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Preface

Assalamu 3alaykum, benvenuti a tutti! Welcome to the The Fourth Arabic
Natural Language Processing Workshop (WANLP 2019) held at ACL 2019 in
Florence, Italy.

A number of Arabic NLP (or Arabic NLP-related) workshops and conferences
have taken place in the last few years, both in the Arab World and in association
with international conferences. The Arabic NLP workshop at ACL 2019 follows
in the footsteps of these previous efforts to provide a forum for researchers to
share and discuss their ongoing work. This particular workshop is the fourth
in a series, following the First Arabic NLP workshop held at EMNLP 2014 in
Doha, Qatar; the Second Arabic NLP workshop held at ACL 2015 in Beijing,
China; the Third Arabic NLP workshop held at EACL 2017 in Valencia, Spain.
This workshop included a shared task on Arabic dialect identification. As op-
posed to previous shared tasks which focused on regional level dialect labeling,
this shared task is the first to target a large set of dialect labels at the city and
country levels.

We received 49 main workshop submissions, out of which 22 were accepted, 23
were rejected, and 4 were withdrawn. All main workshop submissions were re-
viewed by at least three reviewers. The shared task was also a success with 17
teams participating. The shared task system descriptions (short) papers were
reviewed by two reviewers each and will be included in the proceedings and pre-
sented during the workshop as posters. A long paper describing the shared task
was submitted as part of the main workshop and got accepted for publication.

The acceptance rate of 49% in the main workshop, the quantity of the main
workshop submissions (highest number of submissions in this workshop series),
the shared task success, and the high quality of all contributions are strong
indicators that there is a continued need for this kind of dedicated Arabic NLP
workshop.

We would like to acknowledge all the hard work of the submitting authors and
thank the reviewers for the valuable feedback they provided. We hope these
proceedings will serve as a valuable reference for researchers and practitioners
in the field of Arabic NLP and NLP in general.

Wassim El-Hajj, General Chair, on behalf of the organizers of the workshop.
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Abstract

We study the problem of incremental domain
adaptation of a generic neural machine trans-
lation model with limited resources (e.g., bud-
get and time) for human translations or model
training. In this paper, we propose a novel
query strategy for selecting “unlabeled” sam-
ples from a new domain based on sentence em-
beddings for Arabic. We accelerate the fine-
tuning process of the generic model to the tar-
get domain. Specifically, our approach esti-
mates the informativeness of instances from
the target domain by comparing the distance
of their sentence embeddings to embeddings
from the generic domain. We perform ma-
chine translation experiments (Ar-to-En direc-
tion) for comparing a random sampling base-
line with our new approach, similar to active
learning, using two small update sets for sim-
ulating the work of human translators. For the
prescribed setting we can save more than 50%
of the annotation costs without loss in qual-
ity, demonstrating the effectiveness of our ap-
proach.

1 Introduction

Neural Machine Translation (NMT) is the task
of translating text from one language (source)
to another (target) using, most commonly, Re-
current Neural Networks (RNN), specifically the
Encoder-Decoder or Sequence-to-Sequence mod-
els (Sutskever et al., 2014; Cho et al., 2014). Re-
cently, NMT has become a quite popular and
effective alternative to traditional Phrase-Based
Statistical Machine Translation (PBSMT) (Koehn
et al., 2003). Major problems that arise include
very high cost of training NMT models for new
domains and that abundant parallel corpora are re-
quired for this task: the standard encoder-decoder
models with attention have been shown to per-
form poorly in low-resource settings (Koehn and
Knowles, 2017). Sufficient data might not be

available for all languages due to resource restric-
tions, particularly for resource-poor languages.
Hence, we are in need of cost-effective adaptation
techniques that transfer existing knowledge to new
domains as much as possible.

A recently proposed approach for domain adap-
tation filters generic corpora based on sentence
embeddings of a potentially low amount of in-
domain samples to train domain-specific models
from scratch (Wang et al., 2017). However, the
problem of time- and resource-consuming training
still remains which is unsuitable for incremental
model updates.
Fine-tuning can accelerate the training process be-
cause it transfers knowledge from a pre-trained
generic model to a new domain and, hence, re-
quires less parallel training samples. However, re-
spective differences in contents and writing style
can reduce machine translation quality, if they are
not properly addressed.

Recent approaches include fine-tuning with
mixed batches containing in- and out-of-domain
samples (Chu et al., 2017) and with different regu-
larization methods for differing amounts of new
samples for English → German and English →
Russian (Barone et al., 2017). The findings of
Barone et al. (2017) suggest that there is an “ap-
proximately logarithmic relation between the size
of in-domain training set and improvement in
BLEU score”. We want to find out whether in-
cremental model training can be accelerated using
an advanced query strategy for sample selection.
Previous works on incremental machine transla-
tion include cache-based computer aided trans-
lation tools (Nepveu et al., 2004), active learn-
ing techniques for interactive statistical machine
translation (González-Rubio et al., 2012), interac-
tive visualizations for understanding and manipu-
lating attention weights and beam search parame-
ters in NMT (Lee et al., 2017), and domain adap-
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tation through user interactions (Peris and Casacu-
berta, 2018).

In this work, we implement a new query strat-
egy for selecting “unlabeled” instances from a tar-
get domain and investigate its effect on fine-tuning
a generic NMT model. We borrow techniques and
terms from the active learning domain (Settles,
2010): a query strategy is a method for selecting
instances from a pool of unlabeled data that lead
to a high information gain when used for training
the machine learning model under consideration.
Selected instances are labeled by an oracle which
can be a human. Iteratively including the most in-
formative instances, labeled on demand, has been
shown to increase the model performance while
using the same amount of training data. Our pro-
posed methods for domain adaptation in NMT in-
clude query strategies that consider untranslated
sentences as unlabeled instances. We simulate a
human oracle by using parallel corpora in the eval-
uation, but we do not consider incremental updates
for the query strategy. This is of interest for crowd-
based domain-adaptation with limited resources as
described in (Barz et al., 2018b), in particular, be-
cause our method only requires monolingual data
for filtering (see Figure 1).

We compare random sampling as a naı̈ve base-
line strategy with our novel method based on dis-
tances between sentence embeddings. We esti-
mate the informativeness of instances from the tar-
get domain by comparing the distances of their
sentence embeddings to the embeddings of the
generic domain. For computing the sentence em-
beddings, we present AraSIF: we adapted the
methodology presented by Arora et al. (2017),
which is known to capture the semantics of sen-
tences well, to work with Arabic. In our experi-
ments, we use existing parallel corpora for simu-
lating human workers: The MEDAR1 and Glob-
alVoices dataset (Tiedemann, 2012) are consid-
ered as new target domains which mainly con-
cern the domain of climate change and politics,
respectively. The LDC Newswire parallel corpus
is used as the dataset for training generic domain
model. We fine-tune this generic NMT model us-
ing different amounts of samples from a new do-
main and varying training epoch settings while ob-
serving the BLEU score (Papineni et al., 2002) on
a held-out in-domain test set. Our hypothesis is
that the proposed novel query strategy can effec-

1http://medar.info

tively reduce the number of fine-tuning samples
required without hampering the translation quality
when compared to the baseline.

The remainder of this paper is organized as fol-
lows: Section 2 provides an overview on related
works, section 3 describes the NMT system and
considered query strategies. In section 4, we de-
scribe our experiment, and we report the results in
section 5. The results are discussed in section 6
and we conclude our work in section 7.

2 Related Work

Almahairi et al. (2016) presented their first result
on AR–EN bidirectional NMT, showing that NMT
models outperform traditional PBSMT models
when they are tested on out-of-domain test data.
This result motivates us to study domain adapta-
tion of NMT models rather than PBSMT models.

Several approaches are proposed for domain
adaptation in the context of statistical and neural
machine translation. Wang et al. (2017) show a
way to adapt existing corpora to new domains us-
ing learned sentence embeddings for the source
language of an NMT model to identify train-
ing samples that are close to the new domain.
This method allows us to train NMT models for
new domains without requiring a parallel corpus
in that domain, but models need to be trained
from scratch. Chu et al. (2017) present a method
called “mixed fine-tuning” where fine-tuning is
performed with mini-batches composed of a mix
of in- and out-of-domain parallel samples to ad-
dress the problem of overfitting to the new do-
main. Barone et al. (2017) investigate regular-
ization methods for domain adaptation in NMT.
Their findings indicate that BLEU scores increase
logarithmically with an increasing amount of in-
domain training data. Peris and Casacuberta
(2018) implement an online domain adaptation
method based on user interactions on the sub-word
level. In an experiment, simulating such inter-
actions with available public corpora, they could
show that their online learning approach success-
fully improves word error rates for EN-to-DE and
EN-to-FR translations.

González-Rubio et al. (2012) present different
active learning techniques that shall reduce human
workload in interactive statistical machine transla-
tion. They consider three query strategies for se-
lecting the most informative sentences for being
translated by humans: a random sampling base-
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Figure 1: We focus on domain adaptation of a generic NMT model Mgen with humans-in-the-loop that translate
monolingual data of the new domain with limited resources. We simulate crowd-translated content using two
parallel corpora Snew representing data of new domains for training the adapted model Mnew. We propose an
advanced query strategy for selecting sentences from Snew that need to be translated by their similarity to the
generic corpus.

line, rare n-gram sampling, and a sampling based
on word confidences. In a recent work, Lam et al.
(2018) suggest to incorporate human judgments
on partial translations as reinforcement signal for
improving NMT models and evaluate it in a sim-
ulation experiment with existing parallel corpora.
For reducing human workload, they suggest an
entropy-based method to trigger human judgments
similar to active learning approaches with human
oracles.

We focus on a query strategy for domain adap-
tation of NMT models based on active learning.
We consider settings in which human workers pro-
vide new training data (Barz et al., 2018b,a; Green
et al., 2015) for domains with no or only little
parallel corpora due to, for instance, budget con-
straints. Our experiment includes random sam-
pling as a baseline similar to González-Rubio et al.
(2012) and an advanced sentence selection strat-
egy based on distances between sentence embed-
dings that also encode the semantics of a sentence
(Arora et al., 2017), adapted for Arabic.

3 Method

We implement a baseline query strategy (random
sampling) and an advanced query strategy (see
3.3) for selecting training samples which are used
for fine-tuning a generic NMT model. In this sec-
tion, we describe the applied NMT model and the
generic training process, as well as the two query
strategies used in the domain adaptation process.

3.1 Model Architecture and Training

We use the TensorFlow implementation of NMT2

(Luong et al., 2017) configured as an 8-layered
bidirectional RNN with standard LSTM cells in
each layer and residual connections between the
layers. We use the same architecture for both,
generic model training and fine-tuning tasks. The
model is trained3 with vanilla SGD for 350k itera-
tions with a batch size of 50 and a dropout rate of
0.2. The initial learning rate is set to 1.0 and a de-
cay factor of 0.5 is applied after every 1k iterations
starting from 170k iterations. We use the standard
hyperparameters provided in the NMT framework
and set the vocabulary size to 32k for both Arabic
and English. We train the generic model (Mgen)
for one week using the LDC corpus (Sgen) (see
Figure 1) and use the resulting checkpoint for all
of our fine-tuning experiments.

3.2 Datasets and Preprocessing

In our experiment, we use the LDC Newswire
corpus (Munteanu and Marcu, 2005) and two
publicly available datasets, MEDAR and Glob-
alVoices. The corpus statistics are summarized in
Table 1. The LDC Newswire parallel corpus (Ar-
En) is used for training a generic model and the
MEDAR and GlobalVoices datasets for domain-
specific fine-tuning. We include datasets on two

2https://github.com/tensorflow/nmt
3All experiments were performed on an Ubuntu machine

(Intel i7-5960X) with 8 cores and 2 GTX-1080 graphics cards
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Corpus Sentence Pairs Domain Usage
LDC Newswire 1.3M Generic Generic model training
MEDAR 0.5k Climate Change Domain specific fine-tuning
GlobalVoices 37k Politics, Human Rights Domain specific fine-tuning

Table 1: Details of datasets that we used in our experiments.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
cosine similarity between sentence embeddings of a dataset and eref

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

de
ns

ity

LDC Newswire
MEDAR
GlobalVoices

Figure 2: Kernel density estimates for the distributions
of distances (cosine similarity) between sentence em-
beddings of each considered dataset and eref , the mean
of sentence embeddings of the dataset used for training
of the generic translation model. The gray dotted lines
represent the 25% and the 75% percentile of the dis-
tance distribution for the generic model.

different genres to investigate whether our find-
ings generalize irrespective of the domain of the
fine-tuning set. To reduce noise in the data, we
clean the datasets by discarding instances with
mixed tokens (i.e. English sentences containing
Arabic words or Arabic sentences containing En-
glish words). This step removes around 0.01%,
1.2%, and 10.14% of sentence pairs from LDC
Newswire, MEDAR, and GlobalVoices datasets
respectively. Further preprocessing steps of our
system pipeline include normalization and tok-
enization4 of the sentences and generation of byte
pair encodings (BPE)5 (Sennrich et al., 2016) for
the tokenized sentences and the vocabulary.

3.3 Query Strategies for Sample Selection
For model adaptation in limited resource settings,
it is desirable to reduce the number of samples
from the target domain and, thus, the required
time and cost for receiving human translations.
Our goal is to develop a query strategy for se-
lecting the most informative update samples, sim-

4https://github.com/moses-smt/mosesdecoder
5https://github.com/rsennrich/subword-nmt

ilar to the active learning paradigm. We propose
a method that estimates the informativeness of a
sample based on its similarity to the generic cor-
pus using sentence embeddings. We exclude se-
mantically overlapping parts from the new corpus
which reduces the amount of training samples that
need to be translated by human labor and that need
to be included in model training (see Figure 1). We
refer to this method as fine-tuning with advanced
sampling. In addition, we implement a baseline
method which selects all samples from a new do-
main in random order (fine-tuning with random
sampling).

For our advanced sampling method, we use
smooth inverse frequency (SIF)-based sentence
embeddings (Arora et al., 2017) extended for Ara-
bic which we refer to as AraSIF (see Section 3.4).
It encodes sentences from the source language
s ∈ Ssrc into a 300-dimensional vector es:

esif : Ssrc → R300, s 7→ es

Arora et al. (2017) show that SIF-based embed-
dings perform well for many semantic textual sim-
ilarity tasks. This implies that the sentences which
are close to each other in the embedding space can
be considered to be semantically similar. We esti-
mate the informativeness of a sample for domain
adaptation based on the semantic similarity of two
sentences. We use the cosine distance d between
two sentence embeddings es and es′ as a proxy for
semantic similarity:

d : R300×2 → [−1, 1], (es, es′) 7→ ds,s′

Hereby, the mean of all sentence embeddings of
the generic corpus Sgen

src ⊂ Ssrc serves as the ref-
erence point eref in the sentence embedding space
for comparing sentences from other corpora:

eref = mean(esif (S
gen
src )), eref ∈ R300

Calculating the cosine similarity between all
samples of a new domain Snew

src ⊂ Ssrc and this
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reference point, results in a distribution of dis-
tances indicating the semantic similarity or dis-
similarity of samples from the new domain to the
generic domain. We show the distributions for all
considered datasets in terms of a kernel density es-
timate in Figure 2: MEDAR and GlobalVoices as
new domains and LDC Newswire as generic ref-
erence domain. Initially, we anticipated the tar-
get domain corpora to partially lie outside of the
reference distribution, but the new corpora rather
seem to be more specific subsets of the generic do-
main. Therefore, we select training samples for
our fine-tuning process from the new domains that
belong to the long-tail of the distance distribution
of the generic domain corpus. We expect the in-
formativeness of a new sample s to be high, if it
is underrepresented in the generic domain dataset
in terms of semantic similarity to eref , this is if
ds,eref is high. The interval boundaries that frame
the longtail are the only parameters that need to
be defined for this approach. We use the 25% and
75% percentiles of the distance distribution of the
generic domain to define these outer regions (see
dotted vertical lines in Figure 2).

3.4 AraSIF: Arabic Sentence Embeddings

To obtain sentence embeddings for Arabic sen-
tences we propose AraSIF. We use SIF6 with Ar-
aVec7 (Soliman et al., 2017), a Word2Vec pre-
trained model that is trained on 1.8M Arabic
Wikipedia articles with a total vocabulary size of
662k. SIF is based on word weights for comput-
ing embeddings, for which we consider all tokens
with a frequency count of at least 200. We prepro-
cess the Wikipedia articles on which AraVec was
trained on, for computing the word frequency. In
addition, SIF expects the word embedding to be
in GloVe embedding format. Hence, we convert
the AraVec word embeddings from Word2Vec to
GloVe format. The code for AraSIF is publicly
available at DFKI Interactive Machine Learning
repository on GitHub.

4 Experiment

We conduct a simulation experiment for inves-
tigating the effectiveness of our advanced query
strategy in reducing the required amount of update
samples for adapting an NMT model to a new do-
main. Our approach selects samples using mono-

6https://github.com/PrincetonML/SIF
7https://github.com/bakrianoo/aravec

epochs 1 5 10 20
nt Tsgd Tsgd Tsgd Tsgd

50 1 5 10 20
100 2 10 20 40
150 3 15 30 60
200 4 20 40 80
250 5 25 50 100
300 6 30 60 120
350 7 35 70 140
400 8 40 80 160

Table 2: Considered combinations of update set sizes
(nt) and SGD updates or iterations (Tsgd) used for fine-
tuning.

lingual information only, which can be assumed
to be available without investing resources. For
this, we compare the translation quality when fine-
tuning a model with random sampling and when
fine-tuning it with a reduced number of update
samples resulting from our advanced sampling.
Our generic NMT model Mgen is adapted to two
new domains, represented by the GlobalVoices
and the MEDAR datasets, using both query strate-
gies. We include a varying number of epochs for
identifying good training parameters. We hypoth-
esize that our advanced query strategy for sam-
ple selection can effectively reduce the number of
fine-tuning samples without hampering the trans-
lation quality when compared to the baseline.

5 Evaluation Procedure

We perform the simulation experiment with two
new domain datasets and observe the impact of
different parameters on domain adaptation of the
generic NMT model using small amounts of new
samples. These can be considered to stem from
human workers, e.g., professional translators or
crowdworkers. Considered parameters include the
number of training samples in the update set nt

and the number of training epochs e. The num-
ber of epochs defines the number of training itera-
tions: The number of Stochastic Gradient Descent
(SGD) updates, denoted by Tsgd, is computed by:

Tsgd =
⌈ nt

|S|
⌉
· e

where |S| is the mini-batch size which we set
to 50 throughout our experiments, nt is the num-
ber of sentence pairs in the update set, and e is the
number of epochs. Table 2 provides an overview
of all considered configurations.
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The update sets used for model adaptation are
generated from either MEDAR or GlobalVoices
dataset, after excluding a static test set of 100
sentences for each. Both update sets are con-
strained to a maximum sample size of 400 to al-
low a fair comparison (this is the maximum size
for MEDAR, see table 1). Further, we assume that
the amount of data from the new domain might be
small due to resource constraints or scarcity.

For the random sampling case, we select all 400
samples from each of the datasets in a random or-
der and use it to adapt our generic model for all
parameter configurations in Table 2. Samples 1
to 50 of the update set are used for training the
nt = 50 model for all epochs. The model fine-
tuning is continued with samples 51 to 100 for
the nt = 100 model for all epochs, and so on.
Considering the stochastic nature of SGD, we re-
peat the experiment 5 times and report the average
scores on the respective test sets, instead of pro-
viding a point estimate. We observe the training
times on the update set and the BLEU scores (Pa-
pineni et al., 2002) on the test set as a dependent
variable.

For our advanced sampling strategy, we select a
subset of all training samples for both datasets us-
ing the filter mechanism described above. We in-
clude a sentence s, if its cosine distance d to eref is
smaller than the 25% percentile (−0.208) or larger
than the 75% percentile (0.317) of the generic dis-
tance distribution (see Figure 2). This leaves us
with 135 fine-tuning samples for MEDAR and 169
for GlobalVoices from the original 400 samples.
We consider the same set of parameters than be-
fore with the difference that the size of the update
set nt is limited to the reduced number of samples.

5.1 Results

In this section, we present the results of our fine-
tuning experiments for adapting the generic model
with different sampling strategies. We use an
increasing number of update samples (nt), dif-
ferent epoch configurations (e) and two new do-
main datasets. The generic baseline model Mgen

achieves a reference BLEU score of 18.6 for
MEDAR and 13.4 for GlobalVoices. We used the
same test set which we have used for evaluating
the fine-tuned model.

Figure 3 summarizes the BLEU scores for all
parameter settings and both new domains con-
cerning the random sampling condition. For

MEDAR, we can observe a monotonic improve-
ment in BLEU score for increasing numbers of
samples nt in the update set for all epoch con-
figurations. However, compared to the reference
score of 18.6, only e = 1 and e = 5 achieve
meaningful improvements: we can observe an im-
provement after fine-tuning with first two mini-
batches. Higher numbers for e (10, 20) result in
lower BLEU scores than the reference, also when
including all samples (nt = 400). Only for e = 10
and nt = [350, 400] we observe a BLEU score
slightly better than the reference model. The best
BLEU score on the MEDAR test set is achieved
using nt = 400 and e = 5 with a score of 19.39.
Averaged over 5 repetitions of the experiment, the
runtime ranges between 59s for nt = 50 and 68s
for nt = 400 for e = 1. All other configurations
require longer training times. For GlobalVoices,
we observe a monotonic improvement with in-
creasing number of samples nt for e ∈ {1, 5}.
Higher numbers for the epoch configuration result
in a monotonic deterioration of BLEU score. In
contrast to the models adapted to MEDAR, train-
ing with e ∈ {10, 20} yields better results than
the reference score of 13.4 for small nt. Yet, due
to the negative trend in BLEU scores, models with
these epoch configurations fall below the reference
score. The best BLEU score on the GlobalVoices
test set is achieved using nt = 100 and e = 10
with 14.36. Averaged over 5 trainings, the run-
time ranges between 62s for nt = 50 and 122s
for nt = 400. For nt ≥ 200, we observe better
BLEU scores than the reference model for e = 1
and e = 5, where the training times for e = 1
grow considerably slower than for e = 5. Here,
the training times range between 49s for nt = 50
and 66s for nt = 400.

Figure 4 summarizes the BLEU scores for all
considered settings and domains for our advanced
sampling condition. For MEDAR, we observe im-
provements in BLEU scores similar to the ran-
dom sampling condition. All epoch configura-
tions, except for e = 1, achieve scores higher than
the reference (18.6) starting from the first update
set. With the advanced sample selection, the best
score of 19.34 is achieved using nt = 135 and
e = 20. Using e = 1 for varying number of sam-
ples (nt) yields BLEU scores which are slightly
lower than the reference BLEU score of 18.6. Av-
eraged over 5 trainings, the runtime ranges be-
tween 54s and 58s for e = 1 and between 59s
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Figure 3: BLEU scores of fine-tuned NMT models for MEDAR and GlobalVoices corpora with random sampling
for varying sizes of the update set (nt) and different number of training epochs (e).
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Figure 4: BLEU scores of fine-tuned NMT models for MEDAR and GlobalVoices corpora with advanced sampling
for varying sizes of the update set (nt) and different number of training epochs (e).

and 70s for e = 5. For GlobalVoices, we obtain
the best score of 14.27 with e = 10 which is com-
parable to e = 10 and nt = 100 in the random
sampling condition. For e ∈ {5, 10}, we observe
better scores compared to the random sampling
condition, for all update set sizes nt. In addition,
with our advanced sampling, we always observe a
monotonic increase in BLEU score for all epoch
configurations and increasing number of samples
in the update set nt, in contrast to the epoch con-
figurations e ∈ {10, 20} for the random sampling
condition where we observe a decreasing trend in
BLEU scores. The runtimes are similar to training
times of MEDAR models.

6 Discussion

Our experiment shows that fine-tuning the generic
model Mgen with random sampling for small up-

date sets can improve BLEU scores (see Figure 3).
In particular, we observe improvements over the
baseline with MEDAR data for e = {1, 5} and
with GlobalVoices data for e = {1, 5} for update
set sizes larger than 200 and for e = {10, 20} with
update set sizes less than 200. We did not find log-
like relations similar to Barone et al. (2017). The
reason for this could be because we included less
data for the domain adaptation. For the random
sampling condition, with MEDAR dataset, we can
trade translation quality for faster training times
since e = 5 training yields only slightly better
BLEU scores when compared to e = 1 setting.
Analogously, for GlobalVoices dataset, e = 1, 5
achieves similar performance and perform better
than baseline model when nt > 200, which allows
to switch to a faster model training with e = 1
with a marginal loss in translation quality. Con-
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cerning larger values of e for both the new do-
mains yield a slower gain in translation quality or
even a loss in translation quality for e ∈ {10, 20}
(GlobalVoices) after an initial improvement over
the baseline. This loss might be caused by overfit-
ting to the training samples due to a high number
of training iterations.

Using our advanced sampling for fine-tuning
Mgen to a new domain, significantly reduces the
amount of training samples without loss in transla-
tion quality compared to the commonly used fine-
tuning with random sampling. This allows to dra-
matically reduce the amount of data that needs to
be translated or post-edited by human labor, be-
cause the sampling of “unlabeled” instances is per-
formed using monolingual data only. In case of
MEDAR, our method reduces translation cost and
time by 66.25% compared to random sampling. In
addition, the BLEU scores improved overall: Ex-
cept for e = 1 training setting, none of the scores
is lower than the baseline score. An interesting
observation when compared to the random sam-
pling condition is that samples resulting from our
advanced sampling need more epochs to achieve
better BLEU scores. We believe this is due to
the following two reasons: (i) Domain mismatch:
the genre of samples of MEDAR dataset is signif-
icantly different from the domain of the samples
observed in Mgen (Almahairi et al., 2016). (ii)
Low amount of samples: our advanced sampling
approach removes 66% of samples from the orig-
inal 400. Both of these factors necessitates more
training epochs to achieve the best BLEU score as
with random sampling condition. In case of Glob-
alVoices, we can observe similar improvements in
BLEU score for e = {5, 10}: we achieve a sim-
ilar BLEU score as with random sampling base-
line although we excluded 57.75% of the training
data. All in all, we can confirm our hypothesis that
our advanced sampling query strategy for sample
selection effectively reduces the number of fine-
tuning samples without degrading the translation
quality compared to results of the baseline. A fur-
ther advantage of our approach is that it supports
continuous fine-tuning, in contrast to other meth-
ods which require a complete re-training of the
model whenever new samples of the target domain
become available (Wang et al., 2017).

Currently, there is one limitation in our work:
The update sets in our evaluation are quite small.
Hence, we want to investigate the performance of

our method using all 36k samples of the Glob-
alVoices parallel corpus.

A promising direction for future work would
be to investigate the impact of active learning in
NMT using our advanced sentence sampling on
translation time and quality of incremental model
improvements. In settings with human workers
that post-edit translation candidates, translations
that improve over time might reduce this post-
editing effort and, consequently reduce the over-
all time and budget required for model adapta-
tion to a new domain. In addition, this technol-
ogy can increase the efficiency of ubiquitous ma-
chine translation interfaces, e.g., for multimodal
post-editing (Herbig et al., 2019; Oviatt et al.,
2017), real-time translation systems in virtual re-
ality (Toyama et al., 2014), or medical cross-
language dialogue applications (Sonntag et al.,
2009b,a) As a follow-up work, we would like
to experiment with a clustering-based sample se-
lection instead of using a single reference vector
(eref ) for the whole generic domain and observe
the performance of domain-adapted sequence-to-
sequence models based on the chosen samples.

7 Conclusion

We investigate the problem of incremental domain
adaptation of a generic NMT model in a limited re-
sources setting. Our NMT models improve BLEU
score with only small amounts of data from a new
domain. Hereby, sentences from the source lan-
guage were randomly sampled for being used as
parallel training data after human translations. We
simulated the human translation task by using ex-
isting parallel corpora. Also, we introduced an
advanced sampling strategy, based on semantic
text similarity using a state-of-the-art technique,
after extending it for computing sentence embed-
dings for Arabic (AraSIF). We found that our
novel method achieves similar BLEU scores, com-
pared to fine-tuning with random sampling, but
using less than half of the initial training data.
This enables more efficient domain adaptation of
NMT models with humans-in-the-loop and with
resource constraints.
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Abstract

Parallel corpora available for building ma-
chine translation (MT) models for dialectal
Arabic (DA) are rather limited. The scarcity
of resources has prompted the use of Modern
Standard Arabic (MSA) abundant resources
to complement the limited dialectal resource.
However, clitics often differ between MSA
and DA. This paper compares morphology-
aware DA word segmentation to other word
segmentation approaches like Byte Pair En-
coding (BPE) and Sub-word Regularization
(SR). A set of experiments conducted on Egyp-
tian Arabic (EA), Levantine Arabic (LA), and
Gulf Arabic (GA) show that a sufficiently ac-
curate morphology-aware segmentation used
in conjunctionwith BPE or SR outperforms the
other word segmentation approaches.

1 Introduction

Building machine translation models for resource
constrained languages can benefit from parallel
corpora available in related languages. Vocabu-
lary adaptation (Passban et al., 2017) has been used
to train statistical and neural machine translation
models for Azeri, a resource constrained language,
leveraging its similarity to Turkish. Projection to a
universal representation language (Gu et al., 2018)
generates high quality machine translation model
for a resource constrained language given a set of
related resource-rich languages.
Research in dialectical Arabic translation tried

to leverage the resources available in Modern
Standard Arabic (MSA) using several techniques.
Starting with statistical and rule-based methods
for transforming DA to MSA (Al-Gaphari and Al-
Yadoumi, 2012), and evolving to generating DA
data from MSA parallel data using semantic pro-
jections (Hassan et al., 2017), andmulti-task learn-
ing of part-of-speech tagging and machine transla-
tion to guide the translation model towards lever-

aging the grammatical roles in translation (Ba-
niata et al., 2018). While earlier statistical and
rule-based cross-dialectical techniquesmanaged to
leverage morphological word segmentation, more
recent attempts have largely abandoned morpho-
logical segmentation in favor of language agnostic
segmentation techniques like Byte Pair Encoding
(BPE) (Sennrich et al., 2016) and Sub-word Regu-
larization (SR) (Kudo, 2018). In fact, these learned
language agnostic word segmentation have proved
that they can rival morphological segmentation in
neuralMT. In a translation task from languageD to
language E, if language D (say an Arabic dialect)
and language A (say modern standard Arabic) are
two closely related languages such that a wordWA

in language A is semantically equivalent to a word
WD in language D. Moreover, we assume that
these two words share a common stem but have
different clitics. So, the two words can be morpho-
logically segmented as follows: WA = PARSA,
and WD = PDRSD where PA is a sequence of
zero or more characters forming the prefix of WA.
Similarly, SA is a sequence of characters forming
the suffix ofWA, while PD and SD denote the pre-
fix and suffix of WD, and R is the shared root or
stem.
Due to the limited training data for the language

pair {D, E}, the rootR is one that we hope to learn
from the abundant data for the pair {A,E}. In-
tuitively, a morphology-aware word segmentation
is more likely to produce the correct prefixes and
suffixes, making it easier to learn the translation
of R to E. As clitics tend to occur frequently,
the MT model would have learned their transla-
tion from the scarce resources for the pair {D,E};
thus, successfully translation an out-of-vocabulary
word for the {D,E} pair. For illustration con-
sider the example in Table1 below. The dialectal
Egyptian word “هيقولوا” [hayqwlwA] is segmented
into four segments. Similarly, the correspond-
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Segmented Dialectal Word هـ#يـ#قولـ#وا
ha#y#qwl#wA

Segmented MSAWord سـ#يـ#قولـ#ون
sa#ya#qwl#wn

English Translation They will say
Alignment MSA-EN 0-1;2-2; 1,3-0
Alignment DA-EN 0-1;2-2; 1,3-0

Table 1: Illustrative word segmentation example

ing MSA word .[sayaqwlwn]“سيقولون” Both words
share the same stem “قولـ” [qwl], that can be learned
from the resource rich MSA, while the dialectal
future marking dialectal prefix “هـ#” [ ha#] can be
learned from other future tense verb in the training
data. Similarly, the plural 3rd person markers can
be learned from other verbs in the resource con-
strained parallel data. The alignments in the table
are zero based word index alignment from Arabic
to English.
The question that this paper aims to address

is whether morphological word segmentation still
has an advantage over language agnostic meth-
ods, in the context of leveraging parallel data in
a resource-rich language to improve the MT of
a related resource constrained one. This ques-
tion is particularly interesting when we consider
morphologically-rich languages like Arabic and its
dialects. The remainder of this paper introduces
the role of word segmentation in machine transla-
tion in Section 2. This section also reviews pop-
ular word segmentation techniques and introduces
themorphology-aware segmentation approach that
is used in our experiments. Section 3 reviews the
neural machine translation approach that we use
to train and adapt translation models for dialectal
Arabic. Section 4 presents the experiments that we
conducted along with their results. Section 5 re-
views some related works. Finally, Section 6 sum-
marizes the findings and concludes the paper.

2 Word Segmentation in NMT

The size of vocabulary found in a typical English
dictionary is less than 100,000 words. A vocab
around 16,000 words, provides 98% coverage for
the Brown corpus. However, due to its agglutina-
tive nature, the size necessary to achieve similar
coverage for Arabic, whether standard or dialec-
tal, is much larger. The size of the vocabulary ex-
tracted from the Arabic Gigaword corpus (Parker
et al., 2009) exceeds 800,000 words.
Such vocab sizes are well beyond what current

technology can handle efficiently. Therefore, it is
common to use word segmentation for highly ag-
glutinative languages like Arabic, or highly com-
pounding languages like German (Huck et al.,
2017), and more generally, for any large vo-
cab NMT system. Two popular language agnos-
tic word segmentation techniques are Byte-Pair-
Encoding (BPE) (Sennrich et al., 2016) and Sub-
word Regularization (SR) (Kudo, 2018).

2.1 Byte-Pair-Encoding (BPE)

Originally conceived as compression algorithm
(Gage, 1994), BPE is a greedy technique often
used to segment words into common subwords as
a preprocessing step in a NMT training pipeline
(Sennrich et al., 2016). BPE starts by splitting
all the words in the training lexicon into indi-
vidual characters, and proceeds by merging fre-
quent character sequences until reaching a spec-
ified number of merge operations. Thus, by the
end of the algorithm most frequent word segments
would have been joined into a single symbol. The
resulting trained segmenter is stored and applied to
test and runtime inputs.

2.2 Subword Regularization (SR)

Subword Regularization (Kudo, 2018) generates
probabilistic word segmentations to make the
NMT training more robust. The probabilities of
the segments are computed from a unigram lan-
guage model defined over subword symbols. The
intuition behind it is that if a sentence is repre-
sented by using multiple subword sequences it will
produce some regularization during the training
thus making the machine translation model more
robust. The results achieved using SR, depends on
the setting of three parameters: the vocab size, the
size of n-best segmentation, and a smoothing pa-
rameter that controls the probabilistic sampling of
segmentation.

2.3 Linguistically Motivated Segmenter

The problem with BPE and Subword Regular-
ization is that they don’t take into consideration
any information about the language which might
cause a loss of semantic and syntactic proper-
ties such as inflection and composition. These
syntactic features are potentially useful in ma-
chine translation as semantic modifiers. The im-
portance of using a linguistically motivated seg-
menter has been shown previously (Huck et al.,
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2017) as they assist greatly in reduction of vo-
cabulary size while helping improve the transla-
tion of unseen words (open vocabulary transla-
tion problem). The linguistically aware dialec-
tal Arabic segmenter used in this work is a re-
trained version of the Unified Dialectal Arabic
Segmenter (UDAS) (Samih et al., 2017). The uni-
fied segmentationmodel is based on a bidirectional
Long Short-Term Memory (bi-LSTM) Recurrent
Neural Network (RNN) that is coupled with Con-
ditional Random Fields (CRF) sequence labeler
trained to segment words from four different di-
alects namely Egyptian (EGY), Levantine (LEV),
Gulf (GLF), andMaghrebi (MGR). The segmenter
leverages the observation that different Arabic di-
alects do not only share vocabulary and some mor-
phological properties with MSA, but they also
share some commonalities amongst each other.
Thus, a single model provides higher accuracy
than a dialect specific model while eliminating
the need for dialect identification before segmen-
tation. This segmenter operates directly on raw
text without requiring any preprocessing or word
normalization while employing a lookup scheme
that use segmentations that are seen in training di-
rectly during testing in order to improve the per-
formance and the accuracy of segmenting a words
into prefixes, stems and suffixes. To improve
the segmentation model, we added to the training
data, publicly available data from the LDC-Arabic
Treebank (LDC2010T08, LDC2010T13, and LDC
2011T09), as well as dialectal Arabic treebanks
(LDC2016T02, LDC2016T18, and LDC2018T23)
to reach a total of 231,846 segmented sentences.
Table 2 presents the accuracies of the segmentation
for each dialect compared to the accuracy in the
baseline model (Samih et al., 2017). To measure
the accuracy, a 20% subset of the original UDAS
training data is set aside as unseen testset. De-
spite some inconsitencies in segment labeling in
the various datasets, the addition of data has re-
sulted in improvements for all dialects. Like the
original UDAS model, a lookup table has proved
helpful in improving the trained model. We pop-
ulated the lookup table with words found in the
training data that the trained model fails to seg-
ment. The accuracy improvements were slightly
higher for Egyptian which can be attributed to the
fact that the added data had a large portion in that
dialect (LDC2018T23).

EGY GLF LEV MGR
Retrained Model 99.4 98.9 96.2 96.1
Baseline 95.3 93.1 93.9 91.4

Table 2: Accuracy of the retrained unified dialectal seg-
menter compared to the baseline model (Samih et al.,
2017).

3 NMT Training for Dialectal Arabic

To train Neural Machine Translation (NMT)
for Arabic dialects, we use the now ubiquitous
encoder-decoder structure. In these structures,
the encoder maps a source language input to a
dense internal vector representation, that the de-
coder maps to a corresponding target language
output. Like other languages, a recurrent neural
network (RNN-based) with attention (Bahdanau
et al., 2015) or a feed-forward network with multi-
attention (Transformer-based) (Vaswani et al.,
2017), Sequence to Sequence architectures are
used for the encoder and the decoder. Dialectical
Arabic parallel resources are very scarce compared
to the amount of data necessary to train general
purpose NMT models. The parallel data publicly
available for Arabic dialects used in this work are
limited to:

• Crowd sourced translations for Levantine and
Egyptian (LDC2012T09, (Zbib et al., 2012)),

• BOLT Egyptian Arabic parallel discussion
forums data (LDC2019T01),

• Qatari Arabic Corpus that includes English
translation for several hours of Qatari TV
broadcast conversations.

• Dialectal contents extracted from the Arabic
subtitles using a dialect ID trained fastText
language ID type model (Joulin et al., 2017).

• Translation of the Egyptian Callhome (Ku-
mar et al., 2014) a crowd-sourced translation
of a conversational telephony dataset.

The total number of parallel sentences for each
dialect ranges from tens of thousands for gulf to
several hundreds of thousands for Egyptian and
Levantine. These amounts are well below the min-
imum required for an adequate coverage for a lan-
guage. Therefore, to leverage the abundant MSA
resources, we train a base model using MSA data
along with the limited amount of dialectal data.
We use domain adaptation techniques to fine tune

13



Dialect Training Set DevTest
MSA 2.5 M sent. -
Gulf 38 K sent. 2 K sent.
Levantine 219 K sent. 2 K sent.
Egyptian 502 K sent. 2 K Callhome.

Table 3: Training and test corpora sizes

the base model (Freitag and Al-Onaizan, 2016).
Our methodology is different in that whereas they
train the model on the out-of-domain data only
and then adapt to the in-domain data, we train on
the joint data to allow the model to learn dialect-
specific vocab and then adapt using the in-domain
data. Also, whereas they use an ensemble of the
base model and the adapted model, we use an en-
semble of two adapted models. Arabic dialects
have some common words and idioms which over-
lap with MSA. So, when training a dialectical
models it’s beneficial to first train the model with
the high-resourced MSA data jointly with the di-
alectical data with optional duplication so that the
dialectical vocab is significant in the training data
and doesn’t get pruned or overwhelmed by the
MSA vocab, and then adapting the model by train-
ing it for a few epochs with a small learning rate
on the relatively small dialectical data to bias the
model further to the dialect in the cases where the
meaning in the dialect is different from the mean-
ing in MSA.

4 Experiments and Results

Several experiments were conducted to examine
the impact of the dialectical segmenter on the qual-
ity of the MT system built with it for a resource
constrained languages, and how it compares to
other segmentation techniques like BPE and SR.
The experiments were carried out using Marian
v1.7.6 (Junczys-Dowmunt et al., 2018) a public
neural machine translation framework which sup-
ports sentence piece tokenization with its two vari-
ant BPE and SR (unigram language model) as well
as word tokenization which is basically tokenizing
the corpus on white spaces. Most parameters of
Marian were the same as the defaults except for
the validation set settings which were adapted to
each dialect according to the size of its data.
Table 3 shows the distribution of the training

and test data sizes used in the experiments. For
the Gulf and Levantine dialects, 2000 sentences
are set aside and equally divided into validation
and test. For Egyptian, the callhome validation

Gulf – English Results
Word Base Adapt
Segmentation BLEU BLEU
Dialectal segmenter 12.36 12.64
BPE 13.19 13.36
SR 14.08 14.30
Dialectal segmenter + BPE 14.58 14.58
Dialectal segmenter + SR 14.18 14.18

Levantine – English Results
Word Base Adapt
Segmentation BLEU BLEU
Dialectal segmenter 19.41 19.98
BPE 20.83 21.56
SR 20.42 21.81
Dialectal segmenter + BPE 21.9 22.47
Dialectal segmenter + SR 22.07 23.08

Egyptian – English Results
Word Base Adapt
Segmentation BLEU BLEU
Dialectal segmenter 37.22 37.86
BPE 36.19 36.83
SR 36.79 37.76
Dialectal segmenter + BPE 36.93 38.2
Dialectal segmenter + SR 37.44 37.68

Table 4: The word segmentation technique, base model
BLEU score, and adapted model BLEU score for each
of the three dialects.

and test split is used after disfluency removal. The
disfluency removal consists of removing incom-
plete words, filler words, and repeated words. This
processing is necessary because we started with
the speech transcripts (LDC97T19, LDC2002T38)
which have full verbatim transcripts of the corre-
sponding speech corpora. As described in Section
3, the base model training merges Arabic dialect
sentences and MSA. Therefore, special care was
needed to train the MT system for the Gulf dialect
because it has far fewer sentences than MSA we
needed to duplicate the Gulf data 10 times in or-
der to make the sizes of the data of the Gulf di-
alect and other dialects comparable. The adapta-
tion uses the dialect data only to fine-tune the base
model trained for that dialect at a lower learning
rate.
As summarized in Table 4, for each dialect, we

evaluated five word segmentation approaches:

1. The dialectal segmenter as the only seg-
menter.

2. Byte-Pair Encoding (BPE) as the only seg-
menter.
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3. Subword Regularization (SR) as the seg-
menter.

4. Byte-Pair Encoding applied to dialectically
segmented corpora.

5. Subword Regularization applied to dialecti-
cally segmented copora.

In all cases, the vocab was kept at 40 K sub-
words. For the base models in all three dialects,
the best performing word segmentation combined
dialectal segmentation with either BPE or SR. This
continued to be the case after adaptation. The gain
attributable to dialectal segmentation1 was 0.28
BLEU point for Gulf, 1.27 for Levantine, and 0.44
for Egyptian. It also worth noting that Subword
Regularization has consistently outperformed BPE
alone. The low scores for the Gulf dialect are
due to the small size of the test set and the use
of a highly dialectal spelling in the data that lim-
ited the model’s ability to benefit from the MSA
training. While Levantine and Egyptian training
data are comparable in size, the BLEU scores re-
ported for Egyptian are based on 4 reference trans-
lations, while Levantine scores use a single refer-
ence. To assess the similarity of word segmenta-
tion obtained by the various approach, we com-
puted the Levenshtein edit distances between the
segmented sentences for a random subset of 150
dialectal Arabic sentences. In this set, no two seg-
mentation techniques produced the sameword seg-
mentation for all the words in any sentence. How-
ever, applying SR or BPE to a dialectically seg-
mented sentences gives very similar segmentations
with an average edit distance of 2.55 per sentence.
The segmentations obtained by BPE and SR were
also relatively similar with an average edit distance
of 5.03.
Table 5 summarizes the average number of ed-

its necessary to map a segmented sentence using
one approach to the others. In the table, DS is the
dialectal segmenter. The relatively large number
of edits between the dialectal segmenter and both
BPE and SR suggest that these language agnostic
approaches have not fully captured themorpholog-
ical aspects of Arabic dialects.

1Calculated as BLEU difference between the best adapted
model with dialectal segmentation and the best adaptedmodel
without dialectal segmentation

5 Related Research

Translating Arabic dialects has been a focus
with the machine translation community. In sta-
tistical machine translation (SMT), the use of
morphology-aware word segmentation for Arabic
has been studied (Lee et al., 2003),and (Habash,
2007). Sajjad et al. 2013 maps DA closer to MSA
prior to translation. Sawaf 2010 also uses dialect
normalizations and uses morphological for the di-
alects as well as MSA. This technique has signifi-
cantly reduced the vocabulary size. However, the
new vocab size restriction imposed by NMT and
the advent of newer language independent word
segmentation techniques like BPE and SR, as well
as the advances in dialectal Arabic word segmen-
tation prompted us to revisit the topic. Within the
NMT context, Huck et al. 2017 studied the im-
pact of linguistically-aware word segmentation on
the translation from English to German. In their
work, the linguistically aware techniques show
some gains from combining linguistically-aware
segmentation with BPE. In our work, we have ob-
served similar gains from the combination with
BPE, which suggests that such gains may be re-
producible for other morphologically complex lan-
guages.

6 Conclusions and Future Work

Learning dialectal segmentation using a unified
model (Samih et al., 2017) for the various dialects
can achieve high accuracies provided sufficient
training data. In our experiments, a segmentation
accuracy of 99.4% was reached for Egyptian Ara-
bic. Significant improvements were also achieved
for other dialects. Our hypothesis has been that
a high accuracy dialectal segmenter would maxi-
mize the transfer between the resource rich MSA
machine translation and the resource restricted
Arabic dialects. The experimental results seem to
confirm that there is some advantage from using
a high accuracy dialectal segmenter jointly with
a language independent word segmentation tech-
nique like Byte-Pair Encoding or Subword Reg-
ularization. However, in using Subword Regular-
ization in our experiments, we relied on the default
values for the n-best size and smoothing as imple-
mented in Marian. It would be interesting to see
if our observations will continue to hold if these
parameters are carefully tuned.
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BPE Only BPE + DS SR + DS SR only
DS Only 11.47 10.91 11.51 9.71
BPE Only 15.10 16.37 5.03
BPE + DS 2.55 14.64
SR + DS 14.10

Table 5: Average Lenvenshtein Edit Distance between segmented sentences
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Abstract

When speakers code-switch between their na-
tive language and a second language or lan-
guage variant, they follow a syntactic pattern
where words and phrases from the embedded
language are inserted into the matrix language.
This paper explores the possibility of utiliz-
ing this pattern in improving code-switching
identification between Modern Standard Ara-
bic (MSA) and Egyptian Arabic (EA). We try
to answer the question of how strong is the
POS signal in word-level code-switching iden-
tification. We build a deep learning model en-
riched with linguistic features (including POS
tags) that outperforms the state-of-the-art re-
sults by 1.9% on the development set and 1.0%
on the test set. We also show that in intra-
sentential code-switching, the selection of lex-
ical items is constrained by POS categories,
where function words tend to come more often
from the dialectal language while the majority
of content words come from the standard lan-
guage.

1 Introduction

Code-switching (CS) is common in multilingual
communities as well as diglossic ones, where the
language of information and education is different
from the language of speaking and daily interac-
tion. With the increased level of education, mobil-
ity, globalization, multiculturalism, and multilin-
gualism in modern societies, combined with the
rise of social media, where people write in the
way they speak, CS has become a pervasive phe-
nomenon, particularly in user-generated data, and
a major challenge for NLP systems dealing with
that data.

CS is interesting for two reasons: first, there is a
large population of bilingual and diglossic speak-
ers, or at least speakers with some exposure to a
foreign language, who tend to mix and blend two
languages for various pragmatic, psycholinguistic

and sociolinguistic reasons. Second, existing the-
oretical and computational linguistic models are
based on monolingual data and cannot adequately
explain or deal with the influx of CS data whether
spoken or written.

CS has been studied for over half a century
from different perspectives, including theoretical
linguistics (Muysken, 1995; Parkin, 1974), ap-
plied linguistics (Walsh, 1969; Boztepe, 2003; Se-
tati, 1998), socio-linguistics (Barker, 1972; Heller,
2010), psycho-linguistics (Grosjean, 1989; Prior
and Gollan, 2011; Kecskes, 2006), and more re-
cently computational linguistics (Solorio and Liu,
2008a; Çetinoğlu et al., 2016; Adel et al., 2013b).

In this paper, we investigate the possibility of
using POS tagging to improve word-level lan-
guage identification for diglossic Arabic in a
deep-learning system. We present some syn-
tactic characterization of intra-sentential code-
switching, and show that POS can be a power-
ful signal for code-switching identification. We
also pay special attention to intra-sentential code-
switching and examine the distribution of POS
categories involved in this type of data.

The paper is organized as follows: in the re-
mainder of this introduction we present chal-
lenges, definitions, and types of CS, and the partic-
ular aspects involved in Arabic CS. Section 2 gives
an overview of related works. In Section 3, we de-
scribe and record our observations on the data used
in our experiments. Section 4 presents a descrip-
tion of our system and the features used. Section 5
gives the details of our experiments and discusses
the results, and finally we conclude in Section 6.

1.1 Why is CS Computationally
Challenging?

When two languages are blended together in
a single utterance, the traditional phonological
and morphosyntactic rules are perturbed. When
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judged by a standard monolingual model, these ut-
terances can be deemed as ungrammatical or un-
natural. Therefore, CS should generally be treated
in its own terms and not to be conceived of as
a peripheral phenomenon that can be understood
by tweaking and twisting monolingual models and
theories. When two languages come in contact,
this implies the cross-fertilization and the emer-
gence of structures that may be absent in either
languages. When code-switching, speakers com-
promise the syntactic rules of the two languages
involved, sometime adding in or leaving out a de-
terminer, or applying a system of affixation from
one language and not the other.

CS has conveniently been used as a cover term
(Myers-Scotton, 1997; Çetinoğlu et al., 2016) for
all operations where two languages are used si-
multaneously or alternately by the same speaker.
When the user speaks one sentence in one lan-
guage and another sentence in another language,
this has been referred to as inter-sentential code-
switching, while mixing elements from the two
languages together in the same sentence has been
termed intra-sentential. The language that pro-
vides the function words and grammatical struc-
ture is called the host (Bokamba, 1989) or ma-
trix language, while the language being inserted
is called the guest or embedded language.

While inter-sentential CS is relatively less chal-
lenging for computational analysis, as each sen-
tence still follows a monolingual model, intra-
sentential CS poses a bottleneck challenge. It
needs a special amount of attention, because it is
only this type that involves the lexical and syn-
tactic integration and activation of two language
models at the same time. NLP systems trained on
monolingual data suffer significantly when trying
to process this kind bilingual text or utterance.

CS has proved challenging for NLP technolo-
gies, not only because current tools are geared
toward the processing of one language at a time
(AlGhamdi et al., 2016), but also because code-
switched data is typically associated with addi-
tional challenges such as the non-conventional or-
thography, non-canonicity (nonstandard or incom-
plete) of syntactic structures, and the large number
of OOV-words (Çetinoğlu et al., 2016), which sug-
gest the need for larger training data than what is
typically used in monolingual models. Unfortu-
nately, shortage of training data has usually been
cited as the reason for the under-performance of

computational models when dealing with CS data
(Adel et al., 2015).

The study of CS does not only help downstream
tasks (like ASR (automatic speech recognition),
IR (information retrieval), parsing, etc.), but it is
also crucial for language generation (e.g. TTS
(text to speech), MT (machine translation), and
automated responses by virtual assistants) in order
to allow computational models to produce natural
sentences that closely match how modern societies
talk.

1.2 Definition and Defining Perspectives

The definition of CS has varied greatly depend-
ing on the different researchers’ attitude and per-
spectives of the operation involved. While some
viewed it as a process where two languages are ac-
tively interacting with each other (ultimately cre-
ating a new code), other viewed the operation just
as two separate languages sitting side-by-side as
isolated islands. Following the first perspective,
Joshi (1982) defined code-switching as the situ-
ation when two languages systematically interact
with each other in the production of sentences
in a framework which consists of two grammat-
ical systems and a mechanism for switching be-
tween the two. Following the second perspec-
tive, Muysken (1995) defined CS as “the alterna-
tive use by bilinguals of two or more languages
in the same conversation”, while other researchers
(Auer, 1999; Nilep, 2006) defined it as the “jux-
taposition” of elements from two different gram-
matical systems within the same speech.

The juxtaposition definition has been widely
cited in the research on code-switching, advanc-
ing a monolingual view on the topic and promot-
ing the idea that bilingual speech is the sum (or
juxtaposition) of two monolingual utterances. The
literal meaning suggests placing two heteroge-
neous and isolated pieces from different languages
next to each other, but, in fact, foreign phrases
are usually syntactically integrated and may often
change phonologically, morphologically and prag-
matically to fit homogeneously in the new posi-
tion. The term also has a sense of randomness,
which departs from the fact that CS is patterned
and predictable.

The view we adopt is that when people code-
switch, they interweave (Lipski, 2005) or blend
two languages together, and the grammar of code-
switching depends, to a large extent, on which lan-
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guages are being interwoven, where, when, how,
and by whom. The where and when relates to the
sociolinguistic factors, such as the situation and
power relations, and the how and by whom to the
psycholinguistic factors, such as speakers’ compe-
tence and proficiency in either or both languages.
This is why we see a wide range of regular patterns
as well as highly idiosyncratic behavior.

1.3 CS Types and Categories

A speaker can turn from one language to the
other at the sentence level, or he/she can make
the turn within the same sentence. Some re-
searchers (Muysken et al., 2000) use the term
“code-switching” to refer to the former case while
reserving the term “code-mixing” to refer to the
latter. However, these two types have more con-
ventionally been termed as inter-sentential and
intra-sentential code-switching, respectively, as
explained above.

Intra-sentential CS has further been divided by
Muysken et al. (2000) into three types: 1) insertion
where words or phrases from one language are in-
serted into another, 2) alternation where there is a
total shift from one language into the other, e.g.
starting the sentence in one language and ending
in another, and 3) congruent lexicalization similar
to insertion, but with a high frequency, and found
in typologically similar language pairs by fluent
bilinguals.

Another classification is by looking at the na-
ture of the language pairs, CS can be classified
as diglossic, i.e. between varieties of the same
language (e.g. Standard and Egyptian Arabic);
typologically-related, i.e. between language pairs
that belong to the same language family (e.g. En-
glish and Spanish); or typologically-distinct, i.e.
between language pairs that come from different
language families (e.g. Chinese and English). It
has been suggested that CS between typologically
similar languages is facilitated in ways that are
different from (and not found in) those in typo-
logically distinct languages (Lipski, 2005; Chan,
2009). By contrast, dialect/standard variation has
been viewed by some as a form of style shifting
(Trudgill, 1986) rather than proper CS, while oth-
ers argue that style-shifting may serve the same
kind of functions in conversation as CS (Boztepe,
2003), and that CS can happen between language
varieties as well as different languages (Gardner-
Chloros, 1991). It is to be noted however, that in

diglossic code-switching, the shift is more likely
to be lexical, morphological, and structural, rather
than phonological, unlike the other two cases
when we have two completely distinct language
systems.

1.4 Peculiarities of Arabic CS

Arabic is a diglossic language, where the lan-
guage of education is different from the language
of speaking. Dialectal Arabic has traditionally not
enjoyed the same prestige, socio-economic sta-
tus, and official recognition as MSA. Dialects, by
nature, diverge from the standard language, and,
therefore, they can easily and freely draw from the
larger repository of the standard language.

It has been suggested that CS most frequently
happens from the subordinate language to the
more superior one not vice versa (Lipski, 2005).
This, however, might be true in general, but not in
the absolute sense, as CS to the so-called subordi-
nate language may be for the back-stage commu-
nicative purposes (e.g. establishing identity and
friendliness or referencing a cultral meme).

Code-switching to MSA is used to establish au-
thority and maintain credibility. Using the dialect
(or mother tongue) on the other hand signifies a
sense of belonging, community and solidarity, and
attracts a higher level of attention and understand-
ability. In other words, MSA is the intellectual
language, while dialect is the emotive one.

The data used in the experiments in this pa-
per comes from Twitter which are in the written
modality, and this can significantly vary from the
spoken interactions. Arabic speakers’ competence
in spoken MSA is remarkably lower than in the
written one. While most Arabic speakers with
some level of education can write in MSA, far
fewer are able to utilize MSA in speaking. Spo-
ken CS can be observed more with public speak-
ers, like presenters, politicians and lecturers, and
less often with ordinary people.

Moreover, there is a large number of lexi-
cal items which have shared orthography in EA
(Egyptian) and MSA, though the pronunciation
is different, e.g. Y»



A�JÓ muta>ak~id/mito>ak~id

“sure”, �éÊÓA¿ kamilap/kamolap “full”, and I. K
Q�̄
qariyb/quray~ib “near”. This is generic to some
extent, as the pattern mutaR1aR2~iR3, for in-
stance, is changed to mitoR1aR2~iR3 where R
stands for the root letter, or cardinal. As Twit-
ter data is written without diacritization, there is
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no way to know precisely whether words are pro-
nounced with dialectal or standard accent, though
the context can give some clue, and we think that
this kind of distinction was left to the annotators’
best judgment.

Arabic, as a morphologically-rich language,
has its peculiar behavior of merging morphemes
and clitics from the matrix language to the em-
bedded language. In diglossic mixed codes,
standard verbs can show dialectal morphology,
whether through affixes or templatic vowel shift-
ing, e.g. ÑêËAêÊ�Q�
ë hayirosilhAlohum “will send
it to them”. For foreign words, they can re-
ceive agreement morphology AîD
J.ºJ
ë haykabiyhA
“he will copy it”. This type of morpho-syntactic
blending is stereotypical of CS when Arabic, or
one if its dialects, is the matrix language.

2 Related Work

2.1 Computational Approaches
Research on computational approaches to CS has
been mainly concentrated in four areas: predict-
ing code-switching points, word-level language
identification, POS tagging, and automatic speech
recognition. However, some relatively recent re-
search has tried to tackle CS in MT (Johnson et al.,
2017), question answering (Raghavi et al., 2015),
sentiment analysis (Vilares et al., 2015) and infor-
mation retrieval (Chakma and Das, 2016).

The task of predicting code-switching points
is significantly different from word-level code-
switching identification, because in the former the
classifier is allowed only to look at the past (pre-
vious) words and predict which language the com-
ing word is going to be in, whereas in the latter, the
classifier has the fuller context and evidently can
achieve much higher accuracy. Moreover the for-
mer focuses on the elements or points after which
you can make the switch, while the latter looks at
the elements being switched themselves.

Solorio and Liu (2008a) pioneered the work on
CS and developed an ML (machine learning) clas-
sifier to predict code-switching points in Spanish-
English. The data they used was recorded con-
versations among three English-Spanish bilingual
speakers. The conversations included 922 sen-
tences and were manually transcribed and anno-
tated with POS tags. They trained their Naive
Bayes classifier on a number of features including
language ID, lemma and POS tags and reported an
f-score of 28%, with 1% positive variance gained

through the POS feature.
In another effort, Solorio and Liu (2008b) tried

POS tagging on Spanish-English CS data and con-
cluded that feeding the output of two monolingual
taggers to an ML algorithm yielded the best re-
sults.

Çetinoğlu et al. (2016) pointed out that POS
tagging of CS data proved much harder than tag-
ging monolingual texts, as models could reach
97% accuracy for the latter, but only around 77%
for the former. They attribute the poor perfor-
mance largely to the lack of CS annotated data,
and the fact that many systems just devise meth-
ods to choose from the output of two monolingual
POS taggers, e.g. the work of Solorio and Liu
(2008b) and Sharma et al. (2016).

Similar to the work of (Solorio and Liu,
2008a), Adel et al. (2013b,a) tried to predict code-
switching points for conversational speech in the
Mandarin-English SEAME corpus to improve an
ASR model. They used recurrent neural network
language modeling relying on POS tags and using
a factorized output layer. They noted that speak-
ers most frequently switch to another language
for nouns and object noun phrases. They also
assumed that the switching attitude is speaker-
dependent and clustered speakers into classes with
similar switching attitude. They reported an ac-
curacy of 43.31% and proved that POS tags have
statistically significant role on improving the re-
sults. Adel et al. (2013b) tried to accommodate
bilingual data by merging monolingual resources,
such as the English and Mandarin Dictionaries,
the output of two separate POS taggers, the Stan-
ford POS tagger for Mandarin, and the Stanford
tagger for English, and using two monolingual
language models. Additionally they hard-coded
some phonological rules to accommodate Singa-
porean English. They later extended their features
to include Brown clusters, open class words and
word embeddings (Adel et al., 2015) and found
that Brown word clusters, part-of-speech tags and
open-class words are the most effective at reduc-
ing the perplexity.

Fewer studies have focused on CS between
related language varieties which is typically a
diglossic kind of CS between a standard language
and a dialect, e.g. Cypriot Greek and Standard
Modern Greek (Tsiplakou, 2009).

CS research on Arabic included POS tagging
and word-level language identification. AlGhamdi
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et al. (2016) explored different technique for the
POS tagging of CS data and concluded that ap-
plying a machine learning framework as a voting
mechanism on top of the output of two mono-
lingual POS taggers achieves the best perfor-
mance. Word-level CS identification for Ara-
bic (along with Spanish–English) has been fea-
tured in a couple of shared tasks: the First
Shared Task on Language Identification in Code-
Switched Data (Solorio et al., 2014) and the Sec-
ond Shared Task on Language Identification in
Code-Switched Data (Molina et al., 2016), of
which Samih et al. (2016) was the winning sys-
tem, and against which we compare our results in
this project.

Eskander et al. (2014) studied CS between EA
written in Roman script (Arabizi) and English.
Habash et al. (2008) created a standard annotation
guidelines for CS between MSA and dialects.

CS has also been studied in Arabic as a predictor
of social influence in the collaborative writing in
Wikipedia discussion pages in (Yoder et al., 2017)
and it was found that CS is positively associated
with the editor’s success in winning an argument.

We notice from the literature that in some in-
stances POS tagging has been used to aid with
the identification of code-switching points, and in
some other instances language identification has
been used as an indicator or a feature for POS
tagging, showing what (Çetinoğlu et al., 2016) re-
ferred to as task inter-relatedness, or the cyclic na-
ture of task dependencies. In our work, we use a
POS tagger as a predictor of CS. The POS tagger
used has been trained specifically on CS data.

3 Data Description

The organizers of the Second Shared Task on
Language Identification in Code-Switched Data
(Molina et al., 2016) provided the annotated
dataset for the MSA–EA code-switched pairs. The
data consists of 8,862 tweets (185,928 tokens) as
training set, 1,117 tweets (20,688 tokens) as de-
velopment set and 1,262 tweets (20,713 tokens) as
final test set. The tagset statistics for the training
set are shown in Table 1.

Furthermore, the training data contains 970
(11%) intra-sentential CS tweets, i.e. tweets with
both lang1 (MSA) and lang2 (EA); 865 (10%)
tweets with lang2 only; and the remaining tweets
(79%) with lang1 only.

We analyze the POS distribution in the data us-

Labels Token Count Token Ratio %
ambiguous 1,186 0.64
unk 0 0.00
lang1 127,690 68.70
lang2 21,722 11.69
mixed 16 0.01
ne 21,567 11.60
other 13,691 7.37

Table 1: Tag count and ratio in the training set, where
lang1 is MSA, lang2 is EA, and ne is a named entity.

ing the prediction of a specially designed POS tag-
ger, described in 4.1, and notice that in those intra-
sentential CS sentences, the majority of func-
tion words (particles, adverbs and pronouns) come
from lang2 (dialect), while the majority of content
words (adjectives, verbs and nouns) come from
the lang1 (standard language). The distribution
of lang1 and lang2 by POS is shown in Figure 1.

Figure 1: POS Distribution in CS data

Figure 2 shows CS behavior on a sample of
users, and it indicates that the switching attitude
is idiosyncratic and user-dependent.

Figure 2: CS Distribution by Users

Data preprocessing: We transformed Arabic
scripts to SafeBuckwalter (Roth et al., 2008), a
character-to-character mapping that replaces Ara-
bic UTF alphabet with Latin characters to reduce
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size and streamline processing. Also in order to re-
duce data sparsity, we converted all Persian num-
bers (e.g. 2 ,1) to Arabic numbers (e.g. 1, 2),

Arabic punctuation (e.g. ‘,’ and ‘;’) to Latin punc-
tuation (e.g. ‘,’ and ‘;’), removed kashida (elonga-
tion character) and diacritics, and separated punc-
tuation marks from words.

4 System Description

Deep learning and neural nets have been used ex-
tensively in the past decade and were shown to sig-
nificantly outperform traditional (linear) ML mod-
els. The proclaimed advantage of deep learning is
that it eliminates the need for feature engineering.
Yet, there has been a growing interest recently to
augment neural nets with more and more linguis-
tic features, which has been shown to boost per-
formance for many tasks.

We use a DNN (Deep Neural Network) model
mainly suited for sequence tagging and is a
variant of the bi-LSTM-CRF architecture (Ma
and Hovy, 2016; Lample et al., 2016; Reimers
and Gurevych, 2017; Huang et al., 2015). Our
implementation is mostly inspired by the work
of Reimers and Gurevych (2017). In its basic
configuration, it combines a double representation
of the input words by using word embeddings
and a character-based representation with CNNs
(convolutional Neural Networks). The input
sequence is processed with bi-LSTMs, and the
output layer is a linear chain CRF. We augment
this model with various layers to accommodate
the different features we want to incorporate. The
features used in our model are explained below.

4.1 Dialectal POS Tagger
We develop a POS tagger using the data described
in Darwish et al. (2018). The tagger used in this
paper is developed using a deep neural network
model, unlike Darwish et al. (2018) who use a lin-
ear model. Our model predicts POS tagging at the
word level (not the token level), to suit how the
CS data is structured. We experiment with two
variants of the model, one that works with fine-
grained POS tags and one that uses coarse-grained
tags.

Basically, the difference between fine and
coarse tags is that in fine tags we preserve and con-
catenate the POS representation of the affixes and
clitics, while in coarse tags we eliminate affix rep-

Word Translit. / Fine Coarse
Gloss Tag Tag

½J.j�
K. byHbk prog_part Verb

likes+you +v+pron
A 	KQ�.ªJ
ë hyEbrnA will+ fut_part Verb

consider+us +v+pron
QÒªË@ð wAlEmr and+ conj+det Noun

the+life +noun
½J.Ê�̄ qlbk noun+pron Noun

your+heart
½�®K
A£ TAyqk adj+pron Adj

standing+you

É�̄ 

BA« EAl>ql at+ prep+det Adj

the+least +adj

Table 2: Examples of unsegmented words with fine and
coarse POS tags.

resentation and keep the POS for stems only. The
distinction between fine and coarse tags is illus-
trated further with some examples in Table 2.

Our system achieves 92.38% accuracy with the
coarse tags and 88.43% using the fine tags. The
gap in performance is mostly due to the size of the
tagset. The number fine POS tags observed in the
data is 218, while there are only 28 coarse tags.
It is to be mentioned that the reported accuracy
for segmented words by Darwish et al. (2018) is
92.9%.

4.2 Features Used
Here we describe the features used in our deep
learning model.

POS tags. We include POS tags, as predicted by
the specially developed model described in 4.1
above, as a layer in the neural network model.

Word-level embeddings allow the learning algo-
rithms to use large unlabeled data to generalize be-
yond the seen training data. We explore randomly
initialized embeddings based on the seen training
data and pre-trained embedding.

For pre-trained embedding, we use FastText
(Bojanowski et al., 2017) on a corpus that we
crawled from the web with a total size of
383,261,475 words, consisting of user-generated
texts from Facebook posts (8,241,244), Twitter
tweets (2,813,016), user comments on the news
(95,241,480), and MSA texts of news articles
(from Al-Jazeera and Al-Ahram) of 276,965,735
words. After building the embeddings, we run the
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list of words in our dataset by the predictor in the
word vector model to ensure that we get represen-
tations of all the words and reduce the number of
OOVs (out of vocabulary words).

We find significant improvement using FastText
embedding over the traditional word2vec repre-
sentation (Mikolov et al., 2013). This is probably
due to the utilization of sub-word (ex. prefixes or
suffixes) information in the former.

Character-level CNNs. Although originally
designed for image recognition, CNNs have
proven effective for various NLP tasks due to their
ability to encode character-level representations
of words as well as extract sub-word information
(Collobert et al., 2011; Chiu and Nichols, 2016;
dos Santos and Guimarães, 2015).

Bi-LSTM Recurrent neural networks (RNN)
are well suited for modeling sequential data,
achieving ground-breaking results in many
NLP tasks (e.g., machine translation). Bi-
LSTMs (Hochreiter and Schmidhuber, 1997;
Schuster and Paliwal, 1997) are capable of
learning long-term dependencies and maintaining
contextual features from both past and future
states while avoiding the vanishing/exploding
gradients problem. They consist of two separate
bidirectional hidden layers that feed forward to
the same output layer.

CRF is used jointly with bi-LSTMs to avoid
the output label independence assumptions of
bi-LSTMs and to impose sequence labeling
constraints as in Lample et al. (2016). In our
experiments with this task we find that CRF has a
slight advantage over the softmax optimizer.

Brown clusters (BC). Brown clustering is an
unsupervised learning method where words are
grouped based on the contexts in which they
appear (Brown et al., 1992). The assumption
is that words that behave in similar ways tend
to appear in similar contexts and hence belong
to the same cluster. BCs can be learned from a
large unlabeled corpus and have been shown to
improve POS tagging as well as other sequence
labelling tasks (Owoputi et al., 2013; Stratos and
Collins, 2015). We test the effectiveness of using
Brown clusters in the context of code-switching
experimentation in a DNN model by training

Figure 3: DNN Architecture.

BCs on our crawled code-switched corpus of 380
million words (mentioned above) with 100 Brown
Clusters.

Named Entity Gazetteers We use a large collec-
tion of named entity gazetteers of 40,719 unique
names from Attia et al. (2010), who collected
named entities from the Arabic Wikipedia, and
Benajiba et al. (2007), who annotated a corpus as
part of a named entity recognition system. The
assumption is that the gazetteer will enhance the
system’s recognition of NE’s which constitutes
between 11 and 14% of the tags in the datasets.
The feature is used as a binary class, i.e. whether
the word is present in the gazetteer list or not.

Spell Checking Word List Dialectal lexicon and
inflection can vary significantly from the standard
one. Based on this assumption we check for each
word whether or not it exists in a large word list
of fully inflected MSA words (Attia et al., 2012).
The word list contains 9,196,215 and is obtained
from the web as an open source resource 1.

The architecture of our model (with the best
performance) is shown in Figure 3. For each
word in the sequence, the CNN computes the
character-level representation with character em-
beddings as inputs. Then the character-level rep-

1https://sourceforge.net/projects/arabic-wordlist/
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resentation vector is concatenated with both word
embeddings vector and feature embedding vec-
tors (Brown Clusters, POS, and Gazetteers) to
feed into the bi-LSTM layer. Finally, an affine
transformation followed by a CRF is applied over
the hidden representation of the bi-LSTM to ob-
tain the probability distribution over all the code-
switching labels. Training is performed using
stochastic gradient descent with a momentum of
0.9 and batch size equal to 150. We employ
dropout (Hinton et al., 2012) to mitigate over-
fitting, and early-stopping (Caruana et al., 2000)
(with patience of 35). We further use the hyper-
parameters detailed in Table 3.

Layer Hyper-Parameters Value
Word Emb. dimension 300
Characters Emb. dimension 100

Characters CNN
window size 4
number of filters 40

POS Emb. dimension 166
Clustering Emb. dimension 100
Gazetteer Emb. dimension 2
Bi-LSTM state size 100

Dropout
dropout rate 0.5
batch size 150

Table 3: Parameter fine-tuning

5 Experiments and Results

We conduct a number experiments with different
layers in the neural network model stacked on
top of each other, making use of word and char-
acter representation, POS, FastText pre-trained
embeddings, and other features. This allows
us to see the significance of each feature and
how it contributes to the overall performance of
the system. The experiments are shown in Table 4.

The results in Table 4 are reported for the
f-score measure on the validation set, except for
the last row which gives the best model results
on the test set. The results generally show that
the DNN model is incrementally improving by
adding more features and external resources. The
best result is obtained with the aggregation of all
features, excluding the SP (spell checking word
list).

In the training data, lang1 (MSA) is the major-
ity class representing 68.7% of the labels. We use
majority voting as the baseline in order to detect if

# Experiments f-score averaged
f-score

1 Baseline 30.97 7.88
(majority voting)

2 POS-coarse 66.19 40.57
3 POS-fine 72.99 45.28
4 Words 83.78 55.78
5 Words+POS-fine 84.68 57.06
6 Chars 84.02 56.52
7 Words+Chars 84.87 57.36
8 Words+Chars 86.47 58.15

+POS-fine
9 Words+Chars 89.18 59.71

+POS+BC
10 Words+Chars 89.21 59.63

+POS+BC+GZ
11 Words+Chars 91.90 61.33

+POS+BC+GZ
+Embed

12 Words+Chars 91.48 61.02
+POS+Embed
+BC+GZ+SP

13 Words+Chars 91.92 61.35
+POS+BC+GZ
+Embed+PP
Results on 88.92 50.48
Test set

Table 4: DNN experiments and Results. Abbreviations:
BC: Brown Clusters, GZ: named entity gazetteer, SP:
Spelling word list, PP: post-processing

POS tags alone do send any positive signal to the
model at all. We note that the baseline is very low
which is due to the fact that the tag distribution in
the training set is disproportionate with both the
validation and the test set, where lang1 represents
only 30.96% and 28.10% of the data respectively.

It is to be noted that we apply post-processing
(PP) to the output of the prediction. The idea is
that foreign words (words written in Latin script),
punctuation marks, user names (words starting
with the ‘@’ sign), and hashtags (words starting
with the ‘#’ sign) should all be assigned the other
tag. As these are deterministic cases, we develop a
post-process procedure to correct errors in the pre-
dictions of the probabilistic model, and to make
sure that they are assigned the right tag.

Our experiments show that POS tags do give a
strong signal to the network that leads to a signifi-
cant improvement over the baseline, from 30.97%
to 66.19% using coarse-grained POS features and
72.99% using the fine-grained tags. We also no-
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Labels Token
Count

Token
Ratio %

Samih et
al. (2016)

Current
System

ambiguous 10 0.05 0.00 0.00
lang1 6,406 30.96 0.88 0.91
lang2 9,355 45.22 0.92 0.93
mixed 2 0.01 0.00 0.00
ne 3,024 14.62 0.84 0.86
other 1,891 9.14 0.97 0.98
Accuracy – – 0.900 0.919

Table 5: F1 score token level comparison between
Samih et al. (2016) and the current system on the de-
velopment dataset.

Labels Token
Count

Token
Ratio %

Samih et
al. (2016)

Current
System

ambiguous 117 0.57 0.000 0.00
unk 26 0.13 0.000 0.00
lang1 5,804 28.10 0.854 0.860
lang2 9,630 46.62 0.904 0.913
mixed 1 0.00 0.000 0.000
ne 2,363 11.31 0.777 0.789
other 2,743 13.28 0.957 0.965
Accuracy – – 0.879 0.889

Table 6: F1 score token level comparison between
Samih et al. (2016) and the current system on the test
dataset.

tice that using the predicted fine-grained POS is
significantly more helpful than using the predicted
coarse-grained one (although the prediction ac-
curacy for fine-grained tags is lower). This is
probably because the fine-grained POS tags en-
code more lexical information (related to clitics
and affixes) that can have distinctive combina-
tions. Adel et al. (2015) claimed that part-of-
speech (POS) tags can predict CS points more re-
liably than words themselves, but our results show
that words still give a stronger signal than POS
tags alone.

We also notice that Brown Clusters, named en-
tity gazetteers and FastText pre-trained embed-
dings contribute to incrementally improve the per-
formance of the system. Unfortunately adding in-
formation from the spelling word list did not show
any improvement on the system, and this is why it
is removed from the final system architecture.

Now we compare our best model to the state-of-
the-art system of Samih et al. (2016), which won
the 2016 Second Shared Task on Language Iden-
tification in Code-Switched Data (Molina et al.,
2016) on the MSA–EA dataset. We compare the
performance of the two systems in terms of f-score
accuracy on both the development and test set,
in Table 5 and Table 6 respectively. We also in-
clude the number of instances and the ratio per-
centage for each label. As the tables show, the cat-
egory lang2 constitutes the majority class for both

amb ne mixed other L1 L2
amb 0 0 0 0 1 9
ne 0 2507 0 14 277 226
mx 0 0 0 0 0 2
other 0 4 0 1844 7 36
L1 12 121 0 9 5931 333
L2 1 188 0 9 423 8734

Table 7: Confusion matrix for the development dataset.

the validation and test sets (45.22% and 46.62%
respectively), contrary to the training set where
lang1 makes up 68.70% of the labels.

For the development set our system outperforms
that of Samih et al. (2016) by 1.9% absolute with
significant gains for lang1 (3% absolute) and ne
(2% absolute). For the test set our system again
outperforms that of Samih et al. (2016) by 1.0%
absolute with the gain spread almost evenly across
all labels.

Table 7 presents the confusion matrix for the
validation set, which shows that ne suffers the
largest confusion as it gets mixed up as either
lang2 (EA) or lang1 (MSA). This is due to the
fact that many named entities in Arabic can also be
used as ordinary words, and, unlike English, there
is no case marking or other orthographic features
that can superficially distinguish the two. For ex-
ample, the word Õç'
Q» krym, can mean either “Ka-
reem” as an ne or “generous” as an adjective, and
ÈAÔg. jmAl can mean “Jamal” as an ne or “beauty”
as a noun. The second largest confusion is be-
tween lang1 and lang2, where we find that a con-
siderable amount of the mix-up coming from func-
tion words, such as ð wa “and”, ð



@ >aw “or” and

úÍ@
 <ilY “to”, which can equally be used as either
lang1 or lang2, depending on the context.

6 Conclusion

We have presented a neural network system for
conducting word-level code-switching identifica-
tion. Our system outperforms the current state-
of-the-art, and we show that adding linguistic fea-
tures can contribute to improving the performance
of the deep learning models. We show that POS
tagging gives a strong positive signal for code-
switching prediction. We also examine the syntac-
tic patterns in diglossic code-switching, and ob-
serve that dialects show a bias in the choice of
word categories toward dialectal function words
over content words.
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Abstract

Arabic sentiment analysis models have em-
ployed compositional embedding features to
represent the Arabic dialectal content. These
embeddings are usually composed via or-
dered, syntax-aware composition functions
and learned within deep neural frameworks.
With the free word order and the varying syn-
tax nature across the different Arabic dialects,
a sentiment analysis system developed for one
dialect might not be efficient for the oth-
ers. Here we present syntax-ignorant n-gram
embeddings to be used in sentiment analy-
sis of several Arabic dialects. The proposed
embeddings were composed and learned us-
ing an unordered composition function and a
shallow neural model. Five datasets of dif-
ferent dialects were used to evaluate the pro-
duced embeddings in the sentiment analy-
sis task. The obtained results revealed that,
our syntax-ignorant embeddings could outper-
form word2vec model and doc2vec both vari-
ant models in addition to hand-crafted system
baselines, while a competent performance was
noticed towards baseline systems that adopted
more complicated neural architectures.

1 Introduction

According to the used features, existing Arabic
Sentiment Analysis (ASA) systems can be classi-
fied into: (a) hand-crafted-based systems (Abdulla
et al., 2013; El-Beltagy et al., 2017) where linguis-
tic/stylistic and lexical features are generated by
morphological analyzers and semantic resources
and (b) text embeddings-based systems that adopt
word/sentence embeddings using one of the com-
position models (Gridach et al., 2017; Medhaffar
et al., 2017). While the first type of ASA systems
provide a comparable performance, the genera-
tion of hand-crafted features is considered a labor-
intensive task that requires using language/dialect-
specific NLP tools and techniques (Altowayan and

Tao, 2016). In contrast, text embeddings-based
systems can use the raw unprocessed input con-
tent to generate expressive features to represent
words or even longer pieces of text through using
the composition models (Mikolov et al., 2013).

Composition models aim to construct a
phrase/sentence embeddings based on its
constituent word embeddings and structural
information (Iyyer et al., 2015). Two main
types of these models can be recognized: (a)
Ordered models where the order and linguis-
tic/grammatical structure of the input words do
count while constructing the phrase/sentence
vector and (b) Unordered models in which the
word representations are combined irrespective
of their order using algebraic operations (Sum
of Word Embeddings (SOWE), average (Avg),
mean and multiplication functions) (Mitchell and
Lapata, 2010).

Context words along side their syntactic prop-
erties have been considered essential to build ef-
fective word embeddings able to infer the seman-
tic/syntactic similarities among words, phrases or
sentences. Consequently, most of the recently-
developed SA systems adopted deep neural net-
work architectures such as Convolutional Neural
Networks (CNNs) and Recursive Neural Networks
(RecNNs) where ordered composition models are
employed to grasp the syntactic and linguistic re-
lations between the words (Al Sallab et al., 2015;
Dahou et al., 2016). These systems required more
training time to learn words’ order-aware embed-
dings due to the high computational complexity
consumed at each layer of the model (Iyyer et al.,
2015). However, such embeddings resulting from
ordered compositionality might not form discrim-
inating features for the Arabic dialects; especially
that these dialects have a free word order and vary-
ing syntactic/grammatical rules (Brustad, 2000).
For instance, the dialectal (Levantine) sentence in-
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­rkf�A¡ A�� Atyb�
O S V

­rkf�A¡ Atyb� A��
O V S

Atyb� A�� ­rkf�A¡
V S O

A�� Atyb� ­rkf�A¡
S V O

Table 1: Free word order of dialectal Arabic.

Dialect Sentence POS
Levantine �A��� ¨JA� �Rw�� Adjective

The situation is okay
Moroccan º�d`F ¨JA� ��� Negation

We are not happy

Egyptian 
yb�� £A��A� ¨JA� 
n� Verb

I was walking towards home

Table 2: Syntactic differences across the Arabic
dialects.

vestigated in Table 1 meaning “I liked this idea”
can be represented by several word orders: VSO,
SVO, OSV and OVS and yet, implies the same
meaning and sentiment.

On the other hand, the Arabic dialects show
phonological, morphological, lexical, and syntac-
tic differences such that the same word might in-
fer different syntactic information across different
dialects. To clarify that, Table 2 reviews how the
word “¨JA�” has several Part Of Speech (POS)
tags, multiple meanings and different sentiments
across three Arabic dialects.

Thus, to handle such informality of DA, we pro-
pose an unordered composition model to construct
sentence/phrase embeddings regardless of the or-
der and the syntax of the context’s words. Nev-
ertheless, when coming to the sentiment analysis
task, sentence embeddings that are merely com-
posed and learned based on the context words do
not always infer the sentiment accurately. This is
due to the fact that, some words of contradict sen-
timents might be mentioned within identical con-
texts which leads to map opposite words close to
each other in the embedding space. To clarify that,
both sentences in Example 1 and Example 2 con-
tain the same context words organized in the same
order; yet the first sentence is of positive polarity
while the second has a negative sentiment since
the words “�tm�” and “�m�” are antonyms that

mean “interesting” and “boring”, respectively.

Example 1 �}wny� A� �kK� �tm� �lyf�A¡1

Example 2 �}wny� A� �kK� �m� �lyf�A¡2

One way to address this issue is to learn the em-
beddings from sentiment-annotated corpora such
that the sentiment information is incorporated
along with the contextual data within the com-
posed embedding during the training phase. This
was examined with the English language, as Tang
et al. (2014) presented sentiment-specific word
embeddings (SSWE) composed via unordered
Min, Max and Avg composition models. An-
other pairing between Avg composition functions
and supervised learning was introduced by (Iyyer
et al., 2015) where a neural model of two hid-
den layers called Deep Averaging Neural network
(DAN) was used to learn the embeddings together
with sentiment, yielding a performance competent
to much more complicated models such as Rec-
NNs and CNNs-Multi Channel (CNN-MC).

While some of the recent ASA systems con-
sidered the syntactic information in the composed
embeddings (Al Sallab et al., 2015), other mod-
els used pretrained or unsupervised unordered
word/doc embeddings as features to mine the sen-
timent of MSA/DA content (Altowayan and Tao,
2016; Gridach et al., 2017). However, mining the
sentiment of DA using syntax-aware ordered em-
beddings might be ineffective especially with the
drastic differences between Eastern and Western
Arabic dialects (Brustad, 2000). In addition, for
the SA task, the embeddings learned from un-
labeled data are not as discriminating as those
learned with sentiment information integrated in
the embedding vectors (Tang et al., 2014). This
evokes the need to provide a sentiment-specific,
dialect-independent embeddings with which the
gap resulted from the differences among Arabic
dialects can be bridged. Such embeddings would
ignore the syntactic structure and focus on the se-
mantic and sentiment information.

Inspired by (Iyyer et al., 2015; Tang et al.,
2014), we hypothesize that representing a sen-
tence by its constituent sentiment-specific, un-
ordered and syntax-ignorant n-gram embeddings
can handle the diversity of the Arabic dialects
and provide better features for the dialectal Ara-
bic SA task. In the current paper, we present a SA

1This movie is incredibly interesting.
2This movie is incredibly boring.
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framework whose features are n-gram embeddings
learned from labeled data (sentiment-specific) and
composed via the additive unordered composition
function (syntax-ignorant) known as SOWE. The
embeddings composition and the sentiment learn-
ing processes were conducted within Tw-StAR
framework which forms a shallow feed-forward
neural network of single hidden layer. The con-
tributions of this study can be briefly described as
follows:

1. Based on the outperformance of SOWE com-
position function in sentence semantic sim-
ilarity applications (White et al., 2015), we
believe that SOWE can be an effective re-
placement of the Average (Avg) composi-
tion functions used in (Iyyer et al., 2015)
and (Mikolov et al., 2013). Besides its low
computation complexity as it conducts an
element-wise sum over the word embedding
vectors contained in a sentence, SOWE can
capture and encode semantic and synony-
mous information in the resulting composed
embeddings (White et al., 2015).

2. Given that, DA has a free word order and
a varying syntactic nature, therefore, un-
like (Tang et al., 2014) whose embeddings
were generated using corrupted input n-
grams from which the syntactic context na-
ture are learned, we feed whole n-grams to
our model as the training objective is to cap-
ture the semantic and sentiment relations re-
gardless of the order and the syntax of the
context words.

3. In contrast to previous studies, that composed
unordered embeddings within deep neural
models (Iyyer et al., 2015), the embeddings
introduced here are generated and learned
within a shallow feed-forward neural model
as we are seeking to investigate whether SA
of DA can be performed using less compli-
cated neural architectures.

2 The Proposed Model (Tw-StAR)

As we are seeking to answer the question: To
which extent a shallow neural model, trained
with embeddings specifically formulated to tar-
get DA, can rival complicated neural architec-
tures?, we chose to implement Tw-StAR as a
feed-forward neural network in which sentiment-

Figure 1: Tw-StAR neural sentiment analysis
model.

specific, syntax-ignorant and semantic-enriched n-
grams embeddings are composed using SOWE
function and learned in a supervised manner.
The generated n-gram embeddings were then em-
ployed as discriminative features to predict the
positive/negative sentiment of the tackled input
sentences. As it is shown in Figure 1, Tw-StAR
model is a shallow feed-forward neural network
composed of the following layers: the input or
embeddings layer followed by lambda layer then
a hidden layer and finally an output layer with
softmax function applied for the classification into
positive or negative sentiment.

2.1 Model Description

The embedding layer, in Tw-StAR, acts as a word
lookup table, it is responsible of projecting words
in the input into their corresponding dense vector
representations. Given the input sentences, in or-
der to handle their varying lengths, each sentence
S of l words was formulated as a sequence of fixed-
length n-grams generated using a sliding window
of a specific size C. Instead of using corrupted in-
put n-grams as in the SSWEu model provided in
(Tang et al., 2014) and CBOW in (Mikolov et al.,
2013), whole n-grams were fed to the embedding
layer such that each n-gram is accompanied with
the sentiment label of the sentence from which it
was derived; where [1,0] and [0,1] vectors were
used to represent the positive and negative polar-
ities, respectively. Having the n-grams prepared,
their constituent words are mapped into the corre-
sponding embeddings using the weights matrix M
∈ R|V | xd of the embedding layer, where |V | is
the vocabulary size and d denotes the embedding
dimension.

The weights of the embedding layer were ini-
tialized randomly using Glorot uniform initializer
(Glorot and Bengio, 2010) then optimized while
training the model. It should be noted that, we
chose not to use pretrained word embeddings for
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initialization, as the available Arabic pretrained
word embeddings from (Zahran et al., 2015) and
(Al-Rfou et al., 2013) were generated based on
MSA/Egyptian corpora. We assume that, this can
lead to out-of-vocabulary (OOV) issues especially
with the Tunisian and Moroccan content, used
in this study, where less common words with
MSA/Egyptian do exist. Thus, for a single fixed-
length n-gram containing a sequence of words {wi,
wi+1, wi+2 , ..., wi+C-1}, each word wi is repre-
sented by a unique integer index i ∈ [0,V] and
stored as a one-hot vector veci whose values are
zero in all positions except at the i-th index. To
obtain the embedding vector vi of a word wi, its
one-hot vector veci is multiplied by the matrix M
as in equation (1).

vi = veci ∗M ∈ R1xd (1)

As each row of the embedding matrix M de-
notes the dense embedding representation of a spe-
cific word in the vocabulary, multiplying the one-
hot vector of each word in the input by the em-
bedding matrix M, will essentially select one of M
rows that corresponds to the embeddings of this
word.

The resulting word embeddings were then
combined using the compositional model SOWE
which is applied by the next linear layer Lambda.
In this layer, an element-wise sum is conducted
over the word embedding vectors. Here we could
refer to the fact that, although the n-gram scheme
retains the local order of its constituent words,
formulating the n-gram embeddings vector via
the additive function SOWE, totally ignores the
words’ order since an identical embedding vec-
tor would be composed for any order of the
words contained in an n-gram. Thus, the output
of the lambda layer is a single embeddings vec-
tor Olambda ∈ R1* |d| resulted from summing the
embeddings vectors produced by the embedding
layer which correspond to the input words con-
tained in a window of size C:

Olambda =
C∑

i=1

vi ∈ R1xd (2)

In the subsequent hidden layer (hl), the output
from the previous layer Olambda is subjected to a
linear transformation using the weights matrix Whl
∈ Rdx2 and biases bhl ∈ R1x2:

Ohl = f(Olambda ∗Whl + bhl) ∈ R1x2 (3)

Where Whl and bhl form the model’s parameters
that are learned and optimized during the train-
ing process and f refers to the activation function
that introduces non-linear discriminative features
to our model. Here, we used Hard sigmoid acti-
vation function (h σ). Hard sigmoid is a piece-
wise function whose output are very similar to the
traditional sigmoid, however, it is computationally
cheaper which leads to a smarter model since it
accelerates the learning process in each iteration
(Gulcehre et al., 2016).

Finally, the output Ohl resulting from the hid-
den layer is forwarded into the output layer (Ol)
where a softmax function is applied to induce the
estimated probabilities for each output label (pos-
itive/negative) of a specific n-gram. Where each
n-gram is accompanied with the predicted two di-
mensional label [1,0] denoting positive or [0,1] in-
dicating negative.

ŷ = softmax(Ohl) ∈ R1x2 (6)

Softmax selects the maximum score among the
two predicted conditional probabilities to denote
positive or negative polarity of an input n-gram
where the distribution of the form [1,0] was as-
signed for positive while [0,1] distribution form
was adopted for negative. Thus, if the gold sen-
timent polarity of an n-gram is positive, the pre-
dicted positive score should be higher than the
negative score while if the gold sentiment polar-
ity of a word sequence is negative, its positive
score should be smaller than the negative score.
To decide the polarity of the whole sentence, the
predicted positive scores and negative scores of
n-grams are summed then each of which is di-
vided by the number of the n-grams contained
in this sentence resulting two values represent-
ing the potential positive and negative scores of
the input sentence. The final sentence polarity is,
thus, decided according to the greater among these
two values. Cross-entropy loss between gold sen-
timent distribution and predicted distribution was
adopted such that the loss function of the model:

J(θ) = −
∑

k={0,1}
yk log ŷk (7)

Where y ∈ R2 is the gold sentiment value repre-
sented by a one-hot vector, ŷ is the sentiment dis-
tribution predicted by the model while θ refers to
the parameters (weights and biases) of the model
to be learned and optimized during the training
process.
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Dataset Train Dev Test Voc.
ArTwitter 1,280 320 400 7,253
TEC 1,948 487 608 10,675
TSAC 4,680 1,170 1,516 17,741
MEC 6,561 1,641 2,051 37,888
MDT 2,747 687 860 16,450

Table 3: The statistics of the used datasets.

2.2 Training details and Model’s Parameters
The key hyper parameters of the proposed model
are the sliding window size C and the embeddings
dimension d. We have selected both parameters’
values empirically during the model tuning period.

To train the proposed neural network, the back-
propagation algorithm with Adaptive Moment es-
timation (Adam) stochastic optimization method
(Kingma and Ba, 2014) has been used. Adam op-
timizer combines the early optimization speed of
Adagrad with the better later convergence of var-
ious other methods like Adadelta and RMSprop.
This is done through calculating learning rates and
storing momentum changes for each model pa-
rameter separately.

To deal with the overfitting issue, Dropout was
used as a regularization mechanism. The value of
the dropout parameter was selected empirically
during the model’s tuning period.

3 Experimental Study

3.1 Datasets
For the model evaluation, Tw-StAR was employed
to predict the sentiment in five publicly available
datasets (See Table 3). Four of them were written
in Eastern (Jordanian) and Western (Tunisian, Mo-
roccan) Arabic dialects, while the fifth combined
Eastern, Western and Gulf Arabic dialects. They
are as follows:

• Arabic Twitter Dataset (ArTwitter): com-
bines 2,000 positive/negative tweets mostly
written in the Jordanian dialect (Abdulla
et al., 2013).

• Tunisian Election Corpus (TEC): refers to
3,043 tweets positive/negative combining
MSA and Tunisian dialect where Tunisian
tweets form the majority of the data (Sayadi
et al., 2016).

• Tunisian Sentiment Analysis Corpus
(TSAC): combines 7,366 positive/negative
Facebook comments (Medhaffar et al.,
2017).

Data C=6 C=7 C=8 C=9 C=10
ArTwitter 82.7 83.0 83.3 82.3 81.5
TEC 87.6 87.9 87.9 83.6 81.2
TSAC 86.1 85.9 86.6 86.5 86.3
MEC 63.9 68.6 68.6 67.1 66.5
MDT 73.4 73.4 73.8 73.3 72.5

Table 4: F-measure values (%) obtained with dev
sets for different window sizes.

• Moroccan Election Corpus (MEC): com-
bines 10,253 positive/negative Facebook
comments (Elouardighi et al., 2017).

• Mixed-Dialects Tweets (MDT) (Altowayan
and Tao, 2016): forms a combination of
4,294 positive/negative tweets from three
datasets of MSA and dialectal content in-
cluding: (a) Jordanian: Artwitter (Abdulla
et al., 2013), (b) Egyptian: ASTD (Nabil
et al., 2015) and (c) Multiple dialects: QCRI
(Mourad and Darwish, 2013).

3.2 Results and Discussion

The model’s parameters (C, d, dropout) were as-
signed empirically. Among several window sizes
ranging from 6 to 10, a window size value equals
to 8 was adopted since it produced the best F-
measure in all datasets as it is shown in Table 4.
Consequently, each input sentence is represented
by a set of 8-grams to be fed to the model. Sim-
ilarly, upon examining three embedding dimen-
sions values equal to 50, 100 and 150, and sev-
eral dropout values ranging from 0.2 to 0.5, d=100
and dropout=0.2 were adopted for dimensions and
dropout, respectively.

The efficiency of the proposed n-gram embed-
dings composed by SOWE were compared against
word embeddings (word2vec) and document em-
beddings (doc2vec). Using a supervised learn-
ing strategy with sentiment labels included in the
training corpora, and provided with the same pa-
rameters of Tw-StAR model in terms of win-
dow size and embedding dimensions, we trained
word2vec (Mikolov et al., 2013) and doc2vec (PV-
DBoW/PV-DM) (Le and Mikolov, 2014) algo-
rithms on each of the tackled datasets to generate
the proper embedding features. In the distributed
bag of words (DBoW), the embeddings vector
representing a sentence is composed with words’
order ignored, whereas the distributed memory
variant (DM) follows the CBOW mechanism as
it considers the words order while learning the
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Dataset Model P. (%) R. (%) F1 (%) A. (%)
ArTwitter Combined LSTMs (Al-Azani and El-Alfy, 2017) 87.3 87.3 87.2 87.2

CNNs (Dahou et al., 2016) - - - 85.0
word2vec 72.0 71.9 71.9 72.0
doc2vec (DM) 61.2 60.7 60.1 60.4
doc2vec (DBoW) 63.1 60.6 58.2 59.9
Tw-StAR 85.4 84.9 84.8 84.9

TEC hand-crafted (Sayadi et al., 2016) 67.0 71.0 63.0 71.1
word2vec 62.6 59.7 58.4 61.9
doc2vec (DM) 65.6 59.3 56.4 62.2
doc2vec (DBoW) 62.9 58.9 56.7 61.4
Tw-StAR 87.4 88.4 87.8 88.2

TSAC MLP (Medhaffar et al., 2017) 78.0 78.0 78.0 78.0
word2vec 78.0 77.2 77.4 78.2
doc2vec (DM) 61.0 58.3 57.2 61.7
doc2vec (DBoW) 55.9 54.1 52.1 58.0
Tw-StAR 86.2 86.3 86.2 86.5

MEC hand-crafted (Elouardighi et al., 2017) - - - 78.0
word2vec 63.6 64.0 63.8 69.1
doc2vec (DM) 74.7 65.0 66.4 76.6
doc2vec (DBoW) 60.4 56.6 56.4 69.3
Tw-StAR 76.2 71.2 72.8 79.2

MDT Arabic word embeddings (Altowayan and Tao, 2016) 83.0 76.5 79.6 80.2
word2vec 59.3 59.2 59.2 59.4
doc2vec (DM) 58.5 57.9 57.4 58.4
doc2vec (DBoW) 61.2 59.4 58.2 60.2
Tw-StAR 75.8 74.3 74.3 74.8

Average word2vec 67.1** 66.4* 66.1* 68.1**
doc2vec (DM) 64.2* 60.2** 59.5** 63.8*
doc2vec (DBoW) 60.1** 57.9** 56.3** 61.7**
Tw-StAR 82.2 81.0 81.2 82.7

Table 5: Tw-StAR performances against baseline systems and word2vec/doc2vec for all datasets.
(*,**,***) refers to a significant difference at P-value<0.05, <0.01, <0.001, respectively, compared
to Tw-StAR.

composed sentence embeddings vector (Le and
Mikolov, 2014). Having the word embeddings and
document embeddings generated for each dataset
by word2vec and doc2vec algorithms, they were
used as features to train Tw-StAR neural model
on recognizing the sentiment of the datasets in Ta-
ble 3. This was done through replacing the embed-
dings layer in Tw-StAR by the embeddings pro-
duced by word2vec and both variants of doc2vec.
It should be noted that, word2vec and both vari-
ants of doc2vec were trained in a supervised man-
ner. Thus, their learned embeddings are sentiment
informed as the polarity labels were associated
with the input training instances. This enabled a
fair comparison between word2vec/doc2vec vari-
ants and our sentiment-specific syntax-ignorant n-
grams embeddings.

Table 5, reviews the sentiment classification
performances achieved using n-grams by SOWE,
word vectors by word2vec and sentence vectors by
doc2vec (PV-DBoW/PV-DM) for all datasets. The
obtained performances of Tw-StAR were further
compared against the baseline systems that tack-

led the same datasets and also listed in Table 5;
where P., R., F1 and A. denote the achieved av-
eraged precision, recall, F-measure and accuracy
respectively. It should be mentioned that, due to
the limited work in SA of under-represented di-
alects such as Tunisian and Moroccan, it wasn’t
possible to perform the comparison against text
embeddings-based baselines for these dialects, as
the provided models for MEC and TEC datasets
used only hand-crafted features.

The results in Table 5 suggest the outperfor-
mance of the proposed embeddings over those
generated by word2vec and doc2vec for most
datasets. This was emphasized through the sig-
nificance test (T-test), where the sentiment clas-
sification performance of Tw-StAR with n-grams
embeddings used for training was proved to
be significantly better than that produced with
word2vec/doc2vec embedding features. For in-
stance, the best achieved F-measure was in TEC
dataset with a value of 87.7% compared to 58.4%,
56.4% and 56.7% scored by word2vec, doc2vec
(PV-DM) and doc2vec (PV-DBoW), respectively.
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This could be explained by the ability of SOWE to
capture the semantic information along with the
synonymous relations among words more accu-
rately than the average function used by doc2vec
variants (White et al., 2015). On the other hand,
it can be seen from Table 5 that, for datasets
having an MSA-dominated content such as MEC,
doc2vec (PV-DM) performs better than word2vec
and doc2vec (PV-DBoW). Indeed, the achieved
accuracy for MEC dataset with the embeddings
learned by doc2vec (PV-DM) was 76.6% com-
pared to 69.1% and 69.3% scored by word2vec
and doc2vec (PV-DBoW), respectively. This could
be due to the fact that, doc2vec (PV-DM) is a
syntax-aware embeddings learning method where
it acts as a memory that remembers what is miss-
ing from the context to predict a (typically) cen-
ter word (Le and Mikolov, 2014). Therefore, it
can handle the MSA-dominated data where syn-
tax does matter in indicating the sentiment.

