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Abstract
Recent approaches to empathetic response gen-
eration incorporate emotion causalities to en-
hance comprehension of both the user’s feel-
ings and experiences. However, these ap-
proaches suffer from two critical issues. First,
they only consider causalities between the
user’s emotion and the user’s experiences, and
ignore those between the user’s experiences.
Second, they neglect interdependence among
causalities and reason them independently. To
solve the above problems, we expect to rea-
son all plausible causalities interdependently
and simultaneously, given the user’s emotion,
dialogue history, and future dialogue content.
Then, we infuse these causalities into response
generation for empathetic responses. Specif-
ically, we design a new model, i.e., the Con-
ditional Variational Graph Auto-Encoder (CV-
GAE), for the causality reasoning, and adopt
a multi-source attention mechanism in the de-
coder for the causality infusion. We name the
whole framework as CARE1, abbreviated for
CAusality Reasoning for Empathetic conver-
sation. Experimental results indicate that our
method achieves state-of-the-art performance.

1 Introduction

Empathy is the capability to perceive, understand
and respond to another individual’s feelings, ex-
periences and situation (Paiva et al., 2017; Decety
and Jackson, 2004). It is composed of two aspects
(Davis, 1983), which are (i) affection, i.e., emotion
understanding and appropriate emotional reaction
(Hoffman, 2001), and (ii) cognition, i.e., compre-
hension and reasoning of the other’s experiences
and situation (Preston and De Waal, 2002).

Earlier work on empathetic response generation
merely pays attention to affection (Lin et al., 2019;
Majumder et al., 2020; Li et al., 2020a). Conse-
quently, their models lack understanding of the

∗Corresponding author.
1The implementation of CARE is publicly available at

https://github.com/wangjs9/CARE-master.

User emotion: impressive 
User: My brother got a custom-made bowling-ball, and ever
since then he's been killing the game! It is awesome to see. 
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GEEMIME's response: The ball
sounds pretty fun!

Our response: That is so cool. I bet
he is a great player.

Figure 1: Causality reasoning results of GEEMIME (Kim
et al., 2021) and our proposed method in a real case.
Arrows indicate relations from cause to effect, while
strikeout arrows indicate no causal relations. GEEMIME
detects only direct causes and effects of the user’s emo-
tion independently, while ours extends the causality
scope and reasons causalities interdependently.

user’s experiences, resulting in very weak empathy.
Most recent studies begin to consider both affection
and cognition by incorporating emotion cause and
effect (Wang et al., 2021; Gao et al., 2021; Kim
et al., 2021; Sabour et al., 2022). Despite notable
improvement, their methods suffer from two criti-
cal problems. First, they only consider causalities
between the user’s emotion and the user’s experi-
ences, which are just part of cognition. Causalities
between experiences also contribute to the com-
prehension of experiences. For the case in Fig-
ure 1, although brother does not cause impressive
directly, it is the subject causing what impresses
the user. Therefore, brother should be considered
in the causal information for response generation.
Second, these methods reason causalities indepen-
dently and ignore interdependence among these
causalities, leading to low-fidelity causality detec-
tion. As shown in Figure 1, GEEMIME, one of
these methods, fails to reason killing → impres-
sive, since killing itself ordinarily is the cause or
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effect of a negative emotion. However, this causal-
ity is reasonable when simultaneously considering
other causalities including game → killing, as our
proposed method models. Due to the above two
problems, these previous methods always misun-
derstand feelings and experiences of the user, im-
peding empathetic expression in responses.

To solve these problems, we propose to reason
all plausible causalities, i.e., causalities stated ex-
plicitly in the dialogue history and probably in
the future dialogue, interdependently and simul-
taneously by formulating the reasoning as a condi-
tional graph generation task. Specifically, we aim
to generate a causal graph2 containing all plausible
causalities conditioned on the user’s emotion, dia-
logue history, and predicted future dialogue content.
Inspired by the Variational Graph Auto-Encoder
(VGAE) (Kipf and Welling, 2016), we design a
Conditional Variational Graph Auto-Encoder (CV-
GAE), which uses latent variables for conditional
structure prediction, to accomplish causality rea-
soning. Accordingly, the model is expected to have
a deeper understanding of the user’s feelings and
experiences. In addition, some feelings and experi-
ences, which are not explicitly stated in dialogue
history but contribute to response generation, can
be inferred in this process as shown in Figure 1.

In this paper, we propose a novel empathetic re-
sponse generation model, called CARE (CAusality
Reasoning for Empathetic conversation). CARE
reasons all plausible causalities by CVGAE, and
infuses them into response generation by a multi-
source attention mechanism in the decoder. In ad-
dition, we adopt multi-task learning to integrate
causality reasoning and response generation during
training. The experimental results on the EMPA-
THETICDIALOGUES (Rashkin et al., 2019) bench-
mark suggest that our method improves the model’s
understanding of user’s feelings and experiences,
and CARE achieves state-of-the-art performance
on empathetic response generation.

