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Abstract
Discovering new slots is critical to the success
of dialogue systems. Most existing methods
rely on automatic slot induction in an unsu-
pervised fashion or perform domain adaptation
across zero or few-shot scenarios. They have
difficulties in providing high-quality supervised
signals to learn clustering-friendly features, and
are limited in effectively transferring the prior
knowledge from known slots to new slots. In
this work, we propose a Semi-supervised Incre-
mental Clustering method (SIC), to discover
new slots with the aid of existing linguistic an-
notation models and limited known slot data.
Specifically, we harvest slot value candidates
with NLP model cues and innovatively formu-
late the slot discovery task under an incremen-
tal clustering framework. The model gradually
calibrates slot representations under the super-
vision of generated pseudo-labels, and automat-
ically learns to terminate when no more salient
slot remains. Our thorough evaluation on five
public datasets demonstrates that the proposed
method significantly outperforms state-of-the-
art models.

1 Introduction

Slot filling identifies contiguous word spans in an
utterance based on slots to represent the meaning
of user (Young et al., 2013; Zhang et al., 2019b). It
is essential for the performance of dialogue sys-
tems (Fei et al., 2022a; Ye et al., 2022a; Liao
et al., 2021b). Traditional supervised methods
have shown remarkable performance in this task
(Hakkani-Tür et al., 2016; Kurata et al., 2016; Goo
et al., 2018; Qin et al., 2020). However, such
approaches can only recognize pre-defined entity
types from a limited slot set and require a signifi-
cant amount of labeled training data, which is la-
borious and expensive to obtain. In practical set-
tings, new unseen slots (as shown in Figure 1) may
emerge after the deployment of the dialogue sys-
tem, rendering these supervised models ineffective.

Figure 1: An illustration of the new slot discovery task.
Those in bold font are extracted value candidates.

Hence, there are works trying to do automatic
slot induction without human labels. Such methods
often work in two steps: extract slot candidates and
value first, then obtain slots via ranking. For exam-
ple, Chen et al. (2014) combines semantic frame
parsing with word embeddings for slot induction.
Chen et al. (2015) further construct lexical knowl-
edge graphs and perform a random walk to get
slots. Hudeček et al. (2021) extend the ranking into
an iterative process and build a slot tagger based
on obtained slots for higher recall. Nonetheless,
the ranking process needs deliberate human inter-
vention and largely affects the final results (Zeng
et al., 2021). Moreover, instead of entirely without
labeled data, we often have access to a small or
partial amount of that in real practice.

Therefore, another line of efforts resort to zero-
shot (or few-shot) cross-domain adaptation, whose
goal is to identify unseen slots in the target domain
by leveraging evidence from labeled data in the
source domain. These methods can be organized
into two types. In one type, slot description or
even example values are directly interacted with
user utterances to conduct one-stage slot filling in-
dividually for each slot (Bapna et al., 2017; Shah
et al., 2019; Lee and Jha, 2019; Hou et al., 2020;
Oguz and Vu, 2021). In the other, the slot filling
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task is decomposed into two or more stages (Liu
et al., 2020; He et al., 2020; Siddique et al., 2021).
First, they identify all slot values from utterances by
the coarse-grained binary sequence labeling. Then
these values are mapped to the representations of
different slots in semantic space for slot assign-
ment.

However, there are several drawbacks in these
methods. Firstly, existing domain adaption efforts
pay inadequate attention to slot value identifica-
tion. They either ignore this process completely
as in (Bapna et al., 2017) or oversimplify it as a
coarse-grained sequence tagging (Liu et al., 2020).
As evidenced in Hudeček et al. (2021), identify-
ing proper slot values is of critical importance for
discovering new slots. Secondly, existing methods
tend to assume that new slot names, descriptions or
even value examples are available, which is hardly
true for slot discovery. Overemphasizing these aux-
iliary description information inhibits the model
to learn from existing known slots. Also, they fail
to provide proper guidance for the model to learn
clustering-friendly features.

In this work, we thus propose a Semi-supervised
Incremental Clustering method (SIC) to discover
new slots. Instead of sequence labeling or span
extraction, we design an iterative clustering and
updating framework to gradually solicit evidence
from both labeled and unlabeled data. As illus-
trated from Figure 2, relying on slot value candi-
dates extracted via linguistic annotation models,
we firstly pre-train a feature extractor with the lim-
ited labeled data under the supervision of the soft-
max loss. Then, we iteratively perform clustering
and feature extractor training. The former provides
high-quality self-supervised signals to guide the lat-
ter training stage, while the latter yields clustering-
friendly features for the former. For each of the
clustering stage, we estimate the cluster numbers
and gradually expand for stable slot discovery. We
evaluate the proposed model on five public datasets.
It achieves new state-of-the-art performance across
these datasets in various evaluation metrics.