Compared to the state-of-the-art applied on the
tackled datasets, our results showed that Tw-StAR
trained with the proposed embeddings could im-
prove the performance over the baselines in most
of the datasets. As we can see in Table 5, with Tw-
StAR applied, the accuracy increased by 17.1%,
8.3% and 1.2% for TEC, TSAC and MEC datasets,
respectively. On the other hand, the less accuracy
increment was reported in MSA/Moroccan MEC
dataset; This defines the proposed embeddings as
expressive features of pure dialectal content more
than they are of MSA. Since the free word or-
der and varying syntactic structure of dialects can
be be better handled by SOWE. Moreover, for
ArTwitter dataset, a competent performance was
achieved by Tw-StAR against complicated neural
architectures such as CNNs adopted by (Dahou
et al., 2016) and combined LSTMs used in (Al-
Azani and El-Alfy, 2017), where the accuracy de-
creased by 0.1% and 2.3% compared to (Dahou
et al., 2016) and (Al-Azani and El-Alfy, 2017),
respectively. Hence, a shallow neural model such
as Tw-StAR trained with embeddings specifically
composed to target the DA content can rival much
more complicated neural architectures. In addi-
tion, for MDT dataset that contains three different
dialects, although Tw-StAR could not outperform
the baseline system, a satisfying performance was
achieved without the need for a huge training cor-
pus used by (Altowayan and Tao, 2016).

Aiming to inspect the performance of the n-

Dataset word2vec doc2vec Tw-StAR

ArTwitter

TEC

TSAC

MEC

MDT

Figure 2: t-SNE visualization of word vectors
learned by word2vec/doc2vec against word vec-
tors learned by Tw-StAR.

gram embeddings more deeply, we visualized the
embedding vectors learned by Tw-StAR against
word vectors generated by word2vec and para-
graph vectors learned via doc2vec (PV-DBoW).
This is done by projecting the embedding vec-
tors into a two dimensional space using the t-
Distributed Stochastic Neighbour Embedding (t-
SNE) technique (Maaten and Hinton, 2008).

Considering Figure 2, a clustering behavior of
the words that compose n-grams or document
embeddings could be observed in both doc2vec
(PV-DBoW) and Tw-StAR models. In word2vec
model, however, word vectors tend to spread
sparsely in the embeddings space. This was re-
flected on the performance of the embeddings as
discriminating features for the SA task. To clarify
that, considering TSAC dataset, we have noticed
that pure Tunisian dialectal words such “�wb���”
and “¨¡A�3 which bear positive sentiments were
mapped by Tw-StAR model close to each other in
the embeddings space. However, when looking to
the representations created for the same dataset by
doc2vec (PV-DBoW), we have come through the
words “�wb���” and “Tl§A¡”4 which refer to a
positive sentiment, yet they are mapped close to
the negative words “AhWsm�” and “��A�”5 in the
embeddings space.

3We love you and good.
4We love you and excellent.
5Dull and a dirty man.
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4 Related works

In (Altowayan and Tao, 2016), Arabic word vec-
tors were generated through training Continu-
ous Bag of Words (CBOW) algorithm (Mikolov
et al., 2013) using an Arabic corpus of 190 mil-
lion words. To evaluate the generated embeddings,
they were used to train several binary classifiers on
recognition of the subjectivity and sentiment po-
larity in a combination of twitter datasets: ASTD
(Nabil et al., 2015), ArTwitter (Abdulla et al.,
2013) and QCRI (Mourad and Darwish, 2013) and
MSA news articles. The model’s performance was
slightly better than (Mourad and Darwish, 2013)
in subjectivity classification, while for the polarity
classification of the twitter datasets, the best met-
ric values were scored by the Nu-SVM with an ac-
curacy of 80.21% and an F-measure of 79.62%.

A study by (Dahou et al., 2016) introduced a
CNN-based deep learning SA model. The model
was trained with word embeddings learned from a
corpus of 3.4 billion Arabic words using CBOW
and Skip-Gram (SG). Using CNN as a building
unit, a neural model with one non-static channel
and one convolutional layer was developed. Mul-
tiple filter window sizes were adopted to perform
the convolutional operation while a max-overtime
pooling layer was utilized to capture the most rel-
evant global features (Collobert et al., 2011). The
model was applied on several datasets such as
ASTD (Nabil et al., 2015), ArTwitter (Abdulla
et al., 2013). The results revealed that the per-
formance of the presented model mostly outper-
formed all the state-of-the-art systems where for
ArTwitter, the achieved accuracy was 85.0%.

The idea of including Arabic pre-trained word
embeddings in a deep neural SA model was
introduced by (Gridach et al., 2017). The au-
thors used word embeddings provided by (Zahran
et al., 2015) previously trained with MSA/dialectal
corpora by Glove, SG and CBOW methods.
These embeddings were used to initialize the in-
put word embeddings with which their model
CNN-ASAWR was trained. The proposed model
was developed as a variant of (Collobert et al.,
2011) system and customized to conduct SA
on two MSA/dialectal datasets: ASTD (Nabil
et al., 2015) and SemEval-2017 (El-Beltagy
et al., 2017). Results showed that using pre-
trained word embeddings led to better evaluation
measures compared to the baseline systems. In
ASTD dataset for instance, the best F-measure

scored by CNN-ASAWR was 72.14% compared
to 62.60% achieved by (Nabil et al., 2015) while
for SemEval-2017, an F-measure of 63% was
achieved against 61% scored by the system of (El-
Beltagy et al., 2017).

As a first attempt to leverage document embed-
dings in ASA, doc2vec model was used in (Med-
haffar et al., 2017) to generate training vectors for
a Tunisian SA model. The presented model was
evaluated using a combination of publicly avail-
able MSA/multi-dialectal datasets and a manually
annotated Tunisian Sentiment Analysis Corpus
(TSAC) obtained from Facebook comments about
popular TV shows. The input data was represented
by document vectors which were used later to train
SVM, Bernoulli NB (BNB) and Multilayer Per-
ceptron (MLP) classifiers. The best results were
scored by a multi-layer perceptron (MLP) classi-
fier when TSAC corpus was solely used as a train-
ing set where it achieved an accuracy equals to
78% and an F-measure value of 78%.

5 Conclusion

We introduced syntax-ignorant, n-gram embed-
dings as discriminating features in the context of
sentiment analysis of Arabic dialects. The pre-
sented model Tw-StAR trained with these embed-
dings could classify the sentiment of several di-
alects better than most baseline systems. Being
composed via SOWE function, our embeddings
emphasized the efficiency of using unordered ad-
ditive composition model in SA as the produced
performances by n-gram embeddings were bet-
ter than those learned via word2vec and doc2vec
(PV-DM/PV-DBoW) models. Based on the visu-
alization of the word embeddings learned by Tw-
StAR, word2vec and doc2vec (PV-DBoW) mod-
els, it was possible to deduce that several words
of close sentiments were better mapped using Tw-
StAR model. Finally, it was revealed that, for
Arabic dialects, a shallow neural model trained
with unordered embeddings can address the vary-
ing syntactic structure and free word order is-
sues yielding a competent performance with much
more complicated deep learning architectures. A
natural future step would involve using the pro-
posed embeddings to represent the sentiment of
other languages. Furthermore, a multi-dialectal
lexicon would be constructed based on the dis-
tances among the word embedding vectors learned
via Tw-StAR and visualized by t-SNE tool.
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Abstract

Word Embeddings (WE) are getting in-
creasingly popular and widely applied in
many Natural Language Processing (NLP)
applications due to their effectiveness in cap-
turing semantic properties of words; Machine
Translation (MT), Information Retrieval (IR)
and Information Extraction (IE) are among
such areas. In this paper, we propose an open
source ArbEngVec which provides several
Arabic-English cross-lingual word embedding
models. To train our bilingual models, we use
a large dataset with more than 93 million pairs
of Arabic-English parallel sentences. In addi-
tion, we perform both extrinsic and intrinsic
evaluations for the different word embedding
model variants. The extrinsic evaluation
assesses the performance of models on the
cross-language Semantic Textual Similarity
(STS), while the intrinsic evaluation is based
on the Word Translation (WT) task.

1 Introduction

Distributed word representations in vector space
(Word Embeddings) are one of the most successful
applications in deep learning for capturing the se-
mantic and syntactic properties of words. Lately,
many NLP tasks have been enriched using tools
based on Mono and Cross-Lingual word embed-
ding models. For instance, Mono-Lingual Word
Embeddings (MLWE) have been widely used in
information retrieval (Vulić and Moens, 2015a),
sentiment analysis (Tang et al., 2014; Nagoudi,
2018) text classification (Lai et al., 2015), seman-
tic textual similarity (Kenter and De Rijke, 2015;
Nagoudi and Schwab, 2017) and plagiarism detec-
tion (Nagoudi et al., 2018).

Cross-Lingual Word Embeddings (CLWE) is a

more challenging task because the knowledge is
transferred between two or more different lan-
guages (Doval et al., 2018). Recently, cross-
lingual word embeddings was used to address sev-
eral issues, e.g. machine translation (Zou et al.,
2013), cross-language information retrieval (Vulić
and Moens, 2015a; Zhou et al., 2012), cross-
language semantic similarity (Ataman et al., 2016;
Nagoudi et al., 2017b) and plagiarism detection
across multiple languages (Ferrero et al., 2017;
Barrón-Cedeño et al., 2013). Many cross-lingual
word embedding models in natural language have
been developed, particularly for English, but Ara-
bic did not get that much of interest.

In this paper, we propose six Arabic-English
cross-lingual word embedding models1. To train
these models, we have used a large collection with
more than 93 million pairs of parallel Arabic-
English sentences.

The rest of this paper is organised as follows:
in section 2 we provide a quick overview of work
related to the cross-lingual word embedding mod-
els. We describe our dataset collection and the
preprocessing process in Section 3. Section 4
presents our proposed cross-lingual models. Sec-
tion 5 presents the evaluation results. Section 6
concludes the paper with our main findings and
points to possible directions for future work.

2 Related works

While we focus on the cross-lingual word em-
bedding models, the interested reader may re-
fer to a number of research studies on the sub-
ject of mono-lingual word embeddings in gen-
eral (Collobert and Weston, 2008), (Turian et al.,

1All models can be downloaded from :
https://github.com/Raki22/ArbEngVec.git
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2010), (Mnih and Hinton, 2009), (Mikolov et al.,
2013c,b) and (Peters et al., 2018).

In the cross-lingual context, several word em-
bedding models are proposed. Blunsom and Her-
mann (2014) introduced a Bilingual Composi-
tional Model (BiCVM). Leveraging from the fact
that aligned sentences have the same meaning.
BiCVM is based on a sentence-aligned corpus to
learn the bilingual word embedding vectors.

Vulić and Moens (2015b) introduced a Bilin-
gual Word Embedding Skip-Gram (BWESG),
this model is constructed through three main
steps: i) prepare a Skip-Gram Negative Sampling
(Mikolov et al., 2013b) architecture that deals with
document aligned comparable data, ii) provide
bilingual document pairs, iii) shuffle each pair
producing pseudo-bilingual document that serves
as the architecture’s input which is to be trained.

Luong et al. (2015) proposed a Bilingual Skip-
Gram model (BiSKip). BiSKip uses the Skip-
Gram of (Mikolov et al., 2013b) to train two dif-
ferent languages at the same time by manipulating
the Skip-Gram architecture to obtain two pivots
and two contexts and provide a training session
for each combination. Choosing two Germanic
languages (English and German) made it easier
to predict target language’s appropriate pivot and
context for the ones from source language by sim-
ply aligning the target words at position [i ∗ T/S]
with source words at position i where S and T are
source and target sentence lengths respectively.

Chen et al. (2018) presented an Adversar-
ial Deep Averaging Network (ADAN) for cross-
lingual sentiment classification. In fact, they
trained many bilingual WE models, one of them
was trained using the United Nations (UN)
English-Arabic parallel aligned corpus (Ziemski
et al., 2016) and Bilingual Bag-of-Words without
Alignments (BilBOWA) (Gouws et al., 2015). Ad-
ditionally, ADAN replaces the softmax and regu-
larization terms by a less costly alternatives.

Recently, Devlin et al. (2018) have proposed
a deep learning method called Bidirectional En-
coder Representations from Transformers (BERT)
based on overcoming the limitations of next and
previous token prediction procedures benefiting
from Masked Language Modeling (MLM) (Tay-
lor, 1953) by masking 15% of the sentence to-
kens fed into the architecture alongside the trans-
former encoder (Vaswani et al., 2017). Devlin
et al. (2018) have extended their work by apply-

ing the same architecture in a Wikipedia corpora
of 104 different languages, requiring not a sin-
gle alignment signal and realising, if not outper-
forming, state-of-the-art score in many NLP tasks
such as Part Of Speech Tagging and Named En-
tity Recognition. However, BERT demands sig-
nificantly more machine effort (Wu and Dredze,
2019). Table 1 summarises the cross-language
embedding models mentioned above according to
the architecture and used corpus, the target lan-
guages and the evaluation methods.

3 Dataset Collection

3.1 Corpus Used
The main objective of this work is to provide
an efficient Arabic-English cross-lingual word
embedding models across different text domains.
Indeed, we used a large dataset of parallel Arabic-
English sentences mainly extracted from the
Open Parallel Corpus Project2 (OPUS) (Tiede-
mann, 2012). OPUS contains 90 languages,
and more than 2.7 billion parallel sentences.
This corpus consists of data from multiple do-
mains and sources including: MultiUN Corpus
(Daniel Tapias, 2010), OpenSubtitles (Creutz,
2018), Tanzil (Zarrabi-Zadeh, 2007), News-
Commentary, United Nations (UN) (Ziemski
et al., 2016), Wikipedia, TED 20133, GNOME4,
Tatoeba5, Global Voices6, KDE47 and Ubuntu8

corpus. To train our models, we extract more than
93.9 million parallel sentences of Arabic-English
from whole collection, this alignment contains
more than 800 million Arabic tokens and 1 billion
for English. More details about our dataset are
given in Table 2.

3.2 Preprocessing and Normalization
Preprocessing is an important step in building any
word embedding model as it can potentially signif-
icantly affect the end results. We first remove the
punctuation marks, non letters, URLs, emojis and
emoticons from the Arabic and English sentences.
Additionally, we normalize Arabic sentences us-
ing the preprocessing suggested by Nagoudi et al.

2http://opus.nlpl.eu/
3http://www.casmacat.eu/corpus/ted2013.html
4https://l10n.gnome.org
5www.tatoeba.org
6https://globalvoices.org/
7http://i18n.kde.org
8https://translations.launchpad.net
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CLWE Models Corpus Used Arch. Languages Evaluation
BiCVM (Her-
mann and
Blunsom, 2014)

Europarl (Koehn, 2005),
TED (Cettolo et al., 2012),
RCV (Lewis et al., 2004)

CVM English, German,
French, Arabic,
Spanish, Italian,
Dutch, Brazilian

Cross-lingual classifi-
cation

BiSKip (Luong
et al., 2015)

UN corpus Koehn (2005) Skip-
Gram

English, German Mono and bilingual
word similarity, cross-
lingual classification

BWESG (Vulić
and Moens,
2015b)

UN corpus Koehn (2005) Skip-
Gram

English, Dutch Mono and cross-
lingual ad-hoc re-
trieval

BilBOWA
(Gouws et al.,
2015)

RCV (Lewis et al., 2004),
WMT11 (2011)

CBOW English, German,
Spanish

Word translation,
cross-lingual classifi-
cation

ADAN (Chen
et al., 2018)

UN corpus (Ziemski et al.,
2016)

Skip-
Gram

English, Arabic,
Chinese

Domain Adapta-
tion and Machine
Translation

mBERT (Devlin
et al., 2018)

Large Wikipedia Corpora BERT 104 Languages
(including Ara-
bic)

POS Tagging and
NER...etc

Table 1: Different cross-language word embedding models

(2017a):
1. The letters



@ , @
 ,

�
@ are replaced with @ while

the letter �è is replaced with è. Also, The letter

ø followed by Z replaced with 
ø.
2. We converted elongated words back to their

original form, example : �èYë@@ @ @ @ @ AªÓ, which

means treaty in English, and Q����������
K @ 	Qm.Ì'@ ,
which means Algeria will be converted to�èYëAªÓ, Q
K@ 	Qm.Ì'@.

3. In addition, we remove the stop-words from
Arabic and English sentences.

4 Building ArbEngVec Models

4.1 Used Architectures

In Mikolov et al. (2013a) all the word embedding
models (Collobert and Weston, 2008), (Turian
et al., 2010), (Mnih and Hinton, 2009), (Mikolov
et al., 2010), (Mikolov et al., 2013c) and (Mikolov
et al., 2013b) have been compared and evaluated,
and they show that CBOW (Mikolov et al., 2013c)
and Skip-Gram (Mikolov et al., 2013b) models
are significantly faster to train with better accu-
racy. Accordingly, we used the CBOW and Skip-
Gram to build our Arabic-English cross-lingual
word embedding models.

The CBOW (Mikolov et al., 2013c) and Skip-
Gram (Mikolov et al., 2013b) are two shallow
neural network architectures with a single hidden
layer that learns similar vector representations for
words with similar distributional properties. The
CBOW model, predicts a targeted word wt accord-
ing to the context in which wt appears by using
a window of contextual words. While the Skip-
Gram model, predicts the words around the word
wt (Mikolov et al., 2013a), as illustrated in fig-
ure 1.

Figure 1: Architecture of CBOW and Skip-gram as de-
scribed in (Mikolov et al., 2013b)

4.2 Proposed Models

In this section, we present our proposed Ar-
bEngVec models. In order to learn our mod-
els, we have relied basically on shuffling the cor-
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Table 2: Some statistics about the used dataset (Tiedemann, 2012)

CBOW Skip-Gram
#Modes Top1 Top2 Top3 Top5 Top10 Top1 Top2 Top3 Top5 Top10
Parallel 0.1% 0.5% 0.7% 1.2% 2.1% 2.8% 4.5% 6.1% 6.1% 9.3%

W. by W. 4.1% 11.3% 17.4% 25.3% 37.2% 60.6% 73.5% 78.3% 86.8% 92.4%
Random 57.7% 71.4% 79.2% 85.3% 90.5% 62.4% 74.2% 78.4% 87.5% 93.8%

Table 3: Intrinsic evaluation results of ArbEngVec models

pus as in Vulić and Moens (2015b), with one
major difference choosing sentence-aligned paral-
lel data rather than their comparable document-
aligned choice. Indeed, we propose to use three
methods for learning our models: Parallel Mode,
Word by Word Alignment Mode and Random Shuf-
fling Mode.

4.2.1 Parallel Mode

To make clear that shuffling methods adds cross-
lingual improvements, we decided to train a model
without any alignment. For example, let Sar and
Sen be Arabic and English sentences:

Sar = “ 	àA �®J
�® �� 	à@Q�
 	ª�Ë@ 	à@YËñË@”.

Sen = “ The young boys are brothers”.

The pair (Sar, Sen) were fed directly to the train-
ing as follows: “young, boys, brothers, 	à@YËñË@ ,
	à@Q�
 	ª�Ë@, 	àA �®J
�® ��”.

4.2.2 Word by Word Alignment Mode

The second method used on the same corpus type
with aligning pairs word by word and paying at-
tention to sentences length and start aligning with
the longest (the short sentence words will be sur-
rounded with those of the long sentence). This
method supports using pairs with almost equal
lengths. In this situation, stop-words removal pre-
processing step is highly blessed. We shall con-
tinue with the sentences of the previous example,
the input of the training is : “ young, 	à@YËñË@ , boys,
	à@Q�
 	ª�Ë@, brothers, 	àA�®J
�® ��”.

4.2.3 Random Shuffling Mode

In this method, we put each pair of bilingual sen-
tences as a list that contains their words and shuf-
fle it randomly and separately from the rest of the
corpus to have a list of combined English-Arabic
tokens. As shown in our example : “ young,	à@Q�
 	ª�Ë@, 	à@YËñË@ , boys, brothers, 	àA �®J
�® ��”.
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4.3 Parameters and Training Environment
Training word embedding models require the
choice of some parameters affecting the result-
ing vectors. For our CBOW models we have
used recommended parameters values proposed
by (Mikolov et al., 2013c). Thus, we set the
vector size to 300, the window = 5, and
Frequency threshold = 100. Regarding the
Skip-gram models we have chosen Negative Sam-
pling with negative = 5 instead of Hierarchi-
cal Softmax. Worth mentioning that all models
were trained on 10 epochs with Řehřek and Sojka
(2011) GenSim tool.

Concerning the training environment, we have
used Google Colaboratory9 research project (also
known as Colab) for training our model variants.
It is a perfectly prepared developing environment
with no requirements but a browser. This environ-
ment provides a free 12 GB of GPU, also access
to Google Drive personal account for saving and
loading files and there are many other services that
can be plugged into it.

5 Evaluation

Usually multilingual models go against two as-
pects of evaluation methodology: maintain mono-
lingual aspect and provide the other cross-lingual.
Clearly for us, after creding on the shuffle we
lost the former willingly to stick around the lat-
ter. Preserving the model’s monolingual behaviour
requires keeping words in a semantic meaning-
ful order, which is exactly what happens with
our first parallel (non-shuffling) model with com-
pletely skewed cross-lingual aspect. To clarify
that, we have evaluated our models through Se-
mantic Textual Similarity as extrinsic, and Word
Translation as intrinsic.

5.1 Intrinsic Evaluation
In this step, we basically focused on word trans-
lation following (Gouws et al., 2015) evaluation
procedure, so we generated a 1000 tuples starting
with choosing random 1000 words from the
model vocabulary. Then, we find their k-closest
(k most similar) cross-lingual words based on the
cosine similarity in our six ArbEngVec models.
In fact, we have used five different values of k
to generate the 1-closest, 2-closest, 3-closest,
5-closest and 10-closest words.

9https://colab.research.google.com/

For example, Table 4 shows the 5-closest
words of AK
 	Q�ËAÓ and weapons in our random
Skip-Gram model. Afterwards, we calculate the
accuracy of each range, which has been calculated
by giving a value 1 to each word couple that
represents a translation, we make sure that the
word provided by our model is a translation with
comparing it to Google Translate API’s bag of
words, if this comparison comes negative we
compare manually, if also manual comparison
comes negative we give negative score 0. Even-
tually we count the average of the 1000 scores.
Results of the six studied models are provided in
Table 3.

Discussion. Parallel results were so dim bilin-
gually as Table 3 shows, but monolingual as-
pect was preserved especially in CBOW variant.
This fact is illustrated in Table 5, the same 5-
closest words of AK
 	Q�
ËAÓ and weapon using Parallel
CBOW model. Switching to word by word align-
ment method, both variants gave promising results
and notably Skip-gram’s by an average of 59.26%
from CBOW, and these are a consequence of get-
ting word translation pairs at the context window
range but still since Arabic and English are struc-
turally different this alignment method had its in-
convenience. Arriving to random shuffle variants
which have given the best results and again Skip-
Gram with average of 2.44% better than CBOW.

5-closest ( AK
 	Q�ËAÓ) 5-closest (weapons)

malaysia, 	àA�J��
 	Q�
 	«Q�̄,
�HXñ», A 	ª 	Kñ�K, AK
Pñ 	ª 	JÓ

�éjÊ�


@, PAÓYË@, �éjÊ�



B@,

mass, indiscriminite

Table 4: A sample of 5-closest words of AK
 	Q�ËAÓ and
weapons in our Random Skip-Gram model

5-closest ( AK
 	Q�ËAÓ) 5-closest (weapons)

½J
�ºÖÏ @, Q�® �� 	«YÓ,

ÈAJ. �
 	K, AK
Q�j. J
 	K, ñ�Kñ��
Ë
arms, weaponry, war-
heads, missiles, arse-
nals

Table 5: A sample of 5-closest words of AK
 	Q�ËAÓ and
weapons in our Parallel CBOW model
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5.2 Extrinsic Evaluation
Extrinsic evaluating means surveilling the model
performance under real-world Natural Language
Processing tasks use. Our choice fell on Se-
mantic Sentences Similarity (STS) task. To esti-
mate the semantic similarity between the Arabic-
English sentences, we have used the WE-based
approach proposed by Nagoudi et al. (2017b)
jointly with our ArbEngVec models. In fact, we
have had STS2017-Eval10 datasets drawn from
the shared taskSemEval-2017 Task1: STS Cross-
lingual Arabic-English (Cer et al., 2017). The sen-
tence pairs of STS2017-Eval have been manually
labelled by five annotators, and the similarity score
is the average of the annotators judgments. Af-
terwards, in order to evaluate the performance of
each model, we calculate Pearson correlation be-
tween our assigned semantic similarity scores and
human judgement. Table 6 reports the results of
the six studied models.

# Modes CBOW Skip-Gram
Parallel. 6.3% 18.1%

W. by W. 49.4% 73.6%

Random. 52.8% 75.7%

Table 6: Extrinsic evaluation results of ArbEngVec
models

Discussion. These results indicate that when the
parallel alignment is used the correlation rate gets
very low in both architectures. This is due to the
distance of every word and its translation in the
parallel sentences pair shape. However, when ap-
plying the word by word alignment the correlation
rate is clearly outperformed to 49.4% and 73.6%
with the CBOW and Skip-Gram model respec-
tively. Additionally, the observed results indicate
that the random shuffling method with Skip-Gram
model is the best performing method with a corre-
lation rate of 75.7%.

5.3 Models Visualization
As part of the discussion, we have chosen to illus-
trate our models using pyplot scatters with Maaten
and Hinton (2008) t-SNE algorithm. We pro-
vide these visualizations by choosing 20 arbitrary

10http://alt.qcri.org/semeval2017/task1/index.php?id=data-
and-toolsb

words from our vocabulary, run 4-closest simi-
larity to each word and finally project all of them
on the 2-dimensional plot. Starting with parallel
mode models, charts show that distance between
Arabic markers are distant from others of English
comparing to those of the same language. Same
thing can be said on the situation that concerns
word by word method CBOW variant with less
distant languages but still marker bags most often
do not include translation pairs. Eventually, ran-
dom variant charts make it clear that close mark-
ers include translation pairs alongside mono and
cross-lingual similarities, six model charts are in
figure 2. Especially for Skip-Gram variant, sup-
posedly that t-SNE feature reduction procedure
got rid of both language characteristics, as figure
3 shows, words and their translations most often
appear next to each other.

6 Conclusion

In this paper, we have presented the open source
project named ArbEngVec. This project provides
several Arabic-English cross-lingual word embed-
ding models. The embedding models are learned
through a large dataset of parallel Arabic-English
sentences. Additionally, we evaluated the Ar-
bEngVec models via extrinsic and intrinsic eval-
uations. In the extrinsic evaluation, we used the
cross-language semantic similarity task to test the
capability of our models to capture the semantic
and syntactic properties of words in two different
languages. While in the intrinsic evaluations, we
employed the embedding vectors to evaluate the
word translation task.
As future work, we are going to use these mod-
els with those of other classical NLP techniques,
including word sense disambiguation, named en-
tity recognition to make more improvement in the
Arabic-English cross-language semantic similar-
ity and plagiarism detection. We also are going to
aim on finding better word alignment methods to
improve features capturing regarding the transfer
between Semitic and Germanic languages.
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Figure 2: Charts of the model’s six variants

Figure 3: Chart of Random Skip-Gram model
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Abstract
Lexical ambiguity, a challenging phenomenon
in all natural languages, is particularly preva-
lent for languages with diacritics that tend to
be omitted in writing, such as Arabic. Omit-
ting diacritics leads to an increase in the num-
ber of homographs: different words with the
same spelling. Diacritic restoration could the-
oretically help disambiguate these words, but
in practice, the increase in overall sparsity
leads to performance degradation in NLP ap-
plications. In this paper, we propose ap-
proaches for automatically marking a sub-
set of words for diacritic restoration, which
leads to selective homograph disambiguation.
Compared to full or no diacritic restoration,
these approaches yield selectively-diacritized
datasets that balance sparsity and lexical dis-
ambiguation. We evaluate the various selec-
tion strategies extrinsically on several down-
stream applications: neural machine transla-
tion, part-of-speech tagging, and semantic tex-
tual similarity. Our experiments on Arabic
show promising results, where our devised
strategies on selective diacritization lead to a
more balanced and consistent performance in
downstream applications.

1 Introduction

Lexical ambiguity, an inherent phenomenon in
natural languages, refers to words or phrases that
can have multiple meanings. In written text, lex-
ical ambiguity can be roughly characterized into
two categories: polysemy and homonymy. A pol-
ysemous word has multiple senses that express
different but related meanings (e.g. ‘head’ as an
anatomical body part, or as a person in charge),
whereas homonyms are different words that hap-
pen to have the same spelling (e.g. ‘bass’ as an in-
strument vs. a fish) (Löbner, 2013). Homographs
are words that have the same spelling but may have
different pronunciation and meaning.

A diacritic is a mark that is added above, below,
or within letters to indicate pronunciation, vowels,

or other functions. For languages that use diacrit-
ical marks, such as Arabic or Hebrew, the orthog-
raphy is typically under-specified for such marks,
i.e. the diacritics are omitted. This phenomenon
exacerbates the lexical ambiguity problem since
it increases the rate of homographs. For exam-
ple, without considering context, the undiacritized
Arabic word ktb may refer to any of the follow-
ing diacritized variants:1 katab I.

��J
�
» “wrote”, ku-

tub I.
��J
�
» “books”, or kutib I. �J�

�
» “was written”.

As an illustrative analogy in English, dropping
vowels in a word such as pan yields the under-
specified token pn which can be mapped to pin,
pan, pun, pen. It should be noted that even after
fully specifying words with their relevant diacrit-
ics, homonyms such as “bass” are still ambiguous;
likewise in Arabic, the fully-specified word bayot
�I��
�K. can either mean “verse” or “house”.

In this paper, we devise strategies to automati-
cally identify and disambiguate a subset of homo-
graphs that result from omitting diacritics. While
context is often sufficient for determining the
meaning of ambiguous words, explicitly restoring
missing diacritics should provide valuable addi-
tional information for homograph disambiguation.
This process, diacritization, would render the re-
sulting text comparable to that of languages whose
words are orthographically fully specified such as
English.

Past studies have focused on developing models
for automatic diacritic restoration that can be used
as a pre-processing step for various applications
such as text-to-speech (Ungurean et al., 2008) and
reading comprehension (Hermena et al., 2015). In
theory, restoring all diacritics should also help im-
prove the performance of NLP applications such
as machine translation. However, in practice,

1We adopt Buckwalter Transliteration encod-
ing into Latin script for rendering Arabic text
http://www.qamus.org/transliteration.htm.
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full diacritic restoration results in increased spar-
sity and out-of-vocabulary words, which leads to
degradation in performance (Diab et al., 2007;
Alqahtani et al., 2016). The main objective of this
work is to find a sweet spot between zero and full
diacritization in order to reduce lexical ambigu-
ity without increasing sparsity. We propose selec-
tive diacritization, a process of restoring diacritics
to a subset of the words in a sentence sufficient
to disambiguate homographs without significantly
increasing sparsity. Selective diacritization can be
viewed as a relaxed variant of word sense disam-
biguation since only homographs that arise from
missing diacritics are disambiguated.2

Intrinsically evaluating the quality of a devised
selective diacritization scheme against a gold set
is challenging since it is difficult to obtain a
dataset that exhibits consistent selective diacritiza-
tion with reliable inter-annotator agreement (Za-
ghouani et al., 2016b; Bouamor et al., 2015),
thereby necessitating an empirical automatic in-
vestigation. Hence, in this work, we evaluate the
proposed selective diacritization schemes extrin-
sically on various semantic and syntactic down-
stream NLP applications: Semantic Textual Simi-
larity (STS), Neural Machine Translation (NMT),
and Part-of-Speech (POS) tagging. We compare
our selective strategies against two baselines full
diacritization and zero diacritics applied on all the
words in the text. We use Modern Standard Arabic
(MSA) as a case-study.3

Our approach is summarized as follows: we
start with full diacritic restoration of a large cor-
pus, then apply different unsupervised methods to
identify the words that are ambiguous when undi-
acritized. This results in a dictionary where each
word is assigned an ambiguity label (ambiguous
vs. unambiguous). Selectively-diacritized datasets
can then be constructed by restoring the full dia-
critics only to the words that are identified as am-
biguous.

The contribution of this paper is threefold:

1. We introduce automatic selective diacritiza-
tion as a viable step in lexical disambiguation
and provide an encouraging baseline for fu-
ture developments towards optimal diacriti-

2Identifying empirically successful selective diacritiza-
tion strategies can help discover optimal diacritization
schemes; however, this direction is currently beyond the
scope of this work.

3Proposed methodologies can be applied to other lan-
guages where diacritics are omitted.

zation. Section 2 describes existing work
towards optimal diacritization and how they
differ from our approach;

2. We propose several unsupervised data-driven
methods for the automatic identification of
ambiguous words;

3. We evaluate and analyze the impact of par-
tial sense disambiguation (i.e. selective dia-
critic restoration of identified homographs) in
downstream applications for MSA.

2 Related Work

We are concerned mainly with studies that target
word disambiguation through the use of diacrit-
ics/accents restoration. Homograph disambigua-
tion through accents has been explored previously
in several studies with the use of different rule-
based and machine-learning approaches for lan-
guages such as Arabic, Spanish, Igbo, and Viet-
namese (Ezeani et al., 2017; Nguyen et al., 2012;
Nivre et al., 2017; Said et al., 2013; Tufiş and
Chiţu, 1999).

Bouamor et al. (2015) conducted a pilot study
where they asked human annotators to add the
minimum number of diacritics sufficient to dis-
ambiguate homographs. However, attempts to
provide human annotation for selective diacriti-
zation resulted in low inter-annotator agreement
due to the annotators’ subjectivity and different
linguistic understanding of the words and con-
texts (Bouamor et al., 2015; Zaghouani et al.,
2016b). To address this issue, Zaghouani et al.
(2016b) used a morphological disambiguation
tool, MADAMIRA (Pasha et al., 2014), to iden-
tify candidate words that may need disambigua-
tion. A word was considered ambiguous if
MADAMIRA generates multiple high-scoring di-
acritic alternatives, and human annotators were
asked to select from these alternatives or man-
ually edit the diacritics if none of the options
was deemed correct. This resulted in a signifi-
cant increase in inter-annotator agreement. Our
work differs in two aspects: first, we develop au-
tomatic methods for ambiguity detection based
on word usage. We then restore the diacritics
for all occurrences of these ambiguous words,
whereas in (Zaghouani et al., 2016b), the same
word may be tagged as ambiguous in some cases
but not ambiguous in other cases depending on
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context, which makes it harder to generalize to
new datasets.

Yarowsky (1994) developed an accent restora-
tion algorithm for Spanish and French that speci-
fies the accent patterns for ambiguous words (i.e.
multiple accent patterns). Our intuition is different
than that of Yarowsky (1994) in two ways. First,
they added diacritics to all words that have more
than one diacritic pattern while we add the diacrit-
ics for only a subset of candidate words. Second,
they used context for adding diacritics, while we
use context to isolate words that require diacrit-
ics, for which we apply an off-the-shelf diacritic
restoration model.

Rather than restoring all diacritics in the writ-
ten text, the idea of adding diacritics sufficient
to resolving lexical ambiguity was initially intro-
duced in (Diab et al., 2007). They developed sev-
eral linguistically-based partial schemes and eval-
uated their methods in Statistical Machine Trans-
lation. They found that fully diacritizing texts
led to performance degradation due to sparseness
while no diacritization increased the lexical am-
biguity rate. Similar results have been found in
(Alqahtani et al., 2016), where several other ba-
sic diacritic patterns were investigated. Although
the impact of diacritics in machine translation was
promising, the development of partial schemes
does not show significant improvements over the
non-diacritized and fully-diacritized baselines.

Alnefaie and Azmi (2017) introduced a par-
tial diacritization scheme for MSA based on the
output of a morphological analyzer in addition
to WordNet (Black et al., 2006), and Alqahtani
et al. (2018) created a lexical resource that as-
signed an ambiguity label for each word, where a
word is considered ambiguous if it has more than
one diacritic possibility, with and without consid-
ering its part-of-speech tag. However, both (Alne-
faie and Azmi, 2017; Alqahtani et al., 2018) did
not evaluate their methods empirically to demon-
strate their effectiveness for NLP applications.
Hanai and Glass (2014) similarly developed three
linguistically-based partial diacritic schemes for
automatic speech recognition and found statisti-
cally significant improvement over the baseline.
However, their work is focused on improving word
pronunciations whereas we focus on word sense
disambiguation. Ezeani et al. (2017) discussed the
impact of adding accents for each and every word
in Igbo language, potentially increasing the per-

formance for machine translation and word sense
disambiguation.

All of the aforementioned approaches either ap-
ply full diacritics on all words whenever appro-
priate or derive partial diacritic schemes based on
linguistic understanding; crucially these partial di-
acritic schemes are applied to all words in a sen-
tence.4 Our devised strategies differ in that we ap-
ply full diacritization to a select set of tokens in the
text. Our work is related to these previous stud-
ies in the sense that we reduce the search space of
candidate words that could benefit from full or par-
tial diacritization without increasing sparsity. Fur-
thermore, the novelty of this work lies in utilizing
automatic unsupervised methods to identify such
words.

3 Approach

3.1 Selective Diacritization

Selective diacritization is the process of restoring
diacritics to a subset of words in a text corpus.
Manually annotating words in a dataset with bi-
nary ambiguity labels (ambiguous vs. unambigu-
ous) is challenging due to the difficulty in defin-
ing ambiguous words that would benefit from di-
acritics (Zaghouani et al., 2016b). Therefore, we
propose several techniques to automatically iden-
tify ambiguous words for selective diacritization.
Since it is common to use distributed word vec-
tor representations in downstream tasks, we de-
fine ambiguity in terms of distributional similarity
among diacritized word variants. Our intuition is
that variants with low distributional similarity are
more likely to benefit from diacritization to disam-
biguate their meanings and tease apart their con-
text variations. On the other hand, word variants
with highly similar contexts tend to have very sim-
ilar distributional representations, which results in
unnecessary redundancy and sparsity if all variants
are kept.

Based on this definition, we developed sev-
eral context-based approaches to identify candi-
date ambiguous word types and generate a set of
dictionaries with ambiguity labels (AmbigDict),
where each word is marked as either ambiguous

4For instance, the undiacritized sentence bEd ywm
ÐñK
 YªK. “after a day” would be diacritized as baEod yawom

Ð �ñ�K
 Y �ª�K. when fully diacritized, bEod ywom Ð �ñK
 Y �ªK. ((Diab
et al., 2007; Alqahtani et al., 2016)’s SUK scheme) when par-
tially diacritized, baEod ywm ÐñK
 Y �ª�K. when selectively dia-
critized.
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or unambiguous. The proposed approaches can
be classified by the type of tokens used to create
the AmbigDict: diacritized (AmbigDict-DIAC) or
undiacritized (AmbigDict-UNDIAC). For exam-
ple an entry in AmbigDict-UNDIAC would be
“Elm” ÕÎ«: ambiguous; “ktb” I. �J»: unambiguous,
whereas in AmbigDict-DIAC would be “Ealam”
Õ
�
Î �«: ambiguous; “kutub” I.

��J
�
»: unambiguous.

3.2 AmbigDict-UNDIAC Generation
We explore two methods for creating ambiguity
dictionaries from undiacritized text: using a mor-
phological analyzer, and unsupervised sense in-
duction.

Multiple Morphological Variants (MULTI):
The number of diacritic alternatives for a word
can be a clue to determine whether a word is am-
biguous due to missing diacritics (Alqahtani et al.,
2018). In this approach, context is not consid-
ered, but rather the output of a morphological an-
alyzer applied to the text. We leverage the mor-
phological analyzer component of MADAMIRA
(Pasha et al., 2014) to generate all possible valid
diacritic variants of a word whether these variants
are present in the corpus or not. If an undiacritized
word has more than one possible diacritic variant,
we consider it ambiguous. We use this context-
independent approach as a baseline.

Sense Induction Based Approach (SENSE):
Selective diacritization is related to word sense
disambiguation, however we only target disam-
biguation through diacritic restoration. Tech-
niques used in automatic word sense induction
can be used as a basis for identifying ambiguous
words. Using undiacritized text, we apply an off-
the-shelf system for word sense induction devel-
oped by Pelevina et al. (2017), which uses the
Chinese Whispers algorithm (Biemann, 2006) to
identify senses of a graph constructed by comput-
ing the word similarities (highest cosine similari-
ties) through using word as well as context embed-
dings. We apply the first three steps described in
Pelevina et al. (2017) but we do not use the gen-
erated sense-based embeddings; we only use the
system to identify the words with multiplw senses.
We set the three parameters as follows: the graph
size N to 200, the inventory granularity n to 400,
and the minimum number of clusters (senses) k to
5.5 A word type is deemed ambiguous if it appears

5We tuned these parameters empirically.

in more than one cluster.

3.3 AmbigDict-DIAC Generation

We explore clustering and translation based meth-
ods to create ambiguity dictionaries from dia-
critized text.

Clustering-based Approaches (CL): Similar
in spirit to SENSE, we apply unsupervised clus-
tering to our corpora to induce AmbigDict. How-
ever, unlike SENSE, we apply clustering to dia-
critized data. Our intuition is that dissimilar words
are likely to occur in different contexts, and there-
fore likely to be in different clusters. Therefore,
we tag words as ambiguous if diacritized variants
of the same underlying undiacritized form appear
in different clusters.

As a preprocessing step, we apply a full contex-
tualized diacritization tool to the underlying cor-
pora. We leverage the MADAMIRA tool (Pasha
et al., 2014) to produce fully diacritized text (for
every token in the data) covering both types of di-
acritic restoration: lexical and syntactic. The lat-
ter covers syntactic case and mood diacritics. In
this study, we are only concerned with lexical am-
biguity; Moreover, MADAMIRA has a very high
diacritic error rate in syntactic diacritic restora-
tion (15%) compared to (3.5%) for lexical dia-
critic restoration. Hence, we drop the predicted
word final syntactic diacritics resulting in a dia-
critization scheme similar to the partial scheme in
(Diab et al., 2007; Alqahtani et al., 2016), namely,
FULL-CM. In FULL-CM, every token is fully lex-
ically diacritized (e.g. the fully diacritized words
Ealama �Õ

�
Î �« and Ealamu �Õ

�
Î �« differ in their syntac-

tic diacritics and are mapped to Ealam Õ
�
Î �« “flag”

in FULL-CM).
Given this diacritized corpus, we apply three

different standard clustering approaches: Brown6

(Brown et al., 1992) (CL-BR), K-means7 (Ka-
nungo et al., 2002) (CL-KM), and Gaussian
Mixture via Expectation Maximization (CL-EM)8

(Dempster et al., 1977). We tune the number of
clusters for downstream tasks; in particular, we
empirically investigate the performance on the de-

6https://github.com/percyliang/brown-cluster
7We use “sickit-learn” version 0.18.1. We use the value

1 for both random state and n init and the default values for
the remaining parameters.

8We use “sickit-learn” version 0.18.1. with the follow-
ing parameters: max iter=1000, random state=1, and covari-
ance type=spherical
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velopment set in the downstream tasks for differ-
ent number of clusters.

Translation-based Approaches (TR): Transla-
tion can be used as a basis for word sense induc-
tion (Diab and Resnik, 2002; Ng et al., 2003) since
words across different languages tend to have dis-
parate senses. Following a similar intuition, we
use English translations from a parallel corpus as a
trigger to divide the set of diacritic possibilities of
a word into multiple subsets. The intuition here is
that homographs worth disambiguating are those
that are likely to be translated differently. We
leverage an English MSA parallel corpus, where
the MSA is diacritized in the Full-CM scheme us-
ing MADAMIRA (the same preprocessing step for
CL described above). In this approach, diacritized
variants that share the same English translations
are considered unambiguous, whereas those that
are typically translated to different English words
are considered ambiguous. To that end, we first
align the sentences at the token level and gener-
ate word translation probabilities using fast-align
(Dyer et al., 2013), which is a log-linear reparam-
eterization of IBM Model 2 (Brown et al., 1993).
If a word shares any translation with its diacritized
variant in the top N most likely translations, we
consider it unambiguous (e.g. Ealam Õ

�
Î �« ‘flag”

and Ealima �ÕÎ�
�« ‘learned” are unambiguous since

they do not share top translations). Otherwise, the
word is tagged as ambiguous. We tune N to in-
clude 1, 5, 10, and all translations.

4 Evaluation

Once we have generated the two variants of Am-
bigDict (AmbigDict-UNDIAC and AmbigDict-
DIAC), we evaluate their efficacy extrinsically on
downstream applications. For all downstream ap-
plications, training and test data are preprocessed
using MADAMIRA (Pasha et al., 2014) with the
FULL-CM diacritization scheme where we only
keep lexical diacritics.9 Then the data is filtered
based on the AmbigDict of choice; namely, only
word tokens in the text deemed ambiguous accord-
ing to each AmbigDict maintain their full diacrit-
ics (as generated by MADAMIRA) while the un-
ambiguous words are kept undiacritized.

9Full diacritics are included except inflectional diacritics
that reflect the syntactic positions of words within sentences
but do not alter meaning.

4.1 Datasets

For MULTI, SENSE, CR, we use a combination of
four Modern Standard Arabic (MSA) datasets that
vary in genre and domain and add up to ∼50M
tokens: Gigaword 5th edition, distributed by Lin-
guistic Data Consortium (LDC), Wikipedia dump
2016, Corpus of Contemporary Arabic (CCA)
(Zaghouani et al., 2016a; Al-Sulaiti and Atwell,
2006), and LDC Arabic Tree Bank (ATB).10 For
TR, we use an Arabic-English parallel dataset
which includes ∼60M tokens and is created from
53 LDC catalogs. For data cleaning, we replace
e-mails and URLs with a unified token and use
SPLIT tool (Al-Badrashiny et al., 2016) to clean
UTF8 characters (e.g. Latin and Chinese), remove
diacritics in the original data, and separate punc-
tuation, symbols, and numbers in the text, and re-
place them with separate unified tokens. We split
long sentences (more than 150 words) by punctu-
ation and then remove all sentences that are still
longer than 150 words. We use D3 style (i.e. all
affixes are separated) (Pasha et al., 2014) for Ara-
bic tokenization without normalizing characters.
For English, we lower case all characters and use
TreeTagger (Schmid, 1999) for tokenization. We
used SkipGram word embeddings (Mikolov et al.,
2013), where applicable.

4.2 Extrinsic Evaluation

We evaluate the effectiveness of the proposed ap-
proaches using three applications: Semantic Tex-
tual Similarity (STS), Neural Machine Translation
(NMT), and Part-of-Speech (POS) tagging. We
used different significance testing methods appro-
priate for each application with p = 0.05.

4.2.1 Semantic Textual Similarity (STS)
STS is a benchmark evaluation task (Cer et al.,
2017), where the objective is to predict the sim-
ilarity score between a pair of sentences. Per-
formance is typically evaluated using the Pearson
correlation coefficient against human judgments.
We used the William test (Graham and Baldwin,
2014) for significance testing. We experiment with
an unsupervised system based on matrix factoriza-
tion developed by (Guo and Diab, 2012; Guo et al.,
2014), which generates sentence embeddings from
a word-sentence co-occurrence matrix, then com-
pare them using cosine similarity.We use a dimen-
sion size of 700. To train the model, we use the

10Parts 1, 2, 3, 5, 6, 7, 10, 11, and 12
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Arabic dataset released for SemEval-2017 task 1
(Cer et al., 2017). Since the training dataset is
small, we augment it by randomly selecting sen-
tences from the dataset (∼1,655,922) described in
Section 4.1 where the chosen sentences have to
satisfy the following conditions: the number of
words lie between 5 and 150; and, the minimum
frequency for each word is 2. We apply these con-
ditions in the diacritized data since it suffers more
from sparseness, and then use their undiacritized
correspondents in the undiacritized setting.

4.2.2 Neural Machine Translation (NMT)
We build a BiLSTM-LSTM encoder-decoder ma-
chine translation system as described in (Bah-
danau et al., 2014) using OpenNMT (Klein et al.,
2014). We use 300 as input dimension for both
source and target vectors, 500 as hidden units,
and 0.3 for dropout. We initialize words with
embeddings trained using FastText (Bojanowski
et al., 2017) on the selectively-diacritized dataset
described in Section 4.1. We train the model us-
ing SGD with max gradient norm of 1 and learn-
ing rate decay of 0.5. We use the Web Inven-
tory of Transcribed and Translated Talks (WIT),
which is made available for IWSLT 2016 (Mauro
et al., 2012). We use BLEU (Papineni et al., 2002)
for evaluation, and bootstrap re-sampling and ap-
proximate randomization for significance testing
(Clark et al., 2011).

4.2.3 POS tagging
POS tagging is the task of determining the syntac-
tic role of a word (i.e. part of speech) within a
sentence. We use a BiLSTM-CRF architecture to
train a POS tagger using the implementation pro-
vided by (Reimers and Gurevych, 2017), with 300
as dimension size, initialized using the same em-
beddings we use in NMT. We used ATB datasets
parts 1,2, and 3 to train the models with Universal
Dependencies POS tags, version 2 (Nivre et al.,
2016). We use word-level accuracy for evaluation,
and t-test (Fisher, 1935; Dror et al., 2018) for sig-
nificance testing.

4.3 Automatic Diacritization

For generating the various AmbigDict approaches,
we used either fully diacritized versions, with-
out case and mood related diacritics,11 or undia-
critized versions of the datasets. Since it is ex-

11FULL-CM diacritization scheme, where we only keep
lexical diacritics.

pensive to obtain enormous human-annotated dia-
critized datasets, we use the morphological analy-
sis and disambiguation tool, MADAMIRA version
2016 2.1 (Pasha et al., 2014)

4.4 AmbigDict Statistics

Table 1 shows the number of identified ambigu-
ous words using each approach. Note that the to-
tal vocabulary sizes vary due to either different
datasets (e.g. for TR) or different preprocessing
(e.g. MULTI is based on undiacritized text). For
a given corpus, the number of ambiguous words
identified by MULTI can be viewed as an estimate
of the upper bound on ambiguous words due to di-
acritics. In MULTI, words that have no valid anal-
ysis generated by MADAMIRA are filtered; this
resulted in significant drop of the number of types
since the dataset includes noisy and infrequent in-
stances.

Dictionary Types % Ambig Words
AmbigDict-UNDIAC

MULTI 168,384 33.82
SENSE 467,953 8.50

AmbigDict-DIAC
CL 497,222 8.70 - 8.98
TR 36,533 27.58

Table 1: Vocabulary size and percentage of ambiguous
entries in AmbigDict-DIAC and AmbigDict-UNDIAC.

4.5 Results and Analysis

Dictionary STS NMT POS
NONE 0.608 27.1 97.99%
FULL-CM 0.593 26.8 98.06%

AmbigDict-UNDIAC
MULTI 0.591 27.0 98.11%*
SENSE 0.598 27.1 97.97%

AmbigDict-DIAC
CL-BR 0.601 27.1 98.09%
CL-KM 0.608 27.2 98.05%
CL-EM 0.617* 27.1 98.05%
TR 0.616* 27.3* 97.94%

Table 2: Performance with selectively-diacritized
datasets in downstream applications. Bold numbers
indicate approaches with higher performance than the
best performing baseline. * refers to approaches with
statistically-significant performance gains against the
best performing baseline.

Table 2 shows the performance of all strategies
in downstream tasks. Comparing baselines NONE
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and FULL-CM, we observe that applications that
require semantic understanding (STS and NMT)
show better performance when the dataset is undi-
acritized, whereas POS tagging yields better per-
formance with the fully diacritized dataset.

The differences in performance between the
baselines are significant across all tasks. In all
tasks, at least one of the selective diacritization
schemes leads to performance gains compared
to both baselines. However, the choice of best
performing selective diacritization scheme varies
across tasks. In general, AmbigDict-DIAC ap-
proaches provide more promising results on se-
mantic related applications.

TR and CL-EM approaches yield the highest
performance in two of the applications (STS and
NMT), while MULTI and CL-BR achieved the
highest performance in POS tagging. Incidentally,
MULTI has the highest rate of ambiguous words,
which leads to more disambiguation through di-
acritization. This is consistent with the observa-
tion that diacritization is useful for syntactic tasks
like POS tagging, as observed through the base-
lines. In all other tasks, all selective diacritization
schemes performed significantly higher than full
diacritization.

Homograph Evaluation: We compared the per-
formance of the various schemes on subsets of the
test sets that include homographs, which are iden-
tified from the FULL-CM version of the training
datasets. For STS and NMT evaluation, we kept
only the test sentences that contain at least one ho-
mograph. For POS word-level evaluation, we only
considered the homographs. Table 3 shows homo-
graph performance across applications. The per-
formance on these subsets follow the same trend
as the overall results illustrated in Table 2 except
for POS tagging, where FULL-CM achieved the
comparable performance to the selective schemes.
Note, however, that almost all schemes achieved
higher POS tagging accuracy than NONE in these
subsets, and almost all schemes achieved compa-
rable or higher performance than FULL-CM in
STS and NMT, with TR significantly outperform-
ing the rest of the schemes as well as the baselines.
This illustrates the usefulness of selective diacriti-
zation for balancing homograph disambiguation
and sparsity compared to full or no diacritization.

Frequent POS Tag Performance: POS tagging
labels each word in the sentence as opposed to

Dictionary STS NMT POS
NONE 0.590 27.4 98.26%
FULL-CM 0.575 27 98.70%

AmbigDict-UNDIAC
MULTI 0.574 27.2 98.65%
SENSE 0.581 27.3 98.37%

AmbigDict-DIAC
CL-BR 0.584 27.4 98.59%
CL-KM 0.591 27.5 98.52%
CL-EM 0.60* 27.4 98.47%
TR 0.597* 27.6* 98.22%

Table 3: Performance of selectively-diacritized
datasets on homographs. Bold numbers indicate
approaches with higher performance than the best
performing baseline. * refers to approaches with
statistically-significant performance gains against the
best performing baseline.

NMT and STS which are evaluated at the sen-
tence level. Thus, we compared the best perform-
ing scheme (MULTI) and the baselines in terms
of their per tag performance on the four most
frequent tags: verbs, nouns, adjectives, and ad-
verbs. Table 4 shows the results of the baselines
and MULTI. For verbs and nouns, MULTI has
better performance than both baselines followed
by FULL-CM. For adjectives and adverbs, NONE
followed by MULTI have better performance than
FULL-CM. While FULL-CM has overall higher
accuracy, these results indicate that selective dia-
critization is a better approach for the most fre-
quent tags, possibly due to reduced sparsity com-
pared with FULL-CM.

OOV Performance: We measured the POS tag-
ging performance on Out-of-Vocabulary (OOV)
words to measure the effect of sparsity on perfor-
mance. We consider a word OOV if it does not
occur in the fully-diacritized training set. FULL-
CM achieved 87.43% tag accuracy, while NONE
achieved 87.56%. Using the MULTI scheme,
the POS tagging accuracy on OOV words was
87.51%, which falls between the two baselines, as
expected.

The results above indicate that using a selec-
tive diacritization scheme like MULTI can achieve
a desirable balance between disambiguation and
sparsity, such that better performance can be
achieved in the frequent cases without increasing
sparsity and OOV rates.
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Scheme Verb Noun Adj Adv
MULTI 95.98% 97.63% 94.43% 97.05%
NONE 95.08% 97.45% 94.71% 98.08%
FULL-CM 95.87% 97.56% 94.40% 96.79%

Table 4: POS Tagging performance per most frequent
tag. Bold scores indicate the highest score in a column.

Type Example

part-of- $ak ½ ��� “doubt” (noun)

speech $ak∼
�
½ ��� “doubted” (verb)

action >a*okur Q
�
»�	X

�

@ “remember”

direction >u*ak∼ir Q
��
»�	X

�

@ “remind”

number $uyuwEiy∼ayon 	á��

��J
«� ñ�J


��� “communists”

$uyuwEiy∼iyn 	á�

��J
«� ñ�J


��� “communists”

Table 5: Examples of ambiguous word pairs detected
by the clustering approaches.

4.6 Properties of Ambiguity Dictionaries

Clustering-Based Ambiguity: While MULTI,
TR, and SENSE approaches have intuitive jus-
tifications, the clustering approaches are based
entirely on distributional features. We analyzed
some of the results qualitatively to shed light
on types of words that are deemed ambiguous
through clustering. While the various cluster-
ing approaches resulted in different labeling, their
overall statistics and patterns were highly similar.
Using a random subset of words from these CL
dictionaries, we extracted the examples shown in
Table 5, which shows some of the most common
types of ambiguity. Note that the detected words
are either semantically ambiguous (e.g. deriva-
tions or distinct lemmas) or syntactically ambigu-
ous (e.g. part-of-speech).

Diacritic Pattern Complexity: We investigated
whether there are regular diacritic patterns among
words that were considered ambiguous by CL and
TR. Both approaches are data-driven, and we ap-
plied them on different corpora, so we investigated
their degree of agreement. To do so, we abstracted
the diacritic patterns for words in the vocabulary
by converting all characters other than diacritics
to a unified token “C”, then we collected statis-
tics of patterns of word pairs that are deemed am-
biguous vs. unambiguous. For example, the am-
biguous pair “katab” I.

��J
�
» and “kutib” I. �J�

�
» have

the pattern CaCaC-CuCiC. For CL methods, the
number of unique diacritic patterns of unambigu-

Pattern Pair Example
CaC∼aC Ear∼aD 	���Q �« “make wider”

CuCiC EuriD 	�Q�
�« “has been shown”

CaCiCaCoC ba$iEayon 	á��
 �ª ���
��. “ugly” (dual)

CaCiCiCC ba$iEiyn 	á�
ª� ���
��. “ugly” (plural)

Table 6: Examples of consistent diacritic patterns of
ambiguous words between CL and TR approaches.

ous word pairs (i.e. falling in the same cluster)
were between 197-219 patterns, whereas patterns
of ambiguous pairs were between 813-872. The
majority of patterns between unambiguous words
also occurred between ambiguous words. For TR,
while most patterns were labeled unambiguous,
around 300 patterns were always labeled ambigu-
ous. We did not find overarching semantic or
syntactic rules that consistently explain ambigu-
ity tags. However, a number of patterns (∼ 20)
were always tagged as ambiguous by both TR and
CL approaches. Table 6 shows a sample of these
patterns with examples.

5 Discussion & Conclusion

We investigated selective diacritization as a vi-
able technique for reducing lexical ambiguity us-
ing Arabic as a case study. To our knowledge,
this is the first work that shows encouraging results
with automatic selective diacritization schemes in
which the devised approaches evaluated on several
downstream applications. Our findings demon-
strate that partial diacritization achieves a balance
between homograph disambiguation and sparsity
effects; the performance using selective diacritiza-
tion always approached the best of both extremes
in each application, and sometimes surpassed the
performance of both baselines, which is consistent
with our intuition of balancing sparsity and disam-
biguation for improving overall performance.

While the increase in performance was not con-
sistent across all tasks, the results provide an em-
pirical evidence of the viability of automatic par-
tial diacritization, especially since manual efforts
in this vein had been rather challenging. We be-
lieve that the approaches described in this paper
could help advance the efforts towards optimal di-
acritization schemes, which are currently mostly
based on linguistic features. We analyzed some
patterns that were recognized as ambiguous using
our best-performing schemes, and showed some
consistencies in the diacritic patterns, although the

56



results were not conclusive. We believe that a
deeper analysis of these patterns may help shed
light on the lexical ambiguity phenomenon in ad-
dition to allowing further improvements in selec-
tive diacritization.
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Abstract

This paper presents the winning solution to the
Arabic Named Entity Recognition challenge
run by Topcoder.com. The proposed model
integrates various tailored techniques together,
including representation learning, feature en-
gineering, sequence labeling, and ensemble
learning. The final model achieves a test F1

score of 75.82% on the AQMAR dataset and
outperforms baselines by a large margin. De-
tailed analyses are conducted to reveal both its
strengths and limitations. Specifically, we ob-
serve that (1) representation learning modules
can significantly boost the performance but
requires a proper pre-processing and (2) the
resulting embedding can be further enhanced
with feature engineering due to the limited size
of the training data. All implementations and
pre-trained models are made public1.

1 Introduction

Aiming to identify entities in natural language,
named entity recognition (NER) serves as one
of the fundamental steps in various applications.
In many languages, the performance of NER
has been significantly improved because of re-
cent advances in representation learning (Peters
et al., 2018; Akbik et al., 2018). To promote
the development of Arabic NER, a challenge was
hosted on Topcoder.com2 based on the public Ara-
bic NER benchmark dataset (i.e., the AQMAR
dataset) (Mohit et al., 2012). Challenge submis-
sions were required to only use annotations from
the training set, and manual reviews on the sub-
mitted solutions were further conducted to prevent
cheating.

1https://github.com/LiyuanLucasLiu/
ArabicNER

2https://www.topcoder.com/challenges/
30087004

Among 137 registrants competing in the chal-
lenge3, we placed the first by tailoring various
techniques and incorporating them all together. In-
tuitively, it is hard to only rely on feature engineer-
ing to capture textual signals, especially for mor-
phologically rich languages like Arabic (Habash,
2010). At the same time, neural networks have
demonstrated their great potentials to automate
high-quality representation construction in an end-
to-end manner. Therefore, we leverage embedding
modules to represent words with pre-trained vec-
tors for a better quality. Besides, we observe that
handcrafted features can bring a considerable im-
provement. Consuming all these features, we train
multiple LSTM-CRF models to construct the map-
ping from representations to predictions, and fur-
ther aggregate their outputs with ensemble learn-
ing. Moreover, we incorporate a dictionary-based
string matching model and observe that it can im-
prove the recall at some cost of precision, which
results in a marginal F1-score improvement.

Our final ensemble model achieves a test F1

score of 75.82%, outperforming all other partici-
pants as well as the previous state-of-the-arts by
significant margins. We further conduct analyses
on our solution to get deeper insights on the task:
(1) the effectiveness of representation learning and
(2) the role of feature engineering.

The rest of paper is organized as follow. The
next section discusses related work. Section 3
introduces the problem setting and presents the
data analysis. The proposed framework is pre-
sented in Section 4, including model ensemble and
dictionary-based model. Tailored representations
modules are introduced in Section 5. Finally, we
discuss the experimental results in Section 6.

3220 submissions from 30 participates are made in total.
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2 Related Work

Typically, named entity recognition is conducted
as a sequence labeling task. Before deep learning
demonstrated its effectiveness, traditional meth-
ods rely on handcrafted features (e.g., features
based on POS tags) and language-specific re-
sources (e.g., gazetteers) to capture textual signals.
Machine learning models like conditional random
field (CRF) and hidden Markov model (HMM) are
employed to capture the label dependency (Laf-
ferty et al., 2001; Florian et al., 2003; Chieu and
Ng, 2002). Many attempts have been made to re-
duce the reliance on feature engineering or other
human endeavors, which makes the NER task be
solved in an end-to-end manner (Lample et al.,
2016; Ma and Hovy, 2016; Shang et al., 2018).
Recent studies have revealed that language model
is an effective representation module for NER (Pe-
ters et al., 2017, 2018; Liu et al., 2018b; Akbik
et al., 2018; Liu et al., 2018a).

At the same time, many approaches have been
proposed specifically to solve the NER task in
Arabic. Traditional Arabic NER models are
mostly rule-basedmodels (Shaalan, 2014). Re-
cently, people have started to attach this task
with machine learning methods (Helwe and El-
bassuoni, 2017; Gridach, 2016). To further im-
prove the performance, attempts have been made
to combine both rule-based and learning-based ap-
proaches into a unified framework (Pasha et al.,
2014; Abdelali et al., 2016). Besides, incorpo-
rating additional supervision from other domains
or languages has been explored as well (Darwish,
2013).

3 Problem Setting

In this section, we first introduce the problem set-
ting of sequence labeling. Then, we discuss the
aforementioned Arabic NER challenge.

3.1 Sequence Labeling

In the sequence labeling framework, NER prob-
lems are usually annotated following the label-
ing schemes like BIO and IOBES. These labeling
schemes help us encode the information about en-
tities (Ratinov and Roth, 2009). For example, in
the BIO scheme, when a token sequence is identi-
fied as a named entity, its starting token and mid-
dle/end tokens are labeled as B- and I- followed
by the type; and all other words are labeled as

O. The IOBES scheme is similar to BIO but fur-
ther use S- for singleton entity and E- for end-of-
entity, respectively.

Using such labels, we define the input se-
quence as X = {x1, x2, . . . , xT }, where xi
is i-th token and its label is yi. Moreover,
we define the character-level input for X as
C = {c1,1, c1,2, · · · , c1, , c2,1, · · · , cT, }, where
{ci,1, · · · , ci, } are the characters contained in the
word xi and ci, is the space character right after
xi. Then, the goal of NER becomes to predict the
label yi for each token xi in the input sequence X .

3.2 Arabic NER Challenge

The Arabic NER challenge uses the public Ara-
bic NER benchmark dataset (i.e., the AQMAR
dataset) (Mohit et al., 2012). Its annotated en-
tities are classified into four types (i.e., “Per-
son”, “Location”, “Organization” and “Miscella-
neous”). This dataset contains 28 hand-annotated
Arabic Wikipedia articles, 14 articles are used as
the training set, 7 articles are used as the develop-
ment set, and 7 articles are used as the test set.

Data cleaning is further conducted on this
dataset. Specifically, we observed that the label
sequence is encoded in a noisy manner. For ex-
ample, some entities are labelled as {B-, O, I-},
while the legit label sequence should be {B-, I-,
I-}; Some entities are labelled as {B-T0, I-T1}
(here, T0 and T1 are two different entity types),
while the legit label sequence should be {B-T0,
B-T1}. In the pursuit of more powerful models
and more meaningful comparisons, we conduct
a label cleaning to regularize the label sequence.
The resulting dataset is released for future study4,
and its statistics are summarized in Table ??. In
the following sections, all comparisons are con-
ducted on this cleaned dataset.

4 Model Framework

As visualized in Figure 1, we design a hetero-
geneous framework, which incorporates various
techniques: (1) It employs representation learning
and sequence labeling as the basic sequence label-
ing model; (2) It leverages ensemble learning to
combine outputs from different NER models; and
(3) It further incorporates a dictionary-based string
matching model.

4https://github.com/LiyuanLucasLiu/
ArabicNER
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Figure 1: Our proposed framework for Arabic NER.

Train Dev Test

# Sent 1,329 711 606
# Token 36,050 19,519 18,284

# Char 156,941 83,267 80,565
# PER 752 292 424
# LOC 971 146 326
# ORG 234 114 102

# MISC 1,092 660 722

Table 1: Dataset Statistics of the AQMAR dataset.

4.1 Sequence Labeling Model

As to the basic sequence labeling model, we as-
sume there are n different representation modules,
namely Mi (1 ≤ i ≤ n). Given the j-th to-
ken in the input sequence, the representation vec-
tor produced by module Mi is denoted as fi,j . In
this paper, we concatenate the output from differ-
ent modules as the representation (input of LSTM-
CRF), i.e., fj = [f1,j ; f2,j ; · · · ; fn,j ]. Given the in-
put sequence X , we define its token representa-
tions as F = {f1, f2, · · · , fT }. Building upon rep-
resentation modules, we use LSTM-CRF (Huang
et al., 2015) to conduct entity extraction: we first
feed F into Bi-LSTMs, whose outputs are marked
as Z = {z1, z2, · · · , zT }. A linear-chain CRF

is further leveraged to model the whole label se-
quence simultaneously. Specifically, for the input
sequence Z, CRF defines the conditional probabil-
ity of Y = {y1, · · · , yT } as

p(Y|Z) =
∏T

t=1 φ(yt−1, yt, zt)∑
Ŷ∈Y(Z)

∏T
t=1 φ(ŷt−1, ŷt, zt)

(1)

where Ŷ = {ŷ1, · · · , ŷT } is a possible label se-
quence, Y(Z) refers to the set of all possible label
sequences for Z, and φ(yt−1, yt, zt) is the poten-
tial function of the CRF. In this paper, we define
the potential function as:

φ(yt−1, yt, zt) = exp(Wytzt + byt−1,yt)

where Wyt and byt−1,yt are the weight and bias.
During the model training, we use the negative

log-likelihood of Equation 1 as the loss function.
In the inference stage, the predicted label sequence
for input X is the one maximizing the probability
in Equation 1. Although the denominator in Equa-
tion 1 contains an exponential number of terms 5,
due to the definition of the potential function, both
training and inference can be efficiently conducted
using dynamic programming.

5The number of terms is exponential to the sequence
length T .
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The dictionary-based NER model and represen-
tation learning modules would be introduced in the
following sections.

4.2 Sequence Labeling Model Ensemble

To get better performance, we applied the ensem-
ble learning on sequence labeling results. Specif-
ically, as in Figure 1, multiple NER models are
separately trained with the shared representation
modules, and their results are combined as the fi-
nal output.

Specifically, we refer the output ofN models as
{Ŷ1, Ŷ2, · · · , ŶN}, where Ŷi = {ŷi,1, · · · , ŷi,T }.
Following the previous work (Nguyen and Guo,
2007), we first construct a list of transition
matrices {R1, · · · , RT−1}, where Ri(j, k) =
|{n|ŷn,i = j, ŷn,i+1 = k}| is the number of times
that i-th and i+1-th tokens are labelled as j and k
in {Ŷn}. Also, we calculate Bi(j) = |{n|ŷn,i =
j}|, which is the times of i-th token being labelled
as j. Then the integrated label sequence is calcu-
lated with dynamic programming:

Ŷ = argmax
T−1∑

t=1

Rt(ŷt, ŷt+1) +
T∑

t=1

Bt(ŷt)

where Ŷ = {ŷ1, · · · , ŷT } is the integrated label
sequence.

4.3 Dictionary-based NER Model

Besides the sequence labeling ensemble model,
we also incorporate a dictionary-based NER
model. Specifically, we first build a dictionary to
map surface names to their types from the training
set, then apply this dictionary via string matching.
We will add the dictionary-extracted entities into
the final prediction, if and only if they do not con-
flict with the sequence labeling results. For ex-
ample, in Figure 1, since the two-word entity (i.e.,
B-LOC I-LOC) detected by the dictionary-based
model overlaps with the sequence labeling results,
this entity is dropped; At the same time, because
the one-word entity (i.e., the second B-LOC) de-
tected by the dictionary-based model is not over-
lapped with any entities detected by the sequence
labeling model, it is therefore integrated to the fi-
nal results. In our experiments, we found this en-
richment by the dictionary-based model improves
the recall at a relatively smaller cost of the preci-
sion, thus improving the F1 score.

5 Representation Learning Modules

In this section, we introduce the three representa-
tion learning modules: (1) word embedding, (2)
contextualized representation, and (3) handcrafted
features.

5.1 Word Embedding

Based on the distributional hypothesis (i.e.,
“a word is characterized by the company it
keeps” (Harris, 1954)), word embedding meth-
ods aim to learn the distributed representations
by analyzing their contexts (Mikolov et al.,
2013). Recent work shows that word embedding
could uncover textual information of various lev-
els (Artetxe et al., 2018). Hence, we leverage word
embedding as a part of the word representation.
Due to the limited size of the training set, we fix
the pre-trained word embedding during the train-
ing of NER models. When the pre-trained embed-
ding has a high dimension, we will add a linear
projection to further project them to a relatively
low dimension.

5.2 Contextualized Representation

Contextualized representations have been widely
adopted in the state-of-the-art sequence labeling
models. Typically, they rely on bidirectional neu-
ral language models to capture the local contex-
tual information before and after a certain word.
Such representations provide rich, supplementary
information to the context-agnostic information
contained in a word embedding. Specifically,
character-level language models are first used to
provide additional supervision (Liu et al., 2018b),
and further exploration observes its effectiveness
as the pre-training task to construct contextualized
word representation (Akbik et al., 2018).

We present the details of character-level lan-
guage modeling and integration as below.

Character-Level Language Modeling. A bi-
directional character-level language model con-
tains two character-level language models to cap-
ture information from two directions. Character-
level language modeling aims to model the proba-
bility distribution of the character sequence. Typi-
cally, the probability of the sequence {c1, · · · , cT }
is defined in a “forward” manner: p(c1, · · · , cT ) =∏T

t=1 p(ct|c1, · · · , ct−1).
To calculate this conditional probability, we first

map the input sequence C to a list of charac-
ter embedding vectors and pass them into a re-
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current neural network, whose output is referred
to ht. Then, the probability p(ct|c1, · · · , ct−1)
is calculated using the softmax function. The
backward language model is the same as the
forward language model, except that it decom-
poses the probability of the sequence {c1, · · · , cT }
from the end to the front as p(c1, · · · , cT ) =∏T

t=1 p(ct|ct+1, · · · , cT ). Its output for character
ct is denoted as hr

t . Both language models use
negative log-likelihood as the training objective.

Language Model Integration. Using the bidi-
rectional character-level language models, we
construct contextualized representations for each
word. Specifically, we feed the input character
sequence C to language models, and then con-
catenate the hidden state of the forward language
model at ci, and the hidden state of the back-
ward language model at ci−1, as the representa-
tions for xi. We refer these two hidden states as hi

and hr
i . Due to the complex nature of natural lan-

guage, large dimensions of hi and hr
i are usually

required in language models, which might lead to
overfitting in the NER task. To avoid such cases,
we add a linear transformation layer to project hi

and hr
i to a lower dimension. In details, we use

ri = Wcr · [hi,h
r
i ] + bcr, where Wcr and bcr

are parameters to learn during the training of NER
models. The output ri is the contextualized repre-
sentation for xi.

5.3 Handcrafted Features

Due to the limited amount of available annota-
tions, we further handcraft word shape features
to help the model better capture the textual fea-
tures. Specifically, all words are classified into
three classes: (1) We mark all numbers as “num”;
(2) For remaining words, if it contains English
characters, it would be marked as “en”; (3) Oth-
erwise, it would be marked as “ar”. These three
categories would be further mapped to three dif-
ferent vectors as the token representation.

Although these handcrafted features are quite
simple, similar to existing work (Dozat, 2016), it
results in a remarkable performance improvement
in our experiments. More discussion on this fea-
ture engineering design is included in Section 6.

6 Experiments

In this section, we present the experimental results
on the AQMAR dataset.

6.1 Implementation Detail

As to pre-trained language models, we conduct
training on the Arabic Wikipedia texts with a
vocabulary of 256 characters (out-of-vocabulary
characters are mapped to a special <UNK> char-
acter). Since the resulting language model would
be used to construct contextualized represen-
tations for the downstream task, whose input
would be space separated, we conduct further pre-
processing. Specifically, we first tokenize the text,
then concatenate the token sequence by space. To
demonstrate the importance of pre-processing, we
trained two kinds of language models, one with
pre-processing, and the other without.

For pre-trained word embedding, we adopt two
sets of pre-trained embedding. One is trained
with the word2vec model (Mikolov et al., 2013).
It has 100 dimensions and is public available 6.
The other is trained with the Fasttext model (Bo-
janowski et al., 2017), which is released together
with 156 other languages 7. It has 300 dimensions
and would be projected to 100 dimensions before
concatenating with other vectors.

6.2 Hyper-parameter

For language model training, we use
Nadam (Dozat, 2016) as the optimizer, set
the learning rate as 0.002, clip the gradient at
1, set the batch size as 128 and limit the back
propagation length to 256. As to the RNN, we use
one-layer LSTMs with 2048 hidden states. We
set its character embedding to be 128 dimensional
and project its outputs to 50 dimension before
concatenating with other vectors.

As to the sequence labeling task, we use LSTMs
with 250 hidden states in the LSTM-CRF layer,
and apply dropout with a ratio of 0.5, and use
additional word dropout to each representation
module with a ratio of 0.1. Following the pre-
vious work (Reimers and Gurevych, 2017), we
use Nadam (Dozat, 2016) as the optimizer, set the
learning rate as 0.002, clip the learning rate at 1
and set the batch size as 32.

6.3 Performance Comparison

As summarized in Table 2, our final model
achieves a F1 score of 75.82%. Further ablation
study is conducted to analyze the effectiveness of
each module.

6https://github.com/bakrianoo/aravec
7https://fasttext.cc/docs/en/crawl-vectors.html
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Methods Pre Rec F1

Final Model 81.06 71.22 75.82
– Dict-based 81.27 70.84 75.70
– Ensemble 79.33 68.99 73.80
– Word shape 76.43 67.13 71.47
– Pre-process 71.60 61.33 66.07
– Language model 66.92 45.96 54.50

Table 2: Model Performance and Ablation Study for
the AQMAR dataset.

Ablation Study Setting. In the ablation study,
we first detach the dictionary-based NER from
the resulting system and refer ensemble sequence
labeling model as “– Dict-based”. Then, we
refer the basic sequence labeling model as “–
Ensemble”. After that, we detach hand-crafted
features and mark the resulting model as “–
Word shape”. Pre-processing is further removed
from language model training, which is marked
as “– Pre-process”. In the end, we remove lan-
guage model which leads to a typical LSTM-CRF
model (Huang et al., 2015) with pre-trained word
embedding, we refer this model as “– Language
model”. Their results are summarized in Table 2.

Discussion. We find that the dictionary-based
NER model8 improves the recall at the cost of the
precision and improves the F1 score by a small
margin. Also, we observe that the results demon-
strate the effectiveness of ensemble learning. At
the same time, we find the major F1 improve-
ments come from a better capturing of task-related
signals. For example, by properly adding lan-
guage models or designing handcrafted features,
the F1 boosts significantly. It verifies the effec-
tiveness of contextualized representation. Also, it
reveals the weakness of these techniques. Specifi-
cally, although the constructed character-level lan-
guage model has the potential to capture the word
shape signals, adding handcrafted features (i.e.,
word shape) can improve the F1 from 71.47% to
73.80%. We conjugate this is caused by the lim-
ited size of training data with English entities,
which limits the model from properly construct-
ing task-related representations. Further compar-
ison between these two models finds their major
differences are the predictions for entities contain-
ing both Arabic and English and validates our in-
tuition. Besides, we find the pre-processing used

8The dictionary-based NER model achieves Pre: 64.35%,
Rec: 8.83%, F1: 15.53%.

in language model training is crucial for the per-
formance, which has a big impact on the model
performance (from 66.07% to 71.47%). The main
reason is that although pre-trained language mod-
els are powerful, they are agnostic to the target
task corpus and suffer from their differences.

7 Conclusion

In this paper, we introduce the winning solution to
the Arabic Named Entity Recognition challenge.
First of all, we give a detailed introduction on sys-
tem design and the integrated technologies. We
further conduct ablation study to reveal the effec-
tiveness of each module and figure out all modules
bring performance improvements. We observe
that properly capturing the task-related features
is crucial to the performance. We also noticed
the current contextualized representation learning
techniques, although effective, could be further
enhanced by incorporating handcrafted features to
better handle some corner cases.
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Abstract

Arabic is a complex language with limited re-
sources which makes it challenging to pro-
duce accurate text classification tasks such as
sentiment analysis. The utilization of transfer
learning (TL) has recently shown promising
results for advancing accuracy of text classi-
fication in English. TL models are pre-trained
on large corpora, and then fine-tuned on task-
specific datasets. In particular, universal lan-
guage models (ULMs), such as recently devel-
oped BERT, have achieved state-of-the-art re-
sults in various NLP tasks in English. In this
paper, we hypothesize that similar success can
be achieved for Arabic. The work aims at sup-
porting the hypothesis by developing the first
Universal Language Model in Arabic (hUL-
MonA - A 	J Ò Ê g meaning our dream), demon-
strating its use for Arabic classifications tasks,
and demonstrating how a pre-trained multi-
lingual BERT can also be used for Arabic. We
then conduct a benchmark study to evaluate
both ULM successes with Arabic sentiment
analysis. Experiment results show that the
developed hULMonA and multi-lingual ULM
are able to generalize well to multiple Arabic
data sets and achieve new state of the art re-
sults in Arabic Sentiment Analysis for some
of the tested sets.

1 Introduction

Transfer learning (TL) with universal language
models (ULMs) have recently shown to achieve
state of the art accuracy for several natural lan-
guage processing (NLP) tasks (Devlin et al., 2018;

Howard and Ruder, 2018; Radford et al., 2018).
ULMs are trained unsupervised to provide an in-
trinsic representation of the language using large
corpora that do not require annotations. These
models can then be fine-tuned in a supervised
mode with much smaller annotated training data
to achieve a particular NLP task. The established
success in English with limited data sets makes
ULMs an attractive option for Arabic consider-
ation since Arabic has limited amount of anno-
tated resources. Early language models focused
on vector embeddings for words and provided
word-level vector representations (Mikolov et al.,
2013; Pennington et al., 2014; Bojanowski et al.,
2017), sentence embeddings (Cer et al., 2018), and
paragraph embeddings (Le and Mikolov, 2014;
Kiros et al., 2015). These early models were
able to achieve success comparable to models that
were trained only on specific tasks. More re-
cently, the language model representation was ex-
tended to cover a broader representation for text.
BERT (Devlin et al., 2018), ULMFiT (Howard
and Ruder, 2018), and OpenAI GPT (Radford
et al., 2018) are examples of such new pre-trained
language models and which were able to achieve
state of the art results in many NLP tasks.

However, in the field of Arabic NLP, such
ULMs have not been explored yet. The use of
transfer learning in Arabic has been mainly fo-
cused on word embedding models (Dahou et al.,
2016; Soliman et al., 2017). Among the recently,
developed ULM models, BERT (Devlin et al.,
2018) built a multilingual language version using
104 languages including Arabic but this model has
only been tested on Arabic ”sentence contradic-
tion” task. One advantage of the multi-lingual
BERT is that it can be used for many languages.
However, one important limitation is that it was
constrained to parallel multi-lingual corpora and
did not take advantage of much larger corpora set
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available for Arabic, making its intrinsic repre-
sentation limited for Arabic. As a result, there
is an opportunity to further improve the potential
for ULM success by developing an Arabic specific
ULM.

In this paper, we aim at advancing perfor-
mance and generalization capabilities of Arabic
NLP tasks by developing new ULMs for Ara-
bic. We develop the first Arabic specific ULM
model, called hULMonA. Furthermore, we show
how pre-trained multi-lingual BERT can be fine
tuned and applied for Arabic classification tasks.
We also conduct a benchmark study to evaluate
the success potentials for the ULMs with Arabic
sentiment analysis. We consider several datasets
in the evaluation and show the superiority of the
methods’ generalization handling both MSA and
dialects. The results show the superiority of the
models compared to state of the art. We further
show that even though the multi-lingual BERT
was not trained for dialects, it still achieves state
of the art for some of the dialect data sets.

In summary, our contributions are: 1. The de-
velopment of hULMonA, the first Arabic specific
ULM, 2. the fine tuning of multi-lingual BERT
ULM for Araic sentiment analysis, and 3. the col-
lection of a benchmark dataset for ULM evalua-
tion with sentiment analysis

The rest of the paper is organized as follows:
Section 2 provides a survey of previous work in
language development for English and Arabic.
Section 3 presents a description of the method-
ologies to develop the targeted ULMs and the de-
scription of the benchmark data set. Section 4
presents the experiment results. Finally, section
5 concludes the paper.

2 Related Work

This section describes the use of language models
for NLP tasks. Historically, language models can
be categorized into representations at word level
and representation of larger units of text such as
phrases, sentences, or documents. We will call the
second sentence level representation.

2.1 Language Models for English

2.1.1 Word-level Models for English
The word-level language model is based on the
use of pre-trained embedding vectors as additional
features to the model. The most common em-
bedding vectors used are word embeddings. With

word embeddings, each word is linked to a vector
representation in a way that captures semantic re-
lationships (Mikolov et al., 2013). The most com-
mon word embeddings used in deep learning are
word2vec (Mikolov et al., 2013), GloVe (Penning-
ton et al., 2014), and FastText (Bojanowski et al.,
2017). Other embedding vectors have been also
proposed for longer texts such as vectors at the
sentence level (Cer et al., 2018) and at the para-
graph level (Le and Mikolov, 2014; Kiros et al.,
2015). The use of these embedding vectors has
shown significant improvement compared to train-
ing models from scratch (Turian et al., 2010). One
of the recent feature-based approaches is ELMo
(Peters et al., 2018) which is based on the use
of bidirectional LSTM models. Unlike the tradi-
tional word embedding representations mentioned
previously, ELMo word embeddings are functions
of the whole sentence which enables capturing
context-related meanings. The use of these word
embeddings was shown to improve the state-of-
the-are results in six NLP tasks such as sentiment
analysis and question answering.

2.1.2 Sentence-level Language Models for
English

In contrast to word-level representation, sentence
level representation develops language model
which can then be fine-tuned for a supervised
downstream task (Devlin et al., 2018). The ad-
vantage of these pre-trained language models is
that very few parameters have to be learned from
scratch. The use of the pre-trained language
models has shown to result in a better perfor-
mance than the use of the feature-based approach
(Howard and Ruder, 2018). Several pre-trained
language models have been proposed recently that
were able to achieve state-of-the-art results in
many NLP tasks. One of these language models is
OpenAI GPT (Radford et al., 2018) which uses the
Transformer network (Vaswani et al., 2017) that
enables them to capture a long range of linguistic
information. This is in contrast with ELMo (Pe-
ters et al., 2018) which uses the short-range LSTM
models. OpenAI GPT was able to achieve state-
of-the-art results in several sentence-level NLP
tasks from the GLUE benchmark (Wang et al.,
2018) such as question-answering and textual en-
tailment.

Another proposed pre-trained language model
is ULMFiT (Howard and Ruder, 2018) which is
based on a three-layer LSTM architecture, called
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AWD-LSTM (Merity et al., 2017). This language
model was able to achieve state-of-the-art results
in six text classification tasks with just a few task-
specific fine-tuning.

In addition to these language models, one of the
most recent and innovative pre-trained language
models is BERT (Devlin et al., 2018). BERT is
based on the use of the recently introduced Trans-
former attention networks (Vaswani et al., 2017).
BERT uses the bidirectional part of the Trans-
former architecture which is the encoder which
enabled the language model to capture both left
and right context. This innovation enabled BERT
to achieve remarkable improvements compared to
previous models and to achieve state-of-the-art re-
sults in eleven NLP tasks with the addition of just
one output layer.

2.2 Language Models for Arabic
Some word embedding models were built us-
ing multiple languages such as Polyglot (Al-Rfou
et al., 2013) which was built using 117 languages
including the Arabic language. This model was
then tested in multilingual NLP tasks. In addition
to that, building on the word embedding methods
developed for English, several approaches were
done to build word embeddings for MSA and di-
alectal Arabic. The first approach is AraVec (Soli-
man et al., 2017) which was built using a large
Arabic corpus collected from Twitter, Internet, and
Wikipedia articles. Another model was proposed
by Dahou et al. (Dahou et al., 2016) in which Ara-
bic word embeddings were built using a 3.4 billion
words corpus.

For sentence-level representations, there has
been a development of multi-lingual models us-
ing parallel corpora. As an example, multilingual
BERT (Devlin et al., 2018) was built using 104
languages including Arabic. However, there has
not been any Arabic only language models. More-
over, Bert was experimented on several NLP tasks,
but sentiment analysis was not one of them.

2.3 Arabic Sentiment Analysis
In (Abdul-Mageed and Diab, 2014), a large-scale,
multi-genre, multi-dialect lexicon named SANA
was built for the sentiment analysis of Arabic di-
alects. This lexicon covers the MSA, the Egyptian
dialect, and the Levantine Arabic. SANA has sev-
eral features which are the part of speech (POS)
tagger and diacritics, number, gender, and ratio-
nality. Despite this lexicons coverage, it was still

not complete, and many terms were not present. In
(Abdul-Mageed and Diab, 2012), Abdul Majeed et
al. worked on expanding a polarity lexicon which
was built on MSA using existing English polarity
lexica. The problems faced with this lexicon was
that many terms that existed in social media were
not found in the lexicon. Hence, the coverage of
dialectical Arabic was poorly achieved using this
lexicon.

In the work of Duwairi (Duwairi, 2015), senti-
ment analysis was done on tweets where dialec-
tical Arabic words were present. This work used
both the supervised and unsupervised approaches
to build the model. To deal with dialectical words,
a dialect lexicon was created in which two an-
notators mapped each dialectical word to its cor-
responding Modern Standard Arabic word. Two
classifiers were used to train the model which
are the Naive Bayes (NB) and the Support Vec-
tor Machines (SVM). The model was then tested
using a dataset of 22,550 tweets written in Arabic
and that contain dialectical Arabic words. Test-
ing was done on the dataset when the dialect lex-
icon was used and when it was not used. Results
showed some improvement on the Macro-Recall
when the dialect lexicon was used on the NB clas-
sifier. However, the improvement was negligible
on the SVM classifier and the precision and the
recall were even negatively affected when classi-
fying the negative and the Neutral classes using
both classifiers.

Recently, deep learning models were the main
focus of Arabic NLP researchers (Badaro et al.,
2019). The first deep learning attempt was con-
ducted by (Al Sallab et al., 2015) who explored
four deep learning models, namely Deep Neural
Network (DNN), Deep Believe Network (DBN),
Deep Auto Encoder (DAE), and RAE. The sen-
timent lexicon ArSenL (Badaro et al., 2014) was
utilized to represent the text vector space. In a fol-
low up work, (Al-Sallab et al., 2017) proposed a
recursive deep learning model for opinion mining
in Arabic (AROMA) to address some limitations
of using RAE for Arabic. To address the morpho-
logical richness and orthographic ambiguity of the
Arabic language, (Baly et al., 2017) proposed the
first Arabic Sentiment Treebank (ARSENTB) and
trained RNTN to outperform AROMA. AraVec
word embeddings (Soliman et al., 2017) were uti-
lized by (Badaro et al., 2018) to win SemEval
2018 (Mohammad et al., 2018). (Dahou et al.,
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2016) and (Dahou et al., 2019) investigated a CNN
architecture similar to (Kim, 2014) trained on lo-
cally trained word embeddings to achieve signifi-
cant results.

Despite all this emerging progress in Arabic
sentiment analysis, transfer learning was utilized
by only using a single layer of weights - usually
the first layer - known as embeddings. However,
typical neural network architecture consists of sev-
eral layers, and utilizing transfer learning for only
the first layer was clearly just scratching the sur-
face of what is possible.

3 Methodology

In this section, we describe how we constructed
hULMonA and how we then tuned both hUL-
MonA and the multi-lingual BERT ULM for Ara-
bic classification tasks.

The high-level architecture for using a ULM
model is shown in Figure 1. The complete model
consists of the combination of a pre-trained ULM
model and additional task-specific layers for the
desired tasks. Once a ULM model is developed,
the learning process becomes limited to learning
the parameters of the additional layers. This trans-
fer learning process is referred to as fine-tuning
with ULM and this is the main benefit of using
ULMs.

Figure 1: High Level Architecture for ULM Tranfer
Learning

Below, we describe the data pre-processing step
required for Arabic and the fine tuning process for
the additional layers.

3.1 Arabic Specific ULM: hULMonA

Transfer Learning implies that training a model
which already has some language knowledge per-
forms better, converges faster, and requires less
data for new task when comparing to training

from raw text. Language modeling is consid-
ered the ideal task to obtain general understand-
ing of a particular language due to its ability of
capturing many aspects of language relevant for
downstream tasks, such as long-term dependen-
cies (Linzen et al., 2016), hierarchical relations
(Gulordava et al., 2018), and sentiment orientation
(Radford et al., 2017).

Inspired by the Universal Language Model
Fine-tuning (ULMFiT) (Howard and Ruder,
2018), we propose, develop, and make available
for public1, the first ULM in Arabic (hULMonA -
A 	J Ò Ê g ) that is trained on large general-domain
Arabic corpus and can be fine-tuned on any tar-
get task to achieve significant results. hULMonA,
illustrated in Figure 2, consists of three main
stages: 1. pretraining the state-of-the-art language
model AWD-LSTM (Merity et al., 2017) on a
huge Wikipedia corpus (section 3.1.1), 2. fine-
tuning the pretrained language model on a target
dataset (section 3.1.2), 3. and adding a classi-
fication layer on top of the fine-tuned language
model for the purpose of text classification (sec-
tion 3.1.3).

3.1.1 General domain huLMonA pretraining
To capture the various properties of a language,
we constructed a large scale Arabic language
modeling dataset by extracting text from Arabic
Wikipedia. The 600K Wikipedia articles were
used to train a three layers of the start-of-the-
art language model architecture, namely AWD-
LSTM (Merity et al., 2017). The output of this
stage is the model weights and the distributional
representations of each word in the constructed
corpus, also know as word embeddings. Although
Wikipedia text is mainly in MSA, the resultant
pretrained model can be fine-tuned later on differ-
ent text text genres (e.g., tweets) and Arabic di-
alects to outperform training from scratch. Due
to the huge amount of text and model parameters,
especially at the last softmax layer which has as
many neurons as the vocabulary size, the pretrain-
ing stage consumes much time and computational
power. Fortunately, pretraining is done once, and
the resultant model is made available to the com-
munity.

3.1.2 Target task huLMonA fine-tuning
Regardless of the diversity of the general-domain
data, the target task data will likely come from

1http://www.oma-project.com/
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(a) LM pre-training (b) LM fine-tuning (c) classification

Figure 2: Three-step Process for Creating hULMonA

a different distribution. Although the general-
domain LM is trained on MSA, most Arabic
datasets and social media platforms contains di-
alects. Unlike MSA, dialects have no standard or
codified form and are influenced by region specific
slang. Thus, fine-tuning the pretrained general-
domain LM on the target task data is necessary
for the LM to adapt to the new textual properties.
One difference though is that fine-tuning utilizes
different learning rates for different layers, which
is referred to as discriminative fine-tuning. This
is crucial since different layers capture different
types of information (Yosinski et al., 2014). Dis-
criminative fine-tuning updates the model param-
eters as follows:

θlt = θlt−1 − ηl · ∇θlJ(θ)

where θl is the model parameters of layer l, and ηl

is the learning rate of layer l.

3.1.3 Augmenting hULMonA with target
task classification layers

Finally, two fully connected layers are added to
the LM for classification with ReLU and Softmax
activations respectively. At first, the two fully con-
nected layers are trained from scratch, while pre-
vious layers are frozen. After each epoch, the next
lower frozen layer is unfrozen and fine-tuned until
convergence. This is known as gradual unfreezing,
and it is essential to avoid catastrophic forgetting
of the information captured during language mod-
eling.

3.2 Multi-lingual BERT ULM for Arabic
tasks

3.2.1 Data Pre-processing

The ULM BERT model requires a special format
for the data before feeding the model. A special
token, called [CLS], is added at the beginning of
every sentence and a special token, called [SEP]
is added at the end of every sentence. For Ara-
bic tokenization, we chose WordPiece(Wu et al.,
2016) tokenizer as it was also used during the pre-
training of BERT. Figure 3 presents a sentence be-
fore and after going through the BERT tokenizer.

Figure 3: BERT Tokenizer Results

The tokenizer splits sentences into WordPiece
tokens separated by ##. After tokenization, each
word is mapped to an index using a 110k token
vocabulary file that is provided by BERT for all
the languages.
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3.2.2 Model Fine Tuning
For sentiment analysis, or other Multi-label classi-
fication problems, a linear (fully-connected) layer
with a standard softmax activation function is
added to the last hidden state of the first token (the
[CLS] token) as shown in Figure 4. With a hidden
state vector C ∈ RH where H is the dimension of
the hidden state and a fully-connected classifica-
tion layer with weights W ∈ RK×H where K is
the number of classification labels, the label prob-
ability after applying the softmax function is then
P = softmax(CW T ).

Figure 4: BERT Fine-Tuning Model Architecture

3.3 Benchmark Dataset for ULM Evaluation
with Sentiment Analysis

To provide credible evaluation for the performance
of the two ULM’s, we catalog a benchmark dataset
for Arabic which can also be used for future re-
search benchmark evaluations. The data sets vary
in size allowing us to demonstrate the ULM’s abil-
ities to fine tune with little data and achieve high
performance. The benchmark data set is summa-
rized in table 1 along with statistics on its content.

3.3.1 HARD data set
The Hotel Arabic Reviews Dataset (HARD) (El-
nagar et al., 2018) is a dataset of hotel reviews
written in Modern Standard Arabic and Arabic di-
alect classified into positive and negative. The
dataset consists of a corpus of 93,700 hotel re-
views which are equally divided into 46,850 pos-
itive reviews and 46.850 negative reviews. The

dataset is structured in columns containing the
number of the review, the name of the hotel, the
rating given by the user, the type of the user, the
type of the room, the number of nights stayed, and
the review. Reviews have been classified into pos-
itive and negative according to the rating given by
the user. A negative review is defined by a rating
of 1 or 2 and a positive review is defined by a rat-
ing of 4 or 5. Neutral reviews of rating 3 were
ignored in this dataset.

3.3.2 ASTD data set

The Arabic Sentiment Tweets Dataset (ASTD)
(Nabil et al., 2015) is a corpus of 10,000 tweets
written in MSA and Egyptian dialect. The un-
balanced dataset has been manually annotated and
structured in columns containing the tweet and its
sentiment whether it is objective, neutral, positive,
or negative. The dataset consists of 777 positive
tweets, 1,642 negative tweets, 805 neutral tweets,
and 6,466 objective tweets. A balanced version,
called ASTD-B, is created as well taking into ac-
count positive and negative tweets only.

3.3.3 ArSenTD-Lev

(Baly et al., 2018) developed The Arabic Sen-
timent Twitter Dataset for LEVantine dialect
(ArSenTD-Lev), a corpus of 4,000 tweets col-
lected from Levantine countries (Palestine, Jordan,
Syria, and Lebanon) and annotated for sentiment,
topic, target, etc.

4 Experiments and Results

In this section, we discuss in detail the experi-
ments that were conducted to evaluate the devel-
opment of hULMonA, fine-tuning of hULMonA
and BERT, and and testing the performance of the
models with sentiment analysis. The benchmark
data set was used to fine tune both models and pro-
vide different evaluations.

4.1 Experimental Setup

We evaluate our work on four widely-studied Ara-
bic sentiment analysis datasets, with varying num-
bers of sentences and dialects. All used datasets
are described in details in section 3.3, and datasets
statistics are shown in table 1. Following previous
works, 20% of the data was held out for testing for
some datasets, while other datasets were tested on
10%.
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Dataset Resource # samples # classes MSA || Dialect
HARD Hotel reviews 93,700 2 MSA & Gulf

(Elnagar et al., 2018) (www.booking.com)
ASTD Twitter 10,000 4 MSA & Egyptian

(Nabil et al., 2015)
ASTD-B Twitter 1,600 2 MSA & Egyptian

(Nabil et al., 2015)
ArSenTD-Lev Twitter 4,000 5 Levantine Dialect

(Baly et al., 2018)

Table 1: Datasets statistics

Initial tokens Generated sequence
Pñ�J»YË@ ñJ
 	KñK
 ú


	̄ YËð , ø
 Xñª� �IkAK. ð I. �KA¿ , 	á�mÌ'@ YÔg@ Pñ�J»YË@
(Doctor) (Doctor Ahmad Al Hassan is a Saudi writer and researcher. He was born in June)

ÐY�̄ èQ» I. «B ¡�ð I. «C¿ I. ªÊK
 ú
¾K
QÓ@ ÐY�̄ èQ» I. «B
(football player) (American football player plays as midfield)

éËðX ©�®�Kð ¡�ðB@ ��Qå��Ë @ ú

	̄ èYj�JÖÏ @ éJ
K. QªË@ �H@PAÓB@ éËðX ©�®�Kð

(The country is located) (United Arab Emirates is located in the middle east)

Table 2: generating text using the pretrained Arabic language model

4.2 hULMonA Model Training
hULMonA was constructed by first extracting and
preprocessing all Arabic Wikipedia articles up to
March of 2019. Articles images, links, and HTML
were removed using an online tool2, and articles
with less than 100 characters were excluded result-
ing in 600,559 Arabic articles consisting of 108M
words, 4M of which were unique.

The large number of unique words requires
more parameters to be learnt and is more prone to
overfitting. This problem is called lexical sparsity,
and it is a well-known challenge in Arabic NLP.
Therefore, text was preprocessed by replacing
numbers by a special token, normalizing Alif and
Ta-marbota, separating punctuations from words
by a white space, and removing diacritics and non-
Arabic tokens. Moreover, MADAMIRA (Pasha
et al., 2014), an Arabic morphological analyzer
and disambiguator, was utilized to separate words
prefixes, such as Al-taareef (the), and suffixes,
such as possessive pronouns, resulting in words
stems, thus, reducing lexical sparsity. Table 3
shows the number of unique words before and af-
ter preprocessing Arabic text using MADAMIRA.
Finally, tokens that appeared less than 5 times
were replaced by a special token.

The preprocessed text was then fed to train a
2https://github.com/attardi/

wikiextractor

Example
Unique
tokens

Before �ém�
' @QË @ð 	àñÊË @ �éÖß
Y« ��é 	̄ A 	® �� ��èXAÓ ZAÖÏ @ 4.1M

After
éÖß
Y« é 	̄ A 	® �� èXAÓ ZAÓ + È@
ékZ@P + È@ +ð 	àñË + È@ 9.1K

Table 3: preprocessing reduces lexical sparsity

three layers AWD-LSTM for 4 epochs to predict
next token given current sequence of tokens. Each
epoch took around 200 minutes on an i7 CPU with
32 GB of RAM and Nvidia GTX 1080 GPU. We
used a dropout of 0.1 with learning rate of 3e-3,
and to account for GPU VRAM limitations, we
were limited with batch sizes equal to 32. 10%
of the data was held out for testing. Table 2
demonstrates the capabilities of the pretrained lan-
guage model of generating Arabic sequence based
on initial tokens. The Arabic language model
dataset, code, and pre-trained weights are publicly
available through the Opinion Mining for Arabic
(OMA) website3.

4.3 hULMonA Evaluation for Arabic
Sentiment Analysis

To perform sentiment analysis, we fine-tuned the
pretrained ULMs on a target dataset; meaning we

3http://www.oma-project.com/
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Dataset SOTA Results hULMonA BERT
HARD 93.1-93.2 (Elnagar et al., 2018) 95.7-95.7 95.7-95.7
ASTD 62.0-68.7 (Nabil et al., 2015) 67.7-69.9 67.0-77.1

ASTD-B 82.5-82.4 (Dahou et al., 2019) 85.8-86.5 80.0-80.1
ArSenTD-Lev 50.0-51.0 (Baly et al., 2018) 51.1-52.4 51.0-51.0

Table 4: Comparison of results (F1-Accuracy) obtained using hULMonA and other state-of-the-art models

resume training the language model to predict the
next token but with a sentiment dataset instead of
Wikipedia. Fine-tuning improved the model by
adapting to new words (e.g., dialects) or words
that may convey several meanings. Fine-tuning
was done on each of the data sets in the afore-
mentioned benchmark data separately and utiliz-
ing different learning rates for different layers,
ranging from 2e-5 to 1e-3. Finally, after adding a
classification layer, the network was trained by un-
freezing one layer after each epoch, starting from
the output layer. Results are reported in table 4.
Note that hULMonA outperformed the state-of-
the-art in four Arabic sentiment analysis datasets,
demonstrating the benefit of transferring knowl-
edge from a large corpus into small and dialectal
datasets.