Our main contributions are three-fold:

1). We propose to reason all plausible causalities in
empathetic conversation interdependently and
simultaneously for a deep understanding of the
user’s feelings and experiences.

2). We turn causality reasoning into a conditional
graph generation task, and introduce CVGAE,

2Each node is a word to represent the user’s feelings and
experiences, and each edge indicates a causal relationship
between two nodes.

which uses latent variables for conditional
structure prediction, to achieve the reasoning.

3). We design CARE, which augments empathetic
response generation with causality reasoning,
and prove its outstanding performance on the
EMPATHETICDIALOGUES benchmark.

2 Related Work

Since empathy is a critical character for social chat-
ting systems (Sharma et al., 2020; Pérez-Rosas
et al., 2017), many studies have contributed to em-
pathetic response generation. Earlier work mainly
focuses on the affective aspect of empathy. MoEL
(Lin et al., 2019) adopts a mixture of experts archi-
tecture to combine outputs from different decoders,
each of which represents one emotion. Based on
the idea of emotion mixture, MIME (Majumder
et al., 2020) takes emotion polarity (positive or
negative) into account. Moreover, it uses emotion
stochastic sampling and emotion mimicry to gener-
ate empathetic responses. Li et al. (2020a) propose
to capture nuances of emotion at the token-level
for decoding. Moreover, an adversarial learning
framework is leveraged to involve user feedback.

Having realized that ignorance of cognition im-
pedes empathy in conversation, some recent meth-
ods involve both affection and cognition by incor-
porating emotion causes and effects. Wang et al.
(2021) incorporate emotion causes into empathetic
response generation by multi-hop reasoning from
emotion causes to emotion states. Gao et al. (2021)
identify emotion causes from dialogue context, and
use gates at the decoder to control the involvement
of these emotion causes in the response generation.
Kim et al. (2021) emphasize emotion causes in dia-
logue context by a rational speech act framework.
These three methods identify emotion causes via a
classifier, which detects whether there is a causal
relationship between a conversation fragment and
an emotion statement or word each time. CEM
(Sabour et al., 2022) uses COMET, an if-then com-
monsense generator, to generate causes and effects
of user experiences, and refines dialogue context
with them for response generation. However, all
these methods obtain causalities independently.

3 Preliminary

3.1 Transformer-based Response Generation

The response generation model is built upon the
vanilla transformers (Vaswani et al., 2017), which
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generates the response R given dialogue context
C as input in an encoder-decoder manner. The
encoder encodes the dialogue context and generates
the context hidden state. That is:

Eout = TRSenc(C), (1)

Eout ∈ R|C|×d, where d is the hidden size. The
decoder takes the right shifted response as input
and generates the response. Typically, the whole
decoder includes Ldec decoder layers, each con-
sisting of three sub-layers. The first one, i.e., the
self-attention sub-layer, computes a representation
of the input sequence:

Ĥ = MultiHead(Hin, Hin, Hin),

H
(self)
out = LayerNorm(Ĥ +Hin),

(2)

where Hin is the embedding right shifted response
for the first decoder layer, and is output of the (l −
1)-th decoder layer for the l-th decoder layer. Then
the decoder attends to the dialogue context by a
cross-attention sub-layer:

Hin = H
(self)
out ,

Ĥ = MultiHead(Hin, Eout, Eout),

H
(cross)
out = LayerNorm(Ĥ +Hin).

(3)

The output of the l-th decoder layer is obtained by
the feed-forward sub-layer:

Hin = H
(cross)
out ,

H
(ffn)
out = LayerNorm(FFN(Hin) +Hin).

(4)

Finally, we apply linear transformation and a soft-
max operation on the output of the Ldec decoder
layer to predict token probability distribution at
each token position t:

Pt = softmax(HL
out,tWo + bo), (5)

where HL
out,t is the final output for the t-th token;

Wo ∈ Rd×dvocab and bo ∈ Rdvocab are parameters,
and dvocab is the vocabulary size.

3.2 Variational Graph Auto-Encoder
Our proposed causality reasoning module, i.e., CV-
GAE, is based on VGAE (Kipf and Welling, 2016).
Given an undirected graph G = (V, E) with its ad-
jacency matrix A, VGAE generates graph latent
variables by an inference model, and reconstructs
the adjacency matrix by a generative model.

Inference Model The inference model encodes
G, and generates graph latent variables Z =
{z1, . . . , z|V|} by a recognition net q(Z|V,A).
Each graph latent variable zi is obtained by:

q(zi|V,A) = N (zi|µi, σ
2
i ),

with µ = GCNLayerµ(HV ,A),

and logσ = GCNLayerσ(HV ,A).

