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Abstract

Few-shot text matching is a more practi-
cal technique in natural language processing
(NLP) to determine whether two texts are se-
mantically identical. Recent studies based on
prompt learning have shown remarkable re-
sults. These methods primarily employ uni-
form prompt patterns for all instances. But
they fail to take into account the connection
between prompts and instances. This paper
argues that dynamically strengthening the cor-
relation between particular instances and the
prompts is necessary because fixed prompts
cannot adequately fit all diverse instances in
inference. Thus, we propose IGATE: Instance-
Guided prompt leArning for few-shoT tExt
matching, a novel pluggable prompt learning
method. The gate mechanism between embed-
ding and encoder of the PLM makes use of the
semantics of instances to regulate the effects of
the gate on the prompt tokens. The experimen-
tal findings show that IGATE achieves SOTA
performance on MRPC and QQP, outperform-
ing strong baselines. Our codes are available
at https://github.com/Du-Jia/IGATE.

1 Introduction

Prompt learning has made significant progress in
few-shot text matching due to the widespread use
of pre-trained language models (PLMs) in natu-
ral language processing (NLP). This approach re-
formulates the text matching task as a cloze-style
question which requires PLMs to predict what the
blank should be filled with. More specifically, af-
ter being added prompt tokens and masked tokens,
a PLM is used to predict the masked words and
map these words to the real labels. Recent studies
have shown that prompt learning achieves better
performance on few-shot text matching. For ex-
ample, with only thirty-two examples in MRPC
(Wang et al., 2019a), prompt learning achieves
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about 85% of the performance of fully supervised
fine-tuning models (Zhou et al., 2022).

Brown et al. introduce the concept of prompt
in the in-context method for the first time. Subse-
quently, Schick and Schütze propose PET which
gains improvement by exploiting patterns in nat-
ural language understanding. Some studies (Gao
et al., 2021; Shin et al., 2020; Zhong et al., 2021)
search prompts automatically to reduce the re-
liance on human experts for manual pattern de-
sign. All of these methods use natural language
as prompts thus they are named discrete prompts.
Other methods such as P-tuning (Liu et al., 2021b),
Prefix-tuning (Li and Liang, 2021), and P-tuning-
V2 (Liu et al., 2021a) replace natural language
prompts with trainable continuous tokens on this
basis to automatically search for optimal prompts
in a high-dimensional space. Correspondingly,
these methods are also called continuous prompts.

However, current prompt learning methods typ-
ically train models for specific task goals with lit-
tle regard to the applicability of samples to the
prompt. Even though some recent works (Liu
et al., 2022; Gu et al., 2021) attempt to use con-
textual information for generating prompts, they
frequently ignore how samples affect prompts
and concentrate on how prompts contribute to in-
stances. In addition, they usually fix the prompts
during inference so that all test samples share the
same pattern.

To solve these problems, this paper proposes
a novel method, IGATE: Instance-Guided prompt
leArning for few-shoT tExt matching, to guide the
construction of a prompt with instance semantics.
We introduce the gate mechanism based on con-
tinuous prompts to regulate the flow of features in
the prompts. Meanwhile, since the semantics of
instances are used to construct the prompt, each
instance can play a restrictive role in building the
pattern. So gate mechanism alleviates the prob-
lem of limited adaptation of the same pattern to
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Figure 1: The architecture of IGATE.

instances in the reasoning process. In short, this
study has the following contributions:

• We propose a novel approach to dynamically
generate prompts for each instance by intro-
ducing gate mechanism that allows instances
to participate in building prompts.

• Our method improves the performance of
few-shot text matching ability of models by
merely processing the embedding of PLMs.
This method can be easily transferred to other
prompt methods.

• Extensive experiments validate the effective-
ness of IGATE on few-shot text matching.
We improve the performance by 2.05 on
average on MRPC and QQP. Meanwhile,
we also verify that IGATE can be general-
ized to the natural language inference (NLI)
task through experiments on corresponding
datasets such as RTE, SNLI, and QNLI,
which improve the results by 1.52 on average.

2 Methodology

In this section, we introduce conventional prompt
learning approaches for few-shot text matching.
Then we introduce the architecture of IGATE,
which adds an additional layer between the embed-
ding layer and the encoder of PLMs. The architec-
ture is shown in Figure 1.