4.4 BERT ULM Model Fine Tuning for
Arabic Sentiment Analysis

BERT was fine-tuned on the different datasets in-
dependently. The learning rate and number of
epochs used for each dataset are shown in table
5. Batch size was also fixed for BERT at 32 due
to our hardware memory limitations. Fine-tuning
took 90 ~100 seconds for every 3000 data-point on
Google’s Colaboratory TensorFlow environment
with GPU acceleration. BERT Base Multilin-
gual Cased used as it is recommended in BERT’s
github repository4 and the pre-trained weights
were downloaded from TensorFLow’s Hub5.

Dataset Learning Rate # of Epochs
HARD 10−5 3
ASTD 10−5 5

ASTD-B 10−5 5
AJGT 2× 10−5 6

ArSenTD-Lev 2× 10−5 5

Table 5: Learning rate and number of epochs used for
training each dataset

4https://github.com/google-research/
bert/blob/master/multilingual.md

5https://tfhub.dev/f/google

4.5 BERT ULM Evaluation for Arabic
Sentiment Analysis

The results obtained are compared to state-of-
the-art models and presented in Table 4. Even-
though BERT achieved state-of-the-art results on
two benchmark datasets, during the evaluation,
we noticed that the BERT multilingual tokenizer
failed to tokenize Arabic sentences as seen in
Figure 3. This tokenizer could have limited the
model’s accuracy and compromised the model’s
Arabic pre-training.

5 Conclusion

This works aims at utilizing transfer learning to
develop the first Arabic universal language model,
hULMonA, that can be fine-tuned for almost any
Arabic text classification task. Language knowl-
edge learnt unsupervisedly from general-domain
dataset is transferred to target task to improve
overall performance and generalization. We show
that hULMonA outperforms several state-of-the-
art Arabic sentiment analysis datasets, and we
make hULMonA available for the community. In
addition, we evaluate another ULM, BERT, and
compare results.

As a future work, we aim at utilizing hULMonA
to improve more Arabic NLP tasks such as emo-
tion recognition, cyberbullying detection, question
answering, etc. Moreover, we plan to develop Ara-
bic specific BERT by improving its limited tok-
enizer and training on Arabic only instead of mul-
tiple languages at once.
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Abstract

We explore the extent to which neural net-
works can learn to identify semantically equiv-
alent sentences from a small variable dataset
using an end-to-end training. We collect a new
noisy non-standardised user-generated Alge-
rian (ALG) dataset and also translate it to
Modern Standard Arabic (MSA) which serves
as its regularised counterpart. We compare
the performance of various models on both
datasets and report the best performing con-
figurations. The results show that relatively
simple models composed of 2 LSTM layers
outperform by far other more sophisticated
attention-based architectures, for both ALG
and MSA datasets.

1 Introduction

Detecting Semantic Textual Similarity (STS) aims
to predict a relationship between a pair of sen-
tences based on a semantic similarity score. It
is a well-established problem (Agirre et al., 2012)
which deals with text comprehension and which
has been framed and tackled differently (Beltagy
et al., 2013, 2014). In this work we focus on deep
learning approach. For example, Baudis and Še-
divý (2016) frame the problem as a sentence-pair
scoring using binary or graded scores indicating
the degree to which a pair of sentences are related.

Solutions to detecting semantic similarity ben-
efit from the recent success of neural models ap-
plied to NLP and have achieved new state-of-the-
art performance (Parikh et al., 2016; Chen et al.,
2017). However, so far it has been explored only
on fairly large well-edited labelled data in English.
This paper explores a largely unexplored question
which concerns the application of neural models
to detect binary STS from small labelled datasets.
We take the case of the language used in Alge-
ria (ALG) which is an under-resourced language

with several linguistic challenges. ALG is a col-
lection of local colloquial varieties with a heavy
use of code-switching between different languages
and language varieties including Modern Stan-
dard Arabic (MSA), non-standardised local collo-
quial Arabic, and other languages like French and
Berber, all written in Arabic script normally with-
out the vowels.

ALG and MSA are two Arabic varieties which
differ lexically, morphologically, syntactically,
etc., and therefore represent different challenges
for NLP. For instance, ALG and MSA share some
morphological features, but at the same time the
same morphological forms have different mean-
ings. For instance, a verb in the 1st person singu-
lar in ALG is the same 1st person plural in MSA.
The absence of morpho-syntactic analysers for
ALG makes it challenging to analyse such texts,
especially when ALG is mixed with MSA. Fur-
thermore, this language is not documented, i.e.,
it does not have lexicons, standardised orthogra-
phy, and written morpho-syntactic rules describ-
ing how words are formed and combined to form
larger units. The nonexistence of lexicons to dis-
ambiguate the senses of a word based on its lan-
guage or language variety makes resolving lexical
ambiguity challenging for NLP because relying on
exact word form matching is misleading.

(1) a. �IJ
 �® Ë �IJ
 Ëð ú
» A J
 Ë @ñÓ P@X ú

	̄ �é 	K A ÖÞ� �Hñ 	̄

ñK
@Q 	̄ P@X ú
Îg. @P PAî 	E ¼@Y 	JÓ �éËAg P@X ø
 YJ
Ëð
�HAJ. 	K ú


	æJ
Ê 	g@ ú
×Ag. Bð
b. I spent one week at my parents’ house

and when I came back I found that my
son made a big mess. After that my hus-
band changed his opinion and never al-
lowed me to stay over night (at my par-
ents’ house).

(2) a. ��@ð AÓñ�J 	Kð Pñ¢ 	®Ë ÐAª£ ðYg. ñ 	K XñËñÒÊ 	̄ A 	Jk
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@Y 	« ðQK
Y�K ø
 XA 	«

b. In Mawlid we prepare Couscous for
lunch, and you what will you prepare
(for lunch)?

In many cases, while the same word form has sev-
eral meanings depending on its context, different
word forms have the same meaning. As an illus-
tration, consider examples (1) and (2) which are
user-generated texts taken from our corpus (Sec-
tion 3.1.1). In (1), the same word form “P@X” oc-
curs three times with different meanings: “house”,
“made”, and “changed” respectively. Whereas in
(2), the different word forms “Pñ ¢ 	® Ë” and “ @Y 	«”
mean both “lunch”.

We mention these examples to provide a ba-
sic background for a better understanding of the
challenges faced while processing this kind of
real-world data using the current NLP approaches
and systems that are designed and trained mainly
on well-edited standardised monolingual corpora.
We could, for instance, distinguish the meanings
of “P@X” in (1) if we knew that the 1st occurrence
is a noun and the two others are verbs. Likewise,
if we had a tool to distinguish between ALG and
MSA, it were easier to detect the meaning of “ @Y 	«”
as “lunch” in ALG rather than the MSA meaning
“tomorrow”.

Traditional models for detecting STS cannot be
applied on such data because they require existing
resources and tools, such as tokeniser, stemmer,
PoS tagger, etc. to pre-process the data and ex-
tract useful features assuming that the data is cor-
rectly spelled (standardised orthography). Thus
using deep neural networks (DNNs) is promising
because representations can be learned in an unsu-
pervised way. In particular, when trained end-to-
end, inputs are mapped directly to the desired out-
puts without the need to handcraft features. Nev-
ertheless, this learning approach based on pattern
matching requires lot of data to learn useful pat-
terns. Besides there are only a few cleaned and
labelled textual corpora available for some lan-
guages and creating new ones is labour intensive.

Our contributions are as follows. (i) We in-
troduce a newly built (small) ALG dataset for
STS. (ii) We compare the performance of different
DNN configurations on this dataset, namely: var-
ious combinations of Recurrent Neural Networks

(RNNs), Convolutional Neural Networks (CNNs),
pre-training of embeddings, including a replica-
tion of two new state-of-the art attention models.
(iii) We test whether increasing the dataset size
helps. (iv) We test whether language regularisa-
tion helps. For this purpose, we run the same ex-
periments on a regularised and comparable MSA
translation of the ALG dataset.

The paper is structured as follows. In Section
2, we briefly review some STS applications. In
Section 3, we describe our experimental setup in-
cluding data and models. In Section 4, we discuss
the results and conclude with our future plans in
Section 5.

2 Related Work

Diverse techniques and formalisms have been
used to deal with various semantic-related tasks.
Among others, machine learning has been applied
to detect semantic textual relatedness such as Tex-
tual Entailment (TE) (Nielsen et al., 2009), STS
(Agirrea et al., 2016), Paraphrase Identification
(PI) (Liang et al., 2016), etc. Earlier systems use
a combination of various handcrafted features and
are trained on relatively small datasets. For ex-
ample, Dey et al. (2016) uses Support Vector Ma-
chines with a set of lexical, syntactic, semantic and
pragmatic features. As discussed earlier, these fea-
tures are not available from our dataset.

These tasks have recently attracted more atten-
tion when DNNs became practical, mainly due
to the availability of large labelled datasets such
as the Stanford Natural Language Inference cor-
pus (SNLI) containing 570K sentence pairs (Bow-
man et al., 2015), Sentences Involving Composi-
tional Knowledge (SICK) containing about 10K
sentence pairs (Marelli et al., 2014), the Microsoft
Research WikiQA Corpus (WIKIQA) containing
more than 23K sentence pairs (Yang et al., 2015),
the Quora dataset released by Kaggle competi-
tion consisting of 400K potential question du-
plicate pairs1, and the Microsoft Research Para-
phrase (MSRP) consisting of more than 5K sen-
tence pairs (Dolan and Brockett, 2005).

We follow the approach of Baudis and Šedivý
(2016) who consider that several tasks dealing
with detecting semantic relatedness are technically
similar and can be formulated as sentence-pair

1Corpus webpage: https://www.kaggle.com/
quora/question-pairs-dataset
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scoring. They propose a generic framework for
text comprehension for evaluating and comparing
existing systems. Several DNN systems have been
proposed. For instance, Mueller and Thyagara-
jan (2016) propose a siamese recurrent architec-
ture using Manhattan LSTM (MaLSTM) for STS.
They use word embeddings supplemented with
synonymy information, LSTM and Manhattan dis-
tance to compose sentence representations.

Additionally, complex DNN systems with var-
ious attention mechanisms have been proposed to
deal with more than one semantic similarity task
at the same time. For instance, Yin et al. (2015)
apply attention to represent mutual influence be-
tween the input sentence pairs. Similarly, Parikh
et al. (2016) propose the Decomposable Attention
Model (DecompAtten) which relies on alignment
using neural attention to decompose the task of
natural language inference into sub-tasks which
are aggregated and used to predict the output. In
the same direction, Chen et al. (2017) propose
the Enhanced Sequential Inference Model (ESIM)
composed of a bidirectional LSTM (BiLSTM) en-
coder, and a soft alignment which computes atten-
tion weights to determine the relevance between
two input sentences. Then they use another BiL-
STM layer to compose local inference information
and aggregate the output by applying average and
max pooling, and concatenating all in one vector.

All preceding models involve considerable so-
phistication of design and sometimes require spe-
cific dataset annotation. This is to say they are
normally trained on large well-edited and labelled
datasets that are available for English but are un-
available for most other languages. Unlike the
previous work, we will compare the performance
of two presumably best performing architectures
to simpler architectures similar to MaLSTM but
with different additional components on a small
unedited dataset.

3 Experiment

3.1 Data

3.1.1 ALG STS data
To the best of our knowledge, there is no ready-
to-use ALG data for any semantic similarity re-
lated task prior to this work. As a basis we use
an extended version of the ALG unlabelled dataset
(Adouane et al., 2018) which currently contains
408,832 unedited short colloquial texts (more than

6 million words) collected from online discussion
forums. For the STS task we created a dataset of
3,000 sentence pairs as follows. We randomly se-
lected 1,000 sentences from the ALG unlabelled
data, including various topics and text lengths.
We asked two ALG native speakers to produce
for each given sentence two more sentences: one
which is semantically equivalent and the other can
be semantically similar but not equivalent, i.e., it
could include the same words or could be about
the same topic.

(3) a. . A¿ðX Õç'
Y�̄ 	PðQË@ �éJ
ëAK. ú
æ
��AÓ BB

. XñÓB@ ��ñë AÓ ���
 	JJ.j. « AÓ ø
 XPñË@

b. No, it is not beautiful, pink is outdated.

I do not like pink, it is not fashionable.

(4) a. . ñ»ñ ��Ë@ ¨A�K �HPA�K AÒJ
Ë �IK
Yë
. AÖß
 Aî�EP@X ú
Í ñ»ñ ��Ë@ ¨A�K �HPA�KB ú


	æ�JJ.j. «

b. I offered to my mother a chocolate pie.

I like the chocolate pie that my mother
baked.

In (3), the two sentences are semantically equiv-
alent but in (4) the two sentences are roughly
about the same topic and include “chocolate pie”,
“mother” and “I” but some important information
differs — like who did what.

The annotators were free to use whatever words
as long as the produced sentences sounded nat-
ural to them and the above instructions were re-
spected. We provided them with two examples of
the desired sentences and explained the difference.
We combined all the sentences and created 3,000
unique sentence pairs.

In the second part of dataset creation, we asked
three different native speakers to provide a similar-
ity score between 0–5 for each sentence pair fol-
lowing the guidelines used in the SemEval-2016
shared task (Agirrea et al., 2016). Finally, another
annotator performed manual checking and major-
ity voting of the annotations.

Because the annotators assigned scores accord-
ing to their judgement, the resulting data is not bal-
anced in terms of the number of instances per class
(0–5) as shown in Table 1. The corpus contains
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36,767 words, 7,074 unique words and sentence
average length of 5.19 words or 34 characters.

Score Interpretation #Pairs
0 The two sentences are completely

dissimilar. 1,550
1 The two sentences are not equivalent,

but are on the same topic. 237
2 The two sentences are not equivalent,

but share some details. 140
3 The two sentences are roughly equivalent,

but some important information differs. 63
4 The two sentences are mostly equivalent,

but some unimportant details differ. 16
5 The two sentences are completely

equivalent, as they mean the same thing. 994

Table 1: Annotation guidelines and the number of in-
stances in the ALG STS dataset.

We first tried to predict the graded six similarity
scores as multi-class STS, but the systems (Sec-
tion 3.2) only predicted the most frequent classes,
namely scores 0 and 5. This behaviour suggests
that given the size of the dataset and the number
of instances for each class, the classes are not dis-
tinguishable enough. Therefore, we re-framed the
task as a binary STS: either two sentences are se-
mantically equivalent or not, rather than predict-
ing their graded similarity (Agirre et al., 2015;
Xu et al., 2015). To this end, we merged all
scores which do not capture semantic equivalence
(0 to 4) into a single class, and refer to them as
non-equivalent. The remaining score of 5 stands
on its own as completely equivalent. The result-
ing binary labelled data contains 994 equivalent
sentence pairs and 2,006 non-equivalent sentence
pairs.

3.1.2 MSA STS data
Contrary to ALG, MSA is a well-represented Ara-
bic variety with standardised spelling. We use a
large MSA Wikipedia corpus2 consisting of more
than 52 million tokens. We automatically removed
all words written in non-Arabic script and punctu-
ation. We refer to this corpus as MSA unlabelled
data.

We also created a labelled STS corpus for
MSA by commissioning another pair of ALG na-
tive speakers to faithfully translate the ALG STS
dataset into MSA. They were instructed to keep
the order of words and structures as close as pos-
sible to the ALG sentences without changing the

2The MSA corpus was downloaded from: http://
goo.gl/d7pxZb.

meaning. We manually checked the quality of
the translation, corrected some minor misspellings
and checked the corresponding similarity scores
(0–5). We proceeded in the same way as for ALG
and created a binary MSA STS dataset including
equivalent and non-equivalent sentence pairs.

Both binary and multi-class STS MSA datasets
have the same number of sentence pairs as their
ALG corresponding datasets. However, the MSA
datasets have a smaller vocabulary, consisting of
only 5,527 unique words from a total of 37,832
words. The average sentence length is 6.84 words
or 33.26 characters. The difference in the vo-
cabulary size is mainly due to misspellings and
spelling variations in the ALG corpus: it is non-
standardised language. Yet both ALG and MSA
datasets have relatively short sentences and they
are about the same topics since one is a translation
of the other.

3.2 Models

All models have the same basic structure. They
consist of two identical siamese networks, one for
each input sentence as shown in Figure 1. The
main differences between the models are in the
embeddings, the sentence encoder, the distance
measure, and the objective function for the final
prediction.

Output

Dense

Distance

Representation-1

Sentence Encoder

Embedding-1

Sentence-1

Representation-2

Sentence Encoder

Embedding-2

Sentence-2

Figure 1: Siamese network architecture. The trained
parameters are shared between the left (1) and right (2)
part of the network.
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3.2.1 Embeddings

We use two kinds of embedding layers. First, an
embedding layer trained only on the training data
based either on characters or words, initialised
either with a uniform or a normal distribution.
We refer to these embeddings as trainable as a
contrast to pre-trained embeddings. Second, we
pre-trained a word2vec and FastText embeddings
on the larger unlabelled data mentioned in Sec-
tion 3.1, using the Gensim (Řehůřek and Sojka,
2010) and FastText (Bojanowski et al., 2016) li-
braries. For word2vec embeddings, we used a
context size of 5 words, minimum occurrence of
1 and dimension of 300. For FastText embed-
dings, we used dimension of 300, range of sub-
characters between 3-5 characters, and a context
size of 5 words, and training for 200 epochs. The
goal of using pre-trained word embeddings is to
test whether we can make use of the large unla-
belled corpora.3

3.2.2 Sentence Encoders

We use either an RNN or a CNN with different
configurations to encode each sentence and out-
put a representation for each. The sentence en-
coders are identical for both sentences and share
weights. Here are some of the encoders that we
experimented with.

RNN-based encoder consisting of a stack of
standard and/or bidirectional LSTM layers with
300 units and a dropout rate of 3%.

CNN-based encoder consisting of a stack of
convolution layers with 60 filters of size 5, with
a relu activation and a dropout rate of 10%, fol-
lowed by max pooling with a pool size of 3, fol-
lowed optionally by a global average pooling and
global max pooling multiplied together.

CNN-RNN-based encoder A combination of
RNN and CNN encoders where we stack a num-
ber of convolution layers with 60 filters of size 5,
with a relu activation and a dropout rate of 10%,
followed by max pooling with a pool size of 3 and
a number of RNN layers (either standard or bidi-
rectional LSTMs).

Attention-based encoder Roughly put, the idea
of an attention mechanism is to attend to some

3The annotated data and the pre-trained embeddings are
available from the 1st author.

parts of an input/output when deriving its rep-
resentation (Bahdanau et al., 2014). We imple-
ment the Decomposable Attention (DecompAtten)
and Enhanced Sequential Inference Model (ESIM)
models, as described in Section 2.

3.2.3 Distance
The distance component serves to compose the
sentence representations. We use standard dis-
tances such as Euclidean distance, Manhattan dis-
tance, and Cosine similarity.

3.2.4 Dense
Instead of using a distance measure between the
sentence representations, we compose the two sen-
tence representations by multiplication (multp),
subtraction (subtr), summation (sum), or concate-
nation (conct) as in the ESIM model. This oper-
ation is followed by a dense layer. We indicate
that this layer is optional by using a dotted frame
in Figure 1. When it is used, we use a sigmoid
activation with a binary cross-entropy loss.

Except for the pre-trained embeddings, all mod-
els are trained end-to-end for 300 epochs using a
batch size of 64 and Adam optimiser with a learn-
ing rate of 0.001.

4 Results and Discussion

We randomly selected from the binary ALG
STS dataset 250 sentence pairs of each class
(equivalent and non-equivalent) as the test set (500
in total), 200 sentence pairs as a development set,
and the remaining 2,300 sentence pairs as a train-
ing set. Note that balancing the test set is not es-
sential. Likewise, we split the binary MSA STS
data by taking the corresponding translations for
each instance in the ALG dataset.

The hyper-parameters reported in Section 3.2
were selected based on the reported common val-
ues in the literature for similar tasks and fine-
tuned on the development set. Moreover, because
of the stochastic nature of the neural models 4

where the results vary between each training run,
we report the average performance on the test set
over 10 training runs for the best performing mod-
els trained on both training and development data
following (Baudis and Šedivý, 2016; Yin et al.,
2015).

In order to increase the size of the training data
and to boost the instances of the minority class

4https://machinelearningmastery.com/
randomness-in-machine-learning/
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ALG MSA
Model Emb Encoder Dist Acc Acc-aug Acc Acc-aug

1 char-RNN trainable 2-LSTM multp 55.78 61.84 59.65 67.80
2 char-RNN trainable 2-LSTM subtr 70.38 78.56 69.02 71.37
3 word-RNN trainable 2-LSTM multp 85.06 87.20 85.19 86.69
4 word-RNN trainable 2-LSTM subtr 73.73 92.76 68.90 88.20
5 word-RNN word2vec 2-LSTM subtr 71.40 92.51 67.86 89.46
6 word-RNN FastText 2-LSTM subtr 71.68 92.70 68.06 88.57
7 word-CNN trainable 1-CNN sum 50.00 50.00 50.00 50.00
8 DecompAtten trainable attention sum 50.44 53.00 50.02 50.44
9 ESIM trainable attention conct 52.34 52.80 50.34 50.39

Table 2: Average accuracy of the models (%). Acc is accuracy with non-augmented
training data and Acc-aug with the augmented training data.

(equivalent sentence pairs), we duplicated equiv-
alent sentence pairs by reversing their order so
that each sentence pair appears only once in the
same order. This is a standard data augmentation
practice used to mitigate the limited availability
of labelled training data (Yin et al., 2015; Mueller
and Thyagarajan, 2016). The augmented training
set contains 3,244 sentence pairs (1,488 equivalent
and 1,756 non-equivalent pairs). Because there
is no previous work reported for ALG on a sim-
ilar task, we resort to the binary random guess,
namely 50% as a baseline. We report the overall
accuracy for the same models with and without the
augmented training data, for both ALG and MSA
separately. In Table 2, we only report the models
that outperform the baseline.

4.1 Binary STS for ALG

Non-augmented data The results show that
char-RNNs composed of 2 standard LSTM lay-
ers and trainable embedding layer with normal
distribution (1) and (2) perform worse than their
word-based counterparts (3) and (4). This result
contradicts the conclusion that character models
are better at modelling morphologically rich lan-
guages (Vylomova et al., 2017), and consequently
they are better in dealing with misspellings and
capturing spelling variations.

The best performance is achieved by a word-
based 2-LSTM layer encoder and a trainable em-
bedding layer (3), using multiplication as a dis-
tance with an accuracy of 85.06%. Nevertheless,
char-RNN performs better with subtraction rather
than multiplication as a distance (2). Adding pre-
trained embeddings word2vec (5) and FastText (6)
to the word-level RNN in (4) decreases the accu-
racy by 2.33 and 2.05 points respectively. This ef-
fect could be caused by the noise in the ALG unla-
belled data on which the embeddings were trained.

A 1-layer CNN with no pre-trained embeddings
and using summation of the sentence representa-
tions as a distance (7) performs the best compared
to the other options with CNN encoder but over-
all it performs quite poorly. Likewise combining
1-CNN and 1-LSTM layers as encoder (not shown
in Table 2) does not have an effect over using only
1-CNN layer. The models predict all the test sen-
tence pairs as non-equivalent. In other words, the
network could not learn enough to properly distin-
guish between the two classes.

These results contrast those reported by Kadlec
et al. (2015), namely that CNN models perform
better with little data compared to RNN models.
However, it is hard to quantify what is consid-
ered to be small apart from the number of exam-
ples. In general, neural models learn useful fea-
tures when they are trained on enough representa-
tive data. That is to say it is not just a question
of data size, but it is more about the complexity
of the features and the functions that they should
learn. In our case, we suspect that the sparsity and
the noise in the data is making learning harder for
CNN models.

Regarding attention-based encoders, ESIM (9)
outperform DecompAtten (8), and both perform
slightly better than the baseline. The poor perfor-
mance of these models with little noisy data could
be related to the fact that attending to some parts of
a sentence or focusing on surface form similarity
is misleading since the same word form can have
different meanings and different word forms can
have the same meaning, especially that the data
does not contain named entities or punctuation or
digits which could help alignment.

Augmented data All models benefit from the
augmented data, except word-CNN (7) for which
the gain is not clear. The performance of the char-
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Equivalent Non-equivalent
Model Precision (%) Recall (%) F-score Precision (%) Recall (%) F-score

1 char-RNN-multp 73.91 53.54 62.10 63.12 80.80 70.88
2 char-RNN-subtr 88.02 66.54 75.78 72.76 90.80 80.78
3 word-RNN-multp 86.96 88.00 87.48 87.85 86.80 87.32
4 word-RNN-subtr 89.67 97.20 93.28 96.94 88.80 92.69
5 word-RNN-word2vec 89.30 96.80 92.90 96.51 88.40 92.28
6 word-RNN-FastText 90.84 95.20 92.97 94.96 90.40 92.62

Table 3: Average performance of the models per class trained on the ALG augmented data.

RNN (2) shows 8.18 point improvement in ac-
curacy. This result supports the hypothesis that
the poor performance of the model trained on the
non-augmented data is caused by the small size of
the sparse noisy data which makes it hard for the
char-RNN to learn useful patterns. Yet the signif-
icant improvement of the word-RNN (4) by 19.03
points, indicates that word-RNN suits better our
case.

Models with subtraction as a distance benefit
the most from the added data. Similar to their
behaviour on non-augmented data, adding pre-
trained embeddings slightly decreases the perfor-
mance of the model compared to not adding them.
Comparing embeddings, word2vec causes slightly
more drop in the performance of word-RNN com-
pared to FastText. Attention-based models benefit
also from the added data, but the gain is larger for
DecompAtten compared to ESIM.

Looking at the performance of the models for
each class shown in Table 3, it is clear that the
RNN models are doing quite well for both classes
whereas CNN and Attention-based models, not in-
cluded for space limits, are too biased to the non-
equivalent class. Figures in bold are meant to
highlight the gain due to pre-trained embeddings.

Error analysis of the word-RNN model (4)
shows that 7 equivalent sentence pairs are mis-
classified as non-equivalent and 28 non-equivalent
sentence pairs are misclassified as equivalent. We
manually checked the errors and found that most
of the non-equivalent pairs misclassified as equiv-
alent have at least one word in common as in ex-
ample (5) but the words have a different mean-
ing depending on their context. However, distin-
guishing between word senses is hard because the
context is not entirely sufficient. Example (6) is
an equivalent pair misclassified as non-equivalent.
The common pattern among the misclassified ex-
amples is that they have no exact words in overlap.
This could explain why attention-based encoders,
with some form of alignment, fail to generalise to

new instances. Probably there is a bias to the form
with one meaning when senses are not sufficiently
differentiated.
(5) a. . P@ 	Q�
K. Am.k �I 	® ��

. ��ñ�J 	® �� AÓ P@ 	Q�
K. ú
æ�
b. I saw a weird thing.

It is weird that I did not see it.
(6) a. . �PñJ. Ë É 	gY�K ��A�J�̄ð ÕÔ	m�

	' ú

	G @P

. ú
m.
��' A�J 	�K
ð �éj	JÖÏ @ ½K


	Yë øPXAK

b. I am thinking when the grant will be re-

ceived.
I wonder when the grant will be paid.

4.2 Binary STS for MSA
We now evaluate the performance of the same
DNN configurations on parallel regularised MSA
data using the same hyper-parameters as in Sec-
tion 4.1. The results are reported in Table 2.

Non-augmented data Again, the word-RNN
with multiplication (3) performs the best with
an accuracy of 85.19%. The char-RNN (1)
with the same settings achieves an accuracy
of only 59.65%. Using subtraction, the char-
RNN (2) slightly outperforms the word-RNN (4),
with 69.02% and 68.90% accuracy respectively.
Adding FastText (6) and word2vec (5) pre-trained
embeddings causes the accuracy of the best word-
RNN (4) of 68.90% to decrease slightly to 68.06%
and 67.86% respectively. This could be due to the
embeddings not distinguishing between the differ-
ent senses of the same word, i.e., output one vec-
tor representation for each word form. Also the
large MSA corpus on which the embeddings were
trained can have different topical distribution than
the MSA STS data. As with the ALG data, CNN
(7) and attention-based encoders (8–9) behave the
same.

Augmented data Trained on augmented data,
models with subtraction yield the best perfor-
mance compared to multiplication, and word-
RNN (4) outperforms char-RNN (2) with 88.20%
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Equivalent Non-equivalent
Model Precision (%) Recall (%) F-score Precision (%) Recall (%) F-score

1 char-RNN-multp 69.86 61.20 65.25 65.48 73.60 69.30
2 char-RNN-subtr 76.35 62.25 68.58 67.92 80.57 73.70
3 word-RNN-multp 87.04 86.00 86.52 86.17 87.20 86.68
4 word-RNN-subtr 85.77 91.60 88.59 90.99 84.80 87.78
5 word-RNN-word2vec 87.17 92.77 89.88 92.21 86.23 89.12
6 word-RNN-FastText 86.97 91.16 89.02 90.64 86.23 88.38

Table 4: Average performance of the models per class trained on the MSA augmented data.

and 71.37% accuracy respectively. Unlike when
using the ALG data, pre-trained embeddings im-
prove slightly the performance of (4) with 0.37 (6)
and 1.26 (5) points gain in the error reduction re-
spectively. The positive effect of the pre-trained
models could be due to the fact that more regular-
ities are captured. Training on augmented MSA
data does not yield any significant gain over train-
ing on non-augmented data for CNN (7) and atten-
tion based models (8–9).

In Table 4 we report the performance of each
model per class. Due to space limits, we do not in-
clude the CNN and attention-based models which
are again struggling with the equivalent class and
are biased towards the non-equivalent class. The
gain from the pre-trained embedding is in bold.
The models perform almost the same for both
classes but slightly worse than with the ALG data.

Example (7) is a non-equivalent sentence pair
misclassified as equivalent, and example (8) is an
equivalent pair misclassified as non-equivalent by
the word-RNN model (5).

(7) a. �HYg. ð �é«ðP é<Ë @ð Aî �DK. Qk. A 	��



@ A 	K



@ �éºJ
ºË@

. Aëñ�®ªË ÑêÊ¿ ø
 XBð


@

. �èY�Agð �éÓA� �I	KA¿ �èQÓ 	áÓ Õ» Aî �DK. Qk.
b. I also tried the cake and it was great, I

discovered that my kids finished it.
I tested her many times and she was jeal-
ous and envious.

(8) a. . è 	Yë �éªK
 	YÖÏ @ 	àðQ�
 	ªK
 Ñî �DJ
Ë AK

. �é¢ �� 	�ÖÏ @ è 	Yë A 	JË 	àðQ�
 	ªK
 �IK
P AK


b. Wish they change this presenter.
Hope they will replace this presenter.

It is hard to explain why these examples are mis-
classified, except that there is not enough context
to discover the meaning of the words. For in-
stance, in (8) the words in bold “ �éªK


	YÓ” , “ �é¢ �� 	�Ó”
are synonyms in these two sentences, and the two
sentences have two more word overlaps “ è 	Yë” and

“ 	àðQ�
 	ªK
” with the same meaning. This should help
classifying the two sentences as equivalent, but it
is not the case possibly because their contexts are
different.

5 Conclusion and Future Work
We have presented a new STS dataset for ALG
user-generated short texts and its MSA transla-
tion. We then described the neural network mod-
els trained end-to-end with different configura-
tions and compared their performances on a binary
STS task. The results show that relatively simple
model architectures, composed of two word-based
LSTM layers with subtraction as explicit similar-
ity measure used in the training task, suit better
our data compared to the other more sophisticated
architectures which might require more data to
achieve better performance.

We ran the same experiment on the MSA data,
but the results were not really different from the
ALG data. However, pre-training embeddings per-
formed better with MSA, probably because the
language is more regular and knowing some struc-
ture ahead helps. The performance improved with
more data for the minority class (equivalent sen-
tence pairs) for both ALG and MSA. However,
surprisingly the gain of some models with ALG
is greater than their gain with MSA. This is proba-
bly caused by the noisiness and the sparsity of the
data, the linguistic differences between MSA and
ALG, the data size, or all these factors together.
Further and deeper experiments and analyses are
needed for a better understanding of the results.

Overall, the results of the end-to-end training
are promising and could be generalised to other
related languages or language varieties with the
same under-resource settings. As a future work,
we want to explore ways to improve the learn-
ing capability of neural models from small noisy
datasets without handcrafted features, for example
by reducing the noise in the colloquial data (ALG)
by normalising spelling variation.
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Abstract

In this paper, we tackle the problem of “root
extraction” from words in the Semitic lan-
guage family. A challenge in applying natural
language processing techniques to these lan-
guages is the data sparsity problem that arises
from their rich internal morphology, where the
substructure is inherently non-concatenative
and morphemes are interdigitated in word for-
mation. While previous automated methods
have relied on human-curated rules or multi-
class classification, they have not fully lever-
aged the various combinations of regular, se-
quential concatenative morphology within the
words and the internal interleaving within tem-
platic stems of roots and patterns. To address
this, we propose a constrained sequence-to-
sequence root extraction method. Experimen-
tal results show our constrained model outper-
forms a variety of methods at root extraction.
Furthermore, by enriching word embeddings
with resulting decompositions, we show im-
proved results on word analogy, word similar-
ity, and language modeling tasks.

1 Introduction

The Semitic languages are a language family com-
monly spoken throughout North Africa, the Horn
of Africa, the Arabian peninsula, and the regions
between. With approximately 500 million speak-
ers, the proliferation of large online text collec-
tions of such news articles, social media, digitized
literature, and web blogs has created a wealth of
data offering challenges and opportunities for se-
mantic understanding of Semitic texts. In these
languages, a majority of words are derived from
a small number of mostly triliteral consonantal
roots, with some quadriliteral roots and a trace
number of biliteral and quintliteral roots. It is es-
timated that two of the most prominent Semitic

∗*Equal contribution

languages, Arabic and Hebrew, possess approxi-
mately 10,000 and 3,000 roots, respectively (Dar-
wish, 2002; Daya et al., 2008). As such, root
identification of a given Semitic word is often an
important task in morphological analysis and the
first step to morphological decomposition. Mor-
phological analysis of Semitic languages poses a
unique challenge to traditional NLP techniques
due to the non-contiguous morphology inherent
in these languages. This morphology is best de-
scribed as the application of a pattern resulting
in the interdigitation of morphemes within a sin-
gle root to form derivative words (Habash, 2010).
This fusional morphology allows for many sur-
face form words derived from the same single
root, but with different, yet abstractly-related se-
mantic meanings depending on constituent mor-
phemes. Because many surface words can be
formed through this root and pattern word forma-
tion process, and the root’s characters may not
necessarily be contiguously situated within each
resultant surface word, morpheme boundaries are
often difficult to identify.

Unlike other fusional languages, the Semitic
languages are unique in that the word forma-
tion process follows a highly-structured process
of adding vowels and consonants to roots. This
word formation process consists of a fixed num-
ber of slots for different morphemes, which are
fixed in their position and order relative to each
other. As such, these languages contain significant
sequential (albeit not necessarily contiguous) sub-
structure. In this work, we propose to leverage this
sequential substructure to improve the root extrac-
tion process and morphological decomposition.

Morphological analysis is essential in working
with Semitic languages as well as other highly-
inflectional languages due to data sparsity. For
instance, previous research has shown that many
text corpora demonstrate long-tail distributions in
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Figure 1: Word distribution in Arabic Wikipedia corpus.

relation to word frequency. This long-tail often re-
sults in corpora with many infrequent words, with
40% − 60% of words appearing just once (Kor-
nai, 2007). We can verify this for Arabic in Fig-
ure 1, where, on a Wikipedia monolingual Arabic
corpus (described in Section 5.1), approximately
80% of words occur fewer than five times and 60%
occur once. To process such long-tailed corpora,
it is necessary to exploit finer-granularity, highly-
shared substructures between words that can be
used to infer semantic meaning. In Table 1, we
look at a selection of Arabic words sharing the
common root –H. �H ¼ – (transliteration K-T-B),
which means to “write”. These words are formed
by appending different prefixes, suffixes, and other
templatic interleavings of morphemes within the
root. Despite the many surface words, the deriva-
tions share a semantic relationship based on the
root, as well as other concatenative and interdigi-
tated templatic morphemes. Additionally, as seen
in the example, the root word’s characters are
not necessarily contiguous within the word; this
is due to the non-concatenative templatic process
whereby morphemes are inserted between char-
acters of the root as part of the word formation
process. Finally, not all characters in the root
are necessarily found in the final surface-form of
the word as some root characters can be dropped.
Traditional concatenative morphological analyz-
ers struggle to identify and extract roots precisely
because root word characters are not necessarily
contiguous or even present in the surface word.

To address these challenges, we present a su-
pervised root extraction algorithm that, given a
word, directly extracts the root with high accu-
racy. Given this root and the original word, we
demonstrate how the templatic pattern-based word
formation process that transforms the root to the
original word can be used for further morpholog-
ical decomposition. Our root extraction method
differentiates itself from other methods in three

Word Translit. Meaning Pref. Suff. R-1 R-2
�I�. �J» KTBT she wrote N/A T N/A N/A

I. �KA¿ KĀTB writer N/A N/A Ā N/A

H. A�J» KTĀB book N/A N/A N/A Ā

H. A�JºË@ ALKTĀB the book AL N/A N/A Ā

I. �JºÓ MKTB desk M N/A N/A N/A
�éJ. �JºÓ MKTBA library M A N/A N/A

Table 1: Common Roots

ways: (1) It is fully data-driven, without any re-
liance on human-curated patterns; (2) it directly
extracts word roots without stripping dictionary
affixes, which can lead to incorrect roots when
false affixes are stripped; and (3) by applying a
novel sequence-to-sequence (seq2seq) model with
a constrained decoding mechanism that leverages
shared sequential semantics in the label (root) and
input (word) space, it outperforms standard multi-
class classification algorithms and achieves better
generalization performance.

We demonstrate that our method outperforms
unsupervised rule-based root extraction meth-
ods (Taghva et al., 2005; Khoja and Garside, 1999;
Zerrouki, 2010) and our seq2seq classifier outper-
forms general multiclass classifiers (Kim, 2014;
Chung et al., 2014). As a testament to the utility
of root extraction, we demonstrate how one can
leverage the root information alongside a simple
slot-based morphological decomposition to im-
prove upon word embedding representations as
evaluated through word similarity, word analogy,
and language modeling tasks.

2 Related Work
With the growth of the internet and the digitiza-
tion of Arabic and other Semitic corpora, prior
work has extensively studied root extractors with
the goal of improving document retrieval (Larkey
et al., 2002; Aljlayl and Frieder, 2002).

Early approaches to the problem of Arabic
root extraction were predominantly unsupervised
methods. Some researchers developed stemmers
that remove some prefixes and suffixes while
ignoring the templatic, interleaved morphemes
within stems. A few of these methods relied on
pattern matching and prefix/suffix pruning in or-
der to extract roots (Taghva et al., 2005; Khoja
and Garside, 1999). These methods may fail to
identify the roots in many nouns and, like all pre-
fix and suffix stripping algorithms, fail to cor-
rectly extract non-contiguous roots. Similar meth-
ods operate by removing not only prefixes and
suffixes, but also “extra letters” until the tricon-
sonantal roots remain (Momani and Faraj, 2007).
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This method, however, may incorrectly remove
many letters that are part of the root. Another
of these models achieves high accuracy by in-
corporating sentence-level context and inferred
syntactic categories into a parametric Bayesian
model (Lee et al., 2011). Our model forgoes
these context features as it attempts to identify
the root solely on the word itself. Additionally,
this method cannot model non-contiguous roots,
of which Semitic languages have many. Other un-
supervised methods utilize dictionaries to select
the characters from within words (Darwish, 2002;
Boudlal et al., 2011; Alhanini and Ab Aziz, 2011).
Another line of research leverages the templatic
nature for human-constructed rule-based con-
straints (Elghamry, 2005; Rodrigues and Cavar,
2007; Choueka, 1990). Finally, methods have
been proposed that utilize both a root dictionary
and rule-based templatic constraints (Yaseen and
Hmeidi, 2014).

Supervised methods have been developed for
identifying Hebrew roots by combining various
multiclass classification models with Hebrew-
specific linguistic constraints (Daya et al., 2004).
This same technique was extended to extract both
Arabic and Hebrew roots (Daya et al., 2008).
While these supervised methods effectively ad-
dress the non-contiguous nature of Semitic roots,
they fail to leverage the sequential structure of the
root label space. We show that such methods that
forgo the sequential structure in the label space un-
derperform on words with rare roots. Additionally,
these methods are only applied to triconsonantal
leaving out many biconsonantal and quadriliteral
roots.

Sequence-to-sequence models have been uti-
lized for learning to map sequences to other se-
quences and predominantly applied to machine
translation (Sutskever et al., 2014), with later
variations of these models enhanced with atten-
tion mechanisms (Luong et al., 2015). While
LSTM variants have been dominant, previous
work has shown that GRU-based models perform
comparably to LSTM-based models with supe-
rior train time (Chung et al., 2014). More re-
cent work has investigated character-level lan-
guage models in order to handle the many out-
of-vocabulary (OOV) words in morphologically
rich languages (Gerz et al., 2018). Such meth-
ods have shown large improvements in language
modeling across many morphologically rich lan-
guages. While such methods share the same

character-level input space as does our own
method, they ignore the sequential nature in the
target class. Closely related to our model, con-
strained sequence-to-sequence models have been
used for sentence simplification forcing the model
to select simple words (Zhang et al., 2017). Simi-
lar approaches have been used for constrained im-
age captioning (Anderson et al., 2017). Our model
differs in that it constrains not only on specific vo-
cabulary, but on specific sequences.

3 Root Extraction Framework

We introduce a framework for extracting the root
from templatic words within the Semitic family.
The proposed framework leverages the shared se-
quential semantics in both the word and root space
to more accurately extract root morphemes.

3.1 Preliminaries
The input is a set of word-root pairs W , R, consist-
ing of |W | words and |R| roots where |W | = |R|
and W = w1, . . . , w|W | and R = r1, . . . , r|R|.
In addition, the jth word wj is a sequence of
|wj | characters: cwj ,i, i = 1, . . . , |wj |. For con-
venience we index all the unique characters that
compose the input vocabulary with C characters
and cw,i = x, where x ∈ {1, . . . , C} means that
the ith character in wth word is the xth character
in the character vocabulary. Similarly the kth root,
rk corresponding to the jth word wj is a sequence
of |rk| characters: crk,i, i = 1, . . . , |rk|. Given the
input, the goal is to learn a function, F : W → R
that maps an input word onto its correct Semitic
root.

3.2 Constrained Seq2Seq Root Extraction
Our main innovation and contribution is a unique
way of extracting roots by utilizing seq2seq mod-
els for multiclass classification. While many
methods traditionally approach root extraction
through unsupervised application of templates or
traditional supervised multiclass classification al-
gorithms, we posit that the shared semantics be-
tween words and roots merits a different approach.
As such, we apply a hybrid approach between
multiclass classification and seq2seq models for
root extraction. By constraining the outputs of the
seq2seq models to the dictionary table of roots, the
algorithm becomes a sequential multiclass classi-
fication model that implicitly leverages shared se-
quential substructure in both the input space and
in the label space.
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Figure 2: Sequence-to-sequence root extraction.

3.2.1 Encoder Network
As seen in Figure 2a, we begin with an encoder
network that takes a word as input. Each of the
input word’s characters (from a total of C possi-
ble characters) is associated with a vector c ∈ Rd.
Using word, KTĀB from Table 1, the input be-
comes vector [c0, c1, c2, c3] ∈ Rd×4. We then run
this sequence of embedding vectors through both
directions of a bi-directional GRU (BiGRU) and
concatenate the resulting hidden vectors from each
pass. Finally, we average the concatenated hidden
vectors of the BiGRU across all time-steps. This
serves as the encoder representation of the input
word, which we denote as e. The encoding is then
fed into a decoder network that attempts to gener-
ate the most likely root for the word.

3.2.2 Decoder Network
In Figure 2b, the decoder takes the encoder repre-
sentation e that captures the input word and pre-
dicts a root word. This is done by feeding e and
a special “start-of-word” character 〈sow〉 as the
input. A GRU computes the next hidden state
h0 ∈ Rh. A scoring function is then applied, re-
sulting in an output the size of the character vo-
cabulary, C. This function: g : Rh → RC , is
then softmaxed to obtain a valid probability distri-
bution over characters for each hidden state. The
decoding stops when the predicted root is termi-
nated with a special “end-of-root” token 〈eor〉.

3.2.3 Constrained Beam Search
Traditional decoders select the best character at
each step to feed into the next time step of the
RNN. However, this decoding maps the input se-
quence into an infinite space of possible output
sequences and, as such, may result in an invalid
root that is not part of the dictionary set of roots.
As such, we propose an alternative output that re-
stricts the decoder, forcing the decoded sequence
to map onto a root within the valid roots set.

We realize this constraint by modifying the de-
coding scheme itself. During decoding, a greedy
approach is often used where the single best char-
acter output is selected and propagated to later
time steps. This greedy approach may not only
lead to suboptimal output sequences, but also re-
sult in invalid sequences (not corresponding to any
class). This can be circumvented using a beam
search decoding scheme. When decoding to ob-
tain the predicted roots, instead of utilizing the
character with the highest probability at each step,
the top k characters are considered at each step.
As such, at each new time-step, for each of the
k hypotheses, there are C possible choices. The
top k are then once again selected and this pro-
cess is applied to each time step. Once all candi-
date roots reach their special 〈eor〉 token, the most
probable root is selected. To tailor beam search to

B BB R

T DB

K

R

(a) Constraint Trie

Candidate Roots
K - T - A
K - T - B

K - T - A - B
K  - T  - R

K - T - B - B

(b) Candidate root pool.
Figure 3: Constrained beam search.

root extraction from a dictionary of roots, we seek
to modify beam search by enforcing the linguistic
sequential constraints present in the label root set.
This leverages our classification tasks’s relatively
small and enumerable root label set, contrasted
with an unbounded sequence as found in machine
translation models. Simultaneously, by using a
decoder, the model exploits the task’s sequential
structure by generating the target label character-
by-character. We utilize the target roots as guid-
ance for the decoding process in order to imple-
ment this sequential prediction. We demonstrate
on a toy example in Figure 3a, where by storing
all the possible target roots in a trie data structure
(a.k.a a prefix tree), invalid roots can be pruned
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during the decoding process. For example, as seen
in Figure 3b, during a typical beam-search pro-
cess, the top k candidate characters are selected.
By cross-referencing the current prefix of the root
with the trie storing all valid roots, many invalid
roots can be pruned. As such, we can enforce that
the top-k selections all correspond to valid prefixes
present in the target roots. This strictly improves
overall extraction accuracy over traditional beam
search.

4 Templatic Word Embeddings
As the Semitic languages are templatic, there ex-
ist fixed slots that can contain morphemes. Given
the correct root for a word identified as described
in Section 3, we introduce a simple slot-based
template. We indicate how to identify these slots
within a word utilizing the Semitic root. Finally,
we demonstrate how the morphemes within these
slots, along with the root, can be utilized to enrich
distributed word representations.

4.1 Morphological Decomposition
We posit that each word possesses a fixed number
of slots allocated to certain morphemes, whereby
the slots are fixed in their position and order rel-
ative to each other. As demonstrated in Table 1,
in addition to the root word, we propose a sim-
plified template that consists of four slots – two
concatenative (prefixes and suffixes) and two non-
concatenative (morphemes interdigitated within
the stem). While we demonstrate the simplic-
ity of identifying these within Arabic, this same
template-based structure can, without loss of gen-
erality, be trivially created for other members of
the Semitic family.

Example 1 (Stem, Prefix, and Suffix Identification) For
the root K-T-B, we can identify the consecutive characters
that encompass the full root.

AL + [KTĀB] + EEN
	áK
 + [H. A�J»] + È@

The characters grouped together by [] form the stem, the
smallest consecutive set of characters containing the full root.
Any characters not falling within the stem are, respectively,
the prefixes and suffixes.

As seen in Example 1, given the root, the stem
can be identified as the shortest contiguous sub-
string containing the root in correct order. Once
the stem is identified, the two concatenative slots
containing prefix and suffix are trivially identi-
fied by selecting the remaining affixes after remov-
ing the stem. The non-concatenative slots can be
found interdigitated within the word stem whose
boundary is demarcated by the root. Given the

stem (as shown in square brackets in Example 1)
and the root, these interdigitated slots can be iden-
tified as follows:

Example 2 (Interdigitated Slots) Given a stem containing
the core root K-T-B, the candidate slots are as follows.

In stem, KĀTB, Ā occurs in the first slot.
In stem, KTĀB, Ā occurs in the second slot.

If a contiguous morpheme occurs after the first character
in the root by before middle characters, it is a slot-1 addition.
If after the middle character(s) of the root, it is slot-2.

Example 2 shows the identification of interdig-
itated slots within the stem. Once again, it is evi-
dent that correct extraction of the root is essential
to correct identification of the slot positions within
the word. In the next subsection we demonstrate
how these extractions can be systematically lever-
aged to enrich distributed word representations in
these templatic languages.

4.2 Morpheme-Enriched Embeddings
To demonstrate the utility of templatic subword
extractions, we demonstrate how enriching word
embeddings with these morphemes can improve
word representations by providing parameter-
sharing between words sharing common substruc-
ture. With this motivation, we propose Tem-
platicVec, an intuitive extension to FastText (Pi-
otr Bojanowski and Mikolov, 2017), that uti-
lizes the templatic decomposition of semantically-
meaningful roots, affixes, and interdigitated mor-
phemes for representation enrichment. By using
these structures as embedding base units by and
combining them to construct a word’s distributed
vector representation, the resultant word embed-
dings are robust to infrequent word-induced data-
sparsity and can be constructed on many out-of-
vocabulary (OOV) words. We begin with a brief
review of FastText, and then demonstrate how one
can naturally integrate roots as well as concate-
native and templatic morphemes in place of Fast-
Text’s standard naive subwords. FastText utilizes
the skip-gram objective with negative sampling
yielding the following objective (for simplicity,
`(x) = log(1 + exp(−x))):
|W |∑

x=1

[ ∑

c∈Cx
`(s(wx, wc)) +

∑

t∈Nx,c

`(−s(wx, t))
]

In the above equation, wx is the xth word in the
corpus, Cx denotes the set of context words within
a predefined window of word wx, and Nx,c de-
notes the set of negative examples sampled from
outside the context window.
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The scoring function is then adapted to incorpo-
rate subword information as follows:

s(wx, wc) =
∑

m∈wx

zᵀmvc

In the above equation, each zm denotes a sub-
word embedding vector, so that the scoring func-
tion equates to the inner product of the summa-
tion each over subword embedding vector with
the context word vector. While FastText incorpo-
rates all contiguous substrings of lengths three to
seven as morphemes in the scoring function, be-
cause Semitic roots are not necessarily contigu-
ous, two words sharing the same root may not
share the same subwords using FastText. Because
this important semantic morpheme is not shared
among words, we posit that FastText’s indiscrimi-
nate enumeration of contiguous subwords does not
capture the essential semantic substructure. We
claim that directly incorporating the root embed-
ding and each slot’s morpheme embeddings that
have been extracted for each word and summing
over these embeddings results in higher quality
distributed representations. As such, similar to the
approach in (El-Kishky et al., 2018), we modify
the scoring function to incorporate the extracted
root and slot-based templatic information:

s(wx, wc) = (zr + zp + zs + zr1 + zr2)
ᵀvc

This modification yields a scoring function that is
the inner product of the summation over the root
word embedding (zr), prefix embedding (zp), suf-
fix embedding (zs), as well as the two possible in-
root interdigitated morphemes (zr1 and zr2).

5 Experiments
We introduce the datasets and methods for com-
parison used. We then describe evaluations for
root extraction and embedding quality.

5.1 Datasets and comparison methods
We use the following datasets and ground-truth la-
bels for evaluation purposes:
• Arabic Word & Root Pairs: 140K words

along associated with 11K roots from dictio-
nary (al Zabidi and Murthada, 1886).

• Hebrew Word & Root Pairs. 11.5K
words associated with approximately 500
roots from Wiktionary1 and human curation.

• Arabic Wikipedia Corpora. Wikipedia cor-
pus with 274K articles and 62.5M tokens and
1.26M unique words.

1wiktionary.org

For baseline methods to compare against our
proposed constrained seq2seq (Constrain-S2S),
we evaluate against three standard multiclass clas-
sification models: (1) a standard convolutional
neural network, CNN-Class, (Kim, 2014), a GRU
model, GRU-Class, and a bi-directional GRU
model, BiGRU-Class. In addition, we com-
pare against two unconstrained seq2seq models,
encoder-decoder models using GRUs, GRU-S2S
and bi-directional GRUs, BiGRU-S2S. Finally, for
Arabic, we evaluate against three unsupervised
Arabic root-extraction algorithms from the litera-
ture: Tashaphyne, ISRI, and Khoja. To evaluate on
the quality of the resultant morphological decom-
position, we compare against three variants of em-
beddings: (1) SkipGram (2) FastText (3) RootVec
(Embedding enriched with solely the root) .

5.2 Root Extraction Accuracy
To evaluate the effectiveness of our proposed
seq2seq extraction of roots, we perform five-
fold cross-validation evaluation of our method
compared to a variety of supervised and rule-
based root-extraction methods. During each cross-
validation, each supervised method is trained on
four-fifth of the dictionary mappings of word to
root pairs, and evaluated on a held-out 20%.

5.2.1 General Root Extraction
We first compare the performance of each super-
vised extraction method on extracting roots irre-
spective of root frequency. In Table 2, we re-

Method Arabic Hebrew
ACC. SE ACC. SE

CNN-Class .6753 ±.0009 .9622 ±.0019
GRU-Class .7539 ±.0023 .9591 ±.0033

BiGRU-Class .7548 ±.0015 .9629 ±.0009
GRU-S2S .7596 ±.0017 .9692 ±.0013

BiGRU-S2S .7854 ±.0010 .9788 ±.0016
Constrain-S2S .8324 ±.0011 .9879 ±.0008

Tashaphyne .2778 0 - -
ISRI .4508 0 - -

Khoja .4434 0 - -
Table 2: Root Extraction Accuracy.

port the performance of each extractor at suc-
cessfully identifying the ground-truth root in each
held-out word in a five-fold cross-validation eval-
uation. It is apparent that the unsupervised meth-
ods under-perform at extracting the ground-truth
root as compared to the supervised methods. This
is likely due to errors from human-curated pat-
terns which possess many exceptions as well as
many Semitic roots being non-contiguously sit-
uated with the word due to interdigitated mor-
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phemes. Additionally, both the CNN-based and
four RNN-based multiclass classification methods
severely under-perform compared to our proposed
constrained seq2seq model. This verifies our in-
tuition that leveraging the shared semantic space
between the words and the target roots is essential
in extraction.

5.2.2 Rare Root Extraction
We claimed earlier that by decomposing root clas-
sification into seq2seq classification, sequential
patterns within the roots can be leveraged for root
extraction. This can be useful for identifying the
correct root, even when the root is infrequent or
even absent from the training data. To support
this claim, we report the performance of each su-
pervised extractor at successfully identifying the
ground-truth of infrequent roots (appear three or
fewer times in training) and a zero-shot case where
the root is not present in the training data. As our
Hebrew dataset consists of frequent roots, and per-
formance is near perfect, we report results for the
Arabic dataset.

Method Infreq. Zero-Shot
ACC. SE ACC. SE

CNN-Class .4823 ±.0096 - -
GRU-Class .5697 ±.0103 - -

BiGRU-Class .5706 ±.0091 - -
GRU-S2S .6074 ±.0166 .5389 ±.0188

BiGRU-S2S .6231 ±.0191 .5532 ±.0141
Constrain-S2S .6929 ±.0164 .6292 ±.0160
Table 3: Arabic Rare Root Extraction Accuracy

As seen in Table 3, the seq2seq methods greatly
outperform all multiclass methods with Constrain-
S2S outperforming all methods on the infrequent
roots. This effect is amplified in the zero-shot
case, with only the seq2seq models handling un-
seen roots. This demonstrates the utility in jointly
learning the sequential structure in semantically-
shared label (root) and word space.

5.3 Word Analogy Evaluation
Given our comprehensive dataset of Arabic roots
and human-curated evaluation set of Arabic word
embeddings, we show the effectiveness of enrich-
ing Arabic word embeddings with their morpho-
logical decompositions via a word analogy task.
The goal of said task is to identify the best value
for D in analogies of the form “A is to B as C is
to D”. After training each embedding model on
the Arabic Wikipedia dataset, we use an analogy
dataset (Elrazzaz et al., 2017) curated for method-
ological evaluation of Arabic word embeddings.

We further differentiate the analogies into two cat-
egories: (1) morphemic analogies (e.g. plurals,
tense or gender) where a derivational or inflec-
tional morpheme is inserted, removed, or replaced
while the root remains unchanged, and (2) seman-
tic analogies where the root itself changes between
the analogous pairs (e.g. bird is to fly as fish is to
swim).

Embedding Model Semantic Morphemic
SkipGram 19.1 11.4
FastText 13.8 16.8

ISRI-RootVec 15.4 11.2
BiGRU-RootVec 14.2 11.9

S2S-RootVec 18.0 11.9
CS2S-RootVec 18.9 12.2

ISRI-TemplaticVec 15.3 14.5
Class-TemplaticVec 16.3 16.9
S2S-TemplaticVec 17.6 20.2

CS2S-TemplaticVec 18.8 22.9
Table 4: Word Analogies

As seen in Table 4, embeddings that utilize
morphemes or subword-level features perform sig-
nificantly better at morphemic analogies than do
SkipGram word embeddings. This does not ex-
tend to semantic analogies where all methods ap-
pear to degrade with the use of morpheme and
subword-level enrichment. This is not surprising
since, under the vector algebra that is used to com-
pute the word analogies, the summation of the
morphemes used to enrich the embeddings cap-
tures morphemic relationships but not necessarily
semantic ones. This can be seen in the perfor-
mance gap between the morpheme-enriched em-
beddings and SkipGram. Unlike the other meth-
ods, Templatic embeddings based on constrained
roots maintains comparable performance to Skip-
Gram on the semantic analogies while demon-
strating superior performance on the morphemic
analogies.

5.4 Word Similarity
The next embedding evaluation we consider is a
word similarity task. The ground truth data con-
sists of pairs of words and a human-annotated sim-
ilarity score averaged across all human evaluations
from a translation of the WS-353 dataset (Freitas
et al., 2016). The scores are computed via the co-
sine similarity between the vector representation
of each word in a pair. Their results are quanti-
fied through Spearman and Pearson rank correla-
tion coefficients.

As seen in Table 5, enriching the embed-
ding vectors with the template-based extracted
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Embedding Model Pearson Spearman
SkipGram 0.496 0.520
FastText 0.459 0.468

ISRI-RootVec 0.491 0.518
BiGRU-RootVec 0.492 0.510

S2S-RootVec 0.508 0.516
CS2S-RootVec 0.507 0.514

ISRI-TemplaticVec 0.482 0.501
Class-TemplaticVec 0.474 0.491
S2S-TemplaticVec 0.514 0.529

CS2S-TemplaticVec 0.512 0.533
Table 5: Word Similarity

morphemes substantially improves embeddings in
capturing word similarity. This is in contrast with
lower correlation coefficients from FastText em-
bedding vectors, likely due to the indiscriminate
generation of subwords that may degrade the over-
all embedding. On this task, template-based de-
composition using unconstrained and constrained
root extraction appears to perform similarly, yet
both greatly outperform the other baselines.

5.5 Language Modeling Perplexity

Finally, we evaluate the effect of utilizing the
extracted root and templatic decomposition on a
downstream language modeling task. On each lan-
guage model, the model quality is evaluated by
computing the perplexity on a held-out portion of
the corpus. The model used for language mod-
eling is an LSTM with three hidden layers, 600
hidden units per layer, regularized with 0.2 proba-
bility drop-out, unrolled for 35 steps with a batch
of 20. Parameters are learned using Adagrad with
a gradient clipping of 1. We evaluate on two sub-
sets of the Wikipedia dataset: (1) LM-1, a small
subset (2) LM-2, a larger subset. LM-1 consists
of 3.3M tokens and a vocabulary of 260K words
while LM-2 consists of 7.6M tokens and a vo-
cabulary of 400K unique words. Each language
model instance is trained for 5 epochs on the train-
ing data. Evaluation of perplexity was computed
for each model on the independent test set con-
sisting of 900K tokens where 62K tokens were
OOV in LM-1 and 27K in LM-2. Evaluation is
performed after selecting the best performing iter-
ation of the model on a validation set. While the
morpheme-enriched method can generate embed-
ding vectors for many OOV tokens, for SkipGram
and instances when they cannot, an unknown to-
ken with fixed embedding is used.

The results are summarized in Table 6. Al-

Embedding Model Perplexity
LM-One LM-Two

SkipGram 1757 1075
FastText 1720 1069

ISRI-RootVec 1729 1072
BiGRU-RootVec 1731 1071

S2S-RootVec 1728 1071
CS2S-RootVec 1726 1071

ISRI-TemplaticVec 1728 1071
Class-TemplaticVec 1724 1070
S2S-TemplaticVec 1718 1065

CS2S-TemplaticVec 1716 1065
Table 6: Language Modeling

though perplexity is high, this is common for
morphologically-rich languages such as Arabic as
shown in (Gerz et al., 2018). It appears our con-
strained model’s extracted roots yield a benefit
over other baseline roots, yet utilizing the full de-
composition outperforms all other methods, yield-
ing lower held-out perplexity. The results also
verify the intuition that morphemic decomposi-
tion is necessary to handle data-sparsity and OOV
words when little training data is present, whereby
perplexity is greatly reduced through the use of
morpheme-based embeddings.

6 Conclusions

We proposed leveraging the shared semantic space
between Semitic words and their roots for more
effective root extraction. This was accomplished
through a novel constrained sequence-to-sequence
classifier. Experiments show a performance boost
over unsupervised and supervised extraction mod-
els. We introduce a simple template-based mor-
phological decomposition, and by enriching word
embeddings with this decomposition, we show im-
proved results on word analogy, word similarity,
and language modeling tasks.
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Abstract

This paper introduces the first attempt to in-
vestigate morphological segmentation on En-
Ar bilingual word embeddings using bilingual
word embeddings model without word align-
ment (BilBOWA). We investigate the effect
of sentence length and embedding size on the
learning process. Our experiment shows that
using the D3 segmentation scheme improves
the accuracy of learning bilingual word em-
beddings upto 10 percentage points compar-
ing to the ATB and D0 schemes in all different
training settings.

1 Introduction

In the last decade, neural networks (NN) have
attracted many researchers attention and showed
very promising results in many natural language
processing (NLP) tasks. Many models have been
introduced including: semantics and question an-
swering (Bowman et al., 2015; Sukhbaatar et al.,
2015; Hermann et al., 2015), Machine Transla-
tion (MT) (Sutskever et al., 2014; Bahdanau et al.,
2015), parsing (Kong et al., 2015; Lewis et al.,
2016) and many works in word embeddings have
been reported. Word embedding is one of the most
important NLP tasks due to its ability to capture
the semantic similarities between words.

The main idea behind learning word embed-
dings is to transform words from discrete space
into a continuous vector space of features that cap-
ture their syntactic and semantic information. In
other words, words having similar meaning should
have similar vectors. This similarity can be mea-
sured using different distance methods such as co-
sine similarity and Euclidean distance.

Now a days, many word embedding models
have been introduced and show a significant im-
provement in different NLP tasks; language mod-
elling (Mikolov et al., 2010; Mikolov and Zweig,

2012; Shi et al., 2013), MT (Cho et al., 2014; Bah-
danau et al., 2015; Luong et al., 2015b), named en-
tity recognition (Lample et al., 2016), document
classification and sentiment analysis (dos Santos
and Gatti, 2014; Kim, 2014; Severyn and Mos-
chitti, 2015) etc. Word embeddings can be clas-
sified, based on the objective function that needs
to be learnt, into two main categories. Firstly,
Monolingual word embedding, which is the pro-
cess of learning similar word representations for
similar word meaning in the same language. Sec-
ondly, Bilingual/cross-lingual approaches, which
is the process of learning similar words among lan-
guages.

In this paper, we investigate the effect of differ-
ent Arabic segmentation schemes, sentence length
and embedding sizes on learning Arabic-English
(Ar-En) Bilingual word embeddings. The exper-
iments show a noticeable accuracy change using
different training settings. Firstly, we give an
overview of some related recent works on bilin-
gual word embeddings in Section 2. Section 3
gives a brief introduction to the Arabic language,
and it describes the details of Arabic language
morphological complex and preprocessing tech-
niques. Next is the experiment section that con-
tains a description of the model architecture, train-
ing dataset, preprocessing settings and training
hyper-parameters. The evaluation section presents
the evaluation methods used as well as discussing
the trained models’ evaluation results. Finally, we
conclude this work outcomes in Section 6.

2 Related Work

Bilingual or cross-lingual word embedding is the
process of learning the semantic similarity across
two or more languages word embeddings using
two or more corpora. Many successful mod-
els have been introduced and use different model
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architectures and training corpora with different
alignment levels to learn bilingual word embed-
dings.

Firstly, at word-level alignment, Luong et al.
(2015a) extend the skip-gram model to learn effi-
cient bilingual word embeddings. Also, at phrase-
level, a bilingually-constrained phrase embed-
dings (BRAE) model learns source-target phrase
embeddings by minimising the semantic distance
between translation equivalents and maximising
the semantic distance between non-translation
equivalents (Zhang et al., 2014). Su et al.
(2015) extend the BRAE model by introduc-
ing a ”bilingual correspondence recursive autoen-
coder” (BCorrRAE) model, which incorporates
word alignment to learn bilingual phrase embed-
dings by capturing different levels of their seman-
tic relations. After that, Zhang et al. (2016) in-
troduce a Bidimensional attention-based recursive
autoencoder (BattRAE) model to learn bilingual
phrase embeddings by integrating source-target
interactions at different levels of granularity using
attention-based models.

Using a sentence-aligned corpus, Gouws et al.
(2015); Coulmance et al. (2015) introduce Bil-
BOW and Trans-gram methods to learn and align
word embeddings without word alignment. With
a document level aligned corpus, Vulic and Moens
(2015) present a model that learns bilingual word
embeddings from non-parallel document-aligned
data without using translation pairs. In addi-
tion, Mogadala and Rettinger (2016) introduce a
Bilingual paRAgraph VEctors (BRAVE) model
that learns bilingual embeddings from either a
sentence-aligned parallel corpus or label-aligned
non-parallel document corpus. Vulic and Moens
(2015) introduce a model that learns multilingual
(two or more languages) word embeddings using
document-aligned comparable data.

In the literature we found three different bilin-
gual embedding approaches: monolingual map-
ping, parallel corpus and joint optimisation ap-
proaches. In monolingual mapping, word repre-
sentations are learnt separately for each language
using large monolingual corpuses. Then, using
word translation pairs, the model learns a trans-
formation matrix that maps word representation
from one language to the other (Ruder, 2017).
Parallel corpus models require either word-level
(Xiao and Guo, 2014) or sentence level alignments
(Hermann and Blunsom, 2013; Lauly et al., 2014;

Gouws et al., 2015). These models aim to have
same word/sentence representations for equiva-
lence translations.

Finally, in the joint optimisation method, the
monolingual and cross-lingual objectives are op-
timised jointly (Gouws et al., 2015; Coulmance
et al., 2015). Gouws et al. (2015) propose a bilin-
gual bag-of-words without word alignment model
(BilBOWA) that uses a skip-gram model as the
monolingual objective and jointly learns the bilin-
gual embeddings by minimising the distance be-
tween aligned sentences, by assuming that each
word in the source sentence is aligned to all words
in the target sentence. This model shows success
in translation and document classification tasks on
ES-En and En-De languages pairs.

In the context of the Arabic language, no prior
work has investigated learning bilingual word em-
beddings to such a morphologically complex lan-
guage. Thus, in this work, due to the speed and
success of BilBOWA models on learning bilin-
gual words embeddings without word alignments,
we train the model on a language with a different
structure namely Arabic, in order to investigate the
effects of complex language morphology in learn-
ing bilingual word embeddings.

3 Arabic language

The Arabic language still presents a challenge
in MT as it is the official language of 22 coun-
tries from the Arabic Gulf to Morocco and varies
between countries or regions in the same coun-
try. The Arabic language has many forms in-
cluding: Classical Arabic, Modern Standard Ara-
bic (MSA) and Arabic dialects. MSA, which is
based on classical Arabic syntactically, morpho-
logically and phonologically, is written and spo-
ken in news broadcasts, while Arabic dialects are
the true native language forms for daily communi-
cations (Habash., 2010). In this research we have
focused on MSA as the most accessible form.

3.1 Arabic Morphology

The Arabic language is a complex language mor-
phologically and syntactically (Monem et al.,
2008). Much work has been done in Arabic NLP
but the problems that are caused by the rich mor-
phology of Arabic still exist. We discuss some of
the complexity below.
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3.1.1 Arabic Language Words
As with many languages, Arabic words can have
affixations (prefix, suffix) and can turn the verb to
a noun and vice versa. The prefix usually indicates
the tense as well as gender, while the suffix indi-
cates plural and the gender too (Khemakhem et al.,
2010). So one Arabic word can translate into up to
three English words. As a result, the meaning of
an Arabic word can be changed when changing its
affixation. There is a lot of affixation in the Arabic
language and it has been considered as an issue in
many NLP tasks, researchers have handled Arabic
affixes using a morphological analysis to improve
the Arabic NLP (Hatem et al., 2011).

Another issue is non- or short-vowelled Arabic
words. The same word can have different mean-
ings depending on its diacritisation and these dia-
critisations are not usually written. However, the
state of the art tool MADAMIRA (See Subsection
3.2) can handle this issue by producing a diacri-
tised corpus.

3.1.2 Arabic Language Sentence Structure
The Arabic language has two types of sentences:
nominal (starts with a name) and verbal (starts
with a verb). The Arabic and English languages
are very different from a structural point of view.
One of the main differences between Arabic and
English is the order of words. As with other lan-
guages, Arabic sentences are built of verb, sub-
ject and object. And usually, an Arabic sentence is
post-verbal (VSO) so the verb comes first and then
the subject is followed by the object. However, it
is possible to be pre-verbal (SVO) as the English
language is, but it is not always preferred (Elming
and Habash, 2009). In both cases, VSO or SVO,
an Arabic sentence is flexible with its verb posi-
tion. However, the subject needs to come before
the object, except in passive sentences in which
it can be either before its subject or without its
subject. Secondly, in Arabic, the adjective always
comes after its noun, which is not the case in En-
glish. So a reordering rule should move the object
of an Arabic sentence to the right of the adjective.
Finally, indicating possession and compounding in
Arabic is called Idafa. Idafa consists of one or
more nouns that have been defined by the follow-
ing noun (Elming and Habash, 2009).

3.2 Arabic language Preprocessing
In pre-processing, lots of work has studied the im-
pact of morphological pre-processing techniques

on statistical machine translation (SMT) quality.
Researchers agree on the importance of morpho-
logical and syntactic pre-processing in MT in
terms of reducing both sparsity and the number of
”out of vocabulary” words (OOV) (Khemakhem
et al., 2010; El Kholy and Habash, 2012). At pre-
processing level, current research focuses on two
main pre-processing techniques: word segmenta-
tion and word pre-ordering. Many tools have been
introduced: AMIRA (Soudi et al., 2007), MADA
(Habash and Rambow, 2005), MADA+TOKAN
(Habash et al., 2009), Farasa (Abdelali et al.,
2016), AlKhalil Morpho (Boudchichea et al.,
2017) and MADAMIRA (Pasha et al., 2014).

MADAMIRA is a tool for morphological anal-
ysis and the disambiguation of Arabic including
normalisation, lemmatisation and tokenisation. It
can tokenise the input text with 11 different to-
kenisation schemes and normalise Alif and Ya
characters. MADAMIRA has been developed the
same as MADA to accept two input forms: MSA
and Egyptian Arabic (EGY). Pasha et al. (2014)
have pointed out that MADAMIRA has outper-
formed both AMIRA and MADA and is the state
of the art.

In this work, as word order and language mod-
elling don’t matter, we only applied segmenta-
tion and orthographic normalisation in the training
datasets.

3.2.1 Word Segmentation
Word segmentation has been considered the same
process as tokenisation in the Arabic language. It
is one of many techniques that have been proposed
to reduce morphological differences between lan-
guages such as Arabic and English (Akeel and
B. Mishra, 2014). Many tokenisation schemes
have been introduced for Arabic and have been
successfully applied. Many researchers have
studied the positive effect of morphological pre-
processing on En-Ar SMT. El Kholy and Habash
(2012) found that tokenisation and orthographic
normalisation improves the performance on SMT,
especially when translating from a rich into a poor
morphological language. Their work also shows
that lemma-based word alignment improves the
translation quality in En-Ar SMT.

Many researchers have studied the effect of dif-
ferent segmentation schemes in MT quality on
both En-Ar and Ar-En SMT. For example, Habash
and Sadat (2006) show in their work that rule-
based segmentation improves the translation qual-
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ity for a medium-sized corpus but the benefit
of word segmentation decreases when the corpus
size is increased. Other researchers Al-Haj and
Lavie (2012) believe that tokenisation schemes
with more splitting lead to a decrease in the OOV
rate. On the other hand, increasing the number of
token types can affect word alignment, translation
model and language model negatively as predict-
ing these tokens correctly becomes more complex
(El Kholy and Habash, 2012).

Researchers consider the Arabic tokenisation
process one of the main solutions helping to
decrease Arabic ambiguities in MT. Many re-
searchers have introduced different rule-base seg-
mentation schemes (See Table ??in Appendix).
Some of these schemes are used in En-Ar SMT
and they show the importance of word segmenta-
tion as a pre-processing step to minimise the dif-
ferences between Arabic and English as well as its
effects on SMT quality. The work of (Badr et al.,
2008) shows a significant improvement in En-Ar
SMT performance when combining segmentation
with pre-processing and post-processing steps for
small training data. Al-Haj and Lavie (2012);
El Kholy and Habash (2012) have studied the
effect of different segmentation schemes in En-
Ar phrase-based machine translation (PBMT). Al-
Haj and Lavie (2012), in contrast to the previous
work, investigate the effect of different segmen-
tation schemes on a very large amount of train-
ing data of at least 150M words. Their work
shows that simple segmentation performs better
than complex segmentation as the complex seg-
mentation has a negative effect by increasing the
size of the phrase table.

3.2.2 Orthographic Normalization

Orthographic normalisation is an important pro-
cess at the pre-processing stage. (El Kholy and
Habash, 2012) have introduced two schemes of or-
thographic normalisation: enriched Arabic (ENR)
and reduced Arabic (RED). RED is used at the
pre-processing level to convert all Hamzat-Alif
forms to bare Alif (taking out Hamza) and Alif-
Maqsura forms to Ya (add dots). ENR selects the
correct Alif and Ya form in order to generate the
correct Arabic form at the post-processing level.

4 Experiments

The aim of this set of experiments is to evaluate the
effect of sentence length on the process of learn-

ing bilingual embeddings using different segmen-
tation schemes.

4.1 Model Architecture

Bilingual Bag-of-Words without Alignment (Bil-
BOWA): BilBOWA, introduced in (Gouws et al.,
2015), is a simple efficient model to learn bilingual
distributed word representations without word
alignment. Instead, it assumes each word in the
source language sentence is aligned to every word
in the target language sentence and vice versa by
using a sentence level aligned corpus. This feature
is an advantage of this model as the word align-
ment process is very time consuming.

In the BilBOWA model, as has been mentioned,
both monolingual and bilingual objective func-
tions are learnt jointly. The monolingual words
representations are obtained by training word2vec
using a skip-gram model using negative sampling
approach by (Mikolov et al., 2013b).The bilin-
gual objective aims to minimise the distance be-
tween source and target sentences by minimising
the means of word representations in each aligned
sentences pair.

4.1.1 Monolingual Features
Instead of using Softmax, Gouws et al. (2015)
implemented Word2vec model using a simplified
version of a noise-contrastive approach: negative
sampling training objective modified by (Mikolov
et al., 2013a) as:

log p(w|c) = log σ(v
′T
w vcp)+

K∑

i=k

Ewi ∼ Pn(w)[log σ(−v′T
w vcn)]

(1)
Where vw is word vector and vcp, vcn positive and
negative context vectors respectively and K is the
number of negative samples.

This approach learns high-quality monolingual
features and speeds up the computation process
in this model architecture by converting multino-
mial classification problem to a binary classifica-
tion problem (Mikolov et al., 2013a; Gouws et al.,
2015).

4.1.2 Bilingual/Cross-lingual Features
Gouws et al. (2015) believe that as with the im-
portance of learning the relations between words
in the same language, it is also very important to

100



learn words representations that capture the rela-
tions among languages. Therefore, the BilBOWA
model learns word representations by updating
the shared embeddings jointly for both monolin-
gual and bilingual objectives. With the cross-
lingual objective, this model minimises the loss
between sentence representation pairs computed
as the mean of bag-of-words of the parallel cor-
pus.
The bilingual objective is defined as:

Ω = || 1
m

m∑

i=1

ri −
1

n

n∑

j=1

rj ||2 (2)

Where m and n are the number of words in the
source and target language , and ri and rj is a word
representation for each language respectively.

4.2 Data

In this paper, we used WIT3, Web Inventory of
Transcribed and Translated Talks, plain MSA Ara-
bic and English language parallel corpus (WIT3,
2012). The dataset has been divided into a 50K
monolingual-dataset and a 24K bilingual-dataset
to train the monolingual and bilingual objectives.
After preprocessing (See Section 4.3), two dif-
ferent bilingual training datasets have been ex-
tracted based on sentence length: 5-10 and 17-
80 tokens sentence length. Giving the distribution
of sentence length in the corpus, these sentence
length (5-10 and 17-80 tokens) give us a reason-
able size of dataset and distinction between short
and long sentences. For the test dataset, similarly
to (Gouws et al., 2015), we created a set of 3K
words by extracting the most common words in
the training datasets. Then, the extracted words
have been translated word by word translation us-
ing Google translator ( In line with common prac-
tice in the field) to create a word-based dictionary.

Datasets 5-10 17-80 Mono50K-data
Arabic ATB 195985 901013 902307
English ATB 153111 551508 554338
Arabic D3 187612 975221 1033188
English D3 132687 520190 553414
Arabic D0 190854 773826 771512
English D0 158577 557664 553414

Table 1: Number of tokens in training Datasets with
different segmentations schemes. Note that prepro-
cessing changes sentence length, and different methods
therefore produce different datasets

4.3 Preprocessing

Both sides of the dataset (English and Arabic),
are tokenised, cleaned, normalised and stop-words
have been removed. For Arabic, a morphological
segmentation process is applied in order to min-
imise the differences between each En and Ar lan-
guage pair.

Literature shows many different segmentation
schemes for Arabic language (See Table 2 for
more details). We use MADAMIRA a state of the
art Arabic morphological analyzer (Pasha et al.,
2014) for Arabic tokenisation, segmentation and
normalisation processes in this work. Three differ-
ent training datasets with different segmentation
schemes are generated: D0, ATB, And D3 (For
example: See Table 3). For English, we used the
Moses toolkit (Koehn et al., 2007) for tokenising
the English dataset and cleaning both sides.

4.4 Training

After preprocessing, we train a BilBOWA model
using six preprocessed datasets with different set-
tings: two sentence-length (5-10 and 17-80) and
three different segmentation schemes that give a
range of amount of segmentations from no seg-
mentation to more complex segmentation (D0,
ATB and D3). The trained models produce dif-
ferent embedding sizes: (100D , 200D and 300D).
As mentioned in (Gouws et al., 2015), the Asyn-
chronous Stochastic Gradient Descent (ASGD) al-
gorithm has been used to train the model and
updating all parameters for each objective func-
tion (monolingual and bilingual threads) with a
learning rate of 0.1 with linear decay. The num-
ber of negative samples is set to NS=5 for the
skip-gram negative sampling objectives as we ex-
amined NS=15 and it didn’t show an improve-
ment in our language pair. All trained models has
been trained on a machine that is equipped with
four Quad-Core AMD Opteron processors running
at 2.3 GHz and 128 GB of RAM. The training
process takes up to 30 minutes depends on the
model’s embeddings size and sentence length.

5 Evaluation

As with word-level bilingual word embeddings
(BWEs), similarly to (Gouws et al., 2015), the
trained BWEs has been evaluated on a word
translation task using Edit Distance, used by
(Mikolov et al., 2013a). First, we extracted the
most frequent 3K words from the Ar-En dataset
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D0/UT No tokenization.
D1 Separates the conjunction proclitics.
D2 D1 + Separates prepositional clitics and particles.

D3/S1 Separates all clitics including the definite article and the pronominal enclitics.
S0 Splitting off the conjunction proclitic w+.
S2 Same as S1 but all proclitics are put together in a single proclitics cluster.

ATB The Arabic Treebank is splitting the word into affixes.
S3 Splits off all clitics from the (CONJ+) class and all suffixes form the (+PRON)class.

In addition to splitting of all clitics of (PART+) class except s+ prefix.
S0PR S0 + splitting off all sufixes from (+PRON) class.

S4 S3 + splitting off the s+ clitics.
S5 Splits off all possible clitics (CONJ, PART, DET and PRON) classes.

S4SF S4 + the (+PRON) clitics.
S5SF S5 + the (+PRON) clitics.
S5ST S5 + prefixes concatenated into one prefix.
S3T S3 + prefixes concatenated into one prefix.

DIAC One of MADA features that add diactresation to Arabic text.

Table 2: Existing tokenisation schemes for Arabic (Al-Haj and Lavie, 2012)

D0 wtAvrt Tfwlty bAlryf ldrjp qd AEjz En $rHhA kmA
tmyzt bAlfkr bmA yfwq twqEAtkm .

D3 wtAvrt Tfwlp +y b+ Al+ ryf l+ drjp qd AEjz En $rH +hA
k+ mA tmyzt b+ Al+ fkr b+ mA yfwq twqEAt +km .

ATB wtAvrt Tfwlp +y b+ Alryf l+ drjp qd AEjz En $rH +hA
k+ mA tmyzt b+ Alfkr b+ mA yfwq twqEAt +km .

Table 3: The used Arabic tokenisation schemes examples

and preprocessed them similarly to the training
dataset. Then, we translate the extracted words us-
ing Google translator to create a dictionary. After
that, for Arabic as source and English as a target,
we compute the distances between vectors in order
to extract the embeddings of the k nearest neigh-
bours for a given source word embedding in the
target word embeddings.

After computing the similarity, the top k near-
est neighbours (for k=1, 3, 5) have been selected
to compute the accuracy among the test dataset,
which consists of 3000 words and their transla-
tions. Then we computed the accuracy of 10 runs
randomly selecting 500 source words and their k
nearest neighbours as:

Acc =
ct

T
(3)

Where ct is the number of correct translations and
T is the number of all test samples.

The accuracy is computed for all experiments
with all different settings: sentence-length, em-
beddings size and segmentation schemes and the

results are discussed below. We also took into ac-
count the observed variance in considering signifi-
cance of the observed differences in performance.

5.1 Results And Discussion
After computing each run accuracy, we computed
the model final performance by computing the
mean of the output values for each experiment
as shown in Tables 4, 5 and 6. Based on the
observed accuracies and using sample/population
standard deviation (SSD and PSD) to indicate sig-
nificant differences (See Tables 4, 5 and 6), our
results cover three aspects of the problem:

• Embeddings size:
Training the model on different embeddings
sizes (100D, 200D and 300D) showed that,
for more complex language pairs, increasing
the vector size allowed the model to capture
more information and lead to learn better Ar-
En BWEs. Both Figures 1 and 2 show an
increase in accuracy when the size of word
representation is increased.
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En-Ar 100D k=1 k=3 k=5

5-10 Mean SSD PSD Mean SSD PSD Mean SSD PSD
ATB 17.86 1.82 1.73 23.45 1.89 1.79 28.31 2.01 1.91
D0 15.32 0.97 0.92 18.82 3.85 3.65 20.99 2.44 2.31
D3 18.98 1.87 1.78 26.04 2.28 2.17 28.32 2.62 2.49
17-80 Mean SSD PSD Mean SSD PSD Mean SSD PSD
ATB 17.88 1.32 1.25 23.85 1.86 1.77 27.49 1.24 1.17
D0 16.14 1.76 1.67 19.99 1.74 1.65 21.94 2.37 2.25
D3 22.92 1.09 1.04 31.59 2.6 2.5 33.82 1.9 1.8

Table 4: 100D Models’ Results

En-Ar 200D k=1 k=3 k=5

5-10 Mean SSD PSD Mean SSD PSD Mean SSD PSD
ATB 25.86 1.23 1.16 33.14 1.53 1.46 37.6 2.46 2.33
D0 21.19 1.65 1.56 27.71 2.12 2.01 30.28 1.81 1.72
D3 26.34 2.58 2.44 34.74 1.53 1.45 37.02 2.03 1.92
17-80 Mean SSD PSD Mean SSD PSD Mean SSD PSD
ATB 22.89 2.18 2.07 30.19 2.66 2.52 31.6 1.38 1.31
D0 22.22 2.17 2.06 28.87 1.67 1.58 31.32 1.55 1.47
D3 32.83 1.48 1.41 41.06 2.35 2.23 43.9 1.39 1.32

Table 5: 200D Models’ Results

En-Ar 300D k=1 k=3 k=5

5-10 Mean SSD PSD Mean SSD PSD Mean SSD PSD
ATB 31.12 1.96 1.86 39.94 3.4 3.29 42.72 1.63 1.55
D0 26.88 1.65 1.56 33.99 1.10 1.04 37.67 2.63 2.50
D3 31.8 1.86 1.77 42.48 1.93 1.84 44.74 1.61 1.53
17-80 Mean SSD PSD Mean SSD PSD Mean SSD PSD
ATB 33.81 3.29 3.12 43.73 2.76 2.62 46.04 1.92 1.83
D0 30.38 2.09 1.98 37.09 1.73 1.64 40.39 1.98 1.88
D3 40.38 1.99 1.89 49.16 1.54 1.46 51.25 2.94 2.79

Table 6: 300D Models’ Results

• Sentence length:
Comparing results from using short and long
sentences, our results shows that long sen-
tences (which increase the number of words
”tokens”) outperformed the short sentences
in 300D embeddings size models using all
three different segmentation schemes. While
short sentences perform better only with
200D embeddings size and ATB segmen-
tation scheme trained model. Thus, long
sentences with 300D embeddings size allow
trained models to capture more information
and learn better bilingual word representa-
tions.

• Segmentation schemes:
Different segmentation schemes show differ-
ent levels of learning BWEs. D3, which is
more segmentation (breaking the word into
more tokens: split all clitics), has a signifi-
cant effect on the model learning process as
it outperforms both D0 and ATB segmenta-
tion schemes (See Tables: 4, 5 and 6).
In other words, increasing the number of to-
kens in training dataset using D3 segmenta-
tion scheme, as shown in Table 1, leads to
better word alignment and consequently im-
prove the model performance.

The main conclusion is that, for Arabic-English
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Figure 1: 5-10 sentence length training data results

Figure 2: 17-80 sentence length training data results

in contrast to MT task, increasing embedding size,
sentence length and more Arabic segmentation al-
low the model to capture more information and
leads to learn better BWEs. See Figures 1 and
2. For Figure 1, short sentences training dataset
shows that both segmented datasets: ATB and D3
give better results compared to D0 (No segmenta-
tion). D3 outperforms ATB slightly. In Figure 2,
using the long sentence training dataset, D3 gives
a much better performance compared to both other
segmentation schemes, and increases the accuracy
dramatically up to 10 %.

6 Conclusion

In this work, we have trained a BilBOWA model
to investigate the effect of different morphologi-
cal segmentations and different training settings
(sentence-length and embeddings size) on learning
BWE for Ar-En language pair. Our results show
that increasing the word embedding size leads to
improvement in the learning process of Arabic-
English bilingual word embeddings.

For Arabic, as a morphological segmentation
process is essential in many Arabic NLP tasks,
segmentation also has a positive effect in this work
as it leads to learning a better bilingual word em-
beddings. Going from D0 (full word form) to D3
(more segmentation, which increases the number
of tokens in training dataset), decreases the dis-
tance between Ar-En pairs and increases the simi-
larity more than 10 percentage points.
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Abstract

This paper tackles the problem of open domain
factual Arabic question answering (QA) us-
ing Wikipedia as our knowledge source. This
constrains the answer of any question to be a
span of text in Wikipedia. Open domain QA
for Arabic entails three challenges: annotated
QA datasets in Arabic, large scale efficient in-
formation retrieval and machine reading com-
prehension. To deal with the lack of Arabic
QA datasets we present the Arabic Reading
Comprehension Dataset (ARCD) composed of
1,395 questions posed by crowdworkers on
Wikipedia articles, and a machine translation
of the Stanford Question Answering Dataset
(Arabic-SQuAD). Our system for open do-
main question answering in Arabic (SOQAL)
is based on two components: (1) a docu-
ment retriever using a hierarchical TF-IDF ap-
proach and (2) a neural reading comprehen-
sion model using the pre-trained bi-directional
transformer BERT. Our experiments on ARCD
indicate the effectiveness of our approach with
our BERT-based reader achieving a 61.3 F1
score, and our open domain system SOQAL
achieving a 27.6 F1 score.

1 Introduction

One of the goals in artificial intelligence (AI) is to
build automated systems that can perform open-
domain question answering (QA) through under-
standing natural language and gathering knowl-
edge (Kwiatkowski et al., 2019). The driver be-
hind progress in English QA has been the release
of massive datasets including the Stanford Ques-
tion Answering Dataset (SQuAD), WikiQA (Ra-
jpurkar et al., 2016; Yang et al., 2015). The task in
these datasets is to find the span of text in a docu-
ment that answers a given question. On the other
hand, progress in Arabic QA systems has lagged
behind their English counterparts. While there has
been a good body of work on methods for question
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Figure 1: Example data point from ARCD containing
a paragraph with two accompanying questions

answering, they mostly have a common limitation
of being tested on small amounts of data and rely-
ing on classical methods (Shaheen and Ezzeldin,
2014).

In this work, we tackle the problem of answer-
ing Arabic open-domain factual questions using
Arabic Wikipedia as our knowledge source. The
open-domain setting poses many challenges, from
efficient large scale information retrieval, to highly
accurate answer extraction modules, and this re-
quires a sizable amount of data for training and
testing.

First, to deal with the need of large Arabic
reading comprehension datasets, we develop the
following: (1) The Arabic Reading Comprehen-
sion Dataset (ARCD) composed of 1,395 crowd-
sourced questions with accompanying text seg-
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ments on Arabic Wikipedia as seen in figure 1, and
(2) Arabic-SQuAD consisting of 48k paragraph-
question-answer machine translated tuples from
the SQuAD dataset.

Second, modern open-domain QA systems are
generally composed of two parts: a retriever that
obtains relevant segments of text, and a machine
reading comprehension (MRC) model that ex-
tracts the answer from the text (Chen et al., 2017).
For our retriever, we propose the use of a hierar-
chical TF-IDF retriever that is efficiently able to
trade off between n-gram features and the number
of documents retrieved. We chose raw Wikipedia
text as our information source instead of knowl-
edge bases (Lehmann et al., 2015) which are com-
monly used for open-ended QA as it enables our
approach to tackle other domains and settings with
little adaptation. Now there has been remarkable
progress in designing neural MRC models that
read and extract answers from short paragraphs;
we selected two of the best performing models
on the SQuAD dataset (Rajpurkar et al., 2016) as
our document readers. The first is QANet (Yu
et al., 2018), an efficient convolution and self-
attention-based neural network, and the second is
BERT (Devlin et al., 2018), a transformer-based
pre-trained model. From the document retriever
and reader we build an open domain QA system
named SOQAL by combining confidence scores
from each.

We evaluated our system components on the
crowdsoured ARCD dataset: Our hierarchical TF-
IDF retriever is competitive with Google Search,
and our BERT reader is the current state-of-the-art
for reading comprehension. Finally, our open do-
main system SOQAL achieves a respectable 27.6
F1 on ARCD.

To summarize, the contributions of the paper
are:

• Datasets for Arabic QA. Crowdsourced
Arabic Reading Comprehension Dataset
(ARCD) of 1,395 questions, and trans-
lated Arabic-SQuAD: 48k translated ques-
tions from (Rajpurkar et al., 2016).

• Neural Reading comprehension in Arabic.
State of the art MRC models for Arabic based
on BERT (Devlin et al., 2018) and QANet
(Yu et al., 2018).

• Open domain Arabic QA system. End-to-
end system for open domain Arabic questions
using a hierarchical TF-IDF retriever, BERT

Dataset Source Formulation Size

Arabic-SQuAD Translated
SQuAD

p,q,a 48,344

ARCD Arabic
Wikipedia

p,q,a 1,395

ArabiQA
(Benajiba Yassine, 2007)

Wikipedia q,a 200

DefArabicQA
(Trigui et al., 2010)

Wikipedia and
Google search
engine

q,a with doc-
uments

50

Translated TREC and
CLEF
(Abouenour Lahsen and Rosso,
2010)

Translated
TREC and
CLEF

q,a 2,264

QAM4MRE
(Peas and Sporleder, 2011)

selected topics document,q
and multiple
answers

160

DAWQUAS
(Ismail and Homsi, 2018)

auto-generated
from web
scrape

q,a 3205

QArabPro
(Akour et al., 2011)

Wikipedia q,a 335

Table 1: Available question answering datasets in Ara-
bic. p:paragraph, q:question and a:answer

and linear answer ranking.

All the data and system implementation
is available at https://github.com/
husseinmozannar/SOQAL.

2 Related Work

Open-domain Arabic question answering. The
state of current Arabic QA systems is summarized
in (Shaheen and Ezzeldin, 2014): research has
focused mostly on open-ended QA using classi-
cal information retrieval (IR) methods, and there
are no common datasets for comparisons. Con-
sequently, progress has been slow. Furthermore,
the Arabic language presents its own set of dif-
ficulties: given the highly intricate nature of the
language, proper understanding can be difficult.
For instance, é 	KñÊ¿



AJ
� 	̄ means “so they will eat

it”, which demonstrates the complexity that can
be presented by a single word. Moreover, Arabic
words require diacritization for their meaning to

be completely understood. For example, �Õ
��
Î �« trans-

lates into “he taught”, and �ÕÎ�
�« means “found out”;

modifying one diacritic changes the meaning en-
tirely.

We now review some of the methods and
datasets used in the literature and compare them
in table 1. Most of the datasets listed are of very
limited size and do not include accompanying text
segments so as to enable reading comprehension.
Furthermore, all datasets with size bigger than
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1000 questions are synthetically generated. Ap-
proaches have tackled specific types of questions
and are heavily dependent on their nature focus-
ing more on document retreival. In (Azmi and
Alshenaifi, 2016), they attempt to answer ”why”
questions using classic IR methods and rhetorical
structure theory, and their methods are evaluated
on a set of 100 questions. On the other hand, De-
fArabicQA (Trigui et al., 2010) focuses on defini-
tion question and uses an answer ranking module
based on word frequency. QArabPro (Akour et al.,
2011) employs a rule-based question answering
system and obtains an 84% accuracy on 335 ques-
tions based on Wikipedia. The SemEval task 3 in
2015, 2016, and 2017 (Nakov et al., 2017) tack-
led community question answering. It included a
task in Arabic with each data point consisting of a
paragraph, a question, and multiple answers, and
the goal was to rank them in order of relevance.
One of the strategies used to solve the 2015 edi-
tion was to train an SVM ranker by embedding the
questions and answers using Word2vec (Belinkov
et al., 2015). The type of data used is not construc-
tive for training answer extraction systems but can
be helpful for recognizing relevance.

QA Datasets. As previously mentioned, the
driver behind progress in QA has been the release
of large datasets in addition to advances in deep
learning and language representation models (De-
vlin et al., 2018). The most popular benchmark
for reading comprehension has been the Stanford
Question Answering Dataset (Rajpurkar et al.,
2016). Other notable datasets include: WikiQA
(Yang et al., 2015), a sentence selection task using
Wikipedia passages, and TriviaQA (Joshi et al.,
2017), a dataset of trivia questions with provided
evidence.

Reading comprehension and QA. Recently,
machine reading comprehension has made signif-
icant progress using recurrent models and atten-
tion mechanisms to capture long term interactions
(Seo et al., 2016), and this has prompted its use
as part of open-domain QA. On the other hand,
given that recurrent networks are slow in train-
ing and inference, QANet (Yu et al., 2018) pro-
poses an approach based only on convolutions and
self-attention that is able to achieve very compet-
itive results on SQuAD while being 10x faster
than recurrent based approaches such as Bidirec-
tional Attention Flow (BiDAF) (Seo et al., 2016).
For open-domain QA, (Chen et al., 2017) in-

Figure 2: Interface for the crowdworkers

vestigates the use of Wikipedia as a knowledge
source and implements a two component system
based on a TF-IDF retriever and a RNN reader
achieving a 29.8% exact- match accuracy on open-
SQuAD. Other approaches have attempted to build
more sophisticated retrievers by formulating it as
a reinforcement learning problem (Wang et al.,
2018b,a), or as a supervised learning problem us-
ing distant supervision for data (Das et al., 2018;
Lin et al., 2018).

In the following sections we will first describe
the datasets collected, and then our proposed
method for Arabic open-domain question answer-
ing.

3 Dataset Collection

3.1 Arabic Reading Comprehension Dataset

To properly evaluate our system, we must have
questions written by proficient Arabic speakers,
and thus we resort to crowdsourcing to develop our
dataset.

Task Description. Each task presented to the
crowdworkers consists of five articles taken from
Arabic Wikipedia, from which we extracted the
first three paragraphs with a length greater than
250 characters. The worker has to write three
question-answer pairs for each paragraph in clear
Modern Standard Arabic, where the answer to
each question should be an exact span of text from
the paragraph. The interface, shown in figure 2,
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consists of a paragraph along with two text boxes
for each of the 3 question-answer pairs. Pasting
is disabled in the question fields in order to en-
courage workers to use their own words, but it
is enforced in the answer fields to guarantee that
the answer is taken as-is from the paragraph. Be-
fore workers begin the task, they have to answer
a reading comprehension question from a test set
we created to make sure of their language profi-
ciency. Only workers who succeeded in the test
were accepted.

Article curation. The articles presented in the
tasks were 155 articles randomly sampled from
the 1000 most viewed articles on Wikipedia in
2018. We used MediaWiki’s API1 to retrieve the
most viewed articles per month in 2018 for Arabic
Wikipedia and aggregated the results. The articles
covered a diverse set of topics including religious
and historical figures, sports celebrities, countries,
and companies. We additionally manually filtered
out adult content.

Crowdsourcing. We resorted to Amazon Me-
chanical Turk for crowdsourcing. Crowdworkers
were required to have a minimum HIT acceptance
of 97%, and at least 100 HITs submitted. More-
over, our task description highlighted the need for
good Arabic skills. Workers were advised to spend
3 to 4 minutes per paragraph and were paid close
to 10 USD per hour. They were encouraged to ask
difficult questions framed in such a way that they
can be answered outside the scope of the para-
graph. In total, we collected 1,395 questions based
on 465 paragraphs from 155 articles based on the
Amazon Turk HITs.

3.2 Arabic-SQuAD

Translating SQuAD. While the crowdsourcing of
questions by proficient Arabic writers is essen-
tial to properly evaluate our systems, noisy data
could well suffice for training. Indeed, backtrans-
lation as a means for data augmentation has been
effective in improving the performance of neu-
ral MRC (Yu et al., 2018), and this gives hope
that translated data could be used to train our ma-
chine reading comprehension module. We chose
to translate SQuAD version 1.1 (Rajpurkar et al.,
2016). It is currently the most popular benchmark
for MRC and was collected through crowdsourc-
ing based on Wikipedia articles. SQuAD contains

1Availabe at https://en.wikipedia.org/w/
api.php

107,785 paragraph-question-answer tuples on 536
articles, and we translated the first 231 articles of
the SQuAD training set using the Google Trans-
late neural machine translation (NMT) API (Wu
et al., 2016). This resulted in 48,344 questions on
10,364 paragraphs.

4 Our System: SOQAL

We will now describe the architecture of our sys-
tem for open domain question answering for the
Arabic language (SOQAL). It is composed of
three modules: (1) a document retriever that ob-
tains relevant documents to the question, (2) a ma-
chine reading comprehension module that extracts
answers from the documents retrieved, and an (3)
answer ranking module that ranks the answers in
order of relevance by taking in scores from both
the document retriever and the reader. The inputs
to the system are a question consisting of m to-
kens q = {q1, · · · , qm}, and the entirety of Arabic
Wikipedia, and its output is a small span of text ex-
tracted from Wikipedia which should answer the
question. The pipeline is illustrated in figure 3.

4.1 Hierarchical TF-IDF Document
Retriever

The goal of this module is to select the docu-
ments that are most relevant to the question, thus
reducing the span of search of our reader. Ara-
bic Wikipedia is made up of 664,768 indexed ar-
ticles with an average of 3.4 paragraphs per arti-
cle, totalling 2,683,743 paragraphs with an aver-
age of 233 characters per paragraph. We discard
imagery, lists, and other structured information so
that our approach could translate well to various
knowledge sources.

There are two scopes on which we can search:
either articles or paragraphs. We denote the set of
documents searched over as D = {d1, · · · , dn},
where for 1 ≤ i ≤ n, di is a single document
which can be either an article or a paragraph from
an article.