The contributions are summarized as follows:

• We design a semi-supervised learning scheme
for new slot discovery, which does not require
any prior knowledge about new slots.

• We perform clustering and feature extractor
training iteratively to harvest high-quality self-
supervised signals and learn discriminative
features for grouping values to slots.

• Experiments show that the proposed SIC
model significantly outperforms state-of-the-
art models across several public datasets.

2 Related Work

Our work is closely related to automatic slot in-
duction works, cross-domain slot filling and semi-
supervised Spoken Language Understanding (SLU)
works. We briefly discuss their connections and
analyze their differences.

2.1 Automatic Slot Induction

As an essential part of task-oriented dialogue sys-
tems, slot filling has been well studied in the su-
pervised learning settings (Liao et al., 2021a,c).
Been regarded as a sequence tagging or span ex-
traction task, it has leveraged various sequential
models such as recurrent neural network (RNN),
conditional random field (CRF), or Transformers
(Goo et al., 2018; Zhang et al., 2019a) for good
performance. But such approaches are limited in
real applications where unseen slots are common.
Hence, automatic slot induction attracts much at-
tention. The widely used pipeline is to first extract
the candidate entities/slots via external semantic
resources such as a frame-semantic parser. Then a
ranking method is applied to select the slots. For
example, Chen et al. (2014, 2015) parse the utter-
ances using SEMAFOR to extract candidate values
and slots, followed by a slot ranking method to
obtain the final slots.

Recently, Hudeček et al. (2021) modify the rank-
ing process into an iterative fashion and build a slot
tagger based on obtained slots. Zeng et al. (2021)
extend the induction into a three-step process with
more arbitrary designs. Such process needs human
intervention for good performance. More impor-
tantly, instead of entirely without slot labeled data,
we often have access to a small or partial amount
of that in real practice.

2.2 Cross-domain Slot Filling

To make use of slot labeled data at hand, a line
of work focus on adapting such knowledge to new
domain with unseen slots. There are both zero-shot
methods (Bapna et al., 2017; Lee and Jha, 2019;
Shah et al., 2019; Liu et al., 2020; He et al., 2020;
Siddique et al., 2021; Wang et al., 2021b) and few-
shot studies (Hou et al., 2020). These works mainly
focus on incorporating textual descriptions of slots
into sequence labeling models to handle the un-
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Figure 2: The SIC framework. Pre-trained under the supervision of few labeled samples, the feature extractor
extracts representations for all samples to decide K expansion. Then the samples are clustered by semi-supervised
K-Means, and the centroids provide self-supervision for further updating the feature extractor for next round.

seen slots (Bapna et al., 2017; Liu et al., 2020; He
et al., 2020). They assume that slot descriptions
or even some example values are available to use.
However, it might not be realistic for slot discovery
and the creation of slot descriptions needs qualified
linguistic expertise. Therefore, Wu et al. (2021)
introduces a novel slot detection task which detects
the potential unknown slots without differentiating
them. Some other researchers resort to meta learn-
ing instead of slot descriptions or names (Oguz and
Vu, 2021; Wang et al., 2021a). They learn and trans-
fer the meta-knowledge from the labeled examples
and handle the unseen slots in the low-resource
domain.

However, these existing domain adaption efforts
pay little attention to the slot value identification
process. For example, methods like (Bapna et al.,
2017) ignore it completely, and methods such as
(Liu et al., 2020) oversimplify it as a coarse-grained
binary sequence tagging. Actually, the slot values
are of critical importance for new slot discovery.
More importantly, these methods heavily rely on
auxiliary information such as new slot names, de-
scriptions or even value examples, which inhibits
the model to leverage prior knowledge from exist-
ing known slots.

