonen and Bente Maegaard (as the preface of the oldest workshop
proceedings in the ACL anthology reveals).! They organized the first NoDaLiDa (“Nordiska datalingvis-
tikdagar”) in Gothenburg on October 10-11, 1977. In 2006, NEALT, the Northern European Association
for Language Technology was founded. We are very honored to bring this bi-annual conference after 42
years to Turku this fall.

We solicited three different types of papers (long, short, demo papers) and received 78 valid submissions.
In total, we accepted 49 papers, which will be presented as 34 oral presentations, 10 posters and 5 demo
papers. A total of 4 submissions were withdrawn in the process. Each paper was reviewed by three
experts. We are extremely grateful to the Programme Committee members for their detailed and helpful
reviews. Overall, there are 10 oral sessions with talks and one poster session organized into themes over
the two days, starting each day with a keynote talk.

We would like to thank our two keynote speakers for travel to Turku and sharing their work. Marie-
Catherine de Marneffe from Ohio State University will talk about "Do you know that there’s still a chance?
Identifying speaker commitment for natural language understanding". Grzegorz Chrupata from Tilburg
University will talk about "Investigating neural representations of speech and language". We are also very
grateful to Fred Karlsson, who accepted to share his insights into the Finnish language in the traditional
NoDaLiDa language tutorial.

The conference is preceded by 5 workshops on a diverse set of topics: deep learning for natural language
processing, NLP for Computer-Assisted Language Learning, Constraint Grammar Methods, Tools and
Applications, NLP and pseudonymisation and Financial Narrative Processing. This shows the breadth of
topics that can be found in language technology these days, and we are extremely happy and grateful to
the workshop organizers for complementing the main program this way.

There will be two social events. A reception which is sponsored by the City of Turku and held at the Old
Town Hall in Turku. A conference dinner will be held in the Turku Castle in the King’s hall. Two fantastic
evenings are awaiting.

I would like to thank the entire team that made NoDaLiDa 2019 possible in the first place. First of all,
I would like to thank Bedta Megyesi for inviting me to take up this exciting (and admittedly at times
demanding) role and all her valuable input regarding NEALT and previous editions of NoDaLiDa. Jorg
Tiedemann, for the smooth transition from the previous NoDaliDa edition and his input and work as
program chair; the program chair committee Jurgita Kapociiaté-Dzikiené, Hrafn Loftsson, Patrizia Pag-
gio, and Erik Velldal, for working hard on putting the program together. I am particularly grateful to
Jorg Tiedemann, Jurgita Kapociuté-Dzikiené, Kairit Sirts and Patrizia Paggio for leading the reviewing
process. Special thanks goes to the workshop chairs Richard Johansson and Kairit Sirts, who have done
an invaluable job with leading the workshop selection and organization. A big thanks also to Miryam
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de Lhoneux for her work as social media chair and Mareike Hartmann for leading the publication efforts
that led to this volume, as well as the coordination of the workshop proceedings. Thank you! Finally, my
ultimate thanks goes to the amazing local organization committee and team. Thank you, Filip Ginter and
Jenna Kanerva. With your infinite support and pro-active engagement in organizing NoDaLiDa you are
the ones that make NoDaLiDa possible and surely an unforgettable experience. Thanks also to the entire
local team (with special thanks to Hans Moen for help with the program): Li-Hsin Chang, Rami Ilo,
Suwisa Kaewphan, Kai Hakala, Roosa Kyllonen, Veronika Laippala, Akseli Leino, Juhani Luotolahti,
Farrokh Mehryary, Hans Moen, Maria Pyykonen, Sampo Pyysalo, Samuel Ronnqvist, Antti Saloranta,
Antti Virtanen, Sanna Volanen. NoDaLiDa 2019 has received financial support from our generous spon-
sors, which we would also like to thank here.

This is the usual place for the greetings from the local organizers, but as we set out to write it, it turns out
that Barbara already said it all. So we really only need to add one thing: huge thanks to Barbara for all the
hard work she put into NoDaLiDa. We can only wonder where you found the time for all this. We hope
the Turku edition of NoDaLiDa will be a success, at least we tried our best to make it so. In two weeks
we will know. — Filip, Jenna, and the local team

Danke - kiitos!

We very much hope that you will have an enjoyable and inspiring time at NoDaLiDa 2019 in Turku.

Barbara Plank
Kgbenhavn
September 2019
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Invited Talks

Marie-Catherine de Marneffe: Do you know that there’s still a chance? Identifying speaker com-
mitment for natural language understanding.
When we communicate, we infer a lot beyond the literal meaning of the words we hear or read. In par-
ticular, our understanding of an utterance depends on assessing the extent to which the speaker stands
by the event she describes. An unadorned declarative like "The cancer has spread" conveys firm speaker
commitment of the cancer having spread, whereas "There are some indicators that the cancer has spread"
imbues the claim with uncertainty. It is not only the absence vs. presence of embedding material that
determines whether or not a speaker is committed to the event described: from (1) we will infer that the
speaker is committed to there *being* war, whereas in (2) we will infer the speaker is committed to relo-
cating species *not being* a panacea, even though the clauses that describe the events in (1) and (2) are
both embedded under “(s)he doesn’t believe”.

(1) The problem, I’'m afraid, with my colleague here, he really doesn’t believe that it’s war.

(2) Transplanting an ecosystem can be risky, as history shows. Hellmann doesn’t believe that

relocating species threatened by climate change is a panacea.

In this talk, I will first illustrate how looking at pragmatic information of what speakers are committed
to can improve NLP applications. Previous work has tried to predict the outcome of contests (such as
the Oscars or elections) from tweets. I will show that by distinguishing tweets that convey firm speaker
commitment toward a given outcome (e.g., “Dunkirk will win Best Picture in 2018") from ones that
only suggest the outcome (e.g., “Dunkirk might have a shot at the 2018 Oscars") or tweets that convey
the negation of the event (“Dunkirk is good but not academy level good for the Oscars”), we can out-
perform previous methods. Second, I will evaluate current models of speaker commitment, using the
CommitmentBank, a dataset of naturally occurring discourses developed to deepen our understanding of
the factors at play in identifying speaker commitment. We found that a linguistically informed model out-
performs a LSTM-based one, suggesting that linguistic knowledge is needed to achieve robust language
understanding. Both models however fail to generalize to the diverse linguistic constructions present in
natural language, highlighting directions for improvement.

Grzegorz Chrupala: Investigating Neural Representations of Speech and Language

Learning to communicate in natural language is one of the unique human abilities which are at the same
time extraordinarily important and extraordinarily difficult to reproduce in silico. Substantial progress
has been achieved in some specific data-rich and constrained cases such as automatic speech recognition
or machine translation. However the general problem of learning to use natural language with weak and
noisy supervision in a grounded setting is still open. In this talk, I will present recent work which addresses
this challenge using deep recurrent neural network models. I will then focus on analytical methods which
allow us to better understand the nature and localization of representations emerging in such architectures.
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Abstract

This work compares the performances
achieved by Phrase-Based Statistical Ma-
chine Translation systems (PBSMT) and
attention-based Neural Machine Transla-
tion systems (NMT) when translating User
Generated Content (UGC), as encountered
in social medias, from French to English.
We show that, contrary to what could be ex-
pected, PBSMT outperforms NMT when
translating non-canonical inputs. Our error
analysis uncovers the specificities of UGC
that are problematic for sequential NMT
architectures and suggests new avenue for
improving NMT models.

1 Introduction'

Neural Machine Translation (Kalchbrenner and
Blunsom, 2013; Sutskever et al., 2014a; Cho et al.,
2014) and, more specifically, attention-based mod-
els (Bahdanau et al., 2015; Jean et al., 2015; Lu-
ong et al., 2015; Mi et al., 2016) have recently be-
come the method of choice for machine translation:
many works have shown that Neural Machine
Translation (NMT) outperforms classic Phrase-
Based Statistical Machine Translation (PBSMT)
approaches over a wide array of datasets (Ben-
tivogli et al., 2016; Dowling et al., 2018; Koehn
and Knowles, 2017). Indeed, NMT provides bet-
ter generalization and accuracy capabilities (Bo-
jar et al., 2016; Bentivogli et al., 2016; Castilho
et al., 2017) even if it has well-identified limits
such as over-translating and dropping translations
(Mi et al., 2016; Koehn and Knowles, 2017; Le
etal., 2017).

This work aims at studying how these interac-
tions impact machine translation of noisy texts

'We thank our anonymous reviewers for their insightful
comments. This work was funded by the ANR ParSiTi project
(ANR-16-CE33-0021).

djame.seddah@inria.fr

as generally found in social media and web fo-
rums and often denoted as User Generated Content
(UGC). Given the increasing importance of social
medias, this type of texts has been extensively stud-
ied over the years, e.g. (Foster, 2010; Seddah et al.,
2012; Eisenstein, 2013).

In this work we focus on UGC in which no gram-
matical, orthographic or coherence rules are re-
spected, other than those considered by the writer.
Such rule-free environment promotes a plethora
of vocabulary and grammar variations, which ac-
count for the large increase of out-of-vocabulary
tokens (OOVs) in UGC corpora with respect to
canonical parallel training data.

Translating UGC raises several challenges as
it corresponds to both a low-resource scenario —
producing parallel UGC corpora is very costly
and often problematic due to inconsistencies be-
tween translators — and a domain adaptation sce-
nario — only canonical parallel corpora are widely
available to train MT systems and they must be
adapted to the specificities of UGC. We there-
fore believe that translating UGC provides a chal-
lenging testbed to identify the limits of NMT ap-
proaches and to better understand how they are
working.

Our contributions are fourfold:

* we compare the performance of PBSMT and
NMT systems when translating either canon-
ical or non-canonical corpora;

* we analyze both quantitatively and qualita-
tively several cases in which PBSMT transla-
tions outperform NMT on highly noisy UGC
and we discuss the advantages, in terms of ro-
bustness, that PBSMT offers over NMT ap-
proaches;

+ we explain how these findings highlight the
limits of seq2seq (Sutskever et al., 2014b)
and Transformer (Vaswani et al., 2017) NMT
architectures, by studying cases in which, as
opposed to the PBSMT system, the attention



mechanism fails to provide a correct transla-
tion;

* we introduce the Cr#pbank a new French-
English parallel corpus made of UGC content
built on the French Social Media Bank (Sed-
dah et al., 2012). This corpus is much noisier

than existing UGC corpora.
All our data sets are available at https://gitlab.inria.

fr/seddah/parsiti.

2 Related Work

The comparison between NMT and PBSMT trans-
lation quality has been documented and revisited
many times in the literature. Several works, such
as (Bentivogli et al., 2016) and (Bojar et al., 2016),
conclude that the former outperforms the latter as
NMT translations require less post-editing to pro-
duce a correct translation. For instance, Castilho
etal. (2017) present a detailed comparison of NMT
and PBSMT and show that NMT outperforms PB-
SMT in terms of both fluency and translation accu-
racy, even if there is no improvement in terms of

post-editing needs.

However, other case studies, such as Koehn and
Knowles (2017), have defended the idea that NMT
was still outperformed by PBSMT in cross-domain
and low-resource scenarios. For instance, Negri
etal. (2017) showed that, when translating English
to French, PBSMT outperforms NMT by a great
margin in multi-domain data realistic conditions
(heterogeneous training sets with different sizes).
Dowling et al. (2018) also demonstrated a signifi-
cant gap of performance in favor of their PBSMT
system’s over an out-of-the-box NMT system in
a low-resource setting (English-Irish). These con-
clusions have recently been questioned by Sen-
nrich and Zhang (2019) who showed NMT could
achieve good performance in low-resource sce-
nario when all hyper-parameters (size of the byte-
pair encoding (BPE) vocabulary, number of hid-
den units, batch size, ...) are correctly tuned and a
proper NMT architecture is selected.

The situation for other NMT approaches, such
as character-based NMT, is also confusing: Wu
etal. (2016) have shown that character-based meth-
ods achieve state-of-the-art performance for dif-
ferent language pairs; Belinkov et al. (2017) and
Durrani et al. (2019) have demonstrated their sys-
tems respective abilities to retrieve good amount
of morphological information leveraging on sub-
word level features. However, Belinkov and Bisk
(2018) found that these approaches are not robust

to noise (both synthetic and natural) when trained
only with clean corpora. On the other hand, Dur-
rani et al. (2019) concluded that character-based
representations were more robust to synthetic and
natural noise than word-based approaches. How-
ever, they did not find a substantial improvement
over BPE tokenization, their BPE MT system even
slightly outperforming the character-based one on
3 out of 4 of their test sets, including the one with
the highest OOV rate.

Similarly to all these works, we also aim at com-
paring the performance of PBSMT and NMT ap-
proaches, hoping that the peculiarities of UGC will
help us to better understand the pros and cons of
these two methods. Our approach shares several
similarity with the work of Anastasopoulos (2019)
that described different experiments to determine
how source-side errors can impact the translation
quality of NMT models.

3 Experimental Setup

As the goal of this work is to compare the output of
NMT and PBSMT when translating UGC corpora.
Because of the lack of manually translated UGC,
we consider a out-domain scenario in which our
systems are trained on the canonical corpora gen-
erally used in MT evaluation campaigns and tested
on UGC data. We will first describe the datasets
used in this work (§3.1), then the different systems
we have considered (§3.2) and finally the pre- and
post-processing applied (§3.3).

3.1 Data Sets

Parallel corpora We train our models on two
different corpora. We first consider the traditional
corpus for training MT systems, namely the WMT
data made of the europarl (v7) corpus® and the
newscommentaries (v10) corpus®. We use the
newsdiscussdev2015 corpus as a development
set. This is exactly the setup used to train the sys-
tem described in (Michel and Neubig, 2018) which
will be used as a baseline throughout this work.
We also consider, as a second training
set, the French-English parallel portion of
OpenSubtitles'18 (Lison et al., 2018), a collec-
tion of crowd-sourced peer-reviewed subtitles for
movies. We assume that, because it is made of
informal dialogs, such as those found in popular
sitcoms, sentences from OpenSubtitles will be
much more similar to UGC data than WMT data,

Zwww .statmt.org/europarl
3www.statmt.org/wmt1 5/training-parallel-nc-v10.tgz



in part because most of it originates from social
media and consists in streams of conversation.
It must however be noted that UGC differs
significantly from subtitles in many aspects:
emotion denoted with repetitions, typographical
and spelling errors, emojis, etc.

To enable a fair comparison between systems
trained on WMT and on OpenSubtitles, we con-
sider a small version of the OpenSubtitles that
has nearly the same number of tokens as the WMT
training set and a large version that contains all
OpenSubtitles parallel data.

To evaluate our system on in-domain data, we
use thenewstest'14 asatestsetas well as 11,000
sentences extracted from OpenSubtitles.

Non-canonical UGC To evaluate our models,
we consider two data sets of manually translated
UGC.

The first one is a collection of French-English
parallel sentences manually translated from an ex-
tension of the French Social Media Bank (Sed-
dah et al., 2012) which contains texts collected on
Facebook, Twitter, as well as from the forums of
JeuxVideos.com and Doctissimo.fr.*

This corpus, called Cr#pbank, consists of 1,554
comments in French annotated with different kind
of linguistic information: Part-of-Speech tags, sur-
face syntactic representations, as well as a normal-
ized form whenever necessary. Comments have
been translated from French to English by a native
French speaker and extremely fluent, near-native,
English speaker. Typographic and grammatical er-
ror were corrected in the gold translations but the
language register was kept. For instance, id-
iomatic expressions were mapped directly to the
corresponding ones in English (e.g. “mdr” has
been translated to “1ol” and letter repetitions were
also kept (e.g. “ouiii” has been translated to
“yesss”). For our experiments, we have divided
the Cr#pbank into a test set and a blind test set
containing 777 comments each.

We also consider in our experiments, the MTNT
corpus (Michel and Neubig, 2018), a dataset made
of French sentences that were collected on Reddit
and translated into English by professional transla-
tors. We used their designated test set and added a
blind test set of 599 sentences we sampled from the
MTNT validation set. The Cr#pbank and MTNT cor-
pora both differ in the domain they consider, their

“Popular French websites devoted respectively to video-
games and health.

collection date, and in the way sentences were col-
lected to ensure they are noisy enough. We will
see in Section 4 that the Cr#pbank contains much
more variations and noise than the MTNT corpus.

Table 3 presents examples of UGC sentences
and their translation found in these two corpora.
As shown by these examples, UGC sentences con-
tain many orthographic and grammatical errors
and differ from canonical language both in their
content (i.e. the topic they address and/or the vo-
cabulary they are using) and their structure. Sev-
eral statistics of these two corpora are reported in
Table 1. As expected, our two UGC test sets have
a substantially higher token to type ratio than the
canonical test corpora, indicating a higher lexical
diversity.

3.2 Machine Translation Systems

We experiment with three MT models: a tradi-
tional phrase-based approach and two neural mod-
els.

3.2.1 Phrase-based Machine Translation

We use the Moses (Koehn et al., 2007) toolkit as
our phrase-based model, using the default features
and parameters.

The language model is a 5-gram language model
with Knesser-Ney smoothing on the target side of
the parallel data. We decided to consider only the
parallel data (and not any monolingual data) so
that the PBSMT and NMT systems use exactly the
same data.

3.2.2

The first neural model we consider is a seq2seq
bi-LSTM architecture with global attention decod-
ing. The seq2seq model was trained using the
XNMT toolkit (Neubig et al., 2018). It consists in
a2-layered Bi-LSTM layers encoder and 2-layered
Bi-LSTM decoder. It considers, as input, word
embeddings of 512 components and each LSTM
units has 1024 components. A dropout probabil-
ity of 0.3 was introduced (Srivastava et al., 2014).
The model was trained using the ADAM optimizer
(Kingma and Ba, 2015) with vanilla parameters
(a = 0.02, 8 = 0.998). Other more specific set-
tings include keeping unchanged the learning rate
(LR) for the first two epochs, a LR decay method
based on the improvement of the performance on

seq2seq model

>We decided to use XNMT, instead of OpenNMT in our
experiments in order to compare our results to the ones of
Michel and Neubig (2018).



Corpus #sentences  #tokens ASL TTR  Corpus #sentences  #tokens  ASL TTR

train set UGC test set
WMT 2.2M 64.2M 29.7 0.20 Cr#pbank 777 13,680 17.60 0.32
Small 9.2M 57.7M 6.73 0.18 MTNT 1,022 20,169 19.70 0.34
Large 34M 1.19B 6.86 0.25 UGC blind test set

test set Cr#pbank 777 12,808 16.48 0.37
OpenSubTest 11,000 66,148 6.01 0.23 MINT 599 8,176  13.62 0.38
WMT 3,003 68,155 2270 0.23

Table 1: Statistics on the French side of the corpora used in our experiments. T7TR stands for Type-to-Token

Ratio, ASL for average sentence length.

UGC Corpus Example
MTNT FR (src) Je sais mais au final c’est moi que le client va supplier pour son offre et comme Jsui un gars
cool, jfai au mieux.
EN(ref) I don’t know but in the end I am the one who will have to deal with the customer begging for
his offer and because I’m a cool guy, I do whatever I can to help him.
Cr#tpbank FR (src) Isrl1 j\;(i);:rme comprenez vivé la mm chose ou [vous] avez passé le cap je pren tou ce qui peu
EN (ref) if you understand me leave the same thing or have gotten over it I take everything that can

help me.

Table 3: Excerpts of the UGC corpora considered. Common UGC idiosyncrasies are highlighted: non-
canonical contractions, spelling errors, missing elements, colloquialism, etc. See (Foster, 2010; Seddah
et al., 2012; Eisenstein, 2013) for more complete linguistic descriptions.

the development set and a 0.1 label smoothing
(Pereyra et al., 2017).

3.2.3 Transformer architecture

We consider a vanilla Transformer model (Vaswani
et al., 2017) using the implementation proposed in
the OpenNMT framework (Klein et al., 2018). It
consists of 6 layers with word embeddings of 512
components, a feed-forward layers made of 2 048
units and 8 self-attention heads. It was trained us-
ing the ADAM optimizer with OpenNMT default
parameters.

3.3 Data processing
3.3.1 Preprocessing

All of our datasets were tokenized with byte-
pair encoding (BPE) (Sennrich et al., 2016) using
sentencepiece (Kudo and Richardson, 2018).
We use a BPE vocabulary size of 16K. As a point
of comparison we also train a system on Large
OpenSubs with 32K BPE operations. Asusual, the
training corpora were cleaned so each sentence has,
at least, 1 token and, at most, 70 tokens.

We did not perform any other pre-processing. In
particular, the original case of the sentences was
left unchanged in order to help disambiguate sub-
word BPE units (see example in Figure 1) espe-
cially for Named Entities that are vastly present in

our two UGC corpora.

3.3.2 Post-processing : handling OOV

Given the high number of OOVs in UGC, spe-
cial care must be taken in choosing the strategy
to handle them. The BPE pre-processing aims at
encoding rare and unknown words as sequence of
subword units reducing the number of tokens for
which the model has no information. But, because
of the many named-entities, contractions and un-
usual character repetitions, this strategy is not ef-
fective for UGC as it leads the input sentence to
contain many unknown BPE tokens (that are all
mapped to the special symbol <UNK> before trans-
lating).

The most common strategy for handling OOVs
in machine translation systems is simply copying
the unknown tokens from the source sentence to
the translation hypothesis. This is done in the
Moses toolkit (using the alignments produced dur-
ing translation) and in OpenNMT (that uses the
soft-alignments to copy the source token with the
highest attention weight at every decoding step
when necessary). At the time we conducted the
MT experiments, the XNMT toolkit (Neubig et al.,
2018) has no straightforward possibilities of re-



placing unknown tokens present in the test set.’
For our seq2seq NMT predictions, we performed
such replacement through aligning the translation
hypothesis with the source sentences (both already
tokenized with BPE) with fastalign (Dyeretal.,
2013) and copying the source words aligned with
the <UNK> token.

4 Measuring noise levels as corpus
divergence

Several metrics have been proposed to quantify
the domain drift between two corpora. In partic-
ular, the perplexity of a language model the KL-
divergence between the character-level 3-gram dis-
tribution of the train and test sets were two use-
ful measurements capable of estimating the noise-
level of UGC corpora as shown respectively by
Martinez Alonso et al. (2016) and Seddah et al.
(2012).

We also propose a new metric to estimate
the noise level tailored to the BPE tokenization.
The BPE stability, BPEstab, is an indicator of
how many BPE-compounded words tend to form
throughout a test corpus. Formally BPEstab is de-
fined as:

1 n_unique_neighbors(v)
= .\ 5 L - 1
N Z req(v) n_neighbors(v) M

where N is the number of tokens in the corpus, V
the BPE vocabulary, freq(v) the frequency of the
token v and n_unique neighbors(v) the number of
unique tokens that surrounds the token v. Neigh-
bors are counted only within the original word lim-
its. Low average BPE stability refers to a more
variable BPE neighborhood, and thus, higher aver-
age vocabulary complexity.

Table 4 reports the noise-level of our test sets in-
troduced in Section 3.1 with respect to our largest
training set, Large OpenSubtitles. These mea-
sures all show how divergeent are our UGC cor-
pora from our largest training set. As shown by
its OOVs ratio and its KL-divergence score, our
Cr#pbank corpus is much more noisier than the
MTNT corpus, making it a more difficult target in
our translation scenario.

SNote that the models described in (Michel and Neubig,
2018) do not handle unknown words, its reported translation
performance (Table 8§ in the Appendix) would be thus underes-
timated if compared to our own results on the MTNT (Table 5).

5 Experimental Results

5.1 MT Performance

Table 5 reports the BLEU scores’ achieved by the
three systems we consider on the different combi-
nations of train/test sets. These results show that,
while NMT systems achieve the best scores on in-
domain settings, their performance drops when the
test set departs from the training data. On the con-
trary, the phrase-based system performs far bet-
ter in out-domain setting than in-domain settings.
It even appears that the quality of the translation
of phrase-based system increases with the noise-
level (as measured by the metrics introduced in §4):
when trained on OpenSubtitles, its score for the
Cr#pbank is surprisingly better than for in-domain
data. This is not the case for neural models. In the
next section we present a detailed error analysis to
explain this observation.

Interestingly enough, we also notice that a MT
system trained on the OpenSub corpora performed
much better on UGC test sets than the system
trained on the WMT collection. To further investi-
gate whether this observation results from a badly
chosen number of BPE operations, we have also
trained using the Large OpenSubtitles corpus
tokenized with a 32K operation BPE. We have
selected these numbers of BPE operations (16K
and 32K), beacause they are often used as main-
tream values, but this BPE parameter has been
shown to have a significant impact on the MT sys-
tem performance (Salesky et al., 2018; Ding et al.,
2019). Thus, the number of merging BPE oper-
ations should be carefully optimized in order to
garantee the best performance. However, this mat-
ter is out of the scope of our work.

Comparing both Large OpenSubtitles with BPE
tokenization 16K and 32K, BLEU scores reveal
that PBSMT has considerably lower performance
as the vocabulary size doubles. Regarding the
seq2seq NMT and, specially, PBSMT, we can no-
tice these systems underperform for such vocab-
ulary size, whereas the Transformer architecture
shows slightly better performances. However, the
Transformer still does not outperforms our best PB-
SMT benchmark on Cr#pbank. It is worth not-
ing that performances of the in-domain test Open-
SubsTest are kept almost invariable for PBSMT
both and NMT models.As expected, these perfor-
mance gaps between PBSMT and NMT models are

"All BLEU scores evaluation are computed with Sacre-
BLEU (Post, 2018).



| Metric / Test set —  Cr#pbank I MTNT' Newstest OpenSubsTest
3-gram KL-Div 1.563 0.471 0.406 0.0060
%00V 12.63 6.78 3.81 0.76
BPEstab 0.018 0.024 0.049 0.13
PPL 599.48 318.24 288.83 62.06

Table 4: Domain-related measure on the source side (FR), between Test sets and Large OpenSubtitles

training set. Dags indicate UGC corpora.

PBSMT seq2seq Transformer
Crap MTNT News Open Crap MTNT News Open Crap MTNT News Open
WMT  20.5 21.2 22.5t% 133 17.1 24.0 29.11 16.4 15.4 21.2 27.4% 16.3
Small  28.9 27.3 204 26.1% 26.1 28.5 245 2827 27.5 283 26.7 3147
Large  30.0 28.6 22.3 27.4% 21.8 22.8 17.3 28.57 26.9 28.3 26.6 31.5¢F
L;’zrlg(e 27 221 161  27.4% 253 272 219 284 278 285 271 31.9%

Table 5: BLEU score results for our three models for the different train-test combinations. All the MT
predictions have been treated to replace UNK tokens according to Section 3.3.2. The best result for each
test set is marked in bold, best result for each system (row-wise) in blue color and score for in-domain
test sets with a dag. ‘Crap’, ‘MTNT’, ‘News’ and ‘Open’ stand, respectively, for the Cr#pbank, MTNT,

newstest'14 and OpenSubtitlesTest test sets.

substantial to out-of-domain test corpora, whereas
scores on the in-domain test sets remain almost
invariable regardless the chosen BPE vocabulary
size.

5.2  Error Analysis

The goal of this section is to analyze both quanti-
tatively and qualitatively the output of NMT sys-
tems to explain their poor performance in translat-
ing UGC. Several works have already identified
two main limits of NMT systems: translation drop-
ping and excessive token generation, also known
as over-generation (Roturier and Bensadoun, 2011;
Kaljahi et al., 2015; Kaljahi and Samad, 2015;
Michel and Neubig, 2018). We will analyze in de-
tail how these two problems impact our models in
the following subsections.

It is also interesting to notice how performances
lowered on the LargeOpenSubtitles system to-
kenized with 16K BPE operations for the seq2seq
system. Specifically the newstest ' 14 translation
results, for which we noticed a drop of 7.2 BLEU
points with respect to the SmallOpenSubtitles
configuration, despite having roughly 4 times
more training data. This is due to a faulty be-
haviour of the fastalign method, directly caused
by a considerable presence of UNK on the seq2seq
output. Concisely, there were 829 UNK tokens
on the newtest’ 14 prediction for the Small model

and 3,717 of such tokens in the output of the Large
setup. As soon as we double the number of opera-
tions on the further to train the Large 32K system,
performances on all the out-of domain testsets sub-
stantially increase, having 862 UNK tokens on the
newstest'14. This points to the fact that keep-
ing the same size of BPE vocabulary while increas-
ing the size of the trainig data several times causes
to have too many UNK subword tokens on cross-
domain corpora due to a small vocabulary given
the size and the lexical variability of the training
corpus. This is also suggested by the fact that the
LargeOpenSubtitles 16K systemresults forthe
in-domain test set are the only ones with no per-
formance loss. On the othe hand, it is important
to note that the PBSMT and Transformer architec-
ture did not showed a performance decrease for the
Large model either.

Additionally, the PBSMT results for the Large
32K system are considerably lower than for any of
the other 2 OpenSubtitles configurations. This
shows that the PBSMT performs worse when we
have 32K vocabulary size keeping the same data
size, when compared to the Large system results.
We hypothesize that this is caused by a loss of gen-
eralization capability due to the fact that phrase-
tables are less factorized when having bigger vo-
cabularies of whole words, rather than relatively



few sub-word vocabulary elements.

5.2.1 Translation Dropping

By manually inspecting the systems outputs, we
found that NMT models tend to produce shorter
outputs than the translation hypotheses of our
phrase-based system, often avoiding to translate
the noisiest parts of the source sentence, such as
in the example described in Figure 1. Sato et al.
(2016) reports a similar observation.

Analyzing the attention matrices shows that this
issue is often triggered by very unusual token se-
quences (e.g. letter repetitions that are quite fre-
quent in UGC corpora), or when the BPE tokeniza-
tion results in a subword token that can generate
a translation that has a high probability according
to a corpus of canonical texts. For instance, in
Figure 1, a rare BPE token, part of the Named
Entity “teen wolf” gets confused with the very
common french token “te” (you). As a conse-
quence, the seq2seq model suddenly stops trans-
lating because the hypothesis “I want to look
at you” is a very common English sentence with
a much lower perplexity than the (correct) UGC
translation. Similar pattern can be observed with
the Transformer architecture in case of rare token
sequences on the source side, such as in the third
example of Table 9, causing the translation to stop
abruptly.
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Figure 1: Attention matrix for the source sentence
‘Bon je veux regardé teen wolf moi mais ce soir
nsm*’ predicted by a seq2seq model. *Ok, I dowant
to watch Teen Wolf tonight motherf..r

Our phrase-based model does not suffer from

this problem as there is no entry in the phrase ta-
ble that matches the sequence of BPE tokens of
the source sentence. This illustrates how hard
alignment tables can be more efficient than soft-
alignment produced by attention mechanisms for
highly noisy cases, in particular when the BPE tok-
enization generates ambiguous tokens, which con-
fuses the NMT model.

To quantify the translation dropping phe-
nomenon, we show, in Figure 2, the distribution
of the ratio between the reference (ground truth)
translation sentence length and the one produced
by PBSMT and NMT for Cr#pbank. This figure
shows that both the NMT and Transformers
models have a consistent tendency of producing
shorter sentences than expected, while PBSMT
does not. This is a strong evidence that NMT
systems produce overall shorter translations,
as has been noticed by several other authors.
Moreover, there are a substantial percentage of
the NMT predictions that are 60% shorter than the
references, which demonstrates the presence of
translations being dropped or shortened.

SMT (Moses)
NMT (XNMT)
3.0 Transformer (OpenNMT-py)

N
o

-
«

Number of sentences

1.0

0.5

0.0

0.2 0.4 0.6 0.8 1.0 1.2 14
Ratio between the MT and reference lengths

Figure 2: Distribution of Cr#pbank translations
length ratio w.r.t ground truth translations.

5.2.2 Opver-translation

A second well-known issue with NMT is that the
model sometimes repeatedly outputs tokens lack-
ing any coherence, thus adding considerable artifi-
cial noise to the output (Tu et al., 2016).

When manually inspecting the output, we
noticed that this phenomenon occurred in UGC
sentences that contain a rare, and often repetitive,
sequence of tokens, such as those present in
sentences like “ne spooooooooilez pas teen



wolf non non non et non je dis non”
(don t spoooooil Teen wolf no and no I say no) in
which the speaker emotion is expressed by repe-
titions of words or letters. The attention matrix
obtained when translating such sentences with a
seqg2seq model often shows that the attention
mechanism gets stalled due to the repetition of
some BPE token (cf. the attention matrix in
Figure 3 that corresponds to the example above).
More generally, we noticed many cases in which
the attention weights start focusing more and more
on the end-of-sentence token until the translation
is terminated while ignoring the source sentence
tokens thereafter.

The transformer model exhibits similar prob-
lems (for instance it translates the previous exam-
ple to “No no no no no no no no no no no
no no no no no no no”). The PBSMT system
does not suffer for this problem and arguably pro-
duces the best translation: “don't spooooocoozt
Teen Wolf, no, no, no, no, I say no”.

m TITITII T I

Figure 3: Attention matrix of a seq2seq model
that exhibits the excessive token repetition prob-
lem. The sharp symbol (#) indicates spaces be-
tween words before the BPE tokenization.

To quantify the amount of noise artificially
added by each of our models, we report, in Table 6
the Target-Source Noise Ratio (TSNR), recently
introduced by Anastasopoulos (2019). A TSNR
value higher than 1 indicates that the MT system
adds more noise on top of the source-side noise,
i.e. the rare and noisy tokens present in the source
create even more noise on the output. This met-
ric assumes that we have access to a corrected ver-
sion of each source sentence. So in order to quan-

tify this noise, we manually corrected 200 source
sentences of the Cr#pbank corpus. In Table 6, we
can observe that PBSMT has a better TSNR score,
thus adding less artifacts (including dropped trans-
lations) to the output. We notice that the gap be-
tween PBSMT and NMT architectures (about 0.3)
is much larger when training on WMT than when
training in our OpenSubtitles (about 0.1).

PBSMT seq2seq Transformer
WMT 4.62 5.00 4.92
Small 4.11 4.27 4.19
Large 3.99 4.27 4.09

Table 6: Noise added by the MT system estimated
with the TSNR metric for the Cr#pbank corpus,
the lower the better.

5.2.3 Qualitative analysis

In Table 9, in the Appendix for space reasons,
we present some more MT outputs to qualita-
tively compare the PBSMT and NMT models.
These predictions were produced using Large
OpenSubtitles, trained with 16K fixed size vo-
cabulary. From Example 9.1, we can see both
NMT models exhibiting better grammatical coher-
ence on the output. Specifically, the Transformer
displays the most well-formatted and fluid trans-
lation. From Example 9.2, the seq2seq model
produces several potential translations to unknown
expressions (“Vous m’avez tellement soulé”) and
translates “soulé” — “soiled”. Note that “flappy”
is also often translated as “happy” throughout the
Cr#pbank translations. The Transformer model
produces arguably the worst results for this exam-
ple because of this unknown expression (“You 've
got me so flappy”). Example 9.3 shows one symp-
tomatic example of the transformer producing a
shorter translation than the source and a common
tendency to the seq2seq and Transformer mod-
els to basically “crash” when problematic cases
are added (bad casing, rare word, incorrect syn-
tax..). Finally, on Example 9.4, we can notice
that neither of the NMT systems can correctly
translate the upper-cased source token “CE SOIR”
— “TONIGHT”, whereas PBSMT achieves to do
so. It is interesting to note that the Transformer
model generated a non-existent word (“SOIRY”’) in
its attempt to translate the OOV.



6 Discussion

The results presented in the previous two sec-
tions confirm the conclusions of Anastasopoulos
(2019) that found a correlation between NMT per-
formance and the level of noise in the source sen-
tence. Note that, for computational reasons we
have considered a single NMT architecture in all
our experiments. However, Sennrich and Zhang
(2019) have recently shown that hyper-parameters
such as batch size, size of BPE vocabulary, model
depth, etc., can have a large impact on translation
performance especially in low-resource scenario,
a conclusion that should be confirmed in cross-
domain setting such as the one considered in this
work.

As shown by the differential of performance
in favor of the smaller training sets when used
with the neural models, our results suggest that
the specificities of UGC raise new challenges for
NMT systems that cannot simply be solved by
feeding ours models more data. Nevertheless,
Koehn and Knowles (2017) highlighted 6 chal-
lenges faced by Neural Machine Translation, one
of them being the lack of data for resource poor-
domain. This issue is strongly emphasized when
it comes to UGC which does not constitute a do-
main on its own and which is subjected to a degree
of variability only seen in the processing historical
document over a large period of times (Bollmann,
2019) or in emerging dialects which can greatly
varies over geographic or socio-demographic fac-
tors (transliterated Arabic dialects for example).
This is why the availability of new UGC data sets
is crucial and as such the release of the Cr#pbank
is a welcome, small, stone in the edifice that will
help evaluating machine translation architectures
in near-real conditions such as blind testing.

In order to avoid common leaderboard pitfalls
in such settings, we did not use the Cr#pbank’s
blind test set for any of our experiments, neither
did we for the MTNT validation test. Neverthe-
less, evaluating models on unseen data is neces-
sary, the more being the better. Therefore, in
the absence of a MTNT blind test, we used a sam-
ple of its validation set, approximately matching
the same average sentence length than its refer-
ence test set. In Table 7 are presented results of
our best systems, based on their performance on
our UGC test sets. They confirm the tendency
exposed earlier: our PBSMT system is more ro-
bust to noise than our transformer-based NMT

with respectively +4.4 and +11.4 BLEU points for
the MTNT and Cr#pbank blind tests. For com-
pleteness, we run the seq2seq system of Michel
and Neubig (2018), trained on their own data set
(Europarl-v7, news-commentary-v10), with-
out any domain-adaptation, on our blind tests. Re-
sults are on the same range than the same seq2seq
model we trained on our edited data set (WMT).
It would be interesting to see how their domain-
adaptation technique, fine-tuning on the target do-
main data, which brought their system’s perfor-
mance to BLEU 30.29 on the MTNT test set, would
fare on unseen data. As UGC domain is a con-
stantly moving, almost protean, target, adding
more data seems unsustainable on the long run. Ex-
ploring unsupervised adaptive normalization could
provide a solid alternative.

Blind Test Sets
System MINT Cr#pbank
Large 16K - PBSMT 29.3 30.5
Large 32K - Transformer 24.9 19.1
N&G18 19.3 13.3
N&G18 + our UNK 21.9 15.4

Table 7: BLEU score results comparison on the
Cr#pbank and MTNT blind test sets. N&G18 stands for
(Michel and Neubig, 2018)'s baseline system

7 Conclusions

This work evaluates the capacity of both phrase-
based and NMT models to translate UGC. Our ex-
periments show that phrase-base systems are more
robust to noise than NMT systems and we provided
several explanations about thisrelatively surprising
fact, among which the discrepancy between BPE
tokens as interpreted by the translation model at
decoding time and the addition of lexical noise fac-
tors are among the most striking. We have also
shown, by producing a new data set with more vari-
ability, that using more training data was not nec-
essarily the solution for coping with UGC idiosyn-
crasies. The aim of this work is of course not to
discourage the NMT system deployment for UGC,
but to better understand what in PBSMT methods
contribute to noise robustness.

In our future work, we plan to see whether theses
conclusions still hold for other languages and even
noisier corpora. We also plan to see whether it is
possible to bypass the limitations of NMT systems
we have identified by pre-processing and normal-
izing the input sentences.
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Appendix

J System / Test set — Newstest’14  Discusstest’15 MTNT!
out-of-domain set-up

WMT-seq2seq N&G18 28.93 30.76 23.27

WMT-seqg2seq (Ours) 28.70 30.00 23.00

domain adaptation set-up
WMT-seq2seq N&G18+fine tuning - - 30.29

Table 8: BLEU score results comparison between our seq2seq system and thoses reported by Michel and
Neubig (2018). None of the system outputs have been treated to replace UNK tokens. Dags indicate UGC
corpora. N&G18 stands for (Michel and Neubig, 2018)'s system.

® src Nen sans rire, j’ai bu hier soir mais ca faisait deux semaines.
ref Yeah no kidding, I drank last night but it had been two weeks.
PBSMT No, no, I’ve been drinking last night, but it’s been two weeks.
seq2seq No laughing, I drank last night, but it’s been two weeks.
Transformer  No kidding, I drank last night, but it’s been two weeks.

@ src Vous m’avez tellement soulé avec votre flappy bird j’sais pas quoi. Mais je vais le télécharger.
ref You annoyed me so much with your flappy bird whatever. But I’'m going to download it.
PBMST You’re so drunk with your flappy bird I don’t know. But I’m going to download.
seq2seq You have soiled me happy bird I don’t know what, but I’'m going to download it.
Transformer  You’ve got me so flappy I don’t know what, but I’'m gonna download it.

® src Vos gueul ac vos Zlatan
ref Shut the fck up with your Zlatan.

PBMST Your scream in your Zlatan
seq2seq Your shrouds with your Zlatan
Transformer Zlatan!

@  src CE SOIR Y A L’EPISODE DE #TeenWolf OMFGGGG
ref TONIGHT THERE’S THE #TeenWolf EPISODE OMFGGGGG
PBMST Tonight’s It At The EPISODE OF #Teen Wolf OMFGGGG
seq2seq Teenwolf OMFGGGGGGGGGG
Transformer THIS SOIRY HAS THE #TeenWOL OMFGGGGGGGGGG

Table 9: Examples from our noisy UGC corpus.
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Figure 4: Attention matrix for the source sentence ‘Ce soir Teen Wolf les gars.*’ showing a proper trans-
lation thanks to correct casing of the named-entity BPE parts. *Tonight Teen Wolf guys.
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Abstract

Standard approaches to treebanking tradi-
tionally employ a waterfall model (Som-
merville, 2010), where annotation guide-
lines guide the annotation process and in-
sights from the annotation process in turn
lead to subsequent changes in the anno-
tation guidelines. This process remains
a very expensive step in creating linguis-
tic resources for a target language, neces-
sitates both linguistic expertise and man-
ual effort to develop the annotations and is
subject to inconsistencies in the annotation
due to human errors.

In this paper, we propose an alternative ap-
proach to treebanking—one that requires
writing grammars. This approach is moti-
vated specifically in the context of Univer-
sal Dependencies, an effort to develop uni-
form and cross-lingually consistent tree-
banks across multiple languages. We
show here that a bootstrapping approach
to treebanking via interlingual grammars
is plausible and useful in a process where
grammar engineering and treebanking are
jointly pursued when creating resources
for the target language. We demonstrate
the usefulness of synthetic treebanks in the
task of delexicalized parsing, a task of in-
terest when working with languages with
no linguistic resources and corpora. Ex-
periments with three languages reveal that
simple models for treebank generation are
cheaper than human annotated treebanks,
especially in the lower ends of the learning
curves for delexicalized parsing, which is
relevant in particular in the context of low-
resource languages.

Aarne Ranta
University of Gothenburg
aarne@chalmers.se

1 Introduction

Treebanking remains a vital step in the process
of creating linguistic resources for a language —
a practice that was established in the last 2-3
decades (Marcus et al., 1994). The process of tree-
banking involves training human annotators in or-
der to obtain high-quality annotations. This is a
human-intensive and costly process where multi-
ple iterations are performed to refine the quality
of the linguistic resource. Grammar engineering
is a complementary approach to creating linguis-
tic resources: one that requires a different kind of
expertise. These two approaches have remained
orthogonal for obvious reasons: treebanks are pri-
marily necessary to induce abstractions in NLU
(Natural Language Understanding) models from
data, while grammars are themselves abstractions
arising from linguistic knowledge. Abstractions
induced from data have proven themselves to be
useful for robust NLU tasks, while grammars are
better at precision tasks involving NLG (Natural
Language Generation).