Inspired by classical QA systems (Chen et al.,
2017), we employ a term frequency-inverse doc-
ument frequency (TF-IDF) based document re-
triever given its efficiency. Each document is first
tokenized and stemmed using the NLTK (Bird,
2006) Arabic tokenizer where stopwords are re-
moved. The TF-IDF matrix of weights of the doc-
ument set, i.e. Arabic Wikipedia, is then con-
structed using n-gram counts to take into account
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باوند1,000حوالي 

كم تبلغ قوة لكمة محمد على؟

Figure 3: Architecture of our open domain question answering system SOQAL. BERT illustration is adapted from
(Devlin et al., 2018)

local word order. As n increases, the retriever
becomes more accurate, but the retrieval process
becomes slower and more memory prohibitive.
Each document’s vector is normalized. Next, the
TF-IDF vector weights of the question are com-
puted based on the vocabulary of the document set.
The score for each document is then computed as
the cosine similarity between the question and the
document vectors. We use a sparse matrix repre-
sentation for the TF-IDF matrix to speed up com-
putations. Finally, we return the top k documents
with the highest similarity where k ∈ N is a hy-
perparameter. The higher k is, the more likely it
is that the set of retrieved documents contains rel-
evant documents, and the slower and more error-
prone is the answer extraction process.

To obtain the benefits of using large n-gram fea-
tures while keeping k small and being computa-
tionally efficient, we propose the following hierar-
chical TF-IDF retriever approach. The first step is
to build a TF-IDF retriever on Arabic Wikipedia
with bigram features and a very large k, say ≈
1000, and obtain the set of retrieved documents
for a given question, call it D′. Then, for each
question, we construct a seperate TF-IDF retriever
using as document setD′ with 4-gram features and
a small k, say≈ 15. The second retriever does not
sacrifice much in terms of the accuracy of the first
retrieval step, as 4-gram features are highly infor-
mative and do not add significant computations.

4.2 BERT Document Reader
Our proposed reader is Bert (Devlin et al., 2018),
a pre-trained language model that is currently the
state of the art on the SQuAD leaderboard 2.

Its core model is a bi-directional Transformer
(Vaswani et al., 2017). The input text is first tok-
enized using a shared Wordpiece (Wu et al., 2016)
vocabulary of 104 languages, and it is then embed-
ded; note that Arabic diacritics are removed. Each
input point of question and paragraph pairs is rep-
resented as a single sentence separated by a special
token. We need to learn two new vectors: start and
end S,E ∈ RH vectors indicating the position of
the answer; H is the dimension of the last hidden
layer outputs. For each token i in the paragraph,
we take the final hidden state of the Transformer
Ti and let the probability that i is the start or end
of the answer be:

Pstart(i) ∝ exp(STTi)

Pend(i) ∝ exp(ETTi)

Note that we take the un-normalized exponential
to be able to compare across documents. At in-
ference time we predict the span (i, j) such that
i ≤ j ≤ i + 15 that maximizes Pstart(i)Pend(j).
The training objective is the sum of the log likeli-
hood for each of the start and end positions.

4.3 Answer Ranking
Let us recall the operation of the end-to-end sys-
tem. The question is first passed to the retriever

2SQuAD leaderboard https://rajpurkar.
github.io/SQuAD-explorer/
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and the top k documents are gathered; if a docu-
ment unit is an article then we gather all of its para-
graphs. Along with the documents’ text, we obtain
a score for each document denoted DocScore(i)
from the retriever; paragraphs have the same score
as their document. For our hierarchical TF-IDF
retriever, the scores are the cosine similarities be-
tween the document and the question.

The paragraphs obtained from the retriever are
each then fed as input to the document reader to
obtain candidate answers. We obtain a score for
each candidate answer i denoted:

AnsScore(i) ∝ Pstart(i) · Pend(i)

To make sure the answer and document scores
are on the same scale, we normalize both individ-
ually by passing each through a softmax function.
The final step to obtain the answer of the question
is by combining the scores through a linear combi-
nation and pick the maximizing answer as follows:

argmax
i∈[k]

β ·DocScore(i)+(1−β)·AnsScore(i)

Where β ∈ [0, 1] is a hyperparameter chosen
through a line search using a development set.

As a note, since articles can be very large, one
can additionally use a TF-IDF retriever with 4−
gram features to obtain a smaller set of paragraphs,
thus reducing the load on the reader. While this
step was not performed for our experimental eval-
uation, it is crucial when deploying the QA system
for usage.

5 Dataset Analysis

5.1 ARCD
In this section we analyze the properties of the
Arabic Reading Comprehension Dataset. To bet-
ter understand the difficulty of answering the ques-
tions, we randomly sampled 100 questions for the
following analysis.

Answer diversity. We, the authors, manually
categorized the answers by first separating the nu-
merical and non-numerical answers. Numerical
answers were either identified as dates by looking
at the question, or were otherwise labeled as other
numeric. For the non-numerical answers, we iden-
tify the type of phrase as either a verb, adjective, or
noun phrase. If it is a noun phrase, we check using
MADAMIRA (Pasha et al., 2014) for named en-
tities, and then manually verify the outcome. The
results are shown in table 2.

Answer type Percentage Example

Date 17% 1976 �PAÓ 10
Person 17% QëA 	�Ë@ Õæ
Ê� Q«A ��Ë@ I. �
J.¢Ë@
Location 10% AJ
�

�
@

Organization 9% ÐY�®Ë@ �èQºË ø

	Q�
Êm.�

	'B
 @ XAm��'B@
Verb Phrase 7% �éK
Pñ£@Q�.ÓB
 @ �IÒ��®	K @
Adjective Phrase 4% AêË ¨A���@ úæ��̄


@
Noun Phrase 12% PYj	JÖÏ @ XP@ñË@
Other Numeric 15% Ð@Q 	«ñÊJ
» 250
Other Entity 9% H. X



B@ ú


	̄ ÉK. ñ 	K �è 	Q
KAg.

Table 2: Answer categories percentages in ARCD ac-
cording to the categorization by (Rajpurkar et al., 2016)

Question Reasoning To better understand the
reasoning required to answer the questions, we
manually labeled the questions according to the
following reasoning categories as in (Trischler
et al., 2017; Rajpurkar et al., 2016):

• Word matching (synonyms): question
matches the same word pattern up to syn-
onyms in the paragraph; simple pattern
matching is required.

• Word matching (world knowledge): question
matches the pattern of the paragraph, how-
ever additional inference using world knowl-
edge is required to answer.

• Syntactic variation: The question’s syntactic
dependency structure does not match that of
the answer sentence.

• Multiple sentence reasoning: The question
draws on knowledge from multiple sen-
tences. Only after making necessary links
across sentences can it be answered.

• Ambiguous: The question cannot be an-
swered given the information in the para-
graph or is unclear.

The results and examples are shown in table 3.

5.2 Arabic-SQuAD
We discuss some of the issues resulting from the
machine translation of SQuAD and how we han-
dled them.

We observed that translation performed well
for paragraphs and questions and maintained their
original meaning. The problem is, NMT is heav-
ily context dependent, thus identical words and
phrases have different translations if the context
is varied. This led to an inconsistency between
the translation of the answers and paragraphs with

113



Reasoning Example Percentage

Word matching
(synonyms)

. YÊJ
 	® 	K


B@ I. ªÊÓ ú


	̄ �éJ
ÖÞ�QË @ é�KAK
PAJ.Ó É¿ ÈñK. Q 	®J
Ë ø
 XA 	K I. ªÊK

Q��� ��	�AÓ ���®k �IJ
k , ÈñK. Q 	®J
Ë ø
 XA 	JË XðYÊË @ ðYªË@ Y�JK
A 	KñK
 Q��� ��	�AÓ ø
 XA 	K Q�. �JªK


. �éËñ¢�. 59 ÈñK. Q 	®J
Ë ���®k AÒ 	J�
K. ,62 Y�JK
A 	KñK

? ÈñK. Q 	®J
Ë ø
 XA 	K Aê�®�®k �éËñ¢�. 	áÓ Õ» :Q

59%

Word matching
(world knowledge)

, ø
 Qå�Ó ù


K @ðP (2006 �¢� 	«



@ 30 - 1911 Q�.Ò��
X 11) 	 ñ 	®m× I. J
m.�

	'
	Y 	JÓ 	 ñ 	®m× I. J
m.�

	' I. �J» . H. X


B@ ú


	̄ ÉK. ñ 	K �è 	Q
KAg. úÎ« 	Q
KAg ú
G. Q« Èð


@ ñë

.2004 ú �æk QÒ�J�@ð �HAJ
 	�J
ªK. P


B@ �éK
 @YK.

? 	 ñ 	®m× I. J
m.�
	' AîD
Ê« É�k �éJ
ÖÏ A« �è 	Q
KAg. Ñë



@ ù
 ë AÓ :Q

15%

Syntactic variation , 	àQ�®Ë@ 	áÓ Èð


B@ Y�®ªË@ ú


	̄ ú
Îë


B@ ø
 XA 	JË @ ��
�



A�K �èQº 	̄ ½K. ù


	®¢Ë QÔ« hQ£

Yg. ðð , úÍð


B@ �ék. PYËAK. A�J
�AJ
� AJ
ÊªË@ �P@YÖÏ @ �éJ. Ê£ ø
 XA 	K ��
�



A�K 	à



@ Q�. �J«@ é 	K



B

. �é 	�AK
QË @ �é�PAÜØð 	̈ @Q 	®Ë @ �I�̄ð ZA 	��®Ë ÑêªÒm.�'
 ú
æ
	�AK
P X� A 	K úÍ@


�ék. Am�'.
�éJ. Ê¢Ë@ ZB 
ñë 	à



@

? �éJ. Ê¢ÊË ø
 XA 	JË @ ��


@ @ 	XAÖÏ :Q

13%

Multiple sentence
reasoning

	á�
ÒÊ�ÖÏ @ �é 	®J
Ê 	gð 	á�
J
 	K AÒ�JªË@ 	á�
£C�Ë@ Qå��A« , Èð


B@ 	àA 	g Õæ
Ê� 	áK. Èð



B@ 	àA 	g 	àAÒJ
Ê�

øñ�̄

@ �Ij�. �



@ ú �æk AêË ¨A���@ úæ��̄


@ èYê« ú

	̄ �éJ
ÓC�B
 @ �éËðYË@ �I 	ªÊK. , 	àñ	KAÒ�JË @

. �I�̄ñË@ ½Ë 	X ú

	̄ ÕË AªË @ ú


	̄ �éËðX
? èYê« �Im��' 	àA 	g 	àAÒJ
Ê� �éËðX �I 	ªÊK. @ 	XAÓ :Q

10%

Ambiguous ? AêÖÞ�P ú �æÓ :Q 3%

Table 3: Examples of questions with their respective paragraph (trimmed to fit) and answer in bold from ARCD
and the reasoning required to answer them.

25,490 answers not found in their respective para-
graphs, almost 47.3% of the total questions. We
remarked that the type of errors that caused the an-
swers to not match in the paragraph mostly arised
from two factors: (1) translation was unable to
recognize named entities without context and thus
transliterated them, and (2) minor typographic like
errors from missing or added 	­K
Qª�JË @ ÐB (the)
and differing tenses. To fix this issue, we translit-
erated all the paragraphs and answers to Arabic
and found the span of text of length at most 15
words with the least edit-distance with respect to
the answer. To verify the efficacy of this approach,
we randomly sampled 100 questions where the an-
swer is not found in the paragraph and provided
the correct answer. On this test set, the approach
managed to exactly find 44% of the answers, and
64% of the proposed answers contained the cor-
rect answer and did not exceed more than twice its
length.

6 System Experiments

We now showcase experiments for every compo-
nent in our system and the end-to-end open do-
main system.

Datasets. Arabic-SQuAD is split 80-10-10%

into three parts for training, development and test-
ing: Arabic-SQuad-Test is composed of 2,966
questions on 24 articles; note that articles are dis-
tinct between the parts. Similarly, ARCD is split
50-50 into training and testing with ARCD-Test
having 702 questions on 78 articles.

6.1 Retriever

Method k ARCD
Wikipedia API 15 34.8%
Google Search 10 75.6%
TF-IDF Unigram Article 15 41.7%
TF-IDF Bigram Article 15 47.7%
TF-IDF Bigram Article 350 73.5%
Hierarchical TF-IDF 15 65.3%
Embedding fastText Paragraph 50 27.0%

Table 4: Comparison of the different retrievers on
ARCD. k: number of documents retrieved

We examine the performance of our different
retriever modules on the full ARCD dataset. To
compare the approaches we assign to each the ra-
tio of questions for which the answer appears in
any of the retrieved document over the total num-
ber of questions.
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Method Arabic-SQuAD Test ARCD
EM F1 SM EM F1 SM

Random Guess 0.23 4.34 23.5 0.07 8.13 51.0
Sliding Win. + Dist. (Richardson et al., 2013) 0.00 5.80 29.2 0.07 14.2 58.4
Embedding fastText 0.04 6.96 43.1 0.36 15.3 73.1
TF-IDF Reader 0.27 2.41 49.2 0.22 5.6 75.3
QANet fastText (Yu et al., 2018) 29.4 44.4 61.7 11.0 38.6 83.2
BERT (Devlin et al., 2018) 34.1 48.6 66.8 19.6 51.3 91.4

Table 5: Comparison of the different document reader modules on Arabic-SQuAD test set and all of ARCD.
QANet and BERT were trained only on the training set of Arabic-SQuAD.

Baselines. We implement three baselines: the
first is using Wikipedia’s Search API 3, and the
second is through Google Custom Search en-
gine 4 restricted to the Arabic Wikipedia site.
Furthermore, we implement an embedding based
retriever using fastText embeddings 300 dimen-
sional Wikipedia pre-trained word embeddings
(Joulin et al., 2016) that computes for each para-
graph a representation using the sum of its word
embeddings. Other embedding models exist for
Arabic but fastText is the most specialized to
Wikipedia (Badaro et al., 2018; Al Sallab et al.,
2015)

Results and Analysis Our results are reported
in table 4. We find that even the simple TF-IDF
unigram retriever is able to beat the Wikipedia
API baseline. Google Search with k = 10 is
the golden standard with 75.6%, TF-IDF using bi-
gram features and k = 350 is able to come close
with 73.5%. Using our hierarchical approach of
adding a second 4-gram TF-IDF retriever to a bi-
gram k = 1000 retriever achieves a respectable
65.3% improving on the single bigram by 17.6%
and a reduction of 8.2% from the full k = 350
retriever. The embedding retriever using fastText
(Joulin et al., 2016) performed badly in accor-
dance with the results in (Chen et al., 2017).

It is important to note that since the questions
in ARCD were written with a specific paragraph
in mind, they might be ambiguous without their
context, hence why it is hard to beat the Google
Search baseline.

6.2 Reader

Metrics. We evaluate our different readers based
on three metrics. The first is exact match (EM)

3https://www.mediawiki.org/wiki/API:
Search

4We use the official API https://developers.
google.com/custom-search/

Method ARCD-Test
EM F1 SM

Reader:
BERT (SQuAD) 23.8 53.0 90.6
BERT (ARCD) 23.9 50.1 88.0
BERT (SQuAD + ARCD) 34.2 61.3 90.0
Open-Domain:
SOQAL (top-1) 12.8 27.6 29.8
SOQAL (top-3) 17.8 37.9 44.0
SOQAL (top-5) 20.7 42.5 51.7

Table 6: Results of BERT as a document reader on
ARCD-Test under different data regimes and of our
open domain system SOQAL when returning the top
k answers

which measures the percentage of predictions that
match the ground truth answer exactly, the second
is a (macro-averaged) F1 score (Rajpurkar et al.,
2016) that measures the average overlap between
the prediction tokens and the ground truth answer
tokens. Finally, we use a sentence match (SM)
metric that measures the percentage of predictions
that fall in the same sentence in the paragraph as
the ground truth answer.

Baselines. We compare against three non-
learning baselines. For all three methods, we gen-
erate candidate answers by considering every text
span of length maximally 10 words in each sen-
tence as a candidate. We implement the follow-
ing baselines: the sliding window distance based
algorithm of (Richardson et al., 2013), a TF-IDF
reader based on 4-gram features which operates
exactly like the retriever with k = 1, and finally
an embedding approach where the candidate with
the highest cosine similarity with respect to fast-
Text embeddings is returned (Joulin et al., 2016;
Belinkov et al., 2015). We also compare against
QANet (Yu et al., 2018), a competitive MRC net-
work that is especially fast for prediction.
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Implementation Details. For Bert, we fol-
low the reference implementation for training on
SQuAD5. We fine-tune from the BERT-Base un-
normalized multilingual model which includes
Arabic. The model has 12-layers with H = 768,
12-heads for self attention and inputs are padded
to 384 tokens. We train on the training set of
Arabic-SQuAD for 2 epochs with a learning rate
of 3 · 10−5. Similarly for QANet we modify the
implementation of 6 and use fastText embeddings
and train for a total of 4 epochs.

Results and Analysis We report all reader ex-
periments in table 5. The non-learning baselines
are unable to obtain a significant improvement
over a random guess on the EM and F1 metrics.
The embedding and TF-IDF readers reach a sen-
tence match accuracy of almost 75%; this 75%
accuracy in fact corresponds to the percentage of
word matching questions as in table 3. On the
other hand, BERT and QANet on the test set of
Arabic-SQuAD reach 44.4 and 48.6 F1 scores re-
spectively; as previously noted half of Arabic-
SQuAD answers might be faulty as a result of
NMT and this explains the relatively low results
compared to the SQuAD leaderboard (Rajpurkar
et al., 2016). Now without having been trained
on ARCD, both neural MRC models are able to
perform well transferring knowledge from Arabic-
SQuAD with BERT reaching a remarkable 90.08
SM accuracy.

Transfer Learning. To evaluate the effective-
ness of using translated data as training data on the
ARCD test set we train BERT under the following
data regimes: (a) Arabic-SQuAD only, (b) ARCD-
Train only and (c) Arabic-SQuAD and ARCD-
Train combined; results are reported in table 6. We
remark that training under regimes (a) or (b) had
very similar results, this gives strong evidence that
Arabic-SQuAD could be in fact sufficient for ob-
taining powerful MRC models. When combining
both datasets, we obtain an improvement of 8.3%
on the F1 score with a total score of 61.3; the train-
ing on ARCD allowed the model to better adapt to
its differing answer distribution.

6.3 Open Domain QA
We test our open domain approach SOQAL on
ARCD-Test. For our retriever we combine our hi-
erarchical TF-IDF retriever with the Google Cus-

5https://github.com/google-research/
bert

6https://github.com/NLPLearn/QANet

tom Search Engine to make sure we have a to-
tal of 10 retrieved articles. We train BERT on
Arabic-SQuAD for two epochs and then fine-tune
on ARCD-Train for an epoch.

We report in table 6 the accuracy of our pro-
posed system on ARCD-Test achieving a 27.6 F1
and a 29.8 SM. The close F1 and SM scores indi-
cate that the system is able to correctly retrieve the
answer when it selects the correct paragraph, the
issue then lies with it not scoring highly enough
the correct paragraph. We also report the accuracy
when the system outputs the top 3 and top 5 results
(choosing the best answer out of them).

7 Conclusion

To further the state of Arabic natural language un-
derstanding we proposed an approach for open do-
main Arabic QA and introduced the Arabic Read-
ing Comprehension Dataset (ARCD) and Arabic-
SQuAD: a machine translation of SQuAD (Devlin
et al., 2018). Our approach consisted of a doc-
ument retriever using hierarchical TF-IDF and a
document reader using BERT (Devlin et al., 2018).
We achieve a F1 score of 61.3 and a 90.0% sen-
tence match on ARCD and a 27.6 F1 score on an
open domain version of ARCD. We also showed
the effectiveness of using translated data as a train-
ing resource for QA. Future work will aim to ex-
pand the size of ARCD and improve the end-to-
end system by focusing on paragraph selection.
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Abstract

Segmentation serves as an integral part in
many NLP applications including Machine
Translation, Parsing, and Information Re-
trieval. When a model trained on the standard
language is applied to dialects, the accuracy
drops dramatically. However, there are more
lexical items shared by the standard language
and dialects than can be found by mere sur-
face word matching. This shared lexicon is ob-
scured by a lot of cliticization, gemination, and
character repetition. In this paper, we prove
that segmentation and base normalization of
dialects can help in domain adaptation by re-
ducing data sparseness. Segmentation will im-
prove a system performance by reducing the
number of OOVs, help isolate the differences
and allow better utilization of the commonal-
ities. We show that adding a small amount
of dialectal segmentation training data reduced
OOVs by 5% and remarkably improves POS
tagging for dialects by 7.37% f-score, even
though no dialect-specific POS training data is
included.

1 Introduction

Processing of informal and dialectal data is in-
creasingly becoming the focus of attention for
many NLP tasks particularly due to the growing
popularity of the various social media platforms
and messaging apps which have transformed the
way people interact and communicate with each
other on daily basis and accelerated the pace of
change of the language used on the web. Today,
many people write in the language they speak,
leading to the influx of informal and dialectal
data with the huge challenges they pose, most
prominently among them are the non-standard or-
thography (like repeated characters for emphasis),
abbreviations, non-conventional syntactic struc-
tures, spelling variability as well as mispellings,
and code-switching. These phenomena have been

largely ignored in mainstream language process-
ing models which mostly relied on (and also ex-
pected) standard, monolingual, clean, and edited
texts.

Moreover, the emergence of intelligent personal
assistant systems (such as Siri, Alexa, Cortana and
Google Assistant) have created a paradigm shift in
how people interact with smart devices. Instead
of issuing key words searches and formal ques-
tions, they are now more tempted to speak casually
with these systems using their everyday language,
which lays a growing burden on virtual assistants
to accommodate unconventional (and previously
unseen) queries and requests.

In this paper we show how NLP applications
can scale up their performance on dialectal data by
integrating a basic and simple preprocessing step,
i.e. segmentation. The process of segmentation is
important for languages where the notion of word
does not straightforwardly align with the common
concept of a space-delimited string. Arabic is a
clitic language, where syntactic units can attach
to other lexemes, and segmentation means identi-
fying and splitting these syntactic units from the
main lexemes or from each others. This is not a
deterministic process, as we need to tell, for ex-
ample, whether the letter ð wa is a conjunction as

in YËA 	gð wa-Khaled “and Khaled” or part of the

internal word build-up as in YJ
kð wahid “Wahid”.

This paper is structured as follows. Section 2
gives a brief account of the related research on
standard and dialectal segmentation of Arabic. In
Section 3 we introduce our segmentation annota-
tion scheme, explaining the meaning of clitics and
how different they are from affixes, and compare
our annotation convention to other approaches.
Section 4 gives the details of our work on dialec-
tal data collection, explaining the challenges fac-
ing extraction, filtration and sampling. Section 5
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spells out our hypothesis on how segmentation can
help in domain adaptation and the approach we
follow to test this hypothesis. In Section 6 we de-
scribe our parsing system and the features used.
In Section 7 we explain our experimental setup
and discuss the results, and finally Section 8 con-
cludes.

2 Related Work

Segmentation of MSA has frequently been han-
dled as part of a pipeline with multiple processes
(including morphological analysis, and POS tag-
ging). For example, MADA (Habash and Ram-
bow, 2005; Habash et al., 2009) is a system that
uses an SVM-based classifier to disambiguate the
output of the Buckwalter morphological analyzer
which conveniently also provided diacritization
and English glosses. By contrast, AMIRA (Diab
et al., 2004; Diab, 2009) is a lexicon-independent
system for Arabic that conducts segmentation as
well POS tagging and base-phrase chunking. Both
systems are trained on the LDC’s Arabic Treebank
(ATB) data and both report an accuracy above
99%. The high accuracy is probably attributed to
the high quality and low noise in this edited data.

Treating segmentation as a specialized task,
Aliwy (2012) developed a hybrid system for Ara-
bic segmentation trained on a manually-annotated
dataset of 29k words extracted from the Al-Watan
corpus and reports an accuracy score of 98.83%.
Abdelali et al. (2016) developed a segmenter for
their tool, Farasa, using SVM and trained on
the ATB data with reported accuracy of 98.94%.
Moreover, Mohamed (2018) developed a memory-
based learning segmenter for Arabic religious
texts trained on a manually annotated in-domain
corpus of 27k words combined with the ATB data
with reported accuracy of 95.70%.

Regarding Egyptian segmentation, Mohamed
et al. (2012) developed a memory-based seg-
menter for Egyptian Arabic trained on manually-
annotated user-generated data including 20k
words combined with the ATB data and reported
an accuracy of 91.90%. Habash et al. (2013) de-
veloped MADA-ARZ as an Egyptian extension to
MADA, the MSA morphological processor. The
approach they took was to replace the MSA an-
alyzer SAMA with the ARZ analyzer CALIMA,
and again disambiguate the output using an SVM
classifier, and reported a segmentation adccuracy
of 97.5%. Monroe et al. (2014) augment a pre-

viously developed character-level CRF-based seg-
menter for MSA with more features to accom-
modate Egyptian Arabic achieving an f-score of
92.09% on an Egyptian test data.

More recently Samih et al. (2017a) developed
an Egyptian segmenter using neural architecture
of Bi-LSTM with a CRF optimizer trained on a
small dataset of 350 Egyptian tweets (8k words)
and reported an f-score of 92.65%. They later ex-
tended their work to cover Gulf, Moroccan and
Levantine Arabic (Samih et al., 2017b; Eldesouki
et al., 2017).

3 Dialect Segmentation Convention

Clitics are prevalent and highly frequent in Arabic
as they span a large class of function morphemes
including conjunctions, negation, progressive and
future particles, object and possessive pronouns,
and the definite article. And these function mor-
phemes attach to verbs (as in Table 1), nouns (as
in Table 2), or other function words or morphemes.

3.1 Annotation Guidelines

Token Sub-Type Possible Values

Proclitic

Conj ð wa “and”

Neg. Ð ma “not” ?

Compl. È li “to”

Particle H. bi “prog.” ?

Particle ��, sa, �ë ha ? “will”

Stem I. m�'
 yuhib “like”

Enclitic

Obj pron �ë hu, ð uw ? “him”

Post-Prep È li “to” ?

PObj Pron �ë hu, ð uw “him” ?

Post Neg �� shi “not” ?

Table 1: clitics with a verb. Note that the progressive
and future particles are in complementary distribution.
? used in EG only.

The annotation guidelines are fairly straightfor-
ward. Here are the main instructions followed dur-
ing annotation.

• Segment words in a way that would reflect the
correct number of part of speech tags as in
Tables 1 and 2 above.

• Words merged with other words should
be separated, e.g. é<Ë @+ YJ.« “Abdullah”
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é<Ë @+ ZA ��+ AÓ “God willing”.

• When the post-preposition is fused with the
last letter of the stem, the post-preposition
should be retained at the expense of the stem,
e.g. ½+Ë+ñ�®+K. “I am saying to you”.

• Hashtags, emoticons and user names are
treated as single units, e.g. #YÒmÌ'@_ é<Ë
“Thank_God”, :-), and @mohamed_ali.

• Sometime letters are repeated for emphasis,
in this case the token boundary is maintained,
e.g. @ @ @ @ @Q�
J
J
�
J
 	k



@+ððð “annnnd finallllly”.

• With spelling errors, we segment as if words
are written correctly, e.g. �é+�JÊgP “his trip”.

• Interrogative words and interjections are
treated as one unit, e.g. ��Ó “not” ��CK.
“don’t” éJ
Ë “why”.

• Some words are common, but nonetheless
should be tokenized, e.g. ��+ Yg + Ð “no

one”, ��+J
 	̄ + Ð “nothing”.

• When vowels on prepositions are changed
from short to long, the long vowel is con-
sidered as part of the preposition, e.g. è+ AªÓ
“with him”, Ñê+J
Ë “to them” Ñê+J
K. “by them”.

Token Sub-Type Possible Values

Proclitic
Conj ð wa “and”

Prep. È li “to”

Det. È@ Al “the”

Stem H. A�J» kitAb “book”

Enclitic Poss pron �ë hu “his”

Table 2: clitics with a noun. Note that the determiner
and the possessive pronoun are in complementary dis-
tribution.

3.2 Clitics vs. Affixes

Clitics are different from affixes in that prefixes
and suffixes are morphological markers that
indicate tense, number, person, gender, case, etc.,
while clitics are syntactic units (like preposi-
tions, conjunctions, pronouns and particles) with
separate part of speech functions, but happen

to attached to other words. The difference is
shown further by the example in the syntactic
tree in Figure 1. Note how the verb retains the
imperfective and plural markers, and the noun
maintains the feminine marker.

Example: �éÓñºjÊË Aëñª 	̄ YJ
ë will-pay-it to-the-
government (2 words = 6 token sentence)

Figure 1: Clitics on a Syntactic Tree

Clitics can be challenging for intelligent virtual
assistant applications dealing with Arabic in many
areas. The problem is that without proper segmen-
tation, it’s impossible for the system to correctly
identify the triggering phrase or the span of an ar-
gument, may it be a message, contact name, lo-
cation, or artist name. Here are a few examples
categorized by topic:

1. Planning:

• 	á�. ÊË @ Z @Qå���. ú

	GQº 	̄ fak~arni bi-$ira’ Al-

laban “Remind me to-buy milk”.
Type of attached argument: reminder
subject

2. Communication:

• YÔg


AK. É���@ it~asil bi-Ahmed “Make a

call to-Ahmed”.
Type of attached argument: contact name

3. Media:

• H. AK
X ðQÒªË �éJ
 	J 	«


@ >ugniyah li-Amr Diab

“A song by-Amr Diab”.
Type of attached argument: artist

4. Device Control:

•  A�® 	K ©K. P


AK. �Hñ�Ë@ ú
Î« Eal~i al-Suwt

bi->arbaE niqaT “Raise volume by-five
points”.
Type of attached argument: numeric
value

5. Local directions:
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• ÉÒªË@ð �I�
J. Ë @ 	á�
K. �é 	̄ A�ÖÏ @ al-masafap
bayn al-bayt wa-al-Eamal “distance
between home and-work”.
Type of attached argument: location

3.3 The definite article dilemma
Arabic has only one determiner, the definite arti-
cle È@ Al “the”. However, different conventions
conflicted on whether to consider it as a morpho-
logical marker or a syntactic unit (clitic). While
all other clitics have some free-form counterparts
of their own category, e.g. ð wa “and” (a bound

conjunction), Õç�' vum~a “then” (a free conjunc-

tion), H. bi “in” (a bound preposition), and ú

	̄

fiy “in” (a free preposition), the definite article is
unique in its category. It constitutes one of two
ways by which a noun can be definite, the other
being through idafa or compounding in a geni-
tive/possessive sense, such as I. ËA¢Ë@ H. A�J» kitAb
Al-Talib “the student’s book”. Therefore, the defi-
nite article bears similarities to both morpholog-
ical markers and clitics. In a parse tree it can
be either separated from the noun and be repre-
sented as a determiner headed by the noun, or stay
merged with the noun and a feature called “state”
is marked as ‘definite’.

In the LDC Arabic treebank, the definite article
is treated as morphological marker (i.e. not con-
sidered as a separate token), and therefore, most
NLP applications based on this data model reflect
this convention. In most other research efforts,
such as (Abdelali et al., 2016; Aliwy, 2012; Mo-
hamed, 2018; Habash et al., 2012), it is considered
as a clitic and is segmented away from the nouns
and adjectives they attach to.

It is also observed that the affinity of the deter-
miner to the modified element changes by the type
of the noun or adjective it is attached to. While
it is perfectly separable with common nouns, e.g.
H. A�JºË@ Al-kitAp “the-book” and I. ËA¢Ë@ Al-TAlib
“the-student”, it becomes more rigid with proper
nouns such as, ú
«X@Q�. Ë @ Al-Baradei and ú
æ�J
�Ë@ Al-

Sisi. However, the boundaries are not always clear
and the distinction become somewhat blurry when
a proper name has a composition meaning, such
as ÈC�®�J�B@ ¨PA �� $ariE Al-<isotiqolAl “Street of
(the) Independence”, or a homograph, such as
�	̄ A 	J 	mÌ'@ Al-xanAfis “The Beatles” or “the beatles”.
Even with proper nouns where the definite arti-
cle seems frozen, it needs to be omitted in cerain

cases, partcularly when the noun is preceded by a
vocative particle, e.g. ú
æ�J
� AK
 yA sisi “O, Sisi”.

3.4 Comparison of Segmentation
Conventions

Our segmentation convention matches with
(Aliwy, 2012; Mohamed, 2018; Habash et al.,
2012) where clitics are split from words and the
of notion of clitics is aligned as the syntactic units
that can be assigned a POS tag and can occupy a
node on the syntactic tree. It is also similar to the
Penn Arabic Treebank (ATB) (Maamouri et al.,
2004) with the exception of the definite article
where we consider it as a clitic while in the ATB
it is taken as a definiteness marker.

However, the segmentation scheme adopted
here is significantly different from that of Farasa
(Abdelali et al., 2016; Samih et al., 2017a,b; El-
desouki et al., 2017) in a number of ways. While
Farasa segments all clitics as we do, they also split
a number of additional morphemes as follows:

• The feminine marker is split from the noun,
e.g. �éJ. Ë A£ “student.fem” is split as �é+J. Ë A£.
This convention, however, fails to recognize
the fact that in Arabic the gender marker can
indicate natural gender, as in the example
above, or just a grammatical gender, such as�é«A� “watch”, �ék. Ag “thing”, and �éJ.�	� “ra-
tio”. Splitting the feminine marker in the later
cases results in incomplete stems, or non-
words.

• Dual and plural suffixes with nouns are
split, such as 	áJ
+K. A�J» “book.dual”, 	àñ+�PYÓ
“teacher.pl” and �HA+J. Ë A£ “student.fem+pl”.
The problem of oversegmentation shows
again with the feminine plural with the gram-
matical gender, e.g. �HA+k. Ag “things” and
�H@+ ¨A� “watches”. And while it normal-

izes stems for sound plurals, it leaves broken
plurals unhandled, e.g. I. �J» kutub “books”

the plural of H. A�J» kitAb “book”.

• Number, gender, and person suffixes with
verbs are split, such as @ñ+J.ë 	X “went.pl” and
�I+J.ë 	X “went.fem”. Farasa considers these

suffixes as subject pronouns. However, this
approach fails to acknowledge that Arabic is
a pro-drop language, and the person, number,
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and gender affixes are just added to permit the
dropping of the subject and allow for its se-
mantic reconstruction.

• Case marker suffixes with nouns are split,
such as A+K. A�J» “book.acc”. This is clearly
an affix, and splitting it causes a problem
with frozen adverbs, such as A+ 	��




@ “also” and

A+ªJ.£ “naturally”.

Therefore, as illustrated above, the Farasa con-
vention is a midway between a stemmer, and seg-
menter. It is to be noted that a stemmer aims to
split all affixes and suffixes regardless of their na-
ture, while a segmenter splits only bound mor-
phemes that are syntactic units (or clitics) in na-
ture.

4 Data Collection and Analysis

4.1 Challenges of Dialectal Data Collection
There are over 22 Arab countries with 22 national
dialects and even larger number of sub-dialects.
The population ranges from around 100m to less
than 1m. Natural Language Understanding (NLU)
systems that perform well on MSA are likely to
face difficulties dealing with the various dialects.
As dialects are becoming the main medium of
the interaction between the Intelligent Personal
Assistants and the Arabic speakers, it is important
to have well-scaled NLP tools, with a good
segmenter as a starting point. Here we develop a
generic process for data collection and sampling
that can be applied to one or more dialects.

With data collection, there are a number of chal-
lenges that need to be taken into consideration.

• Intra-sentential code switching: some user-
generated data can contain a mix between
MSA and dialects or dialect and a foreign lan-
guage..

• Pan-Arab pages. Some web pages are popu-
lar across the Arab world and can attract au-
dience from different regions, and therefore,
it is not immediately obvious what dialect the
comment is written in.

• Expatriates. Gulf states have a large number
of expatriates. In Saudi Arabia, for instance,
there are 2m Syrians, 1m Sudanese, and 1m
Egyptians. For another example, only 17%

of residents in Dubai are Emiratis. Therefore,
relying on the location of the user or the web-
page alone can be misleading.

• Neighboring dialects. Within a particular re-
gion, dialects can be significantly similar. So,
how can we separate Moroccan from Alge-
rian, Saudi from Kuwaiti and Lebanese from
Syrian?

4.2 Dialect Filtration
To handle the challenges mentioned above, our ap-
proach to dialectal data collection consists of a
two-stage filtration process. We apply this pro-
cess to four dialects (Egyptian, Saudi, Moroccan
and Algerian). The reason for selecting these four
dialects in particular is that we wanted to see how
our method performs on dialects from discrete re-
gions (Egyptian, Saudi and Moroccan) as well
as dialects from neighboring countries (Moroccan
and Algerian).

1. By locale. Detecting the location of the web-
page and user who made the comment.

2. By seed-words. We construct dialect-specific
word lists that contains high frequency, high
confidence lexical items.

In the first filtration stage, we crawl data from
local news websites as well as user-generated data
(blogs, user comments, and social media posts)
from the target countries: Egypt, Saudi Arabia,
Morocco and Algeria.

We observe that user-generated data is outpac-
ing edited data, and the makeup and structure of
data on the web is rapidly changing. It seems
that social media and sites allowing free comments
and reviews are giving people unprecedented and
mostly uncensored freedom and expressive power,
which they seem to utilize effectively.

The second filtration stage is the development of
dialect seed word. Lists of dialectal words avail-
able online are very limited in size, not well main-
tained, and have no information on frequency.
Therefore, we extract our own wordlists from cor-
pora. The assumption is that dialectal words will
fail when matched against a standard lexicon. We
randomly select 1m words from the data that we
crawled, and we match them against an MSA
lexicon primarily meant for spell checking (Attia
et al., 2012).

We observe that the rate of unknown words in
user-generated data ranges from 6% to 7%, and it
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can go up to as high as 20% with purely collo-
quial data, such as regional tales. We assume that
the unknown words are most likely to be dialectal.
To check the validity of this assumption, we select
unknown words and order by frequency. We fo-
cus on top frequency words as these are assumed
to contain function and common words that fit as
good candidates for a seed list. Then we manu-
ally analyze the top 100 words for the Egyptian
user-generated data. Figure 2 shows that over half
of the words are actually dialectal, the remaining
words are either spelling errors or names entities
or standard words that happen not to be found in
the spell checking wordlist.

Figure 2: Analysis of Unknown Words in Corpora

4.3 Dialect Lexical Intersection
Having collected lists of potential seed words for
the four target dialect and sorted them by fre-
quency, now we try to evaluate how well can these
seed words distinguish one dialect from the other.
We test the distinctive nature of these lists by look-
ing at the intersection between them with regards
to the top 200 most frequent words. Figure 3
illustrates the results of the evaluation, where it
shows two remarkable observations: 1) Dialects
from different regions have lower intersection (be-
low 20%), and 2) dialects from the same region
have greater overlap (above 30%).

4.4 Data Sampling
Manual annotation of data is expensive and time
consuming. Therefore, it is important to sample
the data in such a way that we obtain the best
possible coverage for the least possible amount of
data. Data sampling is discussed in Active Learn-
ing as the need to strike the right balance between
exploration and exploitation over the data space
representation (Bouneffouf et al., 2014). The idea
is that a system that only “exploits” will be too

Figure 3: Lexical Overlap between Dialects. EG:
Egyptian, DZ: Algerian, SA: Saudi, MA: Moroccan

specialized and unable to generalize, and a sys-
tem that only “explores” does not improve its pre-
dictive power, and hence is the need to make the
proper compromise between the two. In our sam-
pling we try to select data that is representative,
diverse, and lexically and syntactically varied. In
order to achieve this goal, we rely on two criteria:
sentence length and similarity matching.

1. Sentence Length. Different sentence lengths
usually indicate different user fluency levels
and represent different syntactic structures.
We define 9 ranges for sentence length: 5–
9, 10–14, 15–19, 20–24, 25–29, 30–34, 35–
39, 40–44, 45–49. Then we extract an equal
number of sentences from each length range.
We excluded sentences shorter than 5 as they
mostly included interjections and confirma-
tion phrases, and longer than 49 as they in-
clude run-on sentences.

2. Similarity Matching. Exact repetitions, semi-
repetitions, and similar sentences exist in
any data collection, but they are particularly
rampant in user-generated data. While it
is straightforward to spot exact repetitions,
or duplicates, and discard them, it is more
challenging to identify similar sentences and
to set out a threshold for this similarity,
so that each sentence added to the annota-
tion will ultimately carry an added-value to
the system performance. There are mainly
two paradigms for string matching: edit
distance and longest common subsequence
(LCS). Edit distance, as defined by Leven-
shtein (1966) tries to find one of three edit op-
erations (insertion, deletion and substitution)
when matching two strings. By contrast, the
LCS (Wagner and Fischer, 1974) looks for
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the longest subsequence that is common to
two strings. To illustrate with an example, we
evaluate these two stings using the two mea-
sures.

• . úÍð


B@ �é�®ÊmÌ'@ �HYëA �� “I saw the first

episode.”
• . �éJ
 	K A�JË @ �é�®ÊmÌ'@ �HYëA �� “I saw the second

episode.”

Using the edit distance, we obtain a similar-
ity score1 of 75.68% while with LCS, we get
a score2 of 81.08%, which means that LCS
perceives the two sentences as more similar
than the edit distance. By nature, the edit dis-
tance focuses on the differences, while LCS
is more suited for finding similarities. There-
fore we choose LCS (or SequenceMatcher)
in our sampling method and set the threshold
at 70%, so that any sentence that is similar
to any existing sentence by this threshold or
higher gets discarded.

5 Hypothesis and Approach

Dialects, by definition, are subsets of the standard
language (or koiné) and they can easily, readily
and freely draw from the larger repository. There-
fore dialects should not be treated as separate and
independent entities, but as a subtype that inher-
its from and extends a larger archetype. Dialects
should be conceived of as the aggregate of the
standard language and local variant.

Dialects diverge from the standard language and
at the same time have a lot in common with this
‘mother’ language. Our hypothesis is that dialects
can be accommodated fairly well without going
through the lengthy and expensive acquisition of
complete and new datasets, but through actively
seeking and covering dialectal words, phrases and
sentences as an add-on component that can be
plugged in with the standard language.

Figure 4 demonstrates a prototype of our hy-
pothesis showing the idea that if we inject
specifically-targeted dialectal segmentation train-
ing data into the standard dataset and rebuild our
model, we can achieve better support and cover-
age for dialects at a higher level of representation,
namely POS tagging, by utilizing the shared lexi-

1edit distance / (len(substr1)+len(substr2)/2) * 100
2As implemented in the SequenceMatcher in the difflib

library

con and reducing the number of OOV’s and with-
out having any dialectal POS training data.

Figure 4: Anticipated Shared Lexicon Size

In order to test this hypothesis, we conduct the
following three steps.

1. Manually annotate Egyptian dialectal seg-
mentation data. After extracting and sam-
pling the data, we manually annotate 1,058
sentences and split them into 739 sentences
for training, 158 for validation and 157 for
testing. Only the testing set is also annotated
for POS tags besides segmentation.

2. Develop a segmentation model from the MSA
data alone and another model from the com-
bination of the MSA and dialectal data. The
MSA data contains 9,717 sentences (399,774
tokens) and includes news articles (cover-
ing politics, sports, entertainment, business,
health, sci-tech, arts), Wikipedia articles web
articles (including blogs, forums, reviews).

3. Run the dialectal and standard segmenters on
the dialect test set, evaluate how many words
are shared with the dialect and MSA, and
check the impact on the POS tagger. Hope-
fully the output of the model with dialectal
data will have more shared lexicon with the
Arabic standard dataset and improved POS
tagging score.

6 System Description

In our experiments we use an arc-eager transition
based dependency parser (Nivre, 2003) with a
model trained using a linear SVM architecture
similar to the one in Yamada and Matsumoto
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(2003). When experimenting with morphological
features, we add the morphological attributes for
both stack-top and buffer-top tokens.

Features:

• A window of +/- 3 characters of uni-grams
and bi-grams around the current position.

• A tri-gram of current character of previous
two character

• A tri-gram of current character of next two
character

• whether the current character is punctuation

• whether the current character is a digit

• Word length and position within a word

• First and last two characters of the current
word

Our segmenter is part of a dependency tree
parser for Arabic. Computational implementation
within the Dependency Grammars framework has
been realized in the creation of dependency tree-
banks, such as the Prague Dependency Treebank
(Hajič et al., 2001), the Stanford Dependencies
(De Marneffe and Manning, 2008) and Univer-
sal Dependencies (Nivre et al., 2016; McDonald
et al., 2013), and the development of dependency
parsers, such as the Stanford parser (Chen and
Manning, 2014), the inductive dependency parser
(Nivre et al., 2004) and the MaltParser (Nivre
et al., 2007).

A dependency parser complies with the Depen-
dency Grammar formalisms. Within the Depen-
dency Grammar, dependency relations can be rep-
resented either in a relational format or in a graph
format. In a relational format, the representation
is a triple which shows the relation between a pair
of words. The head of the dependency relation is
given as the first argument and the dependent as
the second. This relationship is represented as fol-
lows:

relation(head, dependent)

For example, the sentence XBð


B@ Qå	�k “the

boys came” can be formulated as:

nsubj(Qå	�k , XBð


@) – det(XBð



@, È@)

Similarly, in the graph representation the depen-
dency arc points from the head category to the de-
pendent category, and the relation (or grammatical
function) is realized as a label on the arc as shown
in Figure 5.

Figure 5: Sample Dependency Graphs

7 Experiments and Results

We have a high performance MSA segmenter, and
when we adapt to the dialectal domain, we want to
make sure that the performance on MSA data does
not suffer from significant degradation. There-
fore we build two models, one using the MSA
data alone, and the other using MSA data com-
bined with the Egyptian (EG) dialectal segmenta-
tion training data, and we evaluate both systems
on the MSA and EG test sets.

Model trained on Segmentation Eval
segmentation data from MSA EG
MSA 97.91 82.56
MSA+EG 97.62 91.40

Table 3: Egyptian Segmentation Evaluation

As Table 3 shows, the model trained on MSA
gives an F-1 score of 97.91% on the MSA test
data and a remarkably lower score on the EG data
(82.56%). For a task as basic as segmentation, this
level of performance is not reliable to pass on to
other downstream or upstream tasks such as IR or
MT. When we train our model on the combined
data of MSA+EG, there is a slight reduction in the
performance on the MSA test set (about 0.3% ab-
solute), while there a huge performance boost on
the EG test set (8.84% absolute). The overall score
on EG is 91.40%, which is not close to the per-
formance on MSA data, but this is understandable
given the small size of the training data, and it is
still comparable to the scores reported in the lit-
erature: 91.90% by Mohamed et al. (2012), and
92.65% by Samih et al. (2017a). This also illus-
trates the need to invest in acquiring more anno-
tated data for dialects.
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Now we want to evaluate if this improvement on
the EG segmentation will cascade up the process-
ing pipeline and help the MSA POS tagger adapt
to the dialectal domain. We run our POS tagger on
three different segmentation inputs: predictions of
the MSA segmenter, predictions of the MSA+EG
segmenter, and gold segmentation. The reason we
test on the gold segmentation is to see the head-
room for improvement if we have a ‘perfect’ seg-
menter.

Model trained on POS Eval
segmentation data from MSA EG
MSA 94.36 66.70
MSA+EG 94.10 74.07
Gold data 96.66 81.33

Table 4: Egyptian POS Evaluation

Table 4 shows that the loss with MSA POS tag-
ging from adding the new dialectal data is frac-
tional (0.26% absolute). It also shows that us-
ing the MSA segmenter predictions as input, the
POS tagger achieved only 66.70% f-1 measure on
the EG test set. This has risen to 74.07% when
using the MSA+EG segmenter predictions, a re-
markable increase of 7.37% absolute. Improving
the EG segmenter further can give a headroom up
to 81.33%, which is another increase of 7.26% ab-
solute. This is a significant improvement on the
system performance that has been gained econom-
ically with few resources. This confirms our orig-
inal hypothesis that segmentation can help with
dialectal domain adaptation. One explanation of
how the segmentation helps the POS tagging is
that doing the right segmentation in EG data re-
duces the number of OOV tokens with respect to
the POS tagging model, even when the POS tagger
is trained with only MSA data. To verify that, we
show , in Figure 7, the percentage OOV tokens for
the POS tagger model when the data is segmented
using the segmenter trained with MSA only, the
MSA+EG segmenter or using the gold segmenta-
tion. MSA+EG segmeter reduced the OOV by 5%
points absolute which is 25% relative reduction in
OOV.

However, we observe that we cannot obtain
POS tagging results for dialect comparable to
MSA scores using segmentation alone. There will
be a need for some in-domain POS training data,
and we envision the optimal model of a parser
training is to follow what we call a “data trape-

Figure 6: Data Trapezoid

Figure 7: OOV percentage in POS Evaluation Data as
segmented by different segmentation models

zoid”, as shown in Figure 6. The data trape-
zoid has a wider base for segmentation training
data, a medium base for POS tagging, and a nar-
rower base for dependency annotation. As anno-
tating data for POS and dependency is very costly
and time-consuming, We believe that this model
can achieve the right balance and compromise be-
tween resources to achieve reasonable system per-
formance.

8 Conclusion

In this paper we have shown how segmentation
helps in domain adaptation by scaling up the per-
formance of a system trained on a standard lan-
guage when it is applied to dialect. We showed
how the injection of EG segmentation training
data in a parser remarkably improves POS tagging
despite the fact that no dialectal POS training data
is included. From a few hundred dialectal segmen-
tation sentences, we obtain a boost in POS tagging
by 7.37% absolute. This does not per se eliminate
the need for POS training data, but we suggest a
data trapezoid model where there is a wide base
of segmentation data, and a comparatively smaller
amount of POS data and a yet smaller amount
for dependency trees, a model that aligns with the
time, effort and cost needed for each layer.
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Chanev, Gülşen Eryigit, Sandra Kübler, Svetoslav
Marinov, and Erwin Marsi. 2007. Maltparser: A
language-independent system for data-driven depen-
dency parsing. Natural Language Engineering,
13(2):95–135.

Joakim Nivre, Marie-Catherine de Marneffe, Filip
Ginter, Yoav Goldberg, Jan Hajic, Christopher D.
Manning, Ryan T. McDonald, Slav Petrov, Sampo
Pyysalo, Natalia Silveira, et al. 2016. Universal
dependencies v1: A multilingual treebank collec-
tion. In International Conference on Language Re-
sources and Evaluation (LREC 2016), pages 1659–
1666, Portorož, Slovenia.

Younes Samih, Mohammed Attia, Mohamed Eldes-
ouki, Ahmed Abdelali, Hamdy Mubarak, Laura
Kallmeyer, and Kareem Darwish. 2017a. A neu-
ral architecture for dialectal arabic segmentation. In
Proceedings of the Third Arabic Natural Language
Processing Workshop, pages 46–54.

Younes Samih, Mohamed Eldesouki, Mohammed At-
tia, Kareem Darwish, Ahmed Abdelali, Hamdy
Mubarak, and Laura Kallmeyer. 2017b. Learning
from relatives: unified dialectal arabic segmentation.
In Proceedings of the 21st Conference on Computa-
tional Natural Language Learning (CoNLL 2017),
pages 432–441.

Robert A. Wagner and Michael J. Fischer. 1974. The
string-to-string correction problem. Journal of the
ACM (JACM), 21(1):168–173.

Hiroyasu Yamada and Yuji Matsumoto. 2003. Statis-
tical dependency analysis with support vector ma-
chines. In Proceedings of the 8th International
Workshop on Parsing Technologies, pages 195–206,
Nancy, France.

129



Proceedings of the Fourth Arabic Natural Language Processing Workshop, pages 130–136
Florence, Italy, August 1, 2019. c©2019 Association for Computational Linguistics

Assessing Arabic Weblog Credibility via Deep Co-learning

Chadi Helwe , Shady Elbassuoni , Ayman Al Zaatari and Wassim El-Hajj
Computer Science Department
American University of Beirut

Beirut, Lebanon
{cth05,se58,abz02,we07}@aub.edu.lb

Abstract

Assessing the credibility of online content has
garnered a lot of attention lately. We focus on
one such type of online content, namely we-
blogs or blogs for short. Some recent work
attempted the task of automatically assessing
the credibility of blogs, typically via machine
learning. However, in the case of Arabic blogs,
there are hardly any datasets available that can
be used to train robust machine learning mod-
els for this difficult task. To overcome the
lack of sufficient training data, we propose
deep co-learning, a semi-supervised end-to-
end deep learning approach to assess the cred-
ibility of Arabic blogs. In deep co-learning,
multiple weak deep neural network classifiers
are trained using a small labeled dataset, and
each using a different view of the data. Each
one of these classifiers is then used to classify
unlabeled data, and its prediction is used to
train the other classifiers in a semi-supervised
fashion. We evaluate our deep co-learning ap-
proach on an Arabic blogs dataset, and we re-
port significant improvements in performance
compared to many baselines including fully-
supervised deep learning models as well as en-
semble models.

1 Introduction

Weblogs, also known as blogs, are gaining popu-
larity, as alternative sources of news and informa-
tion. The size of the blogosphere is exponentially
increasing. For instance, as of October 2018, the
popular blogging website Tumblr estimates the to-
tal number of blogs on the website to be above 450
million blogs with over 167 billion blog posts1.
With the surge in misinformation, disinformation
and fake news on the Web, and their adverse ef-
fects on spreading rumors, tampering with elec-
tion results and promoting propaganda, an impor-
tant research question is how to assess the credibil-

1https://www.tumblr.com/about

ity of blog posts. This is particularly crucial in the
case of the Arabic speaking world given its recent
and constant turmoil.

There has been thus an increased interest in the
machine learning and data mining communities
to tackle the problem of fake news (Rubin et al.,
2016; Wang, 2017; Ruchansky et al., 2017; Zhang
et al., 2018; Wang et al., 2018) and the credibil-
ity of content in social media in general (Castillo
et al., 2011; Gupta and Kumaraguru, 2012; Gupta
et al., 2014; El Ballouli et al., 2017; Ma et al.,
2016). Some works also focused on the credibility
of blog posts (Kolari et al., 2006a,b; Salvetti and
Nicolov, 2006; Lin et al., 2007). Most such ap-
proaches relied on careful feature-engineering. In
this paper, we propose to utilize end-to-end deep
learning to assess the credibility of Arabic blog
posts. Deep Learning is a type of machine learning
that uses deep neural networks to automatically
learn features without spending an undue effort to
engineer these features as is custom in traditional
machine learning. It has been shown to perform
significantly better than any other approaches for
various NLP tasks. However, deep learning mod-
els require a large amount of training data. As-
sessing the credibility of blog posts is a difficult
task and one that has not yet received enough at-
tention from the research community. This has led
to only scarce datasets of blogs that are labeled for
credibility. This is again particularly true in the
case of Arabic blogs, with hardly any such datasets
available, with the exception of (Al Zaatari et al.,
2016), which only consists of few hundreds of an-
notated blog posts.

To overcome the lack of sufficient training data,
we propose a semi-supervised deep learning ap-
proach, which we refer to as deep co-learning.
Deep co-learning is based on co-training, an ap-
proach first introduced by Blum and Mitchell
(Blum and Mitchell, 1998) that utilizes multiple
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classifiers that learn from each other using differ-
ent views (i.e., features) of the data. In particu-
lar, the classifiers are all initially trained in a com-
pletely supervised manner using a small training
dataset. Each trained classifier is then used to la-
bel some unlabeled data, and this automatically la-
beled data by each classifier is then used to re-train
the other classifiers in a semi-supervised fashion.

In our approach, we use a small fully-labeled
dataset to train two deep learning models for as-
sessing the credibility of Arabic blog posts. The
two classifiers are based on a convolutional neural
network (CNN) architecture. The first model uses
continuous bag of words (CBOW) word embed-
dings as features, while the second uses character-
level embeddings. We then iteratively retrain our
classifiers by applying each classifier on an unla-
beled dataset of Arabic blog posts and use the out-
put of each classifier to re-train the other classi-
fier. We evaluate our approach on an Arabic blogs
dataset (Al Zaatari et al., 2016) and compare it to
various baselines.

Our contributions can be summarized as fol-
lows:

• We build an end-to-end deep learning model
to assess the credibility of Arabic blog posts

• We utilize semi-supervised learning to train
our model even in the lack of sufficient train-
ing data

• We evaluate our approach on an Arabic blogs
dataset (Al Zaatari et al., 2016) and demon-
strate its effectiveness compared to many
baselines

The paper is organized as follows. We start by
reviewing related work, then describe our deep co-
learning approach for assessing the credibility of
blog posts. We then present our experimental re-
sults where we evaluate our approach on a pub-
licly available Arabic blogs dataset. Finally, we
conclude and present future directions.

2 Related Work

Assessing information credibility on the Web is
becoming a very hot area of research. Related
work that addresses this general problem can be
classified into a number of overlapping classes.
One such class of works focuses on assessing cred-
ibility in social media such as tweets. Another
family of works addresses the specific issue of

fake news detection. Finally, there are some scarce
works on the issue of blog credibility, in which our
work also falls.

2.1 Credibility in Social Media
To date, several studies have developed ap-
proaches to assess the credibility in Social Media.
Castillo et al. (Castillo et al., 2011) implemented
automatic methods to predict the level of credibil-
ity of a given set of tweets, which was based on
various types of features including message-based
features, user-based features, topic-based features,
and propagation-based features. Gupta and Ku-
maraguru (Gupta and Kumaraguru, 2012) devel-
oped a ranking algorithm to rank tweets, which
occurred during high impact events, according to
a credibility score. They first identified different
features that were used to train a supervised learn-
ing model. Their approach is based on a rankSVM
model and a relevance feedback method. In a
follow-up study, Gupta et al. (Gupta et al., 2014)
updated their method to run in a real-time sys-
tem so that the machine learning model can be
retrained from the feedback provided by the user.
El Ballouli et al. (El Ballouli et al., 2017) pro-
posed a decision-tree classification model to pre-
dict the credibility of Arabic tweets. They ex-
tracted different features from tweets and users.
Other researches focused on detecting rumors in
social media. Ma et al. (Ma et al., 2016) in-
vestigated a deep learning approach to detect ru-
mors in microblog platforms such as Twitter and
Weibo. They designed a neural network consist-
ing of 2 Gated Recurrent Unit layers that outper-
formed different baselines.

2.2 Fake News Detection
One of the most important events in 2016 was
the U.S presidential election. During this elec-
tion, fake news began to emerge on social media
to sway the votes of electors. Rubin et al. (Ru-
bin et al., 2016) proposed an SVM approach to
detect fake news. They used TF-IDF and other
features such as absurdity, humor, grammar, neg-
ative affect and punctuation. Wang (Wang, 2017)
created a benchmark dataset for fake news detec-
tion. The dataset consists of 12.8K labeled short
political news statements with their meta data. He
tested different deep learning models and his best
model was a hybrid convolutional and recurrent
neural network composed of a convolutional neu-
ral network (CNN) trained on the text and another
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consisting of a convolutional and a bidirectional
long short term memory neural network (CNN-
Bi-LSTM) that takes as input the meta data. The
outputs of the two models were concatenated and
passed to a fully connected layer. Ruchansky et
al. (Ruchansky et al., 2017) proposed a hybrid
deep learning model to detect fake news. Their
model consisted of a recurrent neural network that
captures the temporal aspects of articles and a
feed-forward fully-connected one that takes as in-
put user features. The output of both neural net-
works were concatenated and used for classifica-
tion. Zhang et al. (Zhang et al., 2018) proposed a
new deep learning architecture for fake news de-
tection called deep diffusive network. This neural
network is based on a gated diffusive unit, which
takes as input multiple different sources simulta-
neously such as news articles, creators and sub-
jects, and then is able to learn to fuse them and
output a vector representation that is then used for
classification. Finally, Wang et al. (Wang et al.,
2018) investigated a deep learning method to de-
tect fake news from newly emerged events.

2.3 Credibility of Weblogs

There is a relatively small body of literature that
investigated the assessment of weblogs credibil-
ity. Kolari et al. (Kolari et al., 2006a) proposed
a machine learning approach to detect spam blogs.
They employed a linear support vector machines
(SVM) approach that takes as input different fea-
tures such as TF-Normalized features as well as
binary features. Similarly, Salvetti and Nicolov
(Salvetti and Nicolov, 2006) implemented a ma-
chine learning model to identify spam blogs. They
segmented a blog URL into tokens, which were
then passed to a Naive Bayes for classification.
Lin et al. (Lin et al., 2007) extracted time-based
and content-based features that were passed to an
SVM classifier. Finally, Al Zaatari et al. (Al Za-
atari et al., 2016) constructed a dataset of Arabic
blogposts that were labeled for credibility using
crowdsourcing. They also manually extracted a
handful of features such as bias, sentiment, rea-
sonability and objectivity, and they used these fea-
tures to train various machine learning models
such as Naive Bayes and Decision Tables. How-
ever none of these approaches employed end-to-
end deep learning as we do in this paper.

3 Deep Co-learning Approach

An overview of our deep co-learning approach is
depicted in Figure 1. We use a small fully-labeled
dataset to train two deep learning models for as-
sessing the credibility of blog posts. The two clas-
sifiers are based on a convolutional neural network
(CNN) architecture. The first model uses contin-
uous bag of words (CBOW) word embeddings as
features, while the second one uses character-level
embeddings. We then iteratively retrain our clas-
sifiers by applying each classifier on an unlabeled
dataset of blog posts and use the output of each
classifier to re-train the other classifier.

In our deep co-learning algorithm (Algorithm
1), we make use of three different datasets. The
first dataset Dl, which is a small but fully-
annotated dataset. This dataset is used to initially
train our two CNN models M1 and M2 described
above. Next, for each one of the two models M1

and M2, we pick m random instances from our
unlabaled dataset Dul. We then apply each of the
models M1 and M2 on the corresponding m in-
stances we picked for each model.

Next, we iteratively train each of the two co-
learning models M1 and M2 as follows. We pick
k instances out of the m instances on which one
of the two models was applied and use them to
train the other model. Our goal is to pick the k
instances that have the highest accuracy. Once
we have computed the score for each instance on
which one of the co-learning models were applied,
we pick the top-k highest scored instances that
were tagged by one model and use it to train the
other model and vice versa. Then we use an en-
semble averaging of the two models and apply it
on our third dataset Dvl, which is also a fully-
annotated dataset that is used for validation. The
validation score of the ensemble average of the
two models M1 and M2 is stored in the variable
f1 score in each iteration of the deep co-learning
algorithm. We check if f1 score is higher than
the current best f1 score and if it is higher, we
update the models and augment their datasets with
the top-k instances. Then, we set best f1 score
to f1 score. Note that the best f1 score is ini-
tially set to the validation score of an ensemble
averaging of the initial models M1 and M2 that
were trained using the fully-labeled dataset Dl.
We keep repeating this whole process of retrain,
apply and pick highest-scored instances for t iter-
ations, which is a hyperparameter in our approach.
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Figure 1: Overview of the Deep Co-Learning Approach

Our approach ends up returning two deep neural
network models M1 and M2. To be able to use
these two models on unseen data, we apply both
models and then use ensemble averaging to finally
predict the labels of the instances.

In our proposed deep co-learning approach, we
utilize two convolutional neural network models.
Both of them have the same architecture, except
that the first layer of each network utilizes differ-
ent embeddings. The first model uses pre-trained
word-level embeddings that are not retrained in
each iteration. However, the second model uses
character-level embeddings that are retrained in
each iteration. Each model consists of a two 1D
convolution layers followed by a max pool layer,
and then a 1D convolution layer followed by a
global max pool layer. Each convolution layer is
composed of 64, 128, and 256 filters, respectively,
and a kernel size of 3 and a stride of 1. The max
pool layer uses a pool size of 2 and a stride of 2.
The output of the global max pool layer is passed
to a fully connected layer of 150 neurons. The
last layer is a softmax layer of dimension 3. In
this architecture, all the hidden layers use RELU
as an activation function. In addition, we regular-
ize the neural networks using dropout, and we use
a batch normalization layer between all the hid-
den layers. Figure 2 shows the architecture of the
convolutional neural networks used by our deep
co-learning approach.

4 Evaluation

To evaluate our deep co-learning approach, we use
a dataset of Arabic blog posts constructed by Al
Zaatari et al. (Al Zaatari et al., 2016). It con-
sists of 268 Arabic blog posts. The collected blog
posts were based on trendy topics at the time of

construction, such as Lebanese parliament elec-
tions, FIFA world cup, Lebanese residential elec-
tions, the Gaza war, the Syrian war, and conflicts
in Egypt. To annotate the blogs for credibility, the
authors relied on crowdsourcing and the annota-
tors had to label each blog post as credible, fairly
credible, or not credible. Note that to the best of
our knowledge, this is the only dataset that is pub-
licly available and contains credibility assessment
for Arabic blog posts.

We divided the dataset described above as fol-
lows: 60% training, 20% validation, and 20% test-
ing. The data was split in a stratified fashion re-
serving the percentage of samples for each class.
Our two deep learning models were bootstrapped
using the fully-annotated training dataset, which
was used to initially train the co-learning mod-
els in the first iteration of the deep co-learning
algorithm. We then used the validation dataset
to tune the different hyperparameters of our ap-
proach. These included the number of instances m
we picked at each iteration of the deep co-learning
algorithm and the number of instances k with the
highest scores. It also included the low-level hy-
perparameters of the neural networks such as the
number of neurons, epochs, and batch size.

In addition to the labeled dataset, we created a
large corpus of unlabeled data, which was used to
re-train our two deep learning models as described
in the previous section. We developed a script
to download a set of blog posts from Al Arabiya
Blogs 2 and Al Hudood 3. This dataset consists of
20392 blogs.

We compared our deep co-learning approach
to various baselines. The first baseline is a lin-

2https://www.alarabiya.net/
3https://alhudood.net/
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Data: Labeled Data Dl, Unlabeled Data Dul,
Validation Data Dvl, Iteration t

Dl
1 ← Dl

Dl
2 ← Dl

M1 ← train(Dl
1,WordLevelEmbeddings)

M2 ← train(Dl
2, CharLevelEmbeddings)

best f1 score← Avg(M1,M2, D
vl)

repeat
Dsl

1 ← Pick m random instances from
Dul

Dsl
2 ← Pick m random instances from
Dul

Apply (M1, D
ul
1 , CBOW )

Apply (M2, D
ul
2 , Skip− gram)

for i = 1 to m do
Compute si for each instance i ∈ Dul

1

Compute si for each instance i ∈ Dul
2

end
TmpDl

1 ← Dl
1 ∩ top-k2

TmpDl
2 ← Dl

2 ∩ top-k1
TmpM1 ←
train(TmpDl

1,WordLevelEmbeddings)
TmpM2 ←
train(TmpDl

2, CharLevelEmbeddings)
f1 score←
Avg(TmpM l

1, TmpM l
2, D

vl)
if f1 score > best f1 score then

top− k1 ← Remove top-k instances
with highest si from Dul

1

top− k2 ← Remove top-k instances
with highest si from Dul

2

Dl
1 ← TmpDl

1

Dl
2 ← TmpDl

2

M1 ← TmpM1

M2 ← TmpM2

best f1 score← f1 score
end

until t iterations;
return M1,M2
Algorithm 1: Deep Co-learning Algorithm

ear SVM that is trained using the TF-IDF scores
of the words in the blog posts, and we set the
soft-margin weight C to 5 based on the valida-
tion set. This baseline is used to evaluate the ef-
fectiveness of a deep-learning approach such as
ours compared to a more simple model such as
SVM. The second and third baselines are word-
level convolution neural networks (Word-CNN),
and a character-level convolution neural networks
(Char-CNN), respectively. The last baseline we

Convolution Layer
64 filters 3 filter size 1 stride 

Max Pooling Layer
2 pool size 2 stride 

Dropout 0.2

Embedding Layer

Batch Normalization

Convolution Layer
128 filters 3 filter size 1

stride 

Max Pooling Layer
2 pool size 2 stride 

Dropout 0.2

Batch Normalization

Convolution Layer
256 filters 3 filter size 1

stride 

Global Max Pooling Layer

Dropout 0.2

Batch Normalization

Fully Connected Layer 
150 outputs 

Dropout 0.2

Batch Normalization

Softmax Layer
3 outputs 

Instance

Figure 2: Convolutional Neural Network Architecture

compared our deep co-learning approach to is an
ensemble model of Word-CNN and Char-CNN
(Ensemble CNN). All the model were trained on
the same training dataset, and their hyperpareme-
ters were tuned using the same validation set.

We trained all supervised models (i.e., the first
two baselines and the initial models of the deep co-
learning approaches) for 500 epochs with a batch
size of 16, a dropout of 0.2 after each hidden
layer, and we used Adagrad (Duchi et al., 2011) as
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Model F1-Score
SVM TF-IDF 0.57
Word-CNN 0.52
Char-CNN 0.54
Ensemble CNN 0.50
Deep Co-learning 0.63

Table 1: Evaluation Results

the optimization algorithm. All experiments were
run on a Ubuntu machine with a 24 GB RAM, a
CPU Intel Core I7 and a GPU NVIDIA GeForce
GTX 1080 Ti 11GB. For the deep co-learning ap-
proaches, we repeated the process of co-learning
for 50 times since retraining the models was tak-
ing significant time which is around 24 hours. In
each iteration of the co-learning algorithm, we
randomly picked 1000 sentences from the unla-
beled data and used the top-50 scored sentences
to retrain the other model. All the other parame-
ters were adjusted using the validation set. Note
that we also experimented with variations of the
above, but we only report here the best perform-
ing ones based on validation data.

Table 1 shows the results of our deep co-
learning approach and the baselines on the testing
dataset. We observe that an SVM model trained
with TF-IDF scores as features has an F1-score of
0.57, which is higher than all the fully supervised
deep learning approaches. This can be mainly at-
tributed to the small size of the training dataset,
which makes it harder to train more complex
models such as the fully-supervised deep learn-
ing models. Comparing the fully-supervised deep
learning models to each other, we observe that
the deep learning model trained on character-level
representations has an F1-Score of 0.54, while the
deep learning model trained on word-level rep-
resentations has a lower F1-score of 0.52. The
advantage of character-level models over word-
level models is that they can learn misspellings,
emoticons, and n-grams. Interestingly, the en-
semble model of Word-CNN and Char-CNN (En-
semble CNN in Table 1) performs worse than all
other models. This indicates that with the lack of
enough training data, even ensemble models are
not able of generalizing well. On the contrary,
our deep co-learning approach, which combines
the best of both worlds, the complexity of deep
learning approaches and the ability to generalize
well even when no sufficient training data is avail-

able through semi-supervision, significantly out-
performs all the baselines with an F1-Measure of
0.63.

5 Conclusion and Future Work

In this paper, we proposed a deep learning ap-
proach to assess the credibility of Arabic blog
posts. Our method, deep co-learning, is based on a
semi-supervised learning algorithm known as co-
training that we adopted to the realm of deep learn-
ing. To train our deep co-learning approach, we
generated an unlabeled dataset that was then used
to train our deep co-learning approach. We evalu-
ated our approach on an Arabic blogs dataset and
compared it to different baselines. Our deep co-
learning approach significantly outperformed all
other compared-to approaches including both deep
and traditional machine learning models.

In future work, we plan to train the deep co-
learning approach for a more extended period to
improve its performance. We also plan to label
some of our unlabelled blog posts that we used
for training our deep co-learning approach using
crowdsourcing and to make the labeled dataset
publicly available to advance research in this area.
Finally, we also plan to experiment with other neu-
ral network architectures and to incorporate more
linguistic features in our models.
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Abstract

We present a collection of morphologi-
cally annotated corpora for seven Arabic
dialects: Taizi Yemeni, Sanaani Yemeni,
Najdi, Jordanian, Syrian, Iraqi and Moroc-
can Arabic. The corpora collectively cover
over 200,000 words, and are all manually
annotated in a common set of standards
for orthography, diacritized lemmas, to-
kenization, morphological units and En-
glish glosses. These corpora will be pub-
licly available to serve as benchmarks for
training and evaluating systems for Arabic
dialect morphological analysis and disam-
biguation.

1 Introduction

As Arabic dialects (DA) become more widely
written in social media, there is increased interest
in the Arabic NLP community to have annotated
corpora that will allow us to both study the dialects
linguistically, and to create systems that can auto-
matically process dialectal text. There have been
important efforts to create relatively large corpora
for Egyptian (Maamouri et al., 2014), Palestinian
(Jarrar et al., 2014), and Emirati Arabic (Khal-
ifa et al., 2018). While these resources are very
helpful for single dialects, the problem is that
there are many dialects, and in fact it is often un-
clear what to count as separate dialects (for exam-
ple, the subdialects of Levantine). Therefore, we
present a different approach in this paper: we an-
notate seven dialects, but with relatively smaller
corpora (most around 30,000 words). Some of
the dialects are closely related (Jordanian and Syr-
ian), others are more distant (Moroccan). We use
the same annotation methodology for all dialects:
same guidelines, same processing steps, and same
annotation file format. This makes our effort an

ideal starting point for experimenting with using
multidialectal resources to create and train NLP
tools. The dialects we consider are Taizi Yemeni
(YE.TZ)1, Sanaani Yemeni (YE.SN), Saudi Na-
jdi (SA.NJ), Jordanian (JOR), Syrian Damascene
(SY.DM), Iraqi Baghdadi (IR.BG), and Moroccan
Rabati (MA.RB) Arabic.

The paper is structured as follows. We start with
a review of relevant literature (Section 2). We then
summarize some linguistic facts about DA in gen-
eral (Section 3) and subsequently present each of
our seven dialects in Section 4, summarizing the
corpora used and some interesting facts specific to
each dialect. Section 5 then presents our annota-
tion methodology. We then briefly discuss mor-
phological analyzers, and conclude.

2 Related Work

Data Collections There have been several data
collections centered on Arabic dialects, specifi-
cally spoken Arabic. A very useful resource is the
Semitisches Tonarchiv at the University of Heidel-
berg in Germany.2 We have included two Yemeni
transcriptions from this resource in our YE.TZ and
YE.SN corpora. Khalifa et al. (2016) is a large col-
lection of over 100M words of a number of Ara-
bic dialect, although the majority is from the Gulf.
Bouamor et al. (2018) created a large corpus with
parallel data text from 25 Arab cities. Further data
collections include (Al-Amri, 2000) which has not
yet been digitized for use in NLP research.

Annotated Corpora There are few annotated
corpora for dialectal Arabic: the Levantine Ara-
bic Treebank (specifically Jordanian) (Maamouri
et al., 2006), the Egyptian Arabic Treebank
(Maamouri et al., 2014), Curras, the Pales-

1The abbreviations we use intend to capture the country
name and the city or region name when applicable.

2http://www.semarch.uni-hd.de
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tinian Arabic annotated corpus (Jarrar et al.,
2014), the Gulf Arabic Annotated corpus (Khalifa
et al., 2018), Syrian, Jordanian dialectal corpora
(Bouamor et al., 2014; Harrat et al., 2014), a small
effort on Sanaani and Moroccan (AlShargi et al.,
2016) (which this paper builds on), and SUAR
(Al-Twairesh et al., 2018), a morphologically an-
notated corpus for Najdi and Hijazi which is semi-
automatically annotated using the MADAMIRA
tool (Pasha et al., 2014) and subsequently man-
ually checked. Additionally, Voss et al. (2014)
present a corpus of Moroccan dialect which has
been annotated for language variety (code switch-
ing). Several of these efforts have followed the ap-
proach of Curras (Jarrar et al., 2014), which con-
sists of around 70,000 words of a balanced genre
corpus. The corpus was manually annotated using
the DIWAN tool (Alshargi and Rambow, 2015),
which we also use. The annotation in Curras is
done by first using a morphological tagger for an-
other Arabic dialect, namely MADAMIRA Egyp-
tian (Pasha et al., 2014), to produce a base that was
then corrected or accepted by a trained annotator.

Other NLP Resources for Dialectal Arabic
The effort to annotate corpora in context is a cen-
tral step in developing morphological analyzers
and taggers (Eskander et al., 2013; Habash et al.,
2013). However, other notable approaches and
efforts that do not use annotated corpora have
focused on developing specific resources manu-
ally or semi-automatically, e.g., the Egyptian Ara-
bic morphological analyzer (Habash et al., 2012b)
which is built upon the Egyptian Colloquial Ara-
bic Lexicon (Kilany et al., 2002), the multi-
dialectal dictionary Tharwa (Diab et al., 2014), or
extending MSA analyzers and resources (Salloum
and Habash, 2014; Harrat et al., 2014; Boujelbane
et al., 2013).

Linguistic Studies There are many theoretical
and descriptive linguistic studies for the dialects
we work on: Yemeni dialects (Watson, 1993,
2002), Najdi (Ingham, 1994), Gulf Arabic dialect
(Holes, 1990), Jordanian (Bani-Yasin and Owens,
1987), Moroccan (Harrell, 1962), Syrian (Cow-
ell, 1964), and Iraqi (Erwin, 1963); not to men-
tions comparative studies across dialects and MSA
(Holes, 2004; Brustad, 2000). We make extensive
use of such studies as part of the design of our an-
notation guidelines.

3 Dialects: Linguistic Facts

In this section we present some general facts and
phenomena shared across different dialects. In
subsequent subsections, we present our dialects
in more detail and commenting on the corpus
sources.

Dialects and MSA Arabic dialects share many
commonalities with Classical Arabic and Mod-
ern Standard Arabic (MSA). All variants of Ara-
bic are morphologically complex as they include
rich inflectional and derivational morphology that
is expressed in two ways: namely, via templates
and affixes. Furthermore, they contain several
classes of attachable clitics. However, the dialects
as a class differ in consistent ways from MSA,
and they differ amongst each other. In fact, the
differences between MSA and Dialectal Arabic
(DA) have often been compared to those between
Latin and the Romance languages (Chiang et al.,
2006). The principal morpho-syntactic difference
between DA and MSA is the loss of productive
case marking, and nunation (tanween) on nouns,
and mood on imperfective verbs.

Dialectal Variations Differences among the di-
alects are found on all levels of linguistic descrip-
tion, i.e., phonology, morphology, syntax, and the
lexicon. We summarize three phonological and
three morphological salient examples in Table 1
for our dialects: the pronunciation of MSA /q/
written �� q,3 MSA /Ã/ written h. j and MSA /k/
written ¼ k; and the various forms of the future,
progressive and possessive particles.

From a lexical point of view, there are many
words that have different meanings across dialects.
For example, the word ú
æ

��AÓ mA$y /ma:Si/ is ‘no’
in YE.SN and MA.RB, ‘yes/ok’ in SY.DM and
JOR, and ‘walking’ in SA.NJ. Another exam-
ple is the word ú


	̄ A� SAfy /sQa:fi/ which means
‘enough’ in MA.RB, but ‘pure’ in the other di-
alects and MSA. Some cases show subtle dif-
ferences in meaning, e.g., Ð@Y 	g xdAm /xadda:m/
means ‘employee’ generically in MA.RB, but it
has a more specific and negative connotation in
YE.TZ and YE.SN, namely ‘enslaved servant’.
While the above cases are all homonyms (homo-
phones and homographs), there are instances of

3We represent the Arabic words in Arabic script and in the
Buckwalter transliteration (in italics) (Habash et al., 2007).
When needed, we present the IPA (in /.../). The English gloss
is added in single quotes.
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Phenomenon MSA YE.TZ YE.SN SA.NJ JOR SY.DM IR.BG MA.RB
Pronunciation of �� q /q/ /q/ /g/ /g/ or /dz/ /g/ or /P/ /P/ /g/ /q/ or /g/
Pronunciation of h. j /Ã/ /g/ /Ã/ /Ã/ /Z/ /Z/ /Ã/ /Ã/
Pronunciation of ¼ k /k/ /k/ /k/ /k/ or /ts/ /k/ or /Ù/ /k/ /k/ or /Ù/ /k/
Future Particle +� s+ + �� $+ +¨ E+ +H. b+ +h H+ +h H+ +h H+ + 	̈

g+
	¬ñ� swf ��@ A$ Y« Ed hP rH hP rH hP rH ø
 XA 	« gAdy

+ �� $+ h@P rAH
+ø
 y+

Progressive Particle φ +H. b+ +H. b+ Y«A�̄ qAEd +H. b+ +H. b+ +X d+ +¼ k+

�ËAg. jAls Ñ« Em Y«A�̄ qAEd + �H t+

Possessive Particle φ ©J. �K tbE ©J. �K tbE ��k Hq ©J. �K tbE ©J. �K tbE ÈAÓ mAl +X d+
��k Hq ��k Hq ¨A�K tAE ÈAK
X dyAl

Table 1: Cross-dialectal and MSA variants in some phonological and morphological phenomena

homophones that have different meanings in dif-
ferent dialects. For example the utterance /fagr/
can mean ‘morning’ in YE.TZ (written as Qm.

	̄
fjr), or

‘poverty in YE.SN (written as Q�® 	̄ fqr). The YE.SN
pronunciation of Qm.

	̄
fjr is /faZr/; and the YE.TZ pro-

nunciation of Q�® 	̄ fqr is /faqr/.

There are also cases of the same meaning be-
ing expressed in different ways, e.g., ‘spoon’ is
�é�®ªÊÓ mlEqp in MSA, metathesized �é�®ÊªÓ mElqp in
JOR and SY.DM, and �é�̄ñ ��A 	g xA$wqp in IR.BG.

Dialectal Orthography Since Arabic dialects
do not have spelling standards, several previous
efforts on Arabic dialect annotations (Maamouri
et al., 2014; Jarrar et al., 2014; Khalifa et al., 2018)
contributed to a movement that lead to the cre-
ation of a common Conventional Orthography for
Dialectal Arabic (CODA) (Habash et al., 2012a;
Zribi et al., 2014; Habash et al., 2018). We also
follow this approach to map from any spontaneous
orthography in our data to CODA. The spirit of
CODA is to define a common and consistent ap-
proach to spelling DA words that acknowledges
their etymological and historical relationship with
MSA and CA, but also maintains their uniqueness
and independence. For example, if a DA word has
an MSA cognate containing �� q, then its CODA
spelling will use �� q even if the dialectal pronun-
ciation is different. In contrast, DA morphemes
are spelled in a way to reflect their DA unique-
ness. For example the SY.DM word ��J
 	® 	Jk Hnfyq
/èanfi:P/ ‘we will wake up’ is a cognate of MSA
��J
 	® 	J� snfyq /sanafi:qu/: the future marker reflects

the dialectal morphology and is not spelled as in
MSA, but the stem is spelled as in MSA and thus
the �� q does not reflect the dialectal pronunciation.

4 Dialect-Specific Corpora

Until recently, Arabic was mostly written in Mod-
ern Standard Arabic (MSA) and Classical Arabic,
while written DA was rare. One early source of
written dialectal Arabic are textbooks for learning
an Arabic Dialect intended for non-Arabic speak-
ers. Furthermore, sometimes spoken language has
been recorded and transcribed. However, owing
to the advent of the internet and its rapid growth
among Arabic speaking populations, written ma-
terials in DA are now more accessible and easy
to obtain than they were in the past. These writ-
ten materials are typically informal written con-
versations among participant or traditional folk lit-
erature like short stories, poems, prose, thoughts
and song. These texts can be found in online fo-
rums, blogs, and postings on social media net-
works. All of the our dialectal corpora consist of
sources of various genres, collected from both on-
line and print materials in order to cover many of
the aspects of these dialects. Each of the YE.TZ,
SA.NJ, IR.BG, JOR corpora has 30K words, while
the YE.SN has 32K words, SY.DM has 35k words
and MA.RB has 20k words. It should be noted
that the data collected from the internet was writ-
ten in Arabic characters, using “spontaneous” or-
thography since there are no orthographic stan-
dards for DA. The Roman alphabet sentence were
transcribed from the textbooks into the Arabic al-
phabet using CODA. All examples presented in
the rest of this section are in CODA except where
specified otherwise.

4.1 Taizi Corpus (YE.TZ)

Sources The YE.TZ written data was collected
manually from different resources such as forums,
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blogs, and social media networks. With reference
to spoken data, half of the oral interviews were
recorded and transcribed manually by the annota-
tors, the remaining oral interview transcripts are
taken from the Semitisches Tonarchiv (Section 2).
The data includes wise anecdotes, proverbs, sto-
ries, poems, songs and dialogues.

Phonology and Orthography A distinguishing
feature of YE.TZ is that MSA h. j /Ã/ is pro-
nounced as /g/, e.g., ÉÔg. jml ‘camel’ /gamal/, and
that MSA �� q /q/ retains its pronunciation. In that
regard, CODA spellings were straightforward.

Morphology Similar to a number of other di-
alects but unlike MSA, negation is expressed as
an enclitic �� $ ‘not’, e.g., ��Ê 	gYK
 ydxl+$ ‘he does
not enter’. The vocative particle is expressed as
the proclitics AK
 yA ‘Oh’ and @ð wA ‘Oh’, or as an
the enclitic è @ Ah as in èA ��Ó



@ AmAh ‘my mother’. The

verbal proclitic A�̄ qA ‘already’, which corresponds
to MSA Y�̄ qd, frequently appears with past verbs,
e.g., A 	JÊÔ« A�̄ qA EmlnA ‘we have already done that’.

Lexicon There are many open-class words that
make YE.TZ different from MSA and other di-
alects, e.g., �èñ�̄ 	P zqwp ‘shrewd’, 	á» 	P zkn ‘order’,
and ¨@Q�̄ qrAE ‘breakfast’. Some words have MSA
meanings that differ from YE.TZ, e.g., É �� $l ‘take’
and

��	QK. bz ‘take’. YE.TZ has a number of loan-
words from English that underwent Arabization,
e.g., �èPAm.�� sjArp ‘cigarette’, and ú
Î

�J» ktly ‘kettle’.

4.2 Sanaani Corpus (YE.SN)
Sources The social texts were taken from
a Sanaani Radio Station program called
�èYª�Óð Yª�Ó msEd wmsEdp, which addressed
social issues and problems of the community.
The oral interview transcripts were taken from
the Semitisches Tonarchiv (Section 2). The
interviews describe daily life, history and lifestyle
in Sanaa. Folktales describing traditional stories
handed down in Sanaa are taken from internet
forums. Collections of wisdom sayings and tales
of the famous wise man of Yemen “Ali walad
Zaid” are taken from internet websites. Other
texts were taken from social media, and include
political events in Yemen, Sanaani jokes, religious
sermons and transcripts that discuss the Sanaani
dialect in MSA.

Phonology and Orthography MSA �� q /q/ is
pronounced /g/ in YE.SN, including in religious

contexts. For example, the word QÔ�̄ qmr ‘moon’ is
pronounced /gamar/. This variation is not unique
to YE.SN and other dialects such as IR.BG and
JOR have it as well. This /g/ is often sponta-
neously spelled as �� q, which is consistent with
CODA guidelines. A particularly marking phe-
nomenon in YE.SN is the devoicing and empha-
sis of some instances of word-medial /d/, e.g.,
�èðY 	« gdwp ‘tomorrow’ is pronounced /GutQwa/
and as a result may be written spontaneously as
�èñ¢ 	« gTwp.

Morphology As shown in Table 1, there are four
future particles in YE.SN: +¨ E+, Y« Ed, + �� $+,
+ø
 y+. While +¨ E+ may be used with 1st, 2nd, or
3rd person conjugated verb, the rest are only used
with 1st person singular conjugated verbs.

Lexicon YE.SN has some distinguishing closed
class words, such as prepositions ù 	®�̄ qfY ‘behind’
and �� �� $q ‘next’, and numbers like �HA�J� stAt ‘six’,
and ��ª¢ë hTE$ ‘eleven’. There are also some
Turkish loanwords, e.g., ú


	GA� sAny ‘direct’ and
½K
Q» kryk ‘shovel’.

4.3 Najdi Corpus (SA.NJ)

Sources The SA.NJ corpus was collected from
different sources that represent different genres:
forums, poetry, jokes and tweets. We collected dif-
ferent posts from the Saudi web forum eqla3.
com, including personal narratives (mainly sar-
castic) and discussions. We also collected Na-
jdi poems from the late twentieth century, mainly
written by the contemporary Najdi poets Khalid
AlFaisal, Mohammed bin Ahmed AlSudairy and
Saad Bin Jadlan. We manually collected Najdi
jokes from various online resources. And finally,
on Twitter, we searched for distinctive Najdi key-
words such as A 	Jk HnA ‘we’, �é ��ðQ�̄ qrw$p ‘incon-
venience’, and I. �
 	JÓ mnyb ‘I’m not’.

Phonology and Orthography As Table 1
shows, there are a number of phonological alter-
nations in SA.NJ. The /dz/ variant of �� q /q/ and
/ts/ variants of ¼ k /k/ are rather restricted in their
usage. And unlike MSA, SA.NJ shows no distinc-
tion between the pronunciation of MSA etymolog-
ical 	� /dQ/ and 	  /DQ/. These phenomena affect
spontaneous orthography and had to be addressed
in the CODA annotations.

Morphology One marking morphological fea-
ture of SA.NJ (and other Gulf Arabic dialects) is
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the use of negation circumfix H. + . . + AÓ mA+ .. +b,
as in I. �
 	KAÓ mAnyb ‘I am not’ (spontaneously, often
written as I. �
 	JÓ mnyb). Similar constructions ex-
ist in other dialects but are more productive, e.g.
Egyptian ��+ . . + AÓ mA+ .. +$ negates verbs in
addition to pronouns. Unlike most DA and like
MSA, SA.NJ retains some tanween (nunation).
For example: ½Ë É� K
A�̄ A 	K



@>nA qAylK lk /Pana ga:ylin

lak/ ‘I said (active participle) to you’. However, as
in MSA, the nunation is rarely written. Some mor-
phological phenomena are becoming very rare,
e.g., the use of ��� ts for 2nd person singular
feminine pronominal enclitic is dying out among
younger people and merging with the masculine
form ¼ k.

Lexicon SA.NJ has some distinguishing words
such as �	m�'.



@ >bxS ‘more expert’, ñ 	®» kfw ‘good’,

and Pñ 	̄ @X dAfwr ‘nerd’ There are many borrowed
words from English compared to borrowings from
Turkish or Persian. For instance, the verb ÕÎ 	®K
 yflm
is borrowed form English ‘film’ and means ‘to act
dramatically’.

4.4 Jordanian Corpus (JOR)
Sources The corpus includes written as well as
spoken data. The written materials were drawn
from internet sources, such as, forums, blogs, and
social media. They include informal conversations
among participant or traditional folk literature like
short stories, poems, prose, memoirs, and songs.
As for spoken data, oral interviews and observa-
tions were recorded and transcribed by the anno-
tators. Nearly 20 informants were interviewed by
the researchers. Older as well as uneducated peo-
ple are included in order to ensure the authenticity
of the data. The JOR data included a mix of sub-
dialects that reflect the multiplicity of DA forms,
including markedly Palestinian as well as Jorda-
nian variants. For this reason, we refer to this cor-
pus simply as JOR.

Phonology and Orthography In some JOR
sub-dialects, as with IR.BG, MSA ¼ k is affricated
to /Ù/, e.g., I. Ê¿ klb /Ùalb/ ‘dog’. �� q also realizes
in two forms as /g/ and /P/. Some of these phe-
nomena results in different spontaneous spellings
that are then normalized during annotation.

Morphology JOR’s 2nd person feminine singu-
lar pronominal clitic has two alternations depend-
ing on the sub-dialect: ú
» ky /ki/ and ¼ k /ik/.
Examples include ú
¾

�J 	® �� $ftky or ½�J 	® �� $ftk ‘I saw

you’; however when following a vowel, both be-
come ú
» ky /ki/, e.g. ú
»ñ 	̄ A �� $Afwky ‘they saw you’.
Negation is marked with the enclitic �� $ ; such as,

���
ñ�AK. bAswy$ ‘I do not do’.

Lexicon Some JOR words are from Syriac, e.g.,
H. ñ �� $wb ‘hot’, and Q�
ºK. bkyr ‘early in the morn-
ing’. Other words are borrowed from Turkish, e.g.,
ø
 Q 	«X dgry ‘straightforward’ and 	áK
 	QK. @PX drAbzyn
‘ladder’. Some words that were borrowed from
English underwent some morpho-phonological
changes. For example, PðYK
Pñ» kwrydwr ‘corri-
dor’, �IÓQ 	̄ frmt ‘format’, and ½ÊK. blk ‘to block
somebody’.

4.5 Syrian Corpus (SY.DM)

Sources The written data was collected manu-
ally from different online written resources such as
forums, blogs, and social media networks. Among
the data, there were anecdotes, proverbs, stories,
some poems, songs and dialogues.

Phonology and Orthography SY.DM has a
glottal stop phoneme /P/ that is a cognate with ei-
ther MSA Hamza ( 
ð 
ø



@ @
 Z & } > < ’) or MSA

Qaf �� q. In most spontaneous SY.DM orthogra-
phy, the two forms are distinguished in a manner
similar to CODA guidelines. A few exceptions
include the word



Cë hl> ‘now’ which in CODA

is written as ��Êë hlq highlighting its etymological
link to �I�̄ñËAë hAlwqt ‘this time’. Less common
spelling variations include the devoicing of h. j /Z/
to /S/, which may be reflected in spontaneous or-
thography, e.g., ©Ò�Jm.�

	' njtmE /niZtmiQ/ ‘we meet’
may appear as ©Ò�J ��	� n$tmE /niStmiQ/.

Morphology A distinction of SY.DM (and
North Levantine) compared to South Levantine
and a number of other dialects is the absence of
the negation enclitic �� $. SY.DM makes use of a
number of future particles in free distribution (See
Table 1). The progressive particle Ñ« Em can only
be used to indicate active progression at the mo-
ment, while the progressive proclitic +H. b+ has a
wider range from habitual to progressive.

Lexicon As with JOR, some SY.DM words
were originally Syriac, e.g., H. ñ �� $wb ‘hot’, or
ú


	G @QK. brAny ‘outer’. Other words are borrowed from
Turkish, e.g., ø
 Q 	«X dgry ‘straightforward’. Some
words encountered major semantic shifts, e.g.,
	Q£ Tz comes from Turkish tuz ‘salt’, then shifting
to mean ‘something unimportant’, and eventually
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‘good riddance’. Other words were found to be
borrowed from French, e.g., PñºK
X dykwr ‘decor’
and ñ�KAg. gAtw ‘gateaux’, and from Persian like
ø
 Qå�Qå� srsry ‘bad man’. Markedly SY.DM expres-
sions include ��ñK. Qk Hrbwq /èarbu:P/ ‘shrewd’.

4.6 Iraqi corpus (IR.BG)
Sources The materials of the IR.BG corpus were
obtained from social media websites, blogs and
other online sources. The sources contain posts
on political, social, and religious issues that touch
upon the daily life of the Iraqi people. The sources
include blogs, e.g., different sarcastic posts with
a witty sense of humor gathered from the Iraqi
blog ú


�̄ @QªË@ ��Ê �� $l$ AlErAqy, and short essays with
commentary and views that sharply criticize loss
in traditional values and morals in the Iraqi soci-
ety after 2003. Proverbs, common sayings, and fa-
mous expressions were also collected from online
blogs and forums.

Phonology and Orthography Some instances
of MSA ¼ k appear as /tS/ in IR.BG, e.g., �I	KA¿ kAnt
‘she was’ /tSa:nat/. Some of these cases appear in
spontaneous orthography as ���� t$ or even h� J/h. j
(mostly due to Persian spelling influences). Some
instances of MSA /q/ are pronounced as /g/, e.g.,
��ñ 	̄ fwq ‘above’ /fo:g/. Some of these cases appear

in spontaneous orthography as À G or ¼ k, also
due to Persian influences.

Morphology A strong marker of IR.BG is the
progressive proctlitc +X d+, e.g., ? ��ñ���Y �� $dtswq?
‘what are you driving?’. IR.BG also has three fu-
ture particles: h@P rAH, hP rH, and +h H+, which
seem to be in free variation.

Lexicon The IR.BG lexicon has some distin-
guishing words such as pñ£



@ >Twx ‘little darker’,

and ú

	G
�
@ |ny ‘I’. IR.BG has many loanwords from

Kurdish, Persian, and Russian, e.g., Kurdish
é» A¿ kAkh ‘mister’, Persian 	̈ @Y 	J�̄ qndAg ‘very
weak tea or hot water and sugar’, and Russian
	àA¾�J�@
 <stkAn ‘a spindle-shaped tea cup’.

4.7 Moroccan Corpus (MA.RB)
Sources The corpus includes comments from
the Moroccan news website hespress.com
that have to do with sports, cinema, and educa-
tion policy. The materials from forums include ad-
vice on social, religious, and economic issues. The
oral interviews are transcriptions of people telling
stories, most of which are events from their lives.

The folktales come from a Moroccan website that
reprinted stories originally published in an ency-
clopedia of traditional Moroccan folktales. The
textbook examples include many basic greetings
and expressions, as well as sample dialogues. The
blog posts range in topic, but include relationship
advice, recipes, and philosophical musings. The
humor includes both short and long jokes from a
few Facebook pages and one other website.

Phonology and Orthography Most MA.RB
consonants are pronounced like their MSA equiva-
lents; however, there are exceptions: dental conso-
nants in MSA have become alveolar, so MSA �H v
/T/, 	X * /D/, and 	  Z /DQ/, are pronounced /t/, /d/,
and /dQ/, respectively in MA.RB. Such issues nat-
urally interact with spontaneous orthography and
are annotated as per CODA guidelines.

Morphology Among the set of dialects dis-
cussed here, MA.RB has the most distinct set of
morphological features, such as its future, progres-
sive and possessive particles (see Table 1). Like
other North African dialects, and unlike MSA,
MA.RB uses the prefix + 	à n+ for imperfect first
person singular, and distinguishes first person plu-
ral by adding the plural suffix @ð+ +wA. Interest-
ingly the imperfect first person singular in MA.RB
looks like the imperfect first person plural in MSA
and numerous other dialects. Finally, the perfect
second person singular masculine and feminine
both use the suffix ú


�G ty, which corresponds to the
feminine suffix in other DA.

Lexicon MA.RB has a number of loanwords
from Berber, French and Spanish; and many
speakers code-switch between Moroccan and
French or Spanish. Examples include French
h. AÓPñ 	̄ fwrmAj ‘cheese’, and ÉK. A�KPñK. bwrtAbl ‘mo-
bile phone’; and Spanish �é 	K AÖÞ� smAnp ‘week’, and
PñK. AK. bAbwr ‘ship’.

5 Annotation Process

Process Overview To create new morphologi-
cal annotated corpora, we follow (AlShargi et al.,
2016)’s basic approach: we utilize the DIWAN
tool (Alshargi and Rambow, 2015) to build and
annotate the seven DA corpora discussed above.
The project team consists of:

1. a project manager,

2. dialect leads for each dialect, and
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Gloss to him and I will not go / and not going this letter I will write

M
SA

Ortho éJ
Ë @
 I. ë 	X


@ 	áËð �éËA�QË@ è 	Yë I. �J»



A�

Lemma <ilaY *ahab lan risAlap h‘*A katab
Morph <lY +h A+ *hb +φ w+ ln Al+ rsAl +p h*h s+>+ ktb +φ
Prefix - IV1S CONJ DET - FUT PART+IV1S
Stem PREP IV NEG PART NOUN DEM PRON FS IV
Suffix PRON 3MS IVSUFF MOOD:S - NSUFF FEM SG - IVSUFF MOOD:I

+CASE DEF ACC

Y
E

.T
Z

Raw ñË ��kQå� �� AÓð H. @ñm.Ì'@ è 	X


@ I. �Jº ��

CODA éË ��kQå�A �� AÓð H. @ñm.Ì'@ è 	X @ I. �J» A ��
Lemma li saraH mA jawAb Aa*ah katab
Morph l +h $+A+ srH +φ+$ w+ mA Al+ jwAb A*h $+A+ ktb +φ
Prefix - FUT PART+IV1S CONJ DET - FUT PART+IV1S
Stem PREP IV NEG PART NOUN DEM PRON MS IV
Suffix PRON 3MS IVSUFF SUBJ:1S+NEG PART - - - IVSUFF SUBJ:1S

Y
E

.S
N

Raw éË ��Q�
� �� AÓð �éËA�QË@ éJ
�K I. �J»Y«
CODA éË ��Q�
�A �� AÓð �éËA�QË@ éJ
�K I. �J» @ Y«
Lemma li sAr mA risAlap tayh katab
Morph l +h $+A+ syr +φ+$ w+ mA Al+ rsAl +p tyh Ed#+A+ ktb +φ
Prefix - FUT PART+IV1S CONJ DET - FUT PART#+IV1S
Stem PREP IV NEG PART NOUN DEM PRON FS IV
Suffix PRON 3MS IVSUFF SUBJ:1S+NEG PART - NSUFF FEM SG - IVSUFF SUBJ:1S

SA
.N

J

Raw éË l�'
 @P I. �
 	JÓð éËA�QËAë I. �JºK.
CODA éË l�'
 @P I. �
 	K AÓð �éËA�QËAë I. �J» AK.
Lemma li rAyH AnA risAlap katab
Morph l +h rAyH w+m+ Any +b h+Al+ rsAl +p b+A+ ktb+φ
Prefix - - CONJ+NEG PART DEM PART+DET FUT PART+IV1S
Stem PREP ADJ PRON 1S NOUN IV
Suffix PRON 3MS - NEG PART NSUFF FEM SG IVSUFF SUBJ:1S

JO
R

Raw éJ
Ë l�'
 @P A 	JÓð �éËA�QË@ ø

	XAë I. �J» hP

CODA éJ
Ë l�'
 @P A 	JÓð �éËA�QË@ ø

	XAë I. �J» @ hP

Lemma li rAH mnA risAlap hA*iy katab raH
Morph l +h rAyH w+ mnA Al+ rsAlp hA*y A+ ktb +φ rH
Prefix - - CONJ DET - IV1S -
Stem PREP ADJ NEG PART NOUN DEM PRON FS IV FUT PART
Suffix PRON 3MS - NSUFF FEM SG - IVSUFF SUBJ:1S -

SY
.D

M

Raw ðY	JªË hðP hP AÓð �éËA�QËAë I. �J»


@ hP

CODA èY 	JªË hðP@ hP AÓð �éËA�QËAë I. �J» @ hP
Lemma Eind rAH raH mA risAlap katab raH
Morph l+ End +h A+ rwH +φ rH w+ mA h+Al+ rsAl +p A+ ktb +φ rH
Prefix PREP IV1S - CONJ DEM PART+DET IV1S -
Stem NOUN IV FUT PART NEG PART NOUN IV FUT PART
Suffix POSS PRON 3MS IVSUFF SUBJ:1S - - NSUFF FEM SG IVSUFF SUBJ:1S -

IR
.B

G

Raw éË hðP@ AÓð �éËA�QË@ ø
 Aë I. �J» hP
CODA éË hðP@ AÓð �éËA�QË@ ø
 Aë I. �J» @ hP
Lemma li rAH mA risAlap hAy katab raH
Morph l +h A+ rwH +φ w+ mA Al+ rsAlp hAy A+ ktb +φ rH
Prefix - IV1S CONJ DET - IV1S -
Stem PREP IV NEG PART NOUN DEM PRON FS IV FUT PART
S
¯
uffix PRON 3MS IVSUFF SUBJ:1S - NSUFF FEM SG - IVSUFF SUBJ:1S -

M
A

.R
B

Raw éJ
Ë ú
æ
��Ö 	ß ���
XA 	« AÓð éËA�QË@ XAë I. �Jº	K ø
 XA 	«

CODA éJ
Ë ú
æ
��Ö 	ß ���
XA 	« AÓð �éËA�QË@ XAë I. �Jº	K ø
 XA 	«

Lemma li m$aY gAdy mA risAlap hAd ktab gAdy
Morph l +h n+ m$y +φ gAdy +$ w+ mA Al+ rsAlp hAd n+ ktb +φ gAdy
Prefix - IV1S - CONJ DET - IV1S -
Stem PREP IV FUT PART NEG PART NOUN DEM PRON FS IV FUT PART
Suffix PRON 3MS IVSUFF SUBJ:1S NEG PART - NSUFF FEM SG - IVSUFF SUBJ:1S -

Table 2: An annotation example from DIWAN for Modern Standard Arabic, Taizi, Sanaani, Najdi, Jordanian,
Syrian, Iraqi and Moroccan Arabic dialects. All the sentences have the same meaning: ‘I will write this letter and
not go to him’. The table is presented in a right-to-left direction. Raw represents a spontaneous word spelling.
CODA represents the conventional orthography we use. Lemma shows the diacritized lemma form; this is the only
line where we show diacritics. Morph represent the sequence of prefixes, the stem, and the sequence of suffixes.
Prefix, Stem, and Suffix show the part of speech tags for the components of the word shown in the Morph line.
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Error Type Dialects Word gloss Error Correction

Null Subject
SA.NJ QÓ

�
@ |mr order +|mr/CV+ +|mr/CV+(null)/CVSUFF SUBJ:2MS

YE.TZ ½m�'. A�


@ >SAbHk fight >/IV1S+SAbH/IV+k/IVSUFF DO:2MS>/IV1S+SAbH/IV

+(null)/IVSUFF SUBJ:1S
+k/IVSUFF DO:2MS

Ta-Marbuta SY.DM ú

�æJ.ªk. jEbty pouch +jEb/NOUN+p/NSUFF FEM SG

+y/POSS PRON 1S
+jEb/NOUN+t/NSUFF FEM SG
+y/POSS PRON 1S

Case SY.DM 	­�®�ËAK. bAlsqf roof b/PREP+Al/DET+sqf/NOUN
+(null)/CASE DEF GEN

b/PREP+Al/DET+sqf/NOUN+

Table 3: Examples of annotation errors found during error analysis: null morphemes should be added; ta-marbuta
is a common source of errors; case should never be annotated for the dialects

Collect Dialect Text

MADAMIRA

AnnotationDIWAN Error Correction MADIWAN file MAgold file

Figure 1: Steps to creating a new annotated corpus for a dialect

3. annotators.