(6)

Here, N is a sampling function, which follows
the Gaussian distribution. µ is the matrix of the
mean vectors µi; logσ is the matrix of log-variance
vectors logσi. In particular, HV is a shared hidden
state obtained by:

HV = GCNLayerh(V,A). (7)

Generative Model The generative model recon-
structs the adjacency matrix by an inner product
between latent variables:

p(Â|Z) =
|V|∏

i=1

|V|∏

j=1

p(Âij |zi, zj),

with p(Âij = 1|zizj) = sigmoid(z⊤i zj).

(8)

Inference Stage At the inference stage, adja-
cency matrix A is unavailable. Therefore, we re-
place q(Z|V,A) with a prior net p(Z), which is
parameterized by a Gaussian distribution: p(zi) =
N (zi|0, 1), to infer Z. Then, we use the same gen-
erative model to generate the adjacency matrix.

Objective VGAE is optimized by maximizing:

L =Eq(Z|V,A)[logp(Â|Z)]
− KL[q(Z|V,A)||p(Z)],

(9)

where KL[q(·)|p(·)] is the Kullback-Leibler diver-
gence between q(·) and p(·).

4 Method

Figure 2 presents an overview structure of our pro-
posed model CARE. It first reasons all plausible
causalities interdependently by generating a causal
graph. Specifically, we use CVGAE to generate
this graph under the condition of the user’s emotion,
dialogue history, and predicted future dialogue con-
tent. Notably, CVGAE works differently at the
training and inference stages: it reconstructs a pos-
terior causal graph (by R-NetG) with this posterior
causal graph as input during training, while gener-
ates a posterior causal graph (by P-NetG) with a
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previous user utterances:  
I blame myself for smoking in
the house today when it was
raining outside.

the user emotion label: guilty

the next user utterance: 
It is a horrible addiction I keep
putting off correcting. I plan to
quit from tomorrow.

Figure 2: The overview of our proposed framework. The solid lines represent modules or data used for both posterior
and prior computation, while the dot lines represent modules or data used only for posterior computation.

prior causal graph as input during inference. The
prior causal graph contains causalities explicitly
mentioned in previous user utterances, while the
posterior one contains additional causalities in the
next user utterance. Then, CARE infuses causal-
ities in the reasoned causal graph into response
generation by multi-source attention at the decoder.

4.1 Graph Construction

As mentioned, we need a prior causal graph
Gprior = (V, Eprior) and a posterior causal graph
Gpost = (V, Epost), for causality reasoning at infer-
ence and training stage, respectively. We construct
them with the assistance of a causal knowledge
graph, i.e., Cause Effect Graph (CEG) (Li et al.,
2020b). These two graphs share the same node
set, which theoretically contains all nodes in CEG.
However, for effectiveness, we only consider those
among a certain set of nodes V , which contains
emotion label word, words appearing in previous
user utterances, and one-hop neighbors of above
two kinds of words. The edge sets of these two
graphs are different. Eprior contains causal relation-
ships in previous user utterances, while Epost also
contains those in the next utterances. In specific,
we collect Eprior and Epost according to following
rules. For any couple nodes in V having a relation-
ship in CEG, if both nodes are covered by the user
emotion label word and words in previous user ut-
terances, we add the relationship into Eprior; if both
nodes are covered by the user emotion label word
and words in previous and next user utterances, we
add the relationship into Epost.

4.2 Conditional Variational Graph
Auto-Encoder (CVGAE)

We design a novel structure CVGAE to generate
a (posterior) causal graph for causality reasoning.
As an extension of VGAE, CVGAE works in a
similar manner (§ 3.2). In particular, it generates
graphs latent variables for graph reconstruction un-
der some conditions, including a context condition,
an emotion condition, and a context latent variable.

Context and Emotion Conditions The context
condition is expected to provide information of dia-
logue context C, thus it is derived from the encoder
output. Following (Wang and Wan, 2019), we use
multi-head attention to perform it. That is:

cctx = MultiHead(vrand, Eout, Eout), (10)

where Eout ∈ R|C|×d is the encoder output com-
puted by TRSenc(C) in Equation (1); vrand ∈ R1×d

is a randomly initialized vector and is regarded as
a single query for multi-head attention.