2.3 Semi-supervised SLU

Our work is also connected to semi-supervised
SLU studies, where intents and slots are predicted
together (Shi et al., 2018; Zeng et al., 2021). Often-
times, the intents are decided first, then the corre-
sponding slots are determined. Due to the nature of

the intent discovery task, semi-supervised cluster-
ing methods have been widely applied. They incor-
porate prior knowledge as constraints to guide the
clustering process. The prior knowledge includes
the pair-wise information (must-link and cannot-
link constraints) and label information (Basu et al.,
2004; Xie et al., 2016). A popular scheme is to
follow a two-stage pipeline (Hsu et al., 2018, 2019;
Han et al., 2019): firstly train a pair-wise similarity
network based on the labeled data, then cluster un-
labeled data with constraints to discover the unseen
classes. For example, Lin et al. (2020) introduce
constrained deep adaptive clustering with cluster re-
finement (CDAC+) for intent discovery in dialogue
systems. They learn prior knowledge about the
pair-wise similarity with the limited labeled data to
guide clustering, but fail to provide specific super-
vision for unlabeled data or identify the number of
novel intents. Recently, Zhang et al. (2021b) lever-
ages the labeled data to pre-train a classifier model
and perform clustering. An alignment strategy is
designed to tackle the label inconsistency problem.
However, these methods only focus on new intent
discovery. The task of new slot discovery is more
complicated in nature.

3 Method

In this section, we formally define the semi-
supervised new slot discovery task first. Then we
break into subsections to elaborate our proposed
method as shown in Figure 2. Starting from the
candidate value extraction and feature extractor
pre-training, we gradually extend to the iterative
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clustering and updating scheme.
In the slot filling task, given an utterance U =

⟨w1, ..., wn⟩ with n tokens, the target is to predict
a corresponding tag sequence O = ⟨o1, ..., on⟩ in
BIO format. Each tag oi can take three types of
values: B-slot type, I-slot type and O, where B-
and I- indicate the start and inside token of one slot
type, and O means the token does not belong to
any slot type. Here, we work differently. Suppose
there is a candidate value x = ⟨wi, · · · , wi+k⟩ of
length |x| = k + 1 identified from the utterance
U , our setting is that in the whole dataset D with
N candidate values, a limited amount are labeled
DL = {xi, yi}Mi=1 ∈ X × YL, while the rest of
them are unlabeled DU = {xi, yi}N−M

i=1 ∈ X ×YU .
We have YLYU which indicates that we have a
set of new slots to discover and the number of
these unknown slots is not given. In our work,
the candidate values are extracted via existing NLP
models. We also experiment on ground truth values
to compare the difference.

3.1 Candidate Value Extraction and Filtering

Candidate value extraction is an important part of
the slot discovery task. The values can be a sin-
gle word or span in users’ utterances that convey
essential semantic information about users’ require-
ments. Inspired from (Hudeček et al., 2021), we
use a frame semantic parser SEMAFOR (Das et al.,
2010, 2014) and NER (named entities recognition)
to extract the candidate values, but other models,
such as SRL(semantic role labeling) (Palmer et al.,
2010) or keyword extraction (Hulth, 2003) can be
used in general. The SEMAFOR is a FrameNet-
style semantic parsing tool developed based on
Frame Semantics (Baker et al., 1998). It can auto-
matically extract the semantic frame elements and
lexical units from English sentences. Here, we use
a simple union of results provided by all annotation
models 1.

However, not all the extracted results should
be used as the slot value candidates. We observe
that there are still a certain amount of extracted
spans conveying irrelevant information about users’
queries. Therefore, we further conduct a simple
filtering process to yield more suitable candidate
values. In detail, we remove the stop words by
the NLTK tool and set a threshold to remove these

1If the same token span is labeled multiple times by differ-
ent annotation sources, the span is more likely to be considered
as a candidate value. We only make use of the value span and
the various labels from tools are discarded.

spans that appeared less than a certain number of
times. Besides, we also delete these frequently ap-
peared but meaningless values such as the word
‘another’, ‘must’, ‘please’, ‘find’ and so on.

3.2 Feature Extractor Pre-training
The aim of slot discovery is to group some salient
candidate values in the utterances into coherent slot
structures. The inherent semantics of the candidate
value itself and the semantics of its context are
both essential for the grouping process. As the
example shown in Figure 1, the extracted candidate
values (in bold) ‘east’ and ‘north’ are semantically
similar by themselves (indicating direction) and by
their context (find a restaurant in a certain part of
the town), hence they are more likely be grouped
together.