The dialect leads verify the annotators’ work,
and the project manager organizes and monitors
the flow of the progress of everyone using the tool
in the project.

Annotation Steps First, the dialect leads collect
the corpus text from different resources like so-
cial media, forms, websites, etc. The next step is
to develop dialect-specific annotation guidelines,
including the CODA specification for normalized
orthography. The dialect leads then train the an-
notators before annotation starts. The leads follow
the annotator’s work. The annotations are not ap-
proved until the dialect leads check them. Wrong
annotations are sent back to the annotator for cor-
rection. After the first round of annotation is done,
we perform a second round of error checking, us-
ing both manual inspection and scripts that check
for coherent annotations. The result is a DIWAN
file which includes the correct annotation for the
entire corpus. In the last step, we automatically re-
format the annotations into a format which is best
suited for computational purposes; we perform a
third round of error checking for format errors,
which we fix automatically. Figure 1 shows these
steps.

Morphological Features Annotated The DI-
WAN interface assists human annotators in anno-

tating each token with morphological and seman-
tic information, including the following fields:

• The CODA spelling of the raw token.

• The lemma, or the citation form, of the token.

• The morphemes of the word (prefixes, stem,
suffixes) and their part-of-speech (POS). The
stem is marked by the symbol # on either
side.

• The English gloss of the word.

• Features indicating proclitics and enclitics.

• Features indicating word POS, functional
number and gender (Alkuhlani and Habash,
2011), and aspect.

The annotation for one sentence in different di-
alects is shown in Table 2. This is not actually
a sentence from our corpora, of course; we have
chosen it to illustrate the annotation.

Error Correction Linguistic annotation is car-
ried out manually. In order to guarantee high lev-
els of accuracy and precision, we performed ex-
tensive error checking and correction. After an-
notating the seven different corpora, the anno-
tated words were compiled in the form of linguis-
tic codes in either one file or separate files to be
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checked and corrected by a second reviewer. This
form of error checking cannot of course identify
annotation errors in context (for example, a noun
is misidentified as a verb); instead, this approach
is efficient at finding impossible annotations. Ex-
amining the data demonstrated that the most chal-
lenging part for the annotators was the suffixes
part, especially when there are long and compli-
cated words. Some examples indicating the errors
are listed below in Table 3.

Distribution of Resources All created re-
sources will be freely available for research pur-
poses from Columbia (http://innovation.
columbia.edu).

6 Conclusion and Future Work

We presented a collection of morphologically an-
notated corpora for seven Arabic dialects, col-
lectively covering over 200,000 words. All cor-
pora were manually annotated in a common set
of standards for orthography, diacritized lem-
mas, tokenization, morphological units and En-
glish glosses. These corpora will be publicly avail-
able to serve as benchmarks for training and eval-
uating systems for Arabic dialect morphological
analysis and disambiguation.

In future work, we will use these resources to
train morphological taggers as described in (Es-
kander et al., 2016). We also plan to extend the
collection of dialect to include additional less stud-
ied varieties following the lead of efforts such as
Bouamor et al. (2018). We also plan to expand to-
wards different historical and literature based va-
rieties of Arabic.
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Abstract

To compile a modern dictionary that cata-
logues the words in currency, and to study
linguistic patterns in the contemporary lan-
guage, it is necessary to have a corpus of au-
thentic texts that reflect current usage of the
language. Although there are numerous Ara-
bic corpora, none claims to be representative
of the language in terms of the combination
of geographical region, genre, subject matter,
mode, and medium. This paper describes a
100-million-word corpus that takes the British
National Corpus (BNC) as a model. The aim
of the corpus is to be balanced, annotated,
comprehensive, and representative of contem-
porary Arabic as written and spoken in Arab
countries today. It will be different from most
others in not being heavily-dominated by the
news or in mixing the classical with the mod-
ern. In this paper is an outline of the methodol-
ogy adopted for the design, construction, and
annotation of this corpus. DIWAN (Al-Shargi
and Rambow, 2015) was used to annotate a
one-million-word snapshot of the corpus. DI-
WAN is a dialectal word annotation tool, but
we upgraded it by adding a new tag-set that is
based on traditional Arabic grammar and by
adding the roots and morphological patterns
of nouns and verbs. Moreover, the corpus we
constructed covers the major spoken varieties
of Arabic.

1 Introduction

A collection of texts in machine-readable format
is called a corpus. The creation of a corpus is
often motivated by interest in linguistic phenom-
ena. Therefore, the design and creation of a corpus
is always linked to purpose of usage. Thousands
of corpora have been created and many are freely
available. These corpora vary in size, type, format,
usage, and purpose of creation. They are usually
annotated with morphological, syntactic, seman-
tic, discoursal, or prosodic information. Individ-
ual texts in a corpus often have meta-data in the

header that give information about such attributes
as genre of the text, author, source, date and coun-
try of publication, etc. (Baker et al., 2006).

Building a balanced and representative corpus
remains an ideal goal for corpus creators. A bal-
anced corpus includes a wide range of texts from
the different genres and domains that the corpus
claims to depict. Sometimes, this type of corpus
is referred to as a reference, general, or core cor-
pus. Similarly, a corpus is claimed to be represen-
tative if it contains the major linguistic variation
in the concerned language. Although it is not an
easy task to achieve balanceness and representive-
ness in a corpus, it can be done with a level of ap-
proximation and scalability (McEnery and Hardie,
2012; Baker et al., 2006).

The web provides a massive collection of texts
which is growing rapidly. Constructing corpora
by harvesting web pages is usually referred to as
web-crawling. The web is an excellent informa-
tion source with large amounts of data which one
can select, organize, and compile into corpora of
all types (McEnery and Hardie, 2012). Since the
late 1980s, Arabic corpora have been constructed.
However, not many of them are freely available as
open-source. Most are for written Modern Stan-
dard Arabic (MSA). Morphosyntactically anno-
tated Arabic corpora are very rare and not freely
available to researchers.

This paper reports on the construction and anno-
tation of a comprehensive 100-million-word cor-
pus of contemporary Arabic. The purpose is to
provide an open-source corpus of contemporary
Arabic which is balanced, representative of the
language, and comparable to the internationally
recognized British National Corpus. The text of
the corpus was selected from a wide range of
genres, domains, and types. It consists of 83%
written language and 17% spoken language. The
texts of the corpus were collected primarily from
text materials available online but also from the
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transcripts of purpose-made recordings (see Sec-
tion 3). The corpus was automatically annotated
both morphologically and syntactically. A sam-
ple of one million words was manually and semi-
manually verified; it was additionally annotated
for sentiment and glossed in English. To accom-
plish this annotation, we used DIWAN (Al-Shargi
and Rambow, 2015) but had to specifically de-
velop for it morphological and syntactic annota-
tion schemes on the basis of the long-established
Arabic linguistic tradition (see Section 5). We also
added new features to the DIWAN annotation tool
to facilitate our semi-manual annotation process
(see Section 6).

2 Literature Review

Arabic corpora vary in size, type, purpose, de-
sign, text type, etc. (Al-Sulaiti and Atwell, 2006).
Zaghouani, 2017 surveyed freely available Arabic
corpora and classified 66 of them into six main
categories, namely (i) raw text corpora, (ii) anno-
tated corpora, (iii) lexicons, (iv) speech corpora,
(v) handwriting recognition corpora and (vi) mis-
cellaneous corpora.

The Corpus of Contemporary Arabic (Al-Sulaiti
and Atwell, 2006) was the first freely available
Arabic corpus. Around one million words were
collected from newspapers and magazines. Since
then, most monolingual Arabic corpora have been
constructed by collecting texts from news sources
(i.e. newspaper articles). Examples of such
corpora are: the Open Source Arabic Corpora
(OSAC) which contain around 18 million words
of written MSA and Classical Arabic (CA) texts
(Saad and Ashour, 2010); Akhbar Al Khaleej 2004
Corpus consists of 3 million words of newspa-
per texts (Abbas and Smaı̈li, 2005); Al-Watan
2004 Corpus contains 10 million words of news-
paper texts as well (Abbas et al., 2011); KACST
Arabic Corpus includes more than 700 million
words collected from 10 text source types such as
newspapers, magazines, books, old manuscripts,
university theses, refereed periodicals, websites,
curricula, news agencies, and official prints (Al-
Thubaity, 2015). There is also the International
Corpus of Arabic (ICA) which was constructed
by Bibliotheca Alexandrina and it contains 100
million words that were collected from the press,
net articles, books, and academic text sources
(Alansary and Nagi, 2014). The ArabiCorpus at
Brigham Young University is one of the most pop-

ular web-based corpora. It consists of around 174
million words, 77% of which is from newspa-
pers. It does, however, include around 9 million
words of premodern literature, 1 million words of
modern literature, 28 million words of non-fiction,
and a token of colloquial Egyptian (0.164 million
words).

The King Saud University Corpus of Classical
Arabic (KSUCCA) consists of around 50 million
words (Alrabia et al., 2014). The corpus includes
texts of six genres, namely religion, linguistics, lit-
erature, science, sociology, and biography. The
arTenTen corpus used web crawlers to automati-
cally harvest 5.8 billion words from Arabic web-
sites (Belinkov et al., 2013). Its purpose was lin-
guistic and lexicographic in nature. It was auto-
matically annotated using MADAMIRA and it is
available on Sketch Engine.

The Historical Arabic Corpus (HAC) has 45
million words that were organized into primary
and secondary resources, seven genres, and 100-
year eras in the Gregorian calendar. Its intended
purpose is historical semantics and etymological
lexicography (Ismail et al., 2014).

Two specialized Arabic corpora use the Quran
as a source of their textual content; hence, each
consists of the same number of words in the
Quran, 77430 words. The Quranic Arabic Cor-
pus is morphologically and syntactically anno-
tated. Its annotation was done automatically and
verified collaboratively by the wider community
(Dukes et al., 2013). The second corpus is the
Boundary Annotated Quran Corpus. It is anno-
tated with prosodic information and phrase bound-
aries (Brierley et al., 2012; Sawalha et al., 2012).
It took advantage of boundary markups that flag
starts and stops in the Quran (Sawalha et al., 2014;
Brierley et al., 2016). Interest in dialectal Arabic
corpora has recently surged. An example of such
corpora is the Curras Palestinian Arabic corpus, a
corpus of more than 56K tokens, which are anno-
tated with morphological and lexical features (Jar-
rar et al., 2017). There are Arabic corpora that are
only available for a fee, such as the Linguistic Data
Consortium’s1 The Penn Arabic Treebank2 and the
European Language Resources Association’s3 An-
Nahar Newspaper Text Corpus4.

1https://www.ldc.upenn.edu/
2https://catalog.ldc.upenn.edu/LDC2016T02
3http://catalogue.elra.info/en-us/
4catalogue.elra.info/en-us/repository/browse/ELRA-

W0027/
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This brief review, which is based on a more ex-
tensive survey of the literature, points to the ab-
sence of resources that make the claim that they
represent in a comprehensive manner the Arabic
of today as written and spoken by contemporary
native speakers. There is a great need for a cor-
pus of modern Arabic as used by present-day na-
tive speakers of the language. The corpus must be
truly representative of the language that the cur-
rent inhabitants of the Arab World use, regardless
of whether it is of the high or low variety. It must
also be balanced in its representation of the written
and spoken language, and of the various discourse
genres. It must truly depict the language of the
curricula and academia.

3 Methodology

To ensure that this corpus of modern Arabic is
representative, balanced, comprehensive, and for
general purposes, we followed the model of the
British National Corpus (BNC)5. That is why this
corpus contains slightly more than 100-million
words of the same text types, domains, and gen-
res. The corpus contains 87% of texts from writ-
ten sources and 13% of transcribed spoken lan-
guage. The written part includes texts from Ap-
plied Sciences, Arts, Belief and Thought, Com-
merce and Finance, Imaginative works, Leisure,
Natural and Pure Sciences, Social Sciences, and
World Affairs. The spoken subcorpus includes
transcripts of Spontaneous Conversations (4.2%)
and Context-Governed Spoken Language (6.2%)
from the categories of Educational/Informative,
Business, Public/Institutional, and Leisure. Tables
1 and 2 show the text categories of the corpus of
the written and spoken subcorpora respectively.

Twenty million words of the category of World
Affairs were selected from newspapers published
in 20 Arab countries where around one mil-
lion words were collected for each country from
one or two newspapers published in that coun-
try. The different genres of newspaper articles in-
clude Politics; Arts and Culture; Economics; Lo-
cal News; Opinions; Regional and International
News; Sports; and Others (e.g., Weather Fore-
casts, News about Technology, Health, Tourism,
etc.). The subcategory of Social Sciences includes
around 14 million words of texts from books and
online sources. It contains texts of the genres:
Languages and Linguistics; Modern Arabic Dic-

5http://www.natcorp.ox.ac.uk/

tionaries; Philosophy; Islamic Studies and Quran
Interpretation; History; Geography; Anthropology
and Sociology; Law; Education; Food and Nutri-
tion; Travel; Lectures; Sports; etc. The subcate-
gory of Belief and Thought consists of about three
million words of texts of sacred books such as: the
Quran; Quran Interpretation; the Hadith including
Hadith Qudsi; the Old Testament; the New Testa-
ment; Dictionary of the Bible; and Interpretations
of the Testaments, etc.

More than seven million words were collected
from online sources to fill the subcategory of Com-
merce and Finance. These articles belong to a va-
riety of topics within the commerce and finance
genre. They include Accounting; Taxes; Invest-
ment; Finance; Financial Legal Issues; Inventory;
Currency, etc. The subcategory of Imaginative
Language consists of 16 million words. The texts
were collected from written sources that include;
stories; novels; poetry; plays; translations of in-
ternational stories and novels. The subcategory
of Leisure consists of 12 million words which in-
clude articles on topics such as Animals; Cars;
Technology; Health; Women; Tourism; Cooking
Recipes; How to; Arabian Cities; Jordanian Sto-
ries and Traditions; and Fitness. The subcategory
of Arts was collected from web sources and com-
prises around seven million words. The texts of
this category contain articles on Arts; Digital Pho-
tography; Film and Video Production; Printing;
Area Planning and Landscaping; Sculpture; Ce-
ramics and Metals; Computer Graphic Arts; Enter-
tainment and Performance; Cinema and Theater;
Photography; Music; Architecture; Fine Arts;
Decorative Arts; International Arts; Arabic Callig-
raphy, etc. Around seven million words were col-
lected from books and web resources for the cate-
gory of Applied Sciences. The topics included in
this category are Medicine; Engineering; Informa-
tion Technology; Energy, etc. Finally, the Natural
and Pure Sciences subcorpus consists of around
four million words that come from Mathematics,
Physics, Chemistry, Biology, etc.

The corpus is designed to have detailed meta-
data about each article. This is valuable knowl-
edge that can be used to guide the search within
the corpus. It can also be used in text classification
and text data mining. Moreover, the corpus and its
metadata constitute an excellent dataset for train-
ing machine learning algorithms on such tasks as
genre identification. The metadata include infor-
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Written Subcategory Words(million) Percentage
Applied Sciences 7 8%
Arts 7 7.50%
Belief and Thought 3 4%
Commerce and Finance 7.2 8.30%
Imaginative 16 18.50%
Leisure 12 14%
Natural and Pure Sciences 3.8 4%
Social Sciences 14 16%
World Affairs 20 20%
Total 90 100 %

Table 1: Text categories of the written subcorpus

mation such as article ID, category, subcategory,
country, author, date, source, and URL. Moreover,
the title and the text of each article are stored in a
traditional relational database and in XML format.
Figure 1 shows a sample article in XML with the
text, title and metadata clearly specified.

A corpus-representative snapshot of one million
words are designated as the corpus gold standard.
This is a sample of words semi-manually anno-
tated and verified. Each word is morphologically
decomposed into its prefixes, stem, suffixes, pro-
clitics, and enclitics. Then, each morpheme is an-
notated with a morphological tag or possibly tags.
The stem is labeled by one morphological tag, and
its root and morphological pattern are specified.
Other morphological attributes, such as the num-
ber and gender of a noun, are indicated as well.
The tag set we used here was informed by tradi-
tional Arabic grammar (see Section 6). Moreover,
each word was annotated for sentiment designa-
tion (i.e., positive, negative, or neutral sentiment).
The annotation process was done using a special-
ized program, DIWAN (Al-Shargi and Rambow,
2015). Twenty annotators with expertise in Arabic
linguistics were trained on the tag set and on the
annotation tool and they were supervised by three
linguists who ensured the accuracy of annotation
and verification.

Figure 1: A stored article with XML markup.

Context-Governed Subcategory Words(million) Percentage
Educational / Informative 1.6 26 %
Business 1.3 21 %
Public/ Institutional 1.7 27 %
Leisure 1.6 26 %
Total 6.2 100 %

Table 2: Categories of the Context-Governed Spoken
Language subcorpus.

4 Copyrights

The texts of the written subcorpus were primar-
ily selected from sources available online. To get
around copyrights, we followed Eckart’s exam-
ple by ’scrambling’ the texts such that the origi-
nal structure of a document would be destroyed.
“This inhibits the reconstruction of the original
documents. With respect to German copyright leg-
islation this approach is considered safe” (Eckart
et al., 2014). We assume this is satisfactory to
copyright laws in most countries around the world.

5 Annotation

To create and annotate the comprehensive corpus
of contemporary Arabic, we followed the princi-
ples presented in (AlShargi et al., 2016). This ap-
proach consists of several main steps. We started
out by deciding on the categories, subcategories,
and sizes in millions of words of the components
of the corpus. To ensure balance, we simply fol-
lowed the BNC proportions. Then we collected
the target textual material from sources similar to
those of the BNC, as well. We added texts from
the social media, forums, and websites according
to the various topical categories (cf. Tables 1, 2.
Then, we modified the DIWAN annotation tool
(Al-Shargi and Rambow, 2015) by adding new an-
notation tags such as root, pattern, and sentiment,
by creating an elaborate CODA, and by develop-
ing a user interface that reflects these modifica-
tions. (See Tables 4, 5, 6 where the new tags we
added appear in bold). After the primary annota-
tion of the entire corpus was run automatically, we
conducted an error detection round to find and cor-
rect annotation errors. (Figure 2 shows the work-
flow).

DIWAN assists human annotators in tagging
each token with the relevant morphological, syn-
tactic, and semantic information. DIWAN has the
following annotation fields: 1) Diac: where the
word to be annotated is shown with diacritics. 2)
Lex: Here the lemma in its citation form appears.
For example, the lemma of AîE. AJ.k@ð wAHbAbhA
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‘and her lovers’ will have the lex I. �
J.k Hbyb
‘lover’ 3) BWhash: In this field, the Buckwalter
rendition of the lemma is split into prefix, stem,
and suffix. The stem is marked by the symbol # on
both sides, 4) Gloss: the English translation of the
lemma appears in this field.

There are features in DIWAN that indicate the
proclitics and enclitics of words. The clitics are
assigned slots: prc3, prc2, prc1, and prc0 for pro-
clitics, and enc0; enc1, and enc2 for enclitics. A
lower index indicates closer proximity to the stem.
Additionally, there are features that mark the part
of speech (POS), functional number and gender
of nouns, and aspect of verbs. Functional number
and gender refer to the function of a word, rather
than its form. For example �èXA�̄ qAdp ‘leaders’ is
functionally masculine and plural, even though it
ends in �è , which is the marker of feminine singu-
lar nouns.

We added three new features to DIWAN, (i)
root which is a base form, for example �ÖÏ lms
to touch is the root of these two words Aî 	Eñ�ÒÊJ
�
sylmswnhA they will touch it and �ÒÊK
 ylms ‘he
touches’, (ii) sentiment which shows the attitude
towards a word as to whether it is negative, posi-
tive, or neutral; for example, the sentiment anno-
tation of the word ’sabba’ in ðYªË@ I. � sb AlEdw
‘he cursed the enemy’ is negative while that of
the word ’ahabba’ in �è



@QÖÏ @ I. k



@ >Hb Almr>p

‘he loved the woman’ is positive and that of 	àAÔ«
EmAn ‘Amman’ is neutral. And (iii) pattern the
morphological mold that the root is formed by;
e.g., the word Qå�� A¿ kAsir breaker is derived by

the mold É«� A 	̄ fAEil doer and the root �Qå��
�
» kasara

he broke . To show the details of the annotation,
we present table 3.

Figure 2: Steps to Creating a Comprehensive Corpus
for Contemporary Arabic

6 Morphology

Morphological annotation of the whole corpus
was automatically performed using MADAMIRA

(Pasha et al., 2014). We isolated a one-million
word snapshot of the corpus for manual verifica-
tion. Twenty-five B.A. students of Arabic at the
University of Jordan carried out the manual ver-
ification and two professors of linguistics super-
vised their work and vetted their annotation. The
annotators used DIWAN (Al-Shargi and Rambow,
2015) to review and verify MADAMIRA’s anal-
ysis. The morphological annotation required (1)
Development of a new tag-set with detailed mor-
phological description. Fourteen new noun-tags
were added to Madamira. These new tags fall into
three groups: i) derived nouns: Active participle,
Passive participle, Exaggeration, Qualificative ad-
jective, Noun of time/place, Noun of Instrument,
and Elative noun; ii) underived nouns: Concrete
noun and Abstract noun; and iii) gerunds: Origi-
nal gerund, Gerund with initial miim, Gerund of
instance, Gerund of state, and Gerund of profes-
sion. (2) Providing the roots of the nouns and
verbs, since such a root conveys the core lexi-
cal meaning of a word. It normally consists of
three consonants, and less frequently of two or
four consonants. The majority of Arabic words
(nouns and verbs) are derived from triliteral roots,
uncommonly from biliteral or quadriliteral roots.
For instance, the consonantal root � . P . X d.r.s
has the basic lexical meaning of studying, from
which these words are derived: �� �P �X darosN ‘les-
son’, � ��P �Y�Ó mudar∼is ‘teacher ’, �é ��@ �PX� diraAsap
‘sutdying’, �é �� �P �Y�Ó madorasap ‘school’, �P�@

�X
daAris ‘student’. In all these derived words, the
consonants d-r-s constitute their root (McCarthy,
John, 1981; Prunet et al., 2000; Davis and Zaway-
deh, 2001). (3) Providing the morphological pat-
tern of each noun and verb. This pattern consti-
tutes a canonical template that consists of a se-
ries of discontinuous consonants including those
of the root, a series of discontinuous vowels, and
a templatic pattern. It carries a schematic meaning
and grammatical information together including
the word’s part of speech. For instance, the mor-
phological pattern C1VVC2VC3 together with the
vowel melody - a - i - represents the active partici-
ple of Form I verbs (Bat-El, 1994, 2001; Ratcliffe,
Robert , 1998; Ussishkin, Adam, 1999, 2005).

7 Spoken vs Written Language

Languages often have a low variety that is used in
everyday communication and a high variety that
is used in formal settings. The spoken language
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Analyze Sentence
Sentence ú
ÍðYË@ 	àñ	KA �®ËAK. PA�Jî �D�B@ ú


	̄ �é»Qå��Ë @ �I	JªÓ@
BW Aldwly bAlqAnwn AlAsthtAr fy Al$rkp <mEnt
gloss international law negligence in company insisted
lex: dawoliy 1 qAnuwn 1 AisotihotAr 1 <imoEn 1
pfx: Al/DET b/PREP+Al/DET Al/DET - Al/DET -
stm: dwl/NOUN RELATIVE qAnwn/NOUN ABSTRACT AsthtAr/NOUN fy/PREP $rk/NOUN >mEn/PV
sfx: (null)/CASE DEF GEN - - p/NSUFF FEM SG t/PVSUFF SUBJ:2FS
gen:, num: m,s m,s m,s - f,s f,s
root ÈðX 	á	��̄ Q��ë none none 	áªÓ
sntmnt neutral positive negative neutral neutral neutral

ptrn �ú
Î�
�ª�	̄ Èñ �«A�	̄ ÈA �ª 	®�J� ��@ none �é

�
Êª�

�	̄ É �ª�	̄ �
@

Sentence �Ik. Q 	̄ Aî�EA �®Êg �IÒºj�J�@ AÒÊ 	̄ �I�̄ A 	�
BW frjt HlqAthA >stHkmt flmA DAqt
gloss opened rings completed when intensified
lex: far∼aj 1 Haloqap 1 AstHkm 1 lam∼A 1 dAq 1
pfx: - - f/SUB CONJ -
stm: frj/PV Hlq/NOUN ABSTRACT AstHkm/PV lmA/ADV DAq/PV
sfx: t/PVSUFF SUBJ:3FS At/NSUFF FEM PL+ t/PVSUFF SUBJ:2FS none , none t/PVSUFF SUBJ:3FS

(null)/CASE DEF GEN+
hA/POSS PRON 3FS

gen:, num: f,s f,p f,s none, none f,s
root h. Q 	̄ ��Êg Õºk none ��J
 	�
sntmnt positive neutral negative neutral negative
ptrn É �ª�	̄ �é

�
Ê �ª�	̄ É �ª �	®��J ��@ none É �ª�	̄

Sentence Õæ
ÊªË@ ©J
Ò�Ë@ ñëð é<Ë @ ÑêºJ
 	®ºJ
� 	̄
BW AlElym AlsmyE whw AllAh fsykfykhm
gloss all-knowing all-hearing he God will suffice
lex: All∼‘h1 <imoEAn 1
pfx: Al/DET Al/DET w/CONJ - f/CON+s/FUT PART+

y/IV3MS
stm: Elym/ADJ INTENS smyE/ADJ INTENS hw/PRON 3MS Allh/NOUN PROP kfy/IV
sfx: - 222 - - k/IVSUFF DO:2MS+

hm/IVSUFF DO:3MP
gen:, num: m,s m,s m,s m,s m,s

root ÕÎ« ©ÖÞ� none éË


@ ù


	®»
sntmnt positive positive neutral positive positive
ptrn ÉJ
ª�

�	̄ ÉJ
ª�
�	̄ none ÈA �« Éª�

�	®�K

Sentence

��é�®J
�̄ X ��é�@PX �èXñ�QÖÏ @ �èQëA 	¢Ë@ 	àñ�JkAJ. Ë @ �� �P �X
BW dqyqp drAsp AlmrSwdp AlDAhrp AlbAHvwn drs
gloss closely studying observed phenomenon researchers studied
lex: daqiyq 1 dirAsap 1 maroSuwd 1 ZAhir 1 bAHiv 1 darasa 1
pfx: - Al/DET Al/DET Al/DET -
stm: dqyq/ADJ QUALIT drAs/GERUND mrSwd/NOUN ZAhr/NOUN bAHv/NOUN drs/PV

PASSIVE PART ACTIVE PART ACTIVE PART
sfx: p/NSUFF FEM SG p/NSUFF FEM SG p/NSUFF FEM SG - p/NSUFF FEM SG - -
gen:, num: f,s f,s f,s f,s m,p m,s
root ���̄X �PX Y�P Qê 	£ �Im�'. �PX
sntmnt positive positive neutral neutral positive positive
ptrn �é

�
ÊJ
ª�

�	̄ �é
�
Ë A �ª 	̄

�
�é
�
Ëñ �ª �	® �Ó �é

�
Ê«� A�	̄ É«� A�	̄ É �ª�	̄

Sentence ¨PA ��Ë@ 	�J. 	K ©Ó ùëAÒ�JK
 �ù
 ÖÞ�QË @ 	­�̄
� ñÖÏ @

BW Al$ArE nbD mE ytmAhY Alrsmy∼ Almwqf
gloss public pulse with identify official position
lex: $AriE 1 naboD 1 maE 1 tamahY 1 rasomiy∼ 1 mawoqif 1
pfx: Al/DET - - y/IV3MS Al/DET Al/DET
stm: $ArE/NOUN nbD/GERUND mE/ADV tmAhY/IV rsmy/NOUN mwqf/GERUND

CONCRETE RELATIVE MEEM
sfx: - - - - - -
gen:, num: m,s m,s none,none m,s m,s m,s
root ¨Qå�� 	�J. 	K none ú
æêÓ Õæ�P 	­�̄ð
sntmnt neutral positive neutral positive neutral neutral
ptrn É«� A�	̄ É �ª�	̄ none É �«A �	®��J�K
 �ú
Î�

�ª�	̄ Éª�
�	® �Ó

Sentence 	Xñ 	kAÖÏ @ I. J
m.�'
 éË @ñ 	j �«  ðPA�®Ë @ �IK
 �Xð
BW AlmAxw* yjyb ExwAlh AlqArwT wd∼yt
gloss the thingy to get to his uncles the kid i sent

msa 	Xñ 	k


AÖÏ @ �K. Zú
m.

��'
 éË @ñ 	k


@ úÎ«  ðPA�®Ë @ ��I�K


��X


@ð

lex: maAxuw* 1 jaAb 1 xaAl 1 qaArwT 1 wd∼Y 1
pfx: AL/DET y/IV3MS ElY/PREP AL/DET -
stm: mAxw*/NOUN jyb/IV AxwAl/NOUN qArwT/NOUN wd∼Y/PV

CONCRETE CONCRETE CONCRETE
sfx: - h/POSS PRON 3MS - t/PVSUFF SUBJ:1S
gen:, num: m,s m,s m,p m,s m,s

root
	Y 	g



@ Zú
k. Èñ 	k  Q�̄ ø
 X



@

sntmnt neutral neutral positive negative neutral
ptrn Èñ �ª �	®�Ó Éª�

�	®�K
 ÈA �ª�	̄ Èñ �«A�	̄ É ��ª�	̄

Table 3: Annotated sentences of JCCA Corpus. In this table, the abbreviation BW represents Buckwalter translit-
eration, gloss the English meaning, lex the lexical entry, pfx the prefix, stm the stem, sfx the suffix, gen the gender,
root the consonantal roots,sntmnt the sentiment designation, and ptrn the morphological pattern.

tends to be more liberal and more prone to change,
the written variety more coded and more conserva-
tive. Arabic has three major varieties, two written

and one spoken: Classical Arabic, the language
of scholarship until the end of the eighteenth cen-
tury; Modern Standard Arabic, the language of ed-
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Tag Description Arabic
DET Definite Article 	­K
Qª�K �è @X



@

PREP Prepositions Qk.
	¬Qk

CONJ Conjunction 	­¢« 	¬Qk
INTERROG Interrogative particles ÐAê 	®�J�@ 	¬Qk
FUT PART Particles of futurity ÈAJ. �®�J�@ 	¬Qk
PREFIX Prefix �éÒÊ¾Ë@ Èð



@ ú


	̄ �èXAK
 	P
CV PREF Imperative prefix QÓ



@ 	¬Qk

IMPERF PREF Imperfect prefix �é«PA 	�Ó 	¬Qk
INF PART Infinitive particle ø
 PY�Ó 	¬Qk
INF SUBJUNC PART Infinitive/Subjunctive particle I. �	�ð ø
 PY�Ó 	¬Qk
INF ANNUL PART Infinitive/Annulling particle t��A 	K ø
 PY�Ó 	¬Qk
NON GOVERN Non-Governing particle ÉÓA« Q�
 	« 	¬Qk
NEG PART Negative particle ù


	® 	K 	¬Qk
OTHER Non-Governing particle øQ 	k



@ �é�®K. A�

Table 4: Prefix Tags (Bold is new)

ucation and formal written communication from
the Arab renaissance in the nineteenth century on-
ward; and the dialects, the colloquial regional vari-
eties that are spoken in everyday communication.
Since the corpus constructed here is comprehen-
sive and since it claims to be representative of con-
temporary Arabic, it has to exclude Classical Ara-
bic, but include Modern Standard Arabic, and the
regional dialects. We define Contemporary Arabic
as the language both written and spoken by living
native speakers of Arabic; therefore, the dialects
need to be represented. We are not alone in this
view, check out A Frequency Dictionary of Arabic
(Buckwalter and Parkinson, 2011) and the Oxford
Arabic Dictionary (Arts et al., 2014).

The major spoken varieties are, therefore, repre-
sented in the corpus: North Africa is represented
by the Moroccan dialect; the Nile region by Egyp-
tian; the Arabian Peninsula by Taizi, Sanaani, and
Najdi; Greater Syria by Shami, Jordanian, and
Palestinian. The data in the form of contextual-
ized sentences were collected from (1) personal
communication in Facebook and Whatsapp fam-
ily groups; (2) jokes, songs, videoclips, movie
scripts, and TV interviews in the local dialects;
and (3) personal interviews of old speakers, es-
pecially those with minimal education. The data
were collected by students who came from these
regions. Like any other language, Arabic has dif-
ferences between the dialects and the standard va-
riety, between the spoken and written varieties.
There is variation in the pronunciation of some
consonants and vowels (e.g., q, D, Z, v, *, A);
suppression of word final inflections; fixed word-
order (i.e., subject-verb-object (SVO)); contracted
forms (e.g., ��Ê 	¢Ó maZal∼i$ for �Zú
æ

�� É 	£ AÓ mA

Zal∼a $ay’N ‘nothing remains’); use of high fre-
quency lexical items(e.g., Y«A�̄ qAEid rather than

Tag Description Arabic
GERUND Gerund PY�ÖÏ @
GERUND MEEM Gerund with initial miim ù
 ÒJ
ÖÏ @ PY�ÖÏ @
GERUND INSTANT Gerund of instance �èQÖÏ @ PY�Ó
GERUND STATE Gerund of state �é
JJ
êË @ PY�Ó
GERUND PROFESSION Gerund profession ú
«A 	J� PY�Ó
NOUN CONCRETE Concrete noun �H@ 	X Õæ� @
NOUN ABSTRACT Abstract noun ú 	æªÓ Õæ�@
NOUN ACTIVE PART Active participle É«A 	̄ Õæ� @
NOUN PASSIVE PART Passive participle Èñª 	®Ó Õæ�@
ADJ INTENS Form of exaggeration �é 	ªËAJ. ÖÏ @ �é 	ªJ
�
ADJ QUALIT Adjective �éîD. ��ÖÏ @ �é 	®�Ë@
NOUN TIME PLACE Noun of time/place 	àA¾ÖÏ @ð 	àAÓ 	QË @ Õæ� @
NOUN INSTRUMENT Instrumental noun �éË

�
B@ Õæ� @

ADJ COMP Elative noun ÉJ
 	� 	®�JË @ Õæ� @
NOUN RELATIVE Relative noun H. ñ� 	�Ó Õæ� @
NOUN PROP Proper noun ÕÎ« Õæ�@
NOUN PROP FOREIGN Foreign proper noun ú
æ.

	Jk.


@ ÕÎ« Õæ�@

ADV Adverb
	¬Q 	¢Ë@

PRON Pronoun É� 	® 	JÖÏ @ Q�
Ò 	�Ë@
DEM PRON Demonstrative pronoun �èPA ��B
 @ Õæ� @
REL PRON Relative pronoun Èñ�ñÓ Õæ�@
INTERROG PRON Interrogative pronoun ÐAê 	®�J�@ Õæ� @
REL ADV Conditional noun  Qå�� Õæ� @
NOUN VERB LIKE Verb-like noun Éª 	®Ë@ Õæ� @
NOUN FIVE Five nouns �é�Ò	mÌ'@ ZAÖÞ� 


B@
NOUN DIMINUTIVE Diminutive Q�
 	ª��� Õæ� @
NOUN BLEND Blend noun �Hñj	JÓ Õæ� @
NOUN NUM Numeral XY« Õæ�@
EXCEPT NOUN Exceptive Noun ZA 	J�J���@ Õæ� @
COMP NOUN compound noun I.

�
»Q�Ó Õæ� @

FOREIGN Foreign word �éJ
�. 	Jk.


@ �éÒÊ¿

ABBREV Abbreviation PA��J 	k@
PV Perfect verb 	�AÓ Éª 	̄
PV PASS Passive Perfect v. Èñêm.× 	�AÓ Éª 	̄
IV Imperfect v. ¨PA 	�Ó Éª 	̄

IV PASS Passive Imperfect v. Èñêm.× ¨PA 	�Ó Éª 	̄

UNINFLECTED VERB Uninflected Verb YÓAg. Éª 	̄

CV Imperative verb QÓ


@ Éª 	̄

PREP Preposition Qk.
	¬Qk

NEG PART Preposition ù

	® 	K 	¬Qk

CONJ Conjunction 	­¢« 	¬Qk
INTERROG PART Interrogative particle ÐAê 	®�J�@ 	¬Qk
SUBJUNC PART Subjunctive particle I. �	� 	¬Qk
JUSSIVE PART Jussive particle Ð 	Qk.

	¬Qk
ANNUL PART Annulling particle t��A 	K 	¬Qk
VOC PART Vocative particle Z @Y 	K 	¬Qk
EXCEPT PART Exceptive par. ZA 	J�J���@ 	¬Qk
FUTUR PART Par. of futurity ÈAJ. �®�J�@ 	¬Qk
YES NO RESP PART Yes/No particle H. @ñk.

	¬Qk
CONDITION PART conditional particle  Qå�� 	¬Qk
CERT PART Certain/Uncertain particle ��J
�®m��' 	¬Qk
PART other particles øQ 	k



@ 	¬ðQk

PUNC Punctuation mark Õæ

�̄Q�K �éÓC«

NUMBER Number Õ�̄P
CURRENCY Currency �éÊÔ«
DATE Date t�'
PA�K
NON ARABIC Non-Arabic word �éJ
K. Q« Q�
 	« �éÒÊ¿
OTHER OTHER øQ 	k



@

Table 5: Stem Tags (Bold is new)

�ËAg. jAlis ‘sitting’); use of some lexical items
that are archaic in MSA (e.g., iÊ 	̄ @ AifliH ‘Par-
take of food’ in Jordanian Arabic in addition to
the senses in Standard Arabic of Plough! and
Succeed!); liberal incorporation of foreign words
(e.g., i. ��Ó mas∼aj ‘sent a message’); abandon-

ment of the dual and the passive voice (e.g., Qå��
�
º	K @�

<inkasar ‘broke’ rather than �Qå��
�
» kusira ‘it got

broken’); abandonement of the yes-no question
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Tag Type Arabic Tag Type Arabic
POSS PRON Proclitic Õæ�BAK. É��JÓ Q�
ÖÞ

	� SUBJ PRON Suffix Éª 	®ËAK. É��JÓ Q�
ÖÞ
	�

OBJ PRON Proclitic ( éK. Èñª 	®Ó) Éª 	®ËAK. É��JÓ Q�
ÖÞ
	� SUFF FEM TA Proclitic �I�
 	K



A�JË @ Z A�K

NSUFF FEM SG Proclitic �é£ñK. QÓ ZA�K RELATIVE YA Proclitic �éJ.� 	�Ë @ Z AK

CASE INDEF ACC GEN Suffix 	áK
ñ 	J�JË @ SUFF Suffix �éÒÊ¾Ë@ Q 	k

�
@ ú


	̄ �èXAK
 	P
NSUFF FEM PL Proclitic �I	K 
ñÖÏ @ ©Ôg.

	¬ðQk NSUFF MASC PL NOM Proclitic ¨ñ 	̄QÓ Q» 	YÓ ©Ôg.
	¬ðQk

NSUFF MASC PL ACC Proclitic H. ñ�	JÓ Q» 	YÓ ©Ôg.
	¬ðQk NSUFF MASC PL GEN Proclitic PðQm.× Q» 	YÓ ©Ôg.

	¬ðQk
NSUFF MASC DU NOM Proclitic ¨ñ 	̄QÓ Q» 	YÓ ú 	æ�JÖÏ @ 	¬ðQk NSUFF MASC DU ACC Proclitic H. ñ�	JÓ Q» 	YÓ ú 	æ�JÖÏ @ 	¬ðQk
NSUFF MASC DU GEN Proclitic PðQm.× Q» 	YÓ ú 	æ�JÓ 	¬ðQk NSUFF FEM DU NOM Proclitic ¨ñ 	̄QÓ �I	K 
ñÓ ú 	æ�JÖÏ @ 	¬ðQk
NSUFF FEM DU ACC Proclitic H. ñ�	JÓ �I	K 
ñÓ ú 	æ�JÓ 	¬ðQk NSUFF FEM DU GEN Proclitic PðQm.× �I	K 
ñÓ ú 	æ�JÓ 	¬ðQk
EMPHATIC NUN Suffix YJ
»ñ�JË @ 	àñ	K PROTECT NUN Suffix �éK
A�̄ñË @ 	àñ	K
REL PRON Relative Pronoun Èñ�ñÓ Õæ�@ ADV Adverb

	¬Q 	£
SINGLAR Number/Singular XQ 	®Ó DUAL Number/Dual ú 	æ�JÓ
PLURAL Number/Plural ÕËA� ©Ôg. BROKEN PLR Number/Broken plural Q�
�º�K ©Ôg.
COLCV NOUN Number/Collective noun ©Òm.Ì'@ Õæ� @

Table 6: Tags for suffixes (Bold is new)

particles Éë hal and


@ >; use of the suffix � ��

$ at the end of a verb (e.g., ��Yª�̄ AÓ mA qaEadi$

rather than
�Y �ª��̄ AÓ mA qaEadahe did not sit); loss

of gender distinction, especially in the language
of females (e.g., �HA 	JJ. Ë @ ñk. @� <ijw AlbanAt rather
than �HA 	JJ. Ë @ �HZAg. jA’at AlbanAt ‘the girls came’).
Arabic has a free word order because of gram-
matical inflections. When all words’ grammatical
functions are marked with appropriate inflections,
it is not necessary to restrict the arrangement of
words in a sentence; hence, Classical Arabic ex-
hibits a totally free word order. Modern Standard
Arabic shows preference for verb-subject-object
even though inflections are amongst its distinctive
features. The spoken varieties continue a histor-
ical tradition that we suspect had started as early
as Islamic times, where case inflection had lost
grounds to fixed word order. Preference in Clas-
sical Arabic for the default word order (i.e., verb-
subject-object) in an otherwise free word order
system was a portent of developments to come.
As Islamic conquest brought Arabs in contact with
foreigners who soon adopted the language, and
as the diglossic gap widened, grammatical inflec-
tion lost favor in the low variety while it retained
its glamour in the high variety, under the influ-
ence of the Quran. The spoken, the low, variety
started to favor the subject-verb-object word order
as a result of the loss of case inflections and to
set apart the agent from the patient of the predi-
cate. The written variety manifested in MSA, on
the other hand, used the verb-subject-object order
as the unmarked default and retained other combi-
nations for special purposes. All modern regional
varieties are descendants of old spoken varieties
of Arabic in much the same way as Modern Stan-
dard Arabic is a successor of Classical Arabic, the
written variety. Regional varieties of Arabic share

great many syntactic features. For example, they
have two negation patterns: single negation and
discontinuous negation (Alqassas, 2015). The first
uses the negative particle AÓ mA followed by the
verb phrase, whilst the second adds the negative
marking suffix � �� $ to the verb in addition to the
negative particle that precedes it. Thus, I didnt
say may be expressed as �����Ê

�̄ AÓ mA qult-i$ or
�IÊ��̄ AÓ mA qult. To negate the future, however,

there are three options: (1) the negative particle
followed by the imperfect verb as in Q 	̄ A�



@ AÓ mA

>asAfir ‘I will not travel’; (2) or followed by the
imperfect inflicted with the negative marking suf-
fix as in ��Q 	̄

� A�


@ AÓ mA >asAfr-i$ ; (3) or followed

by the future particle h �P raH and the imperfect

verb as in Q 	̄ A�


@ hP AÓ mA raH >asAfir. JCCA

consists in part of a spoken language component
that is annotated morphologically and syntacti-
cally, glossed with MSA forms, and translated into
English. This is especially useful with contrac-
tions, the hallmarks of spoken Arabic. The gloss
is often the non-contracted equivalent in MSA as
demonstrated in Table 7.

8 Conclusion and Future Work

This paper outlined the methodology for the de-
sign, construction, and annotation of the Jor-
dan Comprehensive Contemporary Arabic Cor-
pus (JCCA). The corpus is balanced, comprehen-
sive, and representative of contemporary Arabic as
written and spoken in Arab countries today. It con-
sists of 100 million words that reflect current us-
age of the language. The corpus consists of 87%
written and 13% spoken language. The text of the
corpus was selected such that it would be repre-
sentative of a wide range of geographical regions,
genres, subject matters, modes, and media. DI-
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Contracted BW Full Form Gloss
½	KñÊ �� $lwnk ½	KñË Zú
æ

�� ø



@ how are you?

É 	®¢�@ ASTfl YK
Q�K ø

	YË@ 	­�¢�@ whatever you want

���
@
 <y$ Zú
æ
�� ø




@ pardon me?

���
Ë ly$ Zú
æ
�� ø




B why?

ñ �� $w ñë Zú
æ
�� ø




@ what?

���
K. by$ Zú
æ
�� ø




AK. for how much?

���
Y�̄ qdy$ Zú
æ
�� ø




@ PY�̄ how much?

��ÊªÓ mEly$ Zú
æ
�� ½J
Ê« AÓ it’s OK!

��Ê 	¢Ó mZl$ Zú
æ
�� É 	£ AÓ nothing left

ú
ÎË@
 <lly ú

�æË@ , ø


	YË@ that/which

Table 7: Contracted words in colloquial Arabic, In this
table, the abbreviation Contracted represents examples
of spoken words (i.e. contractions), BW is Buckwalter
transliteration, Full Form is the non-contracted equiva-
lent in MSA, gloss the English meaning.

WAN was upgraded and used to annotate and man-
ually verify the annotation of a one-million-word
snapshot of the corpus, making it a gold standard
of superior quality that can serve as a resource
against which automatic annotation may be com-
pared. JCCA construction made these additional
contributions: (i) Development of a new and elab-
orate tag-set that is based on the morphology of
traditional Arabic grammar; (ii) Addition of the
roots and morphological patterns of nouns and
verbs; (iii) Coverage of the major spoken varieties
of Arabic: North Africa; the Nile; the Arabian
Peninsula; and Levant. Future work is to make
this corpus a monitor corpus where new texts are
added proportionally every year. This will facili-
tate tracking language change and will render the
corpus more amiable to lexicography.

9 Acknowledgment

The research reported here was supported by the
Scientific Research Fund of the Ministry of Higher
Education and Scientific Research, Jordan (Grant
No. Soci/2/1/2016).

References
Mourad Abbas and Kamel Smaı̈li. 2005. Compari-

son of Topic Identification methods for Arabic Lan-
guage. In International Conference on Recent Ad-
vances in Natural Language Processing - RANLP
2005, 14-17, Borovets, Bulgaria.

Mourad Abbas, Kamel Smaili, and Berkani. 2011.
Evaluation of topic identification methods on Ara-
bic corpora. Journal of Digital Information Man-
agement, 9(5):185–192.

Faisal Al-Shargi and Owen Rambow. 2015. DIWAN:
A dialectal word annotation tool for Arabic. In Pro-
ceedings of the Second Workshop on Arabic Natural
Language Processing, pages 49–58, Beijing, China.
Association for Computational Linguistics.

Latifa Al-Sulaiti and Eric Steven Atwell. 2006. The
design of a corpus of Contemporary Arabic. Inter-
national Journal of Corpus Linguistics, 11(2):135–
171.

Abdulmohsen Al-Thubaity. 2015. A 700m+ Arabic
corpus: KACST Arabic corpus design and con-
struction. Language Resources and Evaluation,
49(3):721–751.

Sameh Alansary and Magdy Nagi. 2014. The Inter-
national Corpus of Arabic: Compilation, Analysis
and Evaluation. In Proceedings of the EMNLP 2014
Workshop on Arabic Natural Language Processing
(ANLP), pages pages 8–17, Doha, Qatar.

Ahmad Alqassas. 2015. Negation, tense and npis in
jordanian arabic. Lingua, 156:101–128.

Maha Sulaiman Alrabia, AbdulMalik Al-Salman, Eric
Atwell, and Nawal Alhelewh. 2014. KSUCCA:
A Key To Exploring Arabic Historical Linguistics.
International Journal of Computational Linguistics
(IJCL), 5(2):27–36.

Faisal AlShargi, Aidan Kaplan, Ramy Eskander, Nizar
Habash, and Owen Rambow. 2016. Morphologi-
cally annotated corpora and morphological analyz-
ers for moroccan and sanaani yemeni arabic. In Pro-
ceedings of the Tenth International Conference on
Language Resources and Evaluation (LREC 2016).

Tressy Arts, Yonatan Belinkov, Nizar Habash, Adam
Kilgarriff, and Vit Suchomel. 2014. artenten: Ara-
bic corpus and word sketches. Journal of King Saud
University - Computer and Information Sciences,
26(4):357 – 371. Special Issue on Arabic NLP.

Paul Baker, Andrew Hardie, and Tony McEnery. 2006.
A Glossary of Corpus Linguistics. Edinburgh Uni-
versity Press.

Outi Bat-El. 1994. Stem modification and cluster
transfer in Mmodern Hebrew. Natural Language
Linguistic Theory, 12(4), 571-596.

Outi Bat-El. 2001. In search for the roots of the C-root:
The essence of Semitic morphology. Workshop on
Root and Template Morphology. Los Angeles: Uni-
versity of South California.

Yonatan Belinkov, Nizar Habash, Aadm Kilgarriff,
Noam Ordan, Ryan Roth, and Vit Suchomel. 2013.
arTenTen12: A new, vast corpus for Arabic. In
Second Workshop on Arabic Corpus Linguistics,
WACL’S, Lancaster University, UK.

Claire Brierley, Majdi Sawalha, and Eric Atwell. 2012.
Open-Source Boundary-Annotated Corpus for Ara-
bic Speech and Language Processing. In LREC,
pages 1011–1016.

156



Claire Brierley, Majdi Sawalha, Barry Heselwood, and
Eric Atwell. 2016. A Verified Arabic-IPA Mapping
for Arabic Transcription Technology, Informed by
Quranic Recitation, Traditional Arabic Linguistics,
and Modern Phonetics. Journal of Semitic Studies,
61(1):157–186.

Tim Buckwalter and Dilworth Parkinson. 2011. A fre-
quency dictionary of Arabic: Core vocabulary for
learners. London: Routledge.

Stuart Davis and Bushra Zawaydeh. 2001. Arabic
hypocoristics and the status of the consonantal root.
Linguistic Inquiry, 32(3): 512-520.

Kais Dukes, Eric Atwell, and Nizar Habash. 2013. Su-
pervised collaboration for syntactic annotation of
quranic arabic. Language Resources and Evalua-
tion, 47(1):33–62.

Thomas Eckart, Faisal Al-shargi, Uwe Quasthoff, and
Dirk Goldhahn. 2014. Large arabic web corpora
of high quality: The dimensions time and origin.
In Workshop on Free/Open-Source Arabic Corpora
and Corpora Processing Tools, LREC, Reykjavk.

Omaima Ismail, Sane Yagi, and Basam Hammo. 2014.
Corpus Linguistic Tools for Historical Semantics
in Arabic. International Journal of Arabic-English
Studies (IJAES), 15:135–152.

Mustafa Jarrar, Nizar Habash, Faeq Alrimawi, Diyam
Akra, and Nasser Zalmout. 2017. Curras: an anno-
tated corpus for the palestinian arabic dialect. Lan-
guage Resources and Evaluation, 51(3):745–775.

McCarthy, John. 1981. A prosodic theory of noncon-
catenative morphology. Linguistic Inquiry, 12, 373-
418.

Tony McEnery and Andrew Hardie. 2012. Corpus
Linguistics: Method, Theory and Practice. Cam-
bridge Textbooks in Linguistics. Cambridge Univer-
sity Press.

Arfath Pasha, Mohamed Al-Badrashiny, Mona T Diab,
Ahmed El Kholy, Ramy Eskander, Nizar Habash,
Manoj Pooleery, Owen Rambow, and Ryan Roth.
2014. Madamira: A fast, comprehensive tool for
morphological analysis and disambiguation of ara-
bic. In LREC, volume 14, pages 1094–1101.

Jeam-Francois Prunet, Renee Bland, and Ali Idrissi.
2000. The mental representation of Semitic words.
Linguistic Inquiry, 31(4). 609-648.

Ratcliffe, Robert . 1998. The broken plural problem
in Arabic and comparative Semitic: allomorphy and
analogy in non-concatenative morphology. Amster-
dam/Philadelphia: John Benjamins.

Motaz Saad and Wesam Ashour. 2010. Osac: Open
source arabic corpora. In EEECS10 the 6th Interna-
tional Symposium on Electrical and Electronics En-
gineering and Computer Science, pages 118–123.

Majdi Sawalha, Claire Brierley, and Eric Atwell. 2012.
Prosody Prediction for Arabic via the Open-Source
Boundary-Annotated Quran Corpus. Journal of
Speech Sciences, 2(2):175–191.

Majdi Sawalha, Claire Brierley, and Eric Atwell.
2014. Automatically generated, phonemic Arabic-
IPA pronunciation tiers for the Boundary Annotated
Qur’an Dataset for Machine Learning (version 2.0).
In proceedings of LRE-Rel 2: 2nd Workshop on
Language Resource and Evaluation for Religious
Texts, LREC 2014 post-conference workshop 31st
May 2014, Reykjavik, Iceland, page 42. LRA.

Ussishkin, Adam. 1999. The inadequacy of the conso-
nantal root: Modern Hebrew denominal verbs and
output-output correspondence. Phonology, 16(3),
401-442.

Ussishkin, Adam. 2005. A Fixed prosodic theory of
nonconcatenative templatic morphology. Natural
Language Linguistic Theory, 23(1), 169-218.

Wajdi Zaghouani. 2017. Critical Survey of the Freely
Available Arabic Corpora. CoRR, abs/1702.07835.

157



Proceedings of the Fourth Arabic Natural Language Processing Workshop, pages 158–166
Florence, Italy, August 1, 2019. c©2019 Association for Computational Linguistics

Translating Between Morphologically Rich Languages: An
Arabic-to-Turkish Machine Translation System
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Abstract

This paper introduces the work on building
a machine translation system for Arabic-to-
Turkish in the news domain. Our work in-
cludes collecting parallel datasets in several
ways for a new and low-resource language
pair, building baseline systems with state-of-
the-art architectures and developing language
specific algorithms for better translation. Par-
allel datasets are mainly collected three differ-
ent ways; i) translating Arabic texts into Turk-
ish by professional translators, ii) exploiting
the web for open-source Arabic-Turkish paral-
lel texts, iii) using back-translation. We per-
formed preliminary experiments for Arabic-
to-Turkish machine translation with neural
(Marian) machine translation tools with a
novel morphologically motivated vocabulary
reduction method.

1 Introduction

It is a well-known fact that to develop robust sys-
tems with data-driven methods, it is crucial to have
large amounts of data. If the problem needs only
raw monolingual data, the solution is straightfor-
ward; crawl the web and collect the data in the spe-
cific domain. In cases of annotating the data (e.g.,
treebanks) or parallel data (e.g., for machine trans-
lation) collecting the needed data is a bit harder.

Even though machine translation (MT) is one of
the popular topics in natural language processing,
most of the existing parallel texts include English
as one of the languages (e.g., Europarl (Koehn,
2005), Multi-UN (Eisele and Chen, 2010)). For
the rest of the languages, generating a new lan-
guage pair from scratch is tough work that needs
extensive human effort and substantial funding.
One way of translating languages with no paral-
lel data is pivoting, which means one should find
corpora for two language pairs such as source-
to-pivot and pivot-to-target with sufficient number

of sentences in the same domain and then train
and maintain two MT systems. Even though we
can find such corpora in the expected domain for
the given languages, the error propagation is the
biggest problem of pivoting as the second system
will try to translate erroneous output of the previ-
ous system.

In this work, our goal is building an Arabic-
Turkish machine translation on the news domain.
The task is very interesting for several reasons;
primarily, both the source and the target languages
are morphologically rich which proves to be a
quite challenging task. Our attention on this lan-
guage pair has both social and political grounds.
Arabic is the official language in most of the Mid-
dle East countries that Turkey has relations with.
Moreover, there is a need for quick and cheap
translation solutions in communicating with the
increasing number of refugees in Turkish spoken
areas.

The news domain is selected as it has several
benefits such as the fact that at least one side of
the parallel texts can be found publicly on the web
(e.g. several news portals) and Arabic is written in
Modern Standard Arabic format for the news do-
main which is common for all Arabic speakers. To
collect the data, both monolingual and bilingual
data on the web is exploited. Selected portion of
a monolingual data is translated into Turkish by
professional translators, the publicly available but
out-of-domain parallel data is cleaned and used di-
rectly and, lastly, rest of the monolingual Turkish
data is back-translated to train our systems. Both
unsupervised and supervised morphology reduc-
tion techniques are used to reduce the vocabulary
size to a fixed number and let to fit our vocabulary
into a given number of tokens while training the
neural machine translation (NMT) systems .

This paper is organized as follows; Section 2
gives brief information about the source and tar-
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get languages. Section 3 describes the data ob-
taining methods, and Section 4 introduces the seg-
mentation methods for Turkish to alleviate the
morphological differences and explains genera-
tion of surface word forms as post-processing.
In section 5, we talk about our experimental
setup including the data sizes and morphology
abstraction/separation experiments with Marian
(Junczys-Dowmunt et al., 2018) NMT tool. Fi-
nally, we conclude in Section 6.

2 Arabic and Turkish

2.1 Arabic

Arabic is a member of the Central Semitic lan-
guage family. It is spoken by approximately 300
million people (ranked as sixth language) and ac-
cepted as official language in 27 countries (ranked
as the third language after English and French).
Arabic can be classified into three categories as;
Classical Arabic (the language of the Qur’an),
Modern Standard Arabic (is used in written texts
and formal speeches, not a native language) and
Arabic dialects (spoken by locals, mostly not writ-
ten). Arabic is written from right to left with dis-
tinct 28 letters with various combinations of dots
above or below these shapes. There are no capital
letters. Roots are mostly composed of consonants
and can have different meanings with the help of
the vowels and diacritics. Arabic has a very com-
plex and sometimes inconsistent orthography 1.

Arabic has a highly complex concatenative
derivational and inflectional morphology. Words
can take prefixes and suffixes at the same time for
tense, number, person, gender information. For an
example of the concatenation processes, the Ara-
bic word, ú
æî 	DJ
�ð (gloss; and he will finish ) can

be decomposed as ú
æî 	DK
 (finished), �+ (he will),

and ð+ (and).

2.2 Turkish
Turkish is a member of the Ural-Altay language
family and is the most commonly spoken Turkic
language by more than 90 million people. It is the
official language of Turkey and Northern Cyprus.
There are lots of minority groups all over the world
mainly in Europe (approximately 5M speakers).

From the machine translation point of view,
Turkish has interesting and challenging properties

1http://www.nizarhabash.com/tutorials/EMNLP-2014-
Diab+Habash-Tutorial.pdf

when compared to the mostly studied languages
in data-driven MT research such as English, Ger-
man, French and Spanish. First of all Turkish is
a highly agglutinative language where words are
formed by concatenating morphemes (by suffixa-
tion) with very productive inflectional and deriva-
tional processes. Turkish morpheme surface re-
alizations are generated by several morphophone-
mic processes such as vowel harmony, consonant
assimilation, and elisions. The morphotactics of
word forms could be quite complex when multi-
ple derivations are involved. Indeed, Turkish is
one of the languages that needs special attention
because of its morphological richness. An exam-
ple of the Turkish morphology can be shown with
the Turkish word partisindeydi (gloss: s/he was
at his/her party), this word can be decomposed
into four morphemes as parti (party), +si (her/his),
+nde (in) and +ydi (s/he was).

3 Obtaining Data

The backbone of the machine translation system is
a ”good” data like the most of the machine learn-
ing problems. In case of MT, a parallel corpora
is required. The domain of the data, the quality
and the quantity directly effect the translation out-
put. On the other hand, obtaining such data for
the machine translation purpose is not that easy.
There have been efforts made to obtain parallel
texts for machine translation by crawling web for
parallel data (Uszkoreit et al., 2010), and by using
MechanicalTurk (Ambati and Vogel, 2010; Zbib
et al., 2012). Even though we spent some efforts
to use MTurk, it is not yet available for requesters
outside USA.

We specify three different ways to obtain the
Arabic-Turkish parallel corpora; i) by translating
Arabic texts into Turkish by professional transla-
tors, ii) by exploiting web for open-source Arabic-
Turkish parallel texts and, iii) by back-translating
monolingual Arabic data by using existing ma-
chine translation systems.

3.1 Obtaining In-domain Training Data

We selected approximately 170K Arabic sen-
tences in the news domain from LDC datasets
and had them translated to Turkish by professional
translators in order to obtain gold-standard train-
ing data. Even though the translators are experts,
quality assurance is an important issue. We aimed
to avoid low-quality translations with a few steps.
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Before the translation process, we labeled each
sentence to keep the parallelism in translations.
This labeling is done to prevent translators not to
join any two sentences or split one sentence into
pieces while translating. Then, we asked each
translator to translate 50 sentences. We analyzed
the outputs, detected common translation errors
and prepared a translation procedure for machine
translation purpose. The translation procedure had
rules such as;

• Every information in the source sentence
should be translated into Turkish. Neither ad-
dition nor deletion of a part of a sentence was
allowed.

• Translations should not have any meaning
disorder or fluency problems. Constituents
can be arranged due to grammar rules with-
out changing the meaning. Phrases should be
chosen as precisely as possible.

• Each sentence should be translated indepen-
dently, without considering the previous con-
text.

• Sentences in two different lines should not be
combined into a single sentence or vice versa.

After the translation was completed, we em-
ployed a bilingual consultant to randomly select
5% of the sentence pairs from each document and
score them according to the quality of translation.
If the quality is lower than given threshold, transla-
tors re-translated each problematic document once
more. After this process, if the quality was still
low, we rejected the translations for this document.

We separated 1,600 sentences for development
and 1,357 sentences for testing and demanded four
Turkish references to be translated by four differ-
ent translators. Table 1 shows the time and cost
spent to generate the gold-standard translations for
training and development. As seen in the table,
generating a parallel corpora by human translation
from Turkish to Arabic is a time and money con-
suming task as the number of such translators are
limited 2. Moreover, after spending a huge budget
and time, the size of the corpora is not still suffi-
cient to train a NMT system. These facts forced us
to search the web for publicly available data.

2As the Arabic part of the corpus is licensed by LDC, the
generated corpora can not be shared with any third parties

Corpus # Sents Cost ($) Time
Training 160,764 202K 7 months
Development 11,828 12K 2 months

Table 1: Time and cost spent to generate gold-standard
translations.

3.2 Searching Web for Publicly Available
Data

We exploited the web in order to take advantage of
already existing parallel Arabic-Turkish data. We
obtained two subsets of parallel data with small
effort but both were out-of-domain. The corpora
are;

WIT: Web Inventory of Transcribed and Trans-
lated Talks (Cettolo et al., 2012) contains tran-
scriptions of TED talks in more than hundred
languages. We selected the IWSLT 20143 train-
ing data as it contains both Arabic-English and
Turkish-English language pairs. Firstly, common
talk titles are searched and then on these com-
mon talks, Arabic and Turkish sentences that have
the same English translation for each talk are
matched. As a result, 130K such Arabic-Turkish
parallel sentences are obtained.

OpenSubtitles20184: OpenSubtitles2018 (Li-
son and Tiedemann, 2016) is a large database
of TV and movie subtitles for sixty languages.
The database has Arabic-Turkish parallel texts that
contains almost 28M sentences. Even though
these subtitles are aligned based on time stamps,
the word order differences between the languages
make one-to-one sentence alignment harder. To
solve this problem and obtain more reliable paral-
lel data, the text was re-aligned by a bilingual sen-
tence aligner (Moore, 2002). Using this method,
21M out of 28M sentences are selected.

Both WIT and OpenSubtitles2018 are out-of-
domain (OOD) for the news domain MT task, and
the ratio of this OOD corpora to the news domain
is huge (20M to 130K). To increase the size of the
news corpora, we used a well known technique,
backtranslation.

3.3 Monolingual Turkish Data and
Backtranslation

In recently published NMT systems, backtransla-
tion (Sennrich et al., 2016a) is applied commonly
to increase the parallel corpora if the training data

3https://wit3.fbk.eu/mt.php?release=2014-01
4http://opus.nlpl.eu/OpenSubtitles2018.php
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Corpus In-Dom.? # Sents
Baseline (BASE) Yes 160K
Subtitles (OOD1) No 21M
WIT (OOD2) No 130K
Monolingual (MONO) Yes 3M
Test Yes 1357
Development Yes 1600

Table 2: Type and size of the corpora used in the ex-
periments.

is limited. For backtranslation, two freely avail-
able monolingual Turkish news corpora CNN-
Turk5 (2.14M sentences) and Aljazeera6 (718K
sentences) are used.

Collected monolingual Turkish corpora is pre-
processed to separate each sentence to a line, to re-
move sentences only consisting of foreign words,
symbols, numbers, and blank lines, and to replace
carriage returns with line feed characters. Lastly,
the corpus is sorted and the duplicate sentences are
removed.

After backtranslation, as automatic systems can
not produce gold-standard translations for all sen-
tences, we need to filter the translated output to
obtain a ”better” subset of it. We remove transla-
tions if; i) output has only one word, ii) the ratio of
input/output words is more than three and, iii) any
word except the Turkish stop-words repeats more
than three times. After all the collection efforts,
the size and the domain of the parallel corpora is
shown Table 2.

4 Incorporating Linguistically
Segmented Subwords

4.1 Previous Work

Incorporating morphology when working with
morphologically rich languages in SMT has been
addressed by several researchers for many years.
(Yang and Kirchhoff, 2006) decomposed the un-
known source words at the test time into morpho-
logical subwords and translated these subwords
that are unknown to the decoder by using phrase-
based (PB) back-off models. For Arabic, (Zoll-
mann et al., 2006; Sadat and Habash, 2006) ex-
ploited morphology by using morphologically-
analyzed and/or tagged resources. (Popovic and
Ney, 2004) presented different ways of improv-

5https://www.cnnturk.com/
6http://www.aljazeera.com.tr/

ing translation quality for inflected languages Ser-
bian, Catalan and Spanish by using stems, suffixes
and part-of-speech information. (Goldwater and
McClosky, 2005) replaced Czech words with lem-
mas and pseudo words to obtain improvements in
Czech-to-English statistical machine translation.
(Minkov et al., 2007) used morphological post-
processing on the target side by using structural
information and information from the source side
in order to improve translation quality for Russian
and Arabic. (Luong et al., 2010) proposed a hybrid
morpheme-word representation in the translation
models of morphologically-rich languages.

The first effort for Turkish morphological
segmentation, (Durgar El-Kahlout and Oflazer,
2010), used morphological analysis to separate
some Turkish inflectional morphemes that have
counterparts on the English side in English-to-
Turkish statistical machine translation. (Bisazza
and Federico, 2009) present a series of segmen-
tation schemes to explore the optimal segmenta-
tion for statistical machine translation of Turkish.
(Mermer and Akin, 2010) worked on unsupervised
morphological segmentation from parallel data for
the task of statistical machine translation.

With the rise of neural machine translation, fit-
ting the whole corpora into a fixed number vocab-
ulary has become a challenge. Despite its suc-
cess over the previous SMT methods, NMT has
the lack of using large vocabularies as the train-
ing/decoding complexity is directly proportional
to the vocabulary size. One solution is to limit
the vocabulary size to a fixed number but this is
a challenging problem especially for morphologi-
cally rich languages.

A well-known and effective method to solve
this problem is the Byte-pair encoding (Sennrich
et al., 2016b) (BPE) which splits words into ”rea-
sonable” number of subwords to satisfy the fix vo-
cabulary criteria. BPE is an unsupervised word
segmentation method originally used as a word
compression algorithm. It iteratively ”merges”
the most frequent character n-grams into subwords
leaving no out-of-vocabulary words. BPE is to-
tally statistical, likelihood-based word splitting
method and involves no means of linguistic infor-
mation. So, researchers exploit morphology once
more to incorporate ”linguistically” separated sub-
word representation when translating from/to mor-
phologically rich languages (Sánchez-Cartagena
and Toral, 2016; Bradbury and Socher, 2016) with
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neural machine translation.
Recently, (Ataman et al., 2017) incorporate both

supervised and unsupervised morphological seg-
mentation methods for Turkish sub-word genera-
tion for Turkish-to-English NMT. They used mor-
phological features for the suffixes in order to de-
crease the sparseness caused by suffix allomorphy.

4.2 Morphological Abstraction of Turkish

The productive morphology of Turkish potentially
implies a very large vocabulary size: noun roots
have about 100 inflected forms and verbs have
much more. These numbers are much higher when
derivations are allowed. For example, one can
generate thousands of words from a single root
even when at most two derivations are allowed.
Turkish employs about 30,000 root words (about
10,000 of which are highly frequent) and about
150 distinct suffixes. As an example to the mor-
phological variation, in our Turkish corpora, the
root word inisiyatif (literally: initiative) occurs to-
tally 258 times in 47 different forms where 25 of
these forms are singletons. Using morphologically
segmented subwords is straightforward and suf-
ficient when Turkish is on the source side of the
translation. In case of Turkish is on the target side,
any process such as segmentation or abstraction
must be done more carefully as in the final rep-
resentation the surface word should be generated.
As a result, the ”best” representation have to be se-
lected that covers the whole information for Turk-
ish words to generate the correct surface form.

In this work, we present an abstraction method
similar to our previous work (Durgar El-Kahlout
and Oflazer, 2010). Our abstraction can gener-
ate back the surface form after translation easily
which allows us to use this method even if Turk-
ish is on the target side. Simply we abstracted all
possible letters in the morpheme suffixes to alle-
viate the differences due to the morphophonemic
processes such as vowel harmony, consonant as-
similation, and elisions. First we apply a morpho-
logical analysis and detect the root and the mor-
pheme of the word, and then on morpheme we re-
place i) vowels a and e to capital A (vowel har-
mony); ii) i, ı, u and ü to capital H; iii) ǧ and k
to K (consonant assimilation) and; iv) t and d to D
(consonant assimilation). In order to combine the
statistics and reduce the data sparseness problem,
abstraction is a better choice for morpheme repre-
sentation as most surface distinctions are manifes-

tations of word-internal phenomena such as vowel
harmony and morphotactics. When surface mor-
phemes are considered by themselves as the units
in BPE, statistics are fragmented.

Table 3 shows examples of Turkish words in
surface form, abstracted word and the gloss in En-
glish with highlights for the common parts. As
seen in table, the first and the second columns
share three morphemes +mAK+DA+DHr (Write
Features) but differentiate on the surface form be-
cause of the morphophonemic processes. After the
abstraction, the morphemes are same as in the En-
glish case.

On top of abstraction, we also kept root +mor-
phemes separated versions of the both surface and
abstracted Turkish words and experimented with
each scenario to understand the effect of abstrac-
tion and separation (Table 4 number (5)). In each
case we also employed BPE for the vocabulary fit-
ting.

Table 4 shows a Turkish sentence with surface
form, abstraction and separation and also BPE ap-
plied on each version. Root word inisiyatif (lit-
erally: initiative) separated by BPE into two or
three segments depending on the length of the
morphemes in the surface and abstracted represen-
tations. In representation (4), we observe that BPE
tends to keep first (root) segment longer than the
surface case because of the abstracted morphemes.
By applying separation over surface or abstraction
form, the effect of BPE is lost and only the un-
known/singleton words are segmented by the al-
gorithm as in the word IGAD in representation (6).

4.3 Word Generation

As stated above, making abstraction and/or seg-
mentation processes on the target side always re-
quires much more attention then the source side.
Generating the correct surface form is crucial for
the end user as they do not need to be aware of the
inner representations. In order to generate the cor-
rect surface form, we employed an in-house mor-
phological generation tool which transforms the
given text with words in the format of root word
and abstracted morphemes, to the correct single-
word form. As a first step, this generation tool has
been trained by a large Turkish corpus and works
by simply creating a reverse-map through mor-
phological segmentation of the corpus. This map
contains root+morpheme sequences as keys and
their corresponding surface word forms as values.
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Word Abstraction Gloss
kahrolmaktadır kahrol+mAKDADHr s/he is depressed
şüphelenilmektedir şüphe+lAnHlmAkDADHr s/he is suspected
partisindeydi parti+sHnDAyDH s/he was at his/her party
sarayındaydı saray+HnDayDH s/he was in her/his palace

Table 3: Turkish abstraction examples

(1) TR: Bu ortak inisiyatif kapsamında Sudan sorununa kapsamlı bir çözüm yer alıyor , IGAD
inisiyatifinde ise yalnızca güneyle sınırlı .
(2) 1+BPE: Bu ortak inisiya@@ tif kapsamnda Sudan sorununa kapsamlı bir çözüm yer alyor ,
I@@ G@@ AD inisiya@@ tifi@@ nde ise yalnızca gün@@ eyle sınırlı .
(3) 1+Abst.: Bu ortak inisiyatif kapsamHnDA Sudan sorunHnA kapsamlH bir çözüm yer alHyor ,
IGAD inisiyatifHnDA ise yalnzca güneylA snrlH .
(4) 3+BPE: Bu ortak inisiyat@@ if kapsamHnDA Sudan sorunHnA kapsamlH bir çözüm yer
alHyor , I@@ GA@@ D inisiyat@@ ifH@@ nDA ise yalnzca gün@@ eylA snrlH .
(5) 3+Sep.: Bu ortak inisiyatif kapsam +HnDA Sudan sorun +HnA kapsam +lH bir çözüm yer al
+Hyor , IGAD inisiyatif +HnDA ise yalnzca güney +lA snr +lH .
(6) 4+BPE: Bu ortak inisiyatif kapsam +HnDA Sudan sorun +HnA kapsam +lH bir çözüm yer al
+Hyor , I@@ G@@ AD inisiyatif +HnDA ise yalnzca güney +lA snr +lH .
English: Within this joint initiative, there is a comprehensive solution to the Sudanese problem,
while in the IGAD initiative it is limited to the south

Table 4: Turkish sentences after different segmentation schemes

While creating this map, disambiguation step of
morphological segmentation is omitted to increase
the coverage, as keeping multiple resolutions for
a surface word form will increase the number of
keys for the reverse-map. Then the reverse-map is
sorted by the number of occurrences of segmenta-
tion in order to select the most common ones.

In our experiments, the reverse-map succeeds
to recover the 92% of the abstracted words into
surface forms successfully. For the rest of the
words, we defined 23 hand-written rules to gen-
erate the words which works with 97% success.
Defining the generation rules are not straightfor-
ward. For example the morphemes attached to the
proper foreign words can be different depending
on how the words are pronounced in Turkish.

5 Machine Translation Setup

All available data shown in Table 2 was tokenized,
truecased (for Turkish) and the maximum sentence
length were fixed to 90 for the translation model.
As different segmentations of Arabic is out of our
scope in this paper, we segmented Arabic prefixes
and suffixes from with MADAMIRA (Pasha et al.,
2014) with ATB parameter.

To produce the abstracted Turkish words, the

first step is the segmentation of morphemes and
then an accurate disambiguation of the mor-
phemes within the sentence. Thus, we first
pass each word through a morphological analyzer
(Oflazer, 1994). The output of the analyzer con-
tains the morphological features encoded for all
possible analyses and interpretations of the word.
Then we perform morphological disambiguation
using morphological features (Sak et al., 2007).
Once the contextually-salient morphological inter-
pretation is selected, we process the abstraction al-
gorithm. On top of the abstraction and segmenta-
tion processes, we also trained BPE models over
the training sets, for each language disjointly.

For the neural machine translation experiments
reported in this paper, comparatively new and
better performing NMT architecture, Transformer
(Vaswani et al., 2017) is used by Marian (Junczys-
Dowmunt et al., 2018) toolkit. System is trained
on a workstation housing 4 NVIDIA titan GPUs.
The GPU memory parameters are set as follows;
mini-batch-fit is checked, workspace reserved to
8000, and maxi-batch to 900. With this setup, 24k
words/s training speed using all the GPUs in paral-
lel is achieved. Transformer -type is employed for
training. Depth of the network is set to 4, learning
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rate is set to 0.0001 with no warmup, and vocab-
ulary size is set to 40k. Mini-batch-fit option is
enabled. Usually it took 4-5 days to converge for
the experiments.

Our early stopping criteria is 20 runs without a
BLEU (Papineni et al., 2002) increase. Moreover,
we use Marian-decoder’s beam search decoding
with size 16. We ensemble two different models
which resulted in the highest two BLEU scores on
the development set during validation runs. We
then merge the subwords back together in the hy-
pothesis as described in 4.3.

5.1 Results

First group of experiments are performed to eval-
uate the effect of the data collected from different
sources. As seen in Table 5, our baseline experi-
ment is trained on the union of in-domain human
translated corpora (BASE) and out-of-domain cor-
pora WIT (OOD1) with a ratio 1:1. We did not
perform with only BASE corpora as it is quite
small to make sense for NMT training. On top of
this experiment, we augmented corpora with ap-
proximately 2M backtranslated corpora (MONO)
with a ratio almost 1:7. Even though this ratio
is above the suggested (Sennrich et al., 2016a),
we observed an improvement of +6 BLEU points.
We argue that if the backtranslated data is prepro-
cessed to satisfy some quality criterion as we de-
scribed in Section 3.3, one can extend training cor-
pora with much more backtranslated data. As a
last experiment, we combined the Subtitles18 data
(OOD2) with 21M sentences with a ratio 1:10 to
the experiment (2). As a result, despite adding
a huge out-of-domain, we again obtained an im-
provement more than +2 BLEU points. The im-
provement on BLEU scores seems lower than pre-
dicted when compared to the size of the data but
we should be aware of that the OOD2 corpora
share very limited part with news domain.

For the second group of experiments, we in-
vestigate the effect of abstraction and segmenta-
tion of Turkish. In experiment (3), we applied
three different segmentation/abstraction represen-
tations. In the first representation (exp. 4), we
separated root words and morphemes into two
(e.g. kahrolmaktadır as kahrol +maktadır), in sec-
ond representation (exp. 5), we only employed
abstraction (e.g. kahrolmaktadır as kahrolmAK-
DADHr) and in the third representation (exp. 6),
we applied both segmentation and abstraction to-

Corpora/System Dev Test
(1) BASE + OOD1 15.70 15.91
(2) 1 + MONO 21.91 21.78
(3) 2 + OOD2 22.76 24.09
(4) (3) + Separated 23.01 24.13
(5) (3) + Abstracted 23.98 24.92
(6) (3) + Abst.+ Sep. 24.11 24.83
Google 19.62 20.70
Yandex 10.91 11.82

Table 5: Arabic-to-Turkish MT BLEU scores due to
the different traning corpora

gether (e.g. kahrolmaktadır as kahrol +mAK-
DADHr). It is noticed that both segmentation and
abstraction processes help to improve the transla-
tion. The improvement caused by segmentation
is expected as supported with previous researches.
The results achieved by this work show that our
novel abstraction representation is a better alter-
native than segmentation to help BPE for Turkish.
We observe almost no improvement with segmen-
tation (some small positive change in development
data) but an improvement of +0.8 BLEU with ab-
straction even with huge training data of 24M sen-
tences. Similarly, combining both segmentation
and abstraction in one representation does not help
the system as much as abstraction does.

As this work is the first attempt for Arabic-to-
Turkish MT to our best knowledge, in order to
compare our systems, we also translated test data
with Google7 and Yandex 8 and listed the scores
in last two rows. The unique word counts (vocab-
ulary) after each representation are shown in Table
6. It is noticed that just separation root words and
morphemes drops the vocabulary more than half
but as the final vocabulary is fitted to 40K this re-
duction does not make a significant impact on the
translation. The small count increases in the ab-
stracted representations comes from the different
morphological disambiguations of the same word.

In the following example, we show both ours
and Google translations of an Arabic sentence.
Even both of the translations are almost perfect,
there is an important difference in handling the
correct tense selection (present vs. past tense).
Our translation selects the more suitable tense than
Google translation which is also closer to the ref-
erence.

7translate.google.com
8ceviri.yandex.com.tr
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Corpora Type # Unique Tokens
Baseline 1026957
Separated 425216
Abstracted 1027991
Abst. + Sep. 426585

Table 6: Type and size of the corpora used in the ex-
periments.

• Source: �H@ 	Qj. 	JÓ ���®m��' 	á�
�Ë@
�èQ�� 	̄ ú 	̄ AJ
k. ñËñ 	Jº�JË @ð ÐñÊªË@ QK
ñ¢�� ú 	̄ �èQëAK.
2005-2001

• Morp-NMT: Çin , 2001-2005 yıllarında
bilim ve teknolojinin gelişiminde büyük
başarılar elde etti .

• Google: Çin 2001-2005 yıllarında bilim
ve teknolojinin gelişmesinde önemli baarılar
elde ediyor

• Reference: Çin 2001-2005 yıllarında bilim
ve teknolojinin gelişmesinde önemli baarılar
elde ediyor

• English: Between 2001 and 2005, China
Recording Science and Technological Inno-
vation

6 Conclusion

This paper focused on machine translation sys-
tem for a new low-resourced language pair Arabic-
Turkish in news domain which is the first effort for
this language pair to the best of our knowledge.
We obtained standard in-domain data by human
translators. As this method is both time consum-
ing and expensive, we exploited publicly available
corpora such as TED talks and subtitle transla-
tions. Later, we backtranslated monolingual Turk-
ish news corpora. Finally, we performed exper-
iments with all of these corpora and reported +8
BLEU increase over the baseline setup for state-
of-the-art neural machine translation system Mar-
ian. On top of these experiments, we also incor-
porate language specific processes such as the ab-
straction of morphemic processes caused by vowel
harmony and consonant assimilation. We showed
an improvement of +0.8 BLEU points with our ab-
straction representation. We also run a morpho-
logical generation tool after the translation process
which covers 98% words correctly. Our future

work includes applying the same abstraction al-
gorithm to Turkish while translating from/to other
European languages.
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Abstract

While transfer learning for text has been very
active in the English language, progress in
Arabic has been slow, including the use of Do-
main Adaptation (DA). Domain Adaptation is
used to generalize the performance of any clas-
sifier by trying to balance the classifier’s ac-
curacy for a particular task among different
text domains. In this paper, we propose and
evaluate two variants of a domain adaptation
technique: the first is a base model called Do-
main Adversarial Neural Network (DANN),
while the second is a variation that incorpo-
rates representational learning. Similar to pre-
vious approaches, we propose the use of proxy
A-distance as a metric to assess the success
of generalization. We make use of ArSentD-
LEV, a multi-topic dataset collected from the
Levantine countries, to test the performance of
the models. We show the superiority of the
proposed method in accuracy and robustness
when dealing with the Arabic language.

1 Introduction

Natural Language Processing (NLP) for Arabic is
challenging due to the complexity of the language.
Additionally, resources in Arabic are scarce mak-
ing it difficult to achieve NLP progress at the pace
of other resource-rich languages such as English
(Badaro et al., 2019). As a result, there is a need
for transfer learning methods that can overcome
the resource limitations. In this paper, we pro-
pose the use of domain adaptation to address this
challenge while considering the task of sentiment
analysis (SA) also referred to as Opinion Mining
(OM).

When training over a dataset with multiple do-
mains, different domains have different data dis-
tributions. This has a negative impact when train-
ing on one domain and testing on another, since
the model would not be able to generalize well.

Although domains within the same dataset have
differences, they share some characteristics. For
example, consider reviews of Amazon products:
reviews of electronic products are different from
book reviews, but these two domains share the
general structure of reviews. We say there exists
a shift in the data’s distribution between the two
domains. To solve this problem, many approaches
were proposed within the field of Domain Adap-
tation (DA) (Ben-David et al., 2010). This field is
receiving a lot of attention in English, a lot more
than its Arabic counterpart.

Solving the data shift problem is of interest for
many reasons. First, it is harder for machine learn-
ing to learn good internal representations on the
Arabic text as opposed to English text. This is
due to the sparsity of the Arabic language, and its
morphological complexity compared to English.
Another reason is the limited amount of avail-
able data, especially for dialects, which causes
deep learning models to perform bad on any task.
Lastly, we are not aware of domain adaptation
techniques for the Arabic language, and thus much
work needs to be done in this area to catch up with
the research in English.

Traditionally, researchers focused their efforts
on extracting features shared between the source
and target domains (Blitzer et al., 2006, 2007;
Pan et al., 2010). After the advancement of
representational learning (Bengio et al., 2013),
several algorithms were introduced. The most
notable approaches are Stacked Denoising Au-
toencoder (SDA) (Vincent et al., 2010; Glorot
et al., 2011). Later, a modified version was in-
troduced by (Chen et al., 2012). This version,
called marginalized Stacked Denoising Autoen-
coder (mSDA), introduced a speedup compared to
the original SDA since the input/output relation
was provided in closed form. After Generative
Adversarial Nets (Goodfellow et al., 2014) were
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introduced, the interest in adversarial training in-
creased. Researchers developed new approaches
that solve the DA problem through adversarial
training, with emphasis on applications in com-
puter vision and limited exploration for NLP. The
most notable approaches are Domain Adversarial
Neural Networks (DANN) (Ganin et al., 2016),
Domain Separation Network (DSN) (Bousmalis
et al., 2016), Adversarial Discriminative Domain
Adaptation (ADDA) (Tzeng et al., 2017) and Con-
ditional Adversarial Domain Adaptation (Long
et al., 2018). Although limited in Arabic, some
efforts have been spent to solve the domain shift
problem (Jeblee et al., 2014; Monroe et al., 2014).

In this paper, we propose and evaluate some ad-
versarial approaches for domain adaptation. The
first is a regular DANN model while the second
is a variant of DANN that incorporates represen-
tational learning. To assess the success of domain
adaptation, we use the proxy A-distance as a ma-
trix (Ben-David et al., 2007). The rest of the pa-
per is organized as follows. Section 2 presents
different approaches for DA. Section 3 introduces
the algorithms to be evaluated, and describes the
dataset. Section 4 presents the experiments and
the results. We finally summarize our work and
conclude the paper in Section 5.

2 Related Work

Domain Adaptation passed through several devel-
opment stages. The first stage was based on fea-
ture engineering methods, while in the later stages,
DA experienced a shift towards deep learning.

Initial approaches included finding words that
behaved similarly in both the source and target do-
mains. Blitzer et al. (2006) called such words
pivot features, and proposed different approaches
for extracting them. He first proposed using the
most frequent common words as pivot features
(Blitzer et al., 2006), and later on proposed us-
ing words with highest mutual information with
the source labels (Blitzer et al., 2007). The ex-
tracted pivot features are then used by the algo-
rithm to augment the initial dataset. This is done
by learning a mapping to a vector space with di-
mensionality smaller than the dimensionality of
the input data. Then, an optimization problem is
solved in the new space, with the objective func-
tion being a similarity measure. Using the re-
sults of the optimization problem, new features are
added to the original dataset. The resulting algo-

rithm is called Structural Correspondence Learn-
ing (SCL) (Blitzer et al., 2006, 2007). A similar
approach was introduced by Gong et al. (2013)
where they suggested finding words, which they
called landmarks, that have similar distributions
over the source and target domains. These land-
marks were used to increase the confusion be-
tween source and target domains, through optimiz-
ing a series of auxiliary tasks. Another point of
view was introduced by Pan et al. (2010) based
on the Spectral Graph Theory. Their approach,
called Spectral Feature Alignment (SFA), aligned
features from source and target domains using bi-
partite graphs. Although these approaches im-
proved accuracies in domain adaptation tasks, the
improvements remained limited.

The hype of deep learning motivated finding
deep learning algorithms that could solve this
problem. An interesting approach by Glorot et al.
(2011) was preparing the input of any classifier
by passing the input through Stacked Denoising
Autoencoders (SDA) (Vincent et al., 2010). The
use of SDAs helps find a new representation of the
data that is domain invariant. This is achieved by
reconstructing the input from stochastically dis-
rupted data (via noise injection). Once the data
is transformed, a linear SVM is trained on the new
representation. This approach was more accurate
than the previous approaches in predicting target
domain labels. However, training SDAs is very
time consuming. That is why Chen et al. (2012)
forced the reconstruction mapping to be linear.
This restriction yielded a closed form output solu-
tion. The new model, called marginalized Stacked
Denoising Autoencoder (mSDA), was able to per-
form as good as the original SDA, and took much
less time for training.

After the publication of GANs (Goodfellow
et al., 2014), many researchers took interest in ad-
versarial training. Ganin et al. (2016) proposed
an adversarial network for domain adaptation. By
introducing a Gradient Reversal Layer (GRL) that
inverts the gradient’s sign during backpropagation,
the Domain Adversarial Neural Network (DANN)
was forced to find a saddle point between 2 er-
rors: a label prediction error (that is to be min-
imized) and a domain classification error (to be
maximized). This approach led to the emergence
of domain invariant features. DANN achieved
state-of-the-art performance in domain adaptation
tasks for two specific applications, namely: senti-
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Figure 1: Proposed Model Architecture

ment analysis and computer vision.
For the Arabic language, the domain adapta-

tion research area is still very limited. Joty et al.
investigated the problem of cross-language adap-
tation for question-question similarity, and pro-
posed a Cross-Language Adversarial Neural Net-
work (CLANN) (Joty et al., 2017). Monroe et
al. used feature space augmentation presented by
(Daume III, 2007) for word segmentation (Monroe
et al., 2014). Both approaches were successful.

3 Proposed Method

A Domain Adaptation task is, in general, a predic-
tion problem where given label data from a source
domain S, we are to predict the labels of a target
domain T with unlabeled data (Ben-David et al.,
2010). In this paper, we focus on domain adapta-
tion for sentiment analysis: Given data with senti-
ment labels from one domain, the model should be
able to predict the sentiment of data coming from
another domain.

Let (Xs, Ys) = {(xi, yi)}Ns
i=1 represent the

source domain input data of Ns observations xi,
where xi could be any textual data (e.g. Bag-Of-
Words, Sequence, etc...), and yi the correspond-
ing label. The domain input data Xt = {xi}Nt

i=1

consists of Nt unlabeled observations. The source
and target observations are concatenated to form
the input data X of Ns + Nt observations to the
model. The architecture of DANN adopted is sim-
ilar to the one in (Ganin et al., 2016). The variant,
shown in Figure 1, is composed of 5 main parts:

• Feature Extractor

• Label Predictor

• Reconstruction Layer

• Domain Predictor

• Gradient Reversal Layer

The above model uses denoising reconstruction
(Vincent et al., 2010; Chen et al., 2012) and ad-
versarial training (Ganin et al., 2016), in order to
learn features that are discriminative towards the
tasks at hand, while at the same time being able to
generalize from one domain to another.

Three loss functions are associated with the net-
work: 1) a loss function related to the classifica-
tion task at hand, denoted as Ltask, 2) a loss func-
tion associated with the domain classifier, which
could be the binary cross-entropy function (or log
loss, etc...) and denoted as Ldomain, and 3) a loss
function associated with the reconstruction of the
input data, denoted as Lrecon, and could be the
mean-squared error (or hinge loss, etc...). The
model tries to minimize the sum of the 3 loss func-
tions, i.e. it wants to find the parameters θ∗ such
that:

θ∗ = argmin
θ
Ltask+λ·Ldomain+µ·Lrecon (1)

where λ and µ are real numbers in the range
[0, 1]. Since the reconstruction error tends to be
larger than the other 2 losses by orders of magni-
tude, its corresponding scalar µ tends to be small.

3.1 Label Predictor
Using the label predictor, the model predicts the
labels of the input data. During training, since
only the source domain data has labels, the input is
sliced in a way that theNs observations associated
with the source domain are passed into the label
predictor. The loss function Ltask depends on the
task at hand (Janocha and Czarnecki, 2017). For
example, one could use the mean squared error for
regression, or the binary cross entropy for classi-
fication. For our purpose, we use the binary cross
entropy.

3.2 Domain Classifier
The model above should be robust towards shift
in data distribution. Said differently, the model
should be able to predict accurately the label of
a given observation even when it comes from the
target domain instead of the source domain. Math-
ematically, this is equivalent to minimizing the
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error on label prediction and maximizing the er-
ror on domain classification. Ganin et al. (2016)
showed that this can be done using a special layer
they called Gradient Reversal Layer (GRL). The
GRL does not affect the network during forward
propagation, but it flips the sign of the gradients
in backpropagation. The domain loss Ldomain
adopted by (Ganin et al., 2016) is the log-loss be-
tween the true domain and the predicted domain.
Other binary loss functions are possible (Janocha
and Czarnecki, 2017). In our approach, we use
the binary cross entropy. The error of the domain
classifier is scaled by λ.

3.3 Denoising Autoencoder
The noised version of X , denoted X̃ , is obtained
from X by using a masking noise, i.e. some ele-
ments of X are set to 0 with probability p (Glorot
et al., 2011). Then, X̃ is propagated through an
encoder network h(·) (Baldi, 2012) to get h(X̃).
The decoder network r(·) reconstructs the input
data X from the encoder’s output h(X̃). A possi-
ble loss function is the mean squared error

Lrecon = ‖r
(
h(X̃)

)
−X‖2 (2)

The error of the autoencoder is scaled by µ.

3.4 Proxy A-distance as a Generalization
Metric

Ben-David et al. (2007) developed a distance met-
ric called proxy A-distance. The lower the dis-
tance, the more similar the domains are. Intu-
itively, this would mean the source and target do-
mains share more common features. Hence, ma-
chine learning models won’t lose too much accu-
racy when trained over source domain and tested
over the target domain.

Let D and D′ be 2 probability distributions de-
fined over a domain χ, and a hypothesis class A.
The A-distance of D and D′ is defined as

dA(D′,D′) = 2 sup
A∈A
|Pr
D
[A]− Pr

D′
[A]| (3)

Intuitively, this is equivalent to finding the max-
imum L1 distance between the 2 probability dis-
tributions D and D′. Since computing this metric
is intractable, Ben-David et al. (2007) proposed a
way to approximate it from finite samples as fol-
lows: a linear SVM is trained to discriminate be-
tween the 2 domains, then the error ε, called gen-
eralization error, is used to compute a proxy of the

A-distance d̂A = 2(1−2ε). This proxy A-distance
(PAD) can then be used to represent the distance
between the 2 domains.

4 Experiments and Results

To test the effectiveness of the proposed approach,
we conduct a 5-point sentiment classification on
ArSentD-LEV1 (Baly et al., 2018), once using the
country of origin of the tweet as domain, and once
the category to which the tweet belongs. We then
show the effect of the data size on the performance
of the adaptation algorithms. We start by describ-
ing the available dataset, then we describe each ex-
periment alongside its results and we include some
insights.

Figure 2: Topic Distribution of Tweets in ArSentD-
LEV

4.1 Dataset Description and Experiment
Setup

ArSentD-LEV is a multi-domain dataset contain-
ing almost 4,000 tweets collected equally from the
4 Levantine countries: Jordan, Lebanon, Palestine
and Syria. For each tweet, the following labels
are available: the country of origin, the sentiment
conveyed by the tweet on 5-point scale (from very
negative to very positive), the way of expressing
the sentiment (explicit vs implicit) and the cat-
egory to which the tweet belongs. The tweets
were divided into 5 categories: politics, personal,
sports, religious and other. The distribution of the
tweets amongst these categories is shown in figure
2.

1The dataset is publicly available at http:
//oma-project.azurewebsites.net/ArSenL/
ArSenTD_Lev_Intro
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Following the approach used by (Chen et al.,
2012; Ganin et al., 2016), we extract from the
dataset the 5,000 most frequent unigrams and bi-
grams, as was adopted in (Ganin et al., 2016) for
English. We then form, using these unigrams and
bigrams, a bag-of-words matrix that will be used
as input data for the learned models. Although
many models represent text better (e.g. sequence
models, tree models, etc...) we limit ourselves to a
simpler model to show the improvement by the do-
main adaptation technique rather than by the text
model.

The different experiments evaluated the perfor-
mance of four models. A Linear SVM was used
as a baseline and representative of feature based
models. For the deep learning models, we con-
sider a fully-connected neural network (Rumelhart
et al., 1988) consisting of a hidden layer of 100
neurons and a label predictor of size 2. The setup
of DANN is similar to that in (Ganin et al., 2016).
The hidden layer is composed of 100 neurons, and
the label predictor is of size 2. The domain clas-
sifier of DANN (of size 2) is preceded by a GRL.
The proposed model is identical to the description
in section 3. All neural networks were trained us-
ing ADAM optimizer (Kingma and Ba, 2014) us-
ing a learning rate of 10−3.

Source Target SVM NN DANN Prop

Jordan
Lebanon 30 27.5 29 30
Palestine 33.5 33 34.5 35
Syria 30.5 31.5 32 33

Lebanon
Jordan 32 28 29 32
Palestine 35 25.5 31 35
Syria 30.5 33 37 37.5

Palestine
Jordan 29.5 31 32 32.5
Lebanon 32 29.5 31 31
Syria 37.5 21.5 28.5 27.5

Syria
Jordan 32.5 32 30.5 32
Lebanon 35 31.5 35 35.5
Palestine 37 28 31.5 37.5

Table 1: Accuracies of linear SVM, NN, DANN and
the proposed approach for Cross-Country adaptation
on ArSentD-LEV. We can see that the proposed vari-
ant outperforms other models in almost all DA tasks.

4.2 Evaluation for Cross Country Adaptation

For this experiment, we evaluate the adaptation
task between tweets from different countries. This
means the source domain will consist of tweets

from one of the 4 Levantine countries, and the
target domain will consist of tweets coming from
other countries. We thus have a total of 12 adap-
tation tasks. Baly et al. showed that Twitter is
used for different purposes in different countries
(Baly et al., 2017), which presents an additional
challenge.

The result of the domain adaptation tasks are
shown in Table 1. The proposed method outper-
formed all other models in most of the adapta-
tion tasks. Although many real-life applications
showed that traditional machine learning models
are usually better when the available data is lit-
tle (Cortes and Vapnik, 1995; Goodfellow et al.,
2016), the proposed model was able to outperform
the linear SVM in most of the tasks in our exper-
iment. This means it was able to extract useful
representation from the data. The model was also
able to outperform DANN, which shows that the
representational learning provides intrinsic repre-
sentation of the data.

4.3 Evaluation for Cross Topic Adaptation

In this second experiment, we consider the task of
adapting tweets from different topics. ArSentD-
LEV (Baly et al., 2018) contains 5 classes for
topic: politics, personal, religious, sports and
other. This means we have a total of 20 tasks.
The models evaluated are the linear SVM, DANN
and the proposed model. The models’ structure is
identical to the one defined in section 4.2.

The results of the experiment are shown in Table
2. The behavior of the algorithms is significantly
different in these categories. This is caused by the
unbalanced data distribution amongst the different
topics, as can be seen in Figure 2. We can see that
whenever the data is very limited, the linear SVM
outperforms the deep learning models. This is ex-
pected since neural networks cannot learn well the
underlying representation when the data is scarce.

Looking at the radar plot in Figure 3, we can
find the following interesting property. The higher
the PAD distance between the source and target
domains, the better the performance of the pro-
posed model. This can be related to the fact that
the proposed model tries to find a hidden represen-
tation that combines features from both source and
target domains, i.e. decrease the distance between
the 2 domains. Whenever the distance is low, the
proposed model can not thus decrease it much fur-
ther.
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Source Target SVM DANN Prop

Politics

Personal 29.5 28.7 33.3
Religious 20.5 20.3 25.3
Sports 26.8 35.1 35.1
Other 16.1 22.5 24.2

Personal

Politics 37.5 41.7 36.8
Religious 19 22.8 23.4
Sports 34 26.8 25.8
Other 40.3 33.8 35.4

Religious

Politics 16.8 15.5 15.5
Personal 26.4 24.1 26.1
Sports 28.8 25.8 26.8
Other 48.4 30.6 27.4

Sports

Politics 41.4 36.4 30.7
Personal 28.4 25.3 24.5
Religious 16.5 20 19
Other 33.8 35.5 35.5

Other

Politics 20.5 23.2 23.2
Personal 28.4 30.3 24.9
Religious 53.2 41.8 43
Sports 26.8 23.7 27.8

Table 2: Accuracies of linear SVM, DANN and the
proposed approach for Cross-Topic on ArSentD-LEV.
We can see that the SVM and the proposed variant are
performing better than DANN, with SVM performing
better when available data is little.