Given the resources required for treebanking,
synthetic treebanks have been proposed and used
as substitute in cross-lingual parsing for languages
where treebanks do not exist. Such treebanks are
created using parallel corpora where parse trees in
one language are bootstrapped into a target lan-
guage using alignment information through anno-
tation projection (McDonald et al., 2011; Tiede-
mann, 2014) or using machine translation systems
to bootstrap existing treebanks in one or more
source language(s) to the target language (Tiede-
mann and Agic, 2016; Tyers et al., 2018). More re-
cently, synthetic treebanks are generated for both
real and artificial languages using multilingual
treebanks by learning feasible parameter combina-
tions (Wang and Eisner, 2016) — Wang and Eisner
(2018) show that such treebanks can be useful to
select the most similar language to train a parsing
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model for an unknown language.

At the same time, grammar-based treebanking
approaches have been shown to work in monolin-
gual setups—to derive rich linguistic representa-
tions defined by explicit grammars (Oepen et al.,
2004). These approaches are carried out by pars-
ing raw corpora with a target grammar and using
an additional human disambiguation phase. Al-
ternatively, existing treebanks are matched against
the target grammar further reducing the human ef-
fort in disambiguation: these approaches face a
challenge of under-specification in the source tree-
banks (Angelov, 2011). In the current paper, we
propose a hybrid of these two methods: we use ab-
stract syntax grammars as core linguistic abstrac-
tion to generate synthetic treebanks for a grammar
that can be translated to target representations with
high precision.

The question of annotation costs and ways to
minimize the dependence on such annotated cor-
pora has been a recurring theme in the field for
the last two decades (Ngai and Yarowsky, 2000;
Garrette and Baldridge, 2013). This question has
also been extensively addressed in the context
of dependency treebanks. We revisit this ques-
tion in context of Universal Dependencies and re-
cent work on the interplay between interlingua
grammars and multilingual dependency trees in
this scheme (Kolachina and Ranta, 2016; Ranta
and Kolachina, 2017; Ranta et al., 2017). The
use of interlingua grammars to bootstrap depen-
dency treebanks guarantees two types of consis-
tencies: multilingual treebank consistency and
intra-treebank consistency. We study the effi-
cacy of these dependency treebanks using learn-
ing curves of a transition-based parser in a delexi-
calized parsing setup. The delexicalized parsing
setup allows for generation of parallel UD tree-
banks in multiple languages with minimal pre-
requisites on language-specific knowledge.

Another rationale behind the the current work in
the context of cross-lingual parsing is while syn-
thetic treebanks offer a “cheap” alternative, the
signal for the target language is limited by the
quality of the MT system. On the other hand, in-
terlingua grammars provide a high-quality signal
about the target language. High quality using in-
terlingual grammars refers to accurate generation
of word-order and morphology — although lexical
selection in translation is still a problem. There
have not been previous attempts in cross-lingual

parsing to our knowledge studying the effect of
these.

This paper is structured as follows: Sec-
tion 2 gives the relevant background on interlin-
gua grammars and the algorithm used to generate
UD trees given treebank derived from an interlin-
gua grammar. Section 3 describes our algorithm to
bootstrap treebanks for a given interlingua gram-
mar and parallel UD treebanks from them along
with an intrinsic evaluation of these bootstrapped
UD treebanks. Section 4 shows the parsing setup
we use and Section 5 details the results of the pars-
ing experiments.

2 Grammatical Framework

Grammatical Framework (GF) is a multilingual
grammar formalism using abstract syntax trees
(ASTs) as primary descriptions (Ranta, 2011).
Originating in compilers, AST is a tectogrammat-
ical tree representation that can be shared between
languages. A GF grammar consists of two parts —
an abstract syntax shared between languages and
concrete syntax that is defined for each language.
The abstract syntax defines a set of categories and
a set of functions, as shown in Figure 1. The
functions defined in the abstract syntax specify
the result of putting subparts of two categories to-
gether and the concrete syntax specifies how the
subparts are combined i.e. word-order preferences
and agreement constraints specific to the language.
A comprehensive implementation of a multilin-
gual grammar in GF is the Resource Grammar
Library, GF-RGL (Ranta, 2009), which currently
has concrete syntaxes for over 40 languages, rang-
ing from Indo-European through Finno-Ugric and
Semitic to East Asian languages. ! This imple-
mentation contains a full implementation of the
morphology of the language, and a set of 284 syn-
tactic constructors that correspond to the core syn-
tax of the language. Also included is a small lex-
icon of 500 lexical concepts from a set of 19 cat-
egories, of which 10 correspond to different sub-
categorization frames of verbs, 2 classes of nouns
and adjectives. These grammars are reversible-
i.e. they can be used for parsing and simultaneous
multilingual generation into multiple languages.
The concrete syntaxes for all the languages de-
fine the rules for these syntactic constructors and
'The current status of GF-RGL can be seen in
http://www.grammaticalframework.org/

lib/doc/synopsis.html which also gives access to
the source code.
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abstract syntax

PredvP : NP -> VP -> Cl nsubj head
Complv2 : V2 -> NP -> VP head dobj
AdvVP : VP -> Adv -> VP head advmod
DetCN : Det -> CN -> NP det head
ModCN : AP ->CN -> CN amod head
UseN : N -> CN head
UsePron : Pron -> NP head
PositA : A -> AP Head

cat A ADJ

cat Adv ADV

cat Det DET

cat N NOUN

cat Pron PRON

cat V2 VERB

dependency configuration

PredVP
E=E/AN
DetCN AdvVP
the_Det ModCN ComplV2 today_Adv
N =1
N

PositA UseN see_V2 UsePron

black_A cat_N we_Pron

Figure 1: Abstract syntax of a GF grammar and its specification for UD scheme. Also shown is an
example AST for the sentence the black cat sees us today. Any function with a definition written as
f: Ci = Cy — ...Cy — C; can be rewritten as a context-free rule f. C ::= C1C,...C,,.

the lexical concepts. The expressivity of these
grammars is equivalent to a PMCFG (Seki et al.,
1991), which makes parsing complexity of this
formalism polynomial in sentence length. Poly-
nomial parsing with high exponents can still be
too slow for many tasks, and is also brittle if the
grammars are designed to not over-generate. But
generation using GF grammars has been shown to
be both precise and fast, which suggests the idea
of combining data-driven parsing with grammar-
driven generation. We refer the interested reader
to Ljunglof (2004) for discussion on expressivity
of this formalism and Angelov (2011); Angelov
and Ljunglof (2014) for discussion on probabilis-
tic parsing using GF grammars.

2.1 gf2ud

Kolachina and Ranta (2016) propose an algorithm
to translate ASTs to dependency trees, that takes
a specification of the abstract syntax of the GF
grammar (referred to as configurations, see Fig-
ure 1) which describes the mapping between the
grammar and a target dependency scheme, in this
case Universal Dependencies. These configura-
tions can be interpreted as a synchronous grammar
over the abstract syntax as source and dependency
scheme as target.

The first step in this transducer is a recursive an-
notation that marks for each function in the AST,
one of the arguments as head and specifies labels
for the other arguments, as specified by the con-
figuration. The algorithm to extract the resulting
dependency tree from the annotated AST is sim-
ple.

o for each leaf X (which corresponds to a lexi-
cal item) in the AST
— trace the path up towards the root until
you encounter a label L
— from the node immediately above L, fol-
low the spine (the unlabeled branches)
down to another leaf Y
— Y is the head of X with label L

At the end of these two steps, the resulting data-
structure is an abstract dependency tree (ADT
shown in Figure 2). It should be noted that the
order of nodes shown in the ADT does not re-
flect the surface order that is specific to a language.
The ADT combined with the concrete syntax of a
language and concrete configurations (when nec-
essary) results in the corresponding full UD tree.
The concrete configurations are necessary to pro-
vide appropriate labels to syncategorematic words
like auxiliary verbs and negation particles. Addi-
tionally, the category configuration on the abstract

17



mod
0b_|
amo \

see_V2 catN the_Det blackA we_Pron today_Adv
V2 N Det Pron Adv

Figure 2: ADT for the sentence the black cat sees
us today. The nodes in the ADT correspond to lex-
ical functions defined in the grammar. Also shown
is the UD part-of-speech tag sequence. Note that
the order of nodes does not reflect the surface or-
der in any particular language.

syntax can be augmented with a language-specific
category configurations to generate the morpho-
logical features in the dependency tree with a de-
sired tag set.

Kolachina and Ranta (2016) show that their
method can be used to generate partially labeled
UD trees for 30 languages when the correspond-
ing concrete syntax is available. They also show
that using configurations defined on abstract syn-
tax alone and depending on the availability of the
concrete syntax, a large fraction (around 75-85%
of edges) of the dependency treebanks can be gen-
erated automatically. This is done with small tree-
banks of ASTs —a UD treebank of 104 ASTs and a
GF treebank of 400 ASTs. Their results show that
parallel UD treebanks can be bootstrapped using
ASTs and interlingua grammars, the usefulness of
such treebanks however is not addressed in that
work. Full UD treebanks can be generated when
concrete configurations (those addressing syncate-
gorematic words) are additionally available for the
language.

3 Bootstrapping AST and UD treebanks

The abstract syntax component of a GF grammar
is an algebraic datatype definition, which can also
be seen as a context-free grammar (CFG). The dis-
ambiguation model defined in GF uses a context-
free probability distribution defined on the abstract
syntax. The advantage of defining the distribution
on the abstract syntax is that it allows for trans-
fer of distribution to languages for which GF tree-
banks do not exist. The context-free distribution
decomposes the probability estimate of a tree as
the product of probabilities of the sub-trees and the
probability of the function applied to these sub-

ExistNP
AdvNP
/ N\
ConjNP weekdayNextAdy
/ |
or_Conj BaseNP saturday_Weekday
/ N\
nothing NP nobody_NP

(a) An AST of an existential clause bootstrapped using our
model.

there 1is
det finns

nothing or nobody next Saturday
inget eller ingen nidsta lordag

(b) Linearization of the AST in English and Swedish

nothing_ NP or_Conj nobody_NP saturday_Weekday
PRON CCONJ PRON NOUN

(c) ADT corresponding to the above example that has to be
delexicalized.

PRON VERB PRON CCONJ PRON ADJ NOUN

(d) The delexicalized UD tree in both English and Swedish
shares the same part-of-speech tag sequence and dependency
labels

Figure 3: Example of a bootstrapped AST and UD
tree and the intermediate ADT.
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trees. The probabilistic abstract syntax grammar
can therefore be defined in terms analogous to a
probabilistic CFG (PCFG). The probability distri-
bution over the set of categories in the grammar is
also included in the distribution corresponding to
the abstract syntax.

We use this formulation as a starting point and
generate ASTs for a given grammar. The ASTs
bootstrapped using the probability model defined
above are correct in terms of the grammar but do
not follow the selectional preferences that encode
semantic preferences verbs have for their argu-
ments typically found in language. For this reason,
we refer to the bootstrapped treebanks as “syn-
thetic” data.

Additionally, while the algorithm used to boot-
strap ASTs does not change depending on whether
the grammar includes a lexicon or not, it is signif-
icantly faster depending the size of the grammar.
Stacking gf2ud defined using abstract configu-
rations on top of these bootstrapped ASTs results
in a treebank of ADTs. Alternatively, the concrete
syntax of a language can straightforwardly be used
to linearize a corpus of the target language. The
concrete syntax and the concrete configurations
when available are used to generate fully labelled
UD treebanks for a target language. Figure 3
shows an example of a synthetic AST and delexi-
calized UD tree bootstrapped using the RGL.

The bootstrapping algorithm uses a parameter cor-
responding to the maximum depth of the trees d to
be generated. The generative story is as follows:

e Pick a category C using the distribution over

categories defined in the probability model.

e Select a function F' with the definition C; —
Cy — ... = Cy — C according to the condi-
tional distribution P(F|C).

e Recursively apply the same step to build sub-
trees of maximum depth d — 1, tc,, tc, ...
tq, of categories Cy, Cs ... C,, respectively.

e Return (F tc, tc, .- tc,)-

3.1 Differences against UDv2

The design of the RGL and corresponding config-
urations do not contain all of the structures de-
fined in the UD annotation scheme. The miss-
ing structures fall into two major categories: la-
bels that depend on the lexical realization in a spe-
cific language, and structures that correspond to
specific linguistic constructions that are not part
of the core RGL syntax. Examples of the first

Language H(Pyp) H(PGE) Cross-entropy
Afrikaans 39.59 58.34 63.12
Arabic 40.00 42.13 51.38
Basque 44.19 51.19 54.21
Bulgarian 32.09 53.76 61.23
Catalan 44.49 49.37 57.39
Chinese 39.25 42.10 59.76
Danish 44.85 55.28 63.39
Dutch 48.99 49.67 61.27
English 50.52 45.31 58.17
Estonian 39.45 43.82 49.35
Finnish 47.86 41.52 54.39
French 43.41 49.43 53.47
German 41.35 49.35 51.29
Greek 29.48 41.13 49.17
Hindi 32.99 43.18 54.27
Italian 38.55 51.37 59.64
Japanese 27.34 40.18 47.25
Latin 42.07 43.47 49.89
Latvian 49.75 49.91 59.26
Norwegian (bokmal) 40.29 45.97 53.17
Norwegian (nynorsk) 37.29 44.56 56.32
Persian 33.07 47.29 47.16
Polish 23.85 41.27 49.83
Portuguese 40.84 48.73 53.60
Romanian 4731 52.31 57.12
Russian 39.14 47.92 52.84
Spanish 46.36 52.17 57.73
Swedish 35.36 4741 51.39
Urdu 33.70 42.14 58.73
Icelandic N/A 51.26 N/A
Thai N/A 41.23 N/A
Table 1: Entropy values of probability distri-

butions P(label—(head-pos)) for different lan-
guages estimated from real (Pyp) and boot-
strapped (PGp) treebanks. If a language has more
than one treebank in the UD distribution, we se-
lect one treebank as the primary treebank and use
that to estimate the distribution and in the parsing
experiments. Languages for which a UD treebank
does not exist but is included in GF-RGL are listed
towards the bottom of the table.

type include multi-word expressions and proper
nouns (labeled using fixed and flat label). In
the second class, are ellipsis and paratactic con-
structions in addition to labels that are used in ro-
bust analysis of web text (orphan, goeswith
and reparandum). Examples that cover these
labels can be generated by re-writing the gram-
mar: however, we found very few instances of
these in the treebanks. Finally, another varia-
tion in the bootstrapped treebanks is in the case
of label subtypes that are optionally defined in a
language-specific manner. While the configura-
tions allow for accurate generation of certain la-
bels (e.g. obl:agent in the case of passive
agents), recovering similar information in other
instances is not possible without a significant re-
design of the RGL (e.g. obl:tmod for tempo-
ral modifiers). We address this issue by restricting
gf2ud to generate only the core labels in UD and
ignore subtype labels uniformly across languages.

Table 1 shows the entropies of the conditional
probability distribution defined as probability of a
UD label given the part-of-speech tag of the head.
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The distributions are estimated on both the syn-
thetic UD treebank and a human annotated UD
treebank 2 Also shown in the table are the cross-
entropy values between the distribution estimated
from the synthetic and the original treebanks.

4 UD Parsing

The bootstrapped UD treebanks are used to train
delexicalized parsing models. We choose to work
with the delexicalized UD treebanks for two rea-
sons: first, the context-free assumption in the
probabilistic model defined on the abstract syntax
makes the tree generation decomposable, but se-
lectional preferences are not encoded in the gener-
ative model used for bootstrapping the ASTs. Sec-
ondly, generating a full UD treebank assumes the
availability of an interlingua lexicon — which re-
duces the portability of this approach to new lan-
guages.> For both these reasons, we restrict our-
selves to strictly delexicalized UD treebanks in our
parsing experiments.

We are interested in the following three use-
cases depending on the size of the training data
(N) available for inducing parsing models.

e When N < IK sentences* are available for
a language. There are around 20 treebanks
in the current UD distribution that match
this criterion and almost all these treebanks
have been manually annotated from scratch.
This corresponds to the scenario of under-
resourced languages, where either the mono-
lingual corpus for treebank or annotators
for treebanking are scarce. This scenario
strongly corresponds to our proposed idea of
simultaneous grammar engineering and tree-
banking.

e When 1K < N < 5K sentences’ are avail-
able for a language. There are around 18
treebanks in the current UD distribution that
match this criterion. While one can argue
that these languages are not really under-
resourced, this setup matches the typical case
of training domain-specific parsers either for
a particular domain like bio-medical or legal
texts.

The UD treebanks are taken from the v2.3 distribution.

3 There is ongoing work on developing interlingual lexica
from linked data like WordNet (Virk et al., 2014; Angelov
and Lobanov, 2016).

“This approximately corresponds to 20K tokens.

>This approximately corresponds to 20K — 100K tokens.

e The case where treebanks are larger than ei-
ther of the two previous scenarios N > 5K.
This setup is interesting to test the limit of
how useful are bootstrapped ASTs and UD
treebanks to train parsing models.

For each of these use-cases, we train parsing
models using data from both human annotated
UD treebanks and synthetic treebanks for different
sizes of training data. The resulting parsing mod-
els are evaluated using labelled attachment scores,
obtained by parsing the test set of the UD tree-
bank for the language in question. We experiment
with an off-the-shelf transition-based dependency
parser that gives good results in the dependency
parsing task (Straka and Strakova, 2017). In the
ideal case the experiments need to be carried out
using multiple parsers from both the transition-
based and graph-based paradigms. We leave that
for future work.

5 Experiments

We ran experiments with 3 languages — English,
Swedish and Finnish in this paper. In addition to
the availability of a concrete syntax for the lan-
guage, our approach also requires concrete config-
urations for the languages (Kolachina and Ranta,
2016) in order to bootstrap full UD trees. Ta-
ble 2 shows statistics about the concrete config-
urations for the RGL grammar for the languages.
The probability distribution defined on the RGL
was estimated using the GF-Penn treebank (Mar-
cus et al., 1994; Angelov, 2011) of English. This
raises another question — how well does the distri-
bution defined on the abstract syntax of the RGL
estimated from monolingual data transfer across
other languages. The bootstrapping algorithm was
restricted to generate 20K ASTs of depth less than
10.°

We use UDPipe (Straka and Strakovd, 2017) to
train parsing models, using comparable settings
to the baseline systems provided in the CoNLL18
shared task (Zeman and Haji¢, 2018). Gold tok-
enization and part-of-speech tags are used in both
training and testing the parser. This was done
to control for differences in tagging performance
across the synthetic and original UD treebanks.
The models are trained using the primary tree-
banks from Universal Dependencies v2.3 distri-
bution.” We plot the learning curves for parsing

STrees of depth less than 4 were filtered out in the process.
7 The notion of primary treebank for a language has been
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Figure 4: Learning curves for parsing models of trained on original UD and synthetic UD treebanks.
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Figure 5: Learning curves shown using bar plots for parsing models trained on less than 1000 sentences
from original UD and 2000 sentences from synthetic UD treebanks.

Language | Abstract | Concrete | Morph-features
English 143 21 57
Swedish 143 25 59
Finnish 143 31 57

Table 2: Estimate of the effort required in gf2ud.
The abstract configurations are the same for
all languages, while the concrete functions and
morph-features are defined for each language. The
first column corresponds to configurations for syn-
tactic constructors in the RGL, and second column
corresponds to constructors that use syncategore-
matic words in the linearization.

models in Figure 4 trained on both the original and
synthetic treebank data for each use case outlined
in Section 4. The learning curves were plotted us-
ing the LAS accuracies obtained on the test set for
the three languages using models trained on both
the original and the synthetic treebanks. It is seen
from the learning curves that models trained on the
synthetic treebanks do not outperform the models
trained using original UD treebanks.

However, the full learning curves shown in Fig-
ure 4 do not tell the complete story. Figure 5
shows the learning curves (visualized using bar
plots) for English, Finnish and Swedish in the
setup where less than 1K sentences from UD tree-
made obsolete in UD v2.3 distribution - with all treebanks be-
ing assigned a code. So, we use the term primary in this paper

to refer to EWT for English, TDT for Finnish and Talbanken
for Swedish.

banks are used. It is clear from the plots for all
the three languages that the synthetic treebanks are
sub-optimal when directly compared against real
treebanks of the same size. However, what is in-
teresting is that parsing models in this range (i.e.
N < 1K) with synthetic treebanks quickly reach
comparable accuracies to using real treebank data,
with an approximate effective data coefficient of
2.0. In other words comparable accuracies can be
obtained using roughly twice the amount of syn-
thetic data, generated for free by the abstract syn-
tax grammar.

It is interesting to note that the learning curves
using the synthetic data for the English parsing
models become comparably flat in our setup with
less than 5K sentences (shown in Figure 6a). De-
spite the lower improvements with increasing tree-
bank sizes, there is still a consistent improvement
in parsing accuracies with the best accuracy of
65.4 LAS using 10K synthetic samples (shown
in Figure 6b). This pattern is consistent across
Swedish and Finnish, which allows us to draw
the conclusion that while the effective data co-
efficient is smaller, the synthetic treebanks are still
useful to improve parsing accuracies.

6 Related Work

The current trend in dependency parsing is di-
rected towards using synthetic treebanks in an
attempt to cover unknown languages for which
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Figure 6: Learning curves shown using bar plots for parsing models of English

resources are minimal or do not exist alto-
gether. Such treebanks rely on various auxiliary
resources: parallel corpora (Tiedemann, 2014),
multilingual word-embeddings (Xiao and Guo,
2014), MT system for the target language (Tiede-
mann and Agic, 2016; Tyers et al., 2018) or
more minimally, tagged corpora in the target lan-
guage (Wang and Eisner, 2018).

Tiedemann and Agic (2016) propose a method
to generate synthetic treebanks for new lan-
guages using machine translation systems to trans-
fer cross-linguistic information from resource-rich
language to under-resourced languages. This work
builds on top of many previous approaches to
cross-lingual parsing using parallel corpora and
multilingual word-embeddings. The synthetic
treebanks generated in the current work are are dif-
ferent in two ways:

e we assume multilingual abstraction and the
concrete syntaxes are available, namely the
GF-RGL to generate language-independent
samples in the form of ASTs.

e we also assume that a distribution of the tar-
get language is not available and what is
available is a distribution on the abstract syn-
tax that generalizes to other languages.

Hence, the resulting treebank is licensed by a
grammar, and high-precision cross-linguistic in-
formation is specified, but the distribution over the
resulting treebank is different from the distribution
obtained using the real treebanks. An alternative
to the method of bootstrapping UD treebanks is
to use ud2gf (Ranta and Kolachina, 2017) as a
way to translate existing UD treebanks to GF tree-
banks, that are licensed by a grammar.

The current work also relates to more recent

work in data-augmentation for dependency pars-
ing (Sahin and Steedman, 2018) and more gener-
ally in NLP (Sennrich et al., 2016). The augmenta-
tion methods are designed to address data scarcity
by exploiting monolingual corpora or generat-
ing synthetic samples in multilingual applications.
However, the underlying abstractions used to gen-
erate the synthetic data are induced from auxiliary
corpora.

Jonson (2006) show that synthetic corpora gen-
erated using a GF grammar can be used to build
language models for speech recognition. Ex-
periments in their work show that synthetic in-
domain examples generated using the grammar
when combined with large out-of-domain data re-
sult in significant reduction of word error rate of
the speech recognizer. This work falls in line with
similar approaches to combine corpus driven ap-
proaches with rule-based systems (Bangalore and
Johnston, 2004), as a way to combine the sta-
tistical information available from corpora with
good coverage resulting from rule-based abstrac-
tions especially when working with restricted do-
mains. In this paper, we restrict ourselves to uti-
lizing synthetic treebanks for parsing, and leave
the discussion on ways to combine synthetic tree-
banks with real treebanks as future work. This
choice is primarily motivated by our interest in
grammar-based development of dependency tree-
banks as opposed to the traditional way of tree-
banking — by training human annotators.

7 Conclusions

In the current paper, we propose an alternative ap-
proach to cross-lingual treebanking — one that
recommends grammar engineering. Multilingual
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abstractions that facilitate bootstrapping of cross-
lingual treebanks have been previously explored
in the setup of low precision high recall methods.
These methods presume the availability of differ-
ent resources in order to induce the cross-linguistic
signal — parallel or multilingual corpora, word
embeddings etc. Our approach explores the op-
posite direction — multilingual grammars of high
precision are used to bootstrap parallel treebanks.
While these multilingual grammars are not easy
to develop, the question of how useful such gram-
mars are is one that has been largely unexplored in
the context of cross-lingual syntactic parsing.

We use a context-free probability model to gen-
erate ASTs that are used to bootstrap parallel
UD treebanks in 3 languages. Experiments in
delexicalized parsing show that these treebanks
are useful in two scenarios — when data in the
target language is minimal (<1K sentences) and
small (<5K sentences). In the future, we intend
to look at ways to generate synthetic treebanks
from existing UD treebanks of languages using
ud2gf (Ranta and Kolachina, 2017), that aims to
address the lack of syntactic distributions in our
synthetic treebanks. We also did not pursue the
obvious direction of combining the real and syn-
thetic treebanks in the current work: we leave this
for future work. Another direction that is of in-
terest is to augment existing treebanks with syn-
tactic variations to quantify the need for regular
syntactic variants in parser development, such as
converting declaratives to questions, varying tense
and polarity, adding and removing modifiers, and
so on. String-based augmentation (as opposed to
precise grammar-based generation) in this direc-
tion has already shown promising results (Sahin
and Steedman, 2018).
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Abstract

More and more evidence is appearing that
integrating symbolic lexical knowledge
into neural models aids learning. This
contrasts the widely-held belief that neural
networks largely learn their own feature
representations. For example, recent work
has shown benefits of integrating lexicons
to aid cross-lingual part-of-speech (PoS).
However, little is known on how com-
plementary such additional information is,
and to what extent improvements depend
on the coverage and quality of these exter-
nal resources. This paper seeks to fill this
gap by providing a thorough analysis on
the contributions of lexical resources for
cross-lingual PoS tagging in neural times.

1 Introduction

In natural language processing, the deep learning
revolution has shifted the focus from conventional
hand-crafted symbolic representations to dense in-
puts, which are adequate representations learned
automatically from corpora. However, particu-
larly when working with low-resource languages,
small amounts of symbolic lexical resources such
as user-generated lexicons are often available even
when gold-standard corpora are not. Recent work
has shown benefits of combining conventional lex-
ical information into neural cross-lingual part-of-
speech (PoS) tagging (Plank and Agié, 2018).
However, little is known on how complementary
such additional information is, and to what extent
improvements depend on the coverage and quality
of these external resources.

The contribution of this paper is in the analysis
of the contributions of models’ components (tag-
ger transfer through annotation projection vs. the
contribution of encoding lexical and morphosyn-
tactic resources). We seek to understand un-
der which conditions a low-resource neural tagger

Sigrid Klerke
Department of Computer Science
ITU, IT University of Copenhagen
Denmark
sikl@itu.dk

benefits from external lexical knowledge. In par-
ticular:

a) we evaluate the neural tagger across a total
of 20+ languages, proposing a novel baseline
which uses retrofitting;

b) we investigate the reliance on dictionary size
and properties;

¢) we analyze model-internal representations
via a probing task to investigate to what ex-
tent model-internal representations capture
morphosyntactic information.

Our experiments confirm the synergetic effect
between a neural tagger and symbolic linguistic
knowledge. Moreover, our analysis shows that the
composition of the dictionary plays a more impor-
tant role than its coverage.

2 Methodology

Our base tagger is a bidirectional long short-term
memory network (bi-LSTM) (Graves and Schmid-
huber, 2005; Hochreiter and Schmidhuber, 1997;
Plank et al., 2016) with a rich word encoding
model which consists of a character-based bi-
LSTM representation cw paired with pre-trained
word embeddings «. Sub-word and especially
character-level modeling is currently pervasive in
top-performing neural sequence taggers, owing
to its capacity to effectively capture morpholog-
ical features that are useful in labeling out-of-
vocabulary (OOV) items. Sub-word information is
often coupled with standard word embeddings to
mitigate OOV issues. Specifically, i) word embed-
dings are typically built from massive unlabeled
datasets and thus OOVs are less likely to be en-
countered at test time, while ii) character embed-
dings offer further linguistically plausible fallback
for the remaining OOVs through modeling intra-
word relations. Through these approaches, multi-
lingual PoS tagging has seen tangible gains from
neural methods in the recent years.
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2.1 Lexical resources

We use linguistic resources that are user-generated
and available for many languages. The first is
WIKTIONARY, a word type dictionary that maps
words to one of the 12 Universal PoS tags (Li
et al., 2012; Petrov et al., 2012). The second re-
source is UNIMORPH, a morphological dictionary
that provides inflectional paradigms for 350 lan-
guages (Kirov et al., 2016). For Wiktionary, we
use the freely available dictionaries from Li et al.
(2012). UniMorph covers between 8-38 morpho-
logical properties (for English and Finnish, re-
spectively).! The sizes of the dictionaries vary
considerably, from a few thousand entries (e.g., for
Hindi and Bulgarian) to 2M entries (Finnish Uni-
Morph). We study the impact of smaller dictionary
sizes in Section 4.1.

The tagger we analyze in this paper is an exten-
sion of the base tagger, called distant supervision
from disparate sources (DSDS) tagger (Plank and
Agi¢, 2018). It is trained on projected data and
further differs from the base tagger by the integra-
tion of lexicon information. In particular, given
a lexicon src, DSDS uses €5, to embed the lex-
icon into an [-dimensional space, where €s,. is
the concatenation of all embedded m properties of
length [ (empirically set, see Section 2.2), and a
zero vector for words not in the lexicon. A prop-
erty here is a possible PoS tag (for Wiktionary) or
a morphological feature (for Unimorph). To inte-
grate the type-level supervision, the lexicon em-
beddings vector is created and concatenated to the
word and character-level representations for every
token: 1 o cw o €.

We compare DSDsS to alternative ways of
using lexical information. The first approach
uses lexical information directly during decod-
ing (Téackstrom et al., 2013). The second approach
is more implicit and uses the lexicon to induce
better word embeddings for tagger initialization.
In particular, we use the dictionary for retrofitting
off-the-shelf embeddings (Faruqui et al., 2015) to
initialize the tagger with those. The latter is a
novel approach which, to the best of our knowl-
edge, has not yet been evaluated in the neural tag-
ging literature. The idea is to bring the off-the-
shelf embeddings closer to the PoS tagging task
by retrofitting the embeddings with syntactic clus-
ters derived from the lexicon.

We take a deeper look at the quality of the lex-

"More details: http://unimorph.org/

icons by comparing tag sets to the gold treebank
data, inspired by Li et al. (2012). In particular, let
T be the dictionary derived from the gold treebank
(development data), and W be the user-generated
dictionary, i.e., the respective Wiktionary (as we
are looking at PoS tags). For each word type, we
compare the tag sets in 7" and W and distinguish
six cases:

1. NONE: The word type is in the training data
but not in the lexicon (out-of-lexicon).

EQuaL: W =T
DISJIOINT: WNT =)
OVERLAP: WNT # 0

SUBSET: W C T

AN T

SUPERSET: W D T

In an ideal setup, the dictionaries contain no dis-
joint tag sets, and larger amounts of equal tag sets
or superset of the treebank data. This is particu-
larly desirable for approaches that take lexical in-
formation as type-level supervision.

2.2 Experimental setup

In this section we describe the baselines, the data
and the tagger hyperparameters.

Data We use the 12 Universal PoS tags (Petrov
et al., 2012). The set of languages is motivated by
accessibility to embeddings and dictionaries. We
here focus on 21 dev sets of the Universal Depen-
dencies 2.1 (Nivre and et al., 2017), test set results
are reported by Plank and Agi¢ (2018) showing
that DSDS provides a viable alternative.

Annotation projection To build the taggers for
new languages, we resort to annotation projec-
tion following Plank and Agi¢ (2018). In par-
ticular, they employ the approach by Agi¢ et al.
(2016), where labels are projected from multi-
ple sources to multiple targets and then decoded
through weighted majority voting with word align-
ment probabilities and source PoS tagger confi-
dences. The wide-coverage Watchtower corpus
(WTC) by Agic¢ et al. (2016) is used, where 5k
instances are selected via data selection by align-
ment coverage following Plank and Agi¢ (2018).

Baselines We compare to the following alterna-
tives: type-constraint Wiktionary supervision (Li
et al., 2012) and retrofitting initialization.
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DEV SETS (UD2.1)

LANGUAGE 5k TCw | RETRO DsDs
Bulgarian (bg) 89.8 899 87.1 91.0
Croatian (hr) 84.7 852 83.0 85.9
Czech (cs) 875 875 84.9 87.4
Danish (da) 89.8 893 88.2 90.1
Dutch (nl) 88.6 89.2 86.6 89.6
English (en) 864 87.6 82.5 87.3
Finnish (fi) 81.7 814 79.2 83.1
French (fr) 91.5 90.0 89.8 913
German (de) 85.8 87.1 84.7 87.5
Greek (el) 809 86.1 79.3 79.2
Hebrew (he) 75.8 759 71.7 76.8
Hindi (hi) 63.8 63.9 63.0 66.2
Hungarian (hu) 775 715 75.5 76.2
Italian (it) 922 91.8 90.0 93.7
Norwegian (no) 91.0 9I1.1 88.8 914
Persian (fa) 43.6 438 44.1 43.6
Polish (pl) 849 849 83.3 854
Portuguese 924 922 88.6 93.1
Romanian (ro) 842 842 80.2 86.0
Spanish (es) 90.7 88.9 88.9 91.7
Swedish (sv) 894 89.2 87.0 89.8
AVG(21) 834 83.6 81.3 84.1
GERMANIC (6) 88.5 88.9 86.3 89.3
ROMANCE (5) 90.8  90.1 88.4 91.4
SLAVIC (4) 86.7 86.8 84.6 87.4
INDO-IRANIAN (2) 53.7 53.8 53.5 54.9
URALIC (2) 796 794 79.2 79.6

Table 1: Replication of results on the dev sets. 5k:
model trained on only projected data; TCyy: type
constraints; Retro: retrofitted initialization.

Hyperparameters We use the same setup
as Plank and Agi¢ (2018), i.e., 10 epochs, word
dropout rate (p=.25) and [=40-dimensional lex-
icon embeddings for DSDs, except for down-
scaling the hidden dimensionality of the character
representations from 100 to 32 dimensions. This
ensures that our probing tasks always get the same
input dimensionality: 64 (2x32) dimensions for
cw, which is the same dimension as the off-the-
shelf word embeddings. Language-specific hy-
perparameters could lead to optimized models for
each language. However, we use identical settings
for each language which worked well and is less
expensive, following Bohnet et al. (2018). For all
experiments, we average over 3 randomly seeded
runs, and provide mean accuracy.

We use the off-the-shelf Polyglot word embed-
dings (Al-Rfou et al., 2013). Word embedding
initialization provides a consistent and consider-
able boost in this cross-lingual setup, up to 10%
absolute improvements across 21 languages when
only 500 projected training instances are avail-
able (Plank and Agi¢, 2018). Note that we em-

1.00
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0.25
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Figure 1: Analysis of Wiktionary vs gold (dev set)
tag sets. ‘None’: percentage of word types not
covered in the lexicon. ‘Disjoint’: the gold data
and Wiktionary do not agree on the tag sets. See
Section 2.1 for details on other categories.

pirically find it to be best to not update the word
embeddings in this noisy training setup, as that re-
sults in better performance, see Section 4.4.

3 Results

Table 1 presents our replication results, i.e., tag-
ging accuracy for the 21 individual languages,
with means over all languages and language fam-
ilies (for which at least two languages are avail-
able). There are several take-aways.

Inclusion of lexical information Combining
the best of two worlds results in the overall
best tagging accuracy, confirming Plank and Agi¢
(2018): Embedding lexical information into a neu-
ral tagger improves tagging accuracy from 83.4 to
84.1 (means over 21 languages). On 15 out of 21
languages, DSDS is the best performing model.
On two languages, type constraints work the best
(English and Greek). Retrofitting performs best
only on one language (Persian); this is the lan-
guage with the overall lowest performance. On
three languages, Czech, French and Hungarian,
the baseline remains the best model, none of the
lexicon-enriching approaches works. We proceed
to inspect these results in more detail.

Analysis Overall, type-constraints improve the
baseline but only slightly (83.4 vs 83.6). Intu-
itively, this more direct use of lexical information
requires the resource to be high coverage and a
close fit to the evaluation data, to not introduce
too many pruning errors during decoding due to
contradictory tag sets. To analyze this, we look at
the tag set agreement in Figure 1. For languages
for which the level of disjoint tag set information
is low, such as Greek, English, Croatian, Finnish
and Dutch, type constraints are expected to help.
This is in fact the case, but there are exceptions,
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Figure 2: Analysis of OOVs and dictionary properties.

such as Finnish. Coverage of the lexicon is also
important, and for this morphologically rich lan-
guage, the coverage is amongst the lowest (c.f.
large amount of the ‘none’ category in Figure 1).
The more implicit use of lexical information
in DSDs helps on languages with relatively high
dictionary coverage and low tag set disagreement,
such as Danish, Dutch and Italian. Compared to
type constraints, embedding the lexicon also helps
on languages with low dictionary coverage, such
as Bulgarian, Hindi, Croatian and Finnish, which
is very encouraging and in sharp contrast to type
constraints. The only outlier remains Greek.
Figure 2 (a) plots the absolute improvement in
tagging accuracy over the baseline versus the num-
ber of properties in the dictionaries. Slavic and
Germanic languages cluster nicely, with some out-
liers (Croatian). However, there is only a weak
positive correlation (p=0.08). More properties do

not necessarily improve performance, and lead to
sparsity. The inclusion of the lexicons results in
higher coverage, which might be part of the expla-
nation for the improvement of DsDs. The ques-
tion remains whether the tagger learns to rely only
on this additional signal, or it generalizes beyond
it. Therefore, we first turn to inspecting out-of-
vocabulary (OOV) items. OOV items are the key
challenge in part-of-speech tagging, i.e., to cor-
rectly tag tokens unseen in the training data.

In Figure 2 (b) and (c), we analyze accuracy im-
provements on different groups of tokens: The in
lex+train tokens that were seen both in the lexicon
and the training data, the in train only tokens seen
in the training data but not present in the lexicon,
the in lex only tokens that were present in the lex-
icon but not seen in the training data and the true
OOV tokens that were neither seen in training nor
present in the lexicon. Figure 2 (b) shows means
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over the 21 languages, Figure 2 (c) provides de-
tails per language. The first take-away is that in
many cases the tagger does learn to use informa-
tion beyond the coverage of the lexicon. The em-
bedded knowledge helps the tagger to improve on
tokens which are in train only (and are thus not
in the lexicon, green bars). For true OOVs (or-
ange bars), this is the case for some languages as
well Figure 2 (¢), i.e., improvements on true OOVs
can be observed for Bulgarian, German, Greek,
English, Finish, Croatian, Italian and Portuguese.
Over all 21 languages there is a slight drop on true
OOVs: -0.08, but this is a mean over all languages,
for which results vary, making it important to look
beyond the aggregate level. Over all languages ex-
cept for Hungarian, the tagger, unsurprisingly, im-
proves over tokens which are both in the lexicon
and in the training data (see further discussion in
Section 4).

4 Discussion

Here we dig deeper into the effect of including lex-
ical information by a) examining learning curves
with increasing dictionary sizes, b) relating tag
set properties to performance, and finally c) hav-
ing a closer look at model internal representations,
by comparing them to the representations of the
base model that does not include lexical informa-
tion. We hypothesize that when learning from
dictionary-level supervision, information is prop-
agated through the representation layers so as to
generalize beyond simply relying on the respec-
tive external resources.

4.1 Learning curves

The lexicons we use so far are of different sizes
(shown in Table 1 of Plank and Agi¢ (2018)),
spanning from 1,000 entries to considerable dic-
tionaries of several hundred thousands entries. In
a low-resource setup, large dictionaries might not
be available. It is thus interesting to examine how
tagging accuracy is affected by dictionary size. We
examine two cases: randomly sampling dictionary
entries and sampling by word frequency, over in-
creasing dictionary sizes: 50, 100, 200, 400, 800,
1600 word types. The latter is motivated by the
fact that an informed dictionary creation (under
limited resources) might be more beneficial. We
estimate word frequency by using the UD training
data sets (which are otherwise not used).

Figure 3 (a) provides means over the 21 lan-
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Figure 3: Learning curves over increased dictio-
nary sizes.

guages (with confidence intervals of +1 standard
deviation based on three runs). We note that sam-
pling by frequency is overall more beneficial than
random sampling. The biggest effect of sampling
by frequency is observed for the Romance lan-
guage family, see Figure 3 (b). It is noteworthy
that more dictionary data is not always necessarily
beneficial. Sometimes a small but high-frequency
dictionary approximates the entire dictionary well.
This is for instance the case for Danish, where
sampling by frequency approximates the entire
dictionary well (‘all’ achieves 90.1, while using
100 most frequent entries is close: 89.93). Fre-
quency sampling also helps clearly for Italian, but
here having the entire dictionary results in the
overall highest performance.

For some languages, the inclusion of lexical in-
formation does not help, not even at smaller dictio-
nary sizes. This is the case for Hungarian, French
and Czech. For Hungarian using the entire dictio-
nary drops performance below the baseline. For
Czech, this is less pronounced, as the performance
stays around baseline. Relating these negative ef-
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Figure 4: Proportion of tokens unseen in the train-
ing data, in the lexicon or in both (true OOV’s).
Lighter bars are proportion of correctly labeled
portion, dark bars are proportion of errors.

fects to the results from the tag set agreement anal-
ysis (Figure 1), we note that Hungarian is the lan-
guage with the largest disjoint tag set. Albeit the
coverage for Hungarian is good (around .5), in-
cluding too much contradictory tag information
has a clear deteriorating effect. Consequently, nei-
ther sampling strategy works. Czech, which has
less coverage, sees a negative effect as well: half
of the dictionary entries have disjoint tag sets. Ital-
ian is the language with the highest dictionary cov-
erage and the highest proportion of equal tag sets,
thereby providing a large positive benefit.

We conclude that when dictionaries are not
available, creating them by targeting high-
frequency items is a pragmatic and valuable strat-
egy. A small dictionary, which does not contain
too contradictory tag sets, can be beneficial.

4.2 Analysis of correct/incorrect predictions

In the following we analyze correctly and in-
correctly labeled tokens. Because we are analyz-
ing differences between languages as well as be-
tween errors and successes we abstract away from
the underlying sample size variation by comparing
proportions.

The analysis inspects the differences in propor-
tions on four subsections of the development set,
as introduced above: the in lex+train tokens, the
in train only tokens, the in lex only tokens and the
true OOVs. The proportion of these four data sub-
sets in the correctly and the incorrectly labeled to-
kens are shown side by side in Figure 4 in lighter
and darker shades, respectively. If the OOV-
status of a word was unrelated to performance, the
lighter and darker bars would be of identical size.
This is not the case and we can observe that the
true OOVs make up a significantly larger share of
the errors than of successes (two-tailed paired Stu-
dent’s t-test: p = 0.007). Similarly, seen across all
languages the shift in the size of the proportion of

true OOVs is made up by more correct labeling
of a larger proportion of in train only (two-tailed
paired Student’s t-test: p = 0.014) and in lex only
(two-tailed paired Student’s t-test: p = 0.020),
whereas the proportion of in lex+train does not
significantly differ between the correctly and in-
correctly labeled parts (two-tailed paired Student’s
t-test: p = 0.200).2

4.3 Probing word encodings

Probing tasks, or diagnostic classifiers, are sepa-
rate classifiers which use representations extracted
from any facet of a trained neural model as input
for solving a separate task. Following the intuition
of Adi et al. (2017), if the target can be predicted,
then the information must be encoded in the repre-
sentation. However, the contrary does not neces-
sarily hold: if the model fails it does not necessar-
ily follow that the information is not encoded, as
opposed to not being encoded in a useful way for
a probing task classifier.

As the internal representations stored in neural
models are not immediately interpretable, probing
tasks serve as a way of querying neural represen-
tations for interpretable information. The prob-
ing task objective and training data is designed
to model the query of interest. The representa-
tion layer we query in this work is the word-level
output from the character embedding sub-model.
This part of the word-level representation starts
out uninformative and thus without prior predic-
tion power on the classifier objectives.