2.1 Prompt learning for few-shot text
matching

Let M be a PLM with vocabulary V . For instances
(s1, s2) in few-shot text matching, our goal is to
predict whether the text pair (s1, s2) is semanti-
cally identical, where s1 and s2 are two sequences
of tokens. In prompt learning, s1 and s2 are
usually put into a specific pattern, consisting of
special tokens, text pairs, and external prompt to-
kens. For example, the method plugs the instance
(s1, s2) into a pattern which contains prompt to-
kens Vp: [CLS], p1, s1,[MASK], p2, s2,[SEP]
and then uses M to select the appropriate word
w ∈ V∗, where p1, p2 ∈ Vp are prompt tokens, V∗

is the set of candidate label words. Finally, label
word w is mapped to the real label. Taking MRPC
task as an example, the mapping function is usu-
ally “yes”→ 1, “no”→ 0:

P(y|(s1, s2)) = P (w|M((s1, s2,p))) (1)

where P demonstrates the probabilities of y when
given input text pair (s1, s2), p = p1, p2, ..., pℓ,
ℓ is the length of prompt. Generally, prompt
learning is dived into two groups: discrete and
continuous. Discrete prompt learning meth-
ods search human-understandable prompt tokens,
which means the prompt tokens Vp is a subset of
the vocabulary of the PLM. Differently, continu-
ous prompt learning methods take some pseudo-
tokens in patterns, which are projected to differen-
tiable high-dimensional vectors in the training or
inference process.
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pattern1 id prompt2 id # of different predictions rate(%)

1 2 58/408 14.22
1 3 81/408 19.85
1 4 72/408 17.65
2 3 93/408 22.79
2 4 106/408 25.98
3 4 65/408 15.93

Table 1: The different number of instances in MRPC
prediction results between two patterns. Here different
prompt ids in the table represent different patterns, and
the specific correspondence is as follows: “(id=1) s1
[mask] In fact s2 ”; “(id=2) s1 [mask] This is the first
time s2 ”; “(id=3) s1 , [mask] . s2 ”; “(id=4) s1 .
[mask] However s2 ”.

2.2 IGATE: Instance-guided propmt
learning method

A single pattern cannot be adapted to all in-
stances Previous prompt learning approaches ig-
nore the fact that a pattern cannot fit all instances.
Meanwhile, these works focus on searching for op-
timal prompts (discrete or continuous) for specific
tasks. All instances have used the same prompts.
These searched prompts have been fixed during
the inference process. Thus, these approaches
have been concerned with specific tasks but ig-
nored the fact that there are huge variability be-
tween instances. As shown in Table 1, for the same
task, the prediction results of four different pat-
terns are very distinct, and the different data even
account for up to 25% of the total data. This con-
firms our point: it is difficult for a single pattern to
be valid for all instances.
Instance-guided prompt learning Previous con-
tinuous prompt learning methods usually optimize
prompt tokens for text matching objectives. How-
ever, they ignore the influence of the instance on
prompts, which means the prompt is the task-level
prompt. Therefore, in order to make prompts
better adaptable to different instances, we try to
extend prompts to the instance-level in IGATE.
Specifically, based on the task-level prompts, we
expect the model to automatically select features
in the prompt token which are applicable to the
current instance and optimize that capability by
the gradient. IGATE controls the flow of prompt
information through a gate mechanism that de-
pends on instance information, to assist the model
to consider the semantic information of instances
when constructing prompts.

Firstly, as Figure 1 illustrates, IGATE takes a
text pair (s1, s2) as input and encodes it by the

embedding layer of the PLM, then an embedding
matrix is outputted:

E = [Ep;E1;E2] = Embed([p, s1, s2]) (2)

where E ∈ RL×d is the embedding matrix of in-
put, E1 ∈ RL1×d and E2 ∈ RL2×d are the em-
bedding matrix of s1 and s2, Ep ∈ Rℓ×d is the
embedding matrix of prompt tokens, L is the se-
quence length, L1, L2 and ℓ are the length of s1,
s2 and p separately, d is the embedding size.

Secondly, IGATE extracts semantic informa-
tion from instances. Considering prompts usu-
ally consist of multiple tokens, their information
flow can be controlled with different granularity re-
strictions: token-wise, channel-wise, and element-
wise. Meanwhile, the granularity decreases, and
the computational complexity and spatial com-
plexity increase gradually. To balance the granu-
larity and computational complexity, IGATE tries
to generate channel-wise gating signals: IGATE
extracts features through convolutional neural net-
works (CNNs) with kernels of different sizes. Sub-
sequently, the extracted semantic information is
reconstructed and mapped into a vector whose di-
mension is the same as that of the hidden state of
the PLM through the pooling layer as well as the
dense layer. Consequently, the corresponding gate
weight will be generated for each element of the
prompt embedding through the sigmoid function:

Wsem = σ(Dense(Pooling(CNN(E)))) (3)

where Wsem ∈ Rℓ×d is a weight matrix.
Finally, IGATE multiplies the prompt embed-

ding and gate weights channel-wise and concate-
nates the new prompt embedding E′

p with E1 and
E2:

E′
p = Gate(Ep;E) = Wsem ⊙ Ep (4)

E′ = [E′
p, E1, E2] (5)

where ⊙ demonstrates channel-wise multiplica-
tion. Thus far, the vanilla continuous prompt learn-
ing method in Equation 1 is converted to IGATE:

P(y|(s1, s2)) = P (w|M(E′)) (6)

3 Experiment

In this section, we detail experimental results on
two text matching tasks: MRPC and QQP, as well
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MRPC (F1) QQP (F1)

Majority 81.2 0.0
LM-BFF(man) (*)(Gao et al., 2021) 74.5 (5.3) 65.5 (5.3)
LM-BFF(auto) (*)(Gao et al., 2021) 76.2 (2.3) 67.0 (3.0)

P-tuning (*)(Liu et al., 2021b) 80.35(1.04) 68.52(2.63)
DART (*)(Zhang et al., 2021) 78.3(4.5) 67.8(3.2)
DCCP (*)(Zhou et al., 2022) 80.3(1.3) 67.9(3.5)

IGATE (avg) 81.40(3.99) 69.05(1.23)
IGATE (best) 83.61(1.35) 70.52(1.30)

Table 2: Main results on the test sets of MRPC and
QQP. (*): Results reported in corresponding papers.
Majority: Labeling data with the most frequency label.
(avg): In every split averaging performance of multiple
experiments. (best): In every split reporting the best
performance of multiple experiments.

as three NLI datasets: RTE (Wang et al., 2019b),
SNLI (Bowman et al., 2015), and QNLI (Wang
et al., 2019b). IGATE has achieved state-of-the-art
results on few-shot text matching tasks, exhaust-
ing our knowledge. Besides, IGATE can be ex-
tended to other prompt learning methods as well.

3.1 Experiments settings

Datasets We evaluate IGATE on MRPC and QQP
in few-shot settings and verify the generalizabil-
ity of IGATE on three NLI datasets: RTE, SNLI,
and QNLI. We randomly sample five 16-shot splits
with five seeds from every original dataset and fol-
low the same evaluation protocol as Gao et al.
(2021). The statistics of all datasets are detailed
in A.1.
Setup IGATE is based on P-tuning (Liu et al.,
2021b). Thus we compare IGATE with continu-
ous prompt methods, such as P-tuning (Liu et al.,
2021b), DART (Zhang et al., 2021), DCCP (Zhou
et al., 2022), and a discrete prompt method LM-
BFF (Gao et al., 2021). To compare with different
baselines fairly, the underlying PLM is RoBERTa-
large (Liu et al., 2019). We train the model on
five independent training splits and average the F1
score on the test set as the final result. IGATE
is implemented using PyTorch. The optimizer of
IGATE is AdamW (Loshchilov and Hutter, 2019).
We optimize the prompt and also fine-tune the
PLM. We use three sizes of kernels with a field of
view of 3,5,7 in CNN layers. The settings of all
hyper parameters and the scope of the grid search
are shown in appendix A.2.

RTE SNLI QNLI

LM-BFF 65.7 64.16 64.16
P-tuning 69.16 69.33 60.90

LM-BFF+gate 63.08 64.38 64.39
P-tuning+gate(IGATE) 69.17 69.81 64.97

Table 3: Results on NLI datasets with RoBERTa-large
as the underlying PLM.
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Figure 2: Gate weights in different channels.

3.2 Results

Main results As the main results illustrated in Ta-
ble 2, IGATE outperforms previous discrete(Gao
et al., 2021) and continuous (Zhang et al., 2021;
Zhou et al., 2022; Liu et al., 2021b) prompt-based
methods. The performance is improved by IGATE
for 1.05 points and 0.53 points compared to the
previous SOTA model DCCP on MRPC and QQP
datasets. Furthermore, IGATE outperforms P-
tuning by an average of 1.05 points on MRPC and
QQP, which demonstrates that IGATE is effective.
Generalizability and extensibility We conduct
experiments on NLI datasets to verify the gener-
alization and extensibility of IGATE. As shown in
Table 3, IGATE achieves certain improvements on
RTE, SNLI, and QNLI, indicating that IGATE can
be applied to other tasks. Furthermore, IGATE re-
stricts the flow of prompt tokens by extracting se-
mantic information from instances as gate struc-
tures. We also introduce the gate mechanism
in discrete prompt-based methods. Experiments
show that IGATE can be extended to the discrete
prompt method (Gao et al., 2021).
Analysis We carefully inspect how the gate mech-
anism affects IGATE. We randomly sampled eight
instances and analyzed the gating signal weights
generated by different instances on part of the
channels. The visualization results which are
recorded in Figure 2 illustrates that the gate mecha-
nism can obtain different gate weights for different
instances.
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Figure 3: The cosine similarity between prompts and
instances before (the upper) and after (the lower) gate.