Figure 3: Proxy A-distance Between Different Do-
mains. This radar plot shows the proxy A-distances
between the different domains. The closer the vertex of
a combination to the center, the closer the 2 domains.

4.4 Performance with Limited Data Size

To test the limitation of the proposed approach
with data size, we consider the task where the
source domain is ”Politics” and the target domain
is ”Personal”, since the available data is larger than
the data available for other tasks. We then start by
gradually increasing the size, and test the perfor-
mance of the model with each dataset size. Look-
ing at Figure 4, we can see that the performance of
the proposed method is better than that of DANN
at all sizes. This confirms our assumption that
DANN with SDA learns a better representation
through the incorporation of autoencoder. In con-
trast, DANN focuses on the discriminative task at
hand, and thus fails to generalize. We also have a
generally increasing trend which comes from the
fact that more data is available, hence the models
are able to learn better features.

Figure 4: DANN and Proposed Method Performance
vs Data size. We can see that the proposed variant out-
performs DANN at all data sizes, and learns more with
the increase in data size.

5 Conclusion

In this paper, we presented the first application of
domain adaptation to the Arabic language. Al-
though there exists work in English for domain
adaptation, no work exists for Arabic. We consid-
ered in this paper the Domain Adversarial Neural
Network (DANN) (Ganin et al., 2016) and pro-
posed a variant that incorporates into DANN a
stacked denoising autoencoder (SDA). The exper-
iments and results provided several insights. We
observed that integrating a reconstruction loss into
DANN helped the model learn a better latent rep-
resentation. This proved useful in all experiments,
especially when the available data is little. These
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observations are consistent with what has been ob-
served in English. The success of domain adap-
tation suggests the possibility of usage of DA to
bridge the gap between different dialects of the
Arabic language. Future work includes testing DA
techniques to more Arabic dialects, trying other
domain adaptation algorithms in Arabic, develop-
ing new domain adaptation techniques, evaluating
the DA tasks using better text representation (e.g.
sequence models...) and integrating transfer learn-
ing techniques in the models (Ng et al., 2015).
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Abstract 

The World Wide Web has become a 

fundamental resource for building large text 

corpora. Broadcasting platforms such as news 

websites are rich sources of data regarding 

diverse topics and form a valuable foundation 

for research. The Arabic language is 

extensively utilized on the Web. Still, Arabic 

is relatively an under-resourced language in 

terms of availability of freely annotated 

corpora. This paper presents the first version 

of the Open Source International Arabic 

News (OSIAN) corpus. The corpus data was 

collected from international Arabic news 

websites, all being freely available on the 

Web. The corpus consists of about 3.5 million 

articles comprising more than 37 million 

sentences and roughly 1 billion tokens. It is 

encoded in XML; each article is annotated 

with metadata information. Moreover, each 

word is annotated with lemma and part-of-

speech. The described corpus is processed, 

archived and published into the CLARIN 

infrastructure. This publication includes 

descriptive metadata via OAI-PMH, direct 

access to the plain text material (available 

under Creative Commons Attribution-Non-

Commercial 4.0 International License - CC 

BY-NC 4.0), and integration into the 

WebLicht annotation platform and 

CLARIN’s Federated Content Search FCS. 

1 Introduction 

The Arabic language is spoken by 422 million 

people, making it the fourth most used language on 

the Web1. Its presence on the Web had the highest 

                                                           
1 http://www.internetworldstats.com/stats7.htm 

growth of the ten most frequent online languages 

in the last 18 years. However, a few years ago, 

Arabic was considered relatively an under-

resourced language that lacks the basic resources 

and corpora for computational linguistics, not a 

single modern standard Arabic tagged corpus was 

freely or publicly available. Since then, major 

progress has been made in building Arabic 

linguistic resources, primarily corpora (Zeroual 

and Lakhouaja, 2018a); still, building valuable 

annotated corpora with a considerable size is 

expensive, time-consuming, and requires 

appropriate tools. Therefore, many Arabic corpora 

builders produce their corpora in a raw format. 

For building the Open Source International 

Arabic News (OSIAN) corpus, the typical 

procedures of the Leipzig Corpora Collection were 

utilized. Furthermore, a language-independent 

Part-of-Speech (PoS) tagger, Treetagger, is adapted 

to annotate the OSIAN corpus with lemma and 

part-of-speech tags. 

The prime motivation for building OSIAN 

corpus is the lack of open-source Arabic corpora 

that can cope with the perspectives of Arabic 

Natural Language Processing (ANLP) and Arabic 

Information Retrieval (AIR), among other research 

areas. Hence, we expect that the OSIAN corpus 

can be used to answer relevant research questions 

in corpus linguistics, especially investigating 

variation and distinction between international and 

national news broadcasting platforms with a 

diachronic and geographical perspective. 

After this introduction, the remainder of the 

paper is structured as follows: In section 2, we 

highlight the state-of-the-art of web-crawled 

OSIAN: Open Source International Arabic News Corpus - 

Preparation and Integration into the CLARIN-infrastructure 
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corpora of the Arabic language. Further, the 

methodology and tools used to build the OSIAN 

corpus are presented in Section 3. In Section 4, the 

OSIAN corpus is described in more detail, yet, 

some data analyses are performed and discussed. 

Finally, Section 5 contains some concluding 

remarks and future work. 

2 Literature review 

The World Wide Web is an important source for 

researchers interested in the compilation of very 

large corpora. A recent survey (Zeroual and 

Lakhouaja, 2018b) reports that 51% of corpora are 

constructed based, totally or partially, on Web 

content. Web corpora continue to gain relevance 

within the computational and theoretical 

linguistics. Given their size and the variety of 

domains covered, using Web-derived corpora is 

another way to overcome typical problems faced 

by statistical corpus-based studies such as data-

sparseness and the lack of variation. 

The web corpora continue to gain relevance 

within the computational and theoretical 

linguistics. Given their size and the variety of 

domains covered, using web-derived corpora is 

another way to overcome typical problems faced 

by statistical corpus-based studies such as data-

sparseness and the lack of variation. Besides, they 

can be used to evaluate different approaches for the 

classification of web documents and content by 

text genre and topic area (e.g., (Chouigui et al., 

2017)). Furthermore, web corpora have become a 

prime and well-established source for 

lexicographers to create many large and various 

dictionaries using specialised tools such as the 

corpus query and corpus management tool Sketch-

Engine (Kovář et al., 2016). Moreover, some 

completely new areas of research, for which they 

deal exclusively with web corpora, have emerged. 

Indeed, the aim was to build, investigate, and 

analyse corpora based on online social networks 

posts, short messages, and online forum 

discussions. 

Publicly available Arabic web corpora are quite 

limited, which greatly impacts research and 

development of Arabic NLP and IR. However, 

some research groups (Zaghouani, 2017) have 

shown potentials in building web-derived corpora 

in recent years. Among them are: 

                                                           
2 https://sites.google.com/site/motazsite/corpora/osac 
3 https://www.sketchengine.co.uk/ 

• Open Source Arabic Corpora2 (OSAC) 

(Saad and Ashour, 2010): It is a collection of 

large and free accessible raw corpora. The 

OSAC corpus consists of web documents 

extracted from over 25 Arabic websites 

using the open source offline explorer, 

HTTrack. The compilation procedure 

involves converting HTML/XML files into 

UTF-8 encoding using “Text Encoding 

Converter” as well as removing the 

HTML/XML tags. The final version of the 

corpus comprises roughly 113 million 

tokens. Besides, it covers several topics 

namely Economy, History, Education, 

Religion, Sport, Health, Astronomy, Law, 

Stories, and Cooking Recipes. 

• arTenTen (Arts et al., 2014): It is a member 

of the TenTen Corpus Family (Jakubíček et 

al., 2013). The arTenTen is a web-derived 

corpus of Arabic crawled using Spiderling 

(Suchomel et al., 2012) in 2012. The 

arTenTen corpus is partially tagged. i.e., one 

sample of the corpus, comprises roughly 30 

million, is tagged using the Stanford Arabic 

part-of-speech tagger. While, another 

sample, contains over 115 million words, is 

tokenised, lemmatised, and part-of-speech 

tagged using MADA system. All in all, the 

arTenTen comprises 5.8 billion words but it 

can only be explored by paying a fee via the 

Sketch Engine website3. 

• ArabicWeb16: Since 2009, the ClueWeb09 

web crawl (Callan et al., 2009), that includes 

29.2 million of Arabic pages, was considered 

the only and largest Arabic web crawl 

available. However, in 2016, a new and 

larger crawl of today’s Arabic web is 

publicly available. This web crawl is called 

ArabicWeb16 (Swuaileh et al., 2016) and 

comprises over 150M web pages crawled 

over the month of January 2016. In addition 

to addressing the limitation of the 

ClueWeb09, ArabicWeb16 covers both 

dialectal and Modern Standard Arabic. 

Finally, the total size of the compressed 

dataset of ArabicWeb16 is about 2TB and it 

is available for download after filling a 

request form4. 

• The GDELT Project5 is a free open platform 

for research and analysis of the global 

4 https://sites.google.com/view/arabicweb16 
5 https://www.gdeltproject.org/ 
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database. All the datasets released are free, 

open, and available for unlimited and 

unrestricted use for any academic, 

commercial, or governmental use. Also, it is 

possible to download the raw datafiles, 

visualize it, or analyse it at limitless scale. 

Recently, the GDELT Project is starting to 

create linguistic resources. In fact, 9.5 billion 

words of worldwide Arabic news has been 

monitored over 14 months (February 2015 to 

June 2016) to make a trigram dataset for the 

Arabic language. Consequently, an Arabic 

trigram table of the 6,444,208 trigrams that 

appeared more than 75 times is produced6. 

It is worth mentioning that larger corpora in the 

region of billions of words are usually created by 

downloading texts from the web unselectively 

with respect to their text type or content. 

Therefore, the content of such corpora cannot be 

determined before their construction, thus, it is 

necessary to filter, clean, and evaluate it 

afterwards. 

3 Methodology and tools 

In this section, we describe the crawling, 

processing and annotation tasks alongside with the 

tools used. 

3.1 Data acquisition 

In a first step the data needs to be crawled from the 

World Wide Web. Since the crawled data are often 

duplicated or in other ways problematic, they need 

to be cleaned and filtered. Therefore, the following 

processing steps were executed. 

3.1.1 Leipzig Corpora Collection 

The Leipzig Corpora Collection (LCC) (Goldhahn 

et al., 2012; Quasthoff et al., 2014) started as 

“Projekt Deutscher Wortschatz7” in the Nineties as 

a resource provider for digital texts in the German 

language mostly based on newspaper articles and 

royalty-free text material. 

Today, the LCC offers corpus-based 

monolingual full form dictionaries in more than 

200 languages mainly based on online accessible 

text material, divided under several aspects like the 

year of acquisition, text genre, country of origin 

and more. Since June 2006, LCC can be accessed 

at http://corpora.uni-leipzig.de. In addition to 

                                                           
6 https://goo.gl/MZZkDJ 
7 http://wortschatz.uni-leipzig.de 

direct access via a Web interface, LCC data is also 

offered for free download. 

For each word the dictionaries contain: 

• Word frequency information. 

• Sample sentences. 

• Statistically significant word co-occurrences 

(based on left or right neighbours or whole 

sentences). 

• A semantic map visualizing the strongest 

word co-occurrences. 

• Part of speech information (partially). 

• Similar words and other semantic 

information (partially). 

3.1.2 Crawling and processing of data 

For corpus creation, an adapted version of the 

CURL-portal (Crawling Under-Resourced 

Languages8) (Goldhahn et al., 2016) of the LCC 

was utilized. CURL allows creating Web-

accessible and downloadable corpora by simply 

entering URLs into the portal. In order to build a 

balanced corpus of international Arabic news, the 

data have been drawn from a wide range of 

reliable sources around the world. Six million 

webpages were downloaded, three and a half 

million pages which contain Arabic text were 

extracted and sub-corpora for several Arabic 

speaking countries were created. 

The crawling was conducted in March 2018 

using Heritrix, the crawler of the Internet Archive. 

Further processing was carried out according to the 

language independent processing chain described 

in (Goldhahn et al., 2012) and involved steps as 

extracting raw text from the Web ARChive file 

format, sentence separation and removal of non-

sentences using regular expressions. Finally, texts 

were extracted based on Web domain and assigned 

to the respective country. Furthermore, since the 

crawler writes the data in one large file, we 

developed a tool for extracting the texts based on 

the Web domain. For each Web domain, the tool 

extracts and saves each article/page in a single file. 

Finally, these articles are assigned to the respective 

country. A list of the crawled Web domains, the 

number of articles extracted, and the countries 

covered are provided in the Appendix “A”. 

8 http://curl.corpora.uni-leipzig.de/ 
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The number of articles extracted from the 

crawled data is varying from one website to 

another. Some domains were only restricted by the 

short duration of the crawling, whereas others ran 

out of crawlable URLs early due to a low amount 

of crawlable resources, robots.txt-restrictions or 

external links to other domains which were not 

followed. 

3.2 Corpus annotation 

Among the widely used and relevant types of 

corpus annotations are e.g. lemma and part of 

speech. Lemmatization is a basic morphological 

analysis to deal with derivation paradigms, 

whereas part-of-speech tagging is part of a further 

syntactic analyses (i.e., parsing) to determine the 

sentence's syntactic structure. Both annotation 

forms affect the performance of subsequent text 

analysis in NLP and IR. 

For both part of speech tagging and 

lemmatization tasks, we used a previously adapted 

and well-established version of Treetagger for the 

Arabic language (Imad and Abdelhak, 2016). 

Further, we improved this model and retrained it 

using new linguistic resources namely the 

Frequency Dictionary of Arabic (Buckwalter and 

Parkinson 2014). This frequency dictionary 

contains the top 5,000 words that were derived 

from a collection of representative corpora that 

include 30 million words of both written texts and 

transcribed speech. 

A sample of 10,000 words of the corpus has 

been manually checked to evaluate the 

performance of Treetagger and the achieved 

accuracy rate is 95.02%.  

                                                           
9 http://www.ravi.io/language-word-lengths 

4 The OSIAN Corpus 

Instead of using unselected data from the Web, the 

aim of the OSIAN corpus is to build a balanced 

corpus in which the data must be drawn from a 

wide range of reliable and open sources. Therefore, 

this corpus is compiled based on 31 different 

international Arabic news broadcasting platforms, 

all being freely available on the Web. 

We extracted six million webpages. After 

cleaning and filtering, we were left with about 

three and half million articles comprising more 

than 37 million sentences and roughly 1 billion 

tokens. 

4.1 Word length distribution 

The average length of words varies from 7 to 12 

letters in many languages9. According to Mustafa 

(2012), the average length of Arabic words in a 

normal text is five letters. When analyzing the 

OSIAN corpus the length of 36% of the words is 

above six letters, this percentage is increased to 

75% if duplicate words are considered. This makes 

the corpus a good soil to evaluate techniques that 

aim to reduce a word to its base form. 

It is worth mentioning that tokens with length 

superior to 10 letters are not considered since news 

articles contain phrases written without space 

characters between words as well as non-derived 

and concatenated words, such as 

“ توسطيالأوروم ”/Euro-Mediterranean, 

 Electromagnetism, etc. This/”الكهرومغناطيسية“

explains why we found more than two million 

unique tokens that consist of over 11 letters which 

is an irrational result for the Arabic language. 

Word 

length 

Occurrence 

(Unique) 

Percentage Occurrence 

(Duplicated) 

Percentage 

2 4,180 0,03% 113,129,168 12,22% 

3 45,723 0,28% 148,295,530 16,03% 

4 412,528 2,52% 154,159,209 16,66% 

5 1,550,485 9,48% 175,925,523 19,01% 

6 2,877,426 17,59% 133,290,941 14,40% 

7 3,353,777 20,50% 107,877,916 11,66% 

8 2,864,584 17,51% 54,007,298 5,84% 

9 1,919,115 11,73% 20,526,042 2,22% 

10 1,196,370 7,31% 9,072,780 0,98% 

>10 2,137,492 13,06% 9,050,623 0,98% 

Total 16,361,680 100% 925,335,030 100% 

Table 1:  Word length statistics 
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Table 1 displays the percentage of words 

covered in the OSIAN corpus with respect to their 

lengths, including unique and duplicate words. 

4.2 Word frequency list 

Calculating word frequencies enables us to 

indicate the distribution of words across the text 

categories. Besides, it is feasible to produce word 

frequency lists using the tokens’ PoS tags instead 

of their orthographic status. 

Obviously, function words will be at the top of 

the frequency wordlist. Nevertheless, the words 

thematically organized in Table 2 are also among 

the most frequent words. 

In the context of IR and corpus linguistics, many 

of the top frequently words have no value or effect 

on further analyses since they are typical in news 

articles; examples include “العالم” (World: 

F=1,182,181; R=37), “الحكومة” (Government: 

F=667,862; R=73), and “مفاوضات” (Negotiations: 

F=524,035; R=101). However, the words listed in 

Table 2 are a result of the circumstances of the 

Middle East in recent years, FIFA World Cup, and 

the Brexit, which make these words occur 

frequently in various world news. Using LancsBox 

to analyze the corpus data, it was possible to 

calculate frequencies of words that are obvious 

collocates such as “كأس العالم” (World Cup), “ الاتحاد

 ”البيت الأبيض“ and ,(European Union) ”الأوربي

(White House). Moreover, it is also possible to 

calculate statistical information about the 

association, the strength of collocation, and the 

comparative frequencies of word forms in the 

overall data of the OSIAN corpus or in country-

separated data. 

                                                           
10 https://www.clarin.eu/ 

4.3 Corpus format 

The XML-format is used to facilitate the use of the 

corpus. This is the first version of the OSIAN 

corpus which consists of separate directories for 

each country. Furthermore, each directory includes 

the articles in XML format, where the sentences are 

lemmatized and PoS tagged. Moreover, the XML 

files contain metadata to provide information about 

domain names, webpage location, and the date of 

extraction. For more illustration, Figure 1 presents 

a sample of the XML files. 

Note that some Web domains include in their 

URLs the topic of the published articles like the 

sample provided in Figure 1 where the word 

“Science and tech” appeared in the article’s URL. 

This is another feature that can be used to classify 

the articles based on their topics, one among other 

techniques, to prepare them for classification and 

topic detection. Unfortunately, not all the URLs 

include such information; therefore, the topic label 

remains “unknown” till a solution is found (using 

topic detection and tracking methods). 

4.4 CLARIN Integration 

CLARIN10 (Common Language Resources and 

Technology Infrastructure) is a European 

Research Infrastructure established in 2012 and 

took up the mission to create an online 

environment to provide access to language 

resources (in written, spoken, or multimodal form) 

Theme Word Frequency (F) Rank (R) 

Persons 

(Trump, President of USA) 81 608,176 ترامب 

(Salman, King of Saudi) 164 380,086 سلمان 

(El-Sisi, President of Egypt) 687 114,586 السيسي 

Countries 

(Syria) 51 960,732 سوريا 

(United Kingdom) 57 862,156 بريطانيا 

(Qatar) 70 704,457 قطر 

Topics 

(Election) 117 482,688 الانتخابات 

(Brexit) 134 434,376 بريكست 

(World Cup) 188 349,873 كأس العالم 

Organizations 

(NATO) 161 387,174 الناتو 

(European Union) 448 177,383 الاتحاد الأوربي 

(White House) 648 124,762 البيت الأبيض 

Table 2:  Relevant words from the frequency wordlist 
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for the support of scholars in the humanities and 

social sciences, and beyond (de Jong et al., 2018). 

Currently, CLARIN also offers advanced tools to 

discover, explore, exploit, annotate, analyse, and 

combine such data sets wherever they are located. 

Unsurprisingly, a strong focus of CLARIN has 

been laid so far on resources for European 

languages. The integration of more data for non-

European languages will broaden and extend 

possible research questions that users of the 

infrastructure can approach. Among others, the 

CLARIN centre at the University of Leipzig is 

working on expanding available resources for a 

variety of languages with a dedicated focus on 

lesser-resourced ones.  

Based on standard procedures and workflows 

that have been proven effective for “in-house” 

resources, the OSIAN corpus is processed, 

archived and published into the CLARIN 

infrastructure. This publication includes 

                                                           
11 See for example http://hdl.handle.net/11022/0000-0007-

C65C-3 

descriptive metadata via OAI-PMH11, direct access 

to the plain text material (available under Creative 

Commons Attribution-NonCommercial 4.0 

International License - CC BY-NC 4.0), and 

integration into the WebLicht annotation platform 

and CLARIN’s Federated Content Search FCS. In 

the future, the corpus will be made available via the 

KonText advanced corpus query interface for the 

Manatee-open corpus search engine (as used in the 

NoSketchEngine). This will enable compatibility 

with the FCS-QL specification v2.0 and will allow 

querying text and annotation layers such as part of 

speech and lemmas. 

5 Conclusion and future work 

In this paper we presented a new open source 

corpus based on well-known and reliable 

international broadcasting platforms. After 

cleaning and filtering processes, the datasets are 

automatically annotated with lemma and PoS tags. 

<?xml version="1.0" encoding="UTF-8"?> 

<Article num="1"> 

<Source name="BCC"> 

<Date>2018-03-19</date> 

<Location>http://www.bbc.com/arabic/scienceandtech/2014/08/140829_smart_watches_samsung_lg 

</Location> 

<Topic> Science and Tech</Topic> 

<Language>ara</Language> 

</Source> 

<Text> 

 …لذكيةاأعلنت شركتا سامسونغ وإلى جي الكوريتين الجنوبيتين طرح المزيد من الساعات 

</Text> 

<Annotation> 

<Sentence id="1"> 

<Word Surfaceform="أعلنت" PoS="VERB" Lemma=" َأعَْلَن" /> 

<Word Surfaceform="شركتا" PoS="NOUN" Lemma="شَرِكَة" /> 

<Word Surfaceform=" غسامسون " PoS="PN" Lemma="سَامْسُونْغ" /> 

<Word Surfaceform="وإلى" PoS="PRT" Lemma="إلِى" /> 

<Word Surfaceform="جي" PoS="ABR" Lemma="جى" /> 

<Word Surfaceform="الكوريتين" PoS="ADJ" Lemma="  كُورِي" /> 

<Word Surfaceform="الجنوبيتين" PoS="ADJ" Lemma="  جَنوُبِي" /> 

<Word Surfaceform="طرح" PoS="NOUN" Lemma="طَرْح" /> 

<Word Surfaceform="المزيد" PoS="NOUN" Lemma="مَزِيد" /> 

<Word Surfaceform="من" PoS="PRT" Lemma=" ْمِن" /> 

<Word Surfaceform="الساعات" PoS="NOUN" Lemma="سَاعَة" /> 

<Word Surfaceform="الذكية" PoS="ADJ" Lemma="  ذكَِي" /> 

… 

</Sentence> 

… 

</Annotation> 

</Article> 

Figure 1:  A sample of OSIAN corpus encoded in XML format 
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At the moment, this corpus comprises roughly 1 

billion tokens that have been stored in a uniform 

XML format. The XML format of the OSIAN 

corpus will be publicly available for download and 

use in research. In addition, the current version and 

any updates of the OSIAN corpus can be found 

through the CLARIN research infrastructure, 

connecting them to central services such as VLO 

and FCS for metadata and content search. 

In the future, we will extend the OSIAN corpus 

to cover more international Arabic news with a 

diachronic and geographical perspective to make 

the corpus an ideal choice to explore language 

change and variation. Additionally, we will aim to 

improve the accuracy of the used tools as well as 

to adopt new and meaningful forms of annotation. 

Regarding CLARIN-integration, FCS 2.0 and the 

querying of annotation layers is planned to be 

supported. Furthermore, we will explore the usage 

of the OSIAN corpus in corpus linguistics, ANLP, 

and AIR. 
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A Appendices 

Region or 

country 

Web-domain Nb. of 

articles 

International news.un.org 

arabic.euronews.com 

ara.reuters.com 

namnewsnetwork.org 

arabic.sputniknews.com 

693,629 

Middle-east aljazeera.net 

alarabiya.net 

366,211 

Algeria djazairess.com 588,514 

Australia eltelegraph.com 4,614 

Canada arabnews24.ca 

halacanada.ca 

30,135 

China arabic.cctv.com 1,365 

Egypt alwatanalarabi.com 85,351 

France france24.com 74,718 

Iran alalam.ir 344,011 

Iraq iraqakhbar.com 28,248 

Germany dw.com 117,261 

Jordon sarayanews.com 49,461 

Morocco www.marocpress.com 188,045 

Palestine al-ayyam.ps 81,495 

Qatar raya.com 8,986 

Russia arabic.rt.com 57,238 

Saudi Arabia alwatan.com.sa 1,512 

Sweden alkompis.se 33,790 

Syria syria.news 36542 

Tunisia www.turess.com 495,674 

Turkey turkey-post.net 

aa.com.tr 

76,638 

UAE emaratalyoum.com 25,081 

UK bbc.com 10,686 

USA arabic.cnn.com 113,557 

Table 1:  List of crawled web-domains 
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Abstract

Speech acts are the actions that a speaker in-
tends when performing an utterance within
conversations. In this paper, we proposed
speech act classification for asynchronous
conversations on Twitter using multiple ma-
chine learning methods including SVM and
deep neural networks. We applied the pro-
posed methods on the ArSAS tweets dataset.
The obtained results show that superiority of
deep learning methods compared to SVMs,
where Bi-LSTM managed to achieve an accu-
racy of 87.5% and a macro-averaged F1 score
61.5%. We believe that our results are the first
to be reported on the task of speech-act recog-
nition for asynchronous conversations on Ara-
bic Twitter.

1 Introduction

Speech act in linguistics is defined as the ac-
tion that a speaker intends when performing an
utterance such as asking question, recommend-
ing something, greeting or thanking, expressing a
thought or making suggestion. Knowing speak-
ers intention within a conversation is considered
the one of the recent active research in Natural
Language Understanding (NLU); which is called
speech act recognition/classification. Speech act
classification has been utilized in different Natu-
ral Language Processing (NLP) applications, such
as summarization (Zhang et al., 2013; Bhatia
et al., 2014), rumors verification (Vosoughi, 2015;
Vosoughi and Roy, 2016a), hate speech or cyber-
bullying detection (Gambäck and Sikdar, 2017;
Saravanaraj et al., 2016), and in the educational
forum (Bayat et al., 2016).

Speech act classification task is usually treated
as a multi-class classification problem. Most of
researchers tend to use machine learning (ML)
paradigm for the task in order to analyze and uti-
lize the massive amount of data that found in on-
line conversations. They usually apply their ex-
periments to two type of conversations: 1) syn-
chronous conversations, where the conversation
is one-to-one, such as dialogues, chatting, meet-
ings and transcribed phone conversations; and 2)
asynchronous conversations, where the conversa-
tion is one-to-many such as emails, discussion fo-
rums and social media. Existing work on speech
act classification mostly focuses on English lan-
guage, with some focus on other languages such
as German, French and Korean. Moreover, these
studies have been conducted for both synchronous
and asynchronous conversations. Limited studies
have tackled this task for Arabic, and all focus-
ing on synchronous conversations. To the best of
our knowledge, there is no work so far for Arabic
speech act classification for asynchronous conver-
sations, such as that on social media. Twitter has
become a communication medium containing a
massive amount of data suitable for social and be-
havioural studies. Communication between users
in Twitter can be considered as asynchronous con-
versations, within which people post questions,
express feelings, recommend, request, report, or
claim; all of which can be considered speech acts.
Classifying the speech act of tweets can aid in un-
derstanding the intentions behind users posts, an-
alyzing Twitter content, and understanding how
users interact on social media (Vosoughi and Roy,
2016b).
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Recently, an Arabic speech-act and sentiment
corpus (ArSAS) of tweets corpus was released (El-
madany et al., 2018). It contains more than 21K
tweets, annotated with six speech acts. In this pa-
per, this corpus is used to evaluate the effective-
ness of different supervised ML approaches for
speech act classification for Arabic tweets. In our
work, we proposed two approaches based on SVM
and multiple deep learning models to classify Ara-
bic tweets into speech act labels. Our results show
that Bi-LSTM models achieves the highest per-
formance overall and over each of the individual
speech-act classes, where it achieves an accuracy
of 87.5% and a macro-F1 of 0.615.

2 Problem Definition

Linguistically, speech act theory studies the ways
in which the words can be used to carry out ac-
tions rather than transmitting information. The
speech act can be defined as the actions that may
be performed by speakers to carry out their inten-
tions when performing utterances. According to
Searle (Searle, 1975), which is based on Austins
work (Austin, 1975), speech acts can be classified
by their intent of usage and he categorized it into
five categories: Assertive, Directive, Commissive,
Expressive, and Declaration.

The concept of a speech act in Arabic can be
defined in the same manner as in English. How-
ever, a speech act is more profound in the Arabic
rhetoric discipline, which is concerned with the
semantics of stylistic. Rhetoric in Arabic lies be-
tween syntax and semantics and aims to enable the
Arabic speaker to relay his or her intended com-
municative meaning to the listener through the ap-
plication of rhetorical means and eloquent crite-
ria. The speech act as part of Arabic rhetoric is
concerned with the ways of delivering some rele-
vant information with utterance in order to attract
the listeners attention (Abdul-Raof, 2006). In-
terestingly, researchers (Al-Hindawi et al., 2014)
have shown the existence of speech acts in Arabic
prior to the work of Austin and Searle on English
speech acts. They refer to the speech act that is
mentioned in the holy Quran and pointed out that
Arab scholars have seeded the Arabic Speech act
theory even before Austin theory. All the afore-
mentioned examples are written using classical
Arabic; however, our work targets the speech act
in Arabic dialects. For that, we use a domain-
specific taxonomy of six speech act categories

that are commonly seen on Twitter (Vosoughi and
Roy, 2016b), including assertion, recommenda-
tion, expression, question, request, and miscella-
neous. These categories are all derived from Sear-
les taxonomy but modified to make it suitable for
speech acts in Twitter.

3 Literature Review

Extensive research has been conducted on speech
acts classification in different languages using var-
ious techniques. The vast majority of literature
in this field uses either supervised ML techniques
with a variety of lexical, syntactic, contextual, and
semantics features, or adopts deep learning tech-
niques to automatically identify the speech act.

3.1 Trends in Speech Act Recognition

(Cohen et al., 2004) classified English email ac-
cording to the intent of the sender using SVM
classifiers with the use of bi-gram and Part-of-
Speech (POS) tags as features. (OShea et al.,
2010) proposed a novel technique based on func-
tion words (e.g. articles, prepositions, determiners
etc.) that appear in the utterances using decision
tree classifiers. Their results strongly demonstrate
the ability of function words to discriminate be-
tween speech act classes. Bhatia et al. (Bhatia
et al., 2014) used speech act classification to aid
in the summarization of online forum discussion
threads using Nave Bayes and they demonstrated
the effectiveness of speech act labels in summariz-
ing discussion threads. Additionally, (Tavafi et al.,
2013) aimed to determine a domain-independent
classifier that could achieve good results across
all types of conversations (synchronous and asyn-
chronous). They used different ML techniques
such as SVM, Conditional Random Fields (CRF)
and Hidden Markov Model (HMM) with a set
of domain-independent features, including lexical
features and the length of utterances as another
feature. They demonstrated that HMM classi-
fiers achieved the best performance for speech act
classification on different synchronous and asyn-
chronous English conversations.

Similar techniques was applied for speech-act
recgonition for other languages. For example,
(Kim et al., 2011) used a Decision Tree (DT),
SVM and the Maximum Entropy Model (MEM)
with a set of lexical, grammatical and contextual
features for speech act classification tasks using a
Korean dialogue corpus in a schedule management
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domain. They showed that SVM outperformed
other classifiers by achieving accuracy equal to
93%. Similarly, (Ko, 2015) used Korean corpus
to conduct an experiment using SVM and k-NN
classifiers with POS and lexical words as features.
Ko also pointed out the inadequacy of the tf.idf
feature weighting scheme for the task due to the
short length of utterances in comparison to the
documents length. He proposed a new weighting
scheme and showed the effectively of SVM with
the new weighting scheme in speech act classifi-
cation using Korean corpus. Additionally, Bayat
et al. (Bayat et al., 2016) used SVM and a set of
lexical, contextual, and syntactic features to clas-
sify German messages posted on an online forum.
They showed the effect of adding features to SVM
classifiers in order to increase the performance for
the task.

Recently, many researchers have recently ap-
plied deep learning techniques using word em-
beddings to capture speech act of the utterance in
synchronous conversations. This is because deep
learning techniques afford a significant advantage
in capturing the semantics of lexical features (Yoo
et al., 2017). The effectiveness of deep learning
techniques for speech act recognition is evident in
the work of (Cerisara et al., 2018), who proposed
a novel deep neural network model based on Long
Short Term Memory (LSTM) Recurrent Neural
Networks (RNN) and validated this model in three
different languages using synchronous conversa-
tion corpora. They demonstrated that the perfor-
mance of this approach is consistent across these
three languages (with an accuracy of 72%, 98%
and 92% for English, Czech and French, respec-
tively). Similarly, (Khanpour et al., 2016) used
LSTM to classify dialogue acts in open-domain
conversations. They reported that the word em-
bedding parameters, dropout regularization, decay
rate and number of layers have a significant im-
pact on the final systems accuracy. (Yoo et al.,
2017) applied a CNN to capture speech acts on
Korean dialogues corpus. Their model has ob-
tained a high accuracy (89%) in the speech act
recognition task. (Kim and Kim, 2018) proposed
an integrated neural network model based on CNN
for identifying speech acts, predictors, and sen-
timents of dialogue utterances. They concluded
that the integrated model can help in increasing
the performance of intention identification. (Lee
and Dernoncourt, 2016) applied both RNN and

CNN on three different synchronous conversations
datasets. They stated that the CNN model outper-
formed the LSTM model for all datasets by a very
small margin.

Recently, more attention was directed to speech
act classification for tweets as a kind of asyn-
chronous conversations. (Zhang et al., 2011) pro-
posed a set of word-based and character-based
features to recognise the speech acts of tweets
in order to analyze tweeters behavior collectively
or individually. They suggested word-based fea-
tures composed of a set of N-grams, abbreviations,
acronyms, vulgar and opinion words, emoticon,
and Twitter-specific features. SVM was used for
this task, and showed a weighted-average F1 value
of nearly 0.70. Another work by (Vosoughi and
Roy, 2016b) explored speech act recognition on
Twitter by training SVM, Naive Bayes, decision
tree and logistic regression classifiers with a set of
semantic and syntactic features. Their approach
in features engineering is similar to (Zhang et al.,
2011), though they added the dependency sub-
trees and POS tags to their syntactic features set.
They achieved a performance with a weighted-
average F1 score equal to 0.70, which is similar
to the results of (Zhang et al., 2011). Further-
more, they also applied their speech act classi-
fier to detect rumors on Twitter based on assertion
speech act detection in tweets (Vosoughi, 2015).
Another work by (Joty and Hoque, 2016) applied
deep learning techniques by proposing a model
that used LSTM and RNNs for speech acts mod-
eling showed the effectiveness on asynchronous
conversations, such as emails and forums.

3.2 Arabic Speech Act Recognition

Much less attention was directed to speech act
classification for Arabic. Only limited amount
of work exist in literature, but only for classify-
ing speech act in Arabic synchronous conversa-
tions. One of the earliest works in this area is
(Graja et al., 2013) who used CRF to perform a
semantic labelling task for spontaneous speech in
Tunisian dialects by using the TuDiCol corpus.
Another work, (Elmadany, 2016; Elmadany et al.,
2016) utilized the JANA corpus to solve the issue
of automatic dialogue act classification for Egyp-
tian Arabic dialect using SVM. Also, (Sherkawi
et al., 2018) applied different machine learning
techniques on a small Arabic corpus. Their cor-
pus is relatively small and written in MSA.
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Recently, a new corpus of Arabic tweets (Ar-
SAS) annotated speech-act was released (El-
madany et al., 2018), which is the first to model
speech-act in asynchronous conversations for Ara-
bic. Nonetheless, no work has been published on
this data yet. In this paper, we utilise the Ar-
SAS dataset for speech-act classification of Ara-
bic tweets. We believe we are the first exploring
speech act classification for Arabic asynchronous
conversations.

4 Methodology

We propose two different approaches for classify-
ing Arabic tweets into pre-defined speech act cat-
egories: 1) SVM with a set of syntactic and se-
mantic features, and 2) Deep learning with word
embedding using different neural network archi-
tectures.

4.1 Support Vector Machine Model

SVM has demonstrated significant performance
in most of the related work for speech act clas-
sification (Cohen et al., 2004; Elmadany, 2016;
Hemphill and Roback, 2014; Kim et al., 2011;
Ravi and Kim, 2007; Zhang et al., 2013; Tavafi
et al., 2013; Zhang et al., 2011; Vosoughi, 2015;
Ko, 2015). In preliminary experimentation using
simple bag-of-words as features, we found SVM
to be superior to other basic ML methods includ-
ing Naive Bayes, k-NN, RF and DT. Thus, it was
chosen for further experiments with additional set
of features.

4.1.1 Features Selection
Based on literature, we extracted multiple set of
features from tweets to model speech act. We
grouped the features into three groups: lexical,
syntactic, and structural features.

Lexical features: This is simply the words n-
grams in the tweet text. We used uni-gram, bi-
gram and tri-gram phrases. These features were
extracted after applying preprocessing to the text,
including character normalisation to the different
forms of the Arabic letters {ø , Z , �è , @} and dia-
critics removal (Darwish and Magdy, 2014).

Syntactic features: These features represent
the syntactic style of the text of the tweet, and it
include four sets of features: punctuation marks,
Twitter special characters, Emojis, and Links.
Binary features representing specific punctuation
such as question and exclamation marks are set to

one when appear, since they can be indicative to
specific speech act classes such as expressions, re-
quests or question. In addition, the rest of punctu-
ation marks are combined and added as additional
binary features to indicate the appearance of any
other punctuation marks in the tweet. Twitter spe-
cial characters such as presence of hashtags (#)
and mentions (@) were also used as binary fea-
tures. Hashtags might be an indicative feature of
some speech act classes such as assertion, where
user might use hashtags to announce something.
In addition, emojis are usually used in tweets to
communicate specific feelings thus it was added
as an additional feature. Finally a binary feature
indicating the presence of links in the tweets was
also used.

Structural features: These set of features rep-
resent the structural form of the sentence, and it
includes: (1) The length of the tweet in charac-
ters and words, which was shown previously to be
a useful feature for speech act recognition (Zhang
et al., 2013; Tavafi et al., 2013; Elmadany, 2016).
(2) POS tags of the words in the tweets, which has
been shown to be an effective features in speech
act recognition for English (Zhang et al., 2013;
Vosoughi and Roy, 2016b). We used FARASA
POS tagger 1 for extracting the POS tags. We
modified the tagger to include hashtags, URLs
and emojis as tags within the sequence. Then,
we added uni-gram, bi-gram and tri-gram PoS se-
quences to the features vector for each tweet.

4.2 Deep Learning Approach

In this paper, we implemented different variants of
deep learning neural network in order to determine
the most effective type of neural network for the
task of Arabic speech act recognition. Two vari-
ants of deep learning approaches were considered
in this task using different architectures: RNN in
particular LSTM and BiLSTM; and CNN. In addi-
tion, several combinations of neural networks vari-
ants have been applied for this task such as CNN
on top of LSTM, CNN on top of BiLSTM, LSTM
on top of CNN, and BiLSTM on top of CNN.

A skip-gram word2vec embedding have been
used to represent the words in each tweet before
inputting them to any neural network. An Arabic
pretrained word embedding has been utilized for
this work called “AraVec” (Soliman et al., 2017).
AraVec is a skip-gram model trained on 70M Ara-

1http://qatsdemo.cloudapp.net/farasa/
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Speech Acts Examples
Assertion ÕËAªË @ H. AJ. �� ú


	̄ �é»PA ��ÖÏ @ �è 	Q�Ò�JÖÏ @ �éJ. 	j 	JËAK. 	P @ 	Q��«@ð Q	m 	̄ ú
Î¿ : ú
æ�J�Ë@ : ��ðQå��Ë @#
#Sunrise: El-Sisi: I am proud of all the elite who are contributed in the world cup forum

Expression �éKQmÌ'@ 	áÓ ¨Aª ��@
 ú
G. QªË@ ©JK. QË @ 	à


@ Qª ��



@

I feel that Arab revolutions are radiation of freedom
Recommendation qJ ��Ë@ È@ ú
»

Q��Ë h. A�Jm��' �éJËA¢�B@ �èQºË@
Italian football needs Tukey Al-Shaikh

Request ��
KA �®mÌ'@ PAê 	£B
 XA� 	®ÊË ø
 Y�J 	JÓ ÉÒªK. I. ËA£


@ ÕË AªË @ H. AJ. �� ø
 Y�J 	JÓ YªK.

After the world cup forum, I request to do a forum to reveal truths
Miscellaneous ú


	̄ A ��Ë@ YJ.« 	àA¾Ó I. ªÊK 	áºÜØð hC� YÒm× 	àA¾Ó I. ªÊK 	áºÜØ 	àAÒJÊ� YJËð
Walid Suliman can play instead of Muhammad Salah or possibly instead of Abdul-Shafy

Table 1: Example tweets of different speech acts categories in the ArSAS dataset

bic tweets containing 204K unique words and 300
dimensions.

5 Experimental Setup

5.1 Dataset

We utilized the recently published tweets cor-
pus “Arabic Speech Act and Sentiment” (ArSAS)
for our experimentation (Elmadany et al., 2018).
ArSAS contains a large set of 21,081 Arabic
tweets in different Arabic dialects and annotated
by six speech act classes: Assertion, Recom-
mendation, Expression, Question, Request, and
Miscellaneous. The tweets in the corpus covers
20 topics including long-standing topics, events
and entities (celebrities or organization). Table 1
shows few examples of tweets in the corpus with
their corresponding speech act label.

The size of samples in each speech acts class
varies a lot in ArSAS corpus, ranging between 60
samples to 11.7K samples per class. The smallest
two classes are miscellaneous and recommenda-
tion classes that have only 60 and 109 tweets re-
spectively. Therefore, we decided to merge these
two classes into one and called it miscellaneous.
The final distribution of the five classes in the cor-
pus is: expression (11734), assertion (8233), ques-
tion (752), request (183), and miscellaneous (169).

5.2 Classifiers Implementation and Setup

For the SVM classifier, SVM LinearSVC imple-
mented in the SKlearn2 was utilised for our exper-
iments. We examined “One-vs-All” and “One-vs-
One” strategies for SVM, and noticed better per-
formance for the “One-vs-All” implementation,
and thus it was conducted for our experiments.

2https://scikit-learn.org/

Hyper-parameters Choice
Output layer activation function softmax
Cost Function Cross-entropy
Optimizer ADAM
Learning Rate 0.0001
Batch size 50
Epoch size 30
Dropout rate 0.5
LSTM Units 100
CNN filters 2 and 3
CNN features map 32
Pool size 2
LSTM hidden layers 2
B-LSTM hidden layers 2
CNN hidden layers 4

Table 2: Neural network hyper-parameters

For the neural network classifiers, we used
Keras 2.1.33 implementations of the multiple
models we examined. For the training process of
our deep learning models, Table 2 describes the
hyper-parameters we used after multiple iterations
for reaching the optimal performance.

5.3 Evaluation

For measuring the performance of our approaches,
we split the data into five folds and applied 5-fold
cross validation for training and testing. Data are
split into folds over the class level, where we in-
sure that 20% of the samples of each class exists
in each fold. This was essential step to ensure the
presence of samples from the small classes in each
fold.

For evaluation, three scores are applied: accu-
racy, micro F-score, and macro F-score. Accu-
racy and micro-F1 should demonstrate the over-
all performance of the approaches, while macro-
F1 would indicate the average performance of the
approaches over each class individually.

3https://github.com/keras-team/keras
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Macro-F1 Micro-F1 Accuracy
Lexical 0.510 0.840 0.840
Lexical+Syntactic 0.520 0.850 0.850
Lexical+Structural 0.520 0.850 0.860
All features 0.532 0.862 0.865

Table 3: The performance of SVM for Arabic speech act classification using different sets of features

Macro-F1 Micro-F1 Accuracy
CNN 0.540 0.841 0.850
LSTM 0.570 0.850 0.860
BiLSTM 0.615 0.86 0.875
CNN on top of LSTM 0.535 0.850 0.865
CNN on top of BiLSTM 0.558 0.850 0.860
LSTM on top of CNN 0.585 0.860 0.870
BiLSTM on top of CNN 0.600 0.860 0.870

Table 4: Comparison between different deep learning architectures for Arabic speech act classification in term of
macro-averaged F1, micro-F1 and accuracy

6 Results

6.1 SVM Results

Table 3 reports the results obtained when apply-
ing SVM classifier for our task using different
sets of features on the ArSAS dataset with 5-
fold cross-validation. As shown, the performance
of different set of features is almost similar, and
the performance when applying all the set of fea-
tures achieves the best results of accuracy 86.5%,
micro-F1 of 0.862, and macro-F1 of 0.532. While
the overall performance is relatively high, the per-
formance for some of the classes is considerably
low. This could be explained as a reason to the
high imbalance of our classes, where some of the
classes (such as ‘miscellaneous’, ‘requests’, and
‘questions’) are tiny compared to the two ma-
jor classes ‘expression’ and ‘assertion’. Actually,
nearly 90% of the samples in the classes miscella-
neous and request were incorrectly classified.

These results are comparable to the state-of-
the-art in other languages such as English. Com-
paring our work to the work by (Vosoughi and
Roy, 2016b) and (Zhang et al., 2011) for speech
act classification for English tweets, they report in
term of micro F1 (0.69 and 0.70) respectively, and
they also explain this due to the high imbalance
of classes. Our achieved micro-F1 is even higher
0.86. This might indicate the suitability of using
the same techniques —used for English speech act
classification— for the Arabic task.

6.2 Deep Learning Results

Table 4 reports the results obtained when apply-
ing seven different architectures of RNN and CNN
for Arabic speech act classification on the ArSAS
dataset with 5-fold cross-validation. As shown,
the performance of most of the models is close
to those obtained by the SVM models in terms of
accuracy, but consistently higher when measured
using macro-F1. The BiLSTM and the BiLSTM
on top of CNN architectures achieved significantly
higher results in terms of macro-F1 compared to
all the other models, which indicates better per-
formance on the class level. The best performing
model was the BiLSTM model with an accuracy of
87.5%, micro-F1 of 0.86, and macro-F1 of 0.615.
This confirms the effectiveness of using the bidi-
rectional LSTM to capture the context in the tweet,
which the miscellaneous class actually need. Ad-
ditionally, BiLSTM succeeded in recognizing both
question and request classes better than any other
model.

Table 5 shows the performance on the best per-
forming model using BiLSTM on each of the
classes individually. As shown, the performance
over the two large classes ‘assertion’ and ‘expres-
sion’ is high (0.9 and 0.87 F1 respectively) com-
pared to the other classes. The ‘request’ class
achieved the lowest performance (0.2 F1). This
shows the challenge of recognising the speech act
in asynchronous conversations for some of the in-
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Class F1 Score
Assertion 0.90
Expression 0.87
Miscellaneous 0.53
Question 0.57
Request 0.20

Table 5: The performance of best performing BiLSTM
model on each class

Macro-F1 Micro-F1 Accuracy
SVM 0.532 0.862 0.865
Bi-LSTM 0.615 0.860 0.875

Table 6: The best performing SVM model and neural
network architecture on the ArSAS dataset

frequent classes.
While our performance is comparable to perfor-

mance in other languages, we believe there is still
large room for improving the performance. We
hope that our work would be considered as a base-
line for future work on speech act classification for
Arabic.

6.3 Discussion

We explored speech act classification in Twitter
using SVM classifier with sets of lexical, syntac-
tic, and structural features, and using several neu-
ral network architectures with pretrained word em-
bedding for word representation. The best SVM
model with all the extracted features has achieved
53.2% in the term of macro-averaged F1 using 5-
folds cross validation on the ArSAS dataset. After
applying deep learning for the task using variants
of neural network architectures, our experiments
showed that all the suggested architectures have
outperformed the best SVM model with the sets
of features. This highlights the superiority of deep
learning models especially for a highly inflected
language such as Arabic, and in particular Arabic
dialect as present in our tweets dataset. BiLSTM
has achieved 61.5% in the term of macro-averaged
F1, which is 8.3% higher than the best SVM model
as shown in Table 6. This confirms the fact that
deep learning usually performing better even with-
out any feature engineering.

Potentially, the performance of BiLSTM might
improve if these extracted features get fed as an
input to the network, especially the PoS tags. PoS
features might give some structural characteristics
to the neural network.

Moreover, the overall performance was highly
affected by the imbalance distribution for the
classes amongst the corpus. During our experi-
mentation, we examined some solutions for this is-
sue, such as data over sampling, but it did not lead
to improved performance. We believe it might be
useful if there are more new examples for the small
classes, which would potentially enhance the per-
formance of neural networks as well.

Furthermore, ArSAS corpus contains labels for
the type of the topic for each tweet such as long-
standing, entity, and event. We suggest consid-
ering this attribute in implementation by training
different classifier for each type of topics sepa-
rately. It might be better for the classifier to clas-
sify tweets in the same type than classifying tweets
from mixed types.

7 Conclusion

In this paper, we have presented two ML ap-
proaches for speech act classification in Twitter
platform using dialectical Arabic tweets. An SVM
classifier with different sets of lexical, syntactic,
and structural features was proposed. In addi-
tion, a set of different neural network architectures
was examined for the task. For both approaches,
we exploited the recent published Arabic corpus
called “ArSAS” which has more than 21K tweets
that annotated by six different speech acts, that we
decided to squash to only five classes after merg-
ing the smallest two classes into one. Our re-
sults showed that deep learning is a more effective
approach for speech act classification of Arabic
tweets compared to SVM. In particular, the BiL-
STM implementation achieved the highest perfor-
mance especially with the macro-F1 score that was
61.5% compared to only 53.2% for SVM. The best
achieved overall accuracy for BiLSTM and SVM
were comparable with values of 87.5% and 86.5%
respectively.

As a general observation, all the used tech-
niques have showed an acceptable performance,
especially when compared to the current state-
of-the-art for English speech act classification for
asynchronous conversations. Nevertheless, as we
discussed, there is the potential of multiple direc-
tions for improvements that could be explored in
future work.
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Abstract

Sentiment analysis (SA) is one of the most
useful natural language processing applica-
tions. Literature is flooding with many papers
and systems addressing this task, but most of
the work is focused on English. In this pa-
per, we present “Mazajak”, an online system
for Arabic SA. The system is based on a deep
learning model, which achieves state-of-the-
art results on many Arabic dialect datasets in-
cluding SemEval 2017 and ASTD. The avail-
ability of such system should assist various ap-
plications and research that rely on sentiment
analysis as a tool.

1 Introduction

Sentiment analysis (SA) can be defined as the pro-
cess of extracting and analysing the sentiment and
polarity in a given piece of text (Liu, 2012). It
is one of the tasks in the larger natural language
processing (NLP) field. The rapid and wide in-
crease in the use of social media platforms, and
the reliance on online shopping and marketing re-
sulted in a flood of information. Many researchers
started analysing and mining data for the task of
public opinion mining. Sentiment analysis is one
of the vital approaches to extract public opinion
from large corpora of text. Companies can bene-
fit from understanding the feedback of their cos-
tumers and their opinions. Governments as well
can use it to understand the reaction of people to
their policies and actions.

Work on SA started in early 2000s, particularly
with the work of (Pang et al., 2002), where they
studied the sentiment of movies’ reviews. The
work has developed since then and it spanned
different topics and fields such as social media.
SA gained a lot of interest from researchers who
recognised its importance and benefits. However,
most of the work is focused on English whereas

Arabic did not receive much attention until re-
cently, but it still lacks behind due to the many
challenges of the Arabic language; including the
large variety in dialects (Habash, 2010; Darwish
et al., 2014) and the complex morphology of the
language (Abdul-Mageed et al., 2011).

Recently, the world witnessed a strong revolu-
tion in deep learning which was the driving force
for many improvements in many fields. The work
on English NLP started utilising deep learning
models from an early stage, then followed by Ara-
bic NLP. The utilisation of deep learning for Ara-
bic SA started to receive more attention recently
showing significant improvement in performance
(Dahou et al., 2016; Al-Sallab et al., 2015; Alayba
et al., 2018; Al-Smadi et al., 2018).

While there is a considerable amount of work
that studies Arabic SA (Al-Ayyoub et al., 2019),
to the best of our knowledge, there is no exist-
ing open-source tool for Arabic SA that could be
used directly. The only work that we are aware of
is SentiStrength1 (Thelwall et al., 2010), which is
mainly developed for English, but supports other
languages including Arabic. However, it uses a
basic dictionary-based approach that works with
Arabic MSA and terribly fails with dialects which
is the main language used in social media.

In this paper, we present Mazajak2, an Online
Arabic sentiment analysis system that utilises deep
learning and massive Arabic word embeddings.
The system is available as an online API that can
be used by other researchers.

2 Related work

The literature of Arabic SA has many attempts
to tackle the problem, however most of the work

1http://sentistrength.wlv.ac.uk/
#Non-English

2http://mazajak.inf.ed.ac.uk:8000/

192



is based on conventional machine learning algo-
rithms with few attempts to use deep learning.
A recent publication (Al-Ayyoub et al., 2019)
presents a comprehensive survey on Arabic SA.

In (Al-Smadi et al., 2017a), the authors pro-
posed an aspect-based SA system for Arabic ho-
tel reviews, in which they used SVM and recur-
rent neural networks (RNNs). In another work
(Shoeb and Ahmed, 2017), the authors applied
SA on tweets using Naive Bayes (NB) and KNN,
they achieved relatively good results. Al-Ayyoub
et al. (2015) also created a large lexicon of Ara-
bic terms extracted from news articles. Based on
their lexicon, they built an SA system and tested it
on data collected from Twitter. In (Elmasry et al.,
2014), the authors aimed to tackle the problem of
dialects. They built a slang sentimental words and
idioms lexicon (SSWIL) and conducted some ex-
periments using SVM and the new lexicon.

In the realm of social media analysis, the work
in (Abdulla et al., 2013) introduced a dataset of
2000 tweets, which the authors used to conduct an
experiment with lexicon-based and ML-based sys-
tems. They found that combining both approaches
would achieve better results. Abdul-Mageed et al.
(2014) proposed an SA system for social media. In
their work, they experimented and studied a large
variety of features. They also studied the effect
of the dialects and morphological richness of Ara-
bic. Moreover, In (Abdul-Mageed, 2017a,b), the
authors studied the different ways to handle the
Arabic morphological richness for SA. They stud-
ied the effect of segmentation in representing the
lexical input, also they tried to study the weight
and importance of these segments for SA.

In SemEval 2017, a sentiment analysis task was
presented that included Arabic (Rosenthal et al.,
2017). El-Beltagy et al. (2017) were ranked first
in SemEval 2017 task for Arabic SA. They used a
set of hand-engineered and lexicon-based features,
the classifier of choice was a complement NB clas-
sifier. The second rank in the same task was for the
work of Jabreel and Moreno (2017), who intro-
duced a rich set of features that are mostly based
on bag of words (BoW) model in addition to some
features extracted from word embeddings. They
used SVM as their classification algorithm.

Dahou et al. (2016) proposed a set of word em-
beddings to be used for Arabic SA, which was
built using a corpus of 3.4 billion words. They
used a convolutional neural network (CNN) based

system to evaluate their embeddings and the re-
sults were promising. Another use of word em-
beddings was in (Aziz Altowayan and Tao, 2016),
where the authors created their own word embed-
dings and used them as the only features to be
fed to the classifier without any engineered fea-
tures, the results were comparable and slightly bet-
ter than those of other systems.

In (Alayba et al., 2017), the authors presented
their own SA dataset of opinions on health ser-
vices. They built an SA system and it was tested
on the new dataset. Their experiments included
the use of many ML algorithms including CNNs.
Al-Sallab et al. (2015) experimented with differ-
ent deep learning models such as recursive auto-
encoder (RAE), deep belief networks (DBN) and
deep auto-encoder (DAE). They relied on the Ar-
SenL lexicon (Badaro et al., 2014) to build the fea-
ture vectors. In (Al-Smadi et al., 2017b), the au-
thors addressed the aspect-based sentiment analy-
sis (ABSA). In their experiments, they used RNNs
and SVM as classifiers, the results showed that
SVM was superior. Alayba et al. (2018) built
an SA system that is based on a combination of
CNNs and LSTMs. They tested their model on
two datasets, Ar-Twitter and Arabic Health Ser-
vices datasets, where they achieved accuracies
of 88.1% and 94.3% respectively. In (Al-Smadi
et al., 2018), the authors proposed an aspect-based
sentiment analysis system, their model is based on
a Bi-LSTM and conditional random field (CRF).
They tested their model on Arabic hotels’ re-
views dataset, they achieved an F-score of 70%.
Elshakankery and Ahmed (2019) proposed a hy-
brid system for Arabic SA, that utilises lexicon-
based and machine learning based approaches.
In their work, they experimented with multiple
dataset such as ASTD and ArTwitter. They used
different classifiers for the task, which varied
from using conventional machine learning, to deep
learning models.

Among the previous mentioned work, we are
not aware of any released open-source tool for
Arabic SA, which is considered one of the largest
limitations in Arabic NLP. While there are many
Arabic NLP tools for various tasks, including seg-
mentation, POS tagging, and diacritization (Pasha
et al., 2014; Abdelali et al., 2016), the Arabic NLP
research community still lack a tool for sentiment
analysis. In this work, we offer the first open-
source SA tool for Arabic social media .
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Figure 1: Model architecture.

3 Methodology

This section describes the different components
and steps that are used by our system, Mazajak.

3.1 Data Preprocessing

In general, this step is an initial step that aims to
reduce the inconsistencies and normalise the data
into a coherent form so that it can be handled eas-
ily. The steps are mainly based on the work in
(El-Beltagy et al., 2017). In our implementation,
we used the following steps:
• Letter normalisation: unifying the letters that

appear in different forms. We replace {, �
� , �} with {�}, {­} with {£} and {«} with
{©} (Darwish et al., 2014).
• Elongation removal: removing the repeated

letters which might appear specially in social
media data (Darwish et al., 2012).
• Cleaning: removing unknown characters, di-

acritics, punctuation, URLs, etc.

3.2 Text representation

Sentences are represented as two dimensional ma-
trix where each row represents a word, and each
word is represented by its corresponding embed-
ding. We set the size of the embedding D to 300.
In our work, short sentences are padded to match
the longest sentence in the training set.

Word embeddings were created using the
word2vec (Mikolov et al., 2013), the skip-gram ar-
chitecture was used. The embeddings were built
using a corpus of 250M unique Arabic tweets; this
makes it the largest Arabic word embeddings set
when compared to the available AraVec (Soliman
et al., 2017), which is currently the largest set,
built using a corpus of 67M tweets. The tweets
were collected over different time periods between
2013 and 2016 to ensure the coverage of differ-
ent topics. The large and diverse corpus ensures
that many dialects are covered which would help
in reducing the effect of dialectal variation. When
creating the embeddings, the same preprocessing
steps utilised in the SA system were used.

Parameter Value
#LSTM cells 128

Recurrent dropout 20%
Output dropout 20%

#Filters 300
Filter size 3

Pooling size 2
Optimizer Adam

Learning rate 0.0001
Activation ReLU

Table 1: CNN-LSTM model hyper-parameters.

3.3 Model Architecture
The model is built on a CNN followed by an
LSTM. The CNN works as a feature extractor,
where it learns the local patterns inside the sen-
tence and provides representative features. The
LSTM works on the extracted features where the
context and word ordering would be taken into
consideration. The model has been designed after
extensive comparison to existing models in litera-
ture, and has been shown to be the most effective
one among the state-of-the-art models, as demon-
strated in next section. Figure 1 shows the archi-
tecture, the embeddings are fed into the CNN, af-
ter that they are fed to a max-pooling layer, the
reason behind using max pooling is to have the
most important features which conforms with the
fact that sentiment is usually expressed in spe-
cific words. The extracted features are fed into
an LSTM which is followed by a softmax layer
that would give a probability distribution over the
output classes. The hyper-parameters used in our
architecture is shown in Table 1.

4 Model Performance

4.1 Experimental Setup
To examine the effectiveness of our model before
offering it online for public use, we tested the
model on three different datasets. The first is Se-
mEval 2017 task 4-A benchmark dataset (Rosen-
thal et al., 2017), which consists of 6,100 test-
ing tweets and 3,555 training ones. All tweets
are labelled to one of three classes: positive, neg-
ative or neutral. The second dataset is ASTD
benchmark dataset (Nabil et al., 2015), which con-
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Dataset System AvgRec FPN Acc
SemEval (El-Beltagy et al., 2017) 0.58 0.61 0.58

Mazajak 0.61 0.63 0.62
ASTD (Heikal et al., 2018) 0.61 0.71 0.65

Mazajak 0.62 0.72 0.66
ArSAS Mazajak 0.90 0.90 0.92

Table 2: Mazajak performance in sentiment analysis in comparison to the state-of-the-art systems over
three benchmark datasets

sists of 10,006 tweets, 6,691 of them are objective
which means that they are not useful for SA. The
rest are divided over three sentiment classes. The
third dataset is ArSAS (Elmadany et al., 2018), the
largest available dataset for Arabic SA which con-
sists over 21K tweets labelled over four sentiment
classes: positive, negative, neutral, and mixed.
The mixed class has the smallest number of sam-
ples, thus we decided to ignore it. In addition, Ar-
SAS has a confidence value for each label. We de-
cided to keep only the tweets with confidence level
over 50% and ignore the rest. After this step, we
end up with 17,784 tweets in the ArSAS dataset
labelled with three sentiment labels. Both ASTD
and ArSAS datasets have no specific splitting of
the data to test and train; thus, we applied ran-
dom sampling to split both datasets to 80/20% for
train/test respectively.

4.2 Baselines and Evaluation
To ensure having Mazajak achieving state-of-the-
art performance, we compared its effectiveness to
the existing best reported performance on each of
the three datasets. For evaluation, we followed
the same methodology adopted by SemEval 2017
task which uses average recall, FPN and accuracy.
FPN is the macro-average F-score over the posi-
tive and negative classes only while neglecting the
neutral class (Rosenthal et al., 2017). The best per-
forming system in the SemEval 2017 task is the
one described in (El-Beltagy et al., 2017) which
achieved an FPN of 0.61. For the ASTD, the best
reported results are by (Heikal et al., 2018) who
used an ensemble system combining output of
CNN and Bi-LSTM architectures, which achieved
an FPN of 0.71. These two systems are used as
our baselines. For the ArSAS dataset, we are not
aware of any reported results on it yet.

4.3 Classification Performance
Table 2 reports the classification results of our sys-
tem Mazajak and compares it to the state-of-the-

Figure 2: Sentiment feedback form on Mazajak.

art systems for the three benchmark datasets. As
shown in the table, Mazajak model outperformed
the current state-of-the-art models on the SemEval
and ASTD datasets. In addition, it achieved a
high performance on the ArSAS dataset. Our re-
ported scores are higher than current top systems
for all the evaluation scores, including average re-
call, FPN , and accuracy. These results confirm
that our model choice for our tool represents the
current state-of-the-art for Arabic SA.

5 Mazajak Online API

Our Arabic SA model is deployed as an online
system, Mazajak3, and can be accessed online at
“Mazajak.inf.ed.ac.uk:8000”.

The final model hosted online is trained on the
SemEval and ASTD dataset combined4.

Our online tool provides four modes of opera-
tion as follows:
• Text Input: where the user can input any

piece of text into a text-box, and the system
will display the polarity of the sentiment in
the text. This mode allows the user to give

3the word “Mazajak” (���z�), is an Arabic word which
means “your mood”.

4this is different from the experimentation above when we
were comparing the system to state-of-the-art.
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Tweet Sentiment

.
�¤� .
yb�A� A�� As¡  A� ¨nlOf§ ¤d� Cwt�d�A¡ A� ¯w� ¨n`§ negative
¨� ¨�r� ¨l�� Hbl�� Hbl¡ L� ¤ �§zlt�� ¤ r��� ¨� ��dn¡ ¤ Pl� AtK�� Q®� ¨n`§
£ Mwtsbl�¤ 
¯¤d��

negative

Ah§E ¨l�� ¨l� C¤d� TbyV 
wl� ¨� ��d�§ z§A� �n� 
rqy� ¨l�� �� L� positive
Ah� ¨l�C 
qF ©Cd} ��R �y� ¨l�� 
¤Cd�� �� 
��¤ �CwS�� �yR�  wlJ¤ positive

 ¤d� �A� �ytF d`� � A`t�A� d§ws�� d§ ¨l� �wy�� ��A`�� xA� �AyfO� �� Ay�AW§� �¤r�
�A§d�wm�� �� �AWq��

neutral

.­zym� �ry�Ak� d§d� �sky� ��A¡ �� ºA�®��� �w§ ��w� 
nl�� :��ws�AF¤ ��� «d�t� ��w� neutral

Table 3: Examples of some tweets classified using Mazajak.

feedback on the output sentiment using the
form shown in Figure 2. This, in turn, would
help to continuously collect more training
data. The collected data is used periodically
to update our model to improve the system
performance.
• Batch Mode: where the user provides a file

with multiple lines of text, and the system re-
turns back an output file with the correspond-
ing sentiment to each line in the input file.
• Timeline mode: where the user provides a

Twitter account name, and the system will
analyse the sentiment of the tweets in the ac-
count’s timeline. The output is a graph show-
ing the number of the tweets of each of the
classes over time and an overall ratio of the
percentages of the tweets corresponding to
each class as shown in Figure 3.
• Online API: where an API could be down-

loaded to help other research that utilises sen-
timent analysis. The API provides two func-
tions, either getting the sentiment of a sen-
tence or a list of sentences. The API func-
tions are provided in Python, but with a few
lines of coding it can be accessed using other
programming languages.

Table 3 shows some examples of classified
tweets using the tool, these examples show that the
model can handle the dialectal variations.

Our online system would be updated periodi-
cally with new training data and potentially better
preforming models. We aim that Mazajak would
serve the research community in analysing senti-
ment in Arabic text in a simple way, which, as we
hope, would further promote the research in Ara-
bic language.

6 Conclusion

In this paper, we presented Mazajak, the first on-
line Arabic sentiment analysis tool. The system

Figure 3: Twitter timeline analysis sample output.

utilises the advancements in the NLP and deep
learning fields. The model, on which the system
relies, achieves state-of-the-art results on three of
the benchmark datasets for Arabic SA including
SemEval 2017 task, ASTD and ArSAS. The sys-
tem is available as an online API that can be ac-
cessed easily, which would help and ease the work
of other researchers in applications that make use
of sentiment information.

Mazajak is offered for free use for research pur-
poses. For commercial usage, please contact the
authors.

In the future, we hope to improve the model
so it would achieve better results. Also, we look
forward to add more features such as the abil-
ity to handle Arabizi –Arabic written in English
alphabet– and emojis.
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Abstract

In this paper, we present the results and find-
ings of the MADAR Shared Task on Ara-
bic Fine-Grained Dialect Identification. This
shared task was organized as part of The
Fourth Arabic Natural Language Process-
ing Workshop, collocated with ACL 2019.
The shared task includes two subtasks: the
MADAR Travel Domain Dialect Identification
subtask (Subtask 1) and the MADAR Twit-
ter User Dialect Identification subtask (Sub-
task 2). This shared task is the first to target a
large set of dialect labels at the city and coun-
try levels. The data for the shared task was cre-
ated or collected under the Multi-Arabic Di-
alect Applications and Resources (MADAR)
project. A total of 21 teams from 15 countries
participated in the shared task.

1 Introduction

Arabic has a number of diverse dialects from
across different regions of the Arab World. Al-
though primarily spoken, written dialectal Arabic
has been increasingly used on social media. Auto-
matic dialect identification is helpful for tasks such
as sentiment analysis (Al-Twairesh et al., 2016),
author profiling (Sadat et al., 2014), and machine
translation (Salloum et al., 2014). Most previ-
ous work, shared tasks, and evaluation campaigns
on Arabic dialect identification were limited in
terms of dialectal variety targeting coarse-grained
regional dialect classes (around five) plus Mod-
ern Standard Arabic (MSA) (Zaidan and Callison-
Burch, 2013; Elfardy and Diab, 2013; Darwish
et al., 2014; Malmasi et al., 2016; Zampieri et al.,
2017; El-Haj et al., 2018). There are of course
some recent noteworthy exceptions (Bouamor
et al., 2018; Zaghouani and Charfi, 2018; Abdul-
Mageed et al., 2018).

In this paper, we present the results and find-
ings of the MADAR Shared Task on Arabic Fine-

Grained Dialect Identification. The shared task
was organized as part of the Fourth Arabic Natural
Language Processing Workshop (WANLP), collo-
cated with ACL 2019.1 This shared task is the first
to target a large set of dialect labels at the city and
country levels. The data for the shared task was
created under the Multi-Arabic Dialect Applica-
tions and Resources (MADAR) project.2

The shared task featured two subtasks. First
is the MADAR Travel Domain Dialect Identifica-
tion subtask (Subtask 1), which targeted 25 spe-
cific cities in the Arab World. And second is the
MADAR Twitter User Dialect Identification (Sub-
task 2), which targeted 21 Arab countries. All of
the datasets created for this shared task will be
made publicly available to support further research
on Arabic dialect modeling.3

A total of 21 teams from 15 countries in four
continents submitted runs across the two sub-
tasks and contributed 17 system description pa-
pers. All system description papers are included
in the WANLP workshop proceedings and cited in
this report. The large number of teams and sub-
mitted systems suggests that such shared tasks on
Arabic NLP can indeed generate significant inter-
est in the research community within and outside
of the Arab World.

Next, Section 2 describes the shared task sub-
tasks. Section 3 provides a description of the
datasets used in the shared task, including the
newly created MADAR Twitter Corpus. Section 4
presents the teams that participated in each subtask
with a high-level description of the approaches
they adopted. Section 5 discusses the results of
the competition. Finally, Section 6 concludes this
report and discusses some future directions.

1http://wanlp2019.arabic-nlp.net
2https://camel.abudhabi.nyu.edu/madar/
3http://resources.camel-lab.com.
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2 Task Description

The MADAR Shared Task included two subtasks:
the MADAR Travel Domain Dialect Identification
subtask, and the MADAR Twitter User Dialect
Identification subtask.

2.1 Subtask 1: MADAR Travel Domain
Dialect Identification

The goal of this subtask is to classify written Ara-
bic sentences into one of 26 labels representing the
specific city dialect of the sentences, or MSA. The
participants were provided with a dataset from the
MADAR corpus (Bouamor et al., 2018), a large-
scale collection of parallel sentences in the travel
domain covering the dialects of 25 cities from the
Arab World in addition to MSA (Table 1 shows
the list of cities). This fine-grained dialect iden-
tification task was first explored in Salameh et al.
(2018), where the authors introduced a system that
can identify the exact city with an averaged macro
F1 score of 67.9%. The participants in this sub-
task received the same training, development and
test sets used in (Salameh et al., 2018). More de-
tails about this dataset are given in Section 3.

2.2 Subtask-2: MADAR Twitter User Dialect
Identification

The goal of this subtask is to classify Twitter user
profiles into one of 21 labels representing 21 Arab
countries, using only the Twitter user tweets. The
Twitter user profiles as well as the tweets are part
of the MADAR Twitter Corpus, which was cre-
ated specifically for this shared task. More details
about this dataset are given in Section 3.

2.3 Restrictions and Evaluation Metrics

We provided the participants with a set of restric-
tions for building their systems to ensure a com-
mon experimental setup.

Subtask 1 Restrictions Participants were asked
not to use any external manually labeled datasets.
However, the use of publicly available unlabelled
data was allowed. Participants were not allowed
to use the development set for training.

Subtask 2 Restrictions First, participants were
asked to only use the text of the tweets and the spe-
cific information about the tweets provided in the
shared task (see Section 3.2). Additional tweets,
external manually labelled data sets, or any meta
information about the Twitter user or the tweets

Region Country City
Gulf Yemen Sana’a
of Aden Djibouti

Somalia
Gulf Oman Muscat

UAE
Qatar Doha
Bahrain
Kuwait
KSA Riyadh, Jeddah
Iraq Baghdad,

Mosul, Basra
Levant Syria Damascus, Aleppo

Lebanon Beirut
Jordan Amman, Salt
Palestine Jerusalem

Nile Basin Egypt Cairo, Alexandria,
Aswan

Sudan Khartoum
Maghreb Libya Tripoli, Benghazi

Tunisia Tunis, Sfax
Algeria Algiers
Morocco Rabat, Fes
Mauritania

MSA

Table 1: The list of the regions, countries, and cities
covered in Subtask 1 (City column) and Subtask 2
(Country column).

(e.g., geo-location data) were not allowed. Sec-
ond, participants were instructed not to include the
MADAR Twitter Corpus development set in train-
ing. However, any publicly available unlabelled
data could be used.

Evaluation Metrics Participating systems are
ranked based on the macro-averaged F1 scores ob-
tained on blind test sets (official metric). We also
report performance in terms of macro-averaged
precision, macro-averaged recall and accuracy
at different levels: region (Accregion), country
(Acccountry) and city (Acccity). Accuracy at
coarser levels (i.e., country and region in Sub-
task 1; and region in Subtask 2) is computed by
comparing the reference and prediction labels af-
ter mapping them to the coarser level. We follow
the mapping shown in Table 1. Each participating
team was allowed to submit up to three runs for
each subtask. Only the highest scoring run was
selected to represent the team.
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3 Shared Task Data

Next, we discuss the corpora used for the subtasks.

3.1 The MADAR Travel Domain Corpus

In Subtask 1, we use a large-scale collection of
parallel sentences covering the dialects of 25 Arab
cities (Table 1), in addition to English, French and
MSA (Bouamor et al., 2018). This resource was
a commissioned translation of the Basic Travel-
ing Expression Corpus (BTEC) (Takezawa et al.,
2007) sentences from English and French to the
different dialects. It includes two corpora. The
first consists of 2,000 sentences translated into 25
Arab city dialects in parallel. We refer to it as Cor-
pus 26 (25 cities plus MSA). The second corpus
has 10,000 additional sentences (non-overlapping
with the 2,000 sentences) from the BTEC cor-
pus translated to the dialects of only five selected
cities: Beirut, Cairo, Doha, Tunis and Rabat. We
refer to it as Corpus 6 (5 cities plus MSA). An
example of a 27-way parallel sentence (25 cities
plus MSA and English) extracted from Corpus 26
is given in Table 2. The train-dev-test splits of the
corpora are shown in Table 3. Corpus 6 test set
was not included in the shared task.4

3.2 The MADAR Twitter Corpus

For Subtask 2, we created a new dataset, the
MADAR Twitter Corpus, containing 2,980 Twit-
ter user profiles from 21 different countries.

Corpus collection Inspired by the work of
Mubarak and Darwish (2014) we collected a set
of Twitter user profiles that reflects the way users
from different regions in the Arab World tweet.
Unlike previous work (Zaghouani and Charfi,
2018), we do not search Twitter based on spe-
cific dialectal keywords. Rather, we search for
tweets that contain a set of 25 seed hashtags corre-
sponding to the 22 states of the Arab League (e.g.,
#Algeria, #Egypt, #Kuwait, etc.), in addition to
the hashtags: ”#ArabWorld”, ”#ArabLeague” and
”#Arab”. We collected an equal number of pro-
files (175 * 25 = 4,375) from the search results of
each of the hashtags. The profiles were all man-
ually labeled by a team of three annotators. For
each labeled user profile, only the first 100 avail-
able tweets at collection time are kept.

4In (Salameh et al., 2018), the Corpus 6 test set corre-
sponds to the 2,000 sentences from Corpus 26 corresponding
to the Corpus 6’s five cities and MSA.

Dialect Sentence
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P



@

Table 2: An example from Corpus 26 for the English
sentence ‘I’d like a children’s sweater.’

Sentences * Variant Total
Corpus 6 train 9,000 * 6 54,000
Corpus 6 dev 1,000 * 6 6,000
Corpus 26 train 1,600 * 26 41,600
Corpus 26 dev 200 * 26 5,200
Corpus 26 test 200 * 26 5,200

Table 3: Distribution of the train, dev and test sets pro-
vided for Subtask 1.

Corpus annotation Three annotators, all native
speakers of Arabic were hired to complete this
task. They were provided with a list of Twitter user
profiles and their corresponding URLs. They were
asked to inspect each profile by checking if the
user indicated his/her location, checking his/her
tweets, and label it with its corresponding country
when possible. In the context of dialect identifi-
cation, the country label here refers to the Twitter
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Table 4: Three examples from the MADAR Twitter Corpus.

user geopolitical identity with the assumption that
such identity could be expressed either explicitly
through the location indicated in the Twitter bio
section, or implicitly through dialectal and MSA
usage in the tweets. Annotators were instructed
not to rely only on the location provided by the
user, and were invited to use all the extra-linguistic
information available in the profile such as images,
proclamations of loyalty and pride, etc. They were
also allowed to check other sources such as corre-
sponding Facebook profiles, if available, to con-
firm the user’s country. Profiles may be marked
as Non Person, Non Arab or too hard to guess.
To measure inter-annotator agreement, a common
set of 150 profiles were labeled by all annotators.
They obtained an average Cohen Kappa score of
80.16%, which shows substantial agreement.

We discarded all profiles that became unavail-
able after the collection step, as well as profiles
marked as Non Person, Non Arab or too hard
to guess. Our final data set contained 2,980
country-labeled profiles. Three examples from the
MADAR Twitter Corpus are shown in Table 4.

The distribution of the Twitter profiles by coun-
try is given in Table 5. The majority of the users
obtained were from Saudi Arabia, representing
35.91% of the total profiles. Since there were
zero Twitter user profiles from the Comoros in our
dataset, we exclude it from the shared subtask.

Dataset splits and additional features We split
the Twitter corpus into train, dev and test sets.
The split distribution is given in Table 6. Partici-
pants were provided with the pointers to the tweets
together with automatically detected language by
Twitter, as well as the 26 confidence scores of the
Salameh et al. (2018) system for the 26-way clas-
sification task applied per tweet.

Country Count Percentage
Saudi Arabia 1,070 35.91
Kuwait 213 7.15
Egypt 173 5.81
UAE 152 5.10
Oman 138 4.63
Yemen 136 4.56
Qatar 126 4.22
Bahrain 113 3.79
Jordan 107 3.59
Sudan 100 3.36
Iraq 99 3.32
Algeria 92 3.09
Libya 78 2.62
Palestine 74 2.48
Lebanon 66 2.21
Somalia 60 2.01
Tunisia 51 1.71
Syria 48 1.61
Morocco 45 1.51
Mauritania 37 1.24
Djibouti 2 0.07
Comoros 0 0
Total Annotated 2,980 100

Table 5: Distribution of the tweet Profiles by country
label in the MADAR Twitter Corpus.

Users Tweets
Twitter Corpus train 2,180 217,592
Twitter Corpus dev 300 29,869
Twitter Corpus test 500 49,962

Table 6: Distribution of the train, dev and test sets pro-
vided for Subtask 2.
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Team Affiliation Tasks
A3-108 (Mishra and Mujadia, 2019) International Institute of Information Technology (IIIT), Hy-

derabad, India
1,2

ADAPT-Epita (De Francony et al., 2019) Cork Institute of Technology, Ireland; and EPITA, France 1
ArbDialectID (Qwaider and Saad, 2019) Göteborg Universitet, Sweden; and The Islamic University

of Gaza, Palestine
1

CURAISA (Elaraby and Zahran, 2019) Raisa Energy; and Cairo University, Egypt 2
DNLP Dalhousie University, Canada 1
JHU (Lippincott et al., 2019) Johns Hopkins University, USA 1,2
JUST (Talafha et al., 2019a) Jordan University of Science and Technology, Jordan 1
khalifaaa Cairo University, Egypt 1
LIU MIR (Kchaou et al., 2019) Laboratoire d’Informatique de l’Universitè du Mans

(LIUM), France; and Multimedia, InfoRmation Systems,
and Advanced Computing Laboratory (MIRACL), Tunisia

1

Mawdoo3 AI Team (Ragab et al., 2019; Talafha
et al., 2019b)

Mawdoo3, Jordan, Egypt and Italy 1,2

MICHAEL (Ghoul and Lejeune, 2019) Sorbonne University, France 1
Eldesouki Qatar Computing Research Institute (QCRI), Qatar 1
OscarGaribo Universitat Politècnica de València and Autoritas Consult-

ing, Spain
1

QC-GO (Samih et al., 2019) Qatar Computing Research Institute (QCRI), Qatar; and
Google Inc, USA

1,2

QUT (Eltanbouly et al., 2019) Qatar University, Qatar 1
Safina Cairo University, Egypt 1
SMarT (Meftouh et al., 2019) Badji Mokhtar University, Algeria; Lorraine University,

France; and École Normale Supérieure de Bouzaréah, Al-
geria

1

Speech Translation (Abbas et al., 2019) Le Centre de Recherche Scientifique et Technique pour le
Développement de la Langue Arabe (CRSTDLA), Algeria
and University of Trento, Italy

1,2

Trends (Fares et al., 2019) Alexandria University, Egypt 1,2
UBC-NLP (Zhang and Abdul-Mageed, 2019) The University of British Columbia, Canada 2
ZCU-NLP (Přibáň and Taylor, 2019) Západočeská Univerzita v Plzni, Czech Republic 1,2

Table 7: List of the 21 teams that participated in Subtasks 1 and 2 of the MADAR Shared Task.

4 Participants and Systems

A total of 21 teams from 15 countries in four
continents participated in the shared task. Ta-
ble 7 presents the names of participating teams and
their affiliations. 19 teams participated in Subtask
1; and 9 in Subtask 2. The submitted systems
included a diverse set of approaches that incor-
porated machine learning, ensemble learning and
deep learning frameworks, and exploited a vari-
ous range of features. Table 8 summarizes the ap-
proaches adopted by each team for the two sub-
tasks. In the table, ML refers to any non-neural
machine learning technique such as multinomial
naive Bayes (MNB) and support vector machines
(SVM). Neural refers to any neural network based
model such as bidirectional long short-term mem-
ory (BiLSTM), or convolutional neural network
(CNN). In terms of features, word and character
ngram features (in Table 8 as WC), sometimes
weighted with TFIDF, were among the most com-
monly used features. Language-model based fea-
tures (in Table 8 as LM) were also used a lot. A

few participants used pre-trained embeddings. All
details about the different systems submitted could
be found in the papers cited in Table 7.

5 Results and Discussion

5.1 Subtask 1 Results

Table 9 presents the results for Subtask 1. The
last two rows are for the state-of-the-art system
by Salameh et al. (2018), and the character 5-
gram LM based baseline system from Zaidan and
Callison-Burch (2013). The best result in terms of
macro-averaged F1-score is achieved by the win-
ning team ArbDialectID (67.32%), very closely
followed by SMART and Mawdoo3 AI Team
with F1 scores of 67.31% and 67.20%, respec-
tively. The top five systems all used non-neural
ML models and word and character features. Two
of the top three systems used ensemble methods
(See Table 8). Generally, the neural methods did
not do well. This is consistent with what Salameh
et al. (2018) reported, and is likely the result of
limited training data. It is noteworthy that none
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Techniques Features

Team F1 M
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Subtask 1
ArbDialectID 67.32 X X X
SMarT 67.31 X X
Mawdoo3 LTD 67.20 X X X X
Safina 66.31 X X X
A3-108 66.28 X X X
ZCU-NLP 65.82 X X X X
Trends 65.66 X X X X
QUT 64.45 X X
DNLP 64.20 X
ADAPT-Epita 63.02 X X
Eldesouki 63.02 X X X
Speech Translation 62.12
JHU 61.83 X X X
QC-GO 58.72 X X
OscarGaribo 58.44 X
LIU MIR 56.66 X X
khalifaaa 53.21 X X
MICHAEL 52.96 X X
JUST* 66.33 X X X

Subtask 2
UBC-NLP 71.70 X X
Mawdoo3 LTD 69.86 X X
QC-GO 66.68 X X
CURAISA 61.54 X X X
A3-108 57.90 X X X
JHU 50.43 X X X
ZCU-NLP 47.51 X X
Speech Translation 3.82 X X
Trends 3.32 X X X X

Table 8: Approaches (techniques and features) adopted
by the participating teams in Subtasks 1 and 2. ML
refers to any non-neural machine learning technique
such as MNB, SVM, etc. Neural refers to any neural
network based model such as BILSTM, CNN, GRUs,
etc. LM refers to language-model based features. WC
corresponds to word and character features.

of the competing systems overcame the previously
published Salameh et al. (2018) result.

5.2 Subtask 2 Results

Table 10 presents the results for Subtask 2. The
last three rows are for three baselines. First is
a maximum likelihood estimate (MLE) baseline,
which was to always select Saudi Arabia (the ma-
jority class). Second is the state-of-the-art sys-
tem setup of Salameh et al. (2018) trained on the
MADAR Twitter Corpus data. And third is the
baseline system from Zaidan and Callison-Burch
(2013) using character 5-gram LM models. The
winning system is UBC-NLP beating the next sys-
tem by almost 2% points. The best performer in

this subtask used a neural model (See Table 8).

Unavailable Tweets One of the concerns with
any Twitter-based evaluation is that some of the
tweets and Twitter users included in the manu-
ally annotated training, development and test data
sets become unavailable at the time of the shared
task. In our shared task, the percentage of miss-
ing tweets from train and development immedi-
ately after the conclusion of the shared task was
12.7%, which is basically the upper limit on un-
availability. The corresponding number for un-
available Twitter users was 7.6%. The range of
percentages of unavailable tweets as reported by
some of the participating teams is between 6.0%
and 11.3%. However, there seems to be no sig-
nificant effect on the systems performance, as the
correlation between the percentage of unavailable
tweets and performance rank is -62%. The range
in percentages of unavailable tweets for the test
set is much smaller (11.5% to 12.1%) since all the
teams received the test set at the same time and
much later after the training and development data
release.

6 Conclusion and Outlook

In this paper, we described the framework and
the results of the MADAR Shared Task on Ara-
bic Fine-Grained Dialect Identification. In addi-
tion to making a previously collected city-level
dataset publicly available, we also introduced a
new country-level dataset built specifically for this
shared task. The unexpected large number of par-
ticipants is an indication that there is a lot of inter-
est in working on Arabic and Arabic dialects. We
plan to run similar shared tasks in the near future,
possibly with more naturally occurring (as op-
posed to commissioned) datasets. We also plan to
coordinate with the VarDial Arabic Dialect Iden-
tification organizers to explore ways of leveraging
the resources created in both competitions.
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Team F1 Precision Recall Acccity Acccountry Accregion
ArbDialectID 67.32 (1) 67.60 (2) 67.29 (2) 67.29 (2) 75.23 (2) 84.42 (5)
SMarT 67.31 (2) 67.73 (1) 67.33 (1) 67.33 (1) 75.69 (1) 85.13 (1)
Mawdoo3 LTD 67.20 (3) 67.53 (3) 67.08 (3) 67.08 (3) 75.19 (3) 84.75 (2)
Safina 66.31 (4) 66.68 (4) 66.48 (4) 66.48 (4) 75.02 (5) 84.48 (4)
A3-108 66.28 (5) 66.56 (5) 66.31 (5) 66.31 (5) 75.15 (4) 84.62 (3)
ZCU-NLP 65.82 (6) 66.45 (6) 65.85 (6) 65.85 (6) 74.27 (6) 84.10 (6)
Trends 65.66 (7) 65.79 (7) 65.75 (7) 65.75 (7) 74.08 (7) 83.46 (7)
QUT 64.45 (8) 64.99 (8) 64.58 (8) 64.58 (8) 73.29 (8) 83.02 (8)
DNLP 64.20 (9) 64.72 (9) 63.98 (9) 63.98 (9) 72.27 (9) 82.52 (10)
ADAPT-Epita 63.02 (10) 63.43 (11) 63.08 (10) 63.08 (10) 72.15 (10) 82.56 (9)
Eldesouki 63.02 (11) 63.53 (10) 63.06 (11) 63.06 (11) 71.96 (11) 82.23 (11)
Speech Translation 62.12 (12) 63.13 (13) 62.17 (12) 62.17 (12) 71.23 (12) 81.71 (13)
JHU 61.83 (13) 62.06 (14) 61.90 (13) 61.90 (13) 71.06 (13) 81.88 (12)
QC-GO 58.72 (14) 59.77 (15) 59.12 (14) 59.12 (14) 69.29 (14) 81.29 (14)
OscarGaribo 58.44 (15) 58.58 (16) 58.52 (15) 58.52 (15) 67.67 (15) 79.31 (15)
LIU MIR 56.66 (16) 57.06 (17) 56.52 (16) 56.52 (16) 67.62 (16) 78.77 (16)
khalifaaa 53.21 (17) 63.14 (12) 53.37 (17) 53.37 (17) 64.71 (17) 78.19 (17)
MICHAEL 52.96 (18) 53.38 (18) 53.25 (18) 53.25 (18) 62.29 (18) 73.90 (18)
JUST* 66.33 (19) 66.56 (19) 66.42 (19) 66.42 (19) 74.71 (19) 84.54 (19)
Salameh et al (2018) 67.89 68.41 67.75 67.75 76.44 85.96
Character 5-gram LM 64.74 65.01 64.75 64.75 73.65 83.40

Table 9: Results for Subtask 1. Numbers in parentheses are the ranks. The table is sorted on the macro F1 score,
the official metric,. The JUST system result was updated after the shared task as their official submission was
corrupted. The last two rows are for baselines ((Salameh et al., 2018) and (Zaidan and Callison-Burch, 2013)).

Team F1 Precision Recall Acccountry Accregion
UBC-NLP 71.70 (1) 82.59 (3) 65.63 (1) 77.40 (1) 88.40 (1)
Mawdoo3 LTD 69.86 (2) 78.51 (4) 65.20 (2) 76.20 (2) 87.60 (2)
QC-GO 66.68 (3) 82.91 (2) 59.36 (4) 70.60 (4) 80.60 (5)
CURAISA 61.54 (4) 67.27 (7) 60.32 (3) 72.60 (3) 83.40 (3)
A3-108 57.90 (5) 83.37 (1) 47.73 (5) 67.20 (5) 81.60 (4)
JHU 50.43 (6) 70.45 (6) 43.18 (6) 62.20 (6) 77.80 (6)
ZCU-NLP 47.51 (7) 74.16 (5) 38.88 (7) 59.00 (7) 72.80 (7)
Speech Translation 3.82 (8) 5.22 (9) 5.37 (8) 5.00 (9) 31.80 (9)
Trends 3.32 (9) 6.82 (8) 4.97 (9) 33.00 (8) 61.40 (8)
MLE - KSA 2.64 1.79 5.00 35.80 64.20
Salameh et al (2018) 13.08 41.91 11.15 42.20 66.80
Character 5gram LM model 50.31 66.15 43.90 65.80 79.20

Table 10: Results for Subtask 2. Numbers in parentheses are the ranks. The table is sorted on the macro F1 score,
the official metric. The last three rows are for baselines.
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Abstract

In this paper, we present our systems for the
MADAR Shared Task: Arabic Fine-Grained
Dialect Identification. The shared task con-
sists of two subtasks. The goal of Subtask–
1 (S-1) is to detect an Arabic city dialect in
a given text and the goal of Subtask–2 (S-2)
is to predict the country of origin of a Twitter
user by using tweets posted by the user.

In S-1, our proposed systems are based on
language modelling. We use language mod-
els to extract features that are later used as an
input for other machine learning algorithms.
We also experiment with recurrent neural net-
works (RNN), but these experiments showed
that simpler machine learning algorithms are
more successful. Our system achieves 0.658
macro F1-score and our rank is 6th out of
19 teams in S-1 and 7th in S-2 with 0.475
macro F1-score.

1 Introduction

The Madar shared tasks (Bouamor et al., 2019)
are a follow-up to Salameh’s (Salameh et al.,
2018) work with the synthetic corpus of Bouamor
(Bouamor et al., 2014) and Salameh’s work with
tweets based on the corpus. Two corpora are pro-
vided, a six-city corpus of travel sentences ren-
dered into the dialects of five cities and MSA1, and
a 25-city + MSA corpus using a smaller number
of sentences. In the first task, test data is classi-
fied as one of the 25 cities or MSA. For the second
task, the organizers chose training, development
and test tweet-sets for download from Twitter. The
tweets are from 21 Arabic countries, and the goal
is to determine, for each tweet author, the country
of origin.

For S-1 we did not use any external data,
only data provided by the shared task organizers.

1Modern Standard Arabic

The organizers provided training and development
data2 consisting of sentences in different dialects
with a label denoting the corresponding dialect.
The training data contain 41K sentences and de-
velopment data contain 5.2K sentences. Organiz-
ers also provided additional data with Arabic sen-
tences in seven dialects.
S-2 uses a corpus of tweets. Twitter does not

permit the organizers to distribute tweets, only the
user ids and tweet ids. Every participant must ar-
range with Twitter to download the tweets them-
selves, and because tweets are subject to deletion
over time, it is possible that each participant’s ver-
sion of the corpus and test is unique.

2 Related Work

The Arabic dialects have a common written form
and unified literary tradition, so it seems most logi-
cal to distinguish dialects on the basis of acoustics,
and there is a fair amount of work there, including
Hanani et al. (2013, 2015); Ali et al. (2016).

—-
Biadsy et al. (2009) distinguish four Arabic

dialects and MSA based on (audio) phone se-
quences; the phones were obtained by phone rec-
ognizers for English, German, Japanese, Hindi,
Mandarin, Spanish, and three different MSA
phone-recognizer implementations. The dialects
were distinguished by phoneme sequences, and
the results of classifications based on each phone-
recognizer were combined using a logistic regres-
sion classifier. They train on 150 hours per dialect
of telephone recordings. They report 61% accu-
racy on 5-second segments, and 84% accuracy on
120 second segments.

Zaidan and Callison-Burch (2011) describe
building a text corpus, based on reader commen-

2The participants were not allowed to use these data for
any training purposes.
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tary on newspaper websites, with significant di-
alect content; the goal is to provide a corpus to
improve machine translation for Arabic dialects.
They used Amazon Mechanical Turk to provide
annotation for a portion of the corpus. Zaidan and
Callison-Burch (2014) describe the same work
in greater detail, including dialect classifiers they
built using the Mechanical Turk data for classes
and origin metadata as additional features. They
say these classifiers are ‘approaching human qual-
ity.’

ElFardy and Diab (2013) classify EGY3 and
MSA sentences from the Zaidan and Callison-
Burch (2011) corpus, that is, from text. Not only
is this a binary task, but orthographic hints, in-
cluding repeated long vowels, emojis and multiple
punctuations, give strong clues of the register, and
hence whether MSA is being employed. They do
a number of experiments comparing various pre-
processing schemes and different training sizes,
ranging from 2-28 million tokens. They achieve
80% – 86% accuracy for all of their attempts.

Malmasi et al. (2015) do Arabic dialect iden-
tification from text corpora, including the Multi-
Dialect Parallel Corpus of Arabic (Bouamor
et al., 2014) and the Arabic Online Commentary
database (Zaidan and Callison-Burch, 2011).

Hanani et al. (2015) perform recognition of sev-
eral Palestinian regional accents, evaluating four
different acoustic models, achieving 81.5% accu-
racy for their best system, an I-vector framework
with 64 Gaussian components.

Ali et al. (2016) developed the corpus on which
the DSL Arabic shared task is based. Their
own dialect detection efforts depended largely on
acoustical cues.

Arabic dialect recognition appeared in the 2016
edition of the VarDial workshop’s shared task
(Malmasi et al., 2016). The shared task data was
text-only.

The best classifiers (Malmasi et al., 2016;
Ionescu and Popescu, 2016) for the shared task
performed far below the best results reported by
some of the preceding researchers, in particular
Ali et al. (2016) which used some of the same data.

Part of the reason must be that the amount of
training data for the workshop is much smaller
than that used by some of the other researchers;
the workshop data also did not include the audio
recordings on which the transcripts are based.

3Egyptian dialect

The absence of audio was remedied for the 2017
and 2018 VarDial workshops, (Zampieri et al.,
2017, 2018)

However, the five dialects plus MSA targeted
by the VarDial shared task comprise a small frac-
tion of Arabic’s dialectical variation. Salameh et
al. (Salameh et al., 2018) use a corpus (Bouamor
et al., 2018) which differentiates between twenty-
five different cities and MSA. This still doesn’t ad-
dress urban rural divides, but it begins to reflect
more realistic diversity.

3 Overview

3.1 Language Modelling

In S-1, both of our systems used for the offi-
cial submission take as an input language model
features. In our case the objective of a language
model in its simplest form is to predict probabil-
ity p(S) of sentence S which is composed from
strings (words or character n-grams) s1, s2 . . . sN ,
where N is a number of strings in the sentence.
The probability estimation of p(S) can be com-
puted as a product of conditional probabilities
p(si|hi) of its strings s1, s2 . . . sN , where hi is a
history of a string si. The probability of string
si is conditioned by history hi i.e. n − 1 preced-
ing strings si−n+1, si−n+2, . . . si−1 which can be
rewritten as si−1

i−n+1. The resulting formula for the
p(S) estimation looks as follows:

p(S) =
N∏

i=1

p(si|hi) =
N∏

i=1

p(si|si−1
i−n+1) (1)

The conditioned probability p(si|hi) can be
estimated with Maximum Likelihood Estimate
(MLE) which is defined as:

pMLE(si|hi) =
c(si−n+1, si−n+2 . . . si)

c(si−n+1, si−n+2 . . . si−1)
(2)

where c(si−n+1, si−n+2 . . . si) is a number of
occurrences of string si with history hi and
c(si−n+1, si−n+2 . . . si−1) is a number of occur-
rences of history hi. These counts are taken from
a training corpus.

We followed Salameh (Salameh et al., 2018)
in using the kenlm language modelling tool
(Heafield et al., 2013). kenlm doesn’t have an
option to use character n-grams instead of words,
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so in order to get character-based language mod-
els, we prepared input files with characters sep-
arated by spaces. Instead of encoding space
as a special word, we surrounded words with a
<w></w>pair. This enables noticing strings
which occur at the beginning or end of a word
(as would a special sequence for space) but re-
duces the possible amount of inter-word infor-
mation which the language model can keep for
a given order, the parameter which indicates to
kenlm the largest n-gram to index. We used or-
der 5 for all our kenlm language models. We pre-
built models for each dialect. We prepared six di-
rectories, each containing word or character mod-
els for each dialect in one of the three corpora.

We wrote a LangModel class which quacks
like a sklearn classifier, that is, it supports
fit(), predict(), and predict proba(),
but its choices are based on a directory of lan-
guage models. predict() returns the di-
alect name whose model gives the highest score.
predict proba() provides a list of language-
model-score features, adjusted to probabilities.

4 Subtask–1 System Description

In this section we describe our models4. We sub-
mitted results for the S-1 from two systems – Tor-
tuous Classifier and Neural Network Classifier.

4.1 Tortuous Classifier
This submission uses a jumble of features and
classifiers, most from the sklearn module (Buit-
inck et al., 2013). The final classifier is a hard vot-
ing classifier with three input streams:

1. Soft voting classifier on:

(a) Multinomial naive Bayes classifier on
word 1-2grams,

(b) Multinomial naive Bayes classifier on
char 3-5grams,

(c) Language model scores adjusted to
probabilities, for word-based language
models of the corpus 26 dialects

(d) Language model scores adjusted to
probabilities, for char-based language
models of the corpus 26 dialects

(e) Multinomial naive Bayes classifier
on language-model-scores for char-
acter and language models on the

4The source code is available at https://github.
com/StephenETaylor/Madar-2019

corpus-6 language models and character
language models for the corpus-26
language models.

2. Support vector machine, svm.SVC(
gamma=’scale’, kernel =
’poly’, degree = 2) with the
same features as item 1e.

3. Multinomial naive Bayes classifier using
word and char language model features for
corpus-6 and corpus-26 features, tfid vector-
ized word 1-2grams, and tfid vectorized char
3-5grams.

The classifier did better on the development data,
suggesting that it is over-fitted, but the language
model features, which are the most predictive, also
did better on the development data.

4.2 Neural Network Classifier
We experimented with several neural networks.
Our model for the S-1 submission uses as input
26 features which correspond to one of our 26 pre-
trained dialect language models. Each feature rep-
resents the probability of a given sentence for one
language model. The probability scores measure
how close each sentence is to the dialect.

We train Multilayer Perceptron (MLP) with one
hidden (dense) layer with 400 units. The out-
put of the hidden layer is passed to a final fully-
connected softmax layer. The output of the soft-
max layer is a probability distribution over all 26
classes. The class with the highest probability is
predicted as a final output of our model. As an ac-
tivation function in the hidden layer of the MLP a
Rectified Linear Unit (ReLu) is employed.

We also tried to combine character n-gram fea-
tures with the language model features. The input
is a sequence of first 200 character n-grams of a
given text. Each sequence of character n-grams
is used as a separate input followed by a ran-
domly initialized embedding layer and then two
layers of Bidirectional LSTM (BiLSTM)(Graves
and Schmidhuber, 2005) with 64 units are em-
ployed (see Figure 1).

The output vector of the BiLSTM layers is con-
catenated with the language model features and
this concatenated vector is passed to the MLP
layer with 400 units (the same as described above).
All models were implemented by using Keras
(Chollet et al., 2015) with TensorFlow backend
(Abadi et al., 2015)
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Figure 1: Neural network model architecture

4.3 Neural Netwok Model Training
We tune all hyperparameters on the development
data. We train our model with Adam (Kingma and
Ba, 2014) optimizer with learning rate 0.01 and
without any dropout. The number of epochs is 800
and we do not use mini-batches or dropout regu-
larization technique. The model with these hyper-
parameters achieves the best result (0.661 macro
F1-score) on the development data and was used
for the final submission.