To capture these, we adopt the pre-trained BERT
model as the backbone to obtain the candidate
value representations. Given a candidate value
x = ⟨wi, · · · , wi+k⟩ inside the utterance U with
n tokens (0 ≤ k ≤ n), we apply mean pooling
of tokens’ BERT embeddings to obtain the inner
value representations:

⟨ei, · · · , ei+k⟩ = BERT (⟨wi, · · · , wi+k⟩),
vinner = mean_pooling(⟨ei, · · · , ei+k⟩),

where ei denotes the embedding vector of the token
wi in BERT model.

For the context representations, we deliberately
replace the value span with the special mask token
[mask] to remove the effect of the candidate value.
We reconstruct the original utterance into U ′ =
⟨w1, · · · , [mask]i, · · · , [mask]i+k, · · · , wn⟩2. As
calculated via the self-attention of BERT, the
[mask] tokens integrate the context information
for the masked candidate value. Hence, we use
mean pooling on the output of these [mask] tokens
to obtain the context representation:

⟨h1, · · · ,hn⟩ = BERT (U ′),

vcontext =mean_pooling(⟨hi, · · · ,hi+k⟩),

where hi denotes the embedding of the [mask] to-
ken [mask]i in the last hidden layer of BERT.

The final representation of candidate value is ob-
tained via the concatenation of vinner and vcontext:

v = tanh(W1[vinner; vcontext]T + b1),

2Special tokens such as [CLS] in beginning and [SEP] at
end are omitted for easy illustration.
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where W1 and b1 represent the learnable weight
matrix and bias in the dense layer. Then we feed
the final representation v into the classifier layer to
obtain the slot type prediction:

y = Softmax(W2vT + b2),

where W2 and b2 are the learnable weight matrix
and bias for the classifier layer.

As mentioned before, we have some limited la-
beled data with known slots in YL. To effectively
utilize such prior knowledge, we pre-train the afore-
mentioned classifier model with the labeled data
under the supervision of the cross-entropy loss. It
learns good initial network parameters. After pre-
training, we remove the classifier layer and lever-
age the remaining parts as the feature extractor for
the subsequent processing.

3.3 Incremental Clustering
After pre-training on the limited labeled data, we
need to transfer knowledge about these known slots
to the unknown ones and solicit evidence from
both labeled and unlabeled data to discover new
slots. Hence, we use the pre-trained feature ex-
tractor to extract features for all candidate values.
To discover semantically coherent and well sepa-
rated slots, there are two critical issues to address:
firstly, how to find the correct number of new slots
and obtain good cluster results; secondly, how to
further make use of the cluster results and grad-
ually update the feature extractor towards better
cluster-friendly features. Therefore, we design an
iterative cluster and updating scheme which per-
forms the following two steps (Section 3.3.1 and
Section 3.3.2) alternately.

3.3.1 Expand K and Clustering
We refine the traditional K-means to group can-
didate values with similar representations. A key
hyper-parameter, the number of clusters K, is often
unknown in practice due to the lack of information
about the corpus. Therefore, suppose the labeled
data contains K0 = |YL| slots, we propose a sim-
ple method to gradually expand K in each iteration.
Specifically, we first double Kt−1 in the last iter-
ation as Kmax = 2 × Kt−1

3 to get the largest
possible cluster number in the current iteration t.
Then, we perform k-means with the extracted fea-
tures. We assume that real clusters tend to be dense

3Many different ways can be used to estimate the K such as
Thorndike (1953); Ben-David et al. (2007), but we empirically
find this simple and effective on all five datasets.

even with Kmax, and the size of more confident
clusters is larger than some threshold ϵ (Zhang
et al., 2021b). Hence, we drop the low confidence
clusters with a size smaller than ϵ, and calculate
Kt:

Kt =

Kmax∑

i=1

⊮(|Ci| > ϵ),

where |Ci| is the size of the i-th produced cluster.
For semi-supervised K-means, we initialize the

Kt centroids from two parts. For the labeled data,
we compute the centroids as the average repre-
sentations of the candidate values belonging to
each slot. For these unlabeled data, we adopt k-
means++(Arthur and Vassilvitskii, 2006) to initial-
ize the remaining centroids. For each cluster iter-
ation, we modify the assignments of the labeled
data to be the original labels. Then we update the
centroids with the new assignments. In this way,
we force the assignments of the labeled data un-
changed and each unlabeled sample is assigned to
one cluster based on its distances to the centroids.