The pre-trained word embeddings stay fixed
in our model (see Section 4.4). However, the
character-based word encodings get updated: This
holds true both for the BASE system and the DSDS
tagger. As a target for assessing the flow of infor-
mation in the neural tagger, we thus focus on the
character-based word encodings.

The word-level is relevant as it is the granular-
ity at which the tagger is evaluated. The word em-
beddings may already have encoded PoS-relevant
information and the lexicon embeddings explic-
itly encodes PoS-type-level information. By con-
trast, the character-based word encodings are ini-
tialized to be uninformative and any encoding of
PoS-related information is necessarily a result of
the neural training feedback signal.

For these reasons we query the character-based
word representations of the tagger in order to com-

2Significance based on an a-level of 0.05
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pare variation between the base tagger and the
DsDs lexicon-enriched architecture.
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Figure 5: Macro F1 scores for stand-alone clas-
sifiers on the probing tasks of predicting which
words are long and which are in the lexicon, re-
spectively. The baseline (bl) is a simple majority
baseline. The base- and DsDs-informed classifiers
were trained on character-based word representa-
tions from the neural taggers with and without ac-
cess to lexical information, respectively.

We employ two binary probing tasks: predict-
ing which words are long, i.e., contain more than
7 characters®, and predicting which words are in
the lexicon. The word length task is included
as a task which can be learned independently of
whether lexicon information is available to the
neural model. Storing length-related information
might help the model distinguish suffix patterns of
relevance to PoS-tagging.

Following Shi et al. (2016) and Gulordava et
al (2018), we use a logistic regression classifier
setup and a constant input dimensionality of 64
across tasks (Conneau et al., 2018). The classi-
fiers are trained using 10-fold cross-validation for
each of three trained runs of each neural model
and averaged. We include a majority baseline and
report macro Fl-scores, as we are dealing with
imbalanced classes. The training vocabulary of
both probing tasks is restricted to the neural tagger
training vocabulary, that is, all word types in the
projected training data, as these are the represen-
tations which have been subject to updates during
training of the neural model. Using the projected
data has the advantage that the vocabulary is sim-
ilar across languages as the data comes from the
same domain (Watchtower).

3Considering words of 7 characters or more to be long is
based on the threshold that was experimentally tuned in the
design of the readability metric LIX (Bjornsson, 1983). This
threshold aligns well with the visual perceptual span within
which proficient readers from grade four and up can be ex-
pected to automatically decode a word in a single fixation
(Sperlich et al., 2015)

The results on the word length probing task
shown on the top half of Figure 5 confirm that in-
formation relevant to distinguishing word length
is being encoded in the neural representation,
as expected. It is intriguing that the lexicon-
informed DSDS representation encodes this infor-
mation even at higher degree.

On the task of classifying which words are in
the lexicon, all neural representations beat the
majority baseline, but we also see that this task
is harder, given the higher variance across lan-
guages. With Spanish (es) and Croatian (hr) as
the only exceptions, the DsDs-based representa-
tions are generally encoding more of the informa-
tion relevant to distinguishing which words are in
the lexicon, confirming our intuitions that the in-
ternal representations were altered. Note, how-
ever, that even the base-tagger is able to solve this
task above chance level. This is potentially an
artifact of how lexicons grow where it would be
likely for several inflections of the same word to
be added collectively to the lexicon at once, and
since the character representations can be expected
to produce more similar representations of words
derived from the same lemma the classifier will
be able to generalize and perform above chance
level without the base-model representations hav-
ing ever been exposed to the lexical resource.

4.4 Updating in light of noisy data?

When training a tagger with noisy training data
and pre-trained embeddings, the question arises
whether it is more beneficial to freeze the word
embeddings or update them. We hypothesize that
freezing embeddings is more beneficial in noisy
training cases, as it helps to stabilize the sig-
nal from the pre-trained word embeddings while
avoiding updates from the noisy training data. To
test this hypothesis, we train the base tagger on
high-quality gold training data (effectively, the UD
training data sets), with and without freezing the
word embeddings layer. We find that updating
the word embedding layer is in fact beneficial in
the high-quality training data regime: on average
+0.4% absolute improvement is obtained (mean
over 21 languages). This is in sharp contrast to
the noisy training data regime, in which the base-
line accuracy drops by as much as 1.2% accuracy.
Therefore, we train the tagger with pre-trained em-
beddings on projected WTC data and freeze the
word embeddings lookup layer during training.
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5 Related work

In recent years, natural language processing has
witnessed a move towards deep learning ap-
proaches, in which automatic representation learn-
ing has become the de facto standard methodol-
ogy (Collobert et al., 2011; Manning, 2015).

One of the first works that combines neural rep-
resentations with semantic symbolic lexicons is
the work on retrofitting (Faruqui et al., 2015). The
main idea is to use the relations defined in seman-
tic lexicons to refine word embedding represen-
tations, such that words linked in the lexical re-
source are encouraged to be closer to each other in
the distributional space.

The majority of recent work on neural sequence
prediction follows the commonly perceived wis-
dom that hand-crafted features are obsolete for
deep learning methods. They rely on end-to-end
training without resorting to additional linguistic
resources. Our study contributes to the increas-
ing literature to show the utility of linguistic re-
sources for deep learning models by providing a
deep analysis of a recently proposed model (Plank
and Agié, 2018). Most prior work in this direction
can be found on machine translation (Sennrich and
Haddow, 2016; Chen et al., 2017; Li et al., 2017;
Passban et al., 2018), work on named entity recog-
nition (Wu et al., 2018) and PoS tagging (Sagot
and Martinez Alonso, 2017) who use lexicons, but
as n-hot features and without examining the cross-
lingual aspect.

Somewhat complementary to evaluating the
utility of linguistic resources empirically is the in-
creasing body of work that uses linguistic insights
to try to understand what properties neural-based
representations capture (Kéadar et al., 2017; Adi
et al., 2017; Belinkov et al., 2017; Conneau et al.,
2018; Hupkes et al., 2018). Shi et al. (2016) and
Adi et al. (2017) introduced the idea of prob-
ing tasks (or ‘diagnostic classifiers’), see Belinkov
and Glass for a recent survey (Belinkov and Glass,
2019). Adi et al. (2017) evaluate several kinds of
sentence encoders and propose a range of probing
tasks around isolated aspects of sentence structure
at the surface level (sentence length, word content
and word order). This work has been greatly ex-
panded by including both syntactic and semantic
probing tasks, careful sampling of probing task
training data, and extending the framework to
make it encoder agnostic (Conneau et al., 2018).
A general observation here is that task-specific

knowledge is needed in order to design relevant
diagnostic tasks, which is not always straightfor-
ward. For example, Gulordava (2018) investigate
whether RNNs trained using a language model
objective capture hierarchical syntactic informa-
tion. They create nonsensical construction so that
the RNN cannot rely on lexical or semantic clues,
showing that RNNs still capture syntactic proper-
ties in sentence embeddings across the four tested
languages while obfuscating lexical information.
There is also more theoretical work on investigat-
ing the capabilities of recurrent neural networks,
e.g., Weiss et al. (2018) show that specific types of
RNNs (LSTMs) are able to use counting mecha-
nisms to recognize specific formal languages.

Finally, linguistic resources can also serve as
proxy for evaluation. As recently shown (Agié¢
et al., 2017), type-level information from dictio-
naries approximates PoS tagging accuracy in the
absence of gold data for cross-lingual tagger eval-
uation. Their use of high-frequency word types
inspired parts of our analysis.

6 Conclusions

We analyze DsDs, a recently-proposed low-
resource tagger that symbiotically leverages neu-
ral representations and symbolic linguistic knowl-
edge by integrating them in a soft manner. We
replicated the results of Plank and Agi¢ (2018),
showing that the more implicit use of embedding
user-generated dictionaries turns out to be more
beneficial than approaches that rely more explic-
itly on symbolic knowledge, such a type con-
straints or retrofitting. By analyzing the reliance
of DSDS on the linguistic knowledge, we found
that the composition of the lexicon is more impor-
tant than its size. Moreover, the tagger benefits
from small dictionaries, as long as they do not con-
tain tag set information contradictory to the eval-
uation data. Our quantitative analysis also sheds
light on the internal representations, showing that
they get more sensitive to the task. Finally, we
found that freezing pre-trained word embeddings
complement the learning signal well in this noisy
data regime.
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Abstract

This paper investigates the presence of
gender bias in pretrained Swedish embed-
dings. We focus on a scenario where
names are matched with occupations, and
we demonstrate how a number of standard
pretrained embeddings handle this task.
Our experiments show some significant
differences between the pretrained embed-
dings, with word-based methods showing
the most bias and contextualized language
models showing the least. We also demon-
strate that a previously proposed debiasing
method does not affect the performance of
the various embeddings in this scenario.

1 Introduction

The motivation for this study is the currently
widespread practice of using pretrained embed-
dings as building blocks for NLP-related tasks.
More specifically, we are concerned about such
usage by actors in the public sector, for instance
government agencies and public organizations. It
is obvious how the presence of (gender or racial)
bias would be potentially serious in applications
where embeddings are used as input to decision
support systems in the public sector.

As an example, in Sweden limited companies
must be approved and registered by the Swedish
Companies Registration Office. One important
(and internationally unique) step in this registra-
tion procedure is the approval of the company

Fredrik Olsson
RISE
Sweden

fredrik.olsson@ri.se

name, which is decided by case handlers at the
Registration Office. Their decision is based on
several factors, one of which is the appropriate-
ness of the company name in relation to the com-
pany description. Now, imagine the hypothetical
use case in which the case handlers use a deci-
sion support system that employs pretrained em-
beddings to quantify the similarity between a sug-
gested company name and its company descrip-
tion. Table 1 exemplifies what the results might
look like. In this fictive example, the company de-
scription states that the company will do business
with cars, and the name suggestions are composed
of a person name in genitive and the word “cars”
(i.e. “Fredrik’s cars”). We use pretrained Swedish
ELMo embeddings (Che et al., 2018) to compute
the distance between the name suggestion and the
company description.

The results demonstrate that male person names
(“Magnus” and “Fredrik”) are closer to “cars” in
the ELMo similarity space than female person
names (“Maria” and “Anna”). If such results are
used as input to a decision support system for de-
ciding on the appropriateness of a company name
suggestion in relation to a company description,
we might introduce gender bias into the decision
process. We subscribe to the view that such bias
would be unfair and problematic.

The point of this paper is therefore to investi-
gate gender bias when using existing and read-
ily available pretrained embeddings for tasks re-
lating to names and occupations. We include
both word-based embeddings produced using

Name suggestion ‘ Company description Distance
Magnus bilar Bolaget ska bedriva verksamhet med bilar | 0.028
Fredriks bilar Bolaget ska bedriva verksamhet med bilar 0.038
Marias bilar Bolaget ska bedriva verksamhet med bilar 0.044
Annas bilar Bolaget ska bedriva verksamhet med bilar 0.075

Table 1: Examples of gender bias with respect to occupations using pretrained ELMo embeddings.
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word2vec and fastText, as well as character-
based (and WordPiece-based) contextualized em-
beddings produced using ELMo and the multilin-
gual BERT. The next section covers related work.
We then discuss the various embeddings in Section
3, before we then turn to some experimental evi-
dence of bias in the embeddings, and we also show
that the previously proposed debiasing method is
unable to handle gender bias in our scenario.

2 Related work

Research regarding bias and stereotypes ex-
pressed in text and subsequently incorporated in
learned language models is currently a vivid field.
Caliskan et al. (2017) show that learned embed-
dings exhibit every linguistic bias documented in
the field of psychology (such as that flowers are
more pleasant than insects, musical instruments
are preferred to weapons, and personal names are
used to infer race). Garg et al. (2018) show that
temporal changes of the embeddings can be used
to quantify gender and ethnic stereotypes over
time, and Zhao et al. (2017) suggest that biases
might in fact be amplified by embedding models.
Several researchers have also investigated ways
to counter stereotypes and biases in learned lan-
guage models. While the seminal work by Boluk-
basi et al. (2016a, 2016b) concerns the identifi-
cation and mitigation of gender bias in pretrained
word embeddings, Zhao et al. (2018) provide in-
sights into the possibilities of learning embed-
dings that are gender neutral. Bordia and Bowman
(2019) outline a way of training a recurrent neural
network for word-based language modelling such
that the model is gender neutral. Park et al. (2018)
discuss different ways of mitigating gender bias,
in the context of abusive language detection, rang-
ing from debiasing a model by using the hard de-
biased word embeddings produced by Bolukbasi
et al. (2016b), to manipulating the data prior to
training a model by swapping masculine and fem-
inine mentions, and employing transfer learning
from a model learned from less biased text.
Gonen and Goldberg (2019) contest the ap-
proaches to debiasing word embeddings presented
by Bolukbasi et al. (2016b) and Zhao et al. (2018),
arguing that while the bias is reduced when mea-
sured according to its definition, i.e., dampening
the impact of the general gender direction in the
vector space, “the actual effect is mostly hiding the
bias, not removing it”. Further, Gonen and Gold-

berg (2019) claim that a lot of the supposedly re-
moved bias can be recovered due to the geometry
of the vector representation of the gender neutral-
ized words.

Our contribution consists of an investigation of
the presence of gender bias in pretrained embed-
dings for Swedish. We are less interested in bias as
a theoretical construct, and more interested in the
effects of gender bias in actual applications where
pretrained embeddings are employed. Our experi-
ments are therefore tightly tied to a real-world use
case where gender bias would have potentially se-
rious ramifications. We also provide further evi-
dence of the inability of the debiasing method pro-
posed by Bolukbasi et al. (2016b) to handle the
type of bias we are concerned with.

3 Embeddings

We include four different standard embeddings
in these experiments: word2vec, fastText,
ELMo and BERT. There are several pre-trained
models available in various web repositories. We
select one representative instance per model, sum-
marized in Table 2 (next page).

These models represent different types of em-
beddings. word2vec (Mikolov et al., 2013)
builds embeddings by training a shallow neural
network to predict a set of context words based on
a target word (this is the so-called skipgram archi-
tecture; if we instead predict the target word based
on the context words the model is called contin-
uous bag of words). The network learns two sets
of vectors, one for the target terms (the embedding
vectors), and one for context terms. The objective
of the network is to learn vectors such that their dot
product correspond to the log likelihood of observ-
ing word pairs in the training data. fastText
(Bojanowski et al., 2017) uses the same neural net-
work architecture, but incorporates character in-
formation by using character n-grams instead of
whole words in the prediction step.

It should be noted that most applications of the
above-mentioned vectors use only the embeddings
for the target terms. In fact, many repositories with
pretrained vectors do not even contain the context
embeddings. When the downstream task focuses
on associative relations (which is the case in the
present scenario with names and occupations), it
would be beneficial to be able to use both target
and context vectors, since using only one of these
will result in more paradigmatic similarities.
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Model Source Code Repository

Training data

word2vec | vectors.nlpl.eu CoNLL17 data
fastText | github.com/facebookresearch/fastText | Wikipedia
ELMo github.com/HIT-SCIR/ELMoForManyLangs | CoNLLI18 data
BERT github.com/google-research/bert Wikipedia

Table 2: The pre-trained embeddings and models included in these experiments were downloaded in
April 2019 from the following URLs. word2vec: vectors.nlpl.eu/repository/11/69.zip,
fastText: d1.fbaipublicfiles.com/fasttext/vectors-crawl/cc.sv.300.bin.gz,
ELMo: vectors.nlpl.eu/repository/11/173.zip, BERT: storage.googleapis.
com/bert models/2018.11 23/multi cased L-12 H-768_ A-12.zip

ELMo (Peters et al., 2018) is a deep character-
based neural network that learns embeddings by
predicting the next token given an input sequence.
The network architecture includes both convolu-
tional and (bidirectional) LSTM layers, and pro-
duces an embedding that that is sensitive to the
particular context of the input sequence. ELMo is
thus different from word2vec and fastText
in the sense that it produces contextualized em-
beddings, which has proven to be highly benefi-
cial when using the embeddings as representation
in downstream NLP tasks such as classification,
entity recognition, and question answering.

BERT (Devlin et al., 2018) is similar to ELMo in
the sense that it uses a deep neural network archi-
tecture and produces contextualized embeddings.
However, it differs in the type of network used.
BERT uses a (bidirectional) Transformer network
that relies exclusively on attention, and the model
is trained using a masked language model task,
similar to a cloze test. Contrary to ELMo, BERT
is not character-based, but relies on WordPiece to-
kenization of the input data. This has some poten-
tially problematic effects when tokenizing proper
names. As an example, the Swedish male name
“Henrik” gets tokenized as [“hen”, “##rik”], with
“rik” probably deriving from the Swedish word
“rik” (eng. “rich”). It would have been desirable to
not use WordPiece tokenization for proper names.

In the following experiments, pre-trained ELMo
and BERT are used to produce contextualized em-
beddings both for individual words (such as names
or places) and for texts (such as company descrip-
tions). Pre-trained word2vec and fastText
are used to look up individual words, and for texts
we follow standard practice and average the vec-
tors of the component words. Since proper names
in Swedish use uppercase for the initial letter, we
retain the casing information for all models that

can handle such vocabulary, which in our case are
all models except word2vec.

4 Data

In order to investigate whether our concerns about
gender bias in pretrained Swedish embeddings are
valid, we collect lists of the 100 most common
Swedish female and male first names from Statis-
tics Sweden (www . scb . se). We also collect lists
of the most typical female and male occupations
from the same source, as shown in Tables 3 and 4
(next page). These are the most common occupa-
tions for women and men as compiled by Statistics
Sweden, together with the percentage of women
and men in each occupation.

Since our interest in this paper is bias, we do not
include occupations that have less than (or close
to) 50% occurrence of women or men (such cases
are marked by * in the tables). This leaves us
with 18 typically female occupations, and 15 typ-
ically male occupations. Some of the remaining
occupations are very similar to each other, and we
therefore collapse them to one occupation (marked
by numbers in the tables), resulting in 14 distinct
female occupations and 14 distinct male occupa-
tions. For each of these gendered occupations, we
also list a number of synonyms, collected from
wikipedia.se and framtid.se. Morpho-
logical variants of each term are included.

5 Experiment 1: names and occupations

As a first experiment, we compute the similarity
between the names and the occupations using the
different embeddings. We do this by computing
the similarity between each name and each occu-
pation. Table 5 shows the percentage of female
and male names that are on average more simi-
lar to a female vs. male occupation. Numbers in
parentheses are based on only the most similar oc-
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Occupation (Swedish) Occupation (English) | % women
'Underskoterska Assistant nurse 92
Barnskotare Nanny 89
Grundskolldrare Primary school teacher 75
Forskolldrare Preschool teacher 96
2Butikssiljare, fackhandel Shop sales 61
3Vardbitride Care assistant 81
Kontorsassistent och sekreterare Secretary 79
Stddare Cleaner 75
Personlig assistent Personal assistant 74
2Butikssiljare, dagligvaror Retail sales 67
3Virdare, boendestodjare Housing assistant 73
Restaurang- och koksbitride Restaurant assistant 65
Planerare och utredare Planner 63
Grundutbildad sjukskoterska Nurse 90
4Ekonomiassistent Accountant assistant 88
1Underskoéterska, vard- och specialavdelning | Nursing staff 91
* Foretagssiljare Company sales 27
* Kock och kallskiinka Chef 52
4Redovisningsekonomer Accountant 79
Socialsekreterare Social worker 86

Table 3: The 20 most common occupations for Swedish women in 2016 according to Statistics Sweden
(www.scb.se).

Occupation (Swedish) Occupation (English) | % men
Foretagssiljare Company sales 73
Lager- och terminalpersonal Warehouse staff 79
Mjukvaru- och systemutvecklare Software developer 80
Lastbilsforare Truck driver 94
Traarbetare, snickare Carpenter 99
Maskinstillare och maskinoperatorer Machine operator 86
+ Butikssiljare, fackhandel Shop sales 39
Fastighetsskotare Janitor 86
Motorfordonsmekaniker och fordonsreparatér | Vehicle mechanic 97
Installations- och serviceelektriker Electrician 98
+ Butikssiljare, dagligvaror Retail sales 33
* Grundskollérare Primary school teacher 25
Underhallsmekaniker och maskinreparator Maintenance mechanic 95
* Planerare och utredare Planner 37
* Restaurang- och koksbitride Restaurant assistant 35
Ingenjor och tekniker inom elektroteknik Electrical technician 87
ICivilingenjorsyrke inom elektroteknik Electrical engineer 84
Verkstillande direktor CEO 84
Buss- och sparvagnsforare Bus driver 86
VVS-montor Plumber 99

Table 4: The 20 most common occupations for Swedish men in 2016 according to Statistics Sweden
(www.scb.se).
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Male names Male names Female names Female names
Model Male occupations Female occupations Male occupations Female occupations
word2vec 91 (86) 9 (14) 99 (98) 1(2)
fastText 4 (10) 96 (90) 100 (100) 0(0)
ELMo 96 (63) 4 (37) 49 (87) 51 (13)
BERT 37 (54) 63 (46) 76 (55) 24 (45)

Table 5: Percentage of female and male names that are on average more similar to a female vs. male
occupation. The similarities are calculated based on the original embeddings, before the application of
the debiasing step described in Section 6. Numbers in parentheses only count the single most similar

occupation for each name.

cupation for each name. As an example, imagine
we only have two female and male occupations,
and that the name “Anna” has the similarities 0.47
and 0.78 to the female occupations, and the simi-
larities 0.12 and 0.79 to the male occupations. In
this example, “Anna” would be closer to the fe-
male occupations when counting the average sim-
ilarities (0.625 vs. 0.455), but closer to the male
occupations when only considering the most sim-
ilar examples (0.79 vs. 0.78).

There are several ways in which an embedding
could show bias in this setting. The arguably
most detrimental effect would be if the embedding
grouped male names with male occupations and
female names with female occupations. Some-
what less severe, but still problematic, would be if
the embedding grouped all names with female or
male occupations. A completely unbiased model
would not show any difference between the female
and male names with respect to female and male
occupations.

The numbers in Table 5 demonstrate some in-
teresting differences between the different embed-
dings. word2vec shows a clear tendency to
group both male and female names with male oc-
cupations. fastText, on the other hand, shows
a bias for female occupations for male names, and
for male occupations for female names. This is a
very interesting difference, given that the only al-
gorithmic difference between these models is the
inclusion of character n-grams in the latter model.

The results for ELMo and BERT show some in-
teresting differences too. ELMo groups the male
names with the male occupations, but is less bi-
ased for the female names. When counting only
the single most similar occupation, ELMo shows a
similar tendency as word2vec and groups both
male and female names with male occupations.
BERT, on the other hand, seems slightly more

balanced, with a tendency similar to fastText
when counting the average similarities. When
only counting the single most similar occupation,
BERT is almost perfectly balanced between fe-
male and male occupations.

6 Debiasing embeddings

We apply the debiasing methodology in (Boluk-
basi et al., 2016b) to the pretrained embedddings.
Debiasing a given vector space involves finding
the general direction in it that signifies gender
using a set of predefined definitional pairs, and
then removing the direction from all vectors ex-
cept those corresponding to words that are natu-
rally gender specific.

The definitional pairs are word pairs express-
ing among themselves a natural distinction be-
tween the genders, e.g., he — she, and mother —
father. In our setting, there are 10 such pairs. The
gender specific words are words that also carry a
natural gender dimension that should not be cor-
rected during the debiasing phase of the vector
space. We use the same methodology for growing
a seed set of gender specific words into a larger
set as described in (Bolukbasi et al., 2016b), and
end up with 486 manually curated gender specific
words, including e.g., farfar (paternal grandfa-
ther), tvillingsystrar (twin sisters), and matriark
(matriarch).

The definitional pairs are used to find a gender
direction in the embedding space, which is done
by taking the difference vector of each of the def-
initional pairs (i.e. w; — ws), and then factorizing
the mean-centered difference vectors using PCA,
retaining only the first principal component, which
will act as the gender direction. The vector space
is then hard debiased" in the sense that the gen-

"The alternative is soft debiasing, in which one tries
to strike a balance between keeping the pairwise distances

39



Male names Male names Female names Female names
Model Male occupations Female occupations Male occupations Female occupations
word2vec 88 (89) 12(11) 95 (93) 50
fastText 0(10) 100 (90) 100 (99) 0
ELMo 99 (87) 1(13) 26 (71) 74 (29)
BERT 0(50) 100 (50) 97 (52) 3(48)

Table 6: Percentage of female and male names that are on average more similar to a female vs. male
occupation. The similarities are calculated based on the debiased version of each model. Numbers in
parentheses only count the single most similar occupation for each name.

der direction b is removed from the embeddings of
all non-gender specific words w using orthogonal
projection: w’' = w — b x %’—é’

The approach described by (Bolukbasi et al.,
2016b) includes an equalize step to make all gen-
der neutral words equidistant to each of the mem-
bers of a given equality set of word pairs. The
equality set is application specific, and since the
current investigation of Swedish language embed-
dings does not naturally lend itself to include an
equality set, the debiasing of the embeddings does
not involve equalization in our case.

We apply the method described above to all pre-
trained embeddings in Table 3, as well as to the
token vectors generated by ELMo and BERT. Al-
though it is not clear whether the proposed debias-
ing method is applicable to embeddings produced
by contextualized language models, we argue that
it is reasonable to treat the contextualized models
as black boxes, and rely only on their output, given
the proposed use case.

7 Experiment 2: names and occupations
(revisited)

We repeat the experiment described in Section 5,
but using the debiased embeddings. Table 6 sum-
marizes the results. It is clear that the debiasing
method does not have any impact on the results in
these experiments. The tendencies for the word-
based embeddings word2vec and fastText
are more or less identical before and after debi-
asing. The most striking differences between Ta-
ble 5 and Table 6 are the results for ELMo and
BERT, which become less balanced after apply-
ing the debiasing method. ELMo actually shows
a clearer gender distinction after debiasing, with
male names being more similar to male occupa-
tions, and female names being more similar to fe-

among all vectors and decreasing the influence of the gender
specific direction.

male occupations. BERT also becomes less bal-
anced after debiasing, grouping male names with
female occupations, and female names with male
occupations, when considering the average simi-
larities. When counting only the most similar oc-
cupation per name, BERT is still well balanced af-
ter debiasing.

8 Experiment 3: company names and
company descriptions

The experiments in the previous sections are ad-
mittedly somewhat simplistic considering the sce-
nario discussed in the Introduction: quantifying
the similarity between a company name and a
company description. In particular the contex-
tualized language models are not primarily de-
signed for generating token embeddings, and it is
neither clear what kind of quality we can expect
from such un-contextualized token embeddings,
nor whether they are susceptible to the debias-
ing operation discussed in Section 6. In order to
provide a more realistic scenario, we also include
experiments where we compute the similarity be-
tween a set of actual company descriptions and a
set of fictive company names generated from the
lists of male and female names by adding the term
“Aktiebolag” (in English limited company) after
each name.?

The company descriptions are provided by the
Swedish Companies Registration Office, and con-
tain approximately 10 company descriptions for
each of the sectors construction work, vehicles and
transportation, information technologies, health
and health care, education, and economy. Based
on Tables 3 and 4, we consider the descriptions
from the first three sectors to be representative of
typically male occupations, and the descriptions
from the latter three sectors to be representative

It is not uncommon for names of limited companies (in
Sweden) to feature a person name and the term “Aktiebolag”.

40



Male names Male names Female names Female names
Model Male occupations Female occupations Male occupations Female occupations
word2vec 29 (29) 71 (71) 30 (30) 70 (70)
fastText 60 (61) 40 (39) 60 (61) 40 (39)
ELMo 52 (53) 48 (47) 53 (54) 47 (46)
BERT 42 (40) 58 (60) 41 (41) 59 (59)

Table 7: Percentage of female and male names that are on average more similar to a female vs. male
occupation. The similarities are calculated based on the original embeddings, using the names and
occupations in context. Numbers in parentheses only count the single most similar occupation for each

name.

of typically female occupations.

We generate vectors for each of the descrip-
tions and for each fictive company name (i.e. a
male or female name, followed by ‘“Aktiebo-
lag”). For the word-based models (word2vec
and fastText), we take the average of the em-
beddings of the words in the descriptions and the
name. For the contextualized language models
(ELMo and BERT), we generate vectors for each
description and each fictive name. In the case of
ELMo we take the average over the three LSTM
layers, and for BERT we use the output embed-
ding for the [CLS] token for each of the input se-
quences.

The results are summarized in Table 7. It is
clear that these results are significantly more bal-
anced than the results using tokens only. Even
so, there are still some interesting differences be-
tween the embeddings. Contrary to the results in
Tables 5 and 6, word2vec now shows a bias for
female occupations, and fast Text now shows a
bias for male occupations. ELMo and BERT seem
more balanced, with ELMo showing almost per-
fectly balanced results, and BERT showing a slight
bias for female occupations.

Even though the biases apparently are different
when considering tokens in comparison with con-
sidering texts, there are still biases in all models
in both cases. The only exception in our experi-
ments is ELMo, when used for texts instead of to-
kens. We hypothesize that the results for BERT are
negatively affected by artefacts of the WordPiece
tokenization, as discussed in Section 3.

9 The effect of debiasing on embeddings

So far, we have shown that all Swedish pretrained
embeddings included in this study exhibit some
degree of gender bias when applied to a real-world
scenario. We now turn to investigate the effect

the hard debiasing operation has on the embed-
ding spaces, using the intrinsic evaluation method-
ology of Bolukbasi et al. (2016b). In this setting, a
number of analogy pairs are extracted for the orig-
inal and debiased embeddings, and human evalu-
ators are used to asses the number of appropriate
and stereotypical pairs in the respective represen-
tations. Bolukbasi et al. (2016b) used 10 crowd-
workers to classify the analogy pairs as being ap-
propriate or stereotypical. Their results indicated
that 19% of the top 150 analogies generated using
the original embedding model were deemed gen-
der stereotypical, while the corresponding figure
for the hard debiased model was 6%.

We carry out a similar, but smaller, evalua-
tion exercise using the analogy pairs generated by
the original Swedish word2vec and fastText
models, as well as their debiased counterparts.®
We use hon — han (she — he) as seed pair, and score
all word pairs in the embeddings with respect to
the similarity of the word pair’s difference vector
to that of the the seed pair. The top 150 pairs are
manually categorized as either appropriate, gen-
der stereotypical, or uncertain by the authors.

The results of the annotation are shown in Ta-
ble 8 (next page). Due to the limited extent of
the evaluation, we can only use these results for
painting the big picture. First of all, there is a rel-
atively small overlap between the analogy pairs
in the top 150 of the original models, and the
top lists of the debiased models: for word2vec,
only 42 of the analogy pairs in the original list are
also in the list produced by the debiased model.
The corresponding number for fastText is 31.
This means that the debiasing operation changes

31t would have been preferable to also include ELMo and
BERT in this experiment, but generating vectors for large vo-
cabularies using these models takes a prohibitively long time,
and it is neither clear whether the resulting token embeddings

make sense, not whether the debiasing operation is applicable
to the resulting embeddings.
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Original Debiased | Original Debiased

Analogies quality | word2vec word2vec | fastText fastText
Appropriate 97 52 135 36
Stereotypical 3 13 5 4
Uncertain 18 36 0 45

Table 8: The number of appropriate, stereotypical, and uncertain analogies in the top 150 pairs for the
original and debiased embeddings. The numbers are the analogy pairs for which the annotators agree on

the category.

the embedding space to a large extent. Second,
there is a considerable amount of annotator uncer-
tainty involved, either regarding the plausibility of
a given analogy pair, or regarding its appropriate-
ness. This is manifested by an increase of the num-
ber of uncertain analogy pairs that the annotators
agree on between the original and debiased mod-
els (both for word2vec and fastText). How-
ever, the most interesting findings have to do with
the number of stereotypical analogy pairs. The
number of stereotypical analogy pairs output by
the Swedish models is small compared to the num-
bers reported by Bolukbasi et al. (2016b). Further,
the number of stereotypical pairs is larger in the
debiased word2vec model than in the original
model (we anticipated that it should be lower). It
thus seems as if the debiasing operation makes the
word2vec embedding space more biased. For
fastText, the number of such pairs are slightly
fewer in the debiased model compared to its orig-
inal counterpart.

10 Discussion

This paper has shown that pretrained Swedish em-
beddings do exhibit gender bias to varying ex-
tent, and that the debiasing operation suggested
by Bolukbasi et al. (2016a) does not have the de-
sired effect, neither in the task of matching per-
son names with occupations, nor in the case of
the gender stereotypes being present among the
top ranked analogy pairs generated by the mod-
els. Our experiments also indicate that word-based
embeddings are more susceptible to bias than con-
textualized language models, and that there is an
unexpectedly large difference in the biases shown
by word2vec and fastText, something we
believe requires further study.

Although contextualized language models ap-
pear to be more balanced with respect to gender
bias in our experiments, there is still bias in these
models; in particular if they are used to generate

token embeddings, but also when they are used to
generate representations for texts — ELMo, which
produces almost perfect scores in Table 7, may
still show bias in individual examples, such as
those in Table 1. We acknowledge the possibility
that it may not be appropriate to use contextual-
ized language models to generate embeddings for
individual tokens, but we also believe such usages
to occur in real-world applications, and we there-
fore consider it relevant to include such examples
in these experiments.

The debiasing operation proposed by Bolukbasi
et al. (2016a) does nothing to rectify the situa-
tion in our setting. On the contrary, the debiased
models still show significant gender bias, and in
the case of ELMo and BERT, the bias actually be-
comes more prevalent after debiasing. (However,
we are aware that the debiasing operation may
neither be intended nor suitable for such repre-
sentations.) Furthermore, our (admittedly small)
analogy evaluation shows that debiasing actually
introduces more stereotypical word pairs in the
word2vec model.

Why then does not debiasing the Swedish word-
based embeddings produce results similar to those
of Bolukbasi et al. (2016a)? One of the big differ-
ences between the Swedish pretrained word2vec
model and the one used by Bolukbasi et al. is the
size of the vocabulary. The Swedish model con-
tains 3M+ word types, while Bolukbasi et al. con-
strained their experiments to include only lower-
cased words shorter than 20 characters, omitting
digits and words containing punctuation, from the
top 50,000 most frequent words in the model. By
doing so, Bolukbasi et al. effectively removed
many person names from the model. A large por-
tion of the word pairs in our analogy lists produced
by the original model consist of person names
(e.g., Anna — Jakob), which we consider to be
appropriate, and their presence on the top 150
list contribute to the comparatively low number of
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stereotypical pairs. The debiasing operation of the
word-based models remove many of the persons
name pairs from the top list, giving way for po-
tentially stereotypical pairs. Thus, the increase of
stereotypical pairs on the top list of analogy pairs
generated by a debiased model is more likely to be
due to the debiasing operation effectively remov-
ing many of the names from the top list, than the
model being more biased in the first place.

Since our experiments have focused on pre-
trained embeddings readily available on the Inter-
net, which have been trained on different types and
different sizes of data, we cannot speculate about
the extent to which a particular learning algorithm
amplifies or distorts bias. We believe this is an
interesting direction for further research, and we
aim to replicate this study using a variety of em-
beddings trained on the same data.

References

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5.

Tolga Bolukbasi, Kai-Wei Chang, James Y. Zou,
Venkatesh Saligrama, and Adam Kalai. 2016a. Man
is to computer programmer as woman is to home-
maker? debiasing word embeddings. arXiv preprint
arXiv:1607.06520.

Tolga Bolukbasi, Kai-Wei Chang, James Y Zou,
Venkatesh Saligrama, and Adam T Kalai. 2016b.
Man is to computer programmer as woman is to
homemaker? debiasing word embeddings. In Ad-

vances in neural information processing systems,
pages 4349-4357.

Shikha Bordia and Samuel R. Bowman. 2019. Iden-
tifying and reducing gender bias in word-level lan-
guage models. In NAACL Student Research Work-
shop.

Aylin Caliskan, Joanna J Bryson, and Arvind
Narayanan. 2017. Semantics derived automatically
from language corpora contain human-like biases.
Science, 356(6334):183-186.

Wanxiang Che, Yijia Liu, Yuxuan Wang, Bo Zheng,
and Ting Liu. 2018. Towards better UD parsing:
Deep contextualized word embeddings, ensemble,
and treebank concatenation. In Proceedings of the
CoNLL 2018 Shared Task: Multilingual Parsing
from Raw Text to Universal Dependencies, pages
55-64, Brussels, Belgium. Association for Compu-
tational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep

bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Nikhil Garg, Londa Schiebinger, Dan Jurafsky, and
James Zou. 2018. Word embeddings quantify
100 years of gender and ethnic stereotypes. Pro-

ceedings of the National Academy of Sciences,
115(16):E3635-E3644.

Hila Gonen and Yoav Goldberg. 2019. Lipstick on a
pig: Debiasing methods cover up systematic gen-
der biases in word embeddings but do not remove
them. In Proceedings of the Annual Conference of
the North American Chapter of the Association for
Computational Linguistics (NAACL).

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013. Distributed represen-
tations of words and phrases and their composition-
ality. In Proceedings of the 26th International Con-
ference on Neural Information Processing Systems -
Volume 2, NIPS’ 13, pages 3111-3119, USA. Curran
Associates Inc.

Ji Ho Park, Jamin Shin, and Pascale Fung. 2018. Re-
ducing gender bias in abusive language detection.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2799-2804.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
2227-2237.

Jieyu Zhao, Tianlu Wang, Mark Yatskar, Vicente Or-
donez, and Kai-Wei Chang. 2017. Men also like
shopping: Reducing gender bias amplification us-
ing corpus-level constraints. In Proceedings of the
2017 Conference on Empirical Methods in Natural
Language Processing.

Jieyu Zhao, Yichao Zhou, Zeyu Li, Wei Wang, and Kai-
Wei Chang. 2018. Learning gender-neutral word
embeddings. In Proceedings of the 2018 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 4847-4853, Brussels, Belgium.
Association for Computational Linguistics.

43



A larger-scale evaluation resource of terms and their shift direction for
diachronic lexical semantics

Astrid van Aggelen® Antske Fokkens® Laura Hollink® Jacco van Ossenbruggen <
& Centrum Wiskunde Informatica, Amsterdam, Netherlands
<> Vrije Universiteit Amsterdam, Netherlands
a.e.van.aggelen@cwi.nl, antske.fokkens@vu.nl

Abstract

Determining how words have changed
their meaning is an important topic in Nat-
ural Language Processing. However, eval-
uations of methods to characterise such
change have been limited to small, hand-
crafted resources. We introduce an En-
glish evaluation set which is larger, more
varied, and more realistic than seen to
date, with terms derived from a historical
thesaurus. Moreover, the dataset is unique
in that it represents change as a shift from
the term of interest to a WordNet synset.
Using the synset lemmas, we can use this
set to evaluate (standard) methods that de-
tect change between word pairs, as well as
(adapted) methods that detect the change
between a term and a sense overall. We
show that performance on the new data set
is much lower than earlier reported find-
ings, setting a new standard.

1 Introduction

Determining how words have changed their mean-
ing is an important topic in Natural Language
Processing (Tang, 2018; Kutuzov et al., 2018;
Tahmasebi et al., 2018). Using large diachronic
corpora, computational linguistics has provided
methods that can detect or qualitatively explain se-
mantic change automatically. In particular, sev-
eral approaches have been introduced that use dis-
tributional semantic models representing different
time periods in diachronic corpora (Gulordava and
Baroni, 2011; Mitra et al., 2014; Kulkarni et al.,
2015, e.g.).

Researchers have illustrated through com-
pelling examples that these methods can detect se-
mantic shift, like cell obtaining the meaning of
‘phone’ and gay shifting from ‘cheerful’ to ‘ho-
mosexual’ (Mitra et al., 2014, e.g.) and have re-
ported high accuracy on small evaluation sets of

selected examples. Hamilton et al. (2016) even
report 100% accuracy in detecting known change
on 28 word pairs. As a result, these approaches
have been enthusiastically adopted (Wohlgenannt
etal., 2019; Orlikowski et al., 2018; Kutuzov et al.,
2016; Martinez-Ortiz et al., 2016, e.g.). However,
it has been called into question how reliable these
methods really are (Hellrich and Hahn, 2016a; Du-
bossarsky et al., 2017).

These developments show that there is both a
wide interest in using distributional semantic mod-
els to assess semantic change and an urgent need
for better insight into the possibilities and limita-
tions of these methods. It is therefore unsurpris-
ing that three recent survey papers on the topic all
list the lack of proper evaluation and, in particu-
lar, the absence of large-scale evaluation sets, as a
key challenge for this line of research (Tang, 2018;
Kutuzov et al., 2018; Tahmasebi et al., 2018).

In this paper, we automatically derive HiT, the
largest English evaluation set to date, from a his-
torical thesaurus. HiT consists of terms linked to
WordNet (Fellbaum, 2012) entries that represent
senses they gained or lost. We introduce sense
shift assessment as a task, enabled by this dataset,
that identifies whether a sense of a term of interest
was coming in our out of use, based on its changed
relationship with all lemmas of the sense. This is
a variation of a task introduced by Hamilton et al.
(2016) that assesses the relationship of the terms
of interest with individual other terms. The sense
shift assessment instead uncovers the conceptual
change that explains multiple observed trends be-
tween word pairs. Cross-checking and summaris-
ing individual observations also means drawing
more informed conclusions. Furthermore, the use
of WordNet sense representations allows for the
dataset entries to be automatically derived rather
than manually (expert) collected, hence limiting
the effect of bias. We use HiT to answer two main
research questions. First, how well can current
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methods detect sense shift on a larger and more
varied evaluation set? Second, how, by taking a
full synset as a representation of meaning, does the
task of detecting sense shift compare to studying
word pairs in isolation? The main contributions of
this paper are as follows. First, the new evalua-
tion set, consisting of 756 target words and 3624
word pairs. Second, we show that current meth-
ods perform quite poorly on this more challenging
set, thus confirming that this set introduces a new
benchmark. We also identify lexical factors that
contribute to these differences.

2 Related Work

This section provides an overview of previous
work on detecting lexical semantic change through
distributional semantic models.

Distributional models of meaning are motivated
by the hypothesis that words with similar mean-
ings will occur in similar contexts (Harris, 1954;
Firth, 1957). Tahmasebi et al. (2011) and Mitra
et al. (2014) induce clusters of terms that tem-
porally co-occur in particular syntactic patterns,
and (qualitatively or quantitatively) trace their de-
velopment. Their approach forms a bridge from
previous document-based approaches (Blei and
Lafferty, 2006; Wang and McCallum, 2006, e.g.)
to the window-based models that are currently
widely used.

Gulordava and Baroni (2011) and Jatowt and
Duh (2014) were among the first to use trends in
similarity between distributional representations.
The former detect change within single terms by
tracing their self-similarity. The latter, like we
do, interpret the change of a term by contrast-
ing it with other terms. In recent work, the most
common type of distributional models used to as-
sess semantic shift are known as prediction models
(Kim et al., 2014; Kulkarni et al., 2015; Hamilton
etal., 2016, e.g). In this paper, we use embeddings
that gave the best results in Hamilton et al. (2016)
and are created through the skip-gram method in-
cluded in word2vec (Mikolov et al., 2013).

Until recently, semantic shifts were determined
by comparing the distributional nearest neigh-
bours of a term in one time period to its neighbours
in another (see e.g. Tahmasebi et al. (2011)). How-
ever, such an inspection is difficult to carry out at
scale, is not suited for disappearing senses - dis-
tant neighbours are hard to assess - and is prone to
bias, especially when the aim is to confirm hypoth-

esized trends. Hamilton et al. (2016) use a prede-
termined list of terms to which the target term got
more and less related over time. This variation al-
leviates the problem of bias and introduces ‘more
distant neighbours’ into the analysis, but with just
28 term pairs it is still very small-scale.