The emotion condition is expected to provide
information of the user emotion e. Accordingly, we
define the emotion embedding Eemo ∈ Rd which
converts an emotion label into embeddings. The
emotion condition is formulated as:

cemo = Eemo(e). (11)

Context Latent Variable We use a context latent
variable zc to provide information from the future
dialogue. This variable is generated by a contextual
recognition net (R-NetC in Figure 2) with dialogue
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context C and the golden response R as input:

qc(z
c|C,R) = N (zc|µc, σc2). (12)

Here µc = MLPµ(clant) is the mean vector and
logσc = MLPσ(clant) is the log-variance vector,
where clant is accessed similar to Equation (10):

Erep = TRSenc(C ⊕R), (13)

clant = MultiHead(vrand, Erep, Erep). (14)

Graph Latent Variables We generate graph la-
tent variables Zg by a recognition net (R-NetG in
Figure 2): qg(Zg|V,Apost, ccond), where Apost is
the adjacency matrix of Gpost. This process is simi-
lar to that of VGAE, i.e., Equations (6) and (7).

q(zgi |V,Apost, ccond) = N (zgi |µ
g
i , σ

g2
i ),

with µg = GCNLayerµ(HV ,Apost),

and logσg = GCNLayerσ(HV ,Apost).

(15)

The shared hidden state HV is generated with at-
tention to the concatenation of cctx, cemo, and zc:

ccond = cctx ⊕ cemo ⊕ zc,

ĤV = GCNLayerh(V,Apost),

HV = MultiHead(ĤV , ccond, ccond).

(16)

Causal Relation Generation With graph latent
variables Zg, we reconstruct the posterior causal
graph, i.e., the matrix adjacency Â by Equation (8).
Then we select top-k relationships from the recon-
structed graph according to their probability, de-
noted as R = (r1, . . . , rk), where ri is the sum of
the head and tail node embeddings.

Inference Stage During inference, R (the golden
response) and Apost are unavailable, thus we use a
prior net pg(Zg ′|V,Aprior, c

′
cond) (P-NetG in Fig-

ure 2) to approach qg(Z
g), i.e., Equations (15)

and (16). Aprior is Gprior’s adjacency matrix, and
c′cond = cctx ⊕ cemo ⊕ zc′, where zc′ is obtained by
a contextual prior net (P-NetC in Figure 2):

pc(z
c′|C) = N (zc′|µc′, σc′2), (17)

with µc′ = MLPµ′(cctx), logσc′ = MLPσ′(cctx).

4.3 Graph-Infused Response Generation
To infuse the reasoned R into generation, we en-
able the decoder to attend to both dialogue con-
text and the causal graph (Multi-Source Decoder
in Figure 2). In particular, we slightly modify the

cross-attention sub-layer of the original decoder,
i.e., Equation (3), with our multi-source attention
mechanism. Therefore, the output after this modi-
fied sub-layer is computed by:

ĤC = MultiHead(H(cross)
in , Eout, Eout),

ĤR = MultiHead(H(cross)
in ,R,R),

Ĥ = (ĤC ⊕ ĤR)Wmulti,

H
(cross)
out = LayerNorm(Ĥ +H

(cross)
in ),

(18)

where Eout ∈ R|C|×d is the encoder output,
Wmulti ∈ R2d×d is a group of linear transforma-
tion parameters, and Hin is the output of the self-
attention sub-layer of the decoder computed by
Equation (2). Notably, the reset of the original de-
coder, i.e, Equations (2), (4) and (5), remains the
same. In this way, we generate the final response.

4.4 Training Objective
We optimize the model with multi-task learning
to further integrate the causality reasoning and the
graph-infused response generation. For the causal-
ity reasoning, we consider graph reconstruction ac-
curacy and similarity between posterior and prior
distribution. Similar to Equation (9), the corre-
sponding loss can be calculated by:

Lr =Eqg(Zg |V,Apost,ccond)[logp(Â|Zg)]

− KL[qg(Zg)||pg(Zg ′)]

− KL[qc(zc)||pc(zc′)].

(19)

The response generation loss is calculated by:

Lg =

|R|∏

t=1

Pt, (20)

where Pt is obtained by Equation (5). Finally, we
train CARE by maximizing (Lr + Lg).

5 Experiments

5.1 Dataset
We conduct our experiments on EMPATHETICDI-
ALOGUES3 (Rashkin et al., 2019). It contains 25k
crowdsourced one-on-one conversations, each of
which is developed based on a particular emotion.
There are 32 emotion categories distributed in a
balanced way. Following its original division, we
adopt approximately 80%, 10%, and 10% of the
dataset for training, validation, and testing.

3https://github.com/facebookresearch/
EmpatheticDialogues
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5.2 Comparison Models
We select seven models for comparison according
to some special considerations. Three models that
merely consider the affective aspect of the empathy
are selected. They are:

MoEL 4 (Lin et al., 2019): This model leverages
a mixture of expert architecture to combine outputs
from several decoders, each of which pays attention
to a unique emotion type.

MIME 5 (Majumder et al., 2020): Based on
MoEL’s idea of emotion mixture, this model takes
emotion polarity into account. Moreover, it consid-
ers emotion mimicry during generation.