3.3.2 Centroid-based Self-Supervision

In the current iteration t, we will obtain cluster
assignments on the Kt clusters after the cluster-
ing process. As we have a large amount of unla-
beled data and the feature extractor is trained on
partial data, the cluster assignments will contain
noise. To alleviate this issue, we conduct sample
selection to choose the data with high confidence.
Suppose there are Kt centroids, we calculate the
similarity score of each value sample vi to its cor-
responding cluster centroid as si. We set threshold
γ on the score to select high confidence samples
DS = {xi, yi : si ≥ γ}. Then we can expand the
labeled set as:

DL = DL ∪ DS ,

where the slot label set also expands to |YL| = Kt

at the same time.
With the updated labeled set DL, we update

the corresponding centroids for each cluster as
{c1, · · · , cKt}. We then make use of these cen-
troids to update the feature extractor using centroid-
based self-supervision. The intuition behind this
is that each sample should be close to its cluster
center while be far away from other cluster cen-
ters. Therefore, we have the objective function for
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updating the feature extractor network as

Ls = −
|DL|∑

i=1

log
exp(vi · ci/τ)∑

cj ̸=ci
exp(vi · cj/τ)

,

where ci is the corresponding cluster centroid rerpe-
sentation for the sample xi and τ is the temperature
hyper parameter.

By updating the feature extractor with the above
learning objective, it tends to learn cluster-friendly
features for next round clustering. We terminate
the iteration when Kt stops increasing.

4 Experiments

4.1 Datasets
We conduct experiments on the following datasets:

• CamRest676 (CR) (Wen et al., 2017) is a task-
oriented dialogue corpus in the restaurant do-
main with 2,744 utterances and 4 slots.

• MultiWOZ (Bojanowski et al., 2017; Eric
et al., 2020) is a multi-domain dialogue corpus.
We choose two domains: WOZ-hotel(WH) in
the hotel domain with 14,435 utterances and 9
slots; WOZ-attr (WA) in the attraction domain
with 7524 utterances and 8 slots.

• Cambridge SLU (CS) (Henderson et al., 2012)
is also a dialogue corpus in the restaurant do-
main contains 10,569 utterances and 5 slots.

• ATIS (AT) (Hemphill et al., 1990) is a dia-
logue corpus in flights domain with 4,978 ut-
terances and 79 slots.

4.2 Training Details
We randomly select 75% of all slots as the known
slots and choose 10% data for each slot as labeled
data. We apply the pre-trained BERT model (bert-
base-uncased, with 12 transformer layers) as our
backbone to pre-train the feature extractor by the
labeled data. Most of the hyper-parameters are the
same as the default parameter of the BERT model.
The batch size is set to 64 and the learning rate is set
to 5e-5. The dimension of the token representation
is 768. During training, we freeze all but the last
transformer layer parameters. To define the thresh-
old when selecting the high confident unlabeled
samples, we apply a simple greedy search method
to validate the performance based on the candidate
thresholds from 0.5 to 0.95. All the parameters
are tuned on the validation set. We implement our
method using a public TEXTOIR toolkit which

contains standard and unified interfaces to ensure
fair comparison on different baselines (Zhang et al.,
2021a). We extend the original interfaces to the
open slot discovery task on our own datasets.

4.3 Evaluation Metrics

The goal of slot discovery is to identify the slot
type of each value in the utterance. We adopt the
popular classification metric F1 to measure the per-
formance. A mapping between the discovered slots
and the ground truth slots is constructed.

We also adopt the clustering based metrics simi-
lar to (Zhang et al., 2021b): Normalized Mutual In-
formation (NMI), Adjusted Rand Index (ARI), and
Accuracy (ACC) to measure the clustering perfor-
mance of our method and the clustering-based base-
lines. NMI computes the mutual information of the
predicted clusters and the true classes. ARI mea-
sures the pair-wise accuracy about whether any two
samples belong to the same cluster. ACC is used to
compare the obtained labels with the ground truth
labels, where the mapping is also needed similar to
F1.

4.4 Baselines

The baselines we used can be divided into four
categories: unsupervised, supervised, weakly su-
pervised and semi-supervised methods. For fair
comparison, we use the same BERT model as the
backbone for different methods.

• Supervised: We use the same set of base-
lines in (Hudeček et al., 2021) including Tag-
supervised and Dict-supervised methods.

• Unsupervised: Chen et al. (2014) combines
the FrameNet semantic parsing and the pre-
trained word embeddings for candidate slot
ranking. We also compare with WeakS-notag,
the variant of (Hudeček et al., 2021) with only
slot merging and selection step.