Basile and McGillivray (2018) are, to our
knowledge, the first to exploit a large historical
dictionary as an evaluation source. The aim of
their work is to detect changed terms and their
change point, based on dips in the self-similarities,
with the Oxford English Dictionary as the gold
standard. To verify whether the observed change
point corresponds to a new dictionary sense, the
time-specific nearest neighbours of the term are
contrasted with the dictionary definition. This
work could have provided the evaluation set for
the task addressed in this paper. However, as far
as we know, the authors have not enriched the data
with said nearest neighbours nor made them avail-
able. Hence, the current work is still the first to
provide a large-scale evaluation set based on a dic-
tionary.

3 A large-scale sense shift assessment set

This section describes a new evaluation set that
links terms of interest (target terms) to rich synset
representations of their old and new senses. This
means that in an experimental setting (such as that
in Section 5), the target term can be contrasted to a
predetermined, varied set of terms. We also adapt
two existing evaluation sets, HistWords (Hamilton
et al., 2016) and the Word Sense Change Testset'
(Tahmasebi and Risse, 2017), into datasets of the
same format.

3.1 Deriving a sense shift assessment set

The new dataset, which we call HiT, is derived
from The Historical Thesaurus of the Univer-
sity of Glasgow (Kay et al., 2019). This thesaurus
lists (nearly all) English terms organised in a con-
ceptual hierarchy of senses. It also documents the
time period in which a term was attested and as-
sumed to be active in the given sense. For instance,
one entry says that the verb bray was used in the
sense of ‘Grind/pound’ (in turn a subconcept of
‘Create/make/bring about’) for the period 1382 till
1850. The thesaurus does not indicate how any
listed sense of a word relates to previous, concur-
rent or future ones. Hence, it is unclear whether

"http://doi.org/10.5281/zenodo.495572
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the term underwent a process of semantic narrow-
ing or broadening, or whether it lost or gained a
sense altogether. The change that is considered
here is a broad notion of rising or declining senses.

For HiT we use all terms in senses that came up
between 1900 and 1959 and all terms in senses that
disappeared - which were less numerous - between
1850 and 1959. To enrich the thesaurus terms, we
identify their WordNet synsets and check if each
of these expresses the intended meaning. This
check is based on the overlap between the the-
saurus definition and the synset terms. If any term
from the synset (excluding the target term itself)
overlaps with any of the terms from the thesaurus
definition (in the example above, the terms are
{create, make, bring about, grind, pound}), we
assume that the synset in question provides the in-
tended sense. The verb bray appears in WordNet
under two polylexical synsets: {bray, hee-haw},
and {bray, grind, mash, crunch, comminute}. Due
to the overlapping term grind, the thesaurus en-
try is matched with the latter, meaning ‘reduce to
small pieces or particles by pounding or abrad-
ing’, but not with the former (‘laugh loudly and
harshly’).

Newly emerging senses from the thesaurus pro-
vide gold standard instances that are supposed to
attract the vector of the target term. Disappear-
ing senses, on the other hand - such as ‘grind’ for
bray after 1850 - are gold standard instances from
which the target term should move away. Table 1
shows how the bray example translates to a HiT
entry of a vanishing sense with the WordNet syn-
onyms used as reference terms.

Only entries with at least one identified Word-
Net synset are included. This results in a dataset
of 756 target terms exhibiting 979 sense shifts.

target POS sense (WN synset) shift onset
term | reference term
bray . grind.v.05 -1 1850

| grind, mash, crunch, comminute

Table 1: Example excerpt from an entry of HiT. Shift label
-1 means a move away from the given meaning.

Validation To establish the accuracy of the
WordNet matching method, two raters indepen-
dently annotated a subset of 191 entries. The
agreement between the raters (i.e. the proportion
of agreement above chance level) is assessed us-
ing Cohen k for two raters (Cohen, 1960). Also,
we assessed how well the raters’ judgement corre-
sponded to the output of the automated WordNet

matching, i.e., the supposed gold standard.

Rater 1 verified whether the algorithm had se-
lected the correct synset or not. To counteract an
effect of bias from the gold standard, rater 2 did
not work with the gold standard, rather indicating
for any given WordNet synset whether it repre-
sented the given definition. These findings were
then translated to a judgement of the algorithm
output in line with rater 1. The annotators agreed
on the evaluation by 97.9 per cent; by Cohen’s
chance-normalised norm (x = 0.789, z = 11,
p < 0.001), this is generally thought of as ‘sub-
stantial’ agreement. Except for 10 (rater 1) and
9 (rater 2) instances out of 191, the raters’ judge-
ments corresponded to that of the algorithm, an er-
ror rate of approximately 5 per cent. We consider
this high enough to take the outcome of the synset
linking method as the gold standard.

3.2 Transforming existing datasets

The thesaurus-derived dataset, HiT, qualitatively
differs from existing evaluation sets in its auto-
mated construction and in its representation of
senses by a synset rather than selected terms.
In order to compare this set to previously used
datasets, we adapt two standard evaluation sets
semi-automatically to link the target words they
contain to synsets representing the given old or
new senses.

HistWords (Hamilton et al., 2016) (HW) con-
tains 28 word pairs that saw their similarity in-
crease or decrease over time, based on 9 target
terms. HistWords states the onset of the change -
no end date - and the gold standard shift direction.
For instance, since 1800, awful has moved towards
mess and disgusting and away from impressive.

The Word Sense Change Testset (WSCT)
(Tahmasebi and Risse, 2017) lists terms that ac-
quired a new sense and unchanged control words.
It gives the type of change the term underwent (no
change, new, broader, or narrower sense), a short
explanation of the change and the onset date of the
change. For instance, memory acquires a new re-
lated sense ‘digital memory’ in 1960 whilst keep-
ing its existing sense ‘human memory’.

From HW to HW+ and from WSCT to
WSCT+. Every entry from WSCT and HW is
treated as a separate change event, with an on-
set date and a description; some target terms have
more than one change event. For each such event,
the affected sense(s) are selected out of all can-
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didate senses, i.e. all WordNet synsets that cor-
respond to the target lemma (in the correct part
of speech). This synset selection process hap-
pened manually, by comparing the lexical infor-
mation in WordNet against the change description
in the source data. More details about the anno-
tation process are given below. The outcomes de-
termine the change type listed for the combination
of target term and synset in the enriched datasets
WSCT+ and HW++. The target term is thought to
move towards any synset (and towards all terms of
the synset) that captures an increasingly common
sense, and away from any synset that expresses an
increasingly uncommon sense. For any synset that
does not capture any described change, its relation
to the target term is described as unchanged or un-
known. See Table 2 for an example.

Annotation process and validation. The se-
lection was carried out by the first author; this
was then evaluated by two co-authors for HW+
and one co-author for WSCT+. In the case of
three raters, we used Fleiss’ extension of Cohen’s
method (Fleiss, 1971). The raters judged the shift
direction of the target term with respect to all
candidate concepts (synsets): towards (+1), away
from (-1) one another, or no change (0). The eval-
uation set of word-sense combinations was larger
than the final dataset (Table 3), as it included
synsets with just the target term. The raters were
given the following data: the change description
and the time of change, given in HW or WSCT; the
(given or inferred) part of speech; the candidate
WordNet concept that connects the two terms; and
corresponding WordNet data such as the definition
and the set of terms in the synset. For WSCT+
(N=129 target-sense pairs), the two raters agreed
by 88.4 per cent, which, chance-normalised (Co-
hen’s kK = 0.63, z = 7.26, p < 0.01) is thought
to be ‘substantial’. The raters then agreed on the
final set of gold standard labels. On HW+ (N=70
target-sense pairs), the three raters agreed almost
perfectly (Fleiss’ k = 0.83, z = 16, p < 0.01),
and the ratings by the first author were taken as
the gold standard.

Resulting datasets The evaluation sets all pro-
vide two types of pairings: target terms paired
with reference terms and target terms with synsets.
The gold standard for the individual word pairs -
target word and synonym - corresponds to the gold
standard for the whole synset. After the inter-rater
evaluation, synsets with just one term (the target

target POS sense (WN synset) t shift
term | reference term

memory n. memory.n.03

| retention, retentiveness, retentivity
memory.n.04 1960 1
| computer memory, storage, compu-

ter storage, store, memory board

1960 0

memory n.

Table 2: Excerpts from two entries of WSCT+. Shift label 0
means we have no evidence the word changed with respect to
the given sense. Label 1 means a shift towards the indicated
meaning (and its associated terms).

term) were omitted, as the experiment requires ref-
erence terms. Table 3 provides an overview of
the resulting evaluation sets next to HistWords as
a baseline. HiT does not show any overlap with
the other datasets except for a single target term
lemma (verb call) in common with HW+, however
with the described change in a different meaning.

dataset HW HW+ WSCT+  HiT
dataset type existing adapted adapted new
target words (TWs) 9 9 23 756
TW-+term 28 117 213 3624
converging 18 41 56 1173
diverging 10 24 0 2451
unchanged/-known 0 52 157 0
TW-+sense n.a. 42 93 979
converging n.a. 10 23 282
diverging n.a. 10 0 697
unchanged/-known n.a. 22 70 0

Table 3: Contents of the evaluation sets, which come in two
variants: target terms paired with other terms and paired with
WordNet senses (synsets). This allows the datasets to be used
for the two types of evaluation used here.

4 Experiment

Two tasks are addressed in the experiment. Word
shift assessment (WordShiftAssess) (Hamilton
et al.,, 2016) is summarised as follows: given
a target term, a reference term, and a time pe-
riod, did the two terms become closer in mean-
ing (gold standard label 1) or did their meanings
move apart (label -1)? Sense shift assessment
(SenseShiftAssess) goes as follows: given a tar-
get term, a WordNet synset, and a time period, did
the target term in the given period move towards
or away from the given sense? To be comparable
to previous findings, we evaluate the datasets on
both tasks. This section outlines the methods and
the experimental setup.

4.1 Change assessment for word-word pairs

Our method of determining shift direction was
proposed by Hamilton et al. (2016). It depends on
the availability of distributional representations for
the target term and reference terms, corresponding
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to the synset lemmas, at regular intervals between
the start and the end of the period of interest. The
successive cosine similarities of the embeddings
of the target and reference term are (Spearman)
correlated with the time index (e.g. 1800, 1810,
., 1990). If the correlation is positive, the target
term is taken to have moved towards the reference
term; if it is negative, away from it. Given the
binary classification setting, the statistical signifi-
cance of the correlation factor has no clear inter-
pretation. However, we include it to comply with
earlier reported findings and for readers to judge
the potential of the method for a three-way classi-
fication with a null category.

4.2 Change assessment for word-sense pairs

To address SenseShiftAssess, we suggest two
broad approaches. The first starts from the method
outlined in Section 4.1. That is, for any target-
sense pair, we start from the given target word
paired with all lemmas of the synset, and the
trend of the cosine similarities (Spearman p and
p) for each of these word pairs. Then, we either
take the most-observed sign of p as the outcome
(majority vote), or we promote one word pair to
exemplify the sense shift as a whole. Assuming
that an observed strong trend is likely to be cor-
rect, argmax(corr) takes the sign of the highest
absolute p value of all word pairs in the synset as
the synset assessment. argmin(p(corr)) does the
same for the observation the correlation coefficient
of which has the lowest p value.

The second approach we suggest, average vec.,
operates on a lower level, as it aggregates the dis-
tributional representations of the synset lemmas
into an average vector, for every time slice sep-
arately. The target term and the averaged repre-
sentation are then treated like a word pair (Section
4.1).

4.3 Experimental setup

We apply word shift assessment on HW, HW+,
WSCT+, and HiT. The reference terms of HW+,
WSCT+ and HiT come from WordNet; those in
HW are readily taken from the source. Figure 1 il-
lustrates how the term awful from HW+ compares
with its individual WordNet synonyms over time.

Sense shift assessment is applied to WSCT+,
HW+ and HiT, i.e. all sets that could be enriched
with sense information. To continue with the ex-
ample in Figure 1, sense shift assessment trans-
lates the word-based observations into a single as-

Term-term similarities within a WerdNet synset
For target term awful in synset atrocious.s.02

reference term
abominable
arocious

= dreadil

== pain
tamible
unspeakable

Cosine similarity of target and reference term

1800 1850 1900 150
Time (decade)

Figure 1: WordShiftAssess with WordNet-based reference
terms: target term awful is individually contrasted with all
terms from synset atrocious.s.02: abominable, atro-
cious dreadful, painful, etc. The fitted lines illustrate the ob-
served trend in cosine similarities, such as the growing simi-
larity between awful and terrible.

sessment of the changed relation of awful with re-
spect to the whole synset.

Distributional vectors. We use word embed-
dings provided by Hamilton et al. (2016) of size
300, trained through skip-gram with negative sam-
pling (SGNS) for every decade separately on three
corpora: the Corpus of Historical American En-
glish (Davies, 2015) (COHA), the complete En-
glish Google N-Gram corpus (Michel et al., 2011),
and the English Fiction corpus, a subset of the
Google N-Gram corpus. The embeddings are not
(part of speech) disambiguated, and can stand for
several lemmas at once. We employ the embed-
dings for every decade from the attested onset of
change up to and including the last available em-
bedding, trained on the 1990s subcorpus.

Handling of missing and infrequent data.

Some terms appear infrequently in some slices of
the corpus. The code that accompanies Hamilton
et al. (2016) deals with these cases by padding
the cosine time series with a zero for the dimen-
sion (i.e. time slice) in which either or both of
the terms was insufficiently frequent (under 500
times, except for COHA). However, this biases the
outcome, since zero is the smallest cosine sim-
ilarity value. Given that low word frequencies
are more common in the corpora of the first few
decades, this setting makes it more likely to find
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cosine time series p
t1 e 1o tin tiz tiz tin iy

0 w 0 025 029 029 020 0.18
NA NA 025 029 029 020 0.18

0.77
-0.7

Table 4: Similarity values based on infrequent data must
not be padded with zero as this biases the correlation value
towards a positive value. In the word pair delimit-define,
padding the values for decades ¢1 (in fact, 1850) through to
t11 (1940) with zeros would lead to a conclusion opposite
to the ground truth stating that these terms move away from
each other; hence these observations are treated as missing
data (NA) instead.

a rising trend in cosine similarities. As this is an
unwanted effect, we treated cosine values based
on low-frequency numbers as missing values. Ta-
ble 4 illustrates the difference between the caveat
explained here and the approach taken. A further
count filter ensures that all results (correlations)
are based on at least five cosine values.

5 Results

Table 5 shows the proportion of word pair observa-
tions (WordShiftAssess) displaying the expected
trend in cosine similarities for every dataset and
training corpus. The significance reported is the
proportion of correct findings (i.e. with an upper
limit of 100%) with a Spearman p significant on
the 0.05 level. Whether the correlation coefficient
is significant depends on its magnitude as well as
the number of cosine values considered. The latter
in turn depends on the change onset - the longer
the time series, the more observations - minus ob-
servations that were based on too little data and
were left out (see Section 4.3). N expresses how
many of the word pair entries from the datasets
(Table 3) which displayed a real shift (unchanged
words were not used) resulted in a cosine time se-
ries of at least five observations (see Section 4.3).
This depends in part on the corpus, some of which
have much greater coverage than other ones, par-
ticularly the complete English corpus, eng-all. For
instance, the results for HiT for eng-all are based
on 1461 word pairs as opposed to a mere 746 for
COHA and 772 for English fiction, out of a dataset
total of 3624 shifted terms. Moreover, eng-all re-
sulted in more statistically significant correct out-
comes than COHA and eng-fic. We therefore fo-
cus on the results based on eng-all in particular.
HiT appears more challenging than WSCT+
and HW+. On eng-all, just under 60 per cent of
all entries were correctly assessed, as opposed to
around 70 per cent for WSCT+ and 80 per cent

mostly false: 12%

\ none correct: 18%

50% correct: 19%

mostly correct: 17% -

— R

“all comect: 34%

Figure 2: Proportions of correct word pairs (i.e. display-
ing the expected similarity trend) within synsets for HiT (on
eng-all). In just over half of the cases, the synset contained
more correct than incorrect observations (bottom half of the
pie chart).

for HW+. The significance levels show a similar
pattern, hence even the word pairs that showed the
predicted trend did so less clearly for HiT than for
the other datasets. The outcomes on COHA and
eng-fic confirm the pattern for eng-all: HiT figures
consistently lag behind WSCT+ and even further
behind HW+. While eng-all and eng-fic give simi-
lar levels of accuracy, on COHA, the outcomes for
HiT are below chance level.

HiT differs from WSCT+ and HW+ in that
the target terms were not selected for the task at
hand. Unsurprisingly, the automatically selected
dictionary terms offer a more challenging evalua-
tion set than the purposely selected terms in HW+
and WSCT+. The difference observed between
HW and HW+ reveals a similar trend concerning
hand-picked reference terms compared to (semi)-
automatically selected ones: the performance on
HW+ is about 20 per cent lower than for HW. In
sum, the selection of term pairs has great impact.

Table 6 shows the proportion of target-
sense entries that were correctly assessed
(SenseShiftAssess), based on several possible
aggregations of word pair level findings. Looking,
firstly, at the different methods, argmin(p(corr))
performed best. Hence, the word pair within a
synset that shows the most statistically robust
change is the best indicator of the conceptual
change of the target term. For HiT this resulted in
61.3% correct on eng-all and up to 64.0 % on eng-
fic. The added performance over argmax(corr),
whilst marginal (e.g. for HiT, 61.1 % on eng-all
and 61.9% on eng-fic), suggests that balancing the
correlation factor with the number of observations
leads to better judgements than looking at the
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WordShiftAssess eng-all coha eng-fic

HiT wsct+ HW+ HW  HiT wsct+ HW+ HW HiT wsct+ HW+ HW
correct (%) 580 692 795 1000 45.6 545 63.6 857 595 625 667 882
sig (%) 384 667 600 889 29.1 333 190 667 240 40.0 300 467
N 1461 13 44 27 746 11 33 21 772 8 30 17

Table 5: Results of determining the shift direction of a target word with respect to a reference word (WordShiftAssess).

SenseShiftAssess

corpus eng-all coha eng-fic

dataset HiT wsct+ HW+ HW HiT wsct+ HW+ HW HIiT wsct+ HW+ HW
average vec. 57.8 100.0 88.9 - 441 500 571 - 58.9 1000 66.7 -
argmax(corr) 61.1 1000 846 - 464 80.0 538 - 61.9 1000 66.7 -
majority vote 50.7 1000 769 - 36.0 80.0 538 - 49.7 750 66.7 -
argmin(p(corr)) 61.3 1000 846 - 46.8 80.0 538 - 64.0 750 66.7 -

N average vec. 374 2 9 - 204 2 7 - 214 1 6

N other methods 450 5 13 - 278 5 13 - 286 4 12 -

Table 6: Results of determining the shift direction of a target word with respect to a reference word (SenseShiftAssess).

magnitude of the correlation alone. Averaging
the vectors of all reference terms (average vec.)
was less reliable an aggregation overall than
promoting one word pair to represent the synset.
However, it still did better than the majority vote,
which required more than half of the word pairs
in a synset to display the expected shift pattern.
For HiT, this did not surpass chance level on
any of the corpora. Hence, within a synset, false
observations can be as numerous as or outweigh
true ones, and heuristics are needed to find the
signal in the noise.

SenseShiftAssess was expected to suffer less
from noisy results that occur on the word level
(WordShiftAssess). However, the improvement
observed over the word pair results was marginal.
For instance, for HiT on eng-all, the synset-level
approach was correct in 61 per cent of cases at
best, as opposed to 58 per cent on the word pair
level. HW+ and WSCT+ did benefit more from
the synset aggregation, but the small sample size
makes it hard to draw conclusions from this. Fig-
ure 2 shows how much we can rely on the terms
within a synset to display the anticipated change
in relation to the target term (for HiT and eng-
all). The vast majority of synsets - all except 18
per cent - contain at least one word pair that dis-
plays the true shift. This means that SenseShift-
Assess on HiT is feasible, at least in theory, and
the maximum accuracy attainable on eng-all is 82
per cent. A third of all synsets (34%) have all
word pairs displaying the predicted shift; hence
the lower limit is 34 per cent. There were more
synsets with mostly correct than mostly false ex-
amples, and more synsets with just correct (33 per

cent) than just false (17 per cent) ones. Based on
the slightly higher odds of picking a correct than
an incorrect example, our selection methods are
perhaps not informed by the most determining fac-
tors. To know how we can find the signal in noisy
word pair patterns, we must first understand what
causes noise. This question is addressed next.

6 Follow-up analysis

We examine several lexical and corpus factors that
may play a role in the outcomes. For every term
in a word pair, we look at its polysemy, its fre-
quency in the training corpus, and its typicality as
a representation of the underlying concept. Ta-
ble 7 breaks down the WordShiftEval results by
the combined lexical properties of target and ref-
erence term. For every entry type we distinguish
(e.g. a low-polysemous target term paired with a
high-polysemous reference term), we examine the
proportion of the result set it accounts for, and the
observed tendency for such word pairs to display
the expected shift pattern. Due to its fewer out-
comes, WSCT+ was left out of this analysis.
When a term is ambiguous, i.e. when it tends to
occur in various semantic and syntactic contexts,
its distributional representation might be less suit-
able to reflect any single one of these. Polysemy
is difficult to define (Ravin and Leacock, 2000).
Here, we define the polysemy of a term by its to-
tal number of synsets divided by the number of
different parts of speech it can occur in. We tested
different thresholds for considering a term polyse-
mous, from two to six synsets per part of speech,
which all revealed similar results. The results we
report are based on a minimum of three, four and

50



entry type (N.B.: ‘low’ can mean more or less challenging, depending on the property)
low-low low-high high-low high-high
property  threshold corpus | accuracy proportion | accuracy proportion accuracy proportion | accuracy —proportion
polysemy 3% HiT 63.8 17.8 60.9 18.2 62.8 18.4 52.7 45.6
3% HW 100 37 100 29.6 100 18.5 100 14.8
3% HW+ | 70.6 38.6 71.4 31.8 100 20.5 100 9.1
polysemy 4% HiT 66.4 32.2 58.1 21.1 59.6 17.5 47.9 29.3
4% HW 100 51.9 100 259 100 11.1 100 11.1
4% HW+ | 82.1 63.6 60 22.7 100 9.1 100 4.5
polysemy 5% HiT 64.8 45.3 58.7 19.7 53 14.9 45.9 20.1
5% HW 100 70.4 100 14.8 100 14.8 - 0
5% HW+ | 81.8 75 40 114 100 114 100 2.3
frequency 100k HiT 65.7 33.9 61.4 17.2 58.6 17.1 47.6 31.8
100k HW 100 18.5 100 11.1 100 222 100 48.1
100k HW+ | 80 34.1 66.7 13.6 81.2 36.4 85.7 15.9
frequency 10k HiT 65.1 7.5 74.5 14.8 63.5 12.9 524 64.8
10k HW - 0 - 0 100 11.1 100 88.9
10k HW+ | - 0 - 0 76.9 29.5 80.6 70.5
frequency 5k HiT 52.5 2.7 74.3 9.9 68.8 9.7 54.8 77.8
5k HW - 0 - 0 100 7.4 100 92.6
Sk HW - 0 - 0 66.7 13.6 81.6 86.4
centrality 1% HiT 56.4 75.8 624 10.2 66.9 9.7 56.5 4.2
1% HW - - - - - - - -
1% HW+ | 76 56.8 75 27.3 100 15.9 - 0
2% HiT 54.5 54.3 60.2 18.4 63.5 16.5 63.9 10.8
2% HW - - - - - - - -
2% HW+ | 66.7 34.1 81.8 25 100 9.1 85.7 31.8

*high polysemy means the term has min. [THRESHOLD] total synsets / total parts of speech
*high centrality means the term has the intended concept as synset number [THRESHOLD] at most

Table 7: WordShiftEval results broken down by the frequency, centrality, and polysemy of the terms that make up the entries.

five senses per part of speech. Depending on the
threshold 7', the most-observed type of word pair
amongst the HiT results is that of two polysemous
terms (45.6 % of the result set, T' = 3), two rel-
atively unpolysemous terms (45.3%, T' = 5), or
equal proportions of the two (1" = 4).

The proportion of correctly classified term pairs
is unequally distributed across polysemy classes,
in particular for HiT. Word pairs with two non-
polysemous (i.e. relatively unambiguous) terms
are consistently more likely to see their shift di-
rection assessed correctly (64-66% correct, de-
pending on the polysemy threshold) than word
pairs with two polysemous terms (46-53% cor-
rect), which have an almost equal chance of get-
ting correctly or incorrectly classified. Entries
with a single polysemous term consistently fall
somewhere between these two trends. Compared
to HiT, HW and HW+ have notably smaller pro-
portions of polysemous term pairs, with as little as
9.1% polysemous pairs (under 7' = 3) for HW and
14.8% for HW+, as opposed to 45.6% for HiT.

A low corpus frequency was expected to neg-
atively impact the results. With a small number
of occurrences used to collect (train) the vector
representations, these risk being less stable and
reliable. We take the frequencies underlying the

1990s eng-all vector corpus as a proxy for the
overall frequencies of the terms and use several
frequency cut-offs (5k, 10k and 100k). HiT clearly
displays more lower-frequent terms than HW and
HW+. For instance, under a cutoff value of 100k,
HiT has about the same proportion of low-frequent
(33.9%) and high-frequent pairs (31.8%), while
HW has clearly more high-frequent (48.1%) than
low-frequent pairs (18.5%). Also, HiT is the only
set that contains entries made up of terms with fre-
quencies under 5k and 10k.

Looking at the results on HiT when both terms
were very sparse (under 5k) the assessment is just
ad random (52.5%), but with a higher threshold of
10k the sparse pairs were more likely to be cor-
rectly classified (65.1%). At the same time, high-
frequent term pairs with target and reference term
both over 10k instances showed to be difficult to
classify (52.4%). Taken together, these findings
suggest that while higher-frequency terms are not
always more suitable, a minimum number of in-
stances is indispensable for reliable results.

By centrality we mean how good a contem-
porary example of the intended concept a term
is. To this end we look at the synset that con-
nects target and reference term. If the (target
or reference) term has this sense listed among
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its top senses in WordNet, we assume it is ex-
emplary. For the target term this is also an as-
sessment of whether the change took place in
(what is now) its primary, second, or in a more
distant sense. For instance, we assess the tar-
get term shrewd in its currently most prevalent
sense ‘marked by practical hardheaded intelli-
gence’ (synset astute.s.01). While the ref-
erence term astute is central to this concept, sharp
is not, as it is only the sixth sense listed for this
term. Hence shrewd-astute might be a better ex-
ample of the shift than shrewd-sharp. HW was
excluded from the analysis, as the terms in it are
not related through WordNet synsets.

We consider two cut-off points: one that ex-
amines just the first sense and a less strict one
that includes the second listed sense. For the for-
mer, the (rare) word pairs in HiT that were made
up of two strong terms (4.2%) surprisingly had
the same proportion correct (56.5%) as the much
larger group of word pairs (75.8%) with two weak
terms (56.4% correct). This might be an artefact
due the small sample size, as the groups with a sin-
gle strong term did show higher accuracies (62.4%
and 66.9%) than those with none. Under the looser
definition of centrality, the accuracy of the shift as-
sessment on HiT increases with the centrality of
the terms involved, from 54.5% on weak pairs up
to 63.9% on strong pairs. HW+ displays the same
trend. However, with a much higher proportion of
weak term pairs and a lower proportion of strong
pairs than HW+, the HiT results are more at risk
of centrality effects.

7 Conclusion

This work offers the largest and most realistic
dataset for assessing sense change to date, HiT,
which provides 3624 English word pairs and 979
word-synset pairs. HiT is made available along
with this publication (click here or look for Sense-
ShiftEval on GitHub) and can be automatically ex-
tended with more entries. Our experiments have
given a number of insights. Firstly, they show how
brittle the state-of-the-art method really is. When
applied to HiT rather than to small sets of hand-
crafted examples, the state-of-the-art performance
drops dramatically. The error analysis shows in
what way existing evaluation data are privileged, if
not to say biased: they contain fewer polysemous
terms, fewer terms that are less exemplary for the
intended concept, and fewer terms modelled on

a low number of examples in the corpus. All
of these are factors inherent to natural language,
which a robust model of sense change will need to
handle. The analysis showed that these factors in-
deed hindered our ability to assess shift direction.
For this reason, the two corpus-independent fac-
tors, polysemy and centrality, will be incorporated
as features in the dataset, to be able to select more
or less challenging entries and to assess the effect
of these factors on the outcomes.

Complementary to the findings above, several
studies have demonstrated that noise is inherent to
distributional approaches and stems from factors
both computational - e.g. cross-temporal vector
alignment (Dubossarsky et al., 2017) - and fun-
damental, by the mere variance found in natural
text corpora (Hellrich and Hahn, 2016). Exper-
imental validation was not the focus of this pa-
per, but we would encourage follow-up work with
more rigid experimental checks, including control
conditions and non-aligned (e.g. see Dubossarsky
et al. (2019)) or count-based vectors.

Given the presence of noise, it is crucial to
cross-check findings. HiT is unique in that it caters
for this with multiple synonymous entries per tar-
get term. We have presented a number of ways
to derive holistic, sense-level insights. Some ag-
gregations were more promising than others. The
term pair with the largest and most significant
cosine trend often displayed the predicted trend.
However, averaging the vector representations of
all synonyms did not sufficiently cancel out noise.

A logical next step would be to exploit lexi-
cal factors for sense-level evaluations, i.e., to se-
lect the most representative term pair of a synset
based on its centrality to the concept and its (lack
of) ambiguity. A preliminary experiment on HiT
showed that selection by centrality outperforms
some other evaluation techniques. This will be the
topic of follow-up work.
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Abstract

We apply hyperbolic embeddings to trace
the dynamics of change of conceptual-
semantic relationships in a large di-
achronic scientific corpus (200 years). Our
focus is on emerging scientific fields and
the increasingly specialized terminology
establishing around them. Reproducing
high-quality hierarchical structures such
as WordNet on a diachronic scale is a very
difficult task. Hyperbolic embeddings can
map partial graphs into low dimensional,
continuous hierarchical spaces, making
more explicit the latent structure of the in-
put. We show that starting from simple
lists of word pairs (rather than a list of en-
tities with directional links) it is possible
to build diachronic hierarchical semantic
spaces which allow us to model a process
towards specialization for selected scien-
tific fields.

1 Introduction

Knowledge of how conceptual structures change
over time and how the hierarchical relations
among their components evolve is key to the com-
prehension of language evolution. Recently, the
distributional modelling of relationships between
concepts has allowed the community to move a
bit further in understanding the true mechanisms
of semantic organization (Baroni and Lenci, 2010;
Kochmar and Briscoe, 2014; Marelli and Baroni,
2015), as well as in better mapping language
change in terms of shifts in continuous semantic
values (Hamilton et al., 2016; Hellrich and Hahn,
2017; Stewart and Eisenstein, 2017). In the past
decades, extensive work has also gone into creat-
ing databases of hierarchical conceptual-semantic
relationships, the most famous of these ontologies
probably being WordNet (Miller, 1995). These
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hand-made resources are tools of high quality and
precision, but they are difficult to reproduce on a
diachronic scale (Bizzoni et al., 2014), due to word
form changes (De Melo, 2014) and shifts in mean-
ing (Depuydt, 2016), which always make it hard
to determine “when”, over a period of time, a new
lexical hierarchy is in place (Kafe, 2017).

A recent attempt to integrate hierarchical struc-
tures, typical of lexical ontologies, and the com-
mutative nature of semantic spaces are hyperbolic
embeddings (Nickel and Kiela, 2017). Hyper-
bolic embeddings have shown to be able to learn
hierarchically structured, continuous, and low-
dimensional semantic spaces from ordered lists of
words: it is easy to see how such technology can
be of interest for the construction of diachronic dy-
namic ontologies. In contrast to hand-made re-
sources, they can be built quickly from histori-
cal corpora, while retaining a hierarchical struc-
ture absent in traditional semantic spaces. In their
work Nickel and Kiela (2017) have extensively
evaluated hyperbolic embeddings on various tasks
(taxonomies, link prediction in networks, lexical
entailment), evaluating in particular the ability of
these embeddings to infer hierarchical relation-
ships without supervision.

This paper is a first attempt in the direction of
using hyperbolic semantic spaces to generate di-
achronic lexical ontologies. While count-based
and neural word embeddings have often been ap-
plied to historical data sets (Jatowt and Duh, 2014;
Kutuzov et al., 2018), and the temporal dimen-
sion has even solicited innovative kinds of distri-
butional spaces (Dubossarsky et al., 2015; Bamler
and Mandt, 2017), this is to the best of our knowl-
edge the first attempt to model a diachronic cor-
pus through hierarchical, non-euclidean seman-
tic spaces. The literature on hyperbolic embed-
dings has until now mainly focused on reproduc-
ing lexical and social networks from contemporary
data (Chamberlain et al., 2017; Nickel and Kiela,
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2018).

We demonstrate that these kinds of word em-
beddings, while far from perfect, can capture rel-
evant changes in large scale lexico-semantic rela-
tions. These relations are on the “vertical” axis,
defining a super-subordinate structure latent in the
data. But we also show that meaningful rela-
tions between words are preserved on the “hori-
zontal” axis (similarity of meaning, common se-
mantic belonging) as typically captured by distri-
butional spaces and topic models.

While distributional semantic spaces can be
built from unconstrained texts, the main concep-
tual limitation of hyperbolic embeddings proba-
bly lies in the fact the user always needs to pre-
compose (and so pre-interpret) their input in the
form of a list of entities linked by a set of parent—
children relations; we thus show a simple sys-
tem to collect undirected relations between enti-
ties that require less pre-interpretation of the texts
at hand and a broader lexical coverage, giving
more value to the information provided by the
spaces.

Our main contributions are thus two. First, we
apply hyperbolic embeddings to a diachronic set-
ting, for which hand-crafted hierarchical resources
are extremely difficult to create. Second, we intro-
duce a system to design training inputs that do not
rely on directional lists of related word pairs as in
previous works. This is particularly advantageous
as the system does not need a pre-interpretation
nor a pre-formulation of the data in terms of ex-
plicit hierarchy and it allows a wider terminologi-
cal coverage than the previous systems.

2 Methodology
2.1 Data

As our data set, we use the Royal Society Cor-
pus (RSC; version 4.0; Kermes et al. (2016))",
containing around 10.000 journal articles of the
Transactions and Proceedings of the Royal Society
in London (approx. 32 million tokens). The time
span covered is from 1665 to 1869 and the cor-
pus is split up into five main periods (/650: 1665-
1699, 1700: 1700-1749, 1750: 1750-1799, 1800:
1800-1849, 1850: 1850-1869).

As meta-data annotation, the RSC provides e.g.
title, author, year, and journal of publication. Cru-
cial for our investigation is the annotation of sci-

"'We obtained the RSC from the CLARIN-D repository at
http://hdl.handle.net/21.11119/0000-0001-7E8B-6.

entific disciplines (18 in total), which has been ap-
proximated by topic modeling (Blei et al., 2003)
using Mallet (Fankhauser et al., 2016). Each doc-
ument is annotated with primary topic and sec-
ondary topic, each with confidence scores. We
select two groups: (1) the primary topics Chem-
istry and Physiology, which are subdivided in
two sub-groups (Chemistry I and II and Physiol-
ogy I and II) and thus might indicate more pro-
nounced specialization tendencies, (2) Botany and
Galaxy, both forming only one topic each, and
thus possibly reflecting less pronounced special-
ization tendencies. Table 1 presents a detailed
corpus statistics on tokens, lemmas and sentences
across decades.

decade tokens lemmas sentences

1660-69 455,259 369,718 10,860
1670-79 831,190 687,285 17,957
1680-89 573,018 466,795 13,230
1690-99 723,389 581,821 17,886
1700-09 780,721 615,770 23,338
1710-19 489,857 383,186 17,510
1720-29 538,145 427,016 12,499
1730-39 599,977 473,164 16,444
1740-49 1,006,093 804,523 26,673
1750-59 1,179,112 919,169 34,162
1760-69 972,672 734,938 27,506
1770-79 1,501,388 1,146,489 41,412
1780-89 1,354,124 1,052,006 37,082
1790-99 1,335,484 1,043,913 36,727
1800-09 1,615,564 1,298,978 45,666
1810-19 1,446,900 1,136,581 42,998
1820-29 1,408,473 1,064,613 43,701
1830-39 2,613,486 2,035,107 81,500
1840-49 2,028,140 1,565,654 70,745
1850-59 4,610,380 3,585,299 146,085
1860-69 5,889,353 4,474,432 202,488
total 31,952,725 24,866,457 966,469

Table 1: Corpus statistics of the RSC per decade.

2.2 Approach

Our approach encompasses (1) extraction of re-
lations from data to serve as training data (edge
extraction), (2) modeling hyperbolic embeddings
on the obtained data, and (3) testing on selected
benchmarks.

Edge extraction. In order to select relevant en-
tities, we used the word clusters of a topic model
trained on the whole RSC corpus (Fankhauser
et al., 2016; Fischer et al., 2018), which gener-
ated circa 50 meaningful clusters, mainly belong-
ing to disciplines (such as Paleontology, Electro-
magnetism) or objects of interest (such as Solar
System or Terrestrial Magnetism).
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topic label words in topic

Chemistry  acid baro-selenite acid.-when hy-
droguretted salifiable diethacetone
subphosphate meta-furfurol chlori-
onic causticity acidt acld pyrome-
conate chloric acids pyroxylic di-
ethyl acid* acid. iodic

stars star tol nebulosity milky-way
facula rethe constellations nebulae
lyrce nebula nebule presidencies
pole-star st nebulhe sun-spots stars*

nebulosities magnet.-

Galaxy

Table 2: The first 20 words from the Chemistry
and the galactic Astronomy topic clusters.

For this study, we selected the topics of Chem-
istry, Physiology, Botany, and galactic Astronomy.
Chemistry and Physiology during the time span
covered by our corpus undergo a significant in-
ner systematization, which is mirrored by the fact
that they are both represented in to two distinct
and cohesive topics in our topic model. Botany
and galactic Astronomy also underwent major
changes during the covered years, but, despite
important systematization efforts, kept a more
multi-centered conceptual architecture: as a conse-
quence, they represent less cohesive clusters, with
more noise and internal diversity. Since the mean-
ingful clusters drawn from topic modeling were
relatively small, we populated them through co-
sine similarity in euclidean semantic spaces built
on the same corpus, so as to attain lists of circa 500
elements, of the kind shown in Table 2. Notwith-
standing the predictable amount of noise present in
these lists, they keep a relative topical cohesion?.

Based on this selection of words, for each of
the five 50-years periods of the RSC, we extract
a list of bigrams, i.e. pairs of words of entities of
interest.

While usually the training input to model hy-
perbolic word embeddings is based on directional
lists of related word pairs (e.g. the Hearst patterns
extracted via rule-based text queries (Roller et al.,
2018; Le et al., 2019)), we decided to opt for a
more “agnostic” method to create input lists for
our model.

We consider two words as related if they occur
in the same sentence, and we do not express any

2Stop words like adverbs, pronouns, determiners and
prepositions are also rare in the lists.

hierarchical value or direction between the words
constituting the input lists: the input can be viewed
as an undirected graph?.

On simple cases, this way of extracting undi-
rected edges appears to work well. As an exam-
ple, in Figure 1 we show the output space of the
Wikipedia article on Maslow’s Hierarchy of Needs
(a very hierarchical topic). In this case, the key-
words were selected manually and the text was
simple in its exposition of the theory. Accord-
ing to the hierarchy exposed in the article, human
needs are as follows: physiological needs (food,
water, shelter, sleep), safety (health, financial,
well-being), social needs (family, intimacy, friend-
ships), self-esteem, self-actualization (parenting),
transcendence. In the hyper-space resulting from
this text, the word needs occupies the root of the
hierarchy: it is the closest point to the origin of
the axes and has, consequently, the smallest norm.
The six categories of needs described in the in-
put page directly follow as hyponyms: physiolog-
ical, safety, social, self-esteem, self-actualization,
transcendence. The specific kinds of needs mainly
cluster as hyponyms of such categories: for exam-
ple water, food, sleep, shelter are all very close
in the space, higher in norm, and located as di-
rect hyponyms of physiological (they are closer to
physiological than to the other categories).

The case we are going to deal with in this paper
is much more complex: the lists of terms were se-
lected automatically and the corpus is diachronic,
technical in nature, and occasionally noisy.

On our corpus, we obtain through our system
of edge extraction lists of variable length, between
500 and 5000 pairs depending on the topic and pe-
riod. While this approach makes the input noisier
and the model potentially more prone to errors, the
system requires way less starting assumptions on
the nature of the data, guarantees a larger cover-
age than the previous methods, and re-introduces
the principle of unstructured distributional profil-
ing so effective in euclidean semantic spaces.

Poincare hierarchical embeddings. For train-
ing hyperbolic semantic spaces, we rely on gen-
sim’s implementation of Poincare word embed-
dings. Here, we apply the Poincare hyperspace
semantic model recently described by Nickel and
Kiela (2017) on each 50-year period of the RSC
corpus. We train each model for 20 epochs, di-

3Basically, each word pair is twice in the list: (1) word A
related to word B, and (2) word B related to word A.
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Figure 1: The center of the disk (left) and the whole space (right) as extracted from a Wikipedia article on
the Hierarchy of Needs. The main needs cluster around the root of the hierarchy, while their hyponyms
cluster to the periphery, but tendentially closer to their hypernymic category than to the others. Note that
the space organizes words along the hypernym-hyponym hierarchical line, and ignores other kinds of
hierarchy: physiological, albeit being treated as more “basic” in the input text, is not closer to needs than

transcendence.

rectly setting a bi-dimensional output. Since our
Poincare models generate 2d spaces, we can visu-
alize them without losing any information.

Benchmarks. Since a gold standard to verify the
qualities and pitfalls of diachronic hyperbolic se-
mantic spaces is lacking, and it is of not obvi-
ous generation, we use two different benchmarks
to perform partial tests of the results. The first
benchmark is the correlation between the number
of WordNet senses and words’ norm in the spaces.
The other benchmark is the same topic model-
ing described above: we use it to test whether the
words that happen to be in the same topic also
cluster together in our spaces.

3 Analysis and results

Having a look at the semantic spaces resulting
from the four topics we selected, we can already
see that Chemistry and Physiology develop a par-
ticularly centralized structure, with few elements
in the center and a large crown of peripheral ter-
minology, while Botany and galactic Astronomy
return less clear symptoms of their inner ordering.

Figure 2, for example, illustrates hyperbolic
embeddings of the Chemistry field for each 50-
year period (1650s-1850s). The closer to the cen-
ter, the more abstract (and potentially ambiguous)
the meaning of the words should be, while the

more distant from the center, the more we should
find specialized terminology. In an ideal semantic
hyper-space, the center should represent the real
root of the ontology, and its edges should repre-
sent the most distant leaves.

In some disciplines (mainly Chemistry and
Physiology), we observe the emergence of a
clearly centralized and hierarchical evolution,
while in others (Biology and Astronomy) we see
the development a more multi-central, compli-
cated sort of conceptual organization.

Comparing the evolution of Chemistry with
galactic Astronomy (see Figure 3), we can see that
the development towards hierarchization does ap-
ply to both, but is more pronounced in the Chem-
istry space.

Figure 4, for clarity, shows only selected labels
on the spaces of the 1650s and the 1850s: some
words pertaining to the empirical framework, such
as inquires and investigations, and technical terms
at various degrees of specificity (still mostly ab-
sent in the 1650s space). We see how simple forms
of conceptual hierarchization appear in the latter
space: for example compound moves to the center
of the disk, close to a cluster including terms like
substance and matter (and others not included for
clarity, such as solution), all being more abstract
in meaning. Actions becomes a hypernym of in-
vestigations and inquiries. Instead, the more spe-
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Figure 2: Evolution of the space with original edges for Chemistry.
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Figure 3: Evolution of the spaces for Chemistry (top row) and galactic Astronomy (bottom row). The
high level of hierarchization in Chemistry appears evident. Galactic Astronomy maintains a more chaotic
outlook despite the increase of terminologys; still, a cluster of terms can be seen growing in the center of
the space, while the periphery of the spaces becomes more dense.

cialized terms tend to be located at the edge of the
disk, such as ammoniac vs. ammonium-salt, anhy-
dride vs. carboneous vs. gas-carbon, or oxide Vvs.
protoxide. See also Table 3 for some examples of
developing hierarchization.