We also experimented with the n-gram inputs.
We tried a different number of character n-grams
and we achieve the best result (0.555 macro F1-
score) on the development data using three inputs
- character unigrams, bigrams and trigrams, with
learning rate 0.005, mini-batches of size 256 for
11 epochs and with the Adam optimizer.

5 Subtask–2 System Description

Our tortuous classifier did less well on the tweet
data, so we used a simpler classifier.

The features are the kenlm language model
scores for the 21 countries, computed for each of
the training tweets, then exponentiated and nor-
malized to sum to 1. The tweets are classified us-
ing

y_test = KNeighborsClassifier
(n_neighbors=31)
.fit(X_train,y_train)

.predict(X_test)

The users are predicted based on the plurality pre-
diction for all of their tweets, that is, the country
to which the largest number of their tweets were
assigned.

There were a significant number of tweets un-
available, about 10% in the training and develop-
ment sets, and 12% in the test set. After the sub-
missions had closed we experimented with elimi-
nating the unavailable and non-Arabic tweets from
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Figure 2: Tortuous Classifier confusion matrix

training and testing and choosing Saudi Arabia
(which is the origin for the plurality of tweets at
36%) for users with no remaining tweets. This im-
proved tweet classification accuracy by about 5%,
but actually decreased user classification accuracy
on the development set.

6 Results

For the Subtask–1 we achieved 0.658 macro F1-
score on the test data, sixth among nineteen sub-
missions with the Tortuous Classifier. The Neu-
ral Network Classifier achieved a macro F1-score
of 0.648 on the test data. For the Subtask–2 we
submitted a single entry. It ranked 7th among 9
submissions with 0.475 macro F1-score.

Figure 2 shows that many of the errors are
geographically plausible. For example, ASWan
ALXandria and CAIro are all in Egypt, and each
has a sizeable chunk of mistaken identity for the
others. Similarly, DAMascus, ALEppo, AMMan,
BEIrut, JERusalem which are all ’Levantine’ and
only a few hundred miles apart.

7 Conclusion

This paper presents an automatic approach for
Arabic dialect detection in the MADAR Shared
Task. Our proposed systems for the Subtask-1
use language model features. Our experiments
showed that simpler machine learning algorithms
outperform RNN using language model features.
Subtask–2 turned out to be more challenging be-
cause Tweets, which are real-world wild data, are
more difficult to process than systematically pre-
pared texts.
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Abstract

This paper presents the participation of Qatar
University team in MADAR shared task,
which addresses the problem of sentence-level
fine-grained Arabic Dialect Identification over
25 different Arabic dialects in addition to the
Modern Standard Arabic. Arabic Dialect Iden-
tification is not a trivial task since different di-
alects share some features, e.g., utilizing the
same character set and some vocabularies. We
opted to adopt a very simple approach in terms
of extracted features and classification mod-
els; we only utilize word and character n-
grams as features, and Naı̈ve Bayes models as
classifiers. Surprisingly, the simple approach
achieved non-naı̈ve performance. The official
results, reported on a held-out testing set, show
that the dialect of a given sentence can be iden-
tified at an accuracy of 64.58% by our best
submitted run.

1 Introduction

The Arabic Language is one of the oldest lan-
guages in the world, which made Arabic dialects
emerge over the years. Although Modern Stan-
dard Arabic (MSA) is the only standardized form
of the Arabic language that has a predefined set
of grammatical rules, it is only used in education,
some media channels, and official written docu-
ments. This owes to the fact that people tend to
use dialects more in their daily life. Those dialects
deviate from the classical MSA in terms of mor-
phology, phonology, lexicon, and syntax (Janet,
2007). For example, a morphological difference
could be seen in the affixes that are appended to
the verb to indicate its tense, like the prefix ��Ô �«
which indicate the present tense in Jordanian di-
alect. The existence of many varieties of the Ara-
bic dialects gave rise to the task of automatic iden-
tification of written Arabic dialects, since a prior
identification of those dialects is essential to many

applications, such as sentiment analysis, opinion
mining, author profiling, and machine translation.
Despite the significant differences between the di-
alects, they still share some similarities such as
having common character/vocabulary sets and ba-
sic language rules which make dialect identifica-
tion an interesting but challenging problem. More-
over, the closeness between some dialects that are
within the same country makes it even more chal-
lenging to distinguish between them.

Unlike most of the previous work which tar-
geted coarse-grained Arabic dialect identifica-
tion, this work presents the participation of Qatar
University team in the Multi Arabic Dialect
Applications and Resources (MADAR) shared
task (Bouamor et al., 2019) that addresses a fine-
grained classification of 25 dialects of different
Arabic cities in addition to MSA. We propose a
simple classification approach that only utilizes
word and character n-grams using Naı̈ve Bayes
learning model. While our approach is so simple
(depending only on two categories of lexical fea-
tures), it proved not to be naı̈ve; the official testing
results show that our best submitted run achieved
reasonably-good F1 scores across the different di-
alects, ranging from 0.52 to 0.84.

The rest of the paper is organized as fol-
lows. Section 2 outlines the data used in build-
ing/training our models. Section 3 details our pro-
posed approach. Section 4 presents our runs and
official testing results. Section 5 discusses and an-
alyzes the performance of our best run. Finally,
Section 6 concludes our work with some direc-
tions of future work.

2 Data

In this work, we used MADAR dataset (Bouamor
et al., 2018) for training our models. The
dataset consists of 2 corpora, namely corpus-
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26 and corpus-6, that include sentences trans-
lated from the Basic Traveling Expression Cor-
pus (BTEC) (Takezawa, 2007) into different Ara-
bic dialects and MSA, however, we only used the
first corpus for developing our models. Corpus-26
contains 2,000 sentences translated into 25 paral-
lel dialects plus MSA. This corpus is divided into
training, development, and testing sets of 1600,
200, and 200 sentences per dialect respectively.

Several tools were used to build our system and
process our data. Two main Python libraries were
used for Arabic processing: pyarabic1 for tok-
enization and diacritics removal, and the natural
language toolkit (NLTK) for stop-words removal.
For classification, we used both Scikit-learn and
sklearn Python libraries.

3 System

The aim of this work is to design a system that
can identify 25 different Arabic dialects (classes)
in addition to MSA. We have adopted a similar
approach to the one proposed by Salameh et al.
(2018). They trained a Multinomial Naı̈ve Bayes
classifier over a feature combination of word n-
grams, character n-grams, language models per di-
alect, and sentence probabilities given by the lan-
guage models, achieving an accuracy of 67.9%. In
this section, the main blocks of our proposed sys-
tem are presented.

3.1 Data Pre-processing

Arora et al. (2012) introduced the phrase “Garbage
In, Garbage Out” to indicate that the data qual-
ity greatly affects the classification task. In our
system, the data was pre-processed by tokenizing
over white spaces, removing Arabic stop words,
and removing punctuation.

3.2 Feature Extraction

Extracting a set of discriminative features from the
data helps in differentiating between the different
classes. In our proposed models, only two cate-
gories of features were considered: word n-grams
and character n-grams.

• Word n-grams: The word unigrams and bi-
grams are extracted and used as features.
This category helps in distinguishing be-
tween the different dialects since some words

1https://pypi.org/project/PyArabic/

Classifier Accuracy
Multinomial Naı̈ve Bayes 63.21%

Bernoulli Naı̈ve Bayes 63.37%
Stochastic Gradient Descent 52.79%

Gaussian Naı̈ve Bayes 49.37%
Perceptron (one versus all) 46.92%
Perceptron (one versus one) 46.79%

Table 1: Performance of different classifiers on the de-
velopment set using word unigrams features only.

are uniquely found in specific dialects, cap-
turing their lexical variations at the word
level.

• Character n-grams: The character n-grams,
ranging from 2-grams to 5-grams, are ex-
tracted and used as features. This category
captures the morphological characteristics of
the dialects by capturing prefixes and suffixes
that distinguish some dialects at the charac-
ter level.

3.3 Feature Selection
Feature selection is an optimization technique that
narrows down the feature space by selecting a sub-
set of the most important features from the origi-
nal set. In this work, we used Random Forest al-
gorithm to select the top features. It is an ensem-
ble learning algorithm that is based on combining
a number of de-correlated decision trees in which
the tree-based structure is naturally used to rank
the features.

3.4 Training Classifiers
We have experimented with a number of classi-
fiers: Multinomial Naı̈ve Bayes, Bernoulli Naı̈ve
Bayes, Stochastic Gradient Descent, Gaussian
Naı̈ve Bayes, and Perceptron.

To choose the best classifiers for this task, we
initially trained all classifiers only on word un-
igrams features. Table 1 shows that Multino-
mial Naı̈ve Bayes classifier (MNB) and Bernoulli
Naı̈ve Bayes classifier (BNB) had, by far, the high-
est (approximately equal) performance on the de-
velopment set. Therefore, we only use those two
in the rest of the experiments. Some previous stud-
ies also used Naı̈ve Bayes classifiers for dialect
identification, e.g., (Sadat et al., 2015).

Next, we focus on the performance of MNB
and BNB classifiers with different combinations
of features. We used word unigrams and bigrams,
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Features Accuracy
word character MNB BNB
1 - 63.21% 63.37%
1 2 57.40% 57.21%
1 3 62.52% 62.21%
1 4 65.67% 65.65%
1 5 65.85% 65.23%
1+2 - 63.50% 62.56%
1+2 2 58.56% 59.15%
1+2 3 62.85% 62.71%
1+2 4 66.00% 65.86%
1+2 5 65.75% 64.85%
1 2 + 3 59.42% 58.77%
1 3 + 4 64.37% 64.90%
1 3 + 5 65.35% 65.27%
1 4 + 5 66.25% 65.90%
1 3 + 4 + 5 65.33% 65.52%
1 2 + 3 + 4 + 5 64.98% 64.42%

Table 2: Performance of MNB and BNB classifiers
on the development set using different combinations of
features.

Classifier #Features Time Accuracy
MNB 228,585 1:42h 64.71%
MNB-FS 203,200 1:31h 64.13%

Table 3: Training time and accuracy for MNB (trained
over all character n-grams) and MNB-FS classifiers on
the development set.

and character 2-grams to 5-grams. Table 2 shows
the performance of different combinations of those
features for both classifiers. The combination of
the word unigrams with the character 4-grams and
5-grams achieved the highest accuracy.

Based on the performance of different clas-
sifiers and different combinations of features
(shown in Tables 1 and 2), we chose the following
models to represent our runs in the shared task:

1. MNB: In this run, a MNB classifier is trained
with features that are obtained from combin-
ing word unigrams, character 4-grams and
character 5-grams. No feature selection is
performed here.

2. Voting: In this run, two Naı̈ve Bayes clas-
sifiers are trained, the first one is MNB and
the second is BNB. The classifiers are trained
using the word unigrams and character 4 and
5 grams. The classification is done by vot-
ing between the two classifiers based on the

Run Prec. Recall F1 Acc.
MNB 0.6458 0.6440 0.6418 64.40%
Voting 0.6499 0.6458 0.6445 64.58%
MNB-
FS

0.6292 0.6262 0.6232 62.62%

Table 4: Official performance of the 3 runs on test set.

higher probability. No feature selection is
performed here.

3. MNB-FS: In this run, a MNB classifier is
trained with character n-grams features rang-
ing from 2-grams to 5-grams after feature
selection. The main motivation behind this
run is to improve the efficiency by reducing
the feature space while maintaining good per-
formance. The top 200 features of charac-
ter bigrams, 3,000 of character 3-grams, and
200,000 of character 4-grams and character
5-grams were selected. As shown in Table 3,
feature selection reduced the size of the fea-
ture space by about 11% which yields a drop
in training time by about 10%. However, the
performance is maintained across both mod-
els, where the difference in accuracy is only
about 0.6%.

3.5 Official Performance
Table 4 shows the overall performance on the test
set for our three submitted runs. The results show
that MNB run exhibited better performance than
MNB-FS run. However, the Voting run, which ex-
ploits the predictions proposed by both MNB and
BNB classifiers, got the best performance. This in-
dicates that the two basic classifiers had some dif-
ferent predictions with different confidence (repre-
sented by the classification probabilities) that were
better leveraged by the voting scheme.

4 Discussion

Figure 1 illustrates the F1 score per dialect for the
best run, where dialects of the same country are
colored the same. We notice that F1 scores range
from 0.52 to 0.84. We also notice that perfor-
mance on different countries within the same geo-
graphical regions is relatively consistent. For ex-
ample, performance on Maghrebi group (Algeria,
Morocco, and Tunisia) is relatively good, while on
Levantine group (Syria, Jordan, and Lebanon) is
relatively bad, and on Gulf group (Oman, KSA,
and Qatar) is probably the worst. Performance
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Figure 1: F1 scores for the 25 dialects and the MSA for the best run. Same color indicates same country.

on Iraq and Libya is considered among the best.
Moreover, Egypt has a noticeable but different ob-
servation; its 3 representative cities/dialects (al-
most) span the entire spectrum, with performance
on Cairo and Alexandria (almost) make the ex-
tremes. Finally, performance on MSA is among
the top third, which is expected.

To shed more light on and gain more insights
about the different performance on different di-
alects, we illustrate the confusion matrix in Fig-
ure 2. From the matrix, it is clear that some di-
alects were confused with other dialects on the
same country or other countries that are relatively
close to it. The highest confusion is between Tu-
nis (TUN) and Sfax (SFX) where 49 examples
of TUN examples are misclassified as SFX and
29 vice versa. For example, misclassification of
the TUN sentence “ ? éJ
K. i�	J�K ú
Í@ ÕÎJ


	®Ë @ �èñ 	J �� ” as

SFX can be due to the fact that the word “ �èñ 	J �� ”
appeared 41 times in SFX examples and only 14
times in TUN examples in the training data. Also,
for Egypt, we can see from the confusion ma-
trix that many examples are misclassified between
these three dialects: Alexandria (ALX), Aswan
(ASW), and Cairo (CAI), most notably in CAI
which achieved a low F1 score of 0.53 because 35
examples misclassified as ASW and 20 as ALX.
Similarly, there is a recognizable confusion be-
tween the countries in the same geographic area.
For example, for the gulf area, 13 examples of
Doha (DOH) were classified as Jeddah (JED) and
14 examples of Muscat (MUS) were classified as
Riyad (RIY).

5 Conclusion & Future Work

In this work, we adopted a simple approach to
classify the Arabic sentences into one of 25 di-

Figure 2: Confusion Matrix for the best run.

alects of different cities all over the Arab world,
in addition to MSA, utilizing only the word and
character n-grams features. Our best submitted
run to MADAR shared task, that represents a vot-
ing scheme over two simple (both based on Naı̈ve
Bayes) classifiers, achieved an overall accuracy of
66.34% on the development set and 64.58% on the
testing set.

That was indeed just the start. There are sev-
eral directions that can potentially improve the
performance of the system and address the limi-
tations. First, extensive failure analysis has to be
conducted to identify the major missclassification
problems. For feature extraction, better term rep-
resentation techniques, such as word and character
embeddings, can be used to improve the quality of
the features. For classification models, more tradi-
tional learning models (e.g., SVM) can be tried, in
addition to the recently-hot deep learning models
whenever applicable.
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Abstract
This paper describes the joint participation of
the LIUM and MIRACL Laboratories at the
Arabic dialect identification challenge of the
MADAR Shared Task (Bouamor et al., 2019)
conducted during the Fourth Arabic Natu-
ral Language Processing Workshop (WANLP
2019). We participated to the Travel Domain
Dialect Identification subtask. We built several
systems and explored different techniques in-
cluding conventional machine learning meth-
ods and deep learning algorithms. Deep learn-
ing approaches did not perform well on this
task. We experimented several classification
systems and we were able to identify the di-
alect of an input sentence with an F1-score of
65.41% on the official test set using only the
training data supplied by the shared task orga-
nizers.

1 Introduction

Dialect can be defined as the language character-
istics of a specific community (Etman and Beex,
2015). For all their daily communications, Arabic
speakers use their local dialect. Dialects are
commonly known as spoken or colloquial Arabic,
acquired naturally as their mother tongue.

Being able to identify the dialect of a given sen-
tence is a fundamental step for various applica-
tions such as machine translation, speech recog-
nition and multiple Natural Language Processing
(NLP) related services. Therefore, the dialect
identification task has been the subject of several
earlier research and exploration activities. For in-
stance, Arabic dialect identification in speech tran-
scripts was introduced as a subtask of the Discrim-
inating between Similar Languages (DSL) Shared
Task of the Third, Fourth and the Fifth Workshop
on NLP for Similar Languages, Varieties and Di-
alects (VarDial) (Malmasi et al., 2016; Zampieri
et al., 2017, 2018).

In practice, the number of existing dialects are
as many as there are cities in the Arab world. Go-
ing to the city-level of granularity for dialect iden-
tification is a complex and expensive task. It is
for this reason that earlier work in dialect identifi-
cation generally study the problem at a region or
country level (Zaidan and Callison-Burch, 2014).
In this respect, dialects are generally classified into
five main groups: Maghrebi, Egyptian, Levantine,
Gulf, and Iraqi (El Haj et al., 2018; Elaraby and
Abdul-Mageed, 2018).

Quite recently, and in contrast with the overall
previous work, (Bouamor et al., 2018) presented
the MADAR corpus which is now the existing re-
source with the greatest dialectal coverage. In-
deed, the MADAR corpus includes 25 Arabic dif-
ferent dialects from east to west. The MADAR
shared task is organized to make the most efficient
use of this corpus. Dialect Identification (DID) is
already a hard task, even when taking into account
only 5 groups. This task became more perplex-
ing when taking into consideration 25 groups of
MADAR shared task. Indeed, taking into consid-
eration additional dialects will reduce the overall
classes dissimilarity and thus make the discrimi-
nation process harder. In the following sections
of this paper, we will describe our participation
to the MADAR Shared task. We investigate dif-
ferent classification techniques based on conven-
tional machine learning algorithms with different
kinds of features and various deep learning se-
quence2sequence architectures.

The paper is structured as follows: Section 2 de-
scribes the MADAR shared task and presents brief
description of the training data. Section 3 presents
a detailed overview of our systems and a discus-
sion of our results. Finally, section 4 will draw a
brief conclusion.
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2 MADAR Shared Task

Arabic Dialect processing is a challenging task
since dialects are mainly spoken and do not have
an explicit written set of grammar rules. In this
context, the MADAR corpus (Bouamor et al.,
2018) is a valuable resource to push forward the
field Arabic Dialect processing. The MADAR Di-
alect Identification shared task is partially based
on this corpus. MADAR Shared task is the first
DID shared task to target a large set of dialects.
The challenge offered two subtasks: subtask 1
focuses on Travel Domain Dialect Identification,
whereas subtask 2 is centred around Twitter User
Dialect Identification. We will describe only the
subtask 1 in which we have participated.

Subtask 1 Dataset: The provided data-sets are
presented in table 1. The organizers provided a
training and development sets from two sources
created by translating the Basic Traveling Ex-
pression Corpus (BTEC) (Takezawa, 2006): (i)
corpus-6, a large-scale additional sentences of the
BTEC corpus of 5 regional representative dialects
and MSA, (ii) corpus-26, a smaller-scale parallel
corpus of 25 dialects in addition to MSA.

Corpus #lines #token
Corpus-26-train 41.6k 343.7k
Corpus-26-Dev 5.2k 43.7k
Corpus-6-train 54k 452.3k
Corpus-6-Dev 6k 49.6k
Corpus-26-Test 5.2k 43.1k

Table 1: Statistics of MADAR Subtask 1 Data Sets.

The shared task allowed participants to exploit
all the data presented in Table 1 for the develop-
ment of their DID systems1. Submission must
be constrained in the sense that external manu-
ally annotated data sets are prohibited. Submis-
sions are evaluated automatically on the test set
Corpus-26-Test, using F1 score. Both Corpus-26-
dev and Corpus-26-Test consist of 5.2k dialectal
sentences, uniformly distributed over the 26 ad-
dressed dialects (200 sentences for each dialect).
We note that we only use corpus-26 train and dev
to develop our DID systems.

1Training data from MADAR-Shared-Task-Subtask-2 are
also allowed but not used for our submission.

3 LIU-MIR Submission

3.1 Data pre-processing

All Arabic dialects came from the same source,
use the same character set, and share a large num-
ber of common words seen throughout their sub-
stantial vocabulary overlap. None of the existing
Arabic dialects, at least until now, has an official
status and none is regulated and taught in schools.
As there is at present no dialect-specific compu-
tationally motivated pre-processing methods, our
pre-processing is limited to a few steps of cleaning
up applied to all the data without distinction. This
includes the normalization of few arabic charac-
ters (



@,

�
@, @
, ø
 , 
ø, 
ð2), the deletion of short vowels

and tatweel3 and the deletion of punctuation num-
bers and non arabic words.

3.2 Dialect Identification systems

In this section we present our experiments for
MADAR Travel Domain Dialect Identification
task. All our systems are constrained as we only
used the supplied data from table 1.

3.3 Baseline systems

As a baseline for our DID system, we tried to re-
produce the results presented in (Salameh et al.,
2018). Just like them, we trained a Multinomial
Naive Bayes (MNB) classifier using Word and
character n-gram features. We also used Term
Frequency-Inverse Document Frequency (Tf-Idf)
scores learned on extracted character n-grams
ranging from 1-grams to 5-grams.

N-Gram Features F1 score
Word Char Dev-26 Test-26

1. 1 - 59.64 57.42
2. - 1 10.96 9.99
3. - 1→5 56.44 54.34
4. 1 1 59.14 57.15
5. 1 1→3 60.07 58.51
6. 1 1→5 60.97 59.21

Table 2: MNB system using pre-processed training and
evaluation data..

Table 2 reports the results of our baseline
systems accuracy on the development set of
CORPUS-26 (Dev-26). We performed several ex-
periments using TF-IDF features of word and char

2This corresponds to >, |, <, y, and & with Buckwalter
transliteration.

3A type of justification using characters elongation.
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level n-grams. The best identification accuracy
is obtained using uni-gram word level 1→5-gram
character level.

We have tested also to evaluate the above sys-
tems without any pre-processing or normalization
of the training data. The results are presented in
the following table.

N-Gram Features F1 score
Word Char Dev-26 Test-26

1 - 64.42 63.33
- 1 16.84 15.51
- 1→5 62.16 60.63
1 1 64.45 63.52
1 1→3 65.29 64.52
1 1→5 66.41 65.41

Table 3: MNB system using raw training and evalua-
tion data.

As shown in the table above, the dialect iden-
tification results are better when the systems are
trained using the raw data. Knowing that data were
created by translating sentences from English and
French, we suspect that the translation was per-
formed by one single person per dialect. If this is
true, This could explain this result since the sys-
tem learns as a side effect, to distinguish between
the style of the translators (i.e spelling, punctua-
tion, lexical choices, with or without vowels ...).

3.4 LM-based Systems
In addition to the baseline system presented in the
previous section, we evaluated the identification
performance using only n-gram word and charac-
ter level Language Models(LM) trained using only
corpus 26 training data. This has been done by
directly comparing LM perplexity for each input
sentence: Given an input sentence S to classify
into one of k dialects d1, d2, ..., dk we select the
dialect d∗ of the model that gives the lowest per-
plexity on this sentence (i.e equation 1).

d∗ = argmin
k

PP (S)
k

(1)

For this experiment, we considered forward and
backward word (LMWF, LMWB) and character-
level (LMCF, LMCB) LMs, trained using se-
quences of words and characters in the reverse
order. All LMs are 5-gram order, trained us-
ing KenLM toolkit with default parameters and
Kneser–Ney smoothing (Heafield, 2011).

Table 4 presents the results of the DID systems
with only LMs. While the character level LMs is

Word LMs Char LMs
LMWF LMWB LMCF LMCB

dev-26 60.34 60.34 61.07 61.36
test-26 60.07 60.15 60.21 60.63

Table 4: F1-scores of DID system using LM Scores

lightly better than word-level LMs, both shows a
lower accuracy compared to the MNB with word
n-gram features (line 1 in table 3). The best LM
based DID system is obtained using Backward
character level LM with F1-score of 60.63 on the
test-26 set.

3.5 LM Scores as Features

In this section we present our attempt to integrate
LMs scores as extra feature to the MNB classifier.
Each sentence is evaluated using the 26 trained
LMs presented in section 3.4 and their scores are
used as input features to the MNB.

N-Gram Feat. LM Feat. F1 score
Word Char Char Word Dev-26

1 1→5 - - 66.41 (65.41)
1 1→5 F - 65.97 (64.60)
1 1→5 B - 66.03 (64.58)
1 1→5 FB - 65.74 (63.73)
1 1→5 - F 45.19 (61.51)
1 1→5 - B 45.19 (61.78)
1 1→5 - FB 44.76 (61.49)
1 1→5 F F 46.09 (61.51)

Table 5: MNB system with N-Gram and LMs features.

As shown in table 5, adding LMs scores as fea-
tures to MNB results in a decrease of F1-score on
both dev-26 and test-26 sets. We tried both word
and character level LMs trained in either Forward
or Backward fashion. However, none of them and
not even their combination had a positive effect on
the system’s accuracy.

3.6 Analysis and Discussion

In this section, we present an analysis of the clas-
sification results of our DID system. Table 6
presents the details of the F1-score per dialect.
Overall, we can see that the system has a good pre-
diction (high F1 score) for several dialects wheres
the identification of other dialects are more chal-
lenging. This result is in accordance with the
rate of token dissimilarity presented in Figure 2 of
(Salameh et al., 2018). For example, ALG, SAN
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and MOS dialects have high pairwise token dis-
similarity rate and they are also the easier to iden-
tify compared to CAI and RIY for instance.

Dialect F1-score Dialect F1-score
ALE 0.64 JED 0.62
ALG 0.78 JER 0.57
ALX 0.74 KHA 0.69
AMM 0.56 MOS 0.84
ASW 0.60 MSA 0.69
BAG 0.65 MUS 0.54
BAS 0.68 RAB 0.70
BEI 0.67 RIY 0.56
BEN 0.67 SAL 0.56
CAI 0.53 SAN 0.71

DAM 0.56 SFX 0.72
DOH 0.63 TRI 0.75
FES 0.68 TUN 0.70

Table 6: F1-score per dialect of the best system on the
test-26 set

After analyzing the full confusion matrix, we
figured out that identification confusion tends to
be bigger for geographical close cities. This is
expected since sentences from close cities has a
big vocabulary overlap and thus harder to discrim-
inate. In order to investigate further this, we con-
ducted a deeper analysis of two dialects belonging
to the same geographical area. The primary objec-
tive of this study is to measure the upper bound of
the classification accuracy for these dialects (i.e.
the best possible prediction accuracy).

We conducted this analysis for the Top-2
most confused dialects: TUN (TUNIS) and SFX
(SFAX). These dialects belongs to the same coun-
try, Tunisia, and present a high level of lexical
similarity. In addition, there are the only ones for
which we have native speakers. Table 7, presents
the TUN vs. SFX dialects confusion matrix.

Predicted
SFX TUN

A
ct

ua
l SFX 153 18

TUN 41 123

Table 7: TUN - SFX dialects Confusion matrix.

As shown in Table 7, TUN and SFX dialects are
source of confusion for the system. For instance,
from among all the 200 SFX test sentences, 153
were well predicted and 18 predicted TUN. Sim-
ilarly, 123 from the 200 TUN test sentences are
well identified whereas 41 are predicted SFX.

In order to understand this substantial SFX-
TUN confusion, we conducted a manual evalua-
tion of the “18 + 41” sentences. This evaluation
was performed as following: each of the incor-
rectly predicted 18 SFX sentences was presented
to a TUN native speaker who decide whether the
sentence seems to be a natural in his view, or
whether he will formulate it differently. Table 8
presents examples of sentences from the test-26
and their transliteration.

Sentences Label
? ú


	Gñë 	áÓ I. K
Q�̄ �Hñ	KAg AÔ 	̄
TUN

fmA .hAnwt qryb mn hwny?
½ ���
ªK
 , �@ �AJ
�̄ ñK
AÓ I. m� 	' TUN

n.hb mAyw qyAs As, y‘ y∧sk
½ ���
ªK
 hA 	®�K I. m� 	' TUN

n.hb tfA.h y‘y∧sk
? é�J�ñJ. Ë @ Qº��� ��A�J�̄ð SFX

wqtAy∧s tskr Albwsth?
? ú


	Gñë 	áÓ I. K
Q�̄ 	àñ�K@Q�
 ��Ë@ ÉJ
�Kð , ù
 ëAK. SFX

bAhy, wtyl Aly∧syrAtwn qryb mn hwny?
½ ���
ªK
 , h. Ag. X SFX

djAj, y‘yy∧sk

Table 8: Examples of TUN and SFX mis-classified sen-
tences from test-26 with their ground truth label.

The evaluation has shown that, almost all the
“18 + 41” studied examples may belongs to both
dialect and hardly distinguishable even for native
speakers. This exemplifies the increasing com-
plexity the dialect identification task when we con-
sider close dialects of a large lexical overlap.

4 Conclusion

In this paper we described our participation to the
MADAR dialect identification task. We partici-
pated to the the Travel Domain Dialect Identifi-
cation subtask where the goal is to design a sys-
tem able to predict the correct dialect among 26
considered classes. We performed several exper-
iments showing that the DID is a very challeng-
ing task. We were able to reach a F1-score of
65.41 on the official corpus-26-test set. We also
conducted a manual assessment of the Top-2 most
confused classes (SFX and TUN). We have found
that almost all the confused SFX-TUN sentences
are cases for which even a native speaker can-
not decide. This shows that dialect identification
is reaching its effective limit when considered di-
alects have many commonalities.
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Abstract
Studies on Dialectical Arabic are growing
more important by the day as it becomes the
primary written and spoken form of Arabic on-
line in informal settings. Among the impor-
tant problems that should be explored is that
of dialect identification. This paper reports
different techniques that can be applied to-
wards such goal and reports their performance
on the Multi Arabic Dialect Applications and
Resources (MADAR) Arabic Dialect Corpora.
Our results show that improving on traditional
systems using frequency based features and
non deep learning classifiers is a challenging
task. We propose different models based on
different word and document representations.
Our top model is able to achieve an F1 macro
averaged score of 65.66 on MADAR’s small-
scale parallel corpus of 25 dialects and Modern
Standard Arabic (MSA).

1 Introduction

Dialect identification is the task of identifying the
dialect of a particular segment of speech or text of
any size (i.e., word, sentence, or document) auto-
matically. The task of Arabic Dialect identifica-
tion has attracted more attention recently. How-
ever, most efforts focus on a smaller and more
distinct number of dialects, dialects by country
rather than by city for example. Fine grained or
city-based Arabic dialect identification is the more
challenging task of not only classifying dialect by
country but also by city. As such, the similarity
between classes grows higher and the task grows
more challenging.

Other efforts that did tackle such fine grained di-
alects and a larger number of classes have not ex-
plored the use of state of the art embedding mod-
els, language models and the use of deep learning
in general.

The task remains challenging primarily because
of the similarity between documents labeled with

cities that are within the same country. The num-
ber of samples available for each class is 1,600
for each of the 26 cities given in Table 1 from
(Salameh and Bouamor, 2018).

We report different data augmentation tech-
niques used to expand the training set used. We
also report the data analysis done on class simi-
larity and model confusion from which we draw
conclusions for suggested future work.

2 Data

The data used in all of the proposed system is
one of the two parallel corpora made available
by the Multi Arabic Dialect Applications and Re-
sources (Bouamor et al., 2019) (MADAR) project:
a 2,000-sentence parallel corpus with 25 parallel
translations plus Modern Standard Arabic (MSA)
which we will refer to as CORPUS-26 and the
second corpus which has another 10,000 addi-
tional sentences translated to five selected dialects,
which we will refer to as CORPUS-6.

The metrics reported for each model on
CORPUS-6 or CORPUS-26 are trained on the
same corpus for which the accuracy is reported.
No more additional data is used except augmenta-
tions of the corpus used.

Data Preprocessing We apply a generic trans-
formation that removes punctuation, diacritization
and vowel elongation.

Data Augmentation Although there is no class
imbalance, the number of samples per class and
the fine grained classes were motivation to ex-
periment with different data augmentation tech-
niques. We used the following methods inspired
by (Ibrahim et al., 2018)’s work to augment al-
ready existing documents:

• Unique Words Augmentation: for each doc-
ument that contains a word repeated more
than once, we remove duplicate words from it
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Region Maghreb Nile Basin Levant Gulf Yemen
Sub-region Moroco Algeria Tunisia Libya Egypt/Sudan South Levant North Levant Iraq Gulf Yemen

Cities

Rabat
(RAB)
Fes
(FES)

Algeris
(ALG)

Tunis
(TUN)
Sfax
(SFX)

Tripoli
(TRI)
Benghazi
(BEN)

Cairo
(CAI)
Alexandria
(ALX)
Aswan
(ASW)
Khartoum
(KHA)

Jerusalem
(JER)
Amman
(AMM)
Salt
(SAL)

Beirut
(BEI)
Damascus
(DAM)
Aleppo
(ALE)

Mosul
(MOS)
Baghdad
(BAG)
Basra
(BAS)

Doha
(DOH)
Muscat
(MUS)
Riyadh
(RIY)
Jeddah
(JED)

Sanaa
(SAN)

Table 1: Different region, sub-region, and city dialects in the MADAR dataset.

and create a new comment with only unique
words.

• Random Mask Augmentation: for each docu-
ment, we create a different new document by
randomly removing up to 20% of the original
document words.

• Random Swap Augmentation: for each docu-
ment, we create a different new document by
randomly swapping up to 20% of the original
document words.

• Random Concatenation Augmentation: we
choose two documents with few number of
words at random and append them forming a
new one with longer length.

We report that using data augmentation pre-
vented over-fitting when using deep learning as we
chose between applying different techniques or us-
ing the original document at random for each sam-
ple in each epoch.

For non deep learning models, we used such
augmentation to increase the size of the data used
to around quadruple the original number of docu-
ments, which resulted in a slight increase (close to
1%) in the baseline model accuracy.

3 Methodology

For such a complicated task we tried multiple ap-
proaches using different techniques to achieve the
best results. We started by tuning the baseline
given in (Salameh and Bouamor, 2018) which is
a Multinomial Naive Bayes (MNB) using TF-IDF
character + word features (without the KenLM
language model). Experiments concluded with n-
gram ranges of one to five for character features
and one-gram for word features. A grid-search
using (Pedregosa et al., 2011) was applied to the
MNB which delivered an F1-score of 64.94% on
the dev-set.

We then took to deep neural networks, the mod-
els submitted are given in Table 2 and experiments
that lead to those submission are given in Table 3.
We did not observe much improvement over the
baseline (MNB) until our first submission model.

3.1 LSTM + CharCNN, FastText embeddings
+ LSTM and Baseline Ensemble

It is an ensemble of three models, the first being an
adaptation of the character-level model proposed
in (Ali, 2018), which takes one-hot-encoded char-
acter features to multiple (five in our case) con-
volution layers with filter size of 256 -which is
the same as the max length set for a sentence-
preceded by a Gated Recurrent Unit (GRU) for
context capturing of these features then a softmax
layer for calculating log probabilities.

After multiple experiments and tuning we re-
placed the GRU with an LSTM. The second model
we ensemble is another shallow network consist-
ing of an embedding layer of fastText word em-
beddings(Mikolov et al., 2018) through a spatial
dropout layer to avoid over-fitting, then through an
LSTM, again for context capturing, but in this case
for word features, then finally a softmax layer. The
outputs of both softmax layers are averaged to give
the final probabilities. We chose this approach
to combine both character features and word fea-
tures, this gave us the best result we could achieve
on the dev-set with 63% F1-score. After ensem-
bling it with our MNB baseline (the third and fi-
nal model) with weighted averaging, we surpassed
the baseline achieving 66.1% F1-score on the dev-
set and ranked second among all of our submis-
sions with an F1-score of 65.35% on the test-set.
All neural network models were built using Keras
(Chollet et al., 2015). The full architecture can be
seen in Figure 1.
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Model F1-Macro Precision-Macro Recall-Macro Accuracy
ArbDialectID (Winning Team) 67.32% 67.60% 67.29% 67.29%
LSTM +CharCNN, fastText embeddings + LSTM,
Baseline (1st submission)

65.36% 66.07% 65.38% 65.38%

Char TFIDF + WordTFIDF + NN,
Baseline (2nd submission) 65.66% 65.79% 65.75% 65.75%

Bert + Document Pooling (3rd submission) 35.14% 42.61% 36.25% 36.25%

Table 2: Models submitted and their corresponding scores on the test-set.

Figure 1: 1st Submission Architecture

3.2 CharTFIDF + WordTFIDF + NN and
Baseline Ensemble

It is an ensemble of the MNB baseline and
a deep learning model applied to baseline fea-
tures. The deep learning model takes as input
the frequency based features for which the MNB
achieved 64.94% dev-set F1-score and improves it
to 65.57%.

The model architecture in Figure 2 consists of
two hidden fully connected layers followed by an
output layer. The two hidden layers are followed
by ReLU activations and dropout layers with 20%
probability. The number of inputted features to the
neural network is equal to the number of dimen-
sions of the frequency based vectors (char-based
and word-based). Adam optimizer (Kingma and
Ba, 2014) is used for training with 3e-6 learning
rate and the cross entropy loss as criterion.

The ensemble of the model produced with the
baseline using log probability averaging produces
66.78% dev-set F1-score and 65.66% test-set F1-
score which is less than 2% below the winning
team results and was ranked the seventh out of 19
submissions in the shared task competition.

3.3 Language-Model Based Models

We propose a number of other systems that pro-
duced sub-optimal results on corpus-26 data, but
are experiments worth mentioning towards other
future ensembles and systems.

i. A character level forward and backward
language model trained using multi-layer RNNs

Figure 2: 2nd Submission Architecture

whose features are combined with fastText and
bytepair (Heinzerling and Strube, 2017) subword
embeddings produced 58% devset F1-score.

ii. A model using multi-lingual BERT (Devlin
et al., 2018) and a multi-layer RNN for document
representation also followed by a single layer lin-
ear classifier reaches 55% dev-set F1-score.

iii. A model using Aravec (Mohammad et al.,
2017) word embeddings and a shallow LSTM for
document representation (feeding word embed-
ding sequence to LSTM and using hidden layers
as features) produces 50% dev-set F1-score when
using a one layer linear classifier.

4 Discussion

Multiple observations and experiments show that
the fine-grained nature of classes is the most chal-
lenging aspect of the task. Differentiating between
Cairo and Alex or Beirut and Damascus is a much
harder problem than differentiating between Lev-
ant and Gulf for example. We report some results
towards such conclusions when classifying by city
within a single regions’ data as shown in Figure 3
and Figure 4.

Bench-marking all of the fore-mentioned mod-
els on corpus-26 data with regions and MSA as
classes instead of cities produces results compara-
ble to that of corpus-6 data (80% at worst on the
dev-set). So the higher scores reported on corpus-
6 data are not only owing to the larger number of
samples but also owing to the affinity between sub
region classes in corpus-26.

Another conclusion we can draw from how
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Model Dev-set F1-score
Char TFIDF + WordTFIDF + NN, Baseline 66.6%
LSTM + CharCNN, fastText embeddings LSTM, Baseline 66.1%
Character-level bi-directional LM (RNNs) + fastText + BytePair,
Linear Classifier

58%

Bert + RNN Document Representation + Linear Classifier 55%
AraVec Word Embeddings + Shallow LSTM with dropout 50%

Table 3: Top scoring models on the dev-set

Figure 3: Confusion matrix for MNB classifier on Nile
Basin region data and classes only

Figure 4: Confusion matrix for MNB classifier on Lev-
ant region data and classes only

closely all of the deep learning based models
plateau, is that coming up with a better system for
this task may require the use of other external la-
belled or unlabelled data. With the internet rich
with blogs that are country specific or city specific.
We can use unlabelled data from specific sources

(e.g. tweets on Alexandria, Facebook posts from a
public group based in Khartoum, and so on and so
forth).

That can enable the training of embeddings
from scratch on large data, and it can also be used
on language model training improving the perfor-
mance of models based on such techniques. The
training of embeddings on such data specifically
makes sense because of the percentage of out of
vocab words and how they are handled in the em-
bedding techniques we used. Because the embed-
dings were for the most part trained themselves on
MSA data. The out of vocab (OOV) words which
were usually 10-20% of the words in the corpus-
26 data, were handled by averaging the rest of the
embeddings of all words in the document or by be-
ing given a zero vector. Inconveniently, the OOV
words are clearly the words we are most inter-
ested in because they are most likely to be the di-
alect specific words that differentiate between the
classes. Therefore, if we are able to reduce the
number of OOV words, the scores are expected
to significantly improve. That can be achieved
by the fore-mentioned training of embeddings on
corpora that are not MSA only, or at least using
smarter techniques to handle OOV words, such as
character-based representation (Bojanowski et al.,
2016).

5 Conclusion

We introduce multiple neural network based mod-
els built on word and document representations.
We are able to produce results comparable to the
MNB baseline on n-gram frequency based fea-
tures despite of the small size of the dataset,
which maybe an indication of even better results
on larger data. We ensemble the neural network
based models with the baseline to produce better
results than the baseline.

Future work will explore further ensembles of
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the language model based classifiers and ensem-
bling using other techniques than probability av-
eraging (e.g. stacking). We will also explore the
training of embeddings on data that is comprised
of diverse dialectical data, not only MSA, and bet-
ter handling of OOV words when using embed-
dings.
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Abstract

We present MICHAEL, a lightweight method
developed for the MADAR shared task on
travel domain Dialect Identification (DID). It
uses character-level features and perform clas-
sification without any pre-processing. Charac-
ter N-grams extracted from the original sen-
tences are used to train a Multinomial Naive
Bayes classifier. MICHAEL achieved an offi-
cial score (accuracy) of 53.25% with 1 ≤ N ≤
3 but showed a much better result with charac-
ter 4-grams (62.17%).

1 Introduction

The Arabic language is one of the most widely
spoken language in the world, currently consid-
ered as the fifth language (Chung, 2008) with more
than 330 million Arabic speakers. It is the official
language of more than 22 countries. In its written
form, commonly referred as Literary Arabic, it is
divided into two categories: Classical Arabic and
Modern Standard Arabic (MSA). However, Ara-
bic speakers mostly use dialects which are a lin-
guistic variant of classical Arabic with their own
features, varying with respect to the country or the
region. If MSA is used only for written and official
communication, dialects are used for oral com-
munication as well as for many device mediated
communication forms: email, sms, chat or blogs.
Therefore, Arabic dialects identification (DID) has
become a very important pre-processing step that
attracts many attention from NLP research. In-
deed, the knowledge about the dialect of an input
text is useful in several NLP tasks such as senti-
ment analysis (Al-Twairesh et al., 2016).

We propose a simple, light-weight, character-
based method to classify Arabic sentences into 26
classes (25 dialects + MSA) based on the MADAR
corpus provided for this competition (Bouamor
et al., 2019). This paper is organized as follows:
in Section 2, we present some related word for
DID. In section 3, we describe some aspects of

the Arabic dialects and in section 4 we present the
MADAR dataset and we introduce MICHAEL, the
system we designed to tackle the DID task. Fi-
nally, we show our results in Section 5 and give
some future directions in section 6

2 Previous Work

Arabic Dialect Identification is a very difficult task
because of several factors like the lack of NLP
tools that deal with Arabic variants. So far, the
researchers have tried to address this task using
different methods.

Salameh et al. (Salameh et al., 2018), pre-
sented a MNB (Multinomial Naive Bayes) clas-
sifier trained to identify a tweet among 26 classes
(MSA+25 dialects) using a large-scale of parallel
sentences (Bouamor et al., 2018). Their models
reach 67.9% accuracy for sentences with an aver-
age length of 7 word and reached more than 90%
with 16 words.
Elfardy and Diab (Elfardy and Diab, 2013)
proposed a supervised method for identifying
whether a given sentence in prevalently MSA
or Egyptian using the Arabic online commentary
dataset(AOC) (Zaidan and Callison-Burch, 2011).
Their system achieves an accuracy of 85.5% on an
Arabic online-commentary dataset.

Najafian et al. (Najafian et al., 2018), pre-
sented different approaches for Dialect Identifica-
tion (DID) in Arabic broadcast speech using use
Support Vector Machines (SVM), and Convolu-
tional Neural Networks (CNN) as backend clas-
sifiers. The final system merges these results and
obtains 24.7% and 19.0% relative error rate reduc-
tion compared to conventional phonotactic DID,
and i-vectors with bottleneck features. Rabee et
al. (Naser and Hanani, 2018), describes an Au-
tomatic Dialect Recognition (ADI) system for the
VarDial 2018 challenge, with the goal of distin-
guishing four major Arabic dialects, as well as
Modern Standard Arabic (MSA) using four sys-
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tems. The first system uses word transcriptions
and tries to recognize the speaker’s dialect by
modeling the word sequence of each dialect. The
second one aims to recognize the dialect by mod-
eling the telephonesequences produced by non-
Arabic telephone recognition devices. The other
two systems use GMM trained in acoustic func-
tions to recognize the dialect. This system reached
68.77% in micro F1. Elaraby et al. (Elaraby and
Abdul-Mageed, 2018), presented a deep learning
models for DID taking advantage of the perfor-
mance of several conventional machine learning
models under different conditions. Their model
showed a 87.65% score in accuracy for the binary
task (MSA vs. dialects), 87.4% for the 3 class task
(Egyptian, Gulf and Levantine).

3 The Dialectal Varieties of Arabic

Arabic language is a rather generic term that refers
in fact to many variants and dialects. Nowadays,
one can consider that Arabic language is divided
into three major categories: classical Arabic, stan-
dard Arabic (MSA) and dialectal Arabic. The
2019 MADAR competition focused on the latter.

Dialectal Arabic is a proper form of the Ara-
bic language used in everyday communication,
usually called ”darija”. It varies from one coun-
try to another and even from one region to an-
other within the same country. All Arab coun-
tries have their own dialects that are more or less
close to each other. The differences the dialects
exhibit depend mainly on the history of each coun-
try and its geographical location. For example, the
Tunisian dialect (TUN) integrates several borrow-
ings from French language as it has been colo-
nized by France. Words like ”stylo” (pen/pencil)
or ”cartable” (schoolbag) are examples of bor-
rowings completely integrated into TUN. Accord-
ing to Zaidan and Callison-Burch (2014), arabic
dialects can be classified into five major classes
(these classes can have several subclasses):

• Egyptian: The most widely understood di-
alect, due to a thriving Egyptian television
and movie industry (Haeri, 2003).

• Levantine: A set of dialects that differ some-
what in pronunciation and intonation, but are
largely equivalent in written form. They are
closely related to Aramaic (Amara, 2010).

• Gulf: Probably the closest to MSA, perhaps
because the current form of MSA evolved

from an Arabic variety originating in the Gulf
region. There are differences between Gulf
and MSA but Gulf kept more of MSA’s verb
conjugation than other dialects (Versteegh,
2001).

• Iraqi: Despite its similarity to Gulf dialects
it exhibits some very distinctive features in
terms of prepositioning, verb conjugation and
pronunciation (Mitchell, 1993).

• Maghrebi: These dialects were influenced
by both French and Berber languages. The
Western-most varieties could be unintelli-
gible for speakers from other regions in
the Middle East, especially in spoken form.
Maghreb is a large region with more varia-
tion than regions like the Levant or the Gulf.
It makes it probably easier to distinguish its
local variants : Tunisia, Algeria, Morocco,
Libya. . . (Tilmatine, 1999).

Arabic dialect differ from one another and from
MSA on several levels of linguistic representation
such as phonology, morphology, lexicon and syn-
tax. Table 1 exhibits examples of differences be-
tween some dialects. For instances, the phonem
”qaf” (first column) will not have the same pro-
nounciation in all the dialects. In the second col-
umn one can see that the future tense is not marked
by the same morpheme in each variant. The syn-
tax of negation (third column) is not the same in
Maghrebian dialects and in othe dialects. Regard-
ing lexicon (fourth column) the concept ”car” in
ALG and MAR dialects reflects a borowing from
the French term ”automobile”.

Phon. Morph. Synt. Lex.
MSA qaf s or swf mA sayyaara
ALG qaf and

/g/
ghadi or
rH

mA tomobile

EGY hamza h muw 3arabiyya
GUL /g/ ba lA sayyaara
LEV hamza H or rH muw sayyaara
MAR qaf ghadi mA tomobile
TUN qaf and

/g/
bAsh mA krhba

Table 1: Examples of differences between MSA and
ALG (Algeria), EGY (Egyptian), GUL (Gulf), LEV
(levantine), MOR (Moroccan) and TUN (Tunisian) re-
garding phonetics, morphology, syntax and lexicon.
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4 Arabic Dialect Identification: Methods
for classification

4.1 Some Difficulties of Arabic DID
Despite the differences between the different di-
alects, their automatic identification remains a
very difficult task, even impossible in some cases.
This difficulty is due to several factors:

• Shared lexicon: dialects have a common vo-
cabulary and a dialectal sentence can contain
several dialects as well as MSA.

• Grammatical Ambiguity: some identical
words are used with different functions. For
example, the word ”Tyb” can be an adjective
in some dialects and an interjection in others.

• Homonyms: mostly due to the omission
of short vowels, a dialectal word can have
the same spelling as an MSA word but an
entirely different meaning. This includes
strongly dialectal words such as dwl: it is
either the Egyptian (EGY) word for ”these”
(pronounced dowl) or the MSA word for
”countries” (pronounced duwal) (Zaidan and
Callison-Burch, 2014).

4.2 Data: The MADAR corpus
The purpose of the shared task is to give each
short sentence a label among 26 avialable labels.
We took advantage of the MADAR corpus sup-
plied for the competition in order to train various
classifiers. We did not use anay external resource.
The MADAR corpus has been created by trans-
lating sentences from the Basic Traveling Expres-
sion Corpus (BTEC) from English and French to
the different dialects. This corpus has been split-
ted into Train, Validation and Test sets, they are
priefly presented in Table 2.

Datasets Train Dev Test
# sentences 41,600 5,200 5,200
# words 336,342 42,586 36,811
# characters 1,301,599 166,898 162,185

Table 2: Size of the Train, Dev and Test sets

4.3 Method: Character N-grams
MICHAEL has been built on the assumption that
the features most prone to discriminate languages
are found at character-level. With this idea in mind

Trained on Train Set Train Set Train+Dev
Tested on Dev Set Test Set Test Set
N = 1 19.08 18.46 18.48

1 ≤ N ≤ 2 40.04 37.29 37.44
N = 2 42.62 39.90 40.38

1 ≤ N ≤ 3 55.00 53.25 53.54
2 ≤ N ≤ 3 56.17 54.31 54.40
N = 3 58.25 57.50 57.92

1 ≤ N ≤ 4 60.73 59.62 59.88
2 ≤ N ≤ 4 61.21 60.04 60.25
3 ≤ N ≤ 4 62.44 60.88 61.42
N = 4 62.96 61.94 62.17

1 ≤ N ≤ 5 62.65 60.98 61.71
2 ≤ N ≤ 5 63.17 61.02 61.77
3 ≤ N ≤ 5 63.48 61.65 62.12
5 ≤ N ≤ 5 62.62 61.71 61.88
N = 5 60.71 59.77 60.48

Table 3: Results for the Multinomial Naive Bayes Clas-
sifier, character N-grams with various range of N from
Nmin = 1 to Nmax = 5 with different training and
testing configurations (blue score is our official score)

we tried different classifiers but quickly found
that, under the technical constraints we were fac-
ing, Naive Bayes algorithms were the most appro-
priate for such a multi-class problem. The One
VS Rest implementation of SVM we tested were
unable to reach a result and we did not want to
train 26 different classifiers separately. We used
the SCI-KIT LEARN implementation of MNB and
it proves quickly that among the NB implementa-
tions of this library, the Multinomial Naive Bayes
(MNB) was the most efficient. We will show in the
next section different learning configurations and
various size of n-grams for feature engineering.

5 Results and Error Analysis

5.1 Results

The results obtained by MICHAEL are shown on
Table 3. One can see that character 1 − grams
(Nmin = Nmax = 1) alone can achieve more than
18% in accuracy which is an interesting result for
a 26-class task. Increasing the maximum size of
the N-grams increases the accuracy quickly: +19
percentage points (pp) with Nmax = 2 and an-
other 16 points with Nmax = 3. The gain with
Nmax = 4 is lower but it is still a 6 pp gain.

Working on the minimal size of the n-grams is
also a good way to improve the score. In our par-
ticular learning setting, removing short n-grams
helps to improve the results. For instance with
Nmax = 3, setting Nmin = 3 instead of Nmin = 1
improves the accuracy by 4 percentage points. Fi-
nally, the best results were obtained with 4-grams.
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Maghreb Egyptian S. Levant N. Levant Iraqi Gulf
ALG BEN FES RAB SFX TRI TUN ALX ASW CAI KHA AMM JER SAL ALE BEI DAM BAG BAS MOS DOH JED MUS RIY SAN MSA

ALG 153 3 5 6 4 3 5 1 0 3 2 0 0 2 0 1 0 0 0 0 0 0 5 1 0 1
BEN 7 127 2 3 2 8 0 2 0 0 0 4 6 3 1 3 3 3 3 2 3 5 5 9 4 0
FES 8 1 135 36 1 0 1 1 2 1 2 2 3 1 2 5 2 1 2 0 2 2 2 1 2 0
RAB 7 2 34 138 3 2 6 1 2 2 1 1 1 3 1 1 0 0 1 0 1 0 0 0 1 0
SFX 3 5 5 4 149 3 47 0 0 1 1 1 1 2 0 1 1 2 1 0 2 4 1 1 2 2
TRI 2 11 0 4 3 145 3 0 3 1 3 1 1 1 1 1 1 1 2 6 5 3 0 2 4 0
TUN 1 1 1 1 22 3 119 0 1 2 0 0 1 0 1 3 1 0 0 0 1 0 1 0 0 0
ALX 2 0 1 1 0 0 1 143 27 20 3 4 3 2 0 2 2 0 1 2 2 3 2 1 0 2
ASW 0 7 1 0 0 3 0 14 116 36 11 4 2 4 1 3 3 3 1 0 1 6 3 0 2 0
CAI 1 1 2 0 0 2 1 12 22 88 2 4 2 3 0 4 2 1 1 0 0 2 2 4 3 1
KHA 3 3 1 0 0 5 0 8 3 14 139 3 2 2 2 4 2 1 2 1 4 7 10 2 5 9
AMM 0 4 0 0 1 2 1 5 3 6 1 108 21 10 8 5 13 2 1 0 2 4 1 3 2 0
JER 2 3 0 3 2 3 1 2 4 3 2 18 112 15 8 7 9 0 0 0 4 1 0 3 1 0
SAL 0 0 1 0 1 3 3 0 1 2 1 6 12 106 4 6 10 1 2 2 4 5 3 3 3 2
ALE 0 1 0 1 1 2 0 0 0 7 0 6 7 3 122 9 16 2 0 2 3 0 2 1 0 2
BEI 1 1 0 0 0 2 0 1 0 2 1 5 7 4 6 113 15 2 1 0 1 2 1 1 0 0
DAM 1 1 0 0 1 0 1 0 2 0 3 9 5 6 25 18 100 1 1 1 3 5 3 0 2 2
BAG 0 1 1 0 2 1 1 1 0 1 0 1 0 2 3 1 7 123 26 1 3 1 5 3 5 4
BAS 2 1 0 0 0 0 3 0 1 0 2 0 3 3 2 2 2 31 128 8 3 0 3 3 2 1
MOS 1 0 1 0 2 0 1 1 0 1 2 1 0 3 3 1 0 7 12 165 4 2 1 6 3 0
DOH 0 3 2 1 1 4 2 0 3 1 4 6 3 4 0 2 2 2 3 0 119 9 12 5 5 1
JED 2 7 0 1 0 2 3 4 5 4 3 5 3 4 5 1 4 1 2 1 13 115 4 21 6 3
MUS 1 3 3 0 1 1 1 0 1 0 6 4 2 5 2 3 0 0 2 3 9 0 94 13 2 23
RIY 2 10 2 0 2 2 0 1 3 1 1 5 2 6 0 3 1 7 3 3 7 13 12 102 7 5
SAN 0 4 3 1 0 4 0 1 1 3 1 2 1 4 1 1 2 5 4 3 3 8 5 10 130 2

MSA 4 1 3 0 0 2 0 4 1 0 8 2 1 2 2 0 0 2 1 1 0 2 12 3 0 137

Table 4: Confusion matrix for our best system (MNB with character 4-grams) with dialects grouped with respect
to regions, with true positives in blue, and in blod dialect pairs with more than ten false positives.

It appears that the results obtained on the Test
Set were worse than those obtained on the Dev Set
(third column of Table 3), with an average loss of
1.6 percentage points. Merging the Train and the
Dev Set resulted in a gain that in most cases was
marginal (+0.26 pp). With Nmax > 4 we did not
find much improvement in results, except on the
dev set but this can be a bias. This threshold may
be related to the fact that character N-grams with
N > 4 tend to represent the lexicon more than
general properties of the dialect itself.

5.2 Error Analysis

Table 4 shows the confusion matrix of our best
configuration. The 25 dialects are grouped by re-
gions and MSA appears as the last class. We can
see that MUS and SAN are the closest dialects
to MSA with respectively 35 and 17 errors in-
volving the MUS-MSA and the SAN-MSA pairs.
CAI, MUS and DAM dialects were the most dif-
ficult to detect with respectively 112, 106 and 100
False Negatives (FN). Regarding False Positives
(FP), the most problematic cases were ASW (106)
, RIY (105) and JED (103). Interestingly, the most
difficult dialect pairs to discriminate were from
Maghreb: FES–RAB (36 and 34 FP) and SFX–
TUN (47 and 22). Most of FPs occured between
dialects of the same regions with two exceptions
: (I) a minor one because North Levant dialects
are hard to distinguish from South Levant dialects
and (II) a more strange situation with BEN-RIY
and KHA-MUS being rather difficult pairs to dis-
tinguish despite their apparent distance.

6 Conclusion and Future Work

In this paper, we explored the problem of Arabic
dialect classification into 26 classes (covering 25
cities from the Arab World in addition to Modern
Standard Arabic(MSA)). We presented MICHAEL

a simple, pre-processing free, system design for
this DID task. MICHAEL uses character N-Grams
features to train a Multinomial Naive Bayes classi-
fier. Beside its simplicity, MICHAEL does not need
a huge amount of training data to achieve good re-
sults. This system achieved an official score (ac-
curacy) of 53.25% with 1 ≤ N ≤ 3 but showed
a much better result with only character 4-grams
(62.17% accuracy). Using N-grams with N > 4
did not seem to improve the results. However, an
accurate feature selection technique, like mutual
information, may help to get advantage of these
longer n-grams that capture more lexical informa-
tion than shorter N-grams.

Using other types of character features like
closed motifs (Buscaldi et al., 2018) would be a
first way to assess the influence of the classifier
and the features. We plan to explore if adding
pre-processing steps like tokenization into words
or normalization may improve the results. An-
other interesting perspective would be to test a Bil-
stm RNN architecture since this has proven to be
adapted to sequential data and Bilstm can exploit
both character-level and word-level features. In
another perspective it would be very interesting to
perform a deeper analysis of classification errors.
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Abstract

This paper presents the results of the experi-
ments done as a part of MADAR Shared Task
in WANLP 2019 on Arabic Fine-Grained Di-
alect Identification. Dialect Identification is
one of the prominent tasks in the field of Natu-
ral language processing where the subsequent
language modules can be improved based on
it. We explored the use of different fea-
tures like char, word n-gram, language model
probabilities, etc on different classifiers. Re-
sults show that these features help to improve
dialect classification accuracy. Results also
show that traditional machine learning classi-
fier tends to perform better when compared to
neural network models on this task in a low
resource setting.

1 Introduction

In general, Arabic (language), refers to a wide
spectrum of native languages used in Middle East
and North Africa. As mentioned in Zaidan and
Callison-Burch (2014), native languages of Arabic
speakers differ with each other and with Modern
Standard Arabic (MSA). These native languages
or dialects can be categorized based on their com-
mon linguistic features and geographical locations
(Elaraby and Abdul-Mageed, 2018). This catego-
rization is described in detail in Bouamor et al.
(2019). In the technological expansion of com-
munication era, automatic identification of these
dialects becomes an essential task for major natu-
ral language applications. These applications can
be Machine Translation (Ling et al., 2013), Speech
Recognition (Bouamor et al., 2018), Tourist Guide
(Alshutayri and Atwell, 2017), Real-time Disaster
Management (Elaraby and Abdul-Mageed, 2018;
Alkhatib et al., 2019) and in health care. The task
at hand was to identify a natural language dialect
given a sequence of text for Arabic (Salameh and
Bouamor, 2018). As per the shared tasks, these

texts were either tourist help guide (subtask1) or
the social media text (subtask2).

2 Related Work

Dialect identification is well known task in the
Natural Language processing community. We can
find work on different languages like English, Ger-
man, Chinese, etc (Jauhiainen et al., 2018) for nat-
ural language dialect processing. Mostly it can be
categorized into spoken and text level tasks. These
categorization also includes work on resource cre-
ation for dialects (Zaidan and Callison-Burch,
2014; Zampieri et al., 2018) as well as the building
a robust system for Dialect Identification. In Ara-
bic, it is prerequisite for most NLP tasks, where
many subsequent tasks depend on it. We can find
spoken dialect identification work in Biadsy et al.
(2009); Najafian et al. (2018); Shon et al. (2017),
etc. For text, one can find recent work in Elaraby
and Abdul-Mageed (2018); Salameh and Bouamor
(2018); Abdul-Mageed et al. (2018); Butnaru and
Ionescu (2018); Guellil et al. (2019).

MADAR shared task (Bouamor et al., 2019)
consists of two sub-tasks which are

• MADAR Travel Domain Dialect Identifica-
tion - this subtask requires identification of
the dialect of a sentence, the dialect can be of
any one of the pre-defined 26 arabic dialects
as described in Bouamor et al. (2019)

• MADAR Twitter User Dialect Identification
- this subtask requires the origin country of a
tweet for a given user. We consider this clas-
sification task as a pipeline of 2 tasks. First
we classify each tweet according to its coun-
try. Each user can tweet several times. The
user to country mapping is decided based on
frequency of the previous classification task.
Each user is mapped to the most likely coun-
try predicted by the tweets s/he posts.
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We utilized features and model described
in Salameh and Bouamor (2018) as baselines
for Arabic dialect identification on Corpus-26
(Bouamor et al., 2018). We wanted to replicate
their model which used multinomial naive bayes
classifier (Pedregosa et al., 2011) on character and
word n-gram with language model score as fea-
tures to get state of the art accuracy.

3 Data

The details of the datasets used for training, de-
velopment and test, in different subtasks are given
in the tables 1 and 2. In table 1, the training data
was distributed into 26 classes named as MADAR-
Corpus-26 where each class had 1600 samples.
Each class had a representation of 200 samples in
the dev data.

Type #Sentences
train 41600
dev 5200
test 5200

Table 1: Corpus Details for subtask1

Type #Users #Tweets
train 2180 217592
dev 300 29869
test 500 49962

Table 2: Corpus Details for subtask2

4 Experimental Setup

4.1 Prepossessing

Preprocessing is a necessary step while handing
textual data. The preprocessing steps involved in
the subtasks are detailed below:-

• Tokenization and Normalization : We did
not use any off-the-shelf tokenizer for the
tweets. We used the standard technique of
tokenizing the text on white spaces for both
the tasks.

• Text cleaning (Tweets) : Unlike standard
texts, tweets can contain different spelling
variations of words, special characters, twit-
ter handles, urls due to limited space. We
tried different experiments to observe the im-
pact of removal of the twitter handles and urls

on the overall classification accuracy. We ob-
served that removal of these terms adversely
affects the classification score. So we chose
to keep the tweets as they were.

4.2 Feature Engineering
The features used for subtask1 were similar to
those used in Salameh and Bouamor (2018). 3
different machine learning models were explored.
All the below mentioned models were imple-
mented using scikit-learn (Pedregosa et al., 2011)
machine learning library.

• Linear SVM

• Multinomial Naive Bayes

• Logistic Regression

The individual features used in different subtasks
are explained in detail here.

• Subtask1

– TF-IDF: We used different combina-
tions of word and character level n-
grams for the tasks. We observed that
combining word and character level n-
gram TF-IDF vectors performed signif-
icantly better than individual word or
character TF-IDF vectors. For our final
submissions, combinations of word uni-
grams and character level n-grams were
considered where n lies in {2, 3, 4, 5}.

– Language Modeling: We trained dif-
ferent language models (LM) for the
two types of corpora available to us.
We trained the language model on sen-
tences specific to a particular class for
both MADAR-Corpus-6 (6 LMs) and
MADAR-Corpus-26 (26 LMs). 2 fea-
tures were included for these language
models while developing machine learn-
ing models for subtask1. The coarse
probabilities mentioned in table 3 came
from the scores of the language model
trained on MADAR-6 corpus. The final
language model score was arrived at by
adding the scores of the word and char-
acter 5-gram LMs for both the corpora.

• Subtask2 For the first classification task in
subtask2, we used the same word, character
TF-IDF features and the same classifiers as
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Model N-gram Features Other Features P R F1 AccWord Char
Baseline Word 5-gram + Char

5-gram LM
67.7 67.4 67.4 67.4

mNB 1 1+2+3 64.9 63.9 63.7 63.9
mNB 1 2+3+4+5 66.3 65.0 64.9 65.0
mNB 1 1+2+3 Word&Char-5gram

LM+Corpus 6 probs
67.7 67.5 67.5 67.5

mNB 1 2+3+4+5 Word&Char-5gram
LM+Corpus 6 probs

67.7 67.5 67.4 67.5

SVM 1 1+2+3 64.3 63.9 63.9 63.9
SVM 1 2+3+4+5 64.8 64.4 64.4 64.4
SVM 1 1+2+3 Word&Char-5gram

LM+Corpus 6 probs
67.7 67.4 67.4 67.4

SVM 1 2+3+4+5 Word&Char-5gram
LM+Corpus 6 probs

67.7 67.4 67.4 67.4

logreg 1 1+2+3 64.4 64.0 63.9 64.0
logreg 1 2+3+4+5 65.3 65.0 65.0 65.0
logreg 1 1+2+3 Word&Char-5gram

LM+Corpus 6 probs
67.7 67.4 67.4 67.4

logreg 1 2+3+4+5 Word&Char-5gram
LM+Corpus 6 probs

67.7 67.4 67.4 67.4

MLP 1+2 1+2+3+4+5 50 neurons 65.12 64.17 64.37 64.17
MLP 1+2 1+2+3+4+5 100 neurons 66.68 65.9 66.0 65.9
MLP 1+2 1+2+3+4+5 200 neurons 67.39 66.63 66.78 66.63
MLP 1+2 1+2+3+4+5 50 neurons + Char

LM
67.05 66.85 66.82 66.85

MLP 1+2 1+2+3+4+5 100 neurons + Char
LM

66.83 66.67 66.62 66.67

MLP 1+2 1+2+3+4+5 200 neurons + Char
LM

67.76 66.60 66.55 66.60

Table 3: Results On Dev Set for subtask1

mentioned in subtask1. We used the dialect
probabilities as an additional feature which
were present in the column 4 in the pro-
vided data. These dialect probabilities were
obtained by the best model in Salameh and
Bouamor (2018). We followed an ensemble
approach for the classification task. Some
of the tweets were unavailable in the train-
ing set. Some tweets consisted of only en-
glish tokens, so the arabic dialect probabil-
ities were missing for those tweets. So we
used two separate classifiers with the follow-
ing features to handle data of different types

– Word Unigram, Character 2-5 gram TF-
IDF vectors, dialect probabilities for the
tweets which contained arabic text

– Word Unigram, Character 2-5 gram TF-
IDF vectors for the tweets which con-
tained no arabic text or contained only
urls or twitter handles

During testing, different classifiers were used
for inferencing with appropriate feature. We
marked ‘Saudi Arabia’ as the country of ori-
gin for a tweet which was unavailable be-
cause most of the tweets in the training set
were from the users of Saudi Arab.

4.3 Deep Models
For subtask1, We have also tried out deep learning
based classifier, where we used character and word
level TF-IDF features as described above as input
to the multi-layer perception (MLP). Here we used
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Model N-gram Features Other Features P R F1 AccWord Char
SVM 1 1+2+3 87.8 49.8 60.0 66.3
SVM 1 2+3+4+5 88.0 50.0 60.07 66.7
SVM 1 2+3+4+5 Dialect Proba-

bilities
87.9 49.6 59.8 66.3

Table 4: Results on Dev Set for subtask2

Subtask-Model N-gram Features Other Features P R F1 AccWord Char
subtask1-mNB 1 1+2+3 Word&Char-

5gram
LM+Corpus 6
probs

66.56 66.31 66.21 66.31

subtask2-SVM 1 1+2+3 Dialect Proba-
bilities

83.37 47.73 57.90 67.20

Table 5: Results On Test Set for subtask1 and subtask2

sequential pipeline of keras1 which contains one
dense layer (with ReLU (Li and Yuan, 2017) ac-
tivation) and output layer with softmax activation
with categorical crossentropy as loss function and
Adam as optimizer. We trained this classifier for
30 epochs with early stopping criteria on GeForce
GTX 1060 GPU. In result section, we show and
discuss results in detail.

5 Observations

We could observe that all the classifiers performed
similarly when all the features were used. Com-
bination of character and word level TF-IDF vec-
tors performed better than character or word level
TF-IDF vectors in isolation. We could see that
the language models trained at word and character
level were the biggest contributor to the system‘s
performance for subtask1. TF-IDF features and
coarse probabilities did not add much to the over-
all accuracy. Logistic Regression and multinomial
naive bayes techniques performed significantly
poor for subtask2, so we did not report the results
in this paper. Machine learning approaches per-
formed marginally better than the multi-layer per-
ceptrons. This could be due to the higher number
of parameters that deep learning approaches try to
learn compared to traditional approaches. One of
the main reasons for lower classification accuracy
in subtask2 is our assumption to assign country
of origin for unavailable tweets as ‘Saudi Arabia’.

1https://keras.io

There were 5992 unavailable tweets in the test cor-
pus.

6 Conclusion and Future Work

We presented our experiments on supervised di-
alect identification task (MADAR) in Arabic. Our
experiments demonstrate that for relatively low re-
source task such as MADAR, traditional machine
learning algorithms with feature engineering show
their potentials compared to the deep learning ap-
proaches. Unlabelled Arabic corpora can be used
to learn character and word embeddings in Ara-
bic. It would be an interesting area to explore how
recurrent neural networks perform on this task.
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Abstract
Arabic dialect identification is an inherently
complex problem, as Arabic dialect taxonomy
is convoluted and aims to dissect a continu-
ous space rather than a discrete one. In this
work, we present machine and deep learning
approaches to predict 21 fine-grained dialects
form a set of given tweets per user. We adopted
numerous feature extraction methods most of
which showed improvement in the final model,
such as word embedding, Tf-idf, and other
tweet features. Our results show that a sim-
ple LinearSVC can outperform any complex
deep learning model given a set of curated fea-
tures. With a relatively complex user voting
mechanism, we were able to achieve a Macro-
Averaged F1-score of 71.84% on MADAR
shared subtask-2. Our best submitted model
ranked second out of all participating teams.

1 Introduction

In recent years, an extensive increase in social
media platforms usages, such as Facebook and
Twitter, led to an exponential growth in the user-
base generated content. The nature of this data
is diverse. It comprises different expressions, lan-
guages, and dialects which attracted researchers to
understand and harness language semantics such
as sentiment, emotion, dialect identification, and
many other Natural Language Processing (NLP)
tasks. Arabic is one of the most spoken languages
in the world, being used by many nations and
spread across multiple geographical locations led
to the generation of language variations (i.e., di-
alects) (Zaidan and Callison-Burch, 2014).

In this paper, we tackle the problem of predict-
ing the user dialect from a set of his given tweets.
We describe our work on exploring different ma-
chine and deep learning methods in our attempt to
build a classifier for user dialect identification as
part of MADAR (Multi-Arabic Dialect Applica-
tions and Resources) shared subtask-2 (Bouamor

et al., 2018) (Bouamor et al., 2019). The task of
user dialect identification can be seen as a text
classification problem, where we predict the prob-
ability of a dialect given a sequence of words and
other features provided by the task organizers. Be-
sides reporting the results from different models,
we show how the provided dataset for the task is
not straightforward and requires additional analy-
sis, feature engineering, and post-processing tech-
niques.

In the next sections, we describe the methods
followed to achieve our best model. Section 2
lists previous work done, Section 3 analyses the
dataset, while Section 4 describes models and dif-
ferent approaches. Section 5 compares and dis-
cusses empirical results and finally conclude in
Section 6.

2 Related Work

Recent work in the Arabic language tackles the
task of dialect identification. Fine-grained dialect
identification models proposed by Salameh et al.
(2018) to classify 26 specific Arabic dialects with
an emphasis on feature extraction. They trained
multiple models using Multinomial Naive Bayes
(MNB) to achieve a Macro-Averaged F1-score of
67.9% for their best model.

In addition to traditional models, deep learn-
ing methods tackle the same problem. The re-
search proposed by Elaraby and Abdul-Mageed
(2018), shows an enhancement in accuracy when
compared to machine learning methods. In Huang
(2015), they used weakly supervised data or dis-
tance supervision techniques. They crawled data
from Facebook posts combined with a labeled
dataset to increase the accuracy of dialect identi-
fication by 0.5%.

In this paper, we build on top of methods from
Salameh et al. (2018) and Elaraby and Abdul-
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Train Dev Test
Available 195227 26750 43918
Unavailable 22365 3119 6044
Total 217592 29869 49962
Retweet 135388 17612 29868

Table 1: Distribution of the Train, Dev and Test sets
used in our experiments.

Mageed (2018), by exploring machine and deep
learning models to tackle the problem of fine-
grained Arabic dialect identification.

3 Dataset

The dataset used in this work represents infor-
mation about tweets posted from the Arabic re-
gion, where each tweet is associated with its
dialect label (Bouamor et al., 2018) (Bouamor
et al., 2019). This dataset is collected from 21
countries which are Algeria, Bahrain, Djibouti,
Egypt, Iraq, Jordan, Kuwait, Lebanon, Libya,
Mauritania, Morocco, Oman, Palestine, Qatar,
Saudi Arabia, Somalia, Sudan, Syria, Tunisia,
United Arab Emirates, Yemen.

As shown in Figure 1, the distribution of tweets
among countries is unbalanced. Around 35% of
the tweets belong to Saudi Arabia, where only
0.08% belong to Djibouti.

The dataset contains 6 features for each user;
username of the Twitter user, tweet ID, the lan-
guage of the tweet as automatically detected by
Twitter, a probability scores of 25 city dialects and
MSA (Modern Standard Arabic) for each tweet
obtained by running the best model described in
(Salameh et al., 2018) and most importantly the
tweet text.

Each user has at most 100 tweets, labeled with
the same dialect, and exists in one set. For ex-
ample, if a user is listed in the training set then
that user will not exist in development nor test set.
Moreover, the maximum length of each tweet is
280 characters including spaces, URLs, hashtags,
and mentions which makes it challenging to iden-
tify the dialects automatically (Twitter).

Another challenge of the dataset is that around
61% of the tweets are retweets, as shown in Table
1. This means that the majority of the tweets are
a re-post of other Twitter users. For example, the

Figure 1: The distribution of 21 Arabic dialects in
MADAR Twitter corpus

tweet ”RT @Bedoon120: @Y » 	PðA « h. Q 	jÖÏ @
https://t.co/sIKqXCUSAn for the user
@abushooooq8 is an Egyptian tweet but it has a
label of Kuwait because the user who retweeted is
Kuwaiti (i.e. @abushooooq8), where the original
author is Egyptian (i.e. @Bedoon120).

Table 1 shows the distribution of available and
unavailable data across different sets. It is also
worth mentioning that around 10% of the data is
missing; some tweets are not accessible because
they were deleted by the author or owner account
was deactivated.

4 Models

In this section, we explain our feature extraction
methodology then we go over the various experi-
mented approaches.

4.1 Feature Extraction
As a preprocessing step, normalization of Ara-
bic letters is common when it comes to deal with
Arabic text. We adopted the same preprocessing
methodology used in (Soliman et al., 2017).

Aravec: A pre-trained word embedding mod-
els proposed by (Soliman et al., 2017) for the Ara-
bic language using three different datasets: Twit-
ter tweets, World Wide Web pages, and Wikipedia
Arabic articles. Those models were trained us-
ing Word2Vec skip-gram and CBOW (Mikolov
et al., 2013). In our experiments, we used the 300-
dimensional Twitter Skip-gram AraVec model.

fastText: An extension to Word2Vec model
proposed by (Bojanowski et al., 2017). The
model feeds an input based on sub-words rather
than passing the entire words. In our experi-
ments, a model with 300 dimension was trained
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on a combination of 5 different datasets: Au-
toTweet (Almerekhi and Elsayed, 2015), Ara-
pTweet (Zaghouani and Charfi, 2018), DART (Al-
sarsour et al., 2018), PADIC (Parallel Arabic DI-
alectal Corpus) (Harrat et al., 2014), MADAR
shared tasks (Bouamor et al., 2018) (Bouamor
et al., 2019).

Tf-idf: It has been proven that Tf-idf is efficient
to encode textual information into real-valued vec-
tors that represent the importance of a word to
a document (Salameh et al., 2018). One of the
drawbacks of Tf-idf vectorized representation of
the text is that it looses the information of the
word order (i.e., syntactical information). Consid-
ering n-grams, for both levels word and charac-
ters, reduces the effect of that drawback. Accord-
ingly, unigram and bigram word level Tf-idf vec-
tors were extracted in addition to a character level
Tf-idf vectors with n-gram values ranging from 1
to 5.

Features specific to tweets: There are features
that are unique to Twitter such as user mentions,
(e.g., @abushooooq8) and emojis. It has been
found that using username as a feature can help
the model understand the user dialect, for instance,
it can easily find that the users @7abeeb ksa,
@a ksa2030 @alanzisaudi have a Saudi Arabia
dialect. Character level unigram Tf-idf has been
extracted from each of the mentioned features.

4.2 Classification Methods
We used a range of classification methods starting
from traditional machine learning methods into
more complicated deep learning techniques.

4.2.1 Machine Learning Approaches
Traditional models include linear and probabilis-
tic classifiers with various feature engineering
techniques. We used SVM classifier that imple-
ments LinearSVC from the Scikit-learn library
(Pedregosa et al., 2011). We used the LinearSVC
model to predict the dialect given the tweet text
represented as Tf-idf, username features and lan-
guage model probabilities as formulated in Equa-
tion 1:

ŷ = argmax
d∈D

P (d|tfidf, tweet feat, lm) (1)

where ŷ is the predicted dialect, D is probability
space of all dialects, tfidf is the Tf-idf features ex-
tracted from a given tweet, tweet feat is the tweet

features and lm is the language model probabili-
ties.

4.2.2 Deep Learning Approaches

fastText Classification: The word embedding of
the words in an input sentence that is fed into a
weighting average layer. Then, it is fed to a linear
classifier with softmax output layer (Joulin et al.,
2017).

SepCNN: Stands for Separable Convolutional
Neural Networks (Denk, 2017), and is composed
of two consecutive convolutional layers. The first
is operating on the spatial dimension and per-
formed on channels separately, while the second
layer convolutes over the channel dimension only.
Word embedding of the sentences is looked up
from AraVec(Soliman et al., 2017). Then, the
embedding of each word in the sentence (i.e.,
the tweet) are passed into a number of SepCNN
blocks followed by a max pooling layer.

Word-level LSTM: A traditional deep learn-
ing classification method. The word sequence is
passed into an AraVec layer to look up word em-
bedding and then fed into a number of LSTM lay-
ers. The final word sequence is used as an input
to a softmax layer to predict the dialect (Liu et al.,
2016).

Char-Level CNN: In this architecture, the in-
put is represented as characters that are converted
into 128 character embedding. Those embedding
vectors are then passed into a number of one-
dimensional convolutional layers. Each convolu-
tional layer is followed by a batch normalization
layer to optimize training and to add a regulariza-
tion factor. The final output is then passed into
one hidden layer and followed by a softmax out-
put layer (Zhang et al., 2015).

Char-Level CNN and Word-level LSTM: A
combination of the previous two methods. The
output of word-level LSTM is concatenated with
character-Level CNN before passing both of them
into a hidden layer followed by a softmax output
layer.

Char-Level CNN and Word-level CNN: In
this network words are transformed into word em-
bedding using AraVec, then concatenated with the
output of character level CNN. The concatenated
result is fed into the LSTM layer, which computes
the final output. Then, passed into a hidden layer
and a softmax output layer to make the final pre-
diction (Zhang et al., 2017).
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Model Hyperparameters Dev Test
Acc F1 Acc F1

LinearSVC C=1.0, penalty=L2, loss=hinge, tolerance=0.0001 54.26 38.95 - -
fastText Classifier emb size = 100 48.5 31.12 - -
SepCNN filters=128, dense units=256, emb size=300, kernel=4, blocks=3 45.46 26.30 - -
Word LSTM embed size=300, dense units=256, lstm size=512 44.91 26.89 - -
Word Bi-LSTM embed size=300, dense units=256, lstm size=512 45.08 26.36 - -
Word LSTM with fastText embed size=300, dense units=256, lstm size=512 50.59 34.65 - -
Char CNN dense units=256, char embed=128, filters=64, kernel sizes= [3, 3, 4] 41.55 20.25 - -
Char CNN and Word LSTM Combining hyperparameters of Char CNN and Word LSTM models 47.12 30.32 - -
Char CNN and Word CNN embed size=300, char embed size=128, char filters=[6,5,4,3,2] 43.96 29.0 - -
LinearSVC Combined C=1.0, penalty=L2, loss=hinge, tolerance=0.0001 77.33 70.43 75.40 65.54
LinearSVC with User Voting ranges=5, retweet weight=8, unavailable weight=1, saudi weight=1 81.67 71.60 76.20 69.86
LinearSVC with Threshold C=1.0, penalty=L2, loss=hinge, tolerance=0.0001, threshold=75% 80.02 70.72 78.00 67.75

Table 2: Final results on the development set for MADAR shared subtask-2

5 Results and Discussion

Two types of experiments were conducted to
evaluate our models. At first, each tweet was
treated independently with its corresponding label
in the training and testing stages without group-
ing tweets for each user. All our experiments
on MADAR shared subtask-2 were evaluated us-
ing the Macro-Averaged F1-score. Table 2 shows
the accuracy and Macro-Averaged F1-score of
the LinearSVC model. LinearSVC outperformed
other traditional machine learning models hence
we discarded reporting their results. On the other
hand, deep learning models are known to gener-
alize better on a large dataset, but unexpectedly it
under-performed machine learning models.

The second type of experiments were done by
grouping predictions per user. The unifying ap-
proach was done by either combining all tweets
together in one document per user or by apply-
ing voting per tweet. In the former, we applied
LinearSVC on the combined data with averaging
the language model scores for all the tweets per
user. This model achieved results of 77.33% ac-
curacy and 70.43% Macro-Averaged F1-score. In
the latter, we took the output of the first model
(Uncombined LinearSVC) and applied two voting
techniques.

The first technique was user voting based on di-
alect weighting. This approach aims to give more
emphasis on less frequent dialects by multiplying
each predicted label with a weight associated for
each dialect d weight. Which is calculated as fol-
lows:

step =
3√max count− 3√min count

5

d weight = 6− ceil(
3√
d count− 3√min count

step )

Where max count is the number of tweets for the
largest dialect (i.e., Saudi Arabia), min count is
the number of tweets for the smallest dialect (i.e.,
Djibouti), step is a range defined as inverse cubic
difference between maximum and minimum di-
alect counts divided by 5. dialect weight is an in-
teger between 1 and 6 that defines dialect weight.
Moreover, we found that increasing the weight of
a retweet to 6 enhanced the accuracy of the model,
and decreasing the weight of <UNAVAILABLE>
tweets to 1 had a similar effect. The final user vot-
ing model achieved 81.67% accuracy and 71.60%
F1-score which is the best model as shown in Ta-
ble 2

Secondly, the other voting technique is based
on majority voting with a penalty on the largest
dialect. In this approach, we took the most fre-
quent label from user tweets as the final label for
that user. We impose selecting Saudi Arabia only
if 75% of the predictions were Saudi Arabia for a
given user. This approach achieved 80.02% accu-
racy and 71.84% Macro-Averaged F1-score.

6 Conclusion

This paper describes various methods applied on
MADAR shared subtask-2 to predict an Arabic
dialect from a set of given tweets, username,
and other features. Experimental results show
that LinearSVC was the most powerful predic-
tion model, achieving the best Macro-Averaged
F1-score than other machine learning models and
deep learning ones. Despite the fact that there was
a substantial amount of unavailable tweets in our
dataset, yet we were able to achieve a relatively
high F1-score of 71.60% on the development set
and 69.86% on the test set, ranking second in the
competition.
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Abstract

In this paper we discuss several models we
used to classify 25 city-level Arabic dialects
in addition to Modern Standard Arabic (MSA)
as part of MADAR shared task (sub-task 1).
We propose an ensemble model of a group of
experimentally designed best performing clas-
sifiers on a various set of features. Our system
achieves an accuracy of 69.3% macro F1-score
with an improvement of 1.4% accuracy from
the baseline model on the DEV dataset. Our
best run submitted model ranked as third out
of 19 participating teams on the TEST dataset
with only 0.12% macro F1-score behind the
top ranked system.

1 Introduction

The term Arabic language is better thought of as
an umbrella term for a gamut of the language vari-
eties, spanning the far and apart geographies con-
stituting the Arab world, some of which are not
even mutually intelligible (Palmer, 2007). Until
recently, the standard variety referred to as Mod-
ern Standard Arabic (MSA), was the only socially
acceptable form of written communication. How-
ever, with the advent and ever-increasing adoption
of web 2.0 technologies in the day to day life of
Arab societies, dialectical variants of Arabic came
to dominate written Arabic online, even though
they usually don’t have a formalized orthography
or grammar (Zaidan and Callison-Burch, 2014).
As a consequence, the detection of such dialects is
having an increasingly larger number of use-cases
of service and communication personalization for
services providers targeting Arabic speaking cus-
tomers over the internet.

The paper describes our submitted system to the
MADAR shared task (sub-task 1) (Bouamor et al.,

∗ These authors contributed equally to the work and or-
dered alphabetically on the first-name.

2019). The task problem is to predict the Ara-
bic dialect out of 26 class which include 25 city-
level dialect in addition to MSA. The number of
the participating team who submitted the predic-
tion of their proposed system on the TEST dataset
were 19 teams. Our proposed system was ranked
3rd in the shared task leader board with F1-macro
score of 67.20%, and a difference of 0.12% from
the winning system.

Our approach to the problem involves using
TF–IDF features, both at the level of tokens and
characters, augmented with class probabilities of
a number of linear classifiers, and language model
probabilities; all together as our set of potential
features. For the classification system we devel-
oped for the sub-task, we used a standalone logis-
tic regression model, and an ensemble of differ-
ent types of classifiers, taking into a hard vote the
prediction of each (i.e. we use the most proba-
ble class of each model instead of the full classes
probabilities, to decide on the final prediction of
the total ensemble). The choice of an ensemble
system stems from the empirical evidence that on
the whole, they perform significantly better than a
single model (Dietterich, 2000).

In Section 2, we briefly present a previous work
that was proposed to solve the same task and the
same DEV dataset which is described in Section
3. The description of our proposed models is then
discussed in detail in Section 4. Finally, the re-
sults of our models on the share task DEV and
TEST datasets are discussed in Section 5 in com-
parison with both the baseline and the best per-
forming model of the task.

2 Related Work

The closest work to our approach is presented in
Salameh et al. (2018). The authors of that work
proposed several classification methods and ex-
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plore a large space of features to identify the ex-
act city of a speaker. The task covers 25 cities
from across the Arab World (from Rabat to Mus-
cat), in addition to Modern Standard Arabic. The
authors extract word n-grams ranging from uni-
grams to 5-grams and use them as features, in ad-
dition to character n-grams ranging from 1-grams
to 5-grams. They computed TF–IDF scores. To
boost up the accuracy they used language model
to measure how close each sentence is to the di-
alect. For classification, they trained Multinomial
Naive Bayes. The authors reported accuracy score
of 67.9%.

3 Dataset

The dataset used for this shared task is the one
provided by the Multi-Arabic Dialect Applica-
tions and Resources (MADAR). The task name is
MADAR travel domain dialect identification task.
This task is one of two sub-tasks presented and run
in the Fourth Arabic Natural Language Processing
Workshop (WANLP 2019)1.The dataset is divided
into two separate corpora; the first one is referred
to as CORPUS-26 which consists of 25 city-level
Arabic dialect in addition to MSA forming 26 di-
alect classes, with each of the 26 classes consists
of 1, 600 examples as training data and 200 exam-
ples per class as the DEV set. The second corpus,
referred to as CORPUS-6, consists of 9, 000 exam-
ples in 6 classes (5 cities plus MSA) as the train-
ing data and 1, 000 for each of the 6 classes as the
DEV set (Bouamor et al., 2018). Both corpora are
annotated with the a code for the respective city
dialect it represents.
Tokenizing on spaces, CORPUS-26, has a total of
294, 718 words with 85, 249 of them are unique,
while CORPUS-6, has a total of 388, 041 words
with 63, 860 of them are unique.

In Figure 1, we show the percentage of unique
words, i.e. words that exclusively appear in the re-
spective dialect class in the CORPUS-26 dataset.
The figure also shows that most of the words in
each class, appear in more than 4 of the other di-
alect classes, which in turn, help us choosing the
set of features to build our model.

4 Models

The three models corresponding with the three
submissions we made were mainly built upon:

1https://sites.google.com/view/wanlp-2019

Figure 1: Words distribution among the 25 dialects and
MSA sorted by the percentage of exclusive words.

i. TF–IDF vectorization of sentences

ii. Multinomial Naive Bayes classifier (MNB)
similar to what is used in Salameh et al.
(2018)

iii. The voting ensemble of multiple classifiers.

4.1 TF–IDF Features
We first preprocessed the data from CORPUS-26
by removing emojis and special characters. Then
we extracted two sets of TF–IDF vectroized fea-
tures: one on the words level, and the other on the
character level.

Word n-grams: Word n-grams is one of the ba-
sic features used in dialect detection tasks and
text classification tasks in general. We ex-
tracted word n-grams and vectorized the ex-
tractions in a feature vector using TF–IDF
scores. Our experiments show that the feature
vectors consisting of both word uni-grams
and bi-grams result in more superior models
than using any of them alone.

Character n-grams: While word n-grams are
powerful features, they can suffer from a high
out-of-vocabulary words (OOVs) rate when
the testing set has a lot of varieties. This usu-
ally happens with Arabic text due to its mor-
phological variance. Character n-grams on
the other hand are able to mitigate this prob-
lem by capturing different parts of the word
and hence reduces the effect of morpholog-
ical segmentation on word similarities. We
follow (Salameh et al., 2018) and use a TF–
IDF vectorized feature set of character n-
grams that range from 1-grams to 5-grams.
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Moreover, we make sure that the extracted
character n-grams respect the word bound-
aries; this has shown to perform better in our
experiments in contrast to character n-grams
that cross over the word boundaries.

We concatenate this feature vector into a bigger
one that amounts to 236K features. This big vector
is the main feature vector for our models.

4.2 Multinomial Naive Bayes (MNB)

In our base approach, we trained a multinomial
naive Bayes classifier with additive smoothing to
reduce the penalty of missing features in testing
examples. While the smoothing parameter α is
usually set to 1, our experiments showed that the
best value for αwas 0.1, which consists a Lidstone
smoothing.

This setting achieved 68.3% accuracy on
CORPUS-26 DEV set, which is 0.6% less than
the best model in Salameh et al. (2018) although
their model uses more features from dialectical
language models. This MNB model was only used
as a base for the other models that were submitted
and it was not submitted itself.

4.3 Logistic Regression (LR)

Our second approach consisted of appending
the class probabilities from the MNB model
to the big features vector we constructed from
word/character n-grams. This new feature vector
is then fed into a logistic regression model with
L2-regularization.

This 2-layered model improved about 0.04%
over the MNB’s accuracy. This suggests that more
classifiers trained on the same feature vector can
yield a bigger improvement by accumulating their
smaller improvements, and this was the motivation
behind our highest accuracy model.

4.4 Ensemble Model

Instead of training just an MNB model on TF–
IDF features vector, we also trained a logistic re-
gression model and weak dummy classifier used
on prior probabilities of each dialect. The class
probabilities from these three models were con-
catenated with the TF–IDF feature vector and the
concatenation is then used for the second layer of
the model.

In the second layer, instead of training just a lo-
gistic regression model, we included other classi-
fiers to be trained on the TF–IDF plus probability

features. In addition to the logistic regression, we
trained:

i. Another MNB with one-vs-rest approach

ii. Support vector machine

iii. Bernoulli Naive Bayes classifier

iv. k-nearest-neighbours classifier with one-vs-
rest approach and with samples weighted by
distance

v. A weak dummy classifier based on prior
probabilities of each dialect.

These classifiers were ensembled together by hard
voting where we pick the dialect that was detected
most by all the classifiers to be the final predicted
dialect. This ensemble managed to score 69.3% in
accuracy on CORPUS-26 DEV set.

4.5 Enemble with Language Model Scores as
Features

We trained several language models (LMs) on
character and word level using KenLM (Heafield,
2011) from Moses using default parameters.
Twenty six character level language models were
trained on CORPUS-26. We preprocessed the data
to replace the spaces between words with special
character and inserted spaces between characters
so that each character is considered as a single
token. Character based language models capture
fine specifics of each dialect such as using the let-
ter Meem (Ð) as a prefix of a verb and the let-

ter Sheyn ( ��) as a suffix negates the verb in
the Egyptian dialect. Moreover, Character level
LMs complement word based LMs by reducing
the number of out-of-vocabulary words (OOVs).
In addition to the 64 language models suggested
by (Salameh et al., 2018) (i.e., twenty six 5-
gram character-level LMs trained on CORPUS-
26, twenty six 5-gram word-level LMs trained
on CORPUS-26, six 5-gram char level LMs and
six 5-gram word-level LMs trained on CORPUS-
6), we added 26 bi-gram word level LMs trained
on CORPUS-26 and 6 bi-gram word level LMs
trained on CORPUS-6. Each sentence in training,
DEV, and TEST data was scored by these 96 lan-
guage models and we scaled the scores to 0-1 scale
to lie within the same range of the other features,
mainly TF-IDF. We used the scaled scores as input
features to the classifiers.
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Model DEV TEST
F1 Acc F1 Acc

Baseline MNB 68.28 68.23 - -
Run1: Ensemble 69.33 69.28 67.17 67.06
Run2: LR 68.32 68.27 66.37 66.37
Run3:
Ensemble+LMs

69.16 69.11 67.20 67.08

MNB - 68.90 69.00 67.90
ArbDialectID - - 67.32 67.29

Table 1: Results in terms of macro F1-score (F1) and
accuracy (Acc) of our experimental baseline, our three
models (i.e., runs) which are Ensemble, LR and Ensem-
ble + LMs respectively, the best model of (Salameh
et al., 2018) (MNB), and the top ranked system in
MADAR shared task (ArbDialectID).

5 Results and Discussion

In Table 1, we report the results of our models and
Salameh et al. (2018) best model on the DEV and
TEST sets using the macro F1-score and accuracy
metrics. First, it is shown that our baseline MNB
model have outperformed Salameh et al. (2018)
exact counterpart model with the same set of fea-
tures on the DEV set. We deem this as a result
of the Lidstone smoothing of an α equal to 0.1 in-
stead of 1, which we hypothesize that it reduced
the noise to signal ratio in the 236k element fea-
ture vector by reducing the pseudo-count for the
missing features which constitute the majority of
the feature vector in comparison to the actual fea-
tures present in the input text. It is also shown
that the Ensemble model described in section 4.4
is the best scorer on the DEV set, although it was
out performed by Salameh et al. (2018) MNB on
the TEST set. Also on the contrary of Salameh
et al. (2018) findings that the word uni-gram and
the character n-grams ranging from 1-grams to 3-
grams resulted in the best performing model on
the DEV set, we have found that the word uni-
grams and bi-grams combined, alongside charac-
ter n-grams ranging from 1-gram to 5-grams are
the best performing features for our models.

It can be deduced from Figure 2 that the bulk
of the error originates from the confusion between
dialects within the same country or those that are
very close geographically (e.g Cairo, Alexandria
and Aswan dialects), the only exception to this
would be the confusion between Mosul’s dialect
and MSA. This is demonstrated further by the best
scoring Ensemble model on DEV which we hy-

Figure 2: Normalized confusion matrix of our baseline
MNB model on the DEV dataset.

pothesize that its second layer managed to learn
from the non-orthographic probability features of
the first layer by detecting its biases and error
distribution, thus enhancing upon it. We believe
that a human benchmark might be useful for this
fine-grained dialect detection problem, for which
it would set a reasonable upper-bound that shows
the significance of the orthographic features in de-
termining the writer’s dialect through the analysis
of the human error.

6 Conclusion

We proposed a system for classifying 26 dialects
of Arabic. Our system uses ensembles at the level
of features and classifiers. At the feature level, we
augment textual features extracted directly from
text with class probabilities of a few linear clas-
sifiers. For the model level, we use an ensemble
of a number of different discriminators. Our sys-
tem achieved a macro F-1 score of 69.33% and
66.7% on the development and test sets of the
MADAR Arabic Dialect Corpus, respectively. In
the future, we plan on using word embedding as
an extra set features to experiment with. This will
focus on context aware word embedding such as
ELMo (Peters et al., 2018), and BERT (Devlin
et al., 2018).
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Abstract

In this paper, we present two approaches
for Arabic Fine-Grained Dialect Identification.
The first approach is based on Recurrent Neu-
ral Networks (BLSTM, BGRU) using hierar-
chical classification. The main idea is to sep-
arate the classification process for a sentence
from a given text in two stages. We start
with a higher level of classification (8 classes)
and then the finer-grained classification (26
classes). The second approach is given by a
voting system based on Naive Bayes and Ran-
dom Forest. Our system achieves an F1 score
of 63.02% on the subtask evaluation dataset.

1 Introduction

Online platforms such as Social Media have be-
come the default channel for people to actively
participate in the generation of online content in
different languages and dialects. Arabic is one of
the fastest growing languages used on these plat-
forms. There are many differences between Di-
alectal Arabic and Modern Standard Arabic which
cause many challenges for Arabic language pro-
cessing. Therefore, identifying the dialect in
which posts are written is very important for un-
derstanding what has been written over these on-
line platforms.

Shoufan and Alameri (2015) presents a wide
literature review of natural language processing
for dialectical Arabic. The authors highlighted
the huge lack of freely available dialectal corpora
which was mentioned in (Zaghouani, 2014).

Although Arabic dialects are related but there
are some lexical, phonological and morphologi-
cal differences between them (Habash et al., 2013;
Azab et al., 2013; Attia et al., 2012). Most re-
cently, (Bouamor et al., 2018; Salameh et al.,
2018; AL-Walaie and Khan, 2017) started to in-
vestigate the problem of the Arabic Dialect Iden-
tification with different classification methods.

In this paper, we are describing our work in the
same research direction using the MADAR shared
task corpus described in (Bouamor et al., 2019).
The goal of this task is to classify a given text
into one of 26 classes, corresponding to various
dialects of Arabic language.

The remainder of this paper is organized as fol-
lows. In section 2, we describe the different tech-
niques used in this work. In Section 3, we present
our experimental setup and discuss the models and
features used as well as our results. Finally, in Sec-
tion 4 we conclude and give our future directions.

2 System Description

In the next few paragraphs, we will describe the
two main methods we used in the MADAR shared
task. The first one is based on deep learning with a
hierarchical classification of dialects. The second
one is based on the combination of Naive Bayes
and Random Forest.

2.1 Hierarchical Deep Learning

We address the fine-grained identification of 25 di-
alects and the Modern Standard Arabic (MSA).
Given the number of different dialects and the
small size of the data set provided, deep learn-
ing algorithms didn’t perform well. Our proposed
method will aim to handle this problem by de-
creasing the number of classes the models need to
predict. This is achieved using a hierarchical clas-
sification similar to the work described in Kowsari
et al. (2017).

The classes are separated geographically and
represent the dialects of 25 Arabic cities. Some
of these dialects are remarkably similar, in partic-
ular for cities of the same country/region (Salameh
et al., 2018).Some dialects can be clustered to
form a larger group. These groups are determined
by the geographical distribution of the cities and
the similarities between each dialect. This distri-
bution is shown in table 1.

249



Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 Group 8

Tunis
Sfax

Rabat
Fes

Algiers

Tripoli
Benghazi

Cairo
Alexandria

Aswan
Khartoum

Doha
Muscat
Riyadh
Jeddah
Sana’a

Mosul
Baghdad

Basra

Jerusalem
Amman

Salt
Beirut

Damascus
Aleppo

MSA

Table 1: Dialect distribution in groups.

Figure 1: Hierarchical deep learning architecture.

A deep neural network (DNN) is trained to pre-
dict a group given a sentence. This model serves
as the base for our system. Then for each dialect,
a different model is trained. These models make
predictions on their respective subset of dialects.
Following this technique, two levels of DNNs are
defined. First a base whose predictions are used
to choose from a set of DNNs. The chosen one is
then used to identify the dialect. The system ar-
chitecture is presented in figure 1.

2.2 Vote Based Probabilistic Classifier

The low size of our data set made statistical mod-
els perform much better than the deep learning
methods. Our proposed method will take into ac-
count the large number of classes by creating two
different pipelines. The first one uses a Multino-
mial Naive Bayes. The second model uses a Ran-
dom Forest Classifier. These models were imple-
mented using the package scikit-learn (Pedregosa
et al., 2011). The pipelines are pre-trained be-
fore they are given to the voting classifier. Then,
the whole system is trained again to maximize the
model performance for the dialects classification
task. The data is first given into a count vectorizer
then into a TF-IDF tranformer to extract meaning-
ful information on word level. The voting classi-
fier uses a hard voting method to select the model
with the correct prediction.