• Weakly supervised: WeakS-full (Hudeček
et al., 2021) is the state-of-the-art weakly su-
pervised method for slot discovery. They use
existing tools to yield slots and further train a
slot tagger model with extracted results.

• Semi-supervised: We compare our method
with several semi-supervised methods includ-
ing BERT-KCL (Hsu et al., 2018), BERT-
MCL (Hsu et al., 2019), BERT-DTC (Han
et al., 2019), CDAC+ (Lin et al., 2020) and
DeepAligned (Zhang et al., 2021b). All of
these methods need to know the slot numbers
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of the unlabeled data except for DeepAligned,
which predicts the number of slots at the very
beginning.

4.5 Main Results

We report the main results for all compared meth-
ods in Table 1. Generally speaking, when the full
supervision is not available, the proposed method
SIC performs consistently better than all the base-
line methods on nearly all five datasets, which vali-
dates our design of the semi-supervised incremen-
tal clustering scheme. Although the Tag-supervised
and Dict-supervised method achieve high perfor-
mance results, they require full supervision. For
example, Dict-supervised uses a dictionary of la-
bels covering all slots. However, we still observe
that SIC performs slightly better than them on
the CS and WA datasets. This might be because
CS and WA contain more variant values for each
slot. SIC manages to capture the relationships be-
tween these values but Dict-supervised and Tag-
supervised methods are limited on this.

Compared with unsupervised methods (Unsup.)
and weakly supervised (Weakly-sup.) method, SIC
maintains a large performance gap. Although all
these methods make good use of NLP tools such
as SEMAFOR, the former methods only focus on
merging and selecting frames as slots, and the lat-
ter uses obtained results to train a neural model
to increase generability. In SIC, our special de-
sign for feature extractor captures both the inherent
and contextual semantics for candidate values and
makes use of these to group them into slots. More-
over, SIC also manages to learn from the patterns
of known slots and transfer them to unknown slots.

Under the semi-supervised setting (Semi-sup.),
SIC constantly outperforms BERT-KCL, BERT-
MCL, BERT-DTC, CDAC+ and DeepAligned in all
datasets using extracted candidate values. Note that
the first four methods all use the ground truth slot
number. Still, we observe a big performance drop
on the CR, CS, WH datasets for these four methods.
This is probably because these methods overem-
phasize pairwise similarity as prior knowledge and
these datasets have very imbalanced class-wise
sample distributions. We observe that they tend
to assign most samples to some specific slots. On
the WA and AT datasets, the performance gaps are
narrower. Among methods in this semi-supervised
group, the DeepAligned method performs the sec-
ond best. As it also conducts gradual clustering

on the whole dataset, this suggests the validity of
gradually leveraging evidence from both labeled
and unlabeled data. Our method SIC outperforms
DeepAligned method on all datasets. That’s be-
cause the DeepAligned method uses fixed cluster
number K, which will affect the performance if the
predicted K is inaccurate. Besides, we gradually
select the samples with high confidence to make
the model learn cluster-friendly features for slot
discovery.

As the proposed method is based on a cluster-
ing scheme. We further evaluate via cluster-based
metrics and compare with these cluster-based meth-
ods. Table 2 shows the performance results of these
semi-supervised methods under the popular clus-
tering metrics NMI and ARI.

We can observe that our method SIC achieves
the best performance on all datasets, indicating
that our feature extractor training and incremen-
tal clustering process have the advantage to ob-
tain better cluster-friendly features, hence result-
ing in advanced new slot discovery performance.
Among the baselines, the DeepAligned method
shows comparable clustering performance on most
of the datasets. They gradually cluster data samples
and conduct alignment of clustering assignments
among different epochs. The clustering results pro-
vide pseudo-labels for further training. Such an
incremental clustering scheme is similar to ours.
However, the fixed cluster number and representa-
tions of clusters hinder its adaptability during the
learning process.

4.6 In-depth Analysis

4.6.1 Effect of Candidate Values

As shown in Table 1, when ground truth candidate
values are applied, all semi-supervised methods
perform better. This is as expected because existing
language tools still bring in noise even after the
filtering process. However, the better performance
of SIC still shows that making use of such prior
knowledge is advantageous.