This tendency to cluster more clearly ab-
stract/generic and specialized terms is visible in
all four disciplines, and is mirrored in the evolu-
tion of the structure of the spaces. Measuring the
variations in the overall norm of all words, and in
the average norm of the 30 elements with the high-
est and lowest norm of the space for each of the
four fields taken into consideration (see Table 4),
we record in all cases a tendency to an increas-
ing hierarchization, with small clusters of words
moving towards the center and larger numbers of
words clustering further away at the periphery of
the hyper-disk (see Figure 5 for the highly cen-
tralized space of Physiology in the last period of
our corpus). Even in Galaxy, the least cohesive of
the topics, we notice a steady growth of the aver-

age norm (from 3.2 to 20.9), indicating an exten-
sion of the periphery. Comparing the results with
a “control group” (see again Table 4) formed by
sentimental terms (happiness, misery), which are
present throughout the corpus but are neither the
topic of the papers nor undergo systematic concep-
tualizations, there is no hierarchization tendency.
Moreover, on average the norm of the 30 most
peripheral words steadily increases through time.
The tendency of words to increasingly populate
more peripheral areas of the disk can be seen as an
indication of the increased formation of special-
ized meanings within particular scientific fields
(see Figure 6 for an example).

In Table 4, we show a compendium of these ob-
servations for each topic, while in Figure 7 we
show the average norm of all words in the space
for each discipline through time. It can be seen
that the control group does not show most of the
trends pictured by the other topics — centralization
of a group of words, average increase of the norm,
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Epoch cluster plant flowers
1650 clusters, triple, larger juice, stem, plants bud, roots, tree
1700  dark-grey, situation, clusters species, seed, juice leaves, tree, trees
1750 clusters, nebula, nebulae flowers, fruit, piece fruit, branches, plant
1800  nebulosity, clusters, nebulae leaf-stalk, leaves, roots shurbs, stem, horse-chestnut
1850 clusters, stellar, nebulae flowered, seeded, soil petals, stamina, pistilla

Table 3: Nearest descendants for cluster, plant and flowers in diachronic Poincare spaces for galactic
Astronomy (in the first case) and Botany (second and third case). It is possible to observe the emergence
of stellar as a kind of cluster; of the division between flowered and seeded plants (an antithesis that
became meaningful towards the XIX century); and of specific elements of a flower’s anatomy, such as
the stamen, which were particularly relevant in the studies on flowers’ sexuality (mid XIX century).
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Figure 4: Selected nodes (in violet) from 1850s Chemistry, as compared to the 1650s. In Compounds
joins Substances and Matter to the top of the hierarchy, while Actions becomes a hypernym of Inquires
and Investigations. Raw chemical hierarchies can be seen forming at the edges of the hyperdisc.

extension of the peripheries — while a slight trend
towards the increase of the norm of the most pe-
ripheral words can also be observed in this group.

WordNet comparison. Due to the practical
and theoretical difficulties of using contemporary
WordNet as a benchmark to validate historical on-
tologies (should we expect an ideal algorithm to
return us a close WordNet similarity on historical
data?), we do not use WordNet to directly com-
pare the structure of the spaces (as Nickel and
Kiela (2017) do for contemporary data sets), but
to correlate the number of WordNet senses a word
has with respect to its norm in each period. We
notice that in all the considered disciplines, the
correlation between the number of senses a word
has and its vector’s norm is not null, and tends to
increase over time (see e.g. Table 5 for Physiol-

ogy). The words at the center of the hyper-disk
tend more and more to overlap with highly pol-
ysemous words in contemporary English, while
the words that cluster at the edges of the disk
correlate more and more with highly specialized
words in contemporary English (words with one
or two senses at most). Table 5 shows the top
30 words with the lowest norm (most abstract in
meaning) and the highest norm (most specialized)
for Physiology through time. Both groups show a
tendency towards fewer senses over time, indicat-
ing increased semantic specialization and decreas-
ing polysemy. Also, in all epochs the first group
displays on average more senses than the second
group. Table 6 presents Pearson correlation be-
tween WordNet senses and words’ norms per pe-
riod across topics, showing an increasing correla-
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Epoch  Physiology Chemistry Botany Galaxy Control

H L%>3 H L %>3 H L %>3 H L %>3 H L %>3
1650 0.06 0.53 45.2 0.09 0.57 43.7 0.10 0.21 4.3 0.06 020 3.2 0.13 0.02 0.0
1700 0.11 0.47 324 0.04 044 333 0.09 0.18 6.2 0.02 030 5.3 0.07 0.01 0.0
1750 0.08 0.64 57.6 0.09 0.65 61.2 0.11 043 3.7 0.05 0.30 5.2 0.10 0.06 0.0
1800 0.06 0.68 67.9 0.12 0.70 71.2 0.10 0.36 18.0 0.05 0.35 15.1 0.13 0.08 0.1
1850 0.06 0.62 64.1 0.05 0.69 69.3 0.10 040 24.7 0.04 0.47 209 0.13 0.07 0.0

Table 4: Average norm for the 30 elements with the highest (H) and lowest (L) norm and percentage of
elements with norm higher than .3 for each period and discipline.

Epoch  WordNet senses
abstract specialized
1650 11.2 34
1700 6.6 42
1750 10.9 2.2
1800 5.2 1.03
1850 5.2 0.6

Table 5: Average number of WordNet senses for
the 30 terms with the lowest norm (column 2) and
for the 30 terms with the highest norm (column 3)
in the space of Physiology.
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Figure 5: Physiology space (with original edges)
for the last period. The centralized hierarchical
structure is clearly visible.

tion.

Topic clustering. All four the selected topics
show a tendency to increase their words’ average
norm and the distance between the center and the
edge of the disk. The two topics that show stronger

symptoms of conceptual hierarchization, Chem-
istry and Physiology, were also distinguished in
two lexical sub-topics by our original topic model.
The emergence of these sub-topics was mainly due
to the changes in word usage caused by relevant
scientific discoveries (like for example the sys-
tematization of elements in Chemistry) that cre-
ated vocabularies and conceptual systems that had
scarce interactions with one another. In Table 7,
we show that the average cosine similarity be-
tween the words belonging to the one sub-topic
tends to stay higher than their average similarity
to the words belonging to the other sub-topic: the
topical distance between the two groups is not lost
in the hierarchization.

4 Discussion

We have built diachronic semantic hyperspaces for
four scientific topics over a large historical En-
glish corpus stretching from 1665 to 1869. We
have shown that the resulting spaces present the
characters of a growing hierarchization of con-
cepts, both in terms of inner structure and in terms
of light comparison with contemporary semantic
resources (growing Pearson correlation between
norm and WordNet senses). We have shown that
while the same trends are visible in all four dis-
ciplines, Chemistry and Physiology present more
accentuated symptoms of hierarchization, while
the group of control had even few or no signs of
hierarchization.

Specialization in scientific language. This
work is part of a larger project aimed to trace the
linguistic development of scientific language to-
ward an optimal code for scientific communica-
tion (Degaetano-Ortlieb and Teich, 2018, 2019).
One mayor assumption is the diachronic develop-
ment towards specialization — as a scientific field
develops, it will become increasingly specialized
and expert-oriented.
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Figure 6: Population of the same area of the hyper-disk for Physiology in the first and last epoch. More
specialized and technical terms tend to populate the same level in the “hierarchy”.

Epoch Physiology I and II Chemistry I and II Galaxy Botany Control

1650 -0.37
1700 -0.20
1750 -0.40
1800 -0.42
1850 -0.41

-042  -0.50 -0.09 -0.06
-0.44  -035 -0.05 0.67
-045 -043 -024 -034
-046 -0.16 -0.22  -0.17
-046 -037 -032  -0.16

Table 6: Pearson correlation between WordNet senses and word’s norm per period per topic.
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Figure 7: For all four disciplines the average
words’ norm increases through time. This is
due to the expansion of the hyperspace periphery:
words become more specialized, hierarchies be-
come deeper. The control group (sentiment terms)
does not show this tendency.

Thus, as a field specializes, it develops more
technical and differentiated vocabulary (Halliday,

Epoch Pin Pout Cin C out

1650 .58 .59 54 55
1700 .60 .60 .56 .56
1750 53 .53 50 49
1800 .51 .50 .48 47
1850 .50 47 47 44

Table 7: Topic detectability. Average cosine simi-
larity for elements pertaining to the same sub-topic
(in) and elements pertaining to different sub-topics
(out) in Physiology (P) and Chemistry (C) through
time.

1988; Teich et al., 2016). For the disciplines in-
vestigated here increased specialization over time
appears clearly in our hyperspaces showing a ten-
dency towards the use of more peripheral words
and deeper hierarchies.

Considerations on validity of our baselines.
Finding valid, meaningful baselines to evaluate
hierarchies based on a diachronic corpus is not
a trivial task. Comparing them to the topic
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model’s results on the same corpus was possibly
the most sensible one, but we should not expect
too much on that side: Hyperbolic embeddings are
not specifically designed to tell topics apart, and if
words pertaining to slightly different topics (such
as two kinds of chemistry) happen to be on the
same level of conceptual abstraction, it is fair to
expect them quite near in the hyper-disk geogra-
phy.

At the same time, comparing our results to
WordNet makes sense only partially: the concep-
tual structures of WordNet are 150 years more re-
cent than the ones discussed in the most recent of
our spaces, and it is wrong to assume a priori that
their distribution in a historical hierarchy should
be similar. So we relied on internal analysis and
qualitative considerations, but baselines for these
kinds of tasks would be highly needed to better
test diachronic ontologies.

Considerations on our extraction system. To
collect our data, we used a very simple and non-
committal approach that feeds the models with
less information than usually provided in the lit-
erature.

However, choosing the words with some care
and working on large numbers, our models do not
seem completely at a loss in front of the noise of
the input data. With differences due to the noise
of the word lists and the development of the fields,
a tendency for specialized terms to cluster as hy-
ponyms of more abstract and polysemous words
could be observed in all four disciplines. In future
work, we intend to accurately test this procedure
by means of contemporary data sets.

Dynamic diachronic WordNets. Hand crafted,
historical ontologies of concepts are extremely ex-
pensive in terms of person/hour, not considering
the amount of expertise and skills required to build
a hierarchy of concepts based on the knowledge
and beliefs of a different time. We speculate that
these sorts of technologies can be a step towards an
easier, and more dynamic way of building corpus-
induced ontologies, offering for example raw ma-
terial to be polished by human experts.

References

Robert Bamler and Stephan Mandt. 2017. Dynamic
word embeddings. In Proceedings of the 34th Inter-
national Conference on Machine Learning-Volume
70, pages 380-389. IMLR. org.

Marco Baroni and Alessandro Lenci. 2010. Distribu-

tional memory: A general framework for corpus-
based semantics. American Journal of Computa-
tional Linguistics, 36(4):673-721.

Yuri Bizzoni, Federico Boschetti, Harry Diakoff, Ric-
cardo Del Gratta, Monica Monachini, and Gre-
gory R Crane. 2014. The making of ancient greek
wordnet. In LREC, volume 2014, pages 1140-1147.

David M. Blei, Andrew W. Ng, and Michael 1. Jordan.
2003. Latent Dirichlet Allocation. Journal of Ma-
chine Learning Research, 3:993-1022.

Benjamin Paul Chamberlain, James Clough, and
Marc Peter Deisenroth. 2017. Neural embeddings
of graphs in hyperbolic space. arXiv preprint
arXiv:1705.10359.

Gerard De Melo. 2014. Etymological wordnet: Trac-
ing the history of words. In Proceedings of LREC
2014, pages 1148-1154.

Stefania Degaetano-Ortlieb and Elke Teich. 2018. Us-
ing relative entropy for detection and analysis of pe-
riods of diachronic linguistic change. In Proceed-
ings of the 2nd Joint SIGHUM Workshop on Com-
putational Linguistics for Cultural Heritage, So-
cial Sciences, Humanities and Literature at COL-
ING2018, pages 22-33, Santa Fe, NM, USA.

Stefania Degaetano-Ortlieb and Elke Teich. 2019. To-
ward an optimal code for communication: The case
of scientific English. Corpus Linguistics and Lin-
guistic Theory, 0(0):1-33. Ahead of print.

Katrien Depuydt. 2016. Diachronic semantic lexicon
of dutch (diachroon semantisch lexicon van de ned-
erlandse taal; diamant). In DH, pages 777-778.

Haim Dubossarsky, Yulia Tsvetkov, Chris Dyer, and
Eitan Grossman. 2015. A bottom up approach to
category mapping and meaning change. In Net-
WordS, pages 66-70.

Peter Fankhauser, Jorg Knappen, and Elke Teich. 2016.
Topical diversification over time in the royal society
corpus. Digital Humanities 2016, Krakow 1116 July
2016, Krakow. Jagiellonian University; Pedagogical
University.

Stefan Fischer, Jorg Knappen, and Elke Teich. 2018.
Using topic modelling to explore authors’ research
fields in a corpus of historical scientific english. In
Proceedings of DH 2018.

M.A K. Halliday. 1988. On the Language of Physical
Science. In Mohsen Ghadessy, editor, Registers of
Written English: Situational Factors and Linguistic
Features, pages 162—177. Pinter, London.

William L. Hamilton, Jure Leskovec, and Dan Jurafsky.
2016. Cultural shift or linguistic drift? comparing
two computational measures of semantic change. In
Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing. Conference on
Empirical Methods in Natural Language Process-
ing, volume 2016, page 2116. NIH Public Access.

63



Johannes Hellrich and Udo Hahn. 2017. Explor-
ing diachronic lexical semantics with JeSemE. In
Proceedings of ACL 2017, System Demonstrations,
pages 31-36, Vancouver, Canada. Association for
Computational Linguistics.

Adam Jatowt and Kevin Duh. 2014. A framework for
analyzing semantic change of words across time. In
Proceedings of the 14th ACM/IEEE-CS Joint Con-
ference on Digital Libraries, pages 229-238. IEEE
Press.

Eric Kafe. 2017. How stable are wordnet synsets? In
LDK Workshops, pages 113—124.

Hannah Kermes, Stefania Degaetano-Ortlieb, Ashraf
Khamis, Jorg Knappen, and Elke Teich. 2016. The
Royal Society Corpus: From Uncharted Data to Cor-
pus. In Proceedings of the 10th LREC, PortoroZ,
Slovenia. ELRA.

Ekaterina Kochmar and Ted Briscoe. 2014. Detect-
ing learner errors in the choice of content words us-
ing compositional distributional semantics. In Pro-
ceedings of COLING 2014, the 25th International
Conference on Computational Linguistics: Techni-
cal Papers, pages 1740-1751.

Andrey Kutuzov, Lilja @vrelid, Terrence Szymanski,
and Erik Velldal. 2018. Diachronic word embed-
dings and semantic shifts: a survey. arXiv preprint
arXiv:1806.03537.

Matt Le, Stephen Roller, Laetitia Papaxanthos, Douwe
Kiela, and Maximilian Nickel. 2019. Inferring con-
cept hierarchies from text corpora via hyperbolic
embeddings. arXiv preprint arXiv:1902.00913.

Marco Marelli and Marco Baroni. 2015. Affixation
in semantic space: Modeling morpheme meanings
with compositional distributional semantics. Psy-
chological review, 122(3):485.

George A. Miller. 1995. Wordnet: A lexical database
for english. Commun. ACM, 38(11):39-41.

Maximilian Nickel and Douwe Kiela. 2018. Learning
continuous hierarchies in the lorentz model of hyper-
bolic geometry. arXiv preprint arXiv:1806.03417.

Maximillian Nickel and Douwe Kiela. 2017. Poincaré
embeddings for learning hierarchical representa-
tions. In Advances in neural information processing
systems, pages 6338-6347.

Stephen Roller, Douwe Kiela, and Maximilian Nickel.
2018. Hearst patterns revisited: Automatic hy-
pernym detection from large text corpora. arXiv
preprint arXiv:1806.03191.

Ian Stewart and Jacob Eisenstein. 2017. Making”
fetch” happen: The influence of social and linguis-
tic context on nonstandard word growth and decline.
arXiv preprint arXiv:1709.00345.

Elke

64

Teich, Stefania Degaetano-Ortlieb, Peter
Fankhauser, Hannah Kermes, and Ekaterina
Lapshinova-Koltunski. 2016. The Linguistic Con-
strual of Disciplinarity: A Data Mining Approach
Using Register Features. Journal of the Association
for Information Science and Technology (JASIST),
67(7):1668-1678.



An evaluation of Czech word embeddings

Karolina Horenovska
Charles University, Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics
horenovska@ufal.mff.cuni.cz

Abstract

We present an evaluation of Czech low-
dimensional distributed word representa-
tions, also known as word embeddings.
We describe five different approaches to
training the models and three different cor-
pora used in training. We evaluate the re-
sulting models on five different datasets,
report the results and provide their further
analysis.

1 Introduction

Distributed word representations, often referred to
as word embeddings, have received a lot of atten-
tion in recent years, and they have been used to im-
prove results in many NLP tasks. The term itself
refers to representing words as low-dimensional
real-valued vectors (usually with dimensionality
of 50-1000), and is opposed to explicit sparse
representations, i.e. representing words as high-
dimensional vectors of Os and 1s (usually with di-
mensionality in the tens of thousands).

Many different models have been proposed (see
section 2). By their nature, these models are
language-independent (given the language can be
tokenized) but usually the reported results are
measured using only English. This is encouraged
not only by English being the standard scientific
language, but also by the availability of English
text corpora and, even more importantly, English
datasets to evaluate the models on.

We have decided to perform an intrinsic evalu-
ation of embedding models on Czech. We have
identified several successful models to evaluate,
collected existing datasets to evaluate them on and
designed two more datasets to extend the evalu-
ation. We should note that we do not perform
downstream-task evaluation, even though it might
not correlate well with the intrinsic evaluation
(Tsvetkov et al., 2015). We also use the models

with their default parameters and only try chang-
ing the corpus they are trained on.

The rest of the paper is organized as follows:
first, we describe related work (section 2). We
continue with a description of selected models
(section 3), corpora used in training (section 4)
and the datasets (section 5). Finally, we present
the results (section 6).

2 Related work

Related work could be clustered into three groups
of papers.

First, we should mention papers performing
evaluation of Czech word embeddings. Such eval-
uation exists for Word2Vec and GloVe using anal-
ogy corpus (Svoboda and Brychcin, 2016), how-
ever we are not aware of any more recent evalua-
tion (which would cover also more recent models).
Still, some papers evaluate some word embed-
dings in the context of a new dataset, as is the case
of Czech similarity-relatedness dataset (Konopik
etal., 2017).

Second, there are intrinsic evaluations of em-
beddings. These are usually part of new model
proposals but there are exceptions. A notable one
is a comparison by Baroni et al (2014), and also
the work by Levy and Goldbert (2014), though
this paper proposes another objective to solving
analogies. Tsvetkov (2015) should also be men-
tioned for showing that intrinsic evaluation of em-
beddings need not correlate with performance on
downstream tasks, and Nayak et al (2016) pro-
posed a suite to test word embeddings.

Finally, there are model proposals. The most fa-
mous one is probably Word2Vec (Mikolov et al.,
2013a), which has later been extended to fastText
(Bojanowski et al., 2017). Despite being so well
known, Word2Vec is neither the older (cf. e.g. the
work by Schiitze (1993)) nor the only one. An-
other famous models include GloVe (Pennington
et al., 2014), LexVec (Salle et al., 2016b), ELMo
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(Peters et al., 2018) or a recent model BERT (De-
vlin et al., 2018).

In addition to models themselves, there are pro-
posals on altering the trained model so that it bet-
ter fits a purpose, e.g. by transforming the vector
space to get vectors of synonyms closer to each
other and increase the distance between antonym
vectors (Faruqui et al., 2014; MrkSi¢ et al., 2016).

3 Selected models

In this section, we outline each of the selected
models. We also report which implementation we
use in our experiments.

Following some literature, we characterize each
model as either predictive (trained by learning to
predict a word) or counting (trained using co-
occurences counts).

Unfortunately, it has not been feasible to train
some model-corpus combinations.! We were not
able to train fastText on Czech National Corpus
using forms and LexVec on Czech National Cor-
pus using either forms or lemmata. We have also
not trained BERT on our own, instead, we only use
a pre-trained model.

3.1 Word2Vec

Word2Vec (Mikolov et al., 2013a,b) is proba-
bly the most famous neural embedding model.
The same name actually refers to two different
architectures — called continuous bag of words
(CBOW) and skip-gram (SG).

Both architectures are basically feed-forward
networks. CBOW'’s inputs are words (tokens)
within another word’s context and its golden out-
put is the surrounded word. Often, context win-
dow of size 5 is used, i.e. five words preceding
and five words following the predicted word form
the inputs. There’s one projection layeyr between
input and output layers. For skip-gram, it is the
other way round, i.e. one word forms the input
and words surrounding it are predicted. In both
architectures, all words share the projection layer,
which reduces the number of parameters to train,
and thus the training time.

When using Word2Vec without specifying ar-
chitecture, skip-gram is usually the default as it
performs better in most evaluation. However,
since Svoboda and Brychcin (2016) found out
CBOW performed better in their experiments on
Czech, we experiment with both architectures.

"We hope to overcome this limitation in our future works.

We use Word2Vec implementation provided in
the gensim library (Rehiifek and Sojka, 2010).

An important concept introduced in the second
paper (Mikolov et al., 2013b) is negative sam-
pling: when training a word vector, other words
are randomly sampled from the corpus and the
model is penalized for high similarity of their vec-
tors.

3.2 FastText

FastText (Bojanowski et al., 2017) is an exten-
sion of Word2Vec skip-gram which incorporates
subword information in resulting vectors. Words
are prefixed and suffixed with boundary symbols
and vectors are then trained not only for all words
but also for all n-grams appearing in any of the
words. Boundary symbols are important to dis-
tinguish short words from n-grams appearing in-
side words. Using n-gram embeddings, even vec-
tors for out-of-vocabulary words (i.e. words not
present in training corpus) can be generated.

Please note that even though Bojanowski et al.
(2017) describe the model as using skip-gram, it
can integrate with CBOW architecture. We have
tried using both architectures.

We use the implementation provided in gensim
library (Rehtiek and Sojka, 2010).

3.3 GloVe

GloVe (Pennington et al., 2014) is a counting
model which utilizes co-occurence matrix, i.e.
numbers of times a word occurs within the con-
text of another word. The basic idea is that if
some words are related to the same concept, the
probability of appearing in their context is much
higher for these words than for any other word.
This ratios need to be captured by the resulting
model. The formulae to capture these similari-
ties/ratios are further weighted so that rarely seen
co-occurences contribute little to the resulting vec-
tors (through loss function) and there’s a limit to
which frequent co-occurencies might contribute.

We use the original implementation provided by
authors.”

3.4 LexVec

LexVec (Salle et al., 2016b,a; Salle and Villavi-
cencio, 2018) is, like GloVe, a counting model. It
again utilizes co-occurence matrix and weights the

*https://github.com/stanfordnlp/GloVe
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errors so that more frequent co-occurences con-
tribute more. It however also employs the negative
sampling (originally introduced as an extension to
skip-gram Word2Vec (Mikolov et al., 2013b)) to
force scattering vectors of unrelated words.

Since the first paper, LexVec has been extended
with positional context (i.e. it is not important only
whether word a appeared in the context of word b
but also whether it was to the left or to the right
and how many words there were in between), the
ability to use external memory for storing the co-
occurences (which allows to train on a huge cor-
pus), and finally with subword information (which
allows deriving vectors even for out-of-vocabulary
words).

We use the original implementation provided by
authors.’

3.5 BERT

BERT (Devlin et al., 2018), which stands for
bidirectional encoder representations from trans-
former, is a neural predictive model. It is trained
on sentences rather than on words themselves (ac-
tually, its inputs are sentence pairs) but it does
produce word embeddings. It’s training can be
viewed as a two-step process, the model is first
pre-trained using specific tasks and then fine-tuned
using downstream tasks.

The two tasks used to pretrain the model are
next sentence prediction (i.e. deciding whether
the second sentence really followed the first one
in original text or if it was picked at random)
and something the authors call masked language
model, which is very close to a cloze test (Taylor,
1953). The idea is that some amount of randomly
chosen words is masked (i.e. replaced with a spe-
cial token), and the model has to correctly predict
them.

We do not train the model, we use the dis-
tributed multilingual model # and our department
wrapper around it.

Because of its different nature, we evaluate this
model only on similarity datasets (those described
in subsections 5.2 and 5.3).

4 Corpora

In this section, we briefly describe the corpora we
use to train the models on.

3https://github.com/alexandres/lexvec
*https://github.com/google-research/bert

Apart from using different models and corpora
to train on, we have also experimented with two
more settings: token form (i.e. training either on
forms as they appear in the corpora, or on lem-
mata) and keeping/substituting numbers. The sec-
ond idea is rather a concept, though concretized in
numbers — some words have similar function but
come in many different forms (and remain distinct
when lemmatized) so their token counts are low
and they do not take big part in the training. How-
ever, their similar function suggests that they could
still be useful in defining contexts/concepts. We
therefore tried also substituting all numbers (i.e.
tokens tagged as C= by MorphoDiTa tool) with a
meta-word.

For lemmatization of both corpora and datasets,
we have used the MorphoDiTa tool (Strakova
etal., 2014).

4.1 Czech Wikipedia dump

As is common in natural language processing, we
use Wikipedia dump as a training corpus. This
corpus consists of short documents (hundreds to
thousands words), the style is encyclopedic but not
really expert. No shuffling has to happen, all co-
occurences are kept as they are. Unfortunately,
Czech Wikipedia is rather small when compared
to the English version, thus we expect it to pro-
duce worse results.

We have used the dump from 1% May 2019. We
have processed the dump with wikiextractor> and
tokenized it using MorphoDiTa (Strakova et al.,
2014) tool.

4.2 CzEng

CzEng (Bojar et al., 2016) is a parallel Czech-
English corpus. The texts in it are of varied do-
mains, including news, fiction, laws, movie sub-
titles and tweets. It is shuffled at block level, i.e.
only a few consecutive sentences are kept together
each time. Each sentence is associated with its do-
main but it is not possible to reconstruct the origi-
nal documents.

We have used version 1.7 and only extracted the
Czech part of CzEng, keeping the tokenization and
lemmatization provided in CzEng. We have re-
ordered the sentences so that all sentences which
share the domain are grouped together.

Shttp://attardi.github.io/wikiextractor/
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4.3 Czech National Corpus

Czech National Corpus (Kfen et al., 2016) is a
large corpus of written Czech. Version SYN v4,
which we have used, contains texts of varying
types, however news are by far the most common.
(This version is not considered representative be-
cause of the prevailing news, but it is much larger
than representative CNC subcorpora.) The cor-
pus is again shuffled at block level, sentences are
linked with the exact document they come from
but their order cannot be reconstructed.

5 Datasets

We describe the existing (as well as no-longer-
existing) datasets suitable for the evaluation of
Czech word embeddings.

5.1 RG-65 Czech (unavailable)

RG-65 Czech (Kré¢miéf et al., 2011) is (or per-
haps used to be) a Czech version of the fa-
mous Rubenstein-Goodenough set (Rubenstein
and Goodenough, 1965), a set on word related-
ness.

In the original set, the data are triplets: two
words and a mean relatedness score as annotated
by human annotators, there are 65 word pairs.

The authors decided to translate the word pairs,
using a reference on the original meanings. Pair
relatedness was annotated by 24 human annotators
of varying age, gender and education. During the
translation and annotation process, a total of 10
pairs was omitted since one of the words could not
be easily translated (or it would be translated to
exactly the same word as the other).

Unfortunately, this dataset seems not to be
available any more. The URL provided in the pa-
per does not work, neither does the first author’s
email. We have tried contacting another author of
the paper but they did not have the data.

We therefore do not evaluate on this dataset,
however we think it should be listed when dis-
cussing all relevant datasets.

5.2 WordSim353-CZ

WordSim353-CZ (Cinkova, 2016) is a Czech ver-
sion of WordSim (Finkelstein et al., 2002), which
is another dataset on word relatedness. The data
are again triplets, word pair and a score (though
technically the Czech dataset contains other infor-
mation for each pair).

The author decided to create a dataset as similar
as possible to the original, which especially means
she encouraged the annotators to annotate related-
ness, even though the name refers to similarity.

During the process of creating the dataset, four
candidate translations were suggested for each of
the original pairs, and 25 annotators annotated all
reasonable pairs. The authors then selected the
pairs so that the correlation between Czech and
English rankings is maximal.

A version with all annotated pairs is available
but we stick to the selected subset in our experi-
ments.

5.3 Czech similarity and relatedness

The dataset for Czech similarity and relatedness
(Konopik et al., 2017) not only enables another
evaluation of word similarity, it also addresses
the problem of scoring words which are closely
related but not really similar (those may be e.g.
antonyms or pairs like beach and sand). This
dataset contains 953 words.

The authors decided to build the dataset from
several different resources. They translated ran-
dom pairs from several English datasets, RG-65
(Rubenstein and Goodenough, 1965), WordSim
(Finkelstein et al., 2002), MTurk (Radinsky et al.,
2011), Rare words (Luong et al., 2013) and MEN
(Bruni et al., 2014). They also mined translational
data using Moses (Koehn et al., 2007) and CzEng
(Bojar et al., 2016), language part of Czech gen-
eral study tests SCIO, and they invented a few
pairs on their own.

Word pairs were annotated by 5 annotators and
each of them annotated both similarity and relat-
edness, the annotators achieved Spearman corre-
lation of 0.81.

The dataset itself does not contain only the word
pairs and their scores but also examples of their us-
age, examples of ambiguities (sentences contain-
ing the same word with different meaning) and ex-
amples of the two words co-occuring; all examples
were taken from the Czech National Corpus.

5.4 Czech analogy corpus

Czech analogy corpus was presented as a part of
embedding-related experiments by Svoboda and
Brychcein (2016), and it mimics the Google anal-
ogy test set.’

®http://download.tensorflow.org/data/questions-words.txt
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It contains 11 relationship categories. Of those,
4 are purely semantic (capital cities and three
groups of antonym relations, further divided based
on part-of-speech), 3 are purely syntactic (noun
plural, verb past tense, adjective gradation), 3 are
rather syntactic (gender variation of job names and
of nationalities, grammatic number variation of
pronouns, including pairs like I and we) and 1 is
rather semantic (family relations, i.e. he-cousin to
she-cousin as father to mother). While family re-
lations is in fact gender variation of family roles,
feminime variants usually cannot be derived from
masculine ones.

There is also a phrase version which contains
some additional categories but we use the version
containing single words only.

5.5 Extended semantic analogies

We have developed four additional analogy cat-
egories and word pairs representing those cate-
gories. These categories are: old or even ar-
chaic words and more modern words with the
same / close enough meaning, e.g. biograf and
kino ’cinema’; diminutives, e.g. mdma *mum’ and
maminka *mummy’; more foreign-sounding (of-
ten expert) words and their more Czech-sounding
variants, e.g. akceptovat and prijmout ’(to) ac-
cept’; and synonyms.

While we understand and acknowledge the am-
biguity of listed relations, we believe some ambi-
guity accompanies also antonyms and family rela-
tions, and we are curious about the model perfor-
mance.

5.6 Synonym retrieval

We propose evaluating word embeddings also on
synonym retrieval. Using our department the-
saurus, we have randomly selected 500 words
known to have at least 5 synonyms. (No two tested
words are synonyms of each other.)

For each tested word, we find 10 words having
the most similar vectors and we evaluate the top-
1, top-3 and top-5 precision. We do it both with
respect to the answer really given and with respect
to an oracle which would move true synonyms to
top positions whenever they would appear within
the 10 candidates.

Please note that even though Leeuwenberg et al
(2016) have shown that relative cosine similarity
is a better approach to synonym extraction, it does
not make a great difference in our case because we

do not need to set a similarity threshold between
synonyms and non-synonyms.

6 Results

We evaluated all trained models on all available
datasets, with the exception of BERT embed-
dings which were only evaluated on WordSim353-
CZ and Czech similarity and relatedness dataset.
Please keep in mind that we were not able to train
fastText on Czech National Corpus using forms
and LexVec on Czech National Corpus using ei-
ther forms or lemmata.

When evaluating analogies, we have tried using
both 3CosAdd suggested by Mikolov et al (2013b)
and 3CosMul suggested by Levy and Goldbert
(2014) as similarity objective. To evaluate simi-
larity, we use cosine similarity in all tasks.

Since the number of trained and evaluated mod-
els is high, we do not report results for each of the
models. Instead, we do the following:

e Divide the tasks into five groups: syntac-
tic analogies, semantic analogies, extended
analogies, similarity/relatedness assignment
and synonym retrieval. For each group, we
identify all models which achieve the best re-
sult on any task within this group, and for all
such models, we report results on all tasks
within this group. We also report the per-
formace of BERT embeddings on the simi-
larity/relatedness group.

e Report a basic approximation of parame-
ter volatility, given by differences in perfor-
mance when only the parameter in question
is changed.

e Discuss the patterns we have noticed during
our examination of all results.

Table 1 shows the results on syntactic analogies.
Please note that the dominance of models trained
on forms is expected since models trained on lem-
mata are not able to solve purely syntactic tasks
(plural, past tense, pronouns, gradation). The non-
zero accuracy of lemmatized models on plural is
only possible due to a dataset lemmatization error.

The achieved accuracies are pleasing, with a no-
table exception of pronoun analogies. We suspect
this could be because the pronoun analogies in fact
mix several aspects, i.e. there are pairs like jd 'I’
- my 'we’ but also mého 'my (sg., i.e. my thing)’
- mych *my (pl., i.e. my things)’, instead of mého
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fastText Word2Vec Word2Vec  LexVec fastText
Wiki CNC CNC CzEng CNC

forms forms forms forms lemmata

3CosMul 3CosAdd 3CosMul 3CosMul 3CosMul
Plural 71.85 64.11 64.04 68.17 2.70
Jobs 83.92 87.54 85.35 80.72 75.00
Past tense 89.02 66.58 67.84 87.79 0.00
Pronouns 7.54 9.79 10.98 10.45 0.00
Gradation 60.00 62.50 60.00 70.00 0.00
Nations 43.18 25.19 28.03 40.15 67.52

Table 1: Results on syntactic analogies; numbers were always kept in place; both Word2Vec and fastText

were trained using CBOW architecture

LexVec  Word2Vec LexVec  Word2Vec  LexVec
CzEng Wiki Wiki CNC CzEng
lemmata  lemmata forms lemmata  lemmata
meta meta numbers meta numbers
3CosAdd 3CosAdd 3CosAdd 3CosAdd 3CosMul
Anto-nouns 23.33 13.44 17.28 14.72 18.56
Anto-adj 20.96 31.71 3.54 23.17 20.15
Anto-verbs 6.79 5.27 13.66 7.68 6.70
City/state 5.35 41.62 3.03 54.72 5.08
Family 45.99 41.98 8.03 43.83 48.61
Table 2: Results on semantic analogies;

CNC CNC CNC CzEng
numbers meta meta numbers
3CosMul 3CosAdd 3CosMul 3CosMul

Archaic 18.92 15.92 17.72 7.56
Diminutives 25.97 27.66 27.66 13.97
Expert 23.09 19.63 23.48 14.19
Synonyms 20.27 19.79 19.79 26.71
Total 22.80 21.32 23.17 14.83

Table 3: Results on extended analogies; all models were trained using Word2Vec with CBOW architec-

ture, corpus was always lemmatized

'my’ - naseho ’our’. The possessive pronouns are
also given in genitive/accusative (same forms are
used for both cases) while the personal pronouns
are given in nominative.

Results on semantic analogies are reported in ta-
ble 2, and results on extended analogies are given
in table 3.

Consistently with Svoboda and Brychcin
(2016), we have found that CBOW outperforms
skip-gram on Czech, which is not consistent with
the results observed on English (Mikolov et al.,
2013b). We hypothesize this could be due to rel-
atively free word order and strong inflection and

conjugation found in Czech. For example, while
the two sentences Profesor pochvdlil studenta and
Studenta pochvdlil profesor ’ A professor praised a
student’, have a different meaning with respect to
topic-focus articulation, they can be both utilized
in Czech to communicate roughly the same thing.
In English, changing the word order would also
require transforming the verb. Therefore, a single
Czech word could be less predictive than a single
English word, making skip-gram less effective.

The best result is not always achieved using
the largest corpus available. Out of 15 anal-
ogy classes, 4 are best solved when training on
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Wikipedia dump. The difference is very subtle
for noun plural, rather subtle for past tense and
verb antonyms (with Lex Vec trained on CzEng be-
ing the second in all cases) but high for adjective
antonyms (the best non-wiki model achieves ac-
curacy of 25.67). While we are not able to truly
explain, we suspect several factors could be re-
sponsible: Wikipedia dump is probably more con-
sistent in style than both other corpora (which
are compilations of various sources); many pages
originated as English Wikipedia translation and
thus are likely to follow English stylistics, mak-
ing the language more similar to English; its en-
cyclopaedic nature could make the language more
regular in general. Perhaps these properties could
outweight the corpus size.

However, CNC in general gives good results
on extended analogies. We suppose its size does
make an advantage, though indirectly, by mak-
ing the appearance of queried words in the cor-
pus more likely and their contexts more recogniz-
able (some words are unusual in Czech, especially
words from archaic and expert analogies).

We notice that while syntactic analogies are bet-
ter solved by models trained on forms (with the
exception of gendered nationality analogies), most
semantic analogies are better solved by models
trained on lemmata. We suppose this is due to
large numbers of word forms for each lemma (a
prototypic Czech noun has 14 forms, adjectives
and verbs have even more), further strengthened
by lemmata having some basic sense disambigua-
tion annotation.

The exception to lemmata performing better are
verbal antonyms. The best lemma-based model
achieves accuracy of 10.18, which is notably lower
than the best result. We are not sure about the
cause. However, verbs have lots of forms (which
all get lemmatized to the same string) and many
verbal forms contain auxiliary words, often also
verbal. The combination of that could make dis-
tinguisting contexts more difficult.

Table 4 gives the results on similarity tasks. To
evaluate BERT on Czech similarity and related-
ness dataset, we extracted all example sentences
(which are given to demonstrate the use of the
word with the desired meaning) and inferred the
embeddings of all words in them. We then used
the embeddings of the queried words to evaluate
the model.”

"Technically, we first associated the word with a unique

We were quite surprised to see the relatively
low results of BERT, compared to other models.
We suspect the elimination of accented charac-
ters could hurt BERT performance since accents
may differentiate meaning in Czech and the re-
moval of accented characters might produce the
same string (as turning both maly *small (mascu-
line)’ and mald *small (feminime)’ into mal; miira
’moth’ and mira *measure, rate’ to mra) or even
to valid Czech words (as turning zed *wall’ into
ze 'from’). However, this should be rather rare,
except for systematic occurences as with the mas-
culine and feminime adjectives.

We find it more likely that BERT performance
is hurt by inferring embeddings of rather artificial
sentences. For WordSim, the sentences had only
the queried words. For the similarity and related-
ness dataset, these were true sentences, but with-
out further context.

The results on synonym retrieval are reported
in table 5. We again see that CBOW architecture
outperforms skip-gram, which might be because
of relatively free word order in Czech. The effect
could be even stronger in context of synonym re-
trieval, as the distinction e.g. between subject and
object could also be the distinction between (near-
)synonym and (near-)antonym verb.

The corpus size might be a more important fac-
tor than model selection for synonym retrieval.
Even though moving from forms to lemmata helps
both in general and specifically with this task,
models trained on unlemmatized CNC often out-
performed models trained on lemmatized CzEng.
However, Word2Vec/CBOW trained on smaller
lemmatized corpus still outperformed other mod-
els trained on CNC. Unfortunately, we cannot be
sure about the performance of LexVec on CNC
but its performance on CzEng is 30%-70% of
word2vec/CBOW performance with the remain-
ing parameters matching.

We have also noticed that while oracle precision
is good, the synonyms often do not come first. The
exact precisions differ but for all models, the real
precision is one third to one half of oracle preci-
sion.

In all our experiments, GloVe did not perform

identifier, added the identifier and the inferred embedding to a
special model using gensim, and finally evaluated this special
model against the translation of the dataset into the identifiers.
The identifiers are needed since embeddings are contextual-
ized, i.e. different for the same word in different contexts, but
gensim only supports mapping one word to one embedding.
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fastText LexVec BERT
CNC CzEng
meta numbers
SimRel/Similarity 72.45 65.39 46.90
SimRel/Relatedness  66.51 62.14 38.63
WordSim353-CZ 69.17 70.41 13.88

Table 4: Results (Spearman correlation coefficient) on similarity tasks; All models were trained on
lemmatized corpus; fastText was trained using CBOW architecture

numbers meta-numbers
Top-1 oracle 78.10 74.79
Top-3 oracle 47.80 49.45
Top-5 oracle 32.07 32.48
Top-1 precision ~ 35.12 33.88
Top-3 precision  26.86 26.45
Top-5 precision  21.65 22.15

Table 5: Results on synonym retrieval; Models
were trained using Word2Vec/CBOW on lemma-
tized CNC

well. The rank of best performing GloVe model
was usually around 30, therefore being worse than
about a quarter of all other models. It is however
possible that GloVe would benefit from tweaking
the parameters more carefully. Altering a param-
eter often has the opposite effect on GloVe than
on other modesl, which also encourages this as-
sumption. Still, it should be noted that this result
again is consistent with the findings of Svoboda
and Brychcin (2016), who discovered GloVe per-
formed worse than Word2Vec on Czech.

Despite all the research into incorporating sub-
word information into embeddings (which is,
among other, motivated by morphologically rich
languages), models trained on lemmata perform
better that their counterparts trained on forms.
Tasks which require form distinguishing are a nat-
ural exception to this. We suspect this gap is par-
tially caused by some forms being quite different
from its lemma (and therefore hardly connectable
on form/subword level), by lots of forms being
only seemingly similar (sharing a long substring
but meaning a different thing), and also by some
forms appearing in specific contexts only (mak-
ing the model learn a relation more specific than
it should be).

However, we believe performing a strictly syn-

tactic evaluation of embeddings which would
focus on deriving correctly inflected/conjugated

forms would be an interesting experiment to evalu-
ate to benefits of subword information in morpho-
logically rich languages.

As has been already mentioned, CBOW outper-
forms skip-gram on Czech. The difference is big-
ger on syntactic analogies; CBOW advantage is
less clear in fastText models than Word2Vec mod-
els and on similarity tasks (in which CBOW only
outperforms skip-gram if trained on lemmata).

Word2Vec with CBOW architecture generally
performs well, though there are tasks (especially
similarity assignment) on which LexVec gives no-
tably better results.

Number substitution with meta-words alters the
results only slightly. Though sometimes the best
result is achieved by a model trained on text with
those meta-words, the substitution hurts more of-
ten than it helps.

Similarly, the difference in analogy perfor-
mance between different similarity objectives is
rather subtle, though it is notable that semantic
analogies are generally best solved with 3CosAdd
objective while syntactic analogies are generally
best solved with 3CosMul. However, this pat-
tern is not repeated in extended analogies which
are mostly semantic but best solved with 3CosMul
(though the results on extended analogies are low
which might further reduce the effect of similarity
objective).

In general, training on CzEng instead of CNC
results in worse results, suggesting CNC is more
appropriate for training word embeddings. The
difference of size is likely to play a role, but with-
out further investigations we cannot eliminate the
possibility that the fact that CzEng is comprised of
more different text types also worsens (or possibly
improves) the results.