In addition, we compared the similarity distri-
butions of prompt tokens and tokens of instances
with and without the gate mechanism. As Figure 3
shows, the similarity distributions of the prompt
and the instance are quite different before and af-
ter passing through the gate. This demonstrates
that the gate mechanism we introduce can indeed
influence the flow of information from prompt to-
kens.
Ablation study We compare the changes with and
without the gate to demonstrate the effectiveness
of the gate mechanism in IGATE. The random
seed is fixed as ten. We test the performance of
IGATE under different conditions on the MRPC
task. We remove each part of IGATE separately
and record the performance after the removal. The
experimental results are shown in Table 4. More-
over, to visually demonstrate the benefit of intro-
ducing the gate mechanism, we remove all the ex-
tra structures, corresponding to ALL* in Table 4.

Model MRPC (F1, seed=10)

IGATE 82.80(±0.79)

w/o CNN 81.88(±2.65)
w/o sigmoid 81.56(±2.05)
w/o dense layer 81.59(±1.52)
w/o ALL (*) 80.16(±1.83)

Table 4: Ablation results in MRPC. (*): Remov-
ing CNN, activation function, and dense layer from
IGATE.

4 Conclusion

In this paper, we propose an instance-guided
prompt learning method named IGATE. IGATE

constructs prompts with the weight matrix which
is extracted from the instance. Thus the prompts
are restricted by instance semantics in the train-
ing and inference process. Experimental results
show that IGATE achieves improvement on the
text matching task, and can be generalized in NLI
tasks. Meanwhile, IGATE can be applied to both
discrete and continuous templates.

In the future, we will explore more methods
to construct prompts with the semantics of in-
stances.

Limitations

IGATE only works on the lower layers of the PLM
and uses a convolutional neural network, thus in-
troducing additional parameters. In fact, the pa-
rameter size of the dense layer is proportional to
the length of the prompt. This means that in our
method, when the prompt length is too long, the
parameter scale will be too large, and it is easy
to overfit in a few-shot scenario. Above all, the
prompt length will be limited after using IGATE.
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A Appendix

In appendix, we detail the experiment settings in
five datasets and provide the candidate space of
hyper parameters.

A.1 Datasets
We utilize five datasets in experiments: 1) two
text-matching datasets: MRPC and QQP. 2) three
NLI datasets RTE, SNLI, and QNLI. We randomly
sample five splits with different seeds for every
dataset. Every split contains the original test set,
the 16-shot training set, and the 16-shot develop-
ment set. Table 5 shows the statistics of these orig-
inal datasets, and Table 6 shows these statistics in
few-shot settings.

Dataset |Dtrain| |Ddev| |Dtest| #classes
MRPC 3.6k 0.4k 1.7k 2
QQP 363k 40k 390k 2
SNLI 549k 9.8k 9.8k 3
QNLI 104k 5k 5.4k 2
RTE 2.4k 0.27k 3k 2

Table 5: Statistics of datasets

Dataset |Dtrain| |Ddev| |Dtest| #classes
MRPC 32 32 409 2
QQP 32 32 40430 2
SNLI 48 48 9815 3
QNLI 32 32 5462 2
RTE 32 32 277 2

Table 6: Statistics of datasets in few-shot settings

A.2 Hyperparameters
In our experiments, we divide the embedding
to prompt embedding and raw embedding. The
prompt embedding layer is set with an indepen-
dent learning rate. We find that it is hard to
choose best parameters for small development sets
in training process. So we repeat three times
for every set of hyperparameters, and we average
the F1/accuracy scores as the experimental results.
We set the same scope for every dataset:

• learning rate of PLMs: 1e-5

• batch size: {8, 16}

• prompt learning rate: {1e-5, 5e-5, 1e-4}

• max epochs: {20, 30, 40, 50, 125}

PL=1 PL=2 PL=3 PL=4 PL=5 PL=6 PL=7 PL=8 PL=9 PL=10
Prompt length
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Figure 4: Accuracy on MRPC with different prompt
lengths and prompt learning rates.

• prompt length: {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

• max sequence length: 128 ,256

• evaluation step: 20, 100

We select hyperparameters by grid search. For
example, we record the curves about the prompt
length and prompt learning rates, which is illus-
trated on Figure 4.

We also record the detailed parameters of the
IGATE model in Table 7.

layer paramertes size
embedding embedding size 1024

cnn num of kernel 3
kernel sizes 3,5,7

filters (channels) 1024
linear input size 3 * 1024

output size 1024

Table 7: Parameters of IGATE model.
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