To further investigate the effect of the candidate
value representation strategy, we further experi-
ment on two variant models: w/o inner and w/o
context which indicate the model with only con-
text representation and inner representation, respec-
tively. The results are shown in Table 3. We can
observe that the performance is decreased when we
only consider either of them. Generally speaking,
the inner representations are more important, and
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CR CS WH WA AT

Extr GT Extr GT Extr GT Extr GT Extr GT

Sup.
Tag-supervised 0.778 - 0.724 - 0.742 - 0.731 - 0.848 -
Dict-supervised 0.705 - 0.753 - 0.750 - 0.665 - 0.678 -

Unsup.
Chen et al. 0.535 - 0.590 - 0.382 - 0.375 - 0.616 -

WeakS-notag 0.552 - 0.664 - 0.388 - 0.383 - 0.648 -

Weakly-sup. WeakS-full 0.665 - 0.692 - 0.548 - 0.439 - 0.710 -

Semi-sup.

BERT-KCL* 0.189 0.224 0.131 0.188 0.178 0.346 0.560 0.731 0.492 0.584
BERT-MCL* 0.188 0.321 0.129 0.210 0.179 0.332 0.532 0.729 0.504 0.591
BERT-DTC* 0.131 0.303 0.138 0.206 0.170 0.334 0.545 0.670 0.543 0.578

CDAC+* 0.204 0.270 0.178 0.221 0.174 0.332 0.552 0.641 0.582 0.588
DeepAligned 0.663 0.901 0.633 0.899 0.378 0.750 0.644 0.719 0.629 0.676

SIC(Ours) 0.706 0.913 0.770 0.969 0.588 0.824 0.761 0.851 0.638 0.721

Table 1: Results compared with baselines on F1. * indicates that the method uses the ground truth slot number.
Extr and GT represent that we use extracted candidate values or ground truth values respectively.

CR CS WH WA AT

NMI ARI NMI ARI NMI ARI NMI ARI NMI ARI

BERT-KCL* 22.06 12.48 12.56 6.57 12.10 8.99 63.27 61.27 29.02 54.42
BERT-MCL* 64.21 63.03 10.60 3.77 11.49 9.19 63.25 61.20 30.65 55.43
BERT-DTC* 64.08 34.25 11.35 2.61 11.67 8.83 64.64 65.51 27.61 52.43

CDAC+* 21.22 13.55 31.12 26.27 11.71 9.05 69.07 71.04 30.69 55.90
DeepAligned 82.05 80.01 88.77 90.20 81.53 76.21 70.84 68.59 71.44 78.78

SIC(Ours) 82.61 81.23 90.62 92.88 87.71 86.86 71.36 72.87 73.70 78.85

Table 2: Results compared with baselines via cluster-based metrics. * indicates that the method uses the ground
truth slot number.

CR CS WH WA AT

SIC 0.706 0.770 0.588 0.761 0.638
w/o inner 0.661 0.514 0.530 0.573 0.619

w/o context 0.686 0.688 0.449 0.64 0.620

Table 3: Effect of the candidate value representation.

the context representations are indispensable too.
Still, we see that the context is more useful in the
WH dataset as evidenced by a larger performance
drop for w/o context than w/o inner, because there
are some slots containing numeric values such as
“people” , “stay”, “star”. For example, in the ut-
terance “Book it for 1 people and 5 nights starting
from Sunday” in WH, the values ‘1’ and ‘5’ belong
to the slot “people” and “stay”, respectively. If
we only consider the value itself, it will make the
model difficult to recognize their slots.

4.6.2 Threshold for Sample Selection
To explore the influence of the threshold γ
for sample selection during centroid-based self-

Figure 3: Effect of sample selection threshold on AT.

supervision, we vary the threshold in the range
from 0.5 to 0.95 with an interval of 0.05. Due to
space limitation, we show the results on the AT
dataset in Figure 3 and the results on the remain-
ing datasets in Figure A.2 (See in Appendix A.2).
We observe that the threshold indeed affects the
final performance. Generally speaking, the optimal
threshold for most datasets is between 0.7 ∼ 0.95,
which is reasonable. Because a small threshold will
encourage the model to select more unlabeled data
at the early iterations. This will bring more noise
since the model is not well-trained yet. Also, we
show that the threshold works differently in differ-
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ent datasets. For example, the results are relatively
stable on AT but more fluctuate on CS and WA.
These patterns might be decided by the inherent na-
ture of these datasets, such as the sizes of different
slots, closeness among values inside slots and the
relations among different slots etc.

4.6.3 Effect of Labeled Data

Figure 4: Effect of labeled data ratio on AT.