EmpDG 6 (Li et al., 2020a): This model detects
nuanced emotion at word-level as a part of decoder
inputs, and uses adversarial learning framework to
involve user’s feedback.

In addition, four models that considers both the
affection and cognition of empathy are selected:

KEMP 7 (Li et al., 2022) This model leverages
external commonsense knowledge and emotional
lexicon to understand and express emotion for em-
pathetic response generation.

CEM 8 (Sabour et al., 2022) This model gen-
erates causes and effects of the user’s latest men-
tioned experiences, and uses them to refine the
context encoding for a better understanding of the
user’s situations and feelings.

RecECsoft
9 (Gao et al., 2021): This model pays

more attention to emotion causes, detected from
dialogue context, at word-level by a soft gated at-
tention mechanism in the decoder.

GEEMIME
10 (Kim et al., 2021): This model uses

a rational speech act framework to update the re-
sponse generated by MIME to obtain the final re-
sponse that focuses more on the emotion cause
words in dialogue context.

All above models, as well as ours, are built upon
transformer backbone for a fair comparison.

4https://github.com/HLTCHKUST/MoEL
5https://github.com/declare-lab/MIME
6https://github.com/qtli/EmpDG
7https://github.com/qtli/KEMP
8https://github.com/Sahandfer/CEM
9https://github.com/A-Rain/

EmpDialogue_RecEC
10https://github.com/skywalker023/

focused-empathy

5.3 Implementation Details

Our Model: We implemented our model using
PyTorch11, and trained it on a GPU of Nvidia
GeForce RTX 3090. The token embeddings are
initialized with 300-dimensional pre-trained Glove
vectors (Pennington et al., 2014), and shared be-
tween between the encoder, the CVGAE model,
and the decoder. The hidden size d is set as 300.
The number of node number |V| is 800, and the
number of selected relationships k is 512 (0.16%).
Both the encoder layer number and the decoder
layer number are 2. The batch size is set as 16.
When training the model, we use Adam optimizer
(Kingma and Ba, 2015) and vary the learning rate
following Vaswani et al. (2017).

Comparison Models: We implement GEEMIME
under its official instructions, since only testing
codes and instructions are provided by the authors.
For the rest of the comparison models, we utilize
their official codes released on GitHub.

5.4 Automatic Evaluation

Metrics: Three kinds of metrics are applied for
automatic evaluation: (1) Perplexity (PPL), which
measures the model’s confidence in the response
generation. (2) BLEU (Papineni et al., 2002),
which estimates the matching between n-grams
of the generated response and those of the golden
response. We adopt BLEU-3 and BLEU-4. (3)
BERTScore (Zhang et al., 2020), which computes
the similarity for each token in the generated re-
sponse with that in the golden response. We use
its matching precision, recall and F1 score (PBERT,
RBERT, and FBERT). For perplexity, a lower score
indicates a better performance; while, for the rest
metrics, higher scores indicate better performances.

Annotation Statistics: Table 1 presents the au-
tomatic evaluation results, and the highest score in
terms of each metric is in bold. For each model, we
repeat five runs with different seeds, and compute
the average values and standard deviations. In ad-
dition, values that are statistically significant with
p < 0.05 are marked with ∗.

Results: According to Table 1, our proposed
model CARE outperforms the other models in
terms of all metrics. The lowest perplexity score
suggests that our proposed architecture is more con-
fident in its generated responses than other models.

11https://pytorch.org/
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Model PPL BLEU-3 BLEU-4 PBERT RBERT FBERT

Affection
MoEL 36.87±0.97 4.53±0.53 2.80±0.32 .499±.008 .467±.007 .480±.006

MIME 37.88±0.49 4.48±0.15 2.71±0.09 .490±.004 .466±.002 .475±.002

EmpDG 55.64±3.78 3.64±0.38 1.99±0.22 .475±.007 .458±.008 .465±.004

Affection+Cognition

KEMP 36.59±0.45 4.13±0.29 2.43±0.15 .484±.005 .460±.004 .470±.005

CEM 36.70±0.44 3.55±0.42 2.24±0.24 .498±.001 .461±.006 .477±.004

RecECsoft 149.3±15.9 3.02±0.15 1.62±0.12 .491±.004 .461±.002 .473±.002

GEEMIME - 2.76±0.18 1.50±0.14 .472±.002 .443±.002 .456±.001

CARE 32.84*±0.23 4.88*±0.13 2.95*±0.06 .501±.004 .475*±.002 .486*±.003

Table 1: Automatic evaluation results in terms of PPL, BLEU and BERTScore. For each method, we repeat five runs
with different seeds. We display the average values of the results along with the standard deviations. The values
marked with ∗ mean the results are statistically significant with p < 0.05. The highest score in terms of each metric
is in bold. The full automatic evaluation results can be found in Appendix A.1.