The comparison of training with CzEng and
Wikipedia dump is less one-sided. In most cases,
moving from CzEng to Wikipedia dump has a
negative impact, however it does improve the re-
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Parameter Mean Deviation Maximum
model 9.61 12.62 87.54
corpus 7.22 9.38 55.61

form/lemma 13.87 19.85 89.02
form/lemma®* 5.89 6.36 30.30
numbers 1.13 1.70 15.00
similarity objective  1.58 2.34 18.54

Table 6: Approximation of parameter volatility given by the distribution of performance differences
(percent points) when altering the parameter with all remaining parameters fixed; Minimum difference
is always 0; similarity objective is only taken into account on analogy tasks; * line refers to values when
skipping noun plural, past tense, pronouns and gradation which are by nature unsolvable by lemmata-

based models

sults on several task/model combinations (espe-
cially syntactic analogies). We also noticed that
on similarity assignment, LexVec performs better
than most models when both are trained on CzEng
but worse when trained on Wikipedia dump (the
comparison for CNC is not available). The effects
of moving from CNC to Wikipedia dump are sim-
ilar to effects of moving from CNC to CzEng (i.e.
usually negative).

7 Conclusion

We have presented an intrinsic evaluation of Czech
word embeddings. We have evaluated several
models trained on three different corpora, using
different strategies during the training process. We
have evaluated the resulting embeddings on a vari-
aty of tasks — analogy, similarity, synonym re-
trieval.

The most important of our findings, regard-
ing model selection, are that GloVe model us-
ing the default parameter settings does not seem
to work well on Czech, that CBOW architecture
of Word2Vec/fastText generally outperforms the
Skip-gram architecture (unlike on English) and
that LexVec performs fairly well in our experi-
ments. It is worth noting that model selection af-
fected the results more than corpus selection.

While bigger corpus might be expected to give
better results, our results regarding corpus size
are mixed. In most cases, the best performing
model is trained on CNC, the largest corpus we
have used, and if the best result is achieved using
CzEng, the model is usually LexVec (which we
were not able to train on CNC). However, the best
result in several tasks is achieved using Wikipedia
dump. We hypothesize the encyclopaedic nature
of Wikipedia and the similarity of its language to

English (following from many pages being trans-
lated or based on their English counterparts) could
be important factors.

We have also found that models trained on lem-
matized corpus usually perform better. Given that
lemmatization tools are available for Czech, we
would therefore recommend lemmatizing the text
even when training on models which employ sub-
word information. We hypothesize the differences
of forms as well as some basic sense disambigua-
tion might play a role.

We have several future goals which have
emerged from the described work. Obviously,
overcoming the limitations and being able to train
all models on any corpus is one of them. We ex-
pect to try reformumalting the analogy task so that
there can be more than one correct answer (which
is clearly useless for tasks like currect capitals but
might be interesting for tasks like antonyms or
diminutives). We would also like to create more
syntactic tasks to further evaluate the benefits of
subword information, train the models on corpora
subsets to better evaluate the effect of using bigger
corpus, and carefully evaluate analogies and syn-
onym retrieval using contextualized embeddings.
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Abstract

In this paper, we investigate the effect of
enhancing lexical embeddings in LSTM
language models (LM) with syntactic and
semantic representations. We evaluate the
language models using perplexity, and we
evaluate the performance of the models
on the task of predicting human sentence
acceptability judgments. We train LSTM
language models on sentences automat-
ically annotated with universal syntactic
dependency roles (Nivre et al., 2016), de-
pendency tree depth features, and uni-
versal semantic tags (Abzianidze et al.,
2017) to predict sentence acceptability
judgments. Our experiments indicate that
syntactic depth and tags lower the perplex-
ity compared to a plain LSTM language
model, while semantic tags increase the
perplexity. Our experiments also show
that neither syntactic nor semantic tags im-
prove the performance of LSTM language
models on the task of predicting sentence
acceptability judgments.

1 Introduction

Lau et al. (2014) show that human acceptability
judgments are graded rather than binary. It is not
entirely obvious what determines sentence accept-
ability for speakers and listeners. However, syn-
tactic structure and semantic content are clearly
central to acceptability judgments. In fact, as Lau
etal. (2015, 2017) show, it is possible to use a lan-
guage model, augmented with a scoring function,
to predict acceptability. Standard RNN language
models perform fairly well on the sentence accept-
ability prediction task.

By experimenting with different sorts of enrich-
ments of the training data, one can explore their
effect on both the perplexity and the predictive ac-
curacy of the LM. For example, Bernardy et al.

(2018) report that including contextual informa-
tion in training and testing improves the perfor-
mance of an LSTM LM on the acceptability task,
when contextual information is contributed by pre-
ceding and following sentences in a document.

Here we report several experiments on the pos-
sible contribution of symbolic representations of
semantic and syntactic features to the accuracy of
LSTM LMs in predicting human sentence accept-
ability judgments. !

For semantic tags, we use the Universal Se-
mantic Tagging scheme, which provides language
independent and fine-grained semantic categories
for individual words (Abzianidze et al., 2017). We
take our syntactic roles from the Universal Depen-
dency Grammar scheme (Nivre et al., 2016). This
allows us to assign to each word in a sentence a
semantic and a syntactic role, respectively.

Our working hypothesis is that for a language
model the syntactic and semantic annotations will
highlight semantic and syntactic patterns observed
in the data. Therefore sentences that exhibit these
patterns should be more acceptable than sentences
which diverge from them. One would expect that
if we get lower perplexity for one of the tagging
scheme LMs, then its performance would improve
on the acceptability prediction task. Clearly, bet-
ter performance on this task indicates that tagging
supplies useful information for predicting accept-
ability.

2 Experimental Setup

First, we train a set of language models, some of
them on tag annotated corpora, and some on plain
text. While we are interested in the effect of the
tags on model perplexity, our main concern is to
measure the influence of the tags on an LSTM

'Our training and test sets, and the code for generating
our LSTM LM models are available at ht tps://github.
com/GU-CLASP/predicting-acceptability.

76



LM'’s predictive power in the sentence acceptabil-
ity task.

We implement four variants of LSTM language
models. The first model is a plain LSTM that pre-
dicts the next word based on the previous sequence
of words. The second, third and fourth models pre-
dict the next word w; conditioned on the previous
sequence of words and tags, for which we write
Pyr(w;). For a model M that uses syntactic or
semantic information:

Pr(w;) = P(wil(wi—1,ti—1), ..., (Wi—n, ti—n))
(D
We stress that the current tag (¢;) is not given when
the model predicts the current word (w;).

Using the main hyperparameters from a previ-
ous similar experiment (Bernardy et al., 2018), all
language models use a unidirectional LSTM of
size 600. We apply a drop-out of 0.4 after the
LSTM layer. The models are trained on a vocab-
ulary of 100,000 words. We randomly initialise
word embeddings of size 300 dimensions, and tag
embeddings of size 30 dimensions. Each model is
trained for 10 epochs.

Following the literature on acceptability (Lau
et al., 2015, 2017; Bernardy et al., 2018), we pre-
dict a judgment by applying a variant of the scor-
ing function SLOR (Pauls and Klein, 2012) to a
model’s predictions.

2.1 SLOR

To estimate sentence acceptability, we use a
length-normalized syntactic log-odds ratio (here-
after simply referred to as SLOR). We use SLOR
rather than any other measurements since it was
shown to have the best results in a previous study
(Lau et al., 2015). It is calculated by taking the
logarithm of the ratio to the probability of the sen-
tence s predicted by a model M (Pps) with the
probability predicted by the unigram model (Fy),
divided by the length of the sequence |s|.

SLORy(s) = log(Pas(s)) ’8—‘ log(Py(s))

)

where Pyr(s) = [, Par(wi), and Py(s) =
Hl‘o’:'l (Py(w;)). This formula discounts the effect
of both word frequency and sentence length on the
acceptability score that it assigns to the sentence.
SLOR has been found to be a robustly effective

scoring function for the acceptability prediction
task (Lau et al., 2015).

2.2 Model evaluation

We evaluate the model by calculating the
Weighted Pearson correlation coefficient between
the SLOR score assigned by the model and the
judgments assigned by the annotators.

Even though we show only the mean judgment
in Figure 3, each data point comes also with a vari-
ance (there is heteroscedasticity). Thus we have
chosen to weight the data points with the inverse
of the variance when computing the Pearson corre-
lation, as is standard when computing least square
regression on heteroscedastic data.

We report the weighted correlation point wise
between all models, and between each model and
the human judgments. Additionally, we perform
three experiments where we shuffle the syntactic
and semantic representations in the test sentences.
This is done to determine if the tags provide useful
information for the task.

2.3 Language Model Training Data

For training the LMs we selected the English part
of the CoNLL 2017 dataset (Nivre et al., 2017).
The input sentences were taken from a subset of
this corpus. We used only 1/10 of the total CONNL
2017 Wikipedia corpus, randomly selected. We
took out all sentences whose dependency root is
not a verb, thus eliminating titles and other non-
sentences. We also removed all sentences longer
than 30 words. After filtering, the training data
contained 87M tokens and 5.3M sentences.

3 Semantic Tags

We train a LSTM model for predicting semantic
tags. We use this model to tag both the training
set extracted from the CoNLL 2017 corpus, and
the crowdsource annotated test set (described in
Section 6).

The Universal semantic tagging scheme pro-
vides fine-grained semantic tags for tokens. It in-
cludes 80 different semantic labels. The seman-
tic tags are similar to Part-of-Speech (POS) tags,
but they are intended to generalise and to semanti-
cally disambiguate POS tags. For many purposes,
POS tags do not provide enough information for
semantic processing, and this is where semantic
tags come into play. A significant element of POS
disambiguation consists in assigning proper nouns
to semantic classes (named entities). In this way,
the scheme also provides a form of named entity
recognition. The scheme is designed to be lan-
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guage independent. Annotations currently exist
for English, German, Dutch and Italian, but we
only use the English labels in our model.

The corpus of semantically tagged sentences
that we use comes from the Parallel Meaning Bank
(PMB) (Abzianidze et al., 2017). It contains 1.4M
tagged tokens divided into 68,177 sentences”. The
dataset is extracted from a variety of sources:
Tatoeba, News Commentary, Recognizing Textual
Entailment (RTE), Sherlock Holmes stories, and
the Bible. The sentences are split into gold and sil-
ver annotations, where the gold has been manually
annotated, and the silver has been annotated by a
parser with manual corrections. The silver anno-
tations are mostly correct, but may contain some
erTors.

Example (1) below is a semantically tagged sen-
tence, taken from the PMB corpus. It includes two
pronouns 'he’ and ’his’. Both of these instanti-

He took his
PRO EPS HAS

book
CON NIL

(1

ate the same POS, but their semantic classes are
distinct. The first is a simple third person pro-
noun, while the second is a possessive pronoun.
Semantic tags are able to handle this distinction,
by assigning PRO (pronoun) to the third person
pronoun, and HAS (possessive) to the possessive
pronoun.

3.1 Semantic Tagging Model

To assign semantic tags to the CoNNL 2017 train-
ing corpus and our training set we use a bidirec-
tional LSTM of size 256, with a standard config-
uration. The model is trained with a batch size of
512 sentences. The word embeddings are of size
256 and are randomly initialized. The model is im-
plemented with keras (Chollet et al., 2015). We
stress that this model is separate from the language
models used to predict sentence acceptability.
The semantic tagging model is trained for a
maximum of 1024 epochs, with early stopping
if the validation loss does not improve after 32
epochs. For each epoch, we feed the model 64
batches of 512 randomly selected sentences. The
model observes 32,768 sentences (e.g. roughly
half of the corpus) per epoch. To select the best
model we left out 1024 gold annotated sentences,

2 Available for download at https://pmb. let . rug.
nl/releases/sem-0.1.0.zip

randomly selected, and we used them for valida-
tion.

Performance The model was validated on 1.5%
of the sentences with gold annotations. The re-
maining data were used for training. This split was
chosen because the primary goal of this model is
a downstream task, namely tagging data for lan-
guage modeling. We wish to maximise the num-
ber of sentences in the training data.

The model finished after 33 epochs, with a final
validation loss of 0.317 and a validation accuracy
0f 91.1%. The performance of our model is similar
to that of (Bjerva et al., 2016).

4 Syntactic Tags

To introduce syntactic information into our model
in an explicit way, we provide it with Universal
Dependency Grammar (UD) roles. The UD anno-
tation scheme seeks to develop a unified syntac-
tic annotation system that is language independent
(Nivre et al., 2016). UD implements syntactic an-
notation through labelled directed graphs, where
each edge represents a dependency relation. In
total, UD contains 40 different dependency rela-
tions (or tags). For example, the sentence 'There
is no known cure’ (taken from the CoNLL2017
Wikipedia corpus) is annotated as the dependency
graph shown in Figure 1.

ROOT

expl

There is no known cure

Figure 1: Dependency Graph

The model gives the label of the dependency
originating from each word, which we call the syn-
tactic role of the word. This label is provided as an
additional feature for each word in the input to our
language model. The model does not attempt to
predict these roles. For the above sentence, the in-
formation given to our syntactic tag trained mod-
els would be:

known
amod

There is
expl root

no
neg

cure
nsubj

We use the Stanford Dependency Parser (Chen
and Manning, 2014) to generate syntactic tags for
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the training and test sets.

5 Syntactic Depth

In addition to using syntactic and semantic tags,
we also experiment with syntactic depth. To as-
sign a depth to word n, we compute the number of
common ancestors in the tree between word n and
word n + 1. The last word is arbitrarily assigned
depth 0. This method was proposed by Gémez-
Rodriguez and Vilares (2018) for constituent trees,
but the method works just as well for dependency
trees. An example tree is shown below:

ROOT

expl

amo

v N\
There is no known cure .
1 1 2 2 1 0

Figure 2: Linearized dependency graph

6 Test Set

The test set for evaluating our LMs comes from
the work of Lau et al. (2015, 2017). 600 sentences
were extracted from the BNC corpus (BNC Con-
sortium, 2007) and filtered for length (8 < |s| <
25). After this filtering 500 sentences remained
and were put through a round-trip machine trans-
lation process, from English to Norwegian, Span-
ish, Chinese or Japanese, and then back to English.
In total, the test set contains 2500 sentences: 500
original sentences, and 500 from each language
used for round-trip translation (i.e. Norwegian,
Spanish, Chinese and Japanese). The purpose of
using round-trip MT is to introduce a wide variety
of infelicities into some of the sentence in our test
set. This insures variation in acceptability judge-
ments across the examples of the set.

We used Amazon Mechanical Turk (AMT)
crowdsourcing to obtain acceptability judgments.
The annotators were asked to rate the sentences
based on their naturalness (as opposed to the theo-
retically committed notion of well-formedness) on
a scale of 1 to 4. On average, each sentence had
14 annotators after filtering (for a more detailed
description see (Lau et al., 2017)).

The results are shown in Table 1. The original
sentences, and the sentences that were round-trip
translated through Norwegian and Spanish have a

higher mean rating than the sentences translated
through Japanese and Chinese. The standard devi-
ation is slightly higher for all the sentences which
underwent round-trip translation, which is to be
expected.

Table 1: Mean judgments and standard deviation
for the test set.

SENTENCES MEAN ST-DEV
en 3.51 0.46
en-no-en 3.13 0.70
en-es-en 3.12 0.69
en-zh-en 2.42 0.72
en-ja-en 2.14 0.74

7 Results

Below we denote the plain LSTM LM by LSTM,
the LM with syntactic tags as +SYN, the LM with
semantic tags as +SEM, and the LM with syntactic
tree depth as +DEPTH. We denote the models with
shuffled tags by using the star (*) as a modifier.

7.1 Language Model Perplexity

We report in Table 3 the training loss for the plain-
LSTM language model, and for the LSTM lan-
guage models enhanced with syntactic and seman-
tic tags. At the end of the training, the language
model conditioned on syntactic tags shows the
lowest loss. By definition loss is the logarithm of
the perplexity. The semantic tag LM exhibits the
highest degree of loss. It seems that the syntac-
tic tags reduce LM perplexity, while the semantic
tags increase it.

7.2 Acceptability Predictions

The matrix in Table 2 gives the results for the sen-
tence acceptability prediction task. Each entry ré-
indicates the weighted Pearson correlation r be-
tween SLOR; and SLOR;. Scatter plots showing
the correlation between human and model predic-
tions are given in Figure 3

The plain LSTM performs close to the level that
Bernardy et al. (2018) report for the same type of
LM, trained and tested on English Wikipedia data.
This indicates the robustness of this model for the
sentence acceptability prediction task, given that,
unlike the LSTM of Bernardy et al. (2018), it is
trained on Wikipedia text, but tested on a BNC test
set. Therefore, it sustains a relatively high level of
performance on an out of domain test set.
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Table 2: Weighted Pearson correlation between prediction from different models on the SMOGT dataset.
* indicates that the tags have been shuffled.

HuMaN LSTM +SYN +SYN* +SEM +SEM* +DEPTH +DEPTH*
HUMAN 1.00
LSTM 0.58 1.00
+SYN 0.55 0.96 1.00
+SYN* 0.39 0.76 0.75 1.00
+SEM 0.54 0.81 0.78 0.61 1.00
+SEM* 0.52 0.81 0.78 0.63 0.96 1.00
+DEPTH  0.56 0.97 0.97 0.74 0.79 0.79 1.00
+DEPTH* 0.46 0.87 0.85 0.73 0.72 0.72 0.86 1.00

Table 3: Training loss and accuracy for the lan-
guage modeling task.

MODEL LO0OSS ACCURACY
LSTM 504 024
+SYN 479 0.26
+SEM 523 021
+DEPTH 4.88 0.27

We also tested a model that combined depth
markers and syntactic tags, which is, in effect, a
full implicit labelled dependency tree model. In-
terestingly, its Pearson correlation of 0.54 was
lower than the ones achieved by the syntactic tag
and depth LSTM LMs individually.

None of the enhanced language models in-
creases correlation with human judgments com-
pared to the plain LSTM. Neither does the addi-
tional information significantly reduce correlation.

Shuffling the tags causes a drop of 0.16 in corre-
lation for syntactic tags, and a drop of 0.1 for tree
depth. Shuffling the semantic tags also lowers the
correlation, but only by a small amount (—0.02).

8 Discussion

8.1 Semantic Tags

As can be observed in Table 3, the semantic tags
show the highest loss during training. This indi-
cates that semantic tags increase the perplexity of
the model, and do not help to predict the next word
in a sentence. Despite this, +SEM correlates fairly
well with human judgments (r = 0.54).

The results obtained with shuffled semantic tags
(+Sem*) are revealing. They yield a correlation
factor nearly as high as the non-shuffled tags (r =
0.53). This suggests that the semantic tags do not
provide any useful information for the prediction

task. This hypothesis is further confirmed by the
high correlation between the non-shuffled and the
shuffled semantic tag LMs (r = 0.96).

The question of why semantic tags do not re-
duce perplexity, or why randomly assigned seman-
tic tags are almost as good as non-shuffled tags
at predicting acceptability requires further study.
One possibility is that the tagging model does not
perform as well on the ConLL 2017 Wikipedia
subset, or the BNC test set, as it does on the PMB
corpus. It may be the case that since the domains
are somewhat different, the model is not able to
accurately predict tags for our training and test
sets. Similarly, we do not know the accuracy of
the Stanford Dependency Parser on the BNC test
set.

8.2 Syntactic Tags

Providing syntactic tags improves the language
model, but not the correlation of its predictions
with mean human acceptability judgments. How-
ever, shuffling the syntactic tags does lower the
correlation substantially. This indicates that syn-
tactic tags significantly influence the predictions
of the language model.

8.3 Tree Depth

The depth marker enriched LSTM performs best
of all the feature enhanced models. Shuffling the
markers significantly degrades accuracy, and the
non-shuffled depth model achieves a reduction in
perplexity. However, it still performs below the
simple LSTM on the acceptability prediction task

It may be the case that the plain LSTM already
acquires a significant amount of latent syntactic in-
formation, and adding explicit syntactic role label-
ing does not augment this information in a way
that is accessible to LSTM learning. This con-
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Human judgment

Model score

(a) Human - LSTM

Human judgment

Model score

(c) Human - Sem

Human judgment

Model score

(b) Human - Syn

Human judgment

Model score

(d) Human - Depth

Figure 3: Scatter plots showing the weighted Pearson correlation between human acceptability judgments

(y-axis) and model predictions (x-axis).

clusion is supported by the work of Bernardy and
Lappin (2017) on syntactic agreement. They ob-
serve that replacing a significant portion of the lex-
icon of an LSTM with POS tags degrades its ca-
pacity to predict agreement.

In general, our results do not show that syntac-
tic and semantic information plays no role in the
performance of any LM for the acceptability pre-
diction task. It seems clear that the simple LSTM
model learns both semantic and syntactic relations
among words and phrases, but represents these in
a distributed way through the encoding of lexical
embeddings in vectors. In fact, there is a body
of work which shows that such LSTMs recognise
complex long-distance syntactic relations (Linzen
et al., 2016; Bernardy and Lappin, 2017; Gulor-
dava et al., 2018; Lakretz et al., 2019).

8.4 Error analysis

We analyse the models in two ways. First, we ex-
plore how they score sentences in the test set as
categorised by the round-trip translation language

that the sentences went through. Second, we look
at two example sentences for which no model did
particularly well.

8.4.1 Model performance on test sentences

To analyse the scores assigned by the model in
comparison to the human judgments we first need
to normalise the scores. We do this by dividing
the score assigned to each sentence by the maxi-
mum score assigned. Thus, the relative score of
a sentence indicates how close it is to the highest
acceptability judgment.

The mean relative score of the human judg-
ments and model scores are presented in Table 4.
‘We observe that the models generally appear to as-
sign a lower relative score than humans. But all
models also appear to follow the general trend of
human judgments and assign a lower score to the
Chinese and Japanese round-trip translated sen-
tences compared to the Spanish, Norwegian and
original sentences. However, looking at the num-
bers the difference in magnitude for Chinese and
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Japanese sentences is rather large. The Chinese
and Japanese sentences have a lower relative score
of 0.27 and 0.35 respectively. But for models, this
difference is only ~ 0.07 and ~ 0.12 respectively.
This indicates that while the models are able to see
some acceptability differences between the sub-
classes of test sentences, the models do not penal-
ize these sentences as much as humans.

Table 4: Comparison of the average relative score
assigned by the models and humans for the differ-
ent sentences in the test set.

MODEL EN No Es ZH Ja
Human 0.88 0.78 0.78 0.61 0.53
LSTM 041 040 040 034 0.29
+SYN 046 044 045 039 0.35
+SEM 0.39 036 037 030 0.28
+DEPTH 045 043 044 038 0.34

We also note that the models consistently
assign much lower relative scores than the human
annotators do to most of the sentences. This,
biases their scores in favour of the Chinese and
Japanese target sentences, since these are typically
worse’ than their original English sources, or the
Norwegian and Spanish targets, according to the
human judges (see Table 1).

We also compare the worst scoring sentences
between the models. This was done by splitting
the predictions into two sets: (a) model scores
above the average3 and (b) model scores below
the average. We sort these sets by their difference
to the humans and select the top 20 sentences for
each model. Table 5 shows the intersection of sen-
tence sets for the different models.

Table 5: Shared erroneous sentences between the
models.

MopEL LSTM +SYN +SEM +DEPTH
LSTM 40

+SYN 30 40

+SEM 19 15 40

+DEPTH 30 28 17 40

We observe that the syntactic tag and depth
models share many sentences with each other, and
with the plain LSTM, but not as many with the

3We compare scores by dividing each score by it’s maxi-
mum value, as described previously.

semantic model. This shows that the difficult sen-
tences for the semantic model are different than
those for the syntactic and plain models.

8.4.2 Model and human performance

We use the relative scores from the previous sec-
tion to select sentences for examination. We look
at two types of cases, one in which the model pre-
dicts a higher score than the human judgments,
and the other where the model predicts a lower
score than human judgments. For both cases we
select a sentence at random.

We begin by considering an example to which
the model assigns a higher score than humans do.
The sentence went through Chinese:

(1) ’1.5% Hispanic or Latino of any race popula-
tion.

The sentence lacks a verb, and the modifier-
noun construction ’race population’ is lexically
strange. It is interesting to note that our syntactic
models (+SYN and +DEPTH) both assign a high
score to this sentence, while the semantic and plain
LM assign a lower score (which is closer to the
human judgment). We would think that the model
using syntactic tags would pick up on the missing
verb, and so penalize the sentence. The scores for
the sentence (1) are shown in Table 6:

Table 6: Human judgments and model scores for
sentence (1).

MODEL RELATIVE ABSOLUTE
HumMAN 040 1.62
LSTM 0.77 3.74
+SYN 0.90 4.47
+SEM 0.71 3.29
+DEPTH 0.85 4.17

For (1), the LM enhanced with semantic tags
gave the sentence the lowest score. The syntactic
and depth model gave the sentence a high score
(0.90 and 0.85 respectively). This indicates that
while still assigning the sentence a relatively high
score, the semantic and plain LM rate the sentence
closer to humans than the syntactical LM.

In the second case, (2), the sentence is one of
the original English sentences:

(2) "ACS makes a special "FAT” heavy duty
BMX freewheel in 14T and 16T with 3/16
“teeth compatible only with 3/16” chains.’
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The human annotators gave it an appropriately
high score, but the models did not, as indicated in
table Table 7.

Table 7: Human judgments and model scores for
sentence (2).

MODEL RELATIVE ABSOLUTE
HumMAN 0.80 3.23
LSTM -0.007 -0.03
+SYN 0.002 0.01

+SEM 0.26 1.20
+DEPTH 0.02 -0.01

Again, we can see that the LM enhanced with
semantic tags performed the best (i.e. assigned the
sentence the highest score). The sentence has a
few features which might make it difficult for the
standard LM and syntactically enhanced language
models. The sentence contains a high number of
quotations, acronyms (e.g. ACS) and specialized
terms (e.g. 3/16). The dependency tags do not
treat these words in any special way. Because the
words are rare they are not likely candidates. The
semantic tags will treat these words in a different
manner, since it contains tags for named entities
and quantities.

8.5 Pre-Trained Language Models

Recently several large pre-trained language mod-
els using transformation architecture, like BERT
(Devlin et al., 2018), or bidirectional LSTM with
attention, such as ELMo (Peters et al., 2018), have
achieved state of the art results across a variety
of NLP tasks. We opted not to experiment with
any of these pre-trained language models for our
task. The LSTM architecture of our LMs is far
simpler, which facilitates testing the contribution
of explicit feature representation to correlation in
the acceptability prediction task, and perplexity
for the language modeling task.

9 Related Work

There has been a considerable amount of work
showing that encoding tree representations in deep
neural networks, particularly LSTMs, improves
their performance on semantic relatedness tasks.
So, for example, Tai et al. (2015) show that Tree-
LSTMs outperform simple LSTMs on SemEval
2014 Task 1, and sentiment classification. Sim-
ilarly, Gupta and Zhang (2018) argue that by
adding progressive attention to a Tree-LSTM it is

possible to improve its performance on several se-
mantic relatedness tasks.

Williams et al. (2018) describe a number of ex-
periments with latent tree learning RNNs. These
models learn tree structures implicitly, rather than
through training on a parse annotated corpus.
They construct their own parses. Williams et al.
(2018) state that they outperform Tree-LSTM and
other DNN models on semantic relatedness appli-
cations, and the Stanford Natural Language Infer-
ence task. Interestingly, the parse trees that they
construct are not consistent across sentences, and
they do not resemble the structures posited in for-
mal syntactic or semantic theories. This result is
consistent with our finding that LSTMs learn syn-
tactic and semantic patterns in a way that is quite
distinct from the classifications posited in classical
grammatical and semantic systems of representa-
tion.

Finally, Warstadt and Bowman (2019) discuss
the performance of several pre-trained transformer
models on classifying sentences in their Corpus of
Linguistic Acceptability (CoLLA) as acceptable or
not. These models exhibit levels of accuracy that
vary widely relative to the types of syntactic and
morphological patterns that appear in CoLA.

It is important to recognise that CoLA is a very
different sort of test set from the one that we use
in our experiments. It is drawn from linguists’
examples intended to illustrate particular sorts of
syntactic construction. It is annotated for binary
classification according to linguists’ judgments.
By contrast, our BNC test set consists of natu-
rally occurring text, where a wide range of infe-
licities are introduced into many of the sentences
through round trip machine translation. It is anno-
tated through AMT crowd sourcing with gradient
acceptability judgments. Given these significant
differences in design and annotation between the
two test sets, applying our models to CoLA would
have taken us beyond the scope of the sentence
acceptability task, as specified in (Lau et al., 2015,
2017; Bernardy et al., 2018),

Moreover, our experiments are not focused on
identifying the best performing model as such. In-
stead, we are interested in ascertaining whether
enriching the training and test data with explicit
syntactic and semantic classifier representations
contributes to LSTM learning for the sentence ac-
ceptability prediction task.
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10 Conclusions

We present experiments that explore the effect
of enhancing language models with syntactic and
semantic tags, and dependency tree depth mark-
ers, for the task of predicting human sentence
acceptability judgments. The experiments show
that neither syntactic nor semantic tags, nor tree
depth indicators improve the correlation between
an LSTM LM and human judgments. Our experi-
ments also show that syntactic tags provide infor-
mation that is useful for language modeling, while
semantic tags do not. However, further experi-
ments are needed to verify our results for semantic
tags. The model that we used for tagging, rather
than the information in the tags themselves, may
be responsible for the observed result.

Surprisingly our initial hypothesis that lower
training perplexity produces better acceptability
prediction has been overturned. We have not ob-
served any correlation between the perplexity of
an LM and its accuracy in acceptability prediction.
The SLOR scoring function may mask an underly-
ing connection between preplexity and prediction
accuracty.

Our tentative conclusion from these experi-
ments is that simple LSTMs already learn syntac-
tic and semantic properties of sentences through
lexical embeddings only, which they represent in a
distributional manner. Introducing explicit seman-
tic and syntactic role classifiers does not improve
their capacity to predict the acceptability of sen-
tences, although such information may be useful
in boosting the performance of deep neural net-
works on other tasks.

In future work, we plan to test other sources of
information for the language models. One pos-
sibility is to use constituency, rather than depen-
dency tree depth. We also plan to experiment with
different combinations of tags for the language
models, such as models that use both semantic and
syntactic roles.
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Abstract

In this paper, we compare the use of lin-
ear versus neural classifiers in a greedy
transition system for MWE identification.
Both our linear and neural models achieve
a new state-of-the-art on the PARSEME
1.1 shared task data sets, comprising 20
languages. Surprisingly, our best model
is a simple feed-forward network with one
hidden layer, although more sophisticated
(recurrent) architectures were tested.

The feedback from this study is that tuning
a SVM is rather straightforward, whereas
tuning our neural system revealed more
challenging. Given the number of lan-
guages and the variety of linguistic phe-
nomena to handle for the MWE identifi-
cation task, we have designed an accurate
tuning procedure, and we show that hyper-
parameters are better selected by using a
majority-vote within random search con-
figurations rather than a simple best con-
figuration selection.

Although the performance is rather good
(better than both the best shared task
system and the average of the best per-
language results), further work is needed
to improve the generalization power, espe-
cially on unseen MWEs.

1 Introduction

Multi-word expressions (MWE) are composed
of several words (more precisely of elements
that are words in some contexts) that exhibit
irregularities at the morphological, syntactic
and/or semantic level. For instance, “prendre
la porte” is a French verbal expression with
semantic and morphological idiosyncrasy because
(1) its idiomatic meaning (”fo leave the room”)
differs from its literal meaning (“fo take the

Marie Candito
LLF, Université Paris Diderot

France

Mathieu Constant
ATILF, Université de Lorraine

France
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door”) and (2) the idiomatic reading would
be lost if “la porte” were used in the plural.
Identifying MWE is known to be challenging
(Constant et al., 2017), due to the highly lexical
nature of the MWE status, the various degrees of
the MWE irregularities and the various linguistic
levels in which these show. In this paper we
focus on the task of identifying verbal MWEs,
which have been the focus of two recent shared
tasks, accompanied by data sets for 20 languages:
PARSEME shared task ST.0 (Savary et al., 2017)
and ST.1 (Ramisch et al., 2018). Verbal MWEs
are rather rare (one every 4 sentences overall in
ST1.1 data sets) but being predicates, they are
crucial to downstream semantic tasks. They are
unfortunately even more difficult to identify than
other categories of MWEs: they are more likely
to be discontinuous sequences and to exhibit
morphological and structural variation, if only the
verb generally shows full inflectional variation,
allows adverbial modification and in some cases
syntactic reordering such as relativization.

Our starting point to address the MWE iden-
tification task is to reuse the system of Al Saied
et al. (2018), an enhanced version of the winning
system of ST.0, a transition system using a linear
(SVM) model. Our objective has been to incor-
porate neural methods, which are overwhelming
in current NLP systems. Neural networks have
brought substantial performance improvements on
a large variety of NLP tasks including transition-
based parsing (e.g. Kiperwasser and Goldberg
(2016) or Andor et al. (2016)), in particular thanks
to the use of distributed representations of atomic
labels, their ability to capture contextual informa-
tion. Moreover, neural methods supposedly learn
combinations from simple feature templates, as
an alternative to hand-crafted task-specific feature
engineering.
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Yet, using neural methods for our task is
challenging, the sizes of the available corpus are
relatively modest (no ST.1 language has more
than 5000 instances of training MWEs), albeit
neural models generally have more parameters to
learn than linear models. Indeed, the best systems
at the shared tasks ST.0 and ST.1 (Al Saied et al.,
2017; Waszczuk, 2018) (in closed track) are not
neural and surpassed some neural approaches.

In this paper, we carefully describe and com-
pare the development and tuning of linear versus
neural classifiers, to use in the transition system
for MWE identification proposed in Al Saied et al.
(2018), which itself built on the joint syntactic
/ MWE analyzer of Constant and Nivre (2016).
We set ourselves the constraints (i) of building
systems that are robust across languages, hence
using the same hyperparameter configuration for
all languages and (ii) of using lemma and POS
information but not syntactic parses provided in
the PARSEME data sets, so that the resulting
systems require limited preprocessing. We report
a systematic work on designing and tuning linear
and neural transition classifiers, including the
use of resampling, vocabulary generalization and
several strategies for the selection of the best
hyperparameter configuration. We address both
the open and closed tracks of the PARSEME ST.1,
i.e with and without external resources (which in
our case amount to pre-trained word embeddings).

The contributions of our work are:

e anew state-of-the art for the MWE identifica-
tion task on the PARSEME ST1.1 data sets.
Our neural model obtains about a four-point
error reduction on an artificial score mixing
the best results for each language, and 4.5
points compared to the best participating sys-
tem (even though we do not use syntactic
parses);

e a report on which hyperparameters proved
crucial to obtain good performance for the
neural models, knowing that a basic feed-
forward network without class balancing
showed high instability and achieves very
poorly (average F-score between 15% and
30%);

e an alternative strategy for tuning the hyperpa-
rameters, based on trends in random search

(Bergstra and Bengio, 2012);

e a fine-grained analysis of the results for vari-
ous partitions of the MWE, shedding light on
the necessity to address unknown MWE (not
seen in train);

e a negative result concerning the basic semi-
supervised strategy of using pre-trained word
embeddings.

We discuss the related work in Section 2, data
sets in Section 3 and the transition system in Sec-
tion 4. Linear and neural models are described
in Sections 5 and 6, and the tuning methodology
in Section 7. We present experiments and discuss
results in Sections 8 and 9, and conclude in Sec-
tion 10.

2 Related work

Supervised MWE identification has made sig-
nificant progress in the last years thanks to the
availability of new annotated resources (Schneider
et al., 2016; Savary et al., 2017; Ramisch et al.,
2018). Sequence tagging methods have been
largely used for MWE identification. In particular,
first studies experimented IOB or IOB-like anno-
tated corpora to train conditional random fields
(CRF) models (Blunsom and Baldwin, 2006;
Constant and Sigogne, 2011; Vincze et al., 2011)
or other linear models (Schneider et al., 2014).

Recently, Gharbieh et al. (2017) experimented
on the DiMSUM data set various IOB-based
MWE taggers relying on different deep learning
models, namely multilayer perceptron, recurrent
neural networks and convolutional networks.
They showed that convolutional networks achieve
better results. On the other hand, Taslimipoor and
Rohanian (2018) used pre-trained non-modifiable
word embeddings, POS tags and other technical
features to feed two convolutional layers with
window sizes 2 and 3 in order to detect n-grams.
The concatenation of the two layers is then passed
to a Bi-LSTM layer.

Legrand and Collobert (2016) used a phrase
representation concatenating word embeddings in
a fixed-size window, combined with a linear layer
in order to detect contiguous MWEs. They reach
state-of-the-art results on the French Treebank
(Abeillé et al., 2003; Seddah et al., 2013). Ro-
hanian et al. (2019) integrate an attention-based
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[L ST TIMWEJL [S[]T [MWE]
RO || 43 | 782 4.7 DE || 7 | 130 2.8
PT || 22 | 473 4.4 LT 5 | 090 0.3
BG || 18 | 399 54 HU (| 5| 120 6.2
FR 17 | 421 4.6 EL 4 1 123 1.4
TR || 17 | 335 6.1 EN || 4 | 053 0.3
IT 14 | 342 33 FA 3| 045 25
PL 13 | 220 4.1 ES 3| 097 1.7
HE | 12 | 238 1.2 HR || 2 | 054 1.5
SL 10 | 202 24 HI 1] 018 0.5
EU || 08 | 117 2.8

Table 1: The number of Sentences, Tokens and MWEs in
train sets of ST.1 Languages. Dev and test sets have all a
close number of MWEs (between 500 and 800). Languages
are represented by their ISO 639-1 code and all table numbers
are scaled and rounded (1/1000).

neural model with a graph convolutional neural
network to produce an efficient model that outper-
forms the state-of-the-art on certain languages of
the PARSEME Shared Task 1.1.

The work of Waszczuk (2018) extends a se-
quential CRF to tree structures, provided that
MWE:s form connected syntactic components and
that dependency parse trees are given as input. De-
pendency trees are used to generate a hypergraph
of possible traversals and a binary classifier labels
nodes as MWEs or not using local context infor-
mation. A multi-class logistic regression is then
used to determine the globally optimal traversal.
This method has showed very competitive scores
on the data sets of the PARSEME ST1.1, by rank-
ing first overall on the closed track.

By contrast, some authors have used Transition
systems, introducing a greedy structured method
that decomposes the MWE prediction problem
into a sequence of local transition predictions.
Constant and Nivre (2016) proposed a two-stack
transition system to jointly perform MWE iden-
tification and syntactic parsing. Al Saied et al.
(2017) experimented a partial implementation of
this system for identifying and categorizing ver-
bal MWEs. This system eliminates the syntac-
tic aspects of Constant and Nivre (2016)’s system
and learn a SVM model using linguistic and tech-
nical features to classify transitions. Relying on
Al Saied et al. (2017), Stodden et al. (2018) re-
placed the linear model with a convolutional mod-
ule that transforms the sparse feature vectors into
continuous ones and connect them to a dense layer.

Name Cond.
SHIFT B #D
REDUCE o # ()
MERGE |o| > 1
MARK o #0

Action

(o, Zlﬁ 7)= (o
(oli, B,7) = (o,
(U\Z J B.y) = (o
(o, B,

<

Figure 1: Set of transitions, each with its precondition.

3 Data sets

For our investigation, we focus on the data sets of
the PARSEME Shared Task on verbal MWE iden-
tification edition 1.1 (Ramisch et al., 2018), there-
after ST.1. Table 1 provides statistics on this data
set, which includes 20 languages' covering a wide
range of families and corpus sizes. All languages
come with train and test sets, and all but EN, HI
and LT have a development set. They contain tok-
enized sentences in which MWEs are annotated.
Each token comes with its word and lemma forms
and its part of speech (POS) tag. ST.1 also has
extra linguistic annotations such as morphologi-
cal features and syntactic dependency trees, but
we do not use them for the purpose of the pa-
per. One MWE instance is either a set of sev-
eral potentially non-continuous tokens, or a sin-
gle token compounding multiple words (namely a
multiword token, hereafter MWT).? Data sets also
contain rare MWEs embedded in another one, and
overlapping MWEs.

4 System description

Transition system A transition system incre-
mentally builds the expected output structure
by sequentially applying a transition to a con-
figuration that encodes the state of the system,
outputting a new configuration. It has been used
in particular to build a syntactic tree for a given
input sentence (Nivre, 2004), and to build both
the syntactic tree and the MWE list (Constant and
Nivre, 2016). We use such a system here to build
the list of MWEs only.We reuse the transition
system of Al Saied et al. (2018), simplified in that
we do not predict the MWE types.

In this system, a configuration is a triplet
¢ = (o,8,7), where (3 is a buffer of (remaining)
tokens, o is a stack of “elements”, which are
either single tokens or binary trees of tokens,
and v is the list of elements that have been

"'We used all languages but Arabic due to licence issues.

MWTs are extremely marginal for all ST.1 languages ex-
cept German (30%) and Hungarian(75%)

88



Trans Configuration = (o, 3, 7) Tuning |BoR | TB | Feature template
Fi(s) =[], [Take, .., account], [ | Prelim + | + |Unigrams So, S1, Bo
SHIFT = Take], [the, .., account], [ ] Prelim + | + |Bigrams SyS1, SoBo, SoB1, 51 Bo
SHIFT = Take, the, [fact, .., account], [ ] Prelim + | + |Lemma ngrams and POS ngrams
REDUCE = [Take], [fact, .., account], [] Prelim + | + |So in MWT dictionary
SHIFT = [Take, fact], [that, .., account], [ ] Prelim - | - |Resampling
Rdm Sch| - - | word forms ngrams
SHIFT = [Take, give], [up, into, account], [ ] Rdm Sch| + | - |Unigram B;
SHIFT = Take, give, up], [into, account], [ ] Rdm Sch| + | - |Bigram SoBo
MERGE = [Take, (give, up)], [into, account], [ ] Rdm Sch| + | - |Trigram S1S0Bo
MARK = [Take, (give, up)], [into, account] Rdm Sch| + | + |Distance between Sy and S1

, [(give, up)] Rdm Sch| + | + |Distance between S and Bo
REDUCE =  [Take], [into, account], [(give, up)] Rdm Sch| + | - |MWE component dictionary
SHIFT = [Take, into], [account], [(give, up)] Rdm Sch| - | - |Stack length
MERGE = (Take, into)], [account], [(give, up)] Rdm Sch| + | + |Transition history (length 1)
SHIFT = (Take, into), account], [ ], [(give, up)] Rdm Sch| - | + |Transition history (Iength 2)
MERGE = ((Take, into), account)], [ ], [(give, up)] Rdm Sch| + | - |Transition history (length 3)
MARK = ((Take, into), account)], [ ], (give, up), Fo 62.5]60

((Take, into), account)]
REDUCE = [],[][(give, up), ((Take, into), account)]  Taple 2: Linear model feature hyperparameters. First col-

Figure 2: Application of the oracle transition sequence for
the sentence Take the fact that I didn’t give up into account,
containing two verbal MWEs: Take into account and give up.

identified as MWEs so far’. To build the list of
MWEs for a given input sentence wi, w2, ...Wy,
the system starts by the initial configuration
(c =1[],8 = [wi,...,wn],¥ = []), and applies
a sequence of transitions until a terminal config-
uration is reached, namely here when both the
buffer and stack are empty. The transition set,
and their precondition is described in Figure 1.
Note the MERGE transition creates complex stack
elements, by merging the top 2 elements of the
stack?.

The identification of a MWE made of m com-
ponents ti, ..., t,, necessitates m — 1 MERGES,
and one final MARK. The REDUCE transition
allows to manage discontinuities in MWEs. Note
that MARK identifies Sy as MWE, but does
not remove it from the stack, hence enabling to
identify some cases of embedded MWEs (we
refer to Al Saied et al. (2018) for the precise
expressive power). At prediction time, we use
a greedy algorithm in which the highest-scoring
applicable transition according to a classifier is
applied to the current configuration.