3 Experiments and Results

3.1 Data
We used the data set provided by the MADAR
Shared Task. The corpus covers the dialects of 25
Arab cities and the MSA. It is the same data set
described in Bouamor et al. (2019) and Salameh
et al. (2018). This corpus is composed of 2000
sentences translated to each dialect, with a total
of 52000 sentences. We refer to this set as the
MADAR corpus. We split this data set evenly be-
tween dialects in three parts: 80% constitutes the
Train set, 10% the Dev and the last 10% the Test
set. In our experiment, we limit the length of the
sequences to 40 words and pad the sequences with
zeros. For preprocessing we remove all non Ara-
bic characters with the exception of Arabic num-
bers. To maximize the precision of the hierarchi-
cal deep learning system the input of the models is
produced by a word2vec. The word2vec we used
was trained separately using a database of over 32
million tweets. This data was downloaded using
keywords extracted from the MADAR corpus. We
used the score of a TF-IDF to find the most rele-
vant words from each dialect. Tweets containing
one of these words were downloaded and added to
this data set. This way we could ensure a dialectal
weight on the word embeddings.

3.2 Hierarchical Deep Learning
In our models, we used Bidirectional Long Short-
Term Memory networks (B-LSTM) (Schuster and
Paliwal, 1997). It consists of two LSTM networks
running in parallel in different directions. Each
LSTM generates a hidden representation: the first
is generated by reading the input sequence from
left to right and the second form right to left. This
representations are then combined to compute the
output sequence.

The architecture of the hierarchical system is
composed of two levels (see the figure 1). The
level one is a DNN with three layers: A B-LSTM
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Dialect Precision Recall F1-sore
ALE 0.58 0.68 0.63
ALG 0.82 0.75 0.78
ALX 0.78 0.73 0.75
AMM 0.53 0.49 0.51
ASW 0.59 0.55 0.57
BAG 0.58 0.75 0.66
BAS 0.68 0.68 0.68
BEI 0.60 0.69 0.64
BEN 0.70 0.67 0.68
CAI 0.47 0.66 0.55
DAM 0.54 0.56 0.55
DOH 0.64 0.60 0.62
FES 0.70 0.63 0.66
JED 0.61 0.57 0.59
JER 0.61 0.45 0.52
KHA 0.69 0.53 0.60
MOS 0.78 0.83 0.80
MSA 0.84 0.61 0.71
MUS 0.42 0.60 0.49
RAB 0.55 0.75 0.63
RIY 0.61 0.53 0.57
SAL 0.49 0.59 0.53
SAN 0.70 0.81 0.75
SFX 0.77 0.68 0.72
TRI 0.76 0.76 0.76
TUN 0.64 0.77 0.70
ALL 0.64 0.65 0.64

Table 2: Macro average of precision, recall and
F1-score for vote based approach (Higher is better).

Model F1
Deep learning 0.56
Hierarchical Deep Learning 0.58
Voting Classifier 0.64

Table 3: F1-score summary (higher is better).

Model Precision Recall F1-score
G1 0.78 0.88 0.83
G2 0.82 0.89 0.85
G3 0.69 0.80 0.74
G4 0.82 0.79 0.81
G5 0.66 0.74 0.70
G6 0.84 0.80 0.82
G7 0.89 0.77 0.83
MSA 0.76 0.71 0.73
Avg. 0.79 0.80 0.78

Table 4: Hierarchical system level 1 precision.

of 128 neurons followed by a fully-connected
layer of size 64 and a fully-connected layer of size
8 with softmax activation for the output. The level
two is a set of 7 DNNs. For each of this models the
size of the layers and the type of Recurrent Neu-
ral Network (RNN) units used is different. This is
done in order to adapt each model to the number of
classes it has to handle as well as to have a propor-
tional number of parameters with the size of the
groups data set. The models utilize the following
pattern: They are composed of three layers. The
first is a RNN layer, either B-LSTM or a B-GRU
with a size ranging between 32 and 64 units. Then
a fully-connected layer of size ranging between 32
and 64. Finally a fully-connected layer with soft-
max activation for the output.

All models were trained using the following pa-
rameters: batch size = 100, learning rate = 0.001,
β1 = 0.9, β2 = 0.999, decay = 0. The cost function
used was the cross entropy. Two gradient descent
optimizers where used for training: the RMSProp
and the Adamax. To metric the possible improve-
ment of this system we compare the results with
a baseline. This baseline is a deep neural network
with a similar architecture as the ones found in the
hierarchical system.

3.3 Vote Based Probabilistic Classifier
The statistical method performed much better than
the Deep learning method. In this section we de-
scribe the pipeline using different parameters. To
define the accuracy we used the F-1 macro average
score. By changing parameters of each pipeline,
our results change drastically. We found that for
the Naive Bayes the alpha at 0.3 was giving the
best performance. For the Random Forest Classi-
fier (RFC), random states set to 2 was also giving
the best results. Using 250 estimators and a 200
depth, the RFC was performing the best, leading
up to a 4% increase in F1-score.

3.4 Results
The table 5 shows the result of each DNN in the
hierarchical system. We notice good performance
for some groups such as G3 and G2. However, the
improvement in accuracy is not as substantial in
most of the groups. Notably the performance of
the seventh group only reaching a score of 0.55.
This translates to a poor performance on the over-
all system. We see in table 3 that the hierarchi-
cal separation of dialects outperforms the simpler
DNN by only 1.4%. Both models can have trou-
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Model Class Precision Recall F1-score Model Class Precision Recall F1-score

G1
TUN .65 .76 .70

G5

DOH .74 .68 .71
SFX .80 .69 .74 MUS .69 .73 .71
Avg. .72 .73 .72 RIY .61 .60 .61

G2

RAB .69 .70 .70 JED .69 .73 .70
FES .65 .68 .66 SAN .77 .75 76
ALG .89 .83 .86 Avg. .70 .70 .70
Avg. .74 .74 .74

G6

MOS .84 .85 .85

G3
TRI .89 .86 .87 BAG .73 .65 .69
BEN .86 .88 .87 BAS .60 .66 .63
Avg. .87 .87 .87 Avg. .72 .72 .72

G4

CAI .58 .64 .61

G7

JER .55 .47 .51
ALX .79 .71 .75 AMM .53 .49 .51
ASW .60 .63 .61 SAL .58 .61 .59
KHA .86 .84 .85 BEI .58 .70 .63
Avg. .71 .70 .71 DAM .50 .46 .48

ALE .58 .64 .61
Avg. .56 .55 .55

Table 5: Hierarchical system level 2 precision.

Sentence Prediction Label

I want a glass of water to take my medicine, please.
SFX TUN

I want a glass of water to drink my medicine, please.
SFX SFX

Table 6: Voting classifier predictions on close sentence of similar dialects.

ble on similar dialects. For example, the first two
sentences of table 6, are very similar. The first one
is from Tunis whereas the second one is from Sfax
which both belong to the same group. Because of
this similarity, the models cannot make a correct
distinction and often miss predict the correct label.
Nonetheless, the statistical method provides good
result when dialects are very close. Tunis and Sfax
have both a good F1-score, even with some confu-
sion due to similar sentences. However it struggles
to identify dialects such as Mosul (MOS), Cairo
(CAI) and Salt (SAL) which have a very low pre-
cision (table 2). The results can be explained by
the fact that the amount of data available was very
low which can lead to an overfitting of the deep
learning model. The voting classifier perform 9%
better (table 3).

4 Conclusion and Future Work

In this paper, we propose to use two different
methods for Arabic dialect identification: the Hi-
erarchical Deep Neural Network and the Hard Vot-

ing Classifier. The hierarchical model uses two
levels of DNNs where the first one predicts the
group of a dialect, and the second one predicts the
dialect according to the previous prediction. The
method based on a statistical model is composed
of a Multinomial Naive Bayes and a Random For-
est Classifier connected by a Hard Voting Classi-
fier. This model outperformed the F1-score results
of the Hierarchical Deep Neural Network.

In the future, we plan to work on the combina-
tion of two neural networks. The output of the first
model will be a vector composed of probabilities
for each group. The second one, will take as input
the sentence as well as the output of the previous
model as a new feature.
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Abstract

In this paper, we present a Dialect Identifica-
tion system (ArbDialectID) that competed at
Task 1 of the MADAR shared task, MADAR
Travel Domain Dialect Identification. We
build a coarse and a fine grained identification
model to predict the label (corresponding to a
dialect of Arabic) of a given text. We build
two language models by extracting features at
two levels (words and characters). We firstly
build a coarse identification model to classify
each sentence into one out of six dialects, then
use this label as a feature for the fine grained
model that classifies the sentence among 26 di-
alects from different Arab cities, after that we
apply ensemble voting classifier on both sub-
systems. Our system ranked 1st that achieving
an f-score of 67.32%. Both the models and our
feature engineering tools are made available to
the research community.

1 Introduction

Arabic Language is one of the most spoken lan-
guages in the world. Furthermore, Arabic presents
us with a special case of Diglossia (Ferguson,
1959), where the spoken language is different than
the formal language. Speakers of Arabic use Mod-
ern Standard Arabic (MSA) as the official lan-
guage in very formal situations like education, re-
ligion, media, and politics, while they use an Ara-
bic Dialect (AD) for everyday conversation (Shah,
2008; Versteegh, 2014).

With the emergence of social media, speakers
of Arabic use their dialects to tweet, post, social-
ize and express themselves. The Arabic Dialects
(AD) do not have a standardized writing and/or or-
thography, and they do not have a formal grammar.
These characteristics make the task of identifying
dialects more challenging.

The task of Arabic Dialect Identification (ADI)
has recently attracted research attention, building

identification systems able to differentiate among
the dialects have been attempted. Even though
dialects share similar features in term of lexical,
syntax, morphology and semantics, they still have
many differences which, of course, complicates
the identification task.

Many works addressed the problem of dialect
identification. They have reported different dialec-
tal divisions, according to the geo-location, the
country or, in some cases, on the level of cities.
Most of those works used Machine learning classi-
fiers and language modelling and achieved a good
accuracy depending on the level of identification
and either they explored the coarse grained iden-
tification, where the differences between the indi-
vidual dialects are clear or a fine grained identifi-
cation, where the differences become hard to de-
tect in text as the dialects look very similar to each
others (Zbib et al., 2012; Cotterell and Callison-
Burch, 2014; Zaidan and Callison-Burch, 2014;
Qwaider et al., 2018; Elfardy and Diab, 2013).

Other approaches investigated the use of Deep
Learning (DL) methods to identify dialects. As
such, they tried different DL architectures like
LSTMs, CNNs and attention networks, and
have employed different word embedding models.
Elaraby and Abdul-Mageed (2018) benchmarked
the Arabic Online Commentary (AOC) (Zaidan
and Callison-Burch, 2011) and tested six differ-
ent deep learning methods on the ADI task, com-
paring performance to several classical machine
learning models under different conditions (both
binary and multi-way classification). Their mod-
els reached 87.65% accuracy on the binary task
(MSA vs. dialects), 87.4% accuracy on the three-
way dialect task (Egyptian, Gulf, Levantine), and
82.45% accuracy on the four-way classification
task (MSA, Egyptian, Gulf, Levantine). Similarly,
Lulu and Elnagar (2018) explored the DL meth-
ods with different networks structure using AOC
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on a three-way classification, with LSTM they
achieved 71.4% accuracy

This paper presents our participation in
MADAR shared task (Bouamor et al., 2019). We
participate in Task 1: MADAR travel domain
dialect identification, and we ranked 1st in the
task with accuracy of 67.3%. We present our
proposed model (ArbDialectID) in details and the
code is available at GitHub1.

The rest of this paper is organized as follow:
Section 3 discusses the used data and presents our
proposed model, we discusses the results in Sec-
tion 4 and conclude in Section 5.

2 ArbDialectID: Arabic Dialect
Identification System

This section introduces our proposed model which
is applied on MADAR corpus for dialect identi-
fication shared task. MADAR corpus (Bouamor
et al., 2018) is a parallel corpus in travel domain,
it contains 25 dialects from different Arab cities in
addition to the MSA. This corpus has been used
for AID task in (Salameh et al., 2018), where the
authors applied language modeling with various
combinations of word and character levels and
trained the model by MNB classifier. They got
67.9% accuracy for 26 classification task.

Our model consists of two sub models and ex-
ploiting two different data set as shown in Fig-
ure 1. The first model tries to predict the di-
alect among six different Arab dialects and known
as coarse grained level, followed by the second
model which goes much deeper and is known as
a fine grained level to classify 26 Arabic dialects.

In both of our sub models we use MADAR data
set to build and evaluate the models. Table 1 shows
the number of sentences/samples per dialects and
the total sentences for each data set. All of the
experiments are implemented by Python and with
the help of scikit learn library (Pedregosa
et al., 2011).

MADAR Split sentences Total

Corpus-6 train 9,000 41,600
dev 1,000 6,000

Corpus-26
train 1,600 41,600
dev 200 5,200
test 200 5,200

Table 1: Statistics for MADAR data sets
1https://github.com/motazsaad/ArbDialectID

Figure 1: ArbDialectID proposed model

2.1 Coarse Grained Dialect Identification
This is the first model where we classify among
five different Arab dialects from five Arabic coun-
tries, which are covered by MADAR corpus, they
are: Beirut (BEI), Cairo (CAI), Doha (DOH), Ra-
bat (RAB), Tunisia (TUN), In addition to (MSA).

We build a model that depends on the language
modelling and exploring different combinations of
n-grams in the word level and the character level.
We use FeatureUnion in sklearn, which is an es-
timator that concatenates results of multiple trans-
former objects. To build and train the model we
extract the following features:
• TF-IDF vectors from the word grams ranged

from the unigram to 5-grams. We apply 0.7
weight for vector transformation
• TF-IDF vectors from the character n-grams

with word boundary consideration ranged
from bigrams to 5-grams and the transforma-
tion weight is 0.6
• Apply skip grams , then we extract the uni-

gram words with one word skipping. We give
it the lowest transformation weight of 0.4

The transformation weight is a weight used in Fea-
tureUnion to give a weight for the feature. We
choose these weights empirically after many ex-
periments that investigate various weights with
many features combinations.

After features extraction process, we build an
ensemble voting classifier with hard voting, where
it uses predicted class labels for majority rule vot-
ing. The ensemble classifiers consists of the fol-
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lowing best standalone Machine Learning algo-
rithms:
• MultinomialNB (MNB) , we set alpha to 0.01
• Linear SVC with l2 penalty and the learning

rate sets to 0.0001
• BernoulliNB (BNB), set alpha = 0.01
We trained the model using ”MADAR corpus-

6” train set, and evaluate it by MADAR corpus-6
development set. We reach an accuracy of 92.7%
and macro F-score of 93%. Finally, we combine
the train and the dev-set together and rebuild the
model again. We call it (MADAR model-6). We
will use this model later in the second sub model.

2.2 Fine Grained Dialect Identification
This model is the core of the shared task, where it
is going to predict the label for a given sentence
and classify it to one of 26 dialects. MADAR cor-
pus covers 25 cities in the Arab countries in addi-
tion to the MSA, they are : Aleppo (ALE), Alge-
ria (ALG), Alexandria (ALX), Amman (AMM),
Aswan (ASW), Baghdad (BAG), Basra (BAS),
Beirut (BEI), Benghazi (BEN), Cairo (CAI), Dam-
ascus (DAM), Doha (DOH), Fes (FES), Jeddah
(JED), Jerusalem (JER), Khartoum (KHA), Mo-
sul (MOS), Muscat (MUS), Rabat (RAB), Riyadh
(RIY), Salt (SAL),Sana’a (SAN), Sfax (SFX),
Tripoli (TRI), Tunisia (TUN) and MSA.

In the same manner we build the second model
by extracting some features as follow:
• TF-IDF vectors from the word grams with

uni-gram, bi-gram and tri-gram words. we
apply 0.5 weight for vector transformation
• TF-IDF vectors from the character n-grams

with word boundary consideration ranged
from bi-grams to 5-grams and the transfor-
mation weight is 0.5
• Extract another character n-grams but this

time without word boundary consideration
from bi-grams to 4 grams and the transfor-
mation weight is 0.5
• Again apply skip gram, then we extract the

uni-gram words with one work skipping. We
assign it 0.3 transformation weight

In addition to theses feature we add another two
numerical features, the first is the sentence length
ratio for every sentence in the data (train, dev, test)
which in turn divides the total number of words
appearing in the sentence by the total number of
words appearing in the longest sentence. The sec-
ond features depends on the previous MADAR-
model-6. We exploit this model to predict the la-

bel for MADAR Corpus-26, so every sentence is
combined with a predicted class number with one
value from 1 to 6, for example 1 means CAI, 2 is
for BEI and so on. So in total we have the TF-IDF
vectors features in addition to the two numerical
features (the coarse-grained label and the sentence
length).

To build the model, we employ ensemble hard
voting classifier with the previously mentioned
three algorithms (Linear SVC, MNB and BNB).
The system is trained on MADAR corpus-26 train
set, evaluated by MADAR corpus-26 dev set and
finally tested by MADAR corpus-26 test set. Ta-
ble 1 reports the results for the dev set and test set
and Figure 2 shows the classification report which
is produced from the test set .

Accuracy macro F-score
Dev 68.7 69.00
Test 67.29 67.32

Table 2: Results for 26 dialects Identification system

Figure 2: Fine Grained Dialect Identification classifi-
cation report for MADAR corpus-26 test set

3 Discussion
Building a language model for a language or a text
is an informative way to describe and represent
the language. In this work, we try to extract as
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many discriminated features as possible that can
be employed efficiently to distinguish among the
desired 6 and 26 dialects. In the coarse grained
dialect identification with MADAR Corpus-6 the
task was more flexible, the dialects have a reason-
able differences as they represent a large groups
of dialects, for example DOH represents dialects
from the Arab Gulf, BEI represents the Levantine
dialects and so on. Due to the differences on the
lexical level between thees dialects we emphasise
the word n-grams by using greater weight trans-
formation, and assign a smaller weight value for
the character levels n-grams.

For the task of fine grained dialect identifica-
tion, the task was more tough and we need more
extra features and emphasise some of them more.
Hence, we increase the number of n-grams and
emphasise the character n-grams and pay atten-
tion to the words boundaries. We employ the
first model as another feature to enhance the f-
score for the second models. Given that, the cor-
pus contains many short sentence that appears in
more one dialects, it makes the models to some
extent confused, then we add the length of the sen-
tence as an extract helpful feature where some di-
alects need more words to express an idea, and
the other use more suffixes. It is also impossi-
ble for Arabic speakers to detect the dialect from
a very short sentence with 100% especially if it
does not contain any clue words. In some cases
the dialects become very similar to each others
when they are spoken by neighbourhood, for in-
stance the Jerusalem dialect and the dialect from
Amman where they are considered in some re-
searches in Arabic history as the same dialect
(Owens, 2015; Bishop, 1998). From the classifi-
cation report in Figure 2, it is very clear that some
dialects were easier to detect than other, for exam-
ple, the North Africa dialects gain high f-scores
compare to others such as the following dialects:
TRI (0.79), SFX(0.74), BEN(0.70), ALG(0.79)
and TUN(0.73). The confusion matrix in Figure 3
shows the numbers of actual and predicate labels
for each dialect. There are some similar pairs of
dialects where the system confused like (BAG and
BAS), (AMM and JER), (CAI and ASW), (ALE
and DAM) and (SFX and TUN).

We investigate the word grams model as well
as the character grams model. The best result is
obtained when we combine both of these models,
given that the differences may occur in terms of

Figure 3: Fine Grained Dialect Identification confusion
matrix for MADAR corpus-26 test set

lexical words, however there are many differences
that occurred on character levels like different cl-
itics, prefixes and suffixes. We try to exploit the
best classifier that has been used for ADI and fi-
nally end up by ensemble learning that combines
the Linear SVC , MNB and BNB with hard voting
where the max probability is chosen as the correct
class.
4 Conclusion
We participate in MADAR shared task, Task 1:
“MADAR Travel Domain Dialect Identification”.
We build an ADI system consists of two subsys-
tems. The first is a six dialects classification sys-
tem, followed by a 26 classification system that
classify 26 dialects from 25 cities in the Arab
world in addition to MSA. We use different combi-
nations of n-gram models (words, Characters) and
skip gram models. In addition to these language
modelling features, we compute the ratio length
of each input sentence and use the predicted label
from the first model. We achieve the best score in
the competition with 67.32% f-score and an accu-
racy of 67.29%.
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Abstract
This paper describes the approach adopted by
the SMarT research group to build a dialect
identification system in the framework of the
Madar shared task on Arabic fine-grained di-
alect identification. We experimented several
approaches, but we finally decided to use a
Multinomial Naı̈ve Bayes classifier based on
word and character ngrams in addition to the
language model probabilities. We achieved a
score of 67.73% in terms of Macro accuracy
and a macro-averaged F1-score of 67.31%.

1 Introduction

Arabic is a complex language which presents sig-
nificant challenges for natural language process-
ing and its applications. Arabic is characterized
by its plurality. It consists of a wide variety of lan-
guages, which includes the Modern Standard Ara-
bic (MSA), and a set of various dialects differing
according to regions and countries.
Language identification is the task of identifying
the language of a given text. It is an important pre-
processing step for many Natural Language Pro-
cessing (NLP) tasks such as machine translation
(Meftouh et al., 2018; Harrat et al., 2017), senti-
ment analysis (Rana et al., 2016; Abdul-Mageed
et al., 2014; Saad et al., 2013), etc. In general,
language identification is not a high challenging
issue since this research has been supported for a
long time and several machine learning techniques
have been tested in this area that yielded to more
or less good results. Nonetheless, in cases such as
identifying languages from very little data, from
mixed input or when the languages are extremely
close to each other, the task becomes very chal-
lenging (Goutte et al., 2014).
This paper describes the submission of Loria
(SMarT research group) to the Madar shared task
on Arabic fine-grained dialect identification cover-
ing 25 specific cities from across the Arab World,

in addition to Modern Standard Arabic (Bouamor
et al., 2019). This shared task is the first to target
a large set of dialect labels at the city and country
levels. It has two subtasks.

Subtask 1: MADAR Travel Domain Dialect
Identification.

Subtask 2: MADAR Twitter User Dialect Identi-
fication.

Our submission to this campaign is dealing with
the first subtask.
The remainder of this paper is organized as fol-
lows: in the next section, we discuss related work
pertaining to Arabic dialect identification. Section
3 reviews the modeling choices we made for the
shared task, and Section 4 describes results in de-
tail.

2 Related Work

Several research works addressed the problem
of Arabic dialect identification. The authors of
Habash et al. (2008) presented standard annota-
tion guidelines to identify the switching between
the MSA and at least one dialect. These guide-
lines can be used to annotate large collections of
data used for training and testing NLP tools. In
Zaidan and Callison-Burch (2012), a large anno-
tated dataset, created by harvesting an important
number of reader commentaries on online news-
papers content, is used to train and evaluate auto-
matic classifiers for dialect detection and identi-
fication. The authors crowdsourced an annotation
task to obtain sentence-level labels indicating what
proportion of the sentence is dialectal, and which
dialect the sentence is written in. The approach
used in dialect identification relies on training lan-
guage models for the different varieties of Ara-
bic. Another work presents a supervised approach
for performing sentence level dialect identification
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between Modern Standard Arabic and Egyptian
Dialectal Arabic (Elfardy and Diab, 2013). The
authors use token level labels to derive sentence-
level features. These features are then used with
other core and meta features to train a generative
classifier that predicts the correct label for each
sentence in the given input text. In addition to a
multi-dialect, multi-genre, human annotated cor-
pus, the authors in Cotterell and Callison-Bursh
(2014) present the results of a language identifi-
cation task extended to include 5 dialects. They
considered Naı̈ve Bayes and Support Vector Ma-
chines. The approach used by Darwish et al.
(2014) for the identification of the Egyptian dialect
was based on lexical, morphological and phono-
logical information. They show that accounting
for such information can improve dialect detec-
tion accuracy by nearly 10%. Using a set of sur-
face features based on characters and words Mal-
masi et al. (2015) conduct three experiments with
a linear SVM classifier and a meta-classifier us-
ing stacked generalization on the Multidialectal
Parallel Corpus of Arabic (MPCA) compiled by
Bouamor et al. (2014). They first conduct a 6-
way multi-dialect classification task then investi-
gate pairwise binary dialect classification and fi-
nally conduct cross-corpus evaluation on the Ara-
bic Online Commentary (AOC) dataset. In Al-
Badrashiny et al. (2015), the authors present a hy-
brid approach for performing token and sentence
levels Arabic Dialect Identification. The token
level component relies on a Conditional Random
Field (CRF) classifier that take decisions based on
several underlying components such as language
models, a named entity recognizer and a morpho-
logical analyzer to label each word in the sentence.
The sentence level component uses an ensemble
of classifiers that models different aspects of the
language. In another work, Al-Badrashiny and
Diab (2016) present a system that detects points
of code-switching in sentences between the MSA
and dialectal Arabic. In Sadat et al. (2014), the
authors present a bi-gram character-level model
to identify the dialect of sentences, in the social
media context, among dialects of 18 Arab coun-
tries. Bougrine et al. (2015) addressed the prob-
lem of spoken Algerian dialect identification by
using prosodic speech information (intonation and
rhythm). They performed an experiment on six di-
alects from different Algerian regions. In Salameh
et al. (2018), the authors present the first system

dealing with fine-grained dialect classification task
and covering 25 specific cities from across the
Arab World, in addition to Standard Arabic. For
this purpose, they build several classification sys-
tems using a Multinomial Naı̈ve Bayes classifier
and exploring a large space of features.

3 The Modeling Choices

3.1 Data
For the experiments reported in this paper, we only
use the training and the development data avail-
able in the subtask 1 of the shared task. The
dataset of this subtask is the same as the one re-
ported on Bouamor et al. (2018) and Salameh et al.
(2018). It is composed of two corpora. The first
(Corpus-26) is a collection of parallel sentences,
built to cover the dialects of 25 cities from the
Arab World, in addition to MSA. The training part
consists of 1600 labeled instances per class, while
the development part has 200 labeled instances per
class. The second (Corpus-6) contains 10, 000 ad-
ditional sentences translated to the dialects of only
five cities: Beirut, Cairo, Doha, Tunis and Rabat,
in addition to MSA. They are splitted on two cate-
gories: 9, 000 instances per language for the train-
ing and 1, 000 instances per language for the de-
velopment.

3.2 Method
In order to develop a language identification sys-
tem that can distinguish between several Arabic
dialects, we tested three methods namely sim-
ple neural networks (LSTM) (Sak et al., 2015),
a method based on word embedding (Word2vec)
(Mikolov et al., 2013) and Naı̈ve Bayes classifiers.
Given the limited size of the provided corpora, the
first two methods have proven ineffective. We give
in Table ?? the results we obtain using Corpus 26
in terms of Macro averaged F1-score, precision
and recall.

Corpus 26
Method Precision Recall F1-score
Word2vec 50.11 49.90 49.74
LSTM 58.04 61.54 58.33

Table 1: Macro averaged F1-score, Precison and Recall
for Word2vec and LSTM method.

We used a Naı̈ve Bayes method because in the
past, we did a comparative study of methods for
Topic identification. This method for French leads

260



to the best results (Bigi et al., 2001). In this work
we consider a Multinomial Naı̈ve Bayes classi-
fier, in fact a study proposed in McCallum and
Nigam (1998) showed that the multinomial model
is found to be almost better than the multivari-
ate Bernoulli model and the experimental results
yielded to better results. So, we consider a Multi-
nomial Naı̈ve Bayes classifier for this task. In this
case, the term Multinomial Naı̈ve Bayes lets us
know that each p(fi|c) (where fi is a feature and
c the category or the class) is a multinomial distri-
bution, rather than some other distribution such as
a Bernoulli distribution.
To develop our system, we used Python, relying
on Scikit-Learn module (Pedregosa et al., 2011).

3.3 Features
A Naı̈ve Bayes model classifier identifies a cate-
gory by calculating the distributions of the features
within a category. It also assumes that each of the
features it uses are conditionally independent of
one another given a category. Identifying features
is a critical step when applying Naı̈ve Bayes clas-
sifiers. That is why we did several experiments to
select some adequate features. After several ex-
periments, we selected for each sentence, the fol-
lowing 38 features as follows:

• A unigram of words.

• A bigram of words

• Character n-grams: from 1 to 5

• Character n-grams: from 1 to 5, by taking
into account the spaces between words; in
other words ngrams at the edges of words are
padded with space. All the symbols of punc-
tuation have been removed from the training,
development and test data.

• 26 likelihoods estimated by the 26 unigram
language models

For all the features, we use a special character
to mark the start of the sentences. We utilize Term
Frequency-Inverse Document Frequency (Tf-Idf)
scores (Spärck Jones, 1972) as it has been shown
to outperform count weights in several NLP appli-
cations.

4 Results and Discussion

For the purpose of this campaign, we built sev-
eral systems using the model described in section

3. We did several experiments to determine the
smoothing adding value, necessary for the Naive
Bayes method, and we set it to 0.093 for all the
systems. In Table 2, we report the results of
all the experiments concerning the Multinomial
Naive Bayes method. For the evaluation purpose,
we use the Macro averaged F1-score which is re-
tained as the official metric by the organizers of
Madar shared task.

Ngrams features F1-score
Word Char wo Char wi Dev Test

1 - - 63.03 62.31
1-2 - - 63.27 62.32
1-3 - - 63.04 61.96

- 1-3 - 59.28 57.25
- 1-4 - 64.50 63.99
- 1-5 - 66.27 65.33
- - 1-3 59.66 57.62
- - 1-4 64.45 63.21
- - 1-5 66.50 64.40
- 1-5 1-5 66.92 65.56

1-2 1-5 1-5 69.06 67.34
1-2 1-5 1-5 69.09 67.31

+LMs Prob

Table 2: Macro averaged F1-score on Development and
Test sets for Corpus-26.

First, we train the multinomial NB on word
ngrams. The best results are achieved with the
use of unigrams and bigrams. For higher order of
n-grams, the performance of the model degrades
due to the data sparsity. Then, we tested the effect
of character ngrams features with (wi) and with-
out (wo) taking into account the space at the end
of the words. We experimented using the features
of each option alone and combined. In Table 2
the symbol x-y means that all the n-grams features
from x to y of the corresponding column are taken
into account in the classification.
In all the experiments, the best model is obtained
for n ranging from 1 to 5. We remark that a classi-
fier based on character ngrams features (1-5) out-
performs the classifier based on word ngrams fea-
tures by at least 3 points. Finally, the best classi-
fier is the one using word unigrams and bigrams,
and character ngrams ranging from 1 to 5 with and
without space. The introduction of the language
model features improved the result on the devel-
opment corpus and reduced it on the test corpus.
We decided finally to participate to the campaign

261



with the classifier including the language model
parameters.

5 Conclusion

In this paper, we described the experiments we
conducted as part of the MADAR shared task on
Arabic fine-grained dialect identification. This
task is the first covering the dialects of 25 specific
cities from across the Arab World, in addition to
MSA. Thus, we tested several systems exploring
a large set of features. A blind run on the test
set was then performed and submitted as part of
the shared task. The Macro accuracy is 67.73%
(macro-averaged F1-score 67.31%), placing our
classifier first among 19 participants. This result
shows that our approach despite its simplicity per-
forms very well and even if it is ranked first, we
need to make more efforts to make it powerful so
that it can become an effective tool for the com-
munity.
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Abstract

Our submission to the MADAR shared task on
Arabic dialect identification (Bouamor et al.,
2019) employed a language modeling tech-
nique called Prediction by Partial Match-
ing, an ensemble of neural architectures, and
sources of additional data for training word
embeddings and auxiliary language models.1

We found several of these techniques provided
small boosts in performance, though a simple
character-level language model was a strong
baseline, and a lower-order LM achieved best
performance on Subtask 2. Interestingly, word
embeddings provided no consistent benefit,
and ensembling struggled to outperform the
best component submodel. This suggests the
variety of architectures are learning redundant
information, and future work may focus on en-
couraging decorrelated learning.

1 Introduction

While Modern Standard Arabic (MSA) is used
across many countries for formal written com-
munication, regional Arabic dialects vary sub-
stantially. Dialect identification has traditionally
been performed at the level of broad families
of dialects—for instance grouping many dialects
across the Arabian Peninsula together. However,
even within a single country there is often no-
ticeable variation from one city to another. The
MADAR dataset and corresponding shared task
aim to perform dialect identification at a finer-
grained level. Subtask 1 aims to distinguish travel
phrases produced between Arabic dialect speak-
ers from 25 different cities, as well as MSA. Sub-

1Code available at https://bit.ly/2Kouo5X

task 2 aims to distinguish Twitter users from dif-
ferent Arabic-speaking countries. Along with the
inherent difficulty of classifying short documents,
highly-correlated modalities like topic and proper
names can lead to overfitting, particularly for user-
directed content like Twitter. Our method attempts
to address the former by using a language model-
ing technique that has empirically been found to
perform well on extremely short documents. For
the latter, we employ ensembles of heterogeneous
neural architectures and aggressive dropout, with
the goal of finding a broad range of features that
support the task without overfitting.

2 Data

In addition to the data provided by the MADAR
subtasks, we used the following data sets to train
embeddings or auxiliary language models:

1. Preexisting collections of the Arabic Dialect
Corpus (ADC) of 150k comments from three
Arabic-language newspaper sites focused on
Saudi Arabia, Jordan, and Egypt (Zaidan and
Callison-Burch, 2011)

2. The Twitter LID corpus of 70k Tweets in 70
languages 2.

3. Crawled posts from Reddit and the Twitter
1% sample either tagged as Arabic, or having
a majority of Arabic characters, amounting to
11k and 100m posts, respectively, are used.

The ADC and Twitter LID corpora were also
used to train additional PPM language models,

2https://bit.ly/2KlITre
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though these proved to be ineffective in our en-
sembles (see Section 5)

Split Missing
Train 13076 (6%)
Dev 1607 (5%)
Test 5763 (12%)

Table 1: Missing tweets from the Subtask 2 data splits,
absolute number and percent of total.

Table 1 shows how many tweets were still avail-
able when we initialized Subtask 2.

3 System

3.1 PPM Language Models

Prediction by Partial Matching (PPM) was first
introduced as a sequence compression algorithm
(Cleary and Witten, 1984) but has been found to
be particularly effective as a character language
model for classifying short documents (Frank
et al., 2000; McNamee, 2016), using the proba-
bilities directly rather than as input to a numeric
encoding.

PPM is based on a variable-order Markov model
that contains a parameter N known as the maxi-
mal order. When compressing data files or train-
ing a classification model, observations from pre-
viously seen data are used to estimate the likeli-
hood of observing a symbol following a given con-
text of up to N characters. Longer contexts are
used when available, starting with the maximal or-
der N . However, PPM automatically backs off to
use shorter contexts when a symbol has never been
observed in a longer context. A context-dependent
penalty, also known as an escape probability, is ap-
plied when backing off is required.

As an example, in English, an ‘n’ is the most
likely character observed after the sequence “t i
o”. Other letters are observed less frequently, such
as ‘l’, ‘m’, and ‘p’. However, a ‘z’ is not observed.
To account for a ‘z’ after “t i o” it is necessary to
back off using the estimates from shorter contexts
such as “i o”. If a ‘z’ has never been observed after
“i o” then the process continues, with an additional
penalty and further recursive backoff for ‘z’ using
the context of the single symbol (‘i’).

To use PPM for classification rather than com-
pression, models M1,M2, ...,Mn are trained for
each discrete class. Then for a given textual sam-
ple t, choose the model that encodes t in the least

number of bits. In reality the text is not com-
pressed and the probabilities from the model are
used to choose the model which best fits the text.

N Subtask 1 Subtask 2
2 0.430 0.431
3 0.576 0.543
4 0.591 0.402
5 0.586 0.287

Table 2: Performance of PPM models on the subtask
dev sets using different values of N .

For each labeled corpus, we trained PPM lan-
guage models for distinguishing among the labels.
This included each of the two subtasks, as well as
the ADC and Twitter LID corpora that have a way
to divide the instances into categories.

These models can either be used directly for
their “native” task, or produce probabilities that
may contain useful signal for a downstream task.
Table 2 shows how the native models for each
MADAR subtask perform with different values of
maximal order N on dev data. N = 4 was best for
Subtask 1, and N = 3 was best for Subtask 2.

3.2 Word Embeddings
For the word-based neural models, we use 300-
dimensional word embeddings trained on differ-
ent amounts of data as input representations. First,
we use randomly initialized embeddings. Then,
we train fastText continuous bag of words (cbow)
models with default parameters on the MADAR
data (Bojanowski et al., 2017).3 Finally, we uti-
lize additional data, training on MADAR in addi-
tion to the datasets mentioned above (MADAR+).
We provide final results (Macro-Average F1) from
the ensemble model using each of these variants in
Table 3. We see that utilizing additional data pro-
vided marginal performance gains, helping more
in Subtask 2 where much of our additional data
was also Twitter data, making it in-domain.

Embedding Subtask 1 Subtask 2
Random 0.632 0.399
MADAR 0.626 0.397
MADAR+ 0.634 0.411

Table 3: Effect of different word embeddings,
Macro-Average F1 for final ensemble models on dev

data.

3https://fasttext.cc/
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Figure 1: The three basic types of submodels combined into the final ensemble, where the top layer is the input
representation. They all produce the same-sized final hidden representation that can either be mapped directly to

the target value with a final linear layer (for individual training) or concatenated into an ensemble.

3.3 Ensemble Models

In what follows, all layers other than the final
fully-connected input to softmax employ ReLU
non-linearity.

We experimented with an ensemble model that
combines submodels to extract signal from differ-
ent features or incorporate information from non-
neural methods. Figure 1 shows the three types of
submodels: CNNs and RNNs over character and
word sequences, and MLPs over probability distri-
butions from language models and metadata. We
integrate the metadata provided with Subtask 2 as
additional distributions: the probabilities from the
organizers’ 26-class model are incorporated the
same way as LM scores, while the Twitter label
is treated as a one-hot distribution and also incor-
porated alongside the LM scores.

Each submodel, regardless of architecture,
eventually produces a same-sized hidden repre-
sentation, which are initially mapped to the target
output via cross-entropy to train as an individual
model. Once the submodels have converged, their
parameters are frozen, their hidden layers are de-
tached from the target output, and instead concate-
nated into a single representation. This representa-
tion is then the input to the shared ensemble archi-
tecture, as shown in Figure 2. Note that the “Step-
down FCs” layer is actually composed of several
fully-connected layers, each dividing the represen-
tation size in half until it is one factor larger than
the output label space.

Other specific choices for the models in this
paper are: 100-dim char embeddings, char/word

CNN filter sizes 1,2,3,4,5, bidirectional 2-layer
LSTMs with 32-dim states, and SGD with
LR=0.1, momentum=0.9, patience of 10 for LR
decay, early stop patience of 20, and minibatch
size of 512.

Submodel hidden layers

Step-dow
n

FC
s

So
ft

m
ax

Figure 2: The ensemble model concatenates the
hidden representations produced by the submodels and
stacks one or more dense, non-linear layers, stepping
down in size to a final softmax output over the label

space.

Due to a misreading of the task description, our
models were designed to classify tweets individu-
ally: this was handled at the submission deadline
by taking a majority vote over each user’s tweets.

4 Results

Table 4 reports the final precision, recall, and F1
scores for the best-performing model on each sub-
task.

The ensemble for Subtask 1 incorporates the
best-performing (PPM-4) language model (see Ta-
ble 2). The PPM-3 model for Subtask 2 performed
text normalization to only include Arabic charac-
ters, followed by prepending the user name.
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Subtask Model Prec Rec F1
Subtask 1 Ensemble 63.7 63.4 63.4
Subtask 2 PPM-3 74.9 46.5 54.3

Table 4: Precision, recall, and f-score of the best
model for each subtask.

5 Discussion

Table 5 shows the final performance (Macro-
Average F1) of the submodels of the ensemble
on Subtask 1, before they were frozen, and the
performance of the final ensemble model (which
used the submodels). The modest 4-point im-
provement of the ensemble over the PPM sub-
model, and the fact that the Subtask 2 ensemble
under-performed the PPM-3 model, suggests poor
coordination of the representational power of the
constituents. Distributions from language models
trained on our other data sets unfortunately pro-
vided no benefit under the ensemble, and were not
included.

Submodel F1 Score
CNN 0.545
RNN 0.554
MLP-PPM 0.591
Ensemble 0.634

Table 5: F1 Scores of the submodels of the best
ensemble for Subtask 1.

Figures 3 and 4 show the confusion matrices of
the best models on Subtask 1 and 2, respectively.
Our Task 1 misclassifications closely track those
reported in (Salameh and Bouamor, 2018), e.g.
TUN/SFX and BAS/BAG.

For Task 2, the preponderance of Saudi Ara-
bian documents dominates the misclassifications,
but also striking is how asymmetric the heatmap is
compared to Subtask 1. This may largely be due to
the small number of instances (half of the classes
have counts in the single digits), but even better-
represented pairs like Oman (14) and Iraq (10) are
largely unidirectional, with Iraq much likelier to
be misclassified as Oman than the reverse.

6 Conclusion

We experimented with a non-standard character
language model (PPM) designed for classifying
short text sequences, and an ensemble model that
combined several neural architectures and input

Figure 3: Confusion matrix for the Subtask 1 dev set
using an ensemble model with word embeddings and
language model scores constructed from the full suite

of MADAR and external data sets

Figure 4: Confusion matrix for Subtask 2 dev set using
a 3-gram PPM model constructed from the train set

features. The language model proved difficult to
beat, even by ensembles that include the LM it-
self: this under-performance indicates the ensem-
bling is not optimally leveraging its inputs. Future
work might focus on techniques for encouraging
uncorrelated training, perhaps by sequential sub-
model training that modifies the data as a function
of previous submodel predictions.
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Abstract
This paper describes the solution that we pro-
pose on MADAR 2019 Arabic Fine-Grained
Dialect Identification task. The proposed solu-
tion utilized a set of classifiers that we trained
on character and word features. These clas-
sifiers are: Support Vector Machines (SVM),
Bernoulli Naive Bayes (BNB), Multinomial
Naive Bayes (MNB), Logistic Regression
(LR), Stochastic Gradient Descent (SGD),
Passive Aggressive(PA) and Perceptron (PC).
The system achieved competitive results, with
a performance of 62.87% and 62.12% for both
development and test sets.

1 Introduction

Dialect identification (Zaidan and Callison-Burch,
2014) is a sub field of language identification
which can be coarse-grained or fine-grained.
Coarse-grained dialect identification or simply di-
alect identification (Meftouh et al., 2015) refers to
the process of dividing a language into the main
dialects that belong to that language. On the other
hand, fine-grained dialect identification (Salameh
et al., 2018) considers the differences between the
sub dialects inside a dialect of some language.

In this paper, we describe a fine grained di-
alect identification systems that participated in
MADAR 2019 Arabic Fine-Grained Dialect Iden-
tification task (Bouamor et al., 2019) In this task,
our system was trained on a data-set of short sen-
tences in the travel domain. A sentence in this data
set belongs to one or more Arabic fine-grained
dialects. These dialects are -Aleppo (ALE), Al-
giers (ALG), Alexandria (ALX), Amman (AMM),
Aswan (ASW), Baghdad (BAG), Basra (BAS),
Beirut (BEI), Benghazi (BEN), Cairo (CAI), Dam-
ascus (DAM), Doha (DOH), Fes (FES), Jeddah
(JED), Jerusalem (JER), Khartoum (KHA), Mo-
sul (MOS), Muscat (MUS), Rabat (RAB), Riyadh
(RIY), Salt (SAL), Sana’a (SAN), Sfax (SFX),

Tripoli (TRI), Tunis (TUN) and Modern Standards
Arabic (MSA) (Bouamor et al., 2018). The task of
our system is to identify the dialect of a given sen-
tence that belong to these 26 dialects.

The multi-way classification system that we
propose uses word n-grams and char n-grams as
features, and MNB, BNB and SVM as classifiers.

The rest of the paper is organized as follows.
In Section 2, we describe the data-set. In Sec-
tion 3.1, we address the task as a multiway text-
classification task; where we describe the pro-
posed system in 3. We report our experiments and
results in 4 and conclude with suggestions for fu-
ture research and conclusion in 5 and 6.

2 Dataset

In this work, we used the MADAR Travel Domain
dataset built by translating the Basic Traveling Ex-
pression Corpus (BTEC) (Takezawa et al., 2007).
The whole sentences have been translated manu-
ally from English and French to the different Ara-
bic dialects by speakers of 25 dialects (Salameh
et al., 2018; Bouamor et al., 2019). The training
data is composed of 1600 sentences for each of
the 25 dialects in addition to MSA. The size of the
development and test sets is 200 sentences per di-
alect. The sentences are short, ranging from 4 to
15 words each. Each sentence is annotated with
the speaker dialect. In table 1, we provide some
statistics on the used corpora.

Arabic dialects can be considered as variants of
Modern Standard Arabic. However, the absence
of a standard orthography (Habash et al., 2018)
(Habash et al., 2012) for dialects generates many
different shapes of the same word. Despite this,
there are still similarities between these dialects
which make their identification difficult under tex-
tual format. In figure 3, we present respectively
the number of words and sentences, shared be-
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Train Dev Test Total
# sentences 41,600 5,200 5,200 52,000
# distinct sentences 38,506 4,873 4,870 48,249
# words 294,718 37,383 36,810 368,911
# distinct Words 27,501 6,136 6,062 39,699

Table 1: Madar Task 1 Dataset statistics

tween n dialects where n varies from 2 to 26.

3 System

The presentation of our proposed approach is
shown in figure 2.

3.1 Feature extraction

We applied a light preprocessing step where a
simple blank tokenization and punctuation filter-
ing have been achieved. It is worthy to say,
that we deployed in our preliminary experiments
Low level NLP processing such as POS-tagging
(Freihat et al., 2018b) features and lemmatiza-
tion (Freihat et al., 2018a) but without a signif-
icant enhancement of the achieved results. Be-
sides the word and character n-grams features used
in previous work such as (Salameh et al., 2018;
Lichouri et al., 2018), we added the character-
word boundary (char wb). In the following, we
present a description of the three adopted features.

• Word n-grams: We extract word n-grams,
with n ranging from 1 to 3.

• Char n-grams: The character first to third
grams are used as features.

• Char wb n-grams: This feature creates
character n-grams only from text inside word
boundaries; n-grams at the edges of words are
padded with space.

The count matrix obtained using these features
are transformed to a tfidf representation.

3.2 Classification Models

Our model is based on a set of classifiers us-
ing the scikit-learn library (Pedregosa et al.,
2011), namely: Support Vector Machines (SVM),
Bernoulli Naive Bayes (BNB), Multinomial Naive
Bayes (MNB), Logistic Regression (LR), Stochas-
tic Gradient Descent (SGD), Passive Aggressive
(PA) and Perceptron (PC). In the following, we
present the selected parameters for each classifier.

• SVM r: C:1.0, kernel:”rbf”, degree:3,
decision-function-shape:”One-vs-Rest”.

• SVM l: C:10, kernel:”linear”, degree:3,
decision-function-shape:”One-vs-Rest”.

• BNB: alpha:1.0, fit-prior:True.

• MNB: alpha:1.0, fit-prior:True.

• LR: penalty:”l2”, C:1.0, solver:”sag”, max-
iter:100.

• SGD: loss:”hinge”, penalty:”l2”, al-
pha:0.0001, l1-ratio:0.15, max-iter:1000,
shuffle:True, epsilon:0.1, learning-
rate:”optimal”.

• PA: C:1.0, max-iter:1000, shuffle:True,
loss:”epsilon-insensitive”, epsilon:0.1.

• PC: alpha:0.0001, max-iter:1000, shuf-
fle:True, eta0:1.0.

4 Results

Using the aforementioned classifiers, the best
achieved performance (F1-Macro) for coarse-
grained and fine-grained dialect identification was
90.55% (table 4) and 62.87% (table 3) respec-
tively. The best results are obtained using the
three classifiers: SVM l, BNB and MNB with
F1-Macro of 61.94%, 62.72% and 62.87% re-
spectively (table 3). Based on these findings, we
adopted the three models for test phase. The re-
sults are presented in table 2.

Model Precision Recall F1 Accuracy
MNB 63.13 62.17 62.12 62.17
BNB 62.85 62.13 62.07 62.13
SVM l 60.41 60.48 60.26 60.48

Table 2: Three first best results achieved by MNB,
BNB and SVM l (Test Phase). The F1, Precision and
Recall Metrics are in Macro Mode.
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Figure 1: Number of tokens (above) and sentences (below) shared between the different dialects.

Corpus

Label

Data Preprocessing Features Extraction 

1- word n-grams
2- char n-grams
3- char_wb grams

TF-IDF Multi Label
Classification

1. Tokenization
2. Ponctuation Filter

Text

Dialect

Figure 2: Dialect identification system
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SVM r SVM l BNB MNB LR PA SGD PC
word n-grams n=2 - n=1 n=1 n=1 n=2 n=2 n=2
char wb n-grams - n=3 - - - - - -
Precision-Macro 60.09 62.29 64.09 64.28 59.67 60.55 58.40 56.97
Recall-Macro 59.19 62.19 62.73 62.87 59.33 60.10 57.88 55.90
F1-Macro 59.17 61.94 62.72 62.87 59.08 60.06 57.30 55.89
Accuracy 59.19 62.19 62.73 62.87 59.33 60.10 57.88 55.90

Table 3: Best results on the development dataset (Corpus-26) using the word n-grams and char wb n-grams.

SVM r SVM r BNB MNB LR PA SGD PC

word n-grams n=3 n=3
n=1
n=2

n=1
n=2

n=1
n=2

n=3
n=1
n=2

n=3

Precision-Macro 88.78 89.81 90.47 90.63 88.41 89.48 87.68 87.37
Recall-Macro 88.53 89.65 90.2 90.53 88.28 89.33 87.5 87.22
F1-Macro 88.59 89.68 90.26 90.55 88.32 89.36 87.53 87.24
Accuracy 88.53 89.65 90.2 90.53 88.28 89.33 87.5 87.22

Table 4: Best results on the development dataset (Corpus-6) using the word n-grams.

5 Discussion

We experimented different classifiers and a set of
features to solve fine-grained dialect identifica-
tion, i.e. a 26-way classification problem. The
results show that fine grained dialect identification
is more difficult given the similarity between di-
alects on one side, and on the other side, the non-
standardization of writing dialectal texts that gen-
erates unpredictable texts. In addition, we noted
the presence of MSA texts in several dialectal
tweets which distorts the results. By using the test
data-set, we calculated the accuracy achieved by
our best model and presented in table 2. In addi-
tion, we dress in table 5 our best results compared
to the baseline.

Precision Recall F1 Accuracy
Baseline 69.00 68.00 69.00 67.90
ST Team 63.13 62.17 62.12 62.17

Table 5: Speech Translation team results compared to
the baseline system -evaluated on test dataset-

In table 6, we note that the best results us-
ing both dev and test datasets were obtained for
the MOS dialect with an accuracy of 80% and
78%. Whereas the (ALG and TRI) dialects have
achieved, for both datasets, an F1-score of more
than 70%. For Tunisian dialects (SFX, TUN),
more than 69%. For Morrocan ones (FES, RAB),
the best result was around 64%. The last results for
both (AMM and MUS) showed an accuracy below
49%.

Dialect Precision Recall F1
Test Dev Test Dev Test Dev

ALE 55 62 62 57 58 60
ALG 71 73 76 80 73 76
ALX 72 70 76 78 74 74
AMM 49 43 54 54 51 48
ASW 53 47 66 60 58 53
BAG 65 74 61 58 63 65
BAS 70 68 62 64 66 66
BEI 75 77 56 56 64 65
BEN 62 65 68 70 65 68
CAI 64 65 41 41 50 50
DAM 56 65 54 49 55 56
DOH 64 57 61 61 63 59
FES 65 63 62 69 64 66
JED 53 63 56 61 55 62
JER 50 45 60 58 55 51
KHA 55 49 72 68 62 57
MOS 78 82 78 78 78 80
MSA 62 60 71 82 66 69
MUS 60 60 44 41 51 49
RAB 68 74 59 56 63 64
RIY 54 52 57 61 56 56
SAL 51 55 50 47 51 51
SAN 66 82 67 69 66 75
SFX 63 68 72 77 67 72
TRI 74 73 70 73 72 73
TUN 78 79 61 63 69 70
macro avg 63 64 62 63 62 63

Table 6: Best Results for the Test and Dev datasets, in
terms of Precision, Recall and F1.
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In figure 3, we show the average accuracy of
the 5-regions and MSA, as described in (Salameh
et al., 2018), for both development and test set.
We notice that the best results were achieved for
Yemen region with an accuracy of 75%, and an av-
erage accuracy of over 67% for the Maghreb Re-
gion.

Figure 3: Average accuracy per region

6 Conclusion

In this paper, we proposed an Arabic fine-grained
dialect identification system. Our best run on the
test data yielded an F1-Macro score of 62% using
Naive Bayes classifier and word n-gram features.
Despite the simplicity of these features, the re-
sults were promising. In order to improve perfor-
mance, we intend to investigate alternative meth-
ods as deep learning architectures and rule-based
techniques in future work.
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Abstract

In this paper, we describe the contribution of
CU-RAISA team to the 2019 Madar shared
task 2 1, which focused on Twitter User fine-
grained dialect identification. Among partici-
pating teams, our system ranked the 4th (with
61.54%) F1-Macro measure. Our system is
trained using a character level convolutional
bidirectional long-short-term memory (BiL-
STM) network trained on approximately 2k
users’ data. We show that training on concate-
nated user tweets as input is further superior to
training on user tweets separately and assign
user’s label on the mode of user’s tweets’ pre-
dictions.

1 Introduction

Dialect identification is a sub-domain of language
identification, a task that aims to differentiate be-
tween different languages given a sample of spo-
ken or written text. Language and dialect identi-
fication are active research areas due to their use-
fulness as preliminary steps for other applications,
such as automatic speech recognition and machine
translation. The task of dialect identification poses
harder challenges due to the higher inter-class sim-
ilarity, which becomes harder to learn with hid-
den text solely due to the absence of pronunci-
ation information that exists in audio data. (Si-
bun and Reynar, 1996) made the first effort to dis-
tinguish between languages with high similarity.
Their dataset contained some languages with sim-
ilar content, such as Serbian and Croatian, among
others.

Arabic dialect identification (ADI) aims to dif-
ferentiate between dialects of the Arab world, spo-
ken by citizens of the Middle East and North
Africa. Multiple forms of categorization can ex-
ist when it comes to Arabic dialect identification.

1https://competitions.codalab.org/competitions/22475

The first form is based on the geographic loca-
tion, where the text is categorized with respect to
the home origin of the individual. The second
form is concerned with major dialects, grouping
the variations from different countries into larger
classes. The most common categorization of the
second form for Arabic dialects is the one de-
scribed by (Habash et al., 2012), which details five
major dialects (Egyptian, Gulf, Iraqi, Levantine,
and Maghrebi). In this paper, we will be exploring
the first form of categorization. This form poses
more challenges due to the increased granularity it
adds to the classification task.

2 Related Work

Deep learning models have gained attention in the
tasks of text-based ADI, spoken language-based
ADI and hybrid (text+spoken language) ADI with
the introduction of context-dependent architec-
tures such as Long short-term memory (LSTM)
and Convolutional neural networks (CNN’s). Re-
search in the past few years has explored both
character-level and word-level models, along with
combining these models with acoustic features
from the audio recordings. (Sayadi et al., 2017)
achieved a classification accuracy of 92.2% on
a two-way classification task between Modern
Standard Arabic (MSA) and Tunisian using a
character-level LSTM model. The experiments
were performed on the Tunisian Election Twitter
dataset (Sayadi et al., 2016). For a fine-grained
six-class classification task (MSA, Egyptian, Syr-
ian, Jordanian, Palestinian and Tunisian) on the
Multidialectal Parallel Corpus of Arabic dataset
(Bouamor et al., 2014), the authors reached a clas-
sification accuracy of 63.4%. Elaraby and Abdul-
Mageed (2018) experimented with attention-based
bidirectional LSTM (BiLSTM) models on a two-
way classification task (MSA vs. other dialects), a
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three-way classification task (Egyptian, Gulf, and
Levantine), and a four-way classification task that
adds the MSA dialect to the previous three-way
task. The dataset used in this study is the Ara-
bic Online Commentary (AOC) dataset. (Zaidan
and Callison-Burch, 2011). The system achieved
an accuracy of 87.65%, 87.4% and 82.45% on
the three aforementioned tasks, respectively using
pretrained word embeddings trained on a large di-
alectly rich corpus described in (Abdul-Mageed
et al., 2018). (Ali, 2018) used a character-level
convolution neural network with a GRU layer for a
five-way classification task (MSA, Egyptian, Gulf,
Levantine, and North African). This architecture
achieved 92.64% cross-validation accuracy on the
training set, and a 57.59% F1 (macro) score on
the test set. (Lulu and Elnagar, 2018) isolated the
three most frequent dialects in AOC (Gulf, Egyp-
tian, and Levantine). Using a word-based LSTM
to differentiate between the three dialects, the au-
thors obtained an accuracy of 71.4%, exceeding
the performance of CNN, BLSTM and CLSTM
models.

Along with exploring the performance of deep
learning models on ADI, research has also con-
tinued to explore more classical models, such as
kernel-based models and linear models, in addi-
tion to classical representations such as tf-idf. In
a geographic location-based ADI task, Salameh
et al. (2018) researched the effectiveness of com-
bining multiple features with a Multinomial Naive
Bias (MNB) classifier. The system combined
multiple word-based and character-based n-grams
with language models scoring probabilities as fea-
tures. The authors used a translated version of
the Basic Traveling Expression Corpus (BTEC)
(Takezawa et al., 2007). For sentences with an av-
erage length of seven words, the system obtained
a classification accuracy of 67.9%. As the average
length of the sentence increases to 16 words, the
performance of the system increased to more than
90%. This finding gives an intuition about the pos-
itive effect of sentence length on the performance
of the classifier. In addition to the classification
task, the authors analyzed the amount of pairwise
dialect similarity between the dialects. To per-
form the analysis, the authors used hierarchical
agglomerative clustering on the similarity matrix
obtained from the percentage of shared tokens be-
tween dialects. The resulting analysis shows the
amount of similarity between dialects in a certain

area, as well as the proximity of some dialects
to others (e.g.: Egyptian and Levantine). MSA
falls closest to Muscat and Khartoum. (Butnaru
and Ionescu, 2018) used multiple kernel learning
on character n-grams from text and phonetic tran-
scriptions, along with dialectal embeddings from
the audio recordings. Their model obtained an
accuracy of 58.65%. (El Haj et al., 2018) re-
searched the subjects of code-switching and bi-
valent words (words that occur in multiple lan-
guages or dialects with similar semantic content)
in dialect identification. They developed a method
called Subtractive Bivalency Profiling to build a
system that can handle both of these issues. Us-
ing support vector machines (SVM) for a task to
distinguish between four dialects (MSA, Egyp-
tian, Levant, and Gulf), they achieved 76% ac-
curacy. (Lichouri et al., 2018) researched word-
based and sentence-based methods on tf-idf vec-
tors, in addition to applying majority and minority
voting techniques. The authors experimented with
Bernoulli Naive Bayes (BNB) and MNB, along
with Linear SVM’s (LSVM). Two datasets were
used for this research. The first dataset, PADIC
(Meftouh et al., 2015; Harrat et al., 2014), con-
sists of multiple dialects (MSA, Tunisian, Mo-
roccan, Algerian, Palestenian and Syrian). For
this dataset, a sentence-level BNB achieved the
highest accuracy (73.15%). The second dataset
consisted of eight Algerian dialects (Tenes, Con-
stantine, Djelfa, Ain-Defla, Tizi-Ouzou, Batna,
Annaba, and Algiers), for which an LSVM model
achieved the highest accuracy (41.05%).

3 Data

3.1 Dataset Description

We used the Arabic twitter dataset released by
the organizers of the ”User Dialect Identification
task”. The dataset is portioned into 217,593 tweets
representing 2180 users for training, 29,870 for
development representing 300 users, and 49,962
for testing representing 500 users. Full detailed
description of the data can be found in task de-
scription paper Bouamor et al. (2019).

3.2 Accessibility of tweets

One challenging part of this task was the acces-
sibility of tweets as some users’ tweets weren’t
accessible at the time we crawled their timelines
from twitter. Training data portion were reduced
from 2180 users to 2032 users. The total number
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of training tweets were reduced to 192,389. Devel-
opment data were reduced from 300 to 281 users,
while the number of development tweets was re-
duced to 26,528. The number of test users was
reduced from 500 to 463.

4 Methods

4.1 Pre-processing

We adopt basic preprocessing techniques to our
training, development, and test sets. This involves
filtering out URLs and user mentions. For the vo-
cabulary V , we train using character-based vocab-
ulary. We filter out least frequent characters oc-
curring < 20 times, which leaves |V | = 2377 of
unique characters.

4.2 Data Preparation:

We conduct two sets of experiments; (1): train on
tweet level annotated by the country of the user.
In that case, the maximum input sequence length
is 140. (2) : train on user’s concatenated tweets
together. Maximum sequence length grown to
12000 characters. In the results section, we show
that training on concatenated user tweets improves
performance compared to training on individual
tweets. On the hidden units layer to prevent the
network from over-fitting on training set.

4.3 Models

4.3.1 Traditional Models
Traditional models refer to models based on fea-
ture engineering methods with linear and prob-
abilistic classifiers. In our experiments, we use
(1) logistic regression, and (2) multinomial Naive
Bayes as baselines. We use character ngrams,
word ngrams, and a combination of both as fea-
ture set.

4.3.2 Deep Learning Models
We develop models based on deep neural networks
based on variations of (1) convolution neural net-
works (CNNs) and (2) recurrent neural networks
(RNNs) which have proved useful for several NLP
tasks. Both RNNs, and CNNs s are able to capture
sequential dependencies especially in time series
data, of which language can be seen as an exam-
ple.

Our Model: We use a combination of convo-
lution neural network and bidirectional long short
term memory (BiLSTM). The following part de-
scribes how we apply CNN to extract higher-level

sequences of word features and BiLSTM to cap-
ture long-term dependencies over window feature
sequences respectively.

• Input layer: an input layer to map word se-
quence w into a sequence vector x where
xw is a real-valued vector (XwεRdemb where
demb = 50). Character embedding are ran-
domly initialized and not learnt externally.

• Convolution layer: Multiple convolution op-
erations are applied in parallel to the input
layer to map input sequence x into a hidden
sequence h
A filter kεRwdemb is applied to a window of
concatenated word embedding of size w to
produce a new feature ci . Where ciεR, ci =
k · xi:i+w−1+b b is the inductive bias term
bεR, and xi:i+w−1 is a concatenation of
xi, xi+1, .., xi+w−1

The filter sizes used are ranging from 1-
13 and the number of filters used is rang-
ing from 10-150. Finally, different convolu-
tion outputs are concatenated into a sequence
cεRn−h+1 and passed into a time distributed
layer to convert it into suitable output for the
BiLSTM layer.

• BiLSTM Layer: We use a Bidirectional
LSTM architecture consisting of 256 dimen-
sions hidden units. The BiLSTM is designed
to capture long-term dependencies via aug-
menting a standard RNN with two memory
states, forward and backward. The forward
direction state −→C t, with −→C t ∈ R at time step
t. The forward LSTM takes in a previous
state

−→
h t−1 and input xt, to calculate the hid-

den state
−→
h t as follows:

−→
i t = σ(W−→

i
[
−→
h t−1, xt] + b−→

i
)

−→
f t = σ(W−→

f
.[
−→
h t−1, xt] + b−→

f
)

−→
C t = tanh(W−→

C
.[
−→
h t−1, xt] + b−→

C
)

−→
C t =

−→
f t �

−→
C t−1 + it �−→C

−→o t = σ(Wo[
−→
h t−1, xt] + b−→o )

−→
h t = ot � tanh(−→C t)

where σ is the sigmoid, tanh is the hyper-
polic tangent function, and � is the dot prod-
uct between two vectors. The −→i t,

−→
f t, −→o t
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Figure 1: Our char level Convolution -BiLSTM

are the input, forget, and output gates, and
the−→C t is a new memory cell vector with can-
didates that could be added to the state in
the forward direction. The same operation
is done for the backward direction. We ap-
ply L2 regularization to avoid network over-
fitting.

• Softmax Layer: Finally, the combined hid-
den units (forward and backward) is con-
verted into a probability distribution over l
via softmax function, where l is the number
of classes in our case (21 classes).

Figure 1 shows a block diagram of our network
architecture.

Training and Optimization
We try a small set of hyper-parameters, identi-

fying best settings on our validation set using grid
search. We train the network for 40 epochs each.
For optimization, we use Adam (Kingma and Ba,
2014), The models weights W are initialized from
a normal distribution W ∼ N with a small stan-
dard deviation of = 0.05 We apply two sources
of regularization: dropout: we apply a dropout
rate of 0.2 on the input embeddings to prevent
co-adaptation of hidden units activation, and L2
norm: we also apply an L2-norm regularization
with a small value (0.002)

5 Results

We evaluated most of the experiments on the de-
velopment set using an accuracy metric. Table 1
concluded our experimentation results on develop-
ment set which consists of 281 users in total after
excluding tweets of non-accessible users.

For the test which set consists of 500 users, we
were able to access 463 users which we predicted

Models Accuracy F1-Macro
Individual tweets

Logistic Regression (1-11 ngrams) 36.5 -
Multinomial Naive Bayes (1-11 ngrams) 36.75 -
Char-Level CNN 50.12 -
Char-Level C-BiLSTM 51.7 42.3

Concatenated tweets
Logistic Regression (1-11 ngrams) 45.5 -
Multinomial Naive Bayes (1-11 ngrams) 46.7 -
Char-Level CNN 68.8 -
Char-Level C-BiLSTM 71.92 62.21

Table 1: Experimental results on development set

using our C-BiLSTM network. For the left 37
users we assign the most common class to it which
is ”Saudi Arabia” . The final result reported by
organizers on the test set was very close in terms
of both accuracy and F1 macro measure achieving
an accuracy of 72.6% and 61.5%.

6 Conclusion

In this paper, we described our system submit-
ted to MADAR shared task, focused on coun-
try level dialect identification from Twitter data.
We explored the utility of tuning different word-
and character-level based models. A char based
convolutional BiLSTM achieved the best perfor-
mance in terms of both accuracy and F1-macro
measure. Given our limited resources at that time
we weren’t able to experiment transfer learning
techniques as pre-trained embeddings or language
models which proved to be beneficial in vari-
ous Natural Language Processing tasks. In fu-
ture work, we plan to exploit a number of those
techniques in the fine-grained dialect identification
task.
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Abstract

We present our deep leaning system submitted
to MADAR shared task 2 focused on twitter
user dialect identification. We develop tweet-
level identification models based on GRUs and
BERT in supervised and semi-supervised set-
tings. We then introduce a simple, yet effec-
tive, method of porting tweet-level labels at the
level of users. Our system ranks top 1 in the
competition, with 71.70% macro F1 score and
77.40% accuracy.

1 Introduction

Language identification (LID) is an important
NLP task that usually acts as an enabling tech-
nology in a pipeline involving another down-
stream task such as machine translation (Salloum
et al., 2014) or sentiment analysis (Abdul-Mageed,
2017b,a). Although several works have focused on
detecting languages in global settings (see Jauhi-
ainen et al. (2018) for a survey), there has not
been extensive research on teasing apart similar
languages or language varieties (Zampieri et al.,
2018). This is the case for Arabic, the term used
to collectively refer to a large number of varieties
with a vast population of native speakers (∼ 300
million). For this reason, we focus on detecting
fine-grained Arabic dialect as part of our contri-
bution to the MADAR shared task 2, twitter user
dialect identification (Bouamor et al., 2019).

Previous works on Arabic (e.g., Zaidan and
Callison-Burch (2011, 2014); Elfardy and Diab
(2013); Cotterell and Callison-Burch (2014)) have
primarily targeted cross-country regional varieties
such as Egyptian, Gulf, and Levantine, in addi-
tion to Modern Standard Arabic (MSA). These

∗The title is word play on the Yiddish linguist Max
Weinreich much quoted metaphor (in Yiddish) “A lan-
guage is a dialect with an army and navy”. See: https:
//en.wikipedia.org/wiki/A_language_is_a_
dialect_with_an_army_and_navy.

works exploited social data from blogs (Diab
et al., 2010; Elfardy and Diab, 2012; Al-Sabbagh
and Girju, 2012; Sadat et al., 2014), the general
Web (Al-Sabbagh and Girju, 2012), online news
sites comments sections (Zaidan and Callison-
Burch, 2011), and Twitter (Abdul-Mageed and
Diab, 2012; Abdul-Mageed et al., 2014; Mubarak
and Darwish, 2014; Qwaider et al., 2018). Other
works have used translated data (e.g., Bouamor
et al. (2018)), or speech transcripts (e.g., Malmasi
and Zampieri (2016). More recently, other works
reporting larger-scale datasets at the country-level
were undertaken. These include data spanning 10-
to-17 different countries (Zaghouani and Charfi,
2018; Abdul-Mageed et al., 2018).

To solve Arabic dialect identification, many re-
searchers developed models based on computa-
tional linguistics and machine learning (Elfardy
and Diab, 2013; Salloum et al., 2014; Cotterell and
Callison-Burch, 2014), and deep learning (Elaraby
and Abdul-Mageed, 2018). In this paper, we focus
on using state-of-the-arts deep learning architec-
tures to identify Arabic dialects of Twitter users
at the country level. We use the MADAR twit-
ter corpus (Bouamor et al., 2019), comprising 21
country-level dialect labels. Namely, we employ
unidirectional Gated Recurrent Unit (GRU) (Cho
et al., 2014) as our baseline and pre-trained Mul-
tilingual Bidirectional Encoder Representations
from Transformers (BERT) (Devlin et al., 2018)
to identify dialect classes for individual tweets
(which we then port at user level). We also apply
semi-supervised learning to augment our training
data, with a goal to improve model performance.
Our system ranks top 1 in the shared task. The
rest of the paper is organized as follows: data are
described in Section 2. Section 3 introduces our
methods, follow by experiments in Section 4. We
conclude in Section 5.
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2 Data

Twitter user dialect identification is the second
sub-task of 2019 MADAR shared task (Bouamor
et al., 2019). This task is set up as fine-grained
multi-class classification where corpus released by
organizers are labeled with the tagset {Algeria,
Bahrain, Djibouti, Egypt, Iraq, Jordan, Kuwait,
Lebanon, Libya, Mauritania, Morocco, Oman,
Palestine, Qatar, Saudi Arabia, Somalia, Sudan,
Syria, Tunisia, United Arab Emirates, Yemen}.
The corpus is divided into train, dev and test (with
the test set shared without labels). For each tweet,
organizers released a user id and tweet id and par-
ticipants needed to crawl the actual tweets. We
were not able to crawl part of the data because of
unavailability on the Twitter platform. The distri-
bution of the data in our splits after crawling is as
follows: 2,036 (TRAIN-A), 281 (DEV) and 466
(TEST). For our experiments, we also make use
of the task 1 corpus (95,000 sentences (Bouamor
et al., 2018)). More specifically, we concatenate
the task 1 data to the training data of task 2, to
create TRAIN-B. Note that both DEV and TEST
across our experiments are exclusively the data re-
leased in task 2, as described above. TEST labels
were only released to participants after the official
task evaluation. Table 1 shows statistics of the
data.

# of tweets

TRAIN DEV TEST

TRAIN-A 193,086 26,588 43,909
TRAIN-B 288,086 – –

Table 1: Distribution of classes within the MADAR
twitter corpus.

3 Methods

3.1 Pre-processing & Architectures

With tweet ids at hand, we crawl users tweets via
the Twitter API. We remove all usernames, URLs,
and diacritics in the data. For evaluation, we use
accuracy and macro F1−score. For modeling, we
use two main deep learning architectures, Gated
Recurrent Unit (GRU) and Bidirectional Encoder
Representations from Transformers (BERT). For
GRU, we tokenize tweets into word sequences by
white-space. For BERT input, we apply Word-
Piece tokenization. We set the maximal sequence

length to 50 words/WordPieces. A GRU (Cho
et al., 2014; Chung et al., 2014) is a simplification
of long-short term memory networks (LSTM),
which in turn are a version of recurrent neural net-
works.

For BERT (Devlin et al., 2018), it was intro-
duced to dispense with recurrence and convolu-
tion. Its model architecture is a multi-layer bidi-
rectional Transformer encoder (Vaswani et al.,
2017). It uses masked language models to enable
pre-trained deep bidirectional representations, in
addition to a binary next sentence prediction task.
The pre-trained BERT can be easily fine-tuned
on large suite of sentence-level and token-level
tasks.We also use semi-supervised learning in our
modeling, as we explain next.

3.2 Semi-supervise Learning

Supervised deep learning requires a large num-
ber of labeled data points. For this rea-
son, we investigate augmenting our training data
with automatically-predicted tweets using semi-
supervised learning (SSL). More specifically, we
use self-training. Self-training is a wrapper
method for SSL (Triguero et al., 2015; Pavlinek
and Podgorelec, 2017) where a classifier is ini-
tially trained on a small set of labeled samples Dl.
Then, the learned classifier is used to classify the
unlabeled sample set Du. Based on the predication
output, the most confident samples with their pre-
dicted labels are added to the labeled set. The clas-
sifier can then be re-trained on the new ‘labeled’
set. This process can be repeated until all the sam-
ples from Du are added to Dl or a given stopping
criteria is reached. We now introduce our experi-
ments.

4 Experiments

We illustrate our four main sets of experiment. We
present (i) our baseline model, GRU (Section 4.1),
(ii) fine-tuning on BERT-Base, Multilingual Cased
model for dialect identification (Section 4.2), (iii)
semi-supervised learning with unlabeled data 4.3,
(iv) user-level dialect identification (DID) 4.4.

4.1 GRU

We train a baseline GRU network with TRIAN-
A. This network has one layer unidirectional GRU
with 500 unites and a linear, output layer. The
input word tokens are embedded by the trainable
word vectors which are initialized with a standard
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normal distribution, with µ = 0, and σ = 1, i.e.,
W ∼ N(0, 1). We apply Adam (Kingma and Ba,
2014) with a fixed learning rate of 1e− 3 for opti-
mization. For regularization, we use dropout (Sri-
vastava et al., 2014) rate of 0.5 on the hidden
layer. We set the maximal length of sequence in
our GRU model to 50, and choose an arbitrary vo-
cabulary size of 10,000 words. We employ batch
training with a batch size of 8 on this model. We
run the network for 10 epochs and save the model
at the end of each epoch, choosing the model that
performs highest on DEV as our best model. We
report our best result on dev in Table 2. Our
best result is acquired with 3 epochs. As Table 2
shows, the baseline obtains accuracy = 46.81%
and F1 = 28.84.

4.2 BERT
As mentioned earlier, we use the BERT-Base Mul-
tilingual Cased model released by the authors 1.
The model is trained on 104 languages (including
Arabic) with 12 layer, 768 hidden units each, 12
attention heads, and has 110M parameters in en-
tire model. The model has 119,547 shared Word-
Pieces vocabulary, and was pre-trained on the en-
tire Wikipedia for each language. For fine-tuning,
we use a maximum sequence size of 50 tokens and
a batch size of 32. We set the learning rate to 2e−5
and train for 10 epochs. We use the same hyper-
parameters in all of our BERT models. We fine-
tune BERT on TRAIN-A and TRAIN-B sets, and
call these BERT-A and BERT-B respectively. As
Table 2 shows, both BERT models acquire bet-
ter performance than the GRU models. On accu-
racy, BERT-A is 1.69% better than the baseline,
and BERT-B is 1.95% better than baseline. BERT-
B obtains 34.87 F1 which is 5.03 better than the
baseline and 0.94 better than BERT-A. Our best
model of above two sets of experiment is BERT-B
which obtains the best accuracy and F1. Hence,
we use BERT-B in our following semi-supervised
learning experiments.

4.3 Semi-supervised Learning
As we mentioned earlier, we apply self-training
in order to augment training set. For this pur-
pose, we use an in-house unlabeled, Arabic dataset
of 9,981,965 tweets. We refer to this unlabeled
dataset as unlabeled-10M. We pre-process
unlabeled-10M using the same method as the rest
of our data. We use the best model from Sec-
tion 4.2 (i.e. BERT-B, which is trained on TRAIN-

Model Acc. F1

Baseline (GRU) 46.81 29.84
BERT-A 48.50 33.93
BERT-B 48.76 34.87

Table 2: Model performance. Baseline is a unidirec-
tional 500-unit, one-layered GRU. Baseline and BERT-
A are trained on TRAIN-A. BERT-B is trained on
TRAIN-B.

# of tweets

New Total

5% SEMI 499,102 787,188
10% SEMI 998,196 1,286,282
25% SEMI 2,495,491 2,783,577

5% Class SEMI 499,087 787,173
10% Class SEMI 998,186 1,286,272
25% Class SEMI 2,495,486 2,783,572

Table 3: Data splits for our emi-supervised learning
experiments. New: The new dataset confidently pre-
dicted with semi-supervised learning that are added to
TRAIN-B.

B) to predict dialect labels for unlabeled-10M.
To obtain the best performance, we investigate
various settings to select the most reliable sam-
ples before adding such samples to our train-
ing data. These settings are based on the per-
class value in the softmax/output layer, as fol-
lows: (i) Top-N%: We select samples which ob-
tain top n% softmax values and add them with
their predicted labels to TRAIN-B. We refer to the
new training set as N SEMI. (ii) Top-N% Class:
We also extract the samples which obtain top
n% softmax value within each county class and
add them to our training data, referring to the
new train set as N Class SEMI. In our experi-
ments, we choose n from the set {5%, 10%, 25%}.
Then, we fine-tune the BERT-Base, Multilingual
Cased model on the resulting six new training sets
(e.g., 5% SEMI, 5% Class SEMI, 10% SEMI)
with the same hyper-parameters as Section 4.2.
We evaluate on DEV. For reference, BERT-N de-
notes the model which is trained on N SEMI, and
BERT-NClass SEMI denotes the model which is
trained on N Class SEMI. We present the de-
scription of these six train sets in Table 3. As
Table 4 shows, most semi-supervised models out-
perform BERT-B. For accuracy, the best model is
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Model Acc. F1

Baseline (GRU) 46.810 29.840

BERT-B 48.755 34.868

BERT-5% 48.958 35.931
BERT-10% 49.394 35.440
BERT-25% 48.751 35.305

BERT-5% Class SEMI 48.706 34.774
BERT-10% Class SEMI 48.842 33.835
BERT-25% Class SEMI 49.097 35.813

Table 4: Semi-supervised learning. All models are
evaluated on DEV, with TRAIN-B as training data. Re-
sults higher than BERT-B are underlined. Best result is
in bold.

BERT 10% (acc = 49.34%) with 4 epochs. It
is 0.639% higher than BERT-B. For F1, the best
model is BERT 5% (F1 = 35.931) with 3 epochs.
We use these two model in the following user-
level DID. Since the official metric of the shared
task is macro F1 score, we also consider BERT-
25% Class SEMI as a candidate model for user-
level DID since it acquires better F1 than BERT-
10% as Table 4 shows.

4.4 User-level DID
Our aforementioned models identify dialect on
the tweet-level, rather than directly detect the di-
alect of a user. Hence, we use tweet-level pre-
dicted labels (and associated softmax values) as
a proxy for user-level labels. For each predicted
label, we use the softmax value as a thresh-
old for including only highest confidently pre-
dicted tweets. Since in some cases softmax val-
ues can be low, we try all values between 0.00
and 0.99 to take a softmax-based majority class as
the user-level predicted label, fine-tuning on our
DEV set. Figure 1 provides performance of the
BERT-25% Class SEMI model on DEV using
different softmax threshold values. Note that the
shared task requires a maximum of three models
submitted. For these, we chose the top 3 mod-
els in Table 4 (i.e., BERT-5%, BERT-10%, and
BERT-25% Class SEMI). As a precauion, we also
use the BERT-B when we fine-tune on the user-
level on DEV. We then use only the 3 models
that perform best on DEV as our official task sub-
mission. As Table 5 shows, the best three sys-
tems on DEV are BERT-B, BERT-5% and BERT-
25% Class SEMI. For the 34 unavailable users,

Figure 1: User-level Performance on DEV using
different softmax value thresholds.

we assigned the majority class in TRAIN-A (i.e.,
‘Saudi Arabia’). According to 5, our best system
on TEST set is BERT-5% with 77.04% accuracy
and 71.70 F1. It rank top 1 in the shared task.

Model Thresh DEV TEST

Acc. F1 Acc. F1

BERT-B 0.91 79.36 75.19 76.40 68.47
BERT-5% 0.89 79.36 76.05 77.40 71.70
BERT-10% 0.92 77.94 74.47 - -
B-25%CS 0.91 80.78 79.25 75.80 69.17

Table 5: User-level results. TEST results come from
the official leaderboard of the shared task. B-25%CS=
BERT-25% Class SEMI.

5 Conclusion

In this paper, we described our submission to the
MADAR shared task 2, focused on user-level Ara-
bic dialect identification. We show how we ac-
quire effective models using various supervised
and semi-supervised methods, porting tweet-level
labels to the user level. Our semi-supervised
model with BERT achieves best results in the of-
ficial task evaluation. In the future, we will inves-
tigate more extensive semi-supervised methods to
improve performance.
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Abstract
In this paper, we describe our team’s effort
on the MADAR Shared Task on Arabic
Fine-Grained Dialect Identification. The
task requires building a system capable of
differentiating between 25 different Ara-
bic dialects in addition to MSA. Our ap-
proach is simple. After preprocessing the
data, we use Data Augmentation (DA) to
enlarge the training data six times. We
then build a language model and extract
n-gram word-level and character-level TF-
IDF features and feed them into an MNB
classifier. Despite its simplicity, the resul-
ting model performs really well producing
the 4th highest F-measure and region-level
accuracy and the 5th highest precision, re-
call, city-level accuracy and country-level
accuracy among the participating teams.

1 Introduction

Give a piece of text, the Dialect Identification (DI)
is concerned with automatically determining the
dialect in which it is written. This is a very im-
portant problem in many languages including Ara-
bic. Unlike previous works on Arabic DI (ADI),
which take a coarse-grained approach by consi-
dering regional-level (Zaidan and Callison-Burch,
2014; Elfardy and Diab, 2013; Zampieri et al.,
2018) or country-level (Sadat et al., 2014) dialects,
a new task has been proposed for the fine-grained
ADI focusing on a large number of city-/country-
level dialects (Bouamor et al., 2019).

This task is quite challenging as it covers 25
different dialects in addition to Modern Standard
Arabic (MSA). Some of these dialects are very
close to each other as we observe in our analy-
sis of the training data (see Section 2). Also, due

to the relatively small size of the dataset, cutting-
edge techniques for document/sentence classifica-
tion, which are based on word embeddings and de-
ep learning models, perform poorly on it. In fact,
according to (Bouamor et al., 2019), the top per-
forming systems for this task as well as the pre-
viously published baseline (Salameh et al., 2018)
all use traditional (non-neural) machine learning
approaches. This is very surprising if one takes in-
to account that the use of Deep Learning in Arabic
NLP is still at its early stages (Al-Ayyoub et al.,
2018).

In this paper, we describe our team’s effort to
tackle this task. After preprocessing the data, we
use Data Augmentation (DA) to enlarge the trai-
ning data six times. We then build a language mo-
del and extract n-gram word-level and character-
level TF-IDF features and feed them into a Mul-
tinomial Naive Bayes (MNB) classifier. Despi-
te its simplicity, the resulting model performs
really well producing the 4th highest Macro-
F1 measure (66.33%) and Region-level Accura-
cy (84.54%) and the 5th highest Macro-Precision
(66.56%), Macro-Recall (66.42%), City-level Ac-
curacy (66.42%) and Country-level Accuracy
(74.71%) among the participating teams. Unfortu-
nately, due to a problem with our submission file,
the official results for our system were extremely
poor, which placed our team at the bottom of the
official ranking.

The rest of this paper is organized as follows. In
Section 2, we discuss the task at hand while ana-
lyzing the provided data. In Section 3, we describe
our system and its details while, in Section 4, we
present and analyze its results and performance.
Finally, the paper is concluded in Section 5.
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2 MADAR Task, Dataset and Metrics

The shared task at hand comprises of two subtasks.
The first one is the Travel Domain ADI, whose da-
ta are taken from Multi-Arabic Dialect Applicati-
ons and Resources (MADAR) project (Bouamor
et al., 2018). Our team only focused on this sub-
task. The second subtask is the Twitter User ADI
and it is outside the scope of this work.

For the subtask at hand, the organizers pro-
vide three sets: train (stored in a file called
MADAR-Corpus-26-train and we refer to it
as Corpus-26), development (dev) and test. The
train, dev and test sets consist of 41,600, 5,200
and 5,200 parallel sentences, respectively, writ-
ten in MSA as well as the local dialect of 25 ci-
ties: Rabat (RAB), Fes (FES), Algiers (ALG), Tu-
nis (TUN), Sfax (SFX), Tripoli (TRI), Benghazi
(BEN), Cairo (CAI), Alexandria (ALX), Aswan
(ASW), Khartoum (KHA), Jerusalem (JER), Am-
man (AMM), Salt (SAL), Beirut (BEI), Damas-
cus (DAM), Aleppo (ALE), Mosul (MOS), Bagh-
dad (BAG), Basra (BAS), Doha (DOH), Muscat
(MUS), Riyadh (RIY), Jeddah (JED) and Sana’a
(SAN).

To aid in the training and model building
processes, the organizers also provide additional
train & dev data sets consisting of 54,000 and
6,000 parallel sentences covering only six dia-
lects: BEI, CAI, DOH, MSA, RAB and TUN.
The additional train set is stored in a file called
MADAR-Corpus-6-train and we refer to it as
Corpus-6.

Before we go into the details of our system, we
present a simple analysis of the provided data. Fi-
gure 1 shows that the sentences of the dialects do
not differ much in terms of average word/sentence
lengths per dialect (Figures 1(a) and 1(b)) or the
number of unique words per dialect (Figures 1(c)).
Our analysis shows that while there are 27,501
unique words in all dialects, there is a small
number of words (specifically, 84 words) com-
mon in all dialects. Examples of such words in-
clude: , ñº��
�	�@Q 	̄ , AJ
Ëñk. , ÐQj. ÖÏ @ , ¨PA ��Ë@ , �éJ
 	K AK. AJ
Ë @
YJ
ªK. , hA�J 	®Ó , YK
Q�. Ë @ , �éËñk. ,QîD��.

Now, the most interesting part in our analy-
sis is the varying similarity between the diffe-
rent dialects pairs under consideration. Overall,
there are 7,280 common sentences between dia-
lects pairs and the average number of common
sentences between dialects pairs, on average the-

(a) Average word length per dialect

(b) Average sentence length per dialect

(c) Number of unique words per dialect

Figure 1: Corpus-26 statistics.

re is 22.4 common sentences between any dialects
pairs. Another relevant observation is the repeti-
tion of sentences across different dialects pairs,
which is not limited to the dialects from the same
country or region. For example, the dialect pairs
with 100 or more common sentences are: AMM-
JER, DAM-ALE, JER-SAL, AMM-SAL, DAM-
JER & AMM-DAM, whereas, the pairs with less
than 5 common sentences are: BEI-FES, MSA-
BEI, MSA-MOS, MSA-SFX, MSA-TRI, MSA-
TUN, RAB-ASW, RAB-KHA, RAB-RIY, RAB-
SAN, RAB-BAS & RAB-MOS. Below, we list all
dialects under consideration grouped per country
and per region. We also list in the parentheses the
average number of common sentences within each
country (with more than one dialect) and each re-
gion.

286



1. Maghreb (18.29): Morroco: RAB & FES
(50); Algeria: ALG; Tunisia: TUN & SFX
(52); Libya: TRI & BEN (66).

2. Nile Basin (42.67): Egypt: CAI, ALX &
ASW (67); Sudan: KHA.

3. Levant (88.4): Palestine: JER; Jordan: AMM
& SAL (101); Lebanon: BEI; Syria: DAM &
ALE (129).

4. Gulf (42.52): Iraq: MOS, BAG & BAS
(54.33); Qatar: DOH; Oman: MUS; Saudi:
RIY & JED (72.0);

5. Gulf of Aden: Yemen: SAN.

6. MSA.

This list shows that Levant dialects are the most si-
milar while the Maghrib ones are the least similar.

Finally, to evaluate the participating systems,
the subtask organizers use Accuracy (on the city,
country and region levels denoted here by Acccty,
Acccntr and Accrgn, respectively) in addition to
Macro-averaged Precision, Recall and F1 measure
(denoted here by Pre, Rec and F1, respectively).

3 System

In this section. we describe the system that pro-
duces the highest accuracy on the dev set starting
from the preprocessing stage all the way up to the
final classification stage.

Preprocessing and Data Augmentation (DA).
Our system starts with a couple of preproces-
sing steps. The first one is a very simple one in
which quotation marks, Arabic quotation marks,
commas, Arabic commas, question marks, Arabic
question marks and emoticons are replaced with
spaces.

Another preprocessing step the system performs
is DA. While DA has been shown to be very effec-
tive for image processing tasks (Chatfield et al.,
2014; He et al., 2016; Chollet, 2016; Ebrahim
et al., 2018), it use in text processing tasks is still
limited (Fadaee et al., 2017; Kafle et al., 2017).
Since the training data is small, a data augmenta-
tion step is performed on Corpus-26 by applying
random shuffling on Corpus. In Corpus-26, the-
re are 1,600 sentences for each dialect, while, in
Corpus-6, there are 9,000 sentences for each of the
six dialects in this corpus: BEI, CAI, DOH, MSA,
RAB and TUN. The system takes 8,000 sentences

(instead of 9,000) for each dialects in order to
balance them with the other dialects (shuffled).
Therefore, overall, we have 8,000 sentences (from
Corpus-6) + 1,600 sentences (from Corpus-26)
= 9,600 sentences for each of these six dialects.
For the remaining dialects, and since the order of
words is not necessary to identify the dialect, we
apply a random shuffling to generate five new sen-
tences from each sentence by using different ran-
dom seed for each generated sentence. So, for each
of these 20 dialects, we have 1, 600 × 6 = 9, 600
sentences. To sum up, the training data has a total
of 249,600 sentences; 9,600 sentences for each of
the 26 dialects under consideration.

Features Extraction. For each dialect, a language
model is extracted using Kenlm1 with its default
parameters using the training data (Corpus-26).
For each sentence, we extract a vector of si-
ze 26 that represents a language model proba-
bility for each dialect. We also extract a word-
level Term Frequency-Inverse Document Frequen-
cy (TF-IDF) features ranging from unigram to 6-
gram in addition to character-level n-grams TF-
IDF features where n ranges from 1-gram to 5-
grams.

Classifier. An MNB classifier with α = 0.5 is ap-
plied using the One-vs-the-rest strategy. It is worth
mentioning that we experiment with several de-
ep learning-based classifiers such as Convolutio-
nal Neural Networks (CNN) (Kim, 2014), Recur-
rent Neural Networks (RNN) with Long Short-
Term Memory (LSTM) cells,2 Separable Con-
volutional Network (sepCNN) (Chollet, 2017),
Doc2Vec-FFNN,3 Transformer (Vaswani et al.,
2017) and Bidirectional Encoder Representations
from Transformers (BERT) (Devlin et al., 2018).
However, none of them performed well on the va-
lidation set. So, we did not submit their results.

4 Results and Discussion

In this section, we present and analyze the results
and performance of our best model. Nothing is
mentioned about the other models with which we
experimented. The results of the model on the test
set are presented in Table 1. The table shows that,

1https://github.com/kpu/kenlm
2https://bit.ly/2K3lNFM
3We train a Doc2Vec model (Le and Mikolov, 2014) and

extract the feature vectors from it for each sentence. We then
feed these vectors into a feed-forward neural network (FF-
NN) to classify the sentence as one of 26 classes.
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Ours
Top

System
Base-
line

Overall
Comparison

F1 66.33 67.32 67.89 4th highest

Pre 66.56 67.73 68.41
5th highest

(tied)
Rec 66.42 67.33 67.75 5th highest

Acccty 66.42 67.33 67.75 5th highest
Acccntr 74.71 75.69 76.44 5th highest
Accrgn 84.54 85.13 85.96 4th highest

Table 1: The results of our model on the test set com-
pared with the other models.

Figure 2: Our model’s confusion matrix for the test set.

despite our models’ simplicity, its results (which
range between 4th highest and 5th highest num-
bers) are surprisingly good. It differs only by a
small number from the top system.

To understand the strengths and weaknesses of
our model, we analyze the confusion matrix for
the test set (shown in Figure 2). The figure shows
that the model suffers while trying to differentia-
te between similar dialects. For example, 39 test
samples from CAI are labeled as ASW and 38
from RAB are labeled as FES. Moreover, among
the hardest to classify is CAI, perhaps, due to its
high similarity with many dialects. After all, CAI
is among the most well-known Arabic and Egyp-
tian dialects due to the cultural influence of Cairo
and Egypt on the Arab world, which means that
other dialects (especially Egyptian ones) might ha-
ve been influenced by it. On the other hand, ALG
and MOS are among the easiest to classify due to
their low similarity with the dialects under consi-
deration.

F1 Pre Rec Acccty
w/ DA 67.51 69.28 67.29 67.29

w/o DA 66.83 68.69 66.6 66.6

Table 2: Effect of DA

In order to show the effect of DA, we perform an
ablation study using the dev set. Table 2 shows the
results of this experiment. The results show that
DA had a slight effect on improving the perfor-
mance of the proposed model. Perhaps, this is due
to the generative nature of the MNB classifier and
its assumption of independence between the featu-
res. In the future, we plan on focusing more on DA
techniques and their application with neural mo-
dels, where the intuition is that such models make
better use of any additional data in order to learn
new things.

5 Conclusion

In this paper, we presented a simple model for
the fine-grained ADI subtask. The model’s per-
formance was good producing results competiti-
ve with the top system for the task. In the future,
we plan on exploring approaches based on better
DA techniques in addition to the concepts of trans-
fer learning and semi-supervised learning (Talafha
and Al-Ayyoub, 2019) in order to obtained better
results.
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Abstract

This paper describes the QC-GO team submis-
sion to the MADAR Shared Task Subtask 1
(travel domain dialect identification) and Sub-
task 2 (Twitter user location identification). In
our participation in both subtasks, we explored
a number of approaches and system combina-
tions to obtain the best performance for both
tasks. These include deep neural nets and
heuristics. Since individual approaches suffer
from various shortcomings, the combination
of different approaches was able to fill some
of these gaps. Our system achieves F1-Scores
of 66.1% and 67.0% on the development sets
for Subtasks 1 and 2 respectively.

1 Introduction

Arabic, similar to other languages have a number
of dialectal varieties. With the emergence of social
media, many of these varieties of Arabic started
having wide representation in the written form.
Twitter, Facebook, and YouTube are among the
leading sources of such data (Zaidan and Callison-
Burch, 2011; Mubarak and Darwish, 2014; Samih
et al., 2017; Samih and Maier, 2016). The wide
spread of dialectal use has increased the richness
and diversity of the language, requiring greater
complexity in dealing with it. Non-standard or-
thography, increased borrowing and coinage of
new terms, and code switching are just a few
among a long list of new challenges researchers
have to deal with.

Studying language varieties in particular is as-
sociated with important applications such as Di-
alect Identification (DID), Machine Translation
(MT), and other text mining tasks. Perform-
ing DID can be achieved using a variety of fea-
tures, such as character n-grams (Darwish, 2014;
Zaidan and Callison-Burch, 2014; Malmasi et al.,
2015), and a myriad of techniques, such as

string kernels (Ionescu and Popescu, 2016) and
DNN (Elaraby and Abdul-Mageed, 2018).

In this paper, two resources created under the
Multi-Arabic Dialect Applications and Resources
(MADAR) project were used as the main re-
sources for the task of Fine-Grained Dialect Iden-
tification (Salameh et al., 2018; Bouamor et al.,
2018). The MADAR Shared Task (Bouamor et al.,
2019) aims to identify dialects at the city/country
level for two datasets . Subtask 1 uses a travel
domain collection of 110k sentences that contain
both Modern Standard Arabic (MSA) sentences
and their translations into 25 dialects representing
major cities in the Arab world. Subtask 2 aims to
classify tweeps (Twitter users) per their location
using 100 of their tweets or less. In this paper, we
describe the approaches that we utilized for dialect
identification, which include the use of deep neu-
ral networks and heuristics.

2 System descriptions

For both SubTask 1 and SubTask 2, we employed
a hybrid system that incorporates different classi-
fiers and components such DNNs and heuristics
to perform sentence level dialectal Arabic identifi-
cation. The classification strategy is built as a cas-
caded voting system that tags each sequence based
on the decisions from two other underlying classi-
fiers.

DNNs: This model uses both Bidirectional Long
Short Term Memory (Bi-LSTM) and Convolu-
tional Neural Network (CNN) architectures to
jointly learn both word-level and character-level
representations, and project them to a softmax out-
put layer for dialectal Arabic identification. At the
word level, we use pre-trained word embeddings
for Dialectal Arabic to initialize our look-up ta-
ble. Words with no pre-trained embeddings are
randomly initialized with uniformly sampled em-
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beddings. To use these embeddings in our model,
we simply replace one hot encoding word rep-
resentations with corresponding 300-dimensional
vectors. Note that in this settings, we trained
our embeddings on the provided training set. We
used two approaches for preparing the embed-
dings, namely gensim word2vec (Řehůřek and So-
jka, 2010) and fastText (Joulin et al., 2016), which
will be referred later as DNN-wv and DNN-ft re-
spectively.
At the character level, to capture word morphol-
ogy and reduce out-of-vocabulary, we used con-
volutions to learn local n-gram features. This ap-
proach has also been especially useful for handling
languages with rich morphology and large charac-
ter sets (Kim et al., 2016). The first layer projects
each character into its corresponding character
embeddings, as with a look-up table, and stacks
them to form a matrix Ck. Convolution opera-
tions with the same padding are applied between
Ck and multiple filter matrices. A max-over-time
pooling operation is then executed to infer a fixed-
dimensional representation of the words. This rep-
resentation is then concatenated with word embed-
dings and fed to a highway network (Srivastava
et al., 2015). The highway network’s output is
applied to a multi-layer Bi-LSTM. At the output
layer, a softmax is applied over the hidden repre-
sentation of the two LSTMs to obtain the proba-
bility distribution over all labels. Training is per-
formed using stochastic gradient descent with mo-
mentum, optimizing the cross-entropy objective
function.

FastText: FastText is a deep learning based li-
brary for efficient learning of word representations
and text classification. It represents words as the
sum of their character n-grams vectors. It has been
shown to be effective for text classification for dif-
ferent tasks (Joulin et al., 2017).

Arabic is a rich Semitic language with complex
morphology where a large number of prefixes and
suffixes can be attached to words. Additionally,
in Arabic dialects, words can be written in many
different ways, because there is no conventional
orthography. The aforementioned reasons suggest
that using words alone as features for classifica-
tion is less optimal. We opted to compliment that
with variable length character n-grams to capture
sub-word information and local contextual infor-
mation. For Subtask 1 and Subtask 2, we tuned
different settings on the development set, and the

System Dev. F-1 Score Test F-1 Score
DNN-ft 59.78% 57.25%
DNN-wv 58.11% 58.72%
FastText 63.09% 60.42%
QC-GO1 64.53% 58.72%
QC-GO2 63.49% 58.45%
QC-GO3 63.29% 57.26%

Table 1: SubTask 1 Results for the submissions for De-
velopment and Test sets.

best results were obtained when using character n-
grams varying from 3 to 6 characters, dimensions
of vectors of 100, a learning rate of 0.1, and 50
training epochs.

Heuristics: For sub-task 2, we constructed a list
of all Arabic speaking countries (e.g. Qå�Ó (Egypt))
along with major cities in these countries (e.g.�èQëA�®Ë @ (Cairo)). Given our list, we counted the
number of times a tweep mentions the names of
countries or any of the cities therein in his/her
tweets. Then, we labeled a tweep with the county
that is mentioned most in the tweets.

Ensemble model: For both sub-tasks, our final
system combines the output from the different sys-
tems using a simple majority vote to perform di-
alectal Arabic predictions. The ensemble model
can either assign varying weights to different sys-
tems depending on their overall performance on
the dev set or it takes the average by setting equal
weights for all systems.

3 Results

In this section we present the results of our system
output for Subtask 1 and Subtask 2 on both the
validation and the test sets.

3.1 SubTask 1

The results, shown in Table 1, contain a combi-
nation of the systems described above with vari-
able weighting. Since the results of individual sys-
tems varied greatly, their combination proved to be
more effective. Combining DNN-ft with DNN-wv
with a weight of 0.66, 0.33 respectively improved
the predictions from 57.25% to 58.45%. Adding
fastText to the mix achieved 60.85%: a boost of
more than 6.2%.
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Figure 1: Confusion matrix for results of SubTask 1 system combination

Figure 2: Confusion matrix for results of SubTask 2 FastText
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Submission Dev. F-1 Score Test F-1 Score
DNN-ft 44.54% 54.50%
DNN-wv 47.04% 43.23%
FastText 57.41% 57.23%
Hueristics 65.22% 67.30%
QC-GO1 63.77% 66.68%
QC-GO3 63.77% 66.34%
QC-GO2 66.60% 63.92%

Table 2: SubTask 2 results for the submissions for De-
velopment and Test sets.

3.2 SubTask 2

As for SubTask 2, the combination of DNN-ft with
DNN-wv was not as effective as either alone. A
decrease of 1.2% was observed. On the other hand
using fastText by itself achieved an F-1 score of
57.23%, which is higher than both DNN-ft and
DNN-wv. Using the heuristics approach yielded
the best performance with 64.09%. Adding a
back-off to use a majority vote per user, when a
tweep did not mention any country or any city
therein, to get the most frequent predicted country
improved result to 67.30%. This system ranked
third among all submitted systems for SubTask 2.

4 Discussion and conclusions

Our analysis of the system output on the validation
set for Subtask 1 shows that the highest accuracy
obtained at the dialect level was for MSA, SFX,
ALX, and MOS, (Figure 1) while the lowest ac-
curacy was for MUS, DAM, and AMM. Local di-
alects within the same country caused the vast ma-
jority of confusion. For example, the most confu-
sion for SFX came from TUN, for BAS came from
BAG, and for JED came from RIY. We also ob-
served a heightened confusion between cities from
neighboring countries, such as ALG and FES, BEI
and ALE, and JER and AMM. This observation
emphasizes the perception that there is a level of
homogeneity between dialects with physical prox-
imity whether at the national and regional levels.
As for the Subtask 2, the challenging ambiguity
between gulf dialects is still a major issue that
caused the accuracy drop; See (Figure 2). Ex-
panding the data for these subdialects would en-
hance their respective accuracy.
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