Model Emp. Rel. Flu.

Affection
MoEL 2.73 2.63 4.82
MIME 2.30 2.24 4.88
EmpDG 2.31 2.27 4.52

Affection
+Cognition

KEMP 2.26 2.18 4.81
CEM 2.77 2.70 4.93
RecECsoft 2.16 2.21 4.74
GEEMIME 1.75 1.75 4.78
CARE 2.83 2.79 4.86

Table 2: Results of human ratings in terms of Empathy,
Relevance and Fluenct on a 5−point likert scale, where
5 is the best. The highest scores are in bold. The fleiss’s
kappa is 0.41 indicating a moderate level of agreement.

The table does not present the perplexity score of
GEEMIME. This is because its generated token prob-
ability distribution depends on the mediate results
of MIME and its emotion cause detector, and there-
fore PPL is less relevant to its core structure, i.e.,
rational speech act framework. Highest BLEU and
BERTScore scores indicate that our approach can
generate more human-like responses by incorporat-
ing causality reasoning. Especially, all the above
advantages are significant and stable, evident in
high degrees of statistical significance and small
standard deviations, respectively.

5.5 Human Ratings

Metrics: Although the automatic evaluation has
provided useful information about models’ per-
formances, it cannot capture some features, such
as empathy expression and contextual relevance.
Therefore, following previous practices, we ran-
domly sample 128 conversations, and correspond-
ing responses generated by different models for
human ratings. We ask three human annotators to
score each generated response from the following
three aspects: (1) Empathy (Emp.), which mea-
sures whether the response understands user feel-
ings and experiences. (2) Relevance (Rel.), which

measures whether the response is on-topic and ap-
propriate given the previous conversation. (3) Flu-
ency (Flu.), which measures whether the response
is fluent and its language is accurate. Each is on a
5−point likert scale, where 5 is the best. Then we
compute the average value for each metric.

Annotation Statistics: Table 2 displays the hu-
man rating results, and the highest scores are in
bold. We calculate Fleiss’s kappa to measure inter-
evaluator agreement of the human ratings. The
result is 0.41, indicating a moderate level of agree-
ment among three annotators.

Results: From these results, we can draw two
conclusions. First, compared with most previous
models, CARE achieves the highest scores in terms
of Emp. and Rel., and obtains relatively high Flu..
It indicates that our causality reasoning in an in-
terdependent and simultaneous way indeed bene-
fits empathetic expression and content relevance
as we expect. Thanks to the reasoned causalities,
CARE improves the understanding of user feel-
ings and experiences. In addition, the reasoning
process enables the model to identify some rea-
sonable user’s feelings and experiences that are
not explicitly mentioned in the previous conversa-
tion. With such information, the model can show
strong empathy in response, which is manifest in
the case study. Second, models considering both
affection and cognition (bottom half of the table)
do not always outperform models merely consider-
ing affection (upper half of the table). This is also
evident in Table 3, i.e., the automatic evaluation
results. Although causality reasoning intuitively
contributes to the understanding of user’s feelings
and experiences, inconsiderate reasoning can lead
to one-sided understanding and low empathy.
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Model Variant PPL BLEU-3/4 P/R/FBERT

w/o reasoning 33.34 4.74/2.83 .493/.473/.481
w/o condition 33.23 4.74/2.83 .501/.473/.485
Full model 32.84 4.88/2.95 .501/.475/.486

Table 3: Automatic evaluation results of the ablation
study for CARE. The metrics are the same as those in
Table 1. Similarly, we repeat five runs with different
seeds, and display the average values. Its full automatic
evaluation results can be found in Appendix A.1.

Model Variant Emp. Rel. Flu.
w/o reasoning 2.38 2.23 4.86
w/o condition 2.60 2.47 4.87
Full model 2.83 2.79 4.86

Table 4: Human rating results of the ablation study for
CARE. The metrics are the same as those in Table 2.

5.6 Model Analysis

In § 5.4 and § 5.5, CARE has shown its superior
performance. For deeper analyses of our model,
we investigate its inner structures and functions.

Ablation Study We propose two variant mod-
els to verify the contribution of reasoning and the
reasoning condition in CARE:

• w/o reasoning: We remove the CVGAE struc-
ture, and directly incorporate the prior causal
graph into response generation.

• w/o condition: We replace CVGAE with
VGAE to eliminate the effect of the reasoning
condition.