Learning algorithm and oracle To learn this

In all the following, we use o|i to denote a stack with
top element ¢ and remainder o, and |3 for a buffer with first
token 4 followed by the elements in 5. S; and B; denote the
ith element of the stack and buffer respectively, starting at 0.

“Hence S, elements are either single tokens or binary
trees of tokens. In the latter case, their linguistic attributes

(lemma, POS, word form) are obtained by simple concatena-
tion over their components.

umn: prelim if the hyperparameter was fixed once and for all
given preliminary tests vs. Rdm Sch for tuning via random
search (see Section 7). Best of random BoR column: whether
the template is activated (+) or not (-) in the best performing
hyperparameter set of the random search. Trend-based TB:
same but for the trend-based hyperparameter set (cf. sec-
tion 7). The last line provides the corresponding global F-
scores on dev sets of the three pilot languages (BG, PT and
TR).

transition classifier, we use the static deterministic
oracle of Al Saied et al. (2018). For any input
sentence and list of gold MWEs, the oracle
defines a unique sequence of transitions, pro-
viding example pairs (config / next transition to
apply). Transitions have a priority order (MARK
> MERGE > REDUCE > SHIFT), and the oracle
greedily applies the highest-priority transition that
is compatible with the gold analysis. MERGE
is gold-compatible whenever Sy and S are part
of the same gold MWE.’> For REDUCE to be
gold-compatible, Sy must not be strictly included
in a gold MWE. Moreover, either Sy is not a gold
MWE, or it is already marked as MWE.

Figure 2 shows the application of the ora-
cle transition sequence for a sentence with two
MWEs.6

5 Linear model

In order to compare linear and neural models
for MWE identification, we reused the best

Note that this order will lead to left-branching binary
trees for elements in the stack.

®The system is implemented in Python 2.7, using
Keras and Scikit-learn libraries. The code is available
at https://github.com/hazemalsaied/MWE.
Identification/releases/tag/v.1l under MIT
licence.
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performing linear model of Al Saied et al. (2018),
namely a SVM, in a one versus rest scheme with
linear kernel and squared hinge loss.

We used the feature templates of Al Saied
et al. (2018) minus the syntactic features, since
we focus on MWE identification independently
of syntactic parsing. Table 2 displays the list of
feature templates. We detail the 7Sy in MWT
dictionary” and "MWE component dictionary”
templates, the other features names being rather
transparent: 7Sy in MWT dictionary” feature fires
when Sy lemma is a MWT at least once in train,
and binary features fire when either Sy, S1, By,
B or B; belong to at least one train multi-token
MWE.

We ran some preliminary experiments which
led us to set some hyperparameters once and for all
(first four lines of Table 2). In particular, we ended
up not using resampling to balance the class distri-
bution, because it proved quite detrimental for the
linear model, contrary to the neural models. We
then performed tuning for all the other features (cf.
section 7).

6 MLP model

Though we investigated various neural archi-
tectures’, the “baseline” multi-layer perceptron
(hereafter MLP) proved to be the best in the
end. It is a plain feed-forward network, with an
embedding layer concatenating the embeddings
for the POS of Sy, S1, By and B; and for either
their word form or lemma (hyperparameter), fully
connected to a dense layer with ReLLU activation,
in turn connected to the output layer with softmax
activation.

Table 3 provides the exhaustive list of MLP
hyperparameters, along with their possible values
and their optimal values for the most performing

"We tried in particular (1) a MLP with several hidden lay-
ers; (2) a MLP fed with a bidirectional recurrent layer to rep-
resent the sequence of elements Sy.51 Bo; (3) We also built a
model inspired by Kiperwasser and Goldberg (2016) in which
the recurrent (LSTM) embeddings of certain focus elements
(So, S1, Bo and Bj) are dynamically concatenated and fed
into a MLP, with back-propagation for a whole sentence in-
stead of for each transition. The recurrent representations of
the focus elements are supposed to encode the relevant con-
textual information of these elements in the sentence. These
models suffered from either a non-competitive performance
or a very unstable loss (36.7 for the bidirectional MLP and
8.4 for kiperwasser on test data sets of ST1.1).

configurations. Lines 1 to 9 correspond to embed-
ding and initialization hyperparameters: Lines (1,
2) concern which elements to include as additional
input (Use By, Use B_1)8, (3) which form for
input tokens (Lemmatization), (4, 5) which size
for token and POS tag embeddings (Token and
POS dimensions), (6) whether the embeddings are
initialized randomly or pre-trained (pre-trained),
(7) whether the embeddings are Trainable or
not, and (8) how to generate embedding vectors
for stack elements: as the average of tree token
embeddings or as their sum (Averaging).

Vocabulary For the neural model, when S;
or B; are missing, a special dummy word is used
instead. Moreover, we investigated an aggressive
reduction of the known vocabulary. We compared
2 strategies to define it: in exhaustive vocabulary
mode, hapaxes are replaced at training time by a
UNK symbol, with probability 0.5. In compact
vocabulary mode, any token (or complex element)
whose lemma is never a component of a MWE in
the training set is replaced by UNK. Note that in
both modes, the used vocabulary contains the con-
catenated symbols in case of complex .5; elements.

Resampling Given that tokens are mostly not
part of a VMWE, the transitions for their identi-
fication are very rare, leading to a very skewed
class distribution.® Resampling techniques aiming
at balancing class distribution are known to be
efficient in such a case (Chawla, 2009). Moreover,
preliminary experiments without resampling
showed unstable loss and rather low performance.
We thus used in subsequent experiments a hy-
brid resampling method composed of (1) under
sampling, that removes training sentences non
containing any MWE, and (2) random over-
sampling, that forces a uniform distribution of
the classes by randomly duplicating minority
class instances (all but SHIFT) (Chawla, 2009).
Preliminary experiments showed that without
these strategies, the systems suffered from very
unstable loss and low performance, which led us
to systematically use these two strategies in the
subsequent experiments.

8 B_1 is the last reduced element (its right-most token if
it is a complex stack element).

°For all ST.1 languages, the transitions in training sets are
approximately distributed as follows: 49% for SHIFT, 47%
for REDUCE, 3% for MERGE and 1% for MARK.
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[ Type [ Hyperparameter [| Range or set BoR. [ BoR, [ TB
g Use B> {True, False} True True True
- Use B_1 {True, False} True False True
| Lemmatization {True, False} True True True
g Token dimension [100, 600] 157 300 300
El POS dimension [15, 150] 147 132 35
& Pre-trained {True, False} False True True | False
% Trainable {True, False} True True True
£ Averaging {True, False} False True True
= Vocabulary {Compact, Exhaustive } True False True
Dense Unit number [25, 600] 85 56 75
Dropout {1, 2,.. .6} 0.3 0.1 0.4
Sampling Focused / Frequency threshold || {True, False} / {5, 10,.. 30} | False/- | False/- | False/-
Over loss / Loss coefficient {True, False} / [1, 40] False /1 | False/1 | False/1
Train Learning rate [.01, .2] 0.017 0.095 0.03
Batch size {16, 32, 48, 64, 128} 128 16 48
l Fg onall languages (on dev sets if available or 20% of train) [ 61.2 [ 57.8 [ 63.5 | 64.3 l

Table 3: MLP hyperparameters and their possible values (’range or set” column). Best-of-random closed (BoR.) and Best-
of-random open (BoR,) columns: hyperparameter values in best configurations according to random search on the three pilot
languages, in closed and open tracks. Last column: Trend-based (TB) configuration (see text in section 7). Last line: global
F-scores for these configurations, calculated using the average precision and recall for all ST.1 languages. The models are fit
on truncated training sets of the three pilot languages (BG, PT and TR) (cf. section 7).

Tuning explored two supplementary resampling
techniques: “focused” oversampling which aims
at mimicking a minimum number of occurrences
for all MWEs. When set, training instances with
MERGE and MARK transitions are duplicated for
each training MWE below a frequency threshold.
”Over loss” hyperparameter penalizes the model
when it fails to predict MERGE and MARK, by
multiplying the loss by a coefficient (see Table 3).

7 Tuning methodology

The tuning phase served us to choose a hyperpa-
rameter configuration for the linear model and the
neural model, in closed and open track. In our
case, we experimented open track for the neural
model only, by using pre-trained embeddings
instead of random initialization. We thus consider
three cases: closed track linear, closed track MLP
and open track MLP.

For each of these three cases, in order to enforce
the robustness across languages of the selected hy-
perparameters, we aimed at selecting the same hy-
perparameter configuration for all the languages.

Yet, to reduce the tuning time, we have chosen
to work on three pilot languages, from three
different language families. But because the
various training sets have various sizes, we tried
to neutralize this variation by using training sets
of average size. This led us to choose three
languages (Bulgarian, Portuguese and Turkish)
among ST.1 languages having training sets bigger

than average and to tune the hyperparameters
using training sets truncated to that average size
(270K tokens) and evaluating on dev sets.

Multilingual metric: the official metric for the
PARSEME shared task is the macro average of
the F-scores over all languages (hereafter F'ay g).
Yet we noted that although macro-averaging
precision and recall is appropriate because the
number of dev and test MWEs is almost the
same for all languages, averaging the F-scores
of all languages sometimes substantially differs
(e.g. by 2 points) from taking the F-score of the
macro-averaged precision and the macro-averaged
recall (hereafter Fg). We thus use Fuy ¢ for
comparability with the shared task results, but
also report the Fi; score, and use the latter during
tuning.

Random search: To tune the hyperparame-
ters on the three pilot languages, we used random
search, which proved to be more efficient than
grid search when using the same computational
budget, because it allows to search larger ranges
of values (Bergstra and Bengio, 2012). We thus
run about 1000 trials for SVM, closed track MLP
and open track MLP. For the SVM, random search
used a uniform distribution for the hyperparam-
eters, which are all boolean. For the MLP, the
random hyperparameter values are generated from
either a set of discrete values using a uniform
distribution or from a range of continuous values
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using logarithmic distribution. For the MLP, each
resulting random hyperparameter configuration
was run on each pilot language twice, using
always the same two seeds 0 and 1'°. We then
averaged the precision and recall on the dev sets,
for the three languages and the two seeds (i.e. use
the global F-score F(3).

Selecting hyperparameter configurations:
Random hyperparameter search for the three pilot
languages led us to use two strategies to select
the hyperparameter sets. The first one is simply
to select the best performing hyperparameter sets
(shown in column BoR in Table 2 for the linear
model, and in the BoR. and BoR, columns in Ta-
ble 3). Yet, we noted that some hyperparameters
varied a lot among the top performing systems.
We thus investigated to build a “trend-based”
configuration, by selecting each hyperparameter
value according to the observed trend among the
top k best configurations (with k=500/250 for
MLP/SVM)'!. This results in two sets for the
linear model (best-of-random and trend-based,
in closed mode) and four configurations for the
MLP: best-of-random or trend-based, in closed or
open mode.

We then trained these six configurations on the
full-size training sets for all ST.1.1 languages,
using two seeds (0 and 1), and retaining the best
seed for each language. For the MLP case, the
global F-scores on dev sets are provided in the
last row of Table 3. Interestingly, the trend-based
configuration largely beats the best-of-random
configurations, both in closed and open tracks!2.
This shows that choosing hyperparameter values
independently of each other is compensated by
choosing more robust values, by using the top k
best performing systems instead of one.

Note that for the linear case, the trend-based
configuration does not surpass the best perform-
ing random search configuration (the last line of

!0Preliminary experiments showed a relative stability
when changing seeds, hence we used only two seeds in the
end. Changing seeds was useless for the linear model which
is more stable.

'We chose the values using an approximate majority vote,
using a graphical visualization of the hyperparameter values
in the top k best performing systems.

’Moreover, the best-of-random open configuration
showed instability when switching from the three pilot lan-
guages to all languages, leading to a null score for Hindi
(hence the rather low global F-score of 57.8).

Language Closed track Open track
SVM | MLP. | ST.I || MLP, | ST.1
BG 63.3 66.8 | 62.5 67.7 | 65.6
HR 55.4 59.3 | 553 59.0 | 4738
LT 38.0 45.7 | 322 453 | 229
PL 69.4 71.8 | 67.0 722 | 63.6
SL 53.5 62.7 | 64.3 61.2 | 523
DE 49.5 51.5 | 453 499 | 455
EN 28.4 314 | 329 319 | 333
ES 39.2 40.0 | 34.0 39.7 | 384
FR 61.1 59.0 | 56.2 58.8 | 60.9
IT 55.7 550 | 492 56.5 | 454
PT 68.9 67.8 | 62.1 704 | 68.2
RO 80.9 835 | 853 82.0 | 87.2
HI 66.8 649 | 73.0 649 | 72.7
FA 75.4 70.6 | 77.8 70.6 | 78.4
EL 57.8 62.2 | 49.8 614 | 58.0
EU 80.7 82.1 | 75.8 80.2 | 77.0
HE 433 452 | 233 473 | 389
HU 91.7 924 | 903 92.6 | 85.8
TR 47.5 521 | 452 479 | 58.7
Fava 59.3 61.3 | 56.9 61.0 | 579
Fc 60.8 62.6 | 57.8 62.3 | 58.7
Fg best sys 54.0 58.1

Table 4: MWE-based F-scores for ST.1 languages on test
sets using our tuned SVM and MLP models, fit on train and
dev sets when available. ST.1 stands for the most perform-
ing scores of the shared task for each language in closed and
open tracks. All ST.1 systems fit training and development
sets except the system that produced the best score of BG
on closed track. Languages are grouped according to their
linguistic families (Slavic, Germanic, Romance, Indo-Iranian
and other).) Fayq is the official metric (average F-scores).
F¢ is the global F-score (see Section 7). In the Flay ¢ and
Fg lines, the best ST.1 per-language scores are used, whereas
the last line concerns the Fg score of the best ST.1 systems
(Waszczuk, 2018; Taslimipoor and Rohanian, 2018).

Table 2). This asymmetry could mean that the
number of random trials is sufficient for the lin-
ear case, but not for the neural models, and that a
trend-based strategy is advantageous within a lim-
ited computational budget.

8 Experiments and results

Table 4 provides identification scores on test sets,
for our tuned SVM and MLP models for each
ST.1 language, along with the best score of ST.1
for each language, in open and closed tracks. It
also displays overall scores using both the official
ST.1 metrics (F4y @) and the more precise Fg
score introduced in section 7. This F score for
the ST.1 results is computed in two modes: in line
Fg, the ST.1 columns correspond to artificially
averaging the best result of each language (in
closed / open tracks), whereas ” Fi; best sys” is the
score of the best system of ST.1. The differences
between SVM and MLP, results are significant!3

3We used a MWE-based McNemar test.
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for all languages except EU, HU, LT and PL.

For both F4y ¢ and Fg metrics, results show
that MLP models significantly outperforms all
other systems both in the closed and open tracks.
In the closed track, MLP surpasses SVM by 1.8
points, the best ST.1 systems per language by
4.8 points, and the best ST.1 system (Waszczuk,
2018) by 8.6 points. In the open track, MLP beats
the best ST.1 system (Taslimipoor and Rohanian,
2018) by 4.2 points, and the best ST.1 systems per
language by 3.6 points'4.

In the closed track, MLP ranks first for 11
languages, while the SVM model and the best
ST.1 systems per language reach the first position
respectively for three and five languages. In
open track, MLP achieves the highest scores for
13 languages while ST.1 systems beat it for six
languages. These results tend to validate the
robustness of our approach across languages.
Regarding language families, MLP reports
remarkable gains for Slavic languages and lan-
guages from the other family, but achieve lower
performance on Indo-Iranian languages when
compared with best ST.1 results. For Romance
languages, our models surpass the ST.1 best
results (except for RO), and the SVM model is
globally better than the MLP.

Comparing the results of the open and the
closed track, we can observe that the use of pre-
trained word embeddings has no significant im-
pact on the MLP results. This might mean that
static embeddings are not well-suited for repre-
senting tokens both when used literally and within
MWE. This tendency would deserve more investi-
gation using other word embedding types, in par-
ticular contextualized ones (Devlin et al., 2018).

9 Discussion

Performance analysis In order to better under-
stand the strengths and weaknesses of the various
systems, we provide in Table 5 an in-depth
performance analysis of our models, on dev sets,
broken-down by various classifications of MWEs,

"It is worth noting that the model of Rohanian et al.
(2019), published while writing this paper, outperforms our
scores for the languages they use for evaluating their model
(EN:41.9, DE:59.3, FR:71.0, FA:80.0) on the ST.1 test sets.
However, this model exploits syntactic information (See Sec-
tion 2).

namely (1) whether a dev MWE was seen in train
(and if so, more than 5 times or not) or unseen;
(2) whether the MWE is continuous or has gaps;
and (3) according to the MWE length. The
table provides the proportions of each subclass
within the gold dev set and within the predictions
of each model (% columns), in addition to the
average precision and recall over all languages,
and the global Fg score, for each model. Overall,
neural models (in closed and open tracks) tends
to get better recall than the SVM model (56
and 57, versus 49) but lower precision (70 versus
86), which is coherent with the use of embeddings.

Generalization power Without surprise, the
global F-score on seen MWEs is high for all our
systems (> 80), and it is still above 75 for MWEs
with frequency < 5. Yet this masks that the neural
models have comparable precision and recall
on seen MWEs, whereas the SVM has better
precision than recall. Now when turning to the
unseen category, we can observe that all systems
get very low performance.

In comparison with MLP models, the most
important advantage of SVM is its (little) ability
to generalize (Fg = 12 on unseen MWEs),
whereas the MLPs have none at all. Note that
frequency < 5 is sufficient for the MLP models
to surpass the linear model. For comparison, the
average F-scores on test sets of the PARSEME
ST.1 for unseen MWESs range from 0 to almost 20.
This very low generalization of our MLP models
is understandable since tuning led us to favor
the compact vocabulary mode, which agressively
reduces the known vocabulary to seen MWE
components. Yet our best result on unseen MWEs
with a MLP with exhaustive vocabulary mode
only achieves Fg = 4 on unseen MWEs.

It appears that for all models, more than 90%
of the unindentified MWESs (the silence) are either
unseen or with frequency < 5, which clearly
shows that the frequency of a MWE in train set is
the crucial trait for identification. Further analysis
is needed to study the performance according to
the literal versus MWE ambiguity rate.

Continuous/discontinuous MWEs MLP
models show better performances for discon-
tinuous MWEs than SVM, whereas they reach
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Type % SVM MLP, MLP.

P ‘% [Fe [P R | % [Fc [ PR | % [Fa| PR
All - - 63 | 86 | 49 - 62 | 70 | 56 - 63 | 70 | 57
Seen 63 |93 | 80 [ 8 | 72| 99 | 81 | 83 | 80 || 98 | 82 | 82 | 82
-Freq > 5 26 | 37 | 80 | 84 | 77 || 37 | 82 | 81 | 82 || 36 | 81 | 81 | 82
-Freq <=5 38 (56| 75 (8 |67 1|62| 77 |79]|76]| 61| 78 |79 | 77
Unseen 37 7 12 | 44 7 1 0 7 0 2 2 10 1
Contin. 67 | 77 | 69 | 88 | 57 T5 1 69 | 84 | 59| 74 | 70 | 83 | 60
Discont. 33 | 23| 45 | 78 | 31 25 | 50 | 77 | 37 || 26 | 50 | 75 | 37
Length 1 (MWT) 6| 7 84 1 93 | 77 7 82 | 89 | 77 7 84 | 91 | 78
Length 2 78 | 84 | 64 | 86 | 51 85 | 65 | 82 | 54 || 8 | 66 | 81 | 56
Length 3 13 8 40 | 66 | 29 7 40 | 69 | 28 7 40 | 66 | 29

Table 5: Performance of our tuned models, on all languages, with models fit on train and evaluated on dev sets if available,
otherwise fit on 80% of train and evaluated on the rest (with seed 0 for MLP models). First line: performance on all languages.
Subsequent lines: break-down according to various MWE classifications (first column). Second column: proportion of the
subclass in gold dev set. For each model (SVM, MLP,(spen) and MLP,(1oseq)), We report for each subclass: the proportion of
the subclass in the system prediction, the global F-score (F¢), Precision (P) and Recall (R).

comparable scores for continuous MWEs. In
particular, they display a 5-point gain in F-score,
due to a 6-point gain in recall on discontinuous
MWE:s.

MWE length The three systems display com-
parable scores regarding MWE length. Results
validate the intuition that the shorter the MWE, the
easier it is to identify.

10 Conclusion

We described and compared the development of
linear versus neural classifiers to use in a transition
system for MWE identification (Al Saied et al.,
2018). Surprisingly, our best neural architecture
is a simple feed-forward network with one hidden
layer, although more sophisticated architectures
were tested. We achieve a new state-of-the art
on the PARSEME 1.1 shared task data sets,
comprising 20 languages.

Our neural and linear models surpass both the
best shared task system (Waszczuk, 2018) and the
artificial average of the best per-language results.
Given the number of languages and the variety
of linguistic phenomena to handle, we designed a
precise tuning methodology.

Our feedback is that the development of the linear
(SVM) system was pretty straightforward, with
low variance between the configurations. For
the neural models on the contrary, preliminary
runs led to low and unstable performance. Class
balancing proved crucial, and our proposal to
select hyperparameter values using majority vote
on the top k best performing systems in random
search also proved beneficial.

Although our systems are competitive, their
generalization power reveals disappointing: per-
formance on unseen MWEs is very low for the
linear model (F-score=12) and almost zero for the
neural models (whereas the shared task results
range from O to 20 for unseen MWEs). Basic
semi-supervised experiments, consisting in using
pre-trained word embeddings, did not bring any
improvement. Static embeddings might not be
suitable representations of MWE components, as
their behavior differs when used literally or within
a MWE. This definitely calls for future work that
can incorporate information on semantic irregular-

ity.
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Abstract

This paper analyzes results on light-verb
construction identification, distinguishing
between known cases that could be di-
rectly learned from training data from un-
known cases that require an extra level of
semantic processing. We propose a simple
baseline that beats the best results of the
PARSEME 1.1 shared task (Savary et al.,
2018) for the known cases, and couple it
with another simple baseline to handle the
unknown cases. We additionally present
two other classifiers based on a richer set
of features, with results surpassing these
best results by 7 percentage points.

1 Introduction

Light-verb constructions (LVCs), such as the ex-
pression pay visit, are a linguistic phenomenon
coupling a verb and a stative or eventive noun,
in which the verb itself is only needed for mor-
phosyntactic purposes, its syntactic dependents
being semantically related to the noun. For in-
stance in the sentence John paid me a visit, the
subject and object of paid play the roles of the vis-
itor and the visited. The verb’s semantics is either
bleached or redundant with that of the noun (as in
commit crime) (Savary et al., 2018).
This mismatch between syntax and semantics has
to be taken care of for semantically-oriented tasks
to recover the full predicate-argument structure of
the noun, since at least one of its semantic argu-
ments of the noun is generally attached to the verb
in plain syntactic treebanks.! Moreover, the fact
"For instance, Nivre and Vincze (2015) report that for the
majority of the 18 UD languages at that time, in a structure
like X takes a photo of Y in English, X is attached to the
verb, but the Y argument is attached to the noun. In some
annotation schemes, the Y would be attached to the verb too.
Note though that some treebanks do annotate the LVC status

(e.g. in Hungarian). Additional semantic annotation of LVC
can be found e.g. in propbank (Bonial and Palmer, 2016).

Marie Candito
LLF, Université Paris Diderot
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that the verb choice is conventionalized and se-
mantically bleached makes LVC identification an
important requirement in semantic tasks such as
machine translation (Cap et al., 2015).

Because of their syntactico-semantic charac-
teristics, LVCs are generally considered diffi-
cult to circumscribe and annotate consistently
(Bonial and Palmer, 2016). Yet recently, the
PARSEME 2018 shared-task has brought forth a
collection of corpora containing verbal multiword
expression (VMWE) annotations across 19 lan-
guages (Ramisch et al., 2018), including LVCs.
The reported inter-annotator agreement is variable
across languages, but the macro-averaged chance-
corrected kappa is overall 0.69, which is generally
considered to denote a good agreement. In the an-
notated corpora, the category of LVCs? accounted
for a third of all expressions (Savary et al., 2018).
The annotation was performed in a separate layer,
largely independent from the underlying syntactic
framework, and relied on semantic properties of
the verb (bleached or redundant in the given con-
text) and both semantic and syntactic properties of
the noun: it should be stative or eventive and take
at least one semantic argument, and it should be
possible to have all the syntactic arguments of the
verb realized within a NP headed by the noun (for
instance out of John paid me a visit, one can create
the NP John’s visit to%).

A total of 13 systems participated in the
PARSEME shared-task, predicting VMWEs oc-
currence in the test corpora. Results for each sys-
tem varied across different systems and target lan-
guages, in which expressions that had been seen
in the test corpus were predicted with variable ac-
curacy. However, expressions that had never been
seen in the test corpus were hardly ever predicted
by most systems (the best F-score on unseen-

*Unless otherwise stated, this paper refers to the 1.1
edition of the PARSEME shared task, and to the category
LVC.full (as opposed to LVC.cause).
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in-train expressions in the closed track is below
20%).

In this paper, we investigate the task of LVC
identification in running text. The main contribu-
tions of this paper are: (1) we propose handling
the task of LVC identification differently depend-
ing on whether it was seen in the training corpus;
(2) we present a simple baseline that surpasses all
systems for seen LVCs; (3) we propose and eval-
uate different techniques for the prediction of un-
seen LVCs, which we then compare to the state of
the art.

The remainder of this paper is structured as fol-
lows: Section 2 presents the related work; Sec-
tion 3 describes the methodology that will be em-
ployed; Section 4 describes the results; and finally,
Section 5 presents our conclusions.

2 Related Work

LVC identification may follow one of two strate-
gies: (a) LVC candidates are initially proposed
based on lexicosyntactic patterns, and are then
classified as LVC or non-LVC based on other cri-
teria; (b) a variant of the BIO scheme (Ramshaw
and Marcus, 1999) is employed so as to directly
classify each token as belonging or not to an LVC.
The former method allows the use of features that
encompass the LVC as a whole, while the latter
can be more easily implemented in the framework
of some machine learning algorithms.

Most works in the literature concerning LVC
identification focus on annotations in a particu-
lar language, often with a language-specific under-
standing of LVCs. Vincze et al. (2013) adapt a de-
pendency parser so as to identify Hungarian LVC
candidates as a byproduct of parsing, which they
then evaluate on the Szeged Dependency Treebank
with LVC annotations. Nagy T. et al. (2013) ex-
tract English LVC candidates involving a verb and
a dependent noun with a specific dependency la-
bel. A J48 and an SVM classifier are then consid-
ered, using lexical and morphosyntactic features
from the corpus, as well as semantic features from
WordNet. The latter was found to contribute to
better results when compared to earlier works that
relied purely on morphosyntactic and statistical
features (Tu and Roth, 2011). Chen et al. (2015)
detect English LVCs in the BNC and OntoNotes
corpora, using the PropBank layer to select LVC
candidates composed of an eventive noun linked
one of 6 known light verbs. The candidates are

then filtered based on semantic features, including
WordNet synsets and hypernym relations.

More recently, the PARSEME shared-task saw
13 system submissions that tried to predict LVCs
along with other VMWEs for annotated corpora
in 19 languages (Ramisch et al., 2018). Over-
all, the best F; scores across all languages in the
open track were obtained by the SHOMA system,
which employed a pipeline of CNNs, a Bi-LSTM,
and and optional CRF layer (Taslimipoor and Ro-
hanian, 2018). MWE prediction followed a variant
of the BIO scheme that allowed multiple tags per
token, with input features including a set of pre-
trained embeddings (leading the system to com-
pete in the open track category), POS tags, and a
set of word-shape features.

In the closed track, the TRAVERSAL system
obtained the best overall results for MWEs in gen-
eral as well as for LVCs. It uses a syntax-based ap-
proach, in which each node in the syntax tree was
classified as part of an MWE or not (Waszczuk,
2018). The classifier resembles a second-order
CRE, but rather than considering the previous 2 to-
kens at each point, it considers the parent and left-
sibling. Features included the lemma, POS tag and
dependency relation.

Rather than predicting each token as being part
of an LVC or not, the varIDE system use a Naive
Bayes classifier to tag LVC candidates (Pasquer
et al., 2018). These were extracted based on all
possible token combinations whole multi-set of
lemmas corresponded to an LVC that had been
seen in the training corpus (no attempts were made
at predicting unseen LVCs). Classifier features in-
cluded POS tags and morphological information.

Graph convolutional neural networks have also
been used in the identification of VMWE can-
didates for subsequent classification (Rohanian
et al., 2019). In this work, the network is com-
bined with an attention mechanism so as to im-
prove the accuracy of long-range predictions, and
a Bi-LSTM layer is used to classify these predic-
tions and produce the final output. The system
uses contextualized embeddings (ELMo) and out-
performs the state of the art for the four languages
for which results are reported.

3 Methods and materials

Our LVC identification technique consists of two
main stages: (1) extraction of LVC candidates
based on syntactic patterns; and (2) classification
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of candidates based on a set of lexical, morpholog-
ical, syntactic and semantic features, concerning
both the candidate as a whole and its components.

3.1 Extraction of candidates

The first step of LVC identification in a target cor-
pus is to identify candidates. While LVCs are
commonly thought of as a combination of a verb
and noun acting as its direct object, other configu-
rations can be attested in the PARSEME corpora.
This may be due to morphosyntactic variations
(e.g. passive voice), the presence of more com-
plex noun phrases (instead of a single noun), non-
standard analyses (e.g. verbs that are tagged as ad-
jectives) or other language-specific idiosyncrasies.
A robust candidate extraction method should han-
dle this variation, and we do so by using the mor-
phosyntactic patterns of the LVCs in the training
corpora, using the provided UD parses.

So we start by extracting language-specific mor-
phosyntactic patterns from the training LVCs.
More specifically, for each LVC annotated in a
training corpus, we retain a representation involv-
ing the POS tag and the syntactic relation be-
tween components (henceforth referred to as a
“pattern”). If the LVC does not form a con-
nected tree (e.g. to give a series of lectures),
the pattern will additionally include the minimum
number of nodes that makes the tree connected
(if two nodes are only connected by the root
node, we discard the occurrence instead). In the

example above, the extracted pattern would be:
obj nmod

VERB; — (NOUN3) ——NOUN3z (the components of
the LVC being those not within brackets).

The number of extracted patterns ranges from
14 (Slovene) to 185 (Farsi), with an average of
90 patterns per language. We then sort the pat-
terns based on how many occurrences of LVCs
led to each pattern. As expected, the patterns fol-
low a Zipfian distribution. For example, for the
French training data, the most common pattern is

bj .
VERB1 u>NOUN2 with 977 occurrences; the second

1s NOUN; ﬂVERBg with 150 occurrences (as in for

instance a picture taken yesterday); the third is

bj: . .
VERB1 M>NOUN2 with 58 occurrences (as in

this picture was taken yesterday); and so on>.
The most common patterns are then used to

identify LVC candidates in the train, development

3Note that the majority of LVCs has two components only,
but some do contain additional components, such as preposi-
tions when they are required to connect the verb and the noun.

and test data, using the Grew tool (Bonfante et al.,
2018). Obviously, using unlexicalized patterns
results in getting a vast majority of candidates
that are not LVCs, and this is even more true for
rare patterns. We experimented with two pat-
tern selecting stategies: topN, in which we take
the N most common patterns (we considered val-
ues of N € {1,5,10,20,50} ); and atleastNoc-
curs, in which we take all patterns that originated
from at least N occurrences in the training cor-
pus (we considered N € {2,5,10,50}). More-

. . label
over, for each pattern p containing ———sNOUN;,

we add a pattern p’ replacing this subpattern by

22bel, (NOUN; ) <22NOUN; .

Using the selected patterns, we identify LVC
candidates in the development and test corpora,
but also in the training corpora, so as to obtain pos-
itive and negative LVC candidates to train a binary
classifier. For each identified candidate, we pro-
duce a set of features which may be related either
to the whole LVC, or to its components.’

3.2 Features

The PARSEME 1.1 data contains
test/development and training data for 19
languages. The training data contained an average
of 1171 LVCs per language (0=948, ranging
from 78 for English to 2952 for Turkish). Most
corpora contain morphosyntactic information (in
most cases obtained by an external parser, and in
most cases representing data using the POS and
dependency tagsets recommended by UD).

For a given candidate c, we first extract the verb
component v and predicative noun component 7.
This is in general trivial, but in order to cover all
cases, v is taken to be the leftmost token that has
POS tag VERB, or the leftmost AUX, or the leftmost
ADJ, or the leftmost token in ¢, while n is the left-
most NOUN, leftmost PROPN, or leftmost token that
is not v. In all the features, we use the lemmas of
v and n. We then extract the following features:

* F;: One-hot representing the pattern used to
predict the candidate (see Section 3.1).

* Fy: Fraction of true LVCs among all candi-

“This alternative pattern would cover the expression make
adjustment in make an effort and an adjustment, for which
two occurrences of LVCs would be annotated according the
PARSEME guidelines.

SFor the training data, we take the union of gold LVCs and
LVC candidates identified through syntactic patterns, since
the patterns do not cover all gold LVCs.
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BG DE EL ES EU FA FR HE HR HU IT PL PT RO SL TR | puAvg
Joseen 60 26 50 48 8 61 68 45 29 75 71 66 T4 90 57 44 62
Coverage (seen) 98 100 100 95 94 91 99 8 93 8 90 97 95 96 100 98 95
Coverage (unseen) | 73 84 91 98 98 90 91 78 96 8 72 90 93 33 92 95 90

Table 1:

Fraction of LVC annotations that were seen in train, and LVC candidate coverage (highest

recall achievable, if all candidates are predicted as LVC) — evaluated on the development sets.

dates in train that have the same pattern and
lexical items (lemma-wise comparison) as ¢
(-1 if unseen in train).

* F3: POS tag of v and n.

* F4: Dependency relation between v and n
(NONE if not directly connected).

* F5: One-hot for the number of components
of ¢ (with the rationale that LVCs of length
higher than 2 may display more non-standard
behavior due to the additionally lexicalized
words).

* Fg: One-hot for the number of gaps (extra-
neous words that do not belong to the LVC),
between the leftmost and rightmost compo-
nents of ¢, in the underlying sentence.

* Fc: Binary contextual features from the un-
derlying UD parses. Features are defined for
every observed (key, value) pair in the mor-
phological CoNLLU column (e.g. (Tense,
Past)), as well as every observed (column,
value) pair for the UD columns FORM,
LEMMA, XPOS, UPOS and DEPREL (e.g.
(FORM, took), (LEMMA, picture), (POS,
NOUN)). These features are binary in value,
and indicate whether the (key, value) pair is
present for c. A feature is considered present
if it appears in at least one of the direct de-
pendents of n or v. We consider only the top
t features with the highest mutual informa-
tion and whose underlying pairs appear in at
least £ LVCs.

While it is clear that LVC identification would
greatly benefit from fine-grained semantic clues
such as noun predicativeness, such information
is not readily available for most languages under
study. We consider instead on a set of unsuper-
vised features that can be constructed for all lan-
guages based on distributional semantic models.
In particular, we consider the fasttext (Bojanowski
et al., 2017) set of pretrained word embeddings

(which is also used by the SHOMA system) as a
basis for semantic features.

* Fr: Word embeddings for the lemma of the
verb and noun (300 dimensions each).

. F}C . k-nearest neighbors of the underlying
noun n. Considered neighbors are all nouns
that are paired up with the underlying verb
v in at least one LVC candidate in the train-
ing set, whether true LVC or not. We select
the top k neighbors whose embedding has
highest cosine against n’s embedding. Each
neighbor is either seen-in-LVC (it is part of at
least one true LVC) or an unseen-in-LVC (it
is part of false positives only). The final value
of the feature is the sum of the scores of the
k neighbors, where a seen-in-LVC neighbor
has score 41 and an unseen-in-LVC neigh-
bor has score —1.

* F{: Same as F,lg, but each neighbor’s score
that is being summed up is additionally
weighted by the underlying cosine.

3.3 LVC classifiers

We present below two LVC candidate binary clas-
sifiers based on the features above: SVM and FFN.
We compare them against two simple baselines:
Majority, which only predicts LVCs seen in train,
and kNN, which we use either for all LVCs or for
those unseen in train, in combination with Major-
ity for the seen LVCs. Note we consider a pre-
dicted or gold LVC to be seen in train when the
training corpus contains at least one gold LVC
with same lemmas, in whatever order and with
whatever syntactic pattern.

* Majority baseline: Predict a candidate as
LVC if and only if it has been annotated more
often than not in the training corpus (i.e. the
value of feature F; is greater than 0.5).

¢ kNN baseline: Predict a candidate as LVC if
and only if the value of feature Fj, is positive,
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SVM (seen) 70 74 84 86 86 89 93

Configuration | BG DE EL ES EU FA FR HE HR HU IT PL PT RO SL TR | uAvg
Mayj (seen) 72 84 76 89 81 83 93 68 91 91 & 92 8 90 70 38 81
kNN (seen) 62 84 76 89 79 81 92 66 91 91 83 89 82 37 60 46 78
FFN (seen) 74 78 82 94 87 87 94 67 92 92 8 90 88 87 68 71 85

64 91 91 84 8 90 72 76 57 84

kNN (unseen) | 08 08 24 22 32 30 30
FFN (unseen) 15 18 27 29 22 55 31
SVM (unseen) | 15 15 33 20 42 63 37

04 13 13 11 20 32 00 04 24 22
05 21 33 12 22 25 00 08 27 28
02 24 46 10 31 45 00 10 34 34

Table 2: F; scores on Majority and kNN baselines (Fj, with k& = 2) , along with the best configuration
for the SVM and FFN classifiers — on the development sets.

meaning that within the £ nominal neigh-
bors of the noun n of the candidate, the total
cosine of seen-in-LVC surpasses that of the
unseen-in-LVC neighbors.

* SVM: Support vector machine with RBF ker-
nel. Positive and negative examples are bal-
anced through compensating class weights.
We use a 3-fold grid-search to select for
the best combination of classifier hyperpa-
rameters for each language; we consider the
values C € {1,10,20,50,100} and v €
{0.5,0.1,0.05,0.01}.

* FFN: Feed-forward network with a 100-
neuron hidden layer, using tanh as an acti-
vation function and 50% dropout. The net-
work uses an SGD optimizer® and negative
log-likelihood loss. Positive training exam-
ples are duplicated as much as needed so
as to be balanced against negative examples.
The final list of examples is shuffled, and
fed into the classifier in batches of size B €
{1,2,4,8,16}. Training is performed for a
number e of epochs, such that epoch e+ 1
would have had higher loss on the valida-
tion set (10% of train). One-hot features are
implemented as a layer of trainable embed-
dings instead (300 dimensions for lemmas; 5
dimensions for dependency relations, for Fj
and Fyp).

3.4 Evaluation

We explore hyperparameters on the 16 languages
that contained a development set, and evaluate the
final systems on the test set for all 19 languages
(using both training and development set for train-
ing). Evaluation of LVC predictions for each lan-
guage uses the MWE-based F; score from of the
PARSEME shared task (Ramisch et al., 2018). We
modified its evaluation script so as to output scores

SBasic tuning of the learning rate led us to use 0.01.

for seen and unseen LVCs: it first labels a LVC
(whether gold or predicted) as "seen" if there ex-
ists at least one gold LVC occurrence with the
same set of lemmas in the training set, and unseen
otherwise. The two labels are then evaluated sep-
arately.

We also present a micro-average score ((tAvg),
in which the F; scores of all languages are av-
eraged with a weight that is proportional to the
number of LVCs in that languages test (or devel-
opment) set.” On test sets, we compare our results
with SHOMA and TRAVERSAL, the two highest-
scoring systems in the shared-task.?

4 Results

Table 1 presents the fraction of LVCs in the de-
velopment set that can also be seen in the training
set. In the lower end, German dev LVCs were only
seen in train 26% of the time, mostly due to the
small training set in this language. In the higher
end, 90% of Romanian LVCs had a counterpart in
the training set, suggesting that a simple baseline
focusing on seen LVCs should already yield good
results for this language.

The last two rows in Table 1 present the cov-
erage (i.e. recall) in the initial step of LVC can-
didate extraction, for the strategy atleastNoccurs
with N = 2. This strategy was found to yield the
best results in both SVM and FFN settings dur-
ing early experiments. It can be seen that, despite
variation across languages, mainly due to training
corpus size differences, the micro-averaged cover-
age is 95% for dev LVCs seen in train, and slightly

"We chose to use micro-average, since the test sets across
languages don’t have the same number of sentences, for rea-
sons that are independent of the linguistic properties of each.

8We used the predicted test sets of all participat-
ing systems (made available by the shared task organiz-
ers at https://gitlab.com/parseme/sharedtask-data/
tree/master/1.1/system-results), filtering them to con-
sider LVCs only. The best systems in open and closed tracks
(SHOMA and TRAVERSAL) are the same when considering
all verbal MWEs or LVCs only.
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Configuration BG DE EL EN ES EU FA FR HE HI HR HU IT LT PL PT RO SL TR | pAvg
Maj (seen) 74 67 8 64 60 87 8 8 70 90 8 94 82 48 87 89 81 75 53 80
kNN (seen) 71 67 78 64 61 83 84 8 64 89 8 92 80 47 88 87 38 62 58 78
SVM (seen) 75 67 80 65 60 8 87 8 66 94 8 94 83 38 8 91 67 79 77 81
FFN (seen) 82 69 79 67 64 87 8 8 69 92 8 94 82 48 8 93 74 69 87 83
SHOMA (seen) 64 00 79 00 39 88 8 66 73 8 43 78 66 49 69 87 93 52 79 76
TRAV (seen) 62 53 66 34 44 82 81 70 58 81 64 87 64 45 76 I8 83 63 66 72
kNN (unseen) 14 09 23 23 17 16 21 34 05 44 18 24 13 08 19 28 00 05 36 22
SVM (unseen) 17 24 34 19 07 17 57 29 07 61 17 36 06 07 39 39 67 13 43 31
FFN (unseen) 20 18 18 33 20 19 45 25 06 64 16 29 12 15 33 31 00 07 34 29
SHOMA (unseen) | 21 00 36 03 13 35 62 37 19 53 19 14 04 08 22 35 29 00 50 31
TRAV (unseen) 08 00 18 14 10 11 41 31 05 42 21 23 00 01 20 24 00 00O 23 20
Maj + kNN 53 26 62 31 36 81 64 62 30 68 45 77 63 28 60 74 69 34 44 57
kNN 56 26 59 32 37 77 65 64 29 67 46 76 62 28 61 72 28 31 49 57
SVM 61 40 66 26 35 79 77 65 41 77 44 81 70 28 71 78 67 63 6l 63
FFN 53 26 43 40 36 74 74 51 21 78 42 75 44 30 60 68 57 26 56 56
SHOMA 50 00 60 02 22 79 78 51 43 72 24 59 46 29 51 70 86 28 o4 56
TRAVERSAL 44 15 47 18 26 70 65 52 30 62 32 68 51 23 52 62 73 38 44 50

Table 3: F; scores (split for seen LVCs, unseen LVCs and overall) for the Majority and kNN baselines,
the best configuration of our SVM and FEN classifiers, and the highest-scoring systems in the shared-task
(SHOMA and TRAV(ERSAL)) — evaluated on the test sets.

lower (90%) for unseen ones.

We tuned the hyperparameters on the develop-
ment sets. For every system, the same configura-
tion is used for all languages. The best kKINN con-
figuration is Fj with k=2; the best SVM and FFN
configurations are both Fy_g, Fo (¢=30, ¢=30), Fg.

Table 2 presents the scores obtained by these
best configurations on the development sets.
Across seen LVCs, both the Majority and kNN
baselines have considerably high scores (F1=81
and 78 respectively, but the highest results are ob-
tained by FFN and SVM (F;=85 and 84). For the
unseen LVCs, results are quite lower, and there is
a bigger gap between the kNN baseline (F;=0.22)
and the best system on unseen, namely the SVM
(F1=0.34).