We also vary the ratio of labeled data in the train-
ing set in the range of 0.001, 0.01, 0.03, 0.05 and
0.1 to test the effect of these ratios. The results on
the AT dataset are shown in Figure 4 and the re-
sults on the remaining datasets in Figure A.1 (See
in Appendix A.1). We observe that even if the
ratio of labeled data is much lower than 0.1, the
proposed SIC still performs better than most base-
lines. This demonstrates its strength in learning
from labeled data and discovering inherent patterns
from unlabeled data. At the same time, we see that
the performance increases as more labeled data is
leveraged. This is as expected. Some methods
show performance drop such as BERT-KCL and
DeepAligned on WA. This might be because we
randomly sample labeled data for each ratio inde-
pendently during our experiments. These methods
might be more sensitive to certain groups of labeled
data.

4.6.4 Visualizing Learned Features
In Figure 5, we further visualize the candidate value
representations via t-SNE (Van der Maaten and
Hinton, 2008) for the CR dataset on the trained
feature extractor model. Dots with different colors
represent candidate values in different slot clusters.
Evidently, there is a clear margin between clusters
captured by the 2D representations learned by our
feature extractor. This indicates that our model
learns cluster-friendly features for slot discovery.
Also, we observe that the clusters obtained by our
method are generally more clear and well-separated
than those obtained by DeepAligned. This shows

(a) SIC (b) DeepAligned

Figure 5: t-SNE visualization of learned features.

the superiority of our method SIC in the same semi-
supervised slot discovery setting.

5 Conclusion

We presented a novel approach for semi-supervised
new slot discovery in dialogue systems that detects
new slots without any prior knowledge such as slot
name, description or new slot number. Our method
removes the heavy reliance on large-scale anno-
tated data and shows great potential in handling
unseen situations for robust system deployment. It
leverages off-the-shelf linguistic annotation models
to extract candidate values, then builds an incre-
mental clustering scheme to gradually solicit evi-
dence from both labeled and unlabeled data to dis-
cover slot structures from the corpus. Experiments
on five datasets in four domains mark significant
improvements over various groups of baselines on
different evaluation metrics.

Limitations

Our work has the following potential limitations.
Firstly, our approach relies on existing linguistic
annotation models. We show that the method is
able to combine multiple annotation sources, work-
ing better than the original annotation by gradually
selecting good ones. Nevertheless, the results are
still limited by the input annotation quality. Sec-
ondly, this work only focuses on discovering new
slots. As new intents and slots often are closely in-
tertwined, we plan to investigate these from a joint
perspective for better performance and practicality
in the future.
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Figure A.1: Effect of labeled data on remaining datasets.

A Additional Results

Due to space limitation, we show more results on
the remaining datasets here. We first illustrate the
effect of different labeled data ratio, then show the
effect of sample selection threshold.

A.1 More Results on Labeled Data Ratio

Figure A.1 shows the performance results of differ-
ent labeled data ratios on the CR, CS, WH and WA
datasets for various semi-supervised methods. Gen-
erally speaking, we observe that the performance
results of BERT-KCL, BERT-MCL, BERT-DTC and
CDAC+ change rather slowly as the ratio of labeled
data increases. We suspect that this is because these
methods struggle to learn enough evidence when
the labeled data is very insufficient. By looking
into the cluster level information, the DeepAligned
method performs better and its performance in-
creases faster than other baselines when the ratio
of labeled data increases. However, it is still more
sensitive to certain groups of labeled data than our
proposed SIC, as evidenced by some sudden de-
crease trend on WH and WA datasets.

Figure A.2: Effect of the threshold for sample selection
on remaining datasets.

A.2 More Results on Selection Threshold
Here we show more performance results of our
proposed method SIC with different threshold for
sample selection in Figure A.2. The results are for
the CR, CS, WH and WA datasets. We observe that
the best threshold for CR starts from 0.85. The best
threshold for CS resides in the range from 0.5 to
0.7. Also, we see that the best threshold for WH
is rather large (near 0.95), while the best one for
WA points in several value segments. This signals
that it is important for the performance our method.
This might be decided by the inherent nature of
these datasets, such as the sizes of different slots,
relations among values and slots etc. As these are
important for further adaptation for new dialogue
applications (Liao et al., 2018; He et al., 2021; Fei
et al., 2022b; Ye et al., 2022b; Wu et al., 2022),
more investigation can be devoted to this issue in
future.
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