Results are shown in Table 3 and Table 4, respec-
tively. From Table 3, both variants achieve rel-
atively high automatic evaluation metric scores.
Moreover, the variant models surpass previous com-
parison models in Table 1. It indicates that causal-
ities can help models respond more like humans,
given that both variants consider additional causali-
ties between the user’s experiences. However, both
variants’ performances in terms of human evalua-
tion are relatively low. Accordingly, we can draw
the following three conclusions:

• Not all information in the golden response
contributes to empathy. Although two vari-
ants have high automatic evaluation scores,
they fail to achieve equally high human rat-
ings. Such a phenomenon can also be clearly
observed when comparing the performance of
EmpDG and KMEP.
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Figure 3: Model performs (BLEU-4) when we gradually
increase the number of selected relationships k. The
solid line and dot line represent BLEU-4 and two period
moving average, respectively. For each k, we repeat five
runs and compute the average BLEU-4.

• Generated responses considering causalities
not mentioned in dialogue history are more
empathetic and relevant, which is supported
theoretically by Preston and De Waal (2002).
It is reflected by higher Emp. and Rel. of
w/o condition than w/o reasoning, given that
w/o condition reasons plausible causalities
not mentioned in dialogue history compared
with w/o reasoning.

• Emotional and contextual information guides
the model to reason causalities contributing
to empathetic expression, given that the full
model has higher Empathy and Relevant than
w/o condition.

Analysis of #SelectedRelationships k As shown
in Figure 3, the performance of CARE with regard
to BLEU-4 first rises and then drops as we increase
the number of relationships infused in response
generation k. It indicates that sufficient causali-
ties benefit empathetic expression, but excess ones
could involve noise and hurt empathy.

5.7 Case Study

Table 5 presents a case along with responses gener-
ated by our models and comparison models. From
the table, CARE can respond more empathically
to the user when compared with other models. No-
tably, CARE is able to show deep and considerate
comprehension of the user’s feelings and experi-
ences in the response. For instance, it understands
that the “apprehensive” emotion comes from lack
of confidence and the user has already proposed a
quite effective solution (great idea).
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User Emotion Type: apprehensive
User: I had some hesitations when I was at the gym today,
thought I wouldn’t be able to handle the weights.
Bot: How’d it turn out? Congrats on deciding to lead a
healthier life, by the way.
User: I decided to focus on the music that was blasting,
just tried switching up what I play in the gym, it sounds
like vikings are bringing me into battle
MoEL That is great. I am sure you will do great!
MIME I am sure you will be fine.

EmpDG That is a great time to have! You should always
feel the same way.

KEMP I am glad you are going through that.
CEM I am sure it will be fun!
RecECsoft That is a lot of money. How long did you do?
GEE I hate that. I hope you are okay.

CARE That is a good idea. I hope you have a lot of
confidence.

Table 5: Responses generated by our method and previ-
ous empathetic response generation models. The con-
tent showing comprehension of feelings and experiences
is highlighted in italic.

6 Conclusion

In this paper, we propose to reason all plausible
causalities in conversation interdependently and si-
multaneously for a deep understanding of the user’s
feelings and experiences in empathetic dialogue.
Further, we turn the causality reasoning problem
into a conditional graph generation task. Corre-
spondingly, we design CVGAE, which uses latent
variables for conditional structure prediction, and
predicted future conversation content, to implement
the reasoning. The reasoned causalities are infused
into response generation for the final empathetic
responses by a multi-source attention mechanism
in the decoder. This whole structure is named as
CARE (CAusality Reasoning for Empathetic con-
versation). Experimental results show that CARE
outperforms prior methods in terms of both auto-
matic and manual evaluations.

Limitations

In this paper, we improve the model’s empathy
from the aspect of affection and cognition, espe-
cially the latter one. For this purpose, we incor-
porate reasoned causal knowledge into response
generation. However, other knowledge, such as
sentiment knowledge and commonsense knowl-
edge, can also contribute to affection and cognition.
KEMP (Li et al., 2022), one of the comparison
models in our experiment, has explored incorporat-
ing commonsense knowledge and sentiment knowl-

edge into response generation. However, according
to its model design, its use of knowledge is uni-
versal in chitchat conversations and is not aimed
at empathetic expression. Therefore, it has low
Emp. score as shown in Table 2. Therefore, it is
worth exploring the connection between empathy
and different types of knowledge. Besides, how to
fuse different knowledge in one model for more
empathetic responses is also a valuable problem.

Ethical Considerations

The widely-used open-sourced EMPATHETICDIA-
LOGUES (Rashkin et al., 2019) benchmark used
in our experiment is collected through interaction
with Amazon Mechanical Turk (MTurk). In this
process, user privacy is protected, and no personal
information is contained in the dataset. Therefore,
we believe that our research work meets the ethics
of EMNLP.
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A Appendix

A.1 Automatic Evaluation
For our automatic evaluation, we modify codes12

for dialogue evaluations provided by Csáky et al.
(2019). In addition, Table 6 shows the full auto-
matic evaluation results.