Table 3 presents system results for the same
configurations when evaluated against the test sets.
On seen LVCs here again, the Majority baseline
is slightly higher than the kNN baseline. How-
ever, both baselines beat the best systems from the
shared-task (that we recomputed for LVCs only).
Results for SVM (F;=81) are comparable to the
Majority baseline (F;=81) while FFN obtains the
highest score (F1=83).

When we consider LVCs that were not seen
in training data, results are much lower. The
kNN baseline obtains an F1=0.22, while SHOMA
obtains F;=0.31, as does our SVM, while re-
sults for FEN are slightly weaker. When predic-
tions for both seen and unseen LVCs are taken
together, FFN and SHOMA have comparable
scores (F1=56), while the baselines (either Major-

ity+kNN or kNN alone) is slightly higher. The
best system overall is the SVM (F;=63).

5 Conclusion

In this paper, we considered the task of iden-
tifying LVCs in running text. We propose to
use data-driven language-specific syntactic pat-
terns for the extraction of LVC candidates out of
syntactic parses, followed by a binary classifica-
tion of the candidates into LVC or not.

We proposed a strong baseline combining dif-
ferent methods for LVC candidates depending on
whether they were seen in the training set or not
(“seen” meaning a LVC with same lemmas is an-
notated at least once in the training set). The base-
line for seen cases tags a candidate as LVC if the
training occurrences with same lemmas are more
often tagged as LVC than not. The baseline for
unseen cases uses the similarity of the predicative
noun with the nouns of the training candidates, in
a distributional semantic model. We also proposed
supervised classifiers (a SVM and a feed-forward
neural network) trained using internal and contex-
tual morphosyntactic and semantic features, and
working independently of the seen/unseen status.

Overall the SVM system is our best one, sur-
passing the best shared task system on LVCs
(SHOMA, (Taslimipoor and Rohanian, 2018)) by
7 percentage points. When evaluating perfor-
mance separately on seen and unseen LVCs, the
feed-forward network performs a little better on
seen LVCs, but less well on unseen ones. It
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also appears that our results for seen LVCs sur-
pass the best shared-task results even in the case
of the baseline, in spite of a much simpler tech-
nique of supervised learning. For unseen LVCs,
results are globally quite lower. The best perfor-
mance is 1=31%, achieved both by the SHOMA
system and our SVM. Our kNN-inspired baseline
achieves F1=22% only, a performance that would
rank second for unseen LVCs in the shared task.

Given the quality of predictions for seen LVCs,
future works should focus on improving predic-
tion for the unseen expressions. Such task could
be achieved through an evaluation of different
types of neural network. Other semantically-
motivated language-independent features should
also be considered, so as to estimate the candi-
date noun’s abstractness and predicativeness, as
well as the level of semantic bleaching in the use
of the verb. Finally, future works should investi-
gate using a model for contextualized word em-
beddings such as BERT (Devlin et al., 2018)), de-
spite the difficulty of covering the 19 languages of
the PARSEME datasets.
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Abstract

We explore the effectiveness of four fea-
ture representations — bag-of-words, word
embeddings, principal components and
autoencoders — for the binary categoriza-
tion of the easy-to-read variety vs standard
language. “Standard language” refers to
the ordinary language variety used by a
population as a whole or by a community,
while the “easy-to-read” variety is a sim-
pler (or a simplified) version of the stan-
dard language. We test the efficiency of
these feature representations on three cor-
pora, which differ in size, class balance,
unit of analysis, language and topic. We
rely on supervised and unsupervised ma-
chine learning algorithms. Results show
that bag-of-words is a robust and straight-
forward feature representation for this task
and performs well in many experimen-
tal settings. Its performance is equiva-
lent or equal to the performance achieved
with principal components and autoen-
corders, whose preprocessing is however
more time-consuming. Word embeddings
are less accurate than the other feature rep-
resentations for this classification task.

1 Introduction

Broadly speaking, a language variety is any spe-
cific form of language variation, such as standard
language, dialects, registers or jargons. In this pa-
per, we focus on two language varieties, namely
the standard language variety and the easy-to-read
variety. In this context, “standard language” refers
to the official and ordinary language variety used
by a population as a whole, or to a variety that is
normally employed within a community. For ex-
ample, “Standard English” is the form of the En-
glish language widely accepted as the usual cor-
rect form, while within the medical community it
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is the specialized medical jargon that is considered
to be standard language. In contrast, the easy-to-
read variety is a simpler version of a standard lan-
guage. The need of an easy-to-read variety stems
from the difficulties that certain groups of people
experience with standard language, such as people
with dyslexia and other learning disabilities, the
elderly, children, non-native speakers and so on.
In order to meet the needs of a simpler language
that makes information easy to read and under-
stand for all, European Standards have been estab-
lished!, and an important initiative like Wikipedia
has created a special edition called Simple En-
glish Wikipedia®. These are not isolated phenom-
ena. For instance, in Sweden public authorities
(sv: myndigheter) provide an easy-to-read version
(a.k.a. simple Swedish or sv: [ittldst) of their writ-
ten documentation.

Both in the case of the Simple English
Wikipedia and in the case of Swedish public au-
thorities, the simplified documents are manually
written. Since the manual production of simplified
texts is time-consuming, the task called Text Sim-
plification (TS) is very active in Natural Language
Processing (NLP) in the attempt to streamline this
type of text production. TS is a fast-growing re-
search area that can bring about practical benefits,
e.g. the automatic generation of simplified texts.
There is, however, a TS subtask that is still un-
derexplored: the categorization of the easy-to-read
variety vs standard language. The findings pre-
sented in this paper contribute to start filling this
gap. The automatic separation of standard texts
from easy-to-read texts could be particularly use-
ful for other TS subtasks, such as the bootstrap-
ping of monolingual corpora from the web or the

"https://easy-to-read.eu/wp-content/
uploads/2014/12/EN_Information_for_all.
pdf

https://simple.wikipedia.org/wiki/
Main_Page
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extraction of simplified terminology. Other ar-
eas that could benefit from it include informa-
tion retrieval (e.g. for the retrieval of easy-to-read
or patient-friendly medical information) and deep
learning-based dialogue systems (e.g. customized
chatbots for expert users or naive users).

The research question we would like to an-
swer is: which is the most suitable feature rep-
resentation for this categorization task? In or-
der to answer this question, we compare four dif-
ferent feature representations that can potentially
make sense of the lexical makeup that differenti-
ates easy-to-read from standard language, namely
bag-of-words (BoWs), word embeddings, princi-
pal components and autoencoders. It goes without
saying that these four feature representations are
just a few of the many possible feature representa-
tions for this kind of task. We start our long-term
exploration with these four feature representations
because they are straightforward and easy to ex-
tract automatically from any corpora. We test the
efficiency of the four feature representations with
three types of machine learning algorithms: tra-
ditional supervised machine learning, deep learn-
ing and clustering’. The experiments are based
on three corpora belonging to different domains.
From these corpora, we extracted three datasets
of different sizes, different class balance, different
units of analysis (sentence vs document), different
languages (Swedish and English).

The ultimate goal of the experiments presented
in this paper is to propose a first empirical baseline
for the categorization of the easy-to-read variety vs
standard language.

2 Previous Work

As mentioned above, the automatic separation of
standard language from the easy-to-read variety is
underinvestigated, but it could be useful for sev-
eral TS subtasks, such as the bootstrapping (Ba-
roni and Bernardini, 2004) of monolingual paral-
lel corpora (Caseli et al., 2009), of monolingual
comparable corpora (Barzilay and Elhadad, 2003)
or the exploitation of regular corpora (Glavas and
Stajner, 2015). Extensive work exists in TS (Sag-
gion, 2017). The most advanced work focuses
on the implementation of neural text simplifica-
tion systems that are able to simultaneously per-
form lexical simplification and content reduction

3The umbrella term ‘categorization’ is used to cover these
three machine learning approaches.

(Nisioi et al., 2017).

In this paper, however, we do not focus on the
creation of TS systems, but rather on the sheer
downstream categorization task of separating stan-
dard language from the easy-to-read variety. To
our knowledge, limited research exists in this area,
which mostly focuses on the discrimination be-
tween the specialized language used by domain
experts and the language used by non-experts
(a.k.a. laypeople or the lay). This type of distinc-
tion is required in some domains (e.g. medical and
legal domains), where the specialized jargon hin-
ders the understanding of “ordinary” people, i.e.
people without specialized education, who strug-
gle to get a grip on professional sublanguages. In
the experiments reported in Santini et al. (2019),
it is shown that it is possible to successfully dis-
criminate between medical web texts written for
experts and for laypeople in Swedish. Results are
encouraging and we use one of their datasets in the
experiments presented here.

Other corpora are available that can be used
for the automatic categorization of the easy-to-
read variety vs standard language. For instance,
the Simple English Wikipedia corpus* (Kauchak,
2013), and the DigInclude corpus® in Swedish
(Rennes and Jonsson, 2016). However, neither
Simple English Wikipedia nor Diglnclude have
ever been used for this text categorization task. We
use them in this context for the first time.

3 Corpora and Datasets

In our experiments, we use three corpora, two
in Swedish and one in English. More precisely,
we rely on 1) a subset of the eCare corpus (San-
tini et al., 2019) in Swedish; 2) a subset of the
Diglnclude corpus (Rennes and Jonsson, 2016) in
Swedish and 3) a subset of the Simple English
Wikipedia corpus (Kauchak, 2013) in English.

The eCare corpus is a domain-specific web cor-
pus. The domain of interest is the medical field of
chronic diseases. From the current version of the
corpus we re-use a labelled subset. The eCare sub-
set contains 462 webpages without boilerplates.
The webpages have been labelled as ‘lay’ or ‘spe-
cialized’ by a lay native speaker. Lay sublanguage
is an easy-to-read version of the standard lan-
guage (the medical jargon) used by healthcare pro-

‘http://www.cs.pomona.edu/~dkauchak/
simplification/

Shttps://www.ida.liu.se/~arnjo82/
diginclude/corpus.shtml
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fessionals. The 462 webpages of the eCare dataset
(amounting to 424,278 words) have been labelled
in the following way: 388 specialized webpages
(66%) and 154 lay webpages (33%). The dataset
is unbalanced. The unit of analysis that we use in
these experiments is the document.

The Diglnclude corpus is a collection of easy-
to-read sentences aligned to standard language
sentences. The corpus has been crawled from
a number of Swedish authorities’ websites. The
Diglnclude datasets contains 17,502 sentences,
3,827 simple sentences (22%) and 13,675 standard
sentences (78%), amounting to 233,094 words.
The dataset is heavily unbalanced. The unit of
analysis is the sentence.

The Simple English Wikipedia (SEW) cor-
pus was generated by aligning Simple English
Wikipedia and standard English Wikipedia. Two
different versions of the corpus exist (V1 and V2).
V2 has been packaged in sentences and in docu-
ments. We used the subset of V2 divided into sen-
tences. The SEW dataset contains 325,245 sen-
tences, 159,713 easy-to-read sentences (49.1%)
and 165,532 standard sentences (50.9%), amount-
ing to 7,191,133 words. The dataset is fairly bal-
anced. The unit of analysis is the sentence.

4 Features Representations and Filters

At the landing page of Simple English Wikipedia,
it is stated: “We use Simple English words and
grammar here.” Essentially, this statement implies
that the use of basic vocabulary and simple gram-
mar makes a text easier to read. In these experi-
ments we focus on the effectiveness of feature rep-
resentations based on lexical items and leave the
exploration of grammar-based tags for the future.

In this section, we describe the four feature
representations, as well as the filters that have
been applied to create them. These filters and the
methods described in Section 5 are included in
the Weka Data Mining workbench (Witten et al.,
2016)°%. All the experiments performed with the
Weka workbench can be replicated in any other
workbench, or programmatically in any program-
ming language. We use Weka here for the sake of
fast reproducibility, since Weka is easy to use also
for those who are not familiar with the practicali-
ties of machine learning. Additionally, it is open
source, flexible and well-documented.

®Open source software freely available at https://
www.cs.waikato.ac.nz/ml/weka/

In the experiments below several filters have
been stacked together via the Multifilter metafil-
ter, which gives the opportunity to apply several
filtering schemes sequentially to the same dataset.

BoWs. BoWs is a representation of text that de-
scribes the occurrence of single words within a
document. It involves two things: a vocabulary
of known words and a weighing scheme to mea-
sure the presence of known words. It is called a
“bag” of words, because any information about the
order or structure of words in the document is dis-
carded. The model is only concerned with whether
known words occur in the document, not where
in the document, or with which other words they
co-occur. The advantage of BoWs is simplicity.
BoWs models are simple to understand and im-
plement and offer a lot of flexibility for customiza-
tion. Preprocessing can include different levels of
refinement, from stopword removal to stemming
or lemmatization, and a wide range of weighing
schemes. Usually, lexical items in the form of
BoWs represent the topic(s) of a text and are nor-
mally used for topical text classification. Several
related topics make up a domain, i.e. a subject
field like Fashion or Medicine. Here we use BoW's
for a different purpose, which is to detect the dif-
ferent level of lexical sophistication that exists
between the easy-to-read variety and standard lan-
guage. Intuitively, easy-to-read texts have a much
plainer and poorer vocabulary than texts written in
standard language. The rationale of using BoWs
in this context is then to capture the lexical diver-
sification that characterizes easy-to-read and stan-
dard language texts.

Starting from datasets in string format, we ap-
plied StringToWordVector, which is an unsuper-
vised filter that converts string attributes into a set
of attributes representing frequencies of word oc-
currence. For all the corpora, we selected the TF
and IDF weighing schemes, normalization to low-
ercase and normalization to the length of the doc-
uments. Lemmatization, stemming and stopword
removal were not applied. The number of words
that were kept varies according to the size of cor-
pus. The complete settings of this and all the other
filters described below are fully documented in the
companion website.

Word embeddings. Word embeddings are one
of the most popular representations of document
vocabulary to date, since they have proved to be
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effective in many tasks (e.g. sentiment analysis,
text classification, etc.). The advantage of word
embeddings lies in their capability to capture the
context of a word in a document, as well as se-
mantic and syntactic similarity. The basic idea be-
hind word embeddings is to “embed” a word vec-
tor space into another. The big intuition is that this
mapping could bring to light something new about
the data that was unknown before. More specifi-
cally, word embeddings learn both the meanings
of the words and the relationships between words
because they capture the implicit relations be-
tween words by determining how often a word ap-
pears with other words in the training text. The
rationale of using word embeddings in this con-
text is to account for both semantic and syntactic
representations, traits that can be beneficial for the
categorization of language varieties.

Word embeddings can be native or pretrained.
Here we use the pretrained Polyglot Embed-
dings (Al-Rfou et al., 2013) for Swedish (polyglot-
sv) and for English (polyglot-en).

Principal Components. Principal Component
Analysis (PCA) involves the orthogonal transfor-
mation of possibly correlated variables into a set
of values of linearly uncorrelated variables called
principal components. This transformation is de-
fined in such a way that the first principal com-
ponent explains the largest possible variance, and
each succeeding component in turn explains the
highest variance possible under the constraint that
it is orthogonal to the preceding components. The
advantage of PCA is to reduce the number of re-
dundant features, which might be common but dis-
turbing when using a BoWs approach, thus possi-
bly improving text classification results. The ra-
tionale of using PCA components in this context
is to ascertain whether feature reduction is benefi-
cial for the categorization of language varieties.
To perform PCA and the transformation of the
data, we wrapped PrincipalComponents filter on
the top of the StringToWordVector filter, via the
Multifilter metafilter. The PrincipalComponents
filter is an unsupervised filter that chooses enough
principal components (a.k.a eigenvectors) to ac-
count for 95% of the variance in the original data.

Autoencoders. Similar to PCA, the basic idea
behind autoencoders is dimensionality reduction.
However, autoencoders are much more flexible
than PCA since they can represent both linear and

non-linear transformation, while PCA can only
perform linear transformation. Additionally, au-
toencoders can be layered to form deep learning
networks. They can also be more efficient in terms
of model parameters since a single autoencoder
can learn several layers rather than learning one
huge transformation as with PCA. The advantage
of using autoencoders in this context is to trans-
form inputs into outputs with the minimum possi-
ble error (Hinton and Salakhutdinov, 2006). The
rationale of their use here is to determine whether
they provide a representation with enriched prop-
erties that is neater than other reduced representa-
tions.

In these experiments, autoencoders are gener-
ated using the MLPAutoencoder filter stacked on
the top of the StringToWordVector filter, via the
Multifilter metafilter. This MLPAutoencoder fil-
ter gives the possibility of creating contractive au-
toencoders, which are much more efficient than
standard autoencoders (Rifai et al., 2011).

5 Methods, Baselines and Evaluation

In this section, we describe the categorization
schemes, the baselines and the evaluation metrics
used for comparison.

Methods. We use three different learning meth-
ods, namely an implementation of SVM, an imple-
mentation of multilayer perceptron (MLP) and an
implementation of K-Means for clustering. The
rationale behind these choices is to compare the
behaviour of the four feature representations de-
scribed above with learning schemes that have a
different inductive biases, and to assess the differ-
ence (if any) between the performance achieved
with labelled data (supervised algorithms) and un-
labelled data (clustering). We calculate a random
baseline with the ZeroR classifier. All the catego-
rization schemes are described below.

ZeroR: baseline classifier. The ZeroR is based
on the Zero Rule algorithm and predicts the class
value that has the most observations in the train-
ing dataset. It is more reliable than a completely
random baseline.

SVM: traditional supervised machine learning.
SVM is a classic and powerful supervised machine
learning algorithm that performs extremely well
in text classification tasks with numerous features.
Weka’s SVM implementation is called SMO and
includes John Platt’s sequential minimal optimiza-
tion algorithm (Platt, 1998) for training a support
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vector classifier (Joachims, 1998).

Since two corpora are highly unbalanced, we
also combined SMO with filters that can cor-
rect class unbalance. More specifically, we re-
lied on ClassBalancer, which reweights the in-
stances in the data so that each class has the
same total weight; Resample, which produces a
random subsample of a dataset using either sam-
pling with replacement or without replacement;
SMOTE, which resamples a dataset by applying
the Synthetic Minority Oversampling TEchnique
(SMOTE); and SpreadSubsample, which produces
a random subsample of a dataset. All the models
built with SMO are based on Weka’s standard pa-
rameters.

Multilayer Perceptron: Deep Learning. Weka
provides several implementations of MLP. We re-
lied on the WekaDeeplearning4j package that is
described in Lang et al. (2019). The main clas-
sifier in this package is named DI4jMIpClassifier
and is a wrapper for the DeepLearning4j library’
to train a multilayer perceptron. While fea-
tures like BoWs, principal components and au-
toencoders can be fed to any classifiers within
the Weka workbench (if they are wrapped in fil-
ters), word embeddings can be handled only by
the DI4jMIpClassifier (this explains N/A in Ta-
ble 2). We used the standard configuration of
the DI4jMlpClassifier (which includes only one
output layer) for BoWs, principal components
and autoencoders. Conversely, the configura-
tion used with word embeddings was cutomized
in the following way: word embeddings were
passed through four layers (two convulational lay-
ers, a GlobalPoolingLayer and a OutputLayer);
the number of epochs was set to 100; the in-
stance iterator was set on CnnTextEmbeddingIn-
stancelterator; we used the polyglot embeddings
for Swedish and English, as mentioned above.

K-Means: Clustering. We compare the perfor-
mance of the supervised classification with clus-
tering (fully unsupervised categorization). We
use the traditional K-Means algorithm (Arthur and
Vassilvitskii, 2007) that in Weka is called Sim-
pleKMeans. Since we know the number of classes
in advance (i.e. two classes), we evaluate the qual-
ity of the clusters against existing classes using the
option Classes to cluster evaluation, which first
ignores the class attribute and generates the clus-

"https://deeplearning.cms.waikato.ac.
nz/

ters, then during the test phase assigns classes to
the clusters, based on the majority value of the
class attribute within each cluster.

Evaluation metrics. We compare the perfor-
mances on the Weighted Averaged F-Measure
(AvgF), which is the sum of all the classes’ F-
measures, each weighted according to the number
of instances with that particular class label.

In order to reliably assess the performance
based on AvgF, we also use k-statistic and the ROC
area value. K-statistic indicates the agreement of
prediction with true class; when the value is O the
agreement is random. The quality of a classifier
can also be assessed with the help of the ROC
area value which indicates the area under the ROC
curve (AUC). It is used to measure how well a
classifier performs. The ROC area value lies be-
tween about 0.500 to 1, where 0.500 (and below)
denotes a bad classifier and 1 denotes an excellent
classifier.

ZeroR Baselines. Table 1 shows a breakdown of
the baselines returned by the ZeroR classifier on
the three corpora. These baselines imply that the
k-statistic is 0 and the ROC area value is below or
equal to 0.500.

6 Results and Discussion

The main results are summarized in Table 2 and
Table 3. As shown in in Table 2, by and large both
SMO and the DI4jMlpClassifier have equivalent
or identical performance on all datasets in combi-
nation with BoWs and principal components (we
observe however that the DI4jMIpClassifier is def-
initely slower than SMO). Word embeddings have
a slightly lower performance than BoWs and prin-
cipal components on the eCare and SEW subsets.
Autoencoders perform well (0.82) in combination
with SMO on the eCare subset, less so (0.77) when
running with the DI4jMIpClassifier. The perfor-
mance of clustering with BoWs on eCare gives an
encouraging 0.59 (6 points above the ZeroR base-
line of 0.53), while the performance with principal
components and autoencoders is below the ZeroR
baselines. In short, BoWs, which is the simplest
and the most straightforward feature representa-
tion in this set of experiments, has a performance
that is equivalent or identical to other more com-
plex feature representations.

But what do the classifiers learn when they
are fed with BoWs? The classifiers learn the
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Table 1: ZeroR baselines, breakdown

[ [ Class [ K [ A% [En@%® [ P | R | F [ ROC |

Tay (154 webpages) 0.00 | 0.00 | 0.00 | 0490

eCare Subset (462 webpages) specialized (308 webpages) 0.00 | 66.66 | 3333 I—5Ee—T00 [ 0.80 | 0.490
AvgF 0.53

Lo ) simplified (3,827 sentences) 0.00 | 0.00 | 0.00 | 0.500

?eﬁgﬁ‘ie Subset (17,502 specialized (13,675 sentences) | 000 | 7813 | 2186 i —yme—TG0 087 1 0.500
) ) AvgF 0.68

Simplified (159,708 sentences) | o 0o | sos0 | 4910 1000 | 000 [ 0.00 | 0500

SEW Subset (325,235 sentences) specialized (165,527 sentences) : : : 0.50 1.00 0.67 0.500
AvgF 0.3

Table 2: Summary table (AvgF): easy-to-read variety vs standard language

[ Dataset | Features [ SMO [ DI4jMlp | K-Means |

BoW Features 0.80 0.80 0.59

Care Sub Word Embeddings N/A 0.75 N/A
e-are Subset Principal Components | 0.80 0.81 0.44
Autoencoders 0.82 0.77 0.50

BoW 0.72 0.72 0.29

. Word Embeddings N/A 0.72 N/A
Diglnclude Subset Principal Components | 0.73 0.72 0.19
Autoencoders 0.68 0.68 0.33

BoW 0.58 0.56 0.43

Word Embeddings N/A 0.55 N/A

SEW Subset Principal Components | 0.55 0.56 0.49
Autoencoders 0.52 0.51 0.49

Table 3: Summary table (AvgF): unbalanced datasets (BoW's + class balancing filters applied to SMO)

[ Dataset | NoFilter | ClassBalancer | Resample | SpreadSample | SMOTE |
eCare Subset 0.80 0.81 0.81 0.80 0.81
DigInclude Subset 0.72 0.68 0.66 0.73 0.74

words that have been automatically selected by the
StringToWord Vector filter. Interestingly, since we
did not apply stopword removal, the lexical items
selected by the filter are mostly function words and
common lexical items. An example is shown in
Table 4.

Table 4: 5 top frequent words and 5 bottom fre-
quent words in one of the SEW models

[ Word [ Freq |

the 237021

of 159924

in 149698

and 135958

a 135867
usually 1517
international 1503
municipatlity 1449
show 1415
island 1277

At first glance, it might appear counter-intuitive
that BoWs, which are very simple features that do
not take syntax and word order into account, can
perform well in this kind of task. However, we

surmize that this is the effect of the presence of
stopwords. As stopwords have not been removed
(see settings reported earlier), the classifiers do not
learn ‘topics’ — since content words are pushed
down in the rank of the frequency list — but rather
the distribution of function words, that are instead
top-ranked and represent “structural” lexical items
that capture the syntax rather than the meaning
of texts. Essentially, function words can be seen
as a kind of subliminal syntactic features. What
is more, in the corpora some words are domain-
specific and difficult, while others are easy and
common. Apparently, this difficult vs easy varia-
tion in the vocabulary helps the classification task.
The full list of the words extracted by the String-
ToWordVectorFilter (utilized alone or as the basis
of other filters) is available on the companion web-
site.

The snap verdict of this set of experiments is
that BoWs are a valuable feature representation
for this kind of task. Their added value is that they
need little preprocessing and no additional conver-
sion schemes, as it is required by principal compo-
nents and autoencoders. BoWs seem to be a robust
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feature representation that accounts for both syn-
tactic information and lexical sophistication.

As for word embeddings, it seems that their full
potential remains unleashed in this context. The-
oretically, word embeddings would be an ideal
feature representation for this task because they
combine syntax and semantics and they could
capture simplification devices both at lexical and
morpho-syntactic level. However, this does not
fully happen here. As a matter of fact, it has al-
ready been noticed elsewhere that word embed-
dings might have an unstable behaviour (Wend-

the unit of analysis, since the classifiers are not bi-
ased towards the majority class and k-statistic and
ROC area values are quite robust (mostly above
0.500 and above 0.800 respectively). Additonally,
the dataset is small, and this might also facilitate
the learning. Clustering with BoWs is well above
the ZeroR baseline, while with the other feature
representations the performance is below the base-
line thresholds.

Table 6: DI4jMlIpClassifier, breakdown

DI4jMlpClassifier: eCare Subset
landt et al., 2018) that needs to be further inves- BOW k| Ace®) | Br(%) | P_] R_| F_| ROC
) Tay 057 0,08 1901 0.67 | 0.78 | 0.72 | 0.890
tlgated' specialized i ) ) 0.88 0.80 0.84 0.890
AvgF 0.80
Embed k Acc(%) Err(%) P R F ROC
. Tay 0.63 | 0.65 | 0.64 | 0.807
Table 5: SMO, breakdown spectalized | O | P70 | 220 e 08T [ 081 | 0.807
AvgF 0.75
SMO: eCare Subset PCA k Acc(%) Err(%) P R F ROC
BOW K Acc(%) | Erm(%) P R F ROC Tay 0.58 %073 1926 | 068 | 079 | 073 | 0900
lay 0.56 80.92 19.04 0.72 0.68 0.70 0.779 specialized ) . . 0.88 0.81 0.84 0.900
specialized > : : 084 | 087 | 085 | 0.779 AvgF 0.81
AvgF 0.80 Autoenc K Acc(%) | Ert(%) P R F ROC
PCA K Acc(%) | Em(%) P R F ROC Tay 0.61 | 0.84 | 071 | 0.872
lay 058 80.30 19.69 0.71 0.68 0.70 0.774 specialized 052 7107 22.92 0.90 0.73 0.81 0.872
specialized ) ) ) 0.84 0.86 0.85 0.774 AvgF 0.77
AvgF 0.80 (a) eCare
Autoenc k Acc(%) Err(%) P R F ROC
lay 0.60 82.16 1783 072 | 075 | 073 | 0.804 DI4jMlpClassifier: DigInclude Subset
specialized 0.87 0.85 0.86 0.804 BOW K Acc(%) Err(%) P R F ROC
AvgF 0.82 simplified | "¢ 1286 2713 | 037 | 035 | 036 | 0667
(a) eCare standard : ’ : 0.82 | 0.83 | 0.82 | 0.667
AvgF 0.72
SMO: Diglnclude Subset Embed k Acc(%) Err(%) P R F ROC
BOW K Acc(%) | Err(%) P R F ROC simplified | " — 2275 |04l [ 013 [ 020 | 0387
simplified 061 | 0.11 | 0.18 | 0546 standard : : 1 0.80 | 094 | 0.86 | 0.587
D 0.13 | 79.04 2095
standard T . ) 0.79 0.98 0.88 0.546 AvgF 0.72
AvgF 0.72 PCA k Acc(%) | Er(%) P R F ROC
PCA K Acc(%) | Erm(%) P R F ROC simplified | 204 2705 | 036 | 031 | 033 | 0650
simplified 0.14 78.80 2119 0.56 0.14 0.22 0.555 standard ) ) . 0.81 0.84 0.83 0.650
standard : : : 0.80 | 097 | 077 | 0555 AvgF 0.72
AvgF 0.73 Autoenc k Acc(%) | Err(%) P R F ROC
Autoenc K Acc(%) | E(%) P R F ROC simplified | 78.49 150 | 000 [ 000 | 000 | 0300
simplified | 78.49 5150 000 [ 0.00 | 0.00 | 0500 standard : - : 0.73 | 1.00 | 0.87 | 0.500
standard ) ) -~ 0.78 1.00 0.87 0.500 AvgF 0.68
AvgF i 0.68 (b) Diglnclude
(b) DigInclude
DI4jMlpClassifier: SEW Subset
SMO: SEW Subset BOW K Acc(%) | Em(%) P R F ROC
BOW 3 Acc(%) | Erm(%) P R F ROC simplified | "~ 56.50 4349 | 035 | 057 | 036 | 059
simplified | - oLl 3818|061 | 061 | 061 | 0618 standard ) ) > 0.57 | 055 | 056 | 0594
standard : : : 062 | 062 | 062 | 0.618 AvgF 0.56
AvgF 0.61 Embed k Acc(%) | Err(%) P R F ROC
PCA K Acc(%) | Er(%) P R F ROC simplified | " 55,26 1473 | 034 | 053 | 053 | 0586
simplified | 5708 1201 057 | 045 | 051 | 0.569 standard ) ) e 0.55 | 057 | 056 | 0.586
standard e : : 0.56 | 0.67 | 061 | 0569 AvgF 0.55
AvgF 0.56 PCA k Acc(%) | Err(%) P R F ROC
Autoenc K Acc(%) | Erm(%) P R F ROC simplified | 5501 aa7g | 054 | 055 [ 055 | 0577
simplified | 267 4732 | 052 | 042 | 046 | 0525 standard ) ) ) 056 | 054 [ 055 | 0577
standard : : - 053 | 062 | 057 | 0525 AvgF 0.55
AvgF 0.52 Autoenc K Acc(%) | Er(%) P R F ROC
(c) SEW simplified 0.51 | 0.60 | 0.55 | 0.535
standard 0.04 5214 4185 353044 [ 048 | 0535
AvgF 0.51
(c) SEW

We observe that the classification results are
promising on the eCare subset (see breakdown in
Tables 5a, 6a and 7a). Arguably, a factor has
contributed to achieve this performance: the unit
of analysis. Certainly, classification at document
level is easier because the classifier has more text
to learn from. Surprisingly, the unbalance of the
eCare dataset seems to be somehow mitigated by

The Diglnclude subset (see breakdown in Ta-
bles 5b, 6b, and 7b) is quite problematic from a
classification standpoint. It is highly unbalanced
and the unit of analysis is the sentence. The
classification models built with BoWs, word em-
beddings and principal components in combina-
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tion with SMO and the DI4jMlpClassifier are very
close to random (see the value of k-statistic and
the ROC area value). Although the AvgF values in
the summary table (Table 2) seem to be decent for
a binary classification problem, they are actually
misleading, because the classifiers perform poorly
on the minority class, as revealed by the low value
of k-statistic and the ROC area value shown in the
breakdown tables (Tables 5b and 6b). Classifi-
cation with autoencoders is perfectly random (k-
statistic 0.00 and ROC area value 0.500). Cluster-
ing results are very poor with all feature represen-
tations. Arguably, with this dataset the learning is
hindered by two factors: the high class unbalance
and the very short text that makes up a sentence.
While in the case of the eCare subset, unbalance is
compensated by the longer text of webpages, with
Diglnclude the sentence does not allow any gen-
eralizable learning. Given these results, a differ-
ent approach must be taken for datasets like Dig-
Include. Solutions to address these problems in-
clude changing the unit of analysis from sentences
to documents (if possible) and/or applying a dif-
ferent classification approach e.g. a cost-sensitive
classifier of the kind used to predict rare events,
e.g. Ali et al. (2015) or Krawczyk (2016). Algo-
rithms used for fraud detection (Sundarkumar and
Ravi, 2015) could also be useful.

The SEW corpus (see Tables 5c, 6¢ and 7c¢) is
balanced and the unit of analysis is the sentence.
The performance is promising because it is well
above the ZeroR baseline (0.32). The best perfor-
mance is with the combination of SMO and BoWs
that reaches an AvgF of 0.58 with only a limited
number of features. Word embeddings perform
slightly worse than BoWs (but the running time
is much longer). Clustering is definitely encour-
aging and much above the baseline level with all
features representations.

Since the eCare and Diglnclude datasets are
both unbalanced, we applied class balance correc-
tors. Table 8 shows the breakdown of SMO on the
eCare subset in combination with four balancing
filters. The performance with filters is similar to
the performance without filters. This is true also
if we look at the performance (P, R, AvgF) of the
minority class (the lay class). K-statistic is sta-
ble (greater than 0.50) as are the ROC area values
(greater than 0.700). Essentially, this means that
this dataset, although unbalanced, does not need a
class balancing filter. As pointed out earlier, we

Table 7: K-means, breakdown

K-means: eCare
BOW Acc(%) | Err(%) P R F
lay 0.48 0.75 0.56
specialized 60.82 39.18 0.81 0.53 0.64
AvgF 0.59
PCA Acc(%) Err(%) P R F
lay 0.32 0.50 0.39
specialized 5195 48.05 0.65 0.47 0.54
AvgF 0.44
Autoenc Acc(%) Err(%) P R F
lay 0.37 0.57 0.45
specialized 3455 4545 0.71 0.53 0.61
AvgF 0.50
(a) eCare
Simple K-means: DigInclude
BOW Acc(%) Err(%) P R F
simplified 0.21 0.93 0.35
standard 7578 24.22 0.73 0.04 0.08
AvgF 0.29
PCA Acc(%) Err(%) P R F
simplified 0.21 0 0
standard 78.09 2191 0.78 0.99 0.87
AvgF 0.19
Autoenc Acc(%) Err(%) P R F
simplified 0.22 0.62 0.33
standard 4.54 45.46 0.79 0.40 0.53
AvgF 0.37
(b) DigInclude
K-means: SEW
BOW Acc(%) Err(%) P R F
simplified 0.46 0.17 0.25
standard 30.27 4973 0.50 0.80 0.62
AvgF 0.43
PCA Acc(%) Err(%) P R F
simplified 0.48 0.49 0.48
sandard | 037 | 8 5551050 [ 00
AvgF 0.49
Autoenc Acc(%) Err(%) P R F
simplified 0.48 0.54 0.51
standard 30.46 4955 0.50 0.45 0.47
AvgF 0.49
(c) SEW

suppose that it is the unit of analysis used for the
classification (the webpage) that has a positive ef-
fect on the results since the classifier learns more
from an extended text (i.e. several sentences about
a coherent topic) than from a single sentence.

Conversely, on the Diglnclude subset (see full
breakdown in Table 9), two filters (ClassBalancer
and Resample) out of four filters produce lower
AvgF values than the performance with no filters.
A bit paradoxically, this might be good news if we
are interested in the performance on the minority
class (i.e. the simplified class). When we look at
the performance breakdown, we notice a big gap
between P and R on the minority class. Without
filters, the P of the simplified class is decent (0.61),
while the R is very low (0.11). When applying a
ClassBalancer and Resample, the P of the minor-
ity class jumps down to about 0.30, but R soars
up to above 0.60. Thus, although the AvgF values
with these two filters are lower than the SMO with-
out any filter, the performance on the individual
classes is more balanced. The best performance
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is, in our view, with SMOTE, which achieves an
AvgF of 0.74 with a k-statistic of 0.24 and a ROC
area value of 0.624. The P and R of the minor-
ity class are balanced (0.41 in both cases). This
is indeed an encouraging result for this dataset. It
is to be acknowledged however that all the clas-
sifiers based on the Diglnclude subset shown in
Table 9 are rather weak, since both k-statistic and
ROC area values are rather modest.

Table 8: eCare - Class balancing filters, break-
down

eCare: SMO NoFilter
BOW k Acc(%) Err(%) P R F ROC
lay 0.72 0.68 0.70 0.797
specialized 0.36 80.90 19.04 0.84 0.87 0.85 0.779
AvgF 0.80

eCare: SMO ClassBalancer

BOW k Acc(%) Err(%) P R F ROC
lay 0.72 0.69 0.71 0.782
specialized 0.57 81.16 1883 0.85 0.87 0.86 0.782
AvgF 0.81

eCare: SMO Resample
BOW k Acc(%) Err(%) P R F ROC
lay 0.74 0.70 0.72 0.789
specialized 0.8 81.81 18.18 0.85 0.87 0.86 0.789
AvgF 0.81

eCare: SMO Spreadsubsample

BOW k Acc(%) Err(%) P R F ROC
lay 0.72 0.68 0.70 0.779
specialized 0.56 80.95 19.04 0.84 0.87 0.85 0.779
AvgF 0.808

eCare: SMO SMOTE
BOW k Acc(%) Err(%) P R F ROC
lay 0.73 0.68 0.70 0.781
specialized 0.57 81.16 18.83 0.84 0.87 0.86 0.781
AvgF 0.81

7 Conclusion and Future Work

In this paper, we explored the effectiveness of
four feature representations — BoWs, word em-
beddings, principal components and autoencoders
— for the binary categorization of the easy-to-read
variety vs standard language. The automatic sep-
aration of these two varieties would be helpful
in tasks where it is important to identify a sim-
pler version of the standard language. We tested
the effectiveness of these four representations on
three datasets, which differ in size, class balance,
unit of analysis, language and topic. Results show
that BoWs is a robust and straightforward fea-
ture representation that performs well in this con-
text. Its performance is equivalent or equal to the
performance of principal components and autoen-
corders, but these two representations need addi-
tional data conversion steps that do not pay off
in terms of performance. Word embeddings are
less accurate than the other feature representations
for this classification task, although theoretically
they should be able to achieve better results. As
mentioned in the Introduction, several other fea-

ture representations could be profitably tried out
for this task. We started off with the simplest ones,
all based on individual lexical items. We propose
the findings presented in this paper as empirical
baselines for future work.

We will continue to explore categorization
schemes in a number of additional experimental
settings. First, we will try to pin down why word
embeddings are less robust than other feature rep-
resentations in this context. Then, we will explore
the performance of other feature representations
suitable for the task, e.g. lexical and morphologi-
cal n-grams as well as features based on syntactic
complexity. We will also explore other classifica-
tion paradigms, e.g. BERT (Devlin et al., 2018),
and extend our investigation on the impact of the
unit of analysis (e.g. by using the Diglnclude and
SEW versions that contain documents rather than
sentences). Last but not least, we will try out ap-
proaches specifically designed to address the prob-
lem of unbalanced datasets.

Table 9: Diglnclude - Class balancing filters,
breakdown

Diglnclude: SMO NoFilter
BOW k Acc(%) Err(%) P R F ROC
simplified 0.61 0.11 0.18 0.546
standard 0.13 79.04 20.95 0.79 0.98 0.88 0.546
AvgF 0.72
Diglnclude: SMO ClassBalancer
BOW k Acc(%) Err(%) P R F ROC
simplified 0.34 0.62 0.44 0.645
standard 0.22 65.24 34.57 0.86 0.66 0.74 0.645
AvgF 0.68
eCare: SMO Resample
BOW k Acc(%) Err(%) P R F ROC
simplified 0.32 0.61 0.42 0.629
standard 0.19 63.92 3607 0.85 0.64 0.73 0.629
AvgF 0.66
eCare: SMO Spreadsubsample
BOW k Acc(%) Err(%) P R F ROC
simplified 0.40 0.28 0.33 0.584
sandard | 018 | 7339 | 2460 5o oss 084 [ 055
AvgF 0.73
eCare: SMO SMOTE
BOW k Acc(%) Err(%) P R F ROC
simplified 0.41 0.41 0.41 0.624
standard 0.24 7430 25.69 0.83 0.83 0.83 0.624
AvgF 0.74
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Abstract

Affordances denote actions that can be per-
formed in the presence of different objects,
or possibility of action in an environment.
In robotic systems, affordances and actions
may suffer from poor semantic generaliza-
tion capabilities due to the high amount of re-
quired hand-crafted specifications. To allevi-
ate this issue, we propose a method to mine for
object-action pairs in free text corpora, succes-
sively training and evaluating different predic-
tion models of affordance based on word em-
beddings.

Affordance;  Natural Language Processing;
Robotics; Intention Recognition;, Conditional Varia-
tional Autoencoder;

1 Introduction

The term “affordance” was introduced by the Amer-
ican psychologist Gibson (Greeno, 1994) to describe
what an animal can do in a given environment. It
has since then been extensively utilized, interpreted,
and re-defined (see (Cakmak Mehmet R. Dogar et al.,
2007) for an overview) in fields such as robotics (Zech
et al., 2017), human-computer-interaction (Schneider
and Valacich, 2011) or human-robot-interaction (HRI)
(E. Horton et al., 2012). Several interpretations for af-
fordance exist in the literature, we use the term in a
loose way to denote actions that can be performed with
objects. As a simplified first approach we assume a
one-to-many mapping G: Objects — Affordances. The
object “door” may, for example, be used to perform the
actions “open”, “close”, and “lock”.

This paper presents how G may be learned from
free-text corpora. The results show how it is possi-
ble to learn a generative model G that, given an object
name, generates affordances according to a probability
distribution that matches the used training data. Quali-
tatively results also indicate that the model manages to
generalize, both to previously unseen objects and ac-
tions.

The paper is organized as follows. In Section II and
IIT we give a brief literature review on affordances from
different fields. The developed method is described

Thomas Hellstrom
Department of Computing Science
Umead University
Umed, Sweden
thomash@cs.umu.se

in Section IV, and results from the evaluation are pre-
sented in Section V. The paper is finalized by conclu-
sions in Section VL.

2 Affordances

When learned, the mapping G can be used in several
ways in artificial systems, for example, by visually
identifying objects in the environment or in the ver-
bal dialogue with the user, suitable actions can be in-
ferred by applying G to the observed objects. The ob-
jects and actions can then be used for shared planning
or intent recognition (Bonchek-Dokow and Kaminka,
2014), thus allowing closer cooperations with the user.

For example, the mapping G may be used in a robot
to decide how it should act within a given context that
affords certain actions. In HRI, a service robot may for
example suggest its user to read a book after it being
visually detected or mentioned. Affordances may also
be useful for object disambiguation. When a robot is
told to “pick it up!”, the robot only has to consider ob-
jects that are “pickable” in the current scene (E. Hor-
ton et al., 2012). Alternatively, affordances may be
used to infer the human’s intention, which may guide
the robot’s behavior (Bonchek-Dokow and Kaminka,
2014). If a user expresses will of talking to his children,
a robot may infer that the user want to call them, and
suggest making a phone call. Inference of affordances
may also be used to design robots that are understand-
able by humans, since mutually perceived affordances
may contribute to explaining a robot’s behavior (Hell-
strom and Bensch, 2018), and thereby increase interac-
tion quality (Bensch et al., 2017).

Classical planning require knowledge about the ac-
tions that are possible in a certain situation, i.e. its af-
forded actions. For simple scenarios, it could suffice to
enumerate all objects in the current scene, to later score
their affordances and finally select the most promising
to activate.

Affordances can be organized in a hierarchy, thus ex-
p