A.2 Human Evaluation
We implemented a system, as shown in Figure 4,
for fair human ratings. For each case, we provide
the previous dialogue turns, and the user emotion to
the annotator. In addition, all responses generated
by different models are displayed in a random order,
thus the annotator cannot distinguish the source of
each single response.

Since human ratings are subjective, we provide
some statements and classic examples as the refer-
ence for human evaluation.

• Empathy. We prefer responses with the fol-
lowing features: (1). Emotions, e.g., care,
concern, and encourage. (2). Content, which
shows interests in what the user cares. For
instance, we prefer “Did you call the police?”
instead of “What movie?” when the user says

“It was stolen after the movie.”.

• Relevance. We prefer responses, based on
which we can infer the topics in the previous
dialogue content.

• Fluency. We reduce the marks if the following
appears in a response: (1). Inappropriate (ob-
vious features due to bad training) repetition,
such as “I am sorry. I am sorry. I am sorry. I
am”. (2). Grammar mistakes, e.g., misuse of
personal pronouns and tense. (3). Conflicting
contents, such as “I can understand you. I
cannot understand you.”.

Moreover, we encourage annotators to compare
different responses in mind before grading each
response.

12https://github.com/ricsinaruto/
dialog-eval
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Model PPL BLEU-3 BLEU-4 PBERT RBERT FBERT

MoEL 36.42 4.74 2.89 .489 .469 .477
MoEL 37.43 5.23 3.23 .503 .476 .487
MoEL 37.94 4.60 2.82 .511 .470 .487
MoEL 37.12 3.61 2.25 .490 .456 .470
MoEL 35.45 4.48 2.83 .486 .469 .475
MIME 37.46 4.43 2.62 .491 .464 .475
MIME 38.36 4.21 2.60 .485 .464 .472
MIME 37.74 4.63 2.84 .496 .465 .478
MIME 37.40 4.60 2.79 .490 .469 .477
MIME 38.43 4.53 2.70 .486 .469 .475
EmpDG 59.01 3.42 1.76 .477 .465 .469
EmpDG 59.40 3.70 2.05 .463 .459 .459
EmpDG 56.41 3.03 1.72 .483 .444 .461
EmpDG 51.86 3.92 2.19 .476 .460 .466
EmpDG 51.54 4.13 2.25 .478 .464 .469
KEMP 36.87 4.44 2.61 .477 .465 .469
KEMP 37.24 3.86 2.27 .463 .459 .459
KEMP 36.26 3.70 2.22 .483 .444 .461
KEMP 36.17 4.28 2.50 .476 .460 .466
KEMP 36.42 4.36 2.54 .478 .464 .469
CEM 36.47 3.99 2.47 .498 .468 .480
CEM 37.12 2.93 1.87 .497 .451 .470
CEM 36.61 4.03 2.54 .500 .468 .482
CEM 36.13 3.40 2.18 .500 .460 .477
CEM 37.15 3.39 2.15 .497 .460 .475
RecECsoft 139.78 3.25 1.80 .493 .463 .475
RecECsoft 136.33 3.08 1.70 .494 .461 .475
RecECsoft 173.85 3.03 1.62 .484 .462 .470
RecECsoft 157.11 2.88 1.55 .492 .458 .472
RecECsoft 139.60 2.85 1.46 .491 .462 .475
GEEMIME - 2.85 1.44 .473 .445 .457
GEEMIME - 2.83 1.61 .475 .443 .457
GEEMIME - 2.86 1.62 .474 .442 .456
GEEMIME - 2.40 1.26 .470 .441 .453
GEEMIME - 2.88 1.58 .470 .445 .455
CAER 32.64 5.03 2.99 .507 .477 .490
CAER 32.70 5.03 3.05 .497 .478 .485
CAER 33.16 4.87 2.95 .503 .476 .487
CAER 32.99 4.77 2.92 .495 .473 .482
CAER 32.69 4.70 2.86 .503 .473 .486
w/o reasoning 33.47 4.57 2.81 .493 .469 .479
w/o reasoning 33.39 4.80 2.82 .484 .472 .476
w/o reasoning 33.36 4.96 2.95 .490 .476 .481
w/o reasoning 33.18 4.70 2.79 .500 .474 .485
w/o reasoning 33.28 4.68 2.80 .496 .474 .483
w/o condition 32.56 4.70 2.85 .497 .475 .484
w/o condition 33.42 4.71 2.86 .496 .470 .480
w/o condition 32.86 4.97 2.96 .508 .475 .489
w/o condition 33.39 4.67 2.76 .502 .474 .486
w/o condition 33.94 4.65 2.75 .503 .470 .484

Table 6: All automatic results from different methods with seed 0, 42, 1024, 1234 and 4096.

740



Figure 4: This is the user interface of the system for human ratings.
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