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Abstract

Despite of the superb performance on a wide
range of tasks, pre-trained language models
(e.g., BERT) have been proved vulnerable to
adversarial texts. In this paper, we present
RoChBert, a framework to build more Ro-
bust BERT-based models by utilizing a more
comprehensive adversarial graph to fuse Chi-
nese phonetic and glyph features into pre-
trained representations during fine-tuning. In-
spired by curriculum learning, we further pro-
pose to augment the training dataset with ad-
versarial texts in combination with intermedi-
ate samples. Extensive experiments demon-
strate that RoChBert outperforms previous
methods in significant ways: (i) robust –
RoChBert greatly improves the model ro-
bustness without sacrificing accuracy on be-
nign texts. Specifically, the defense lowers the
success rates of unlimited and limited attacks
by 59.43% and 39.33% respectively, while re-
maining accuracy of 93.30%; (ii) flexible –
RoChBert can easily extend to various lan-
guage models to solve different downstream
tasks with excellent performance; and (iii) effi-
cient – RoChBert can be directly applied to
the fine-tuning stage without pre-training lan-
guage model from scratch, and the proposed
data augmentation method is also low-cost.1

1 Introduction

The emergence of pre-trained language models
(PLMs) has revolutionized natural language pro-
cessing (NLP) to a new era. As a result, large-
scale PLMs like BERT (Devlin et al., 2018) have
become the mainstream models for various down-
stream tasks including text classification (Sun et al.,
2019), question answering (Herzig et al., 2020) and
machine translation (Zhu et al., 2020), and have

∗ Equal contribution.
† Corresponding author.

1Our code will be available at https://github.com/
zzh-z/RoChBERT.
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Figure 1: An example of Chinese adversarial text. “博
彩” and “菠菜” share the same pronunciation of "bo
cai". “微” and “薇” share the same pronunciation of
"wei" and similar components of “微”.

drastically boosted their performance. In the Chi-
nese domain, a wide variety of classical NLP tasks
also benefit from the BERT-based PLMs.

Despite the impressive performance, BERT-
based models have been proved to be vulnerable
to maliciously generated adversarial texts (Li et al.,
2019; Garg and Ramakrishnan, 2020; Li et al.,
2020). Meanwhile, in the real-world scenarios,
adversaries usually generate obfuscated texts, i.e.,
manually crafted adversarial texts to bypass online
security-sensitive systems, which has posed severe
physical threats to the deployed systems. In con-
trast to the alphabet languages such as English, the
meaning of individual Chinese character can be
implied from its pronunciation and glyph. Thus,
substituting characters with others similar in char-
acteristics can hardly bring impact to the context
understanding. Hence, unlike replacing words with
synonyms to mislead English models, adversaries
targeting Chinese models prefer substituting char-
acters with others sharing similar pronunciation or
glyph, as illustrated in Figure 1.

Several defense methods such as adversarial
training (AT) (Si et al., 2021) and adversarial detec-
tion (Bao et al., 2021) have been proposed recently.
However, most of them focus on solving English
adversarial texts. Based on Chinese characteristics,
some Chinese-specific methods are proposed. For
example, ChineseBERT (Sun et al., 2021) incor-
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porates Chinese pronunciation and glyph features
into model pre-training, and it has achieved SOTA
performance on many Chinese NLP tasks. But Chi-
neseBERT needs to be pre-trained from scratch and
its number of parameters is quite large. It has to
query the corresponding pinyin and glyph of in-
put characters at each inference, which makes the
training and prediction very slow.

To solve the challenges above, we propose
RoChBert, a lightweight and flexible method
to strengthen robustness for Chinese BERT-based
models. Firstly, we generate an updated adversar-
ial graph based on AdvGraph (Li et al., 2021) to
capture the phonetic and glyph relationships be-
tween characters, which are commonly exploited
by adversarial texts. As current AdvGraph only
incorporates 3,000 commonly used characters and
fails to capture certain glyph relationships, we up-
date it to cover more characters and more glyph
relationships. Then, we use adversarial graph to
learn the representation of characters based on Chi-
nese pronunciation and glyph. The graph mainly
serves as embedding weights within RoChBert.
Meanwhile, we leverage the target model’s hidden
states of last layer as pre-trained representation.
These two kinds of embedding will then be fused
in the fine-tuning of target model with specified
downstream NLP tasks. Secondly, we design a
novel data augmentation method inspired by cur-
riculum learning (Bengio et al., 2009) for better
fusion, which is proved to be more efficient than
the traditional AT. Specifically, we add both inter-
mediate and adversarial texts into training datasets,
which is very computationally efficient and will not
decrease the accuracy on benign texts compared
with traditional AT. To the best of our knowledge,
this is the first work to strengthen the robustness
of pre-trained Chinese BERT-based models during
fine-tuning.

Our contributions are summarized as follows:

1. We present RoChBert, a plug-in method to
strengthen the robustness of BERT-based mod-
els during fine-tuning by incorporating adversar-
ial knowledge.

2. We update the adversarial graph and design an
efficient data augmentation method, which con-
siders intermediate samples for more effective
use of adversarial texts.

3. Extensive experiments show that RoChBert
can drastically improve the robustness of tar-
get models against both known and unknown

attacks without impacting the performance on
benign texts. In addition, RoChBert is flex-
ible and efficient as it can be applied to most
pre-trained models with specified downstream
tasks while both fine-tuning and data augmenta-
tion are low-cost.

2 Related Work

Pre-trained language model. The applications
of PLMs have achieved great success on various
downstream NLP tasks and avoid training a new
model from scratch. BERT is first introduced
to learn universal language representations via
masked language model objective and next sen-
tence prediction task, which is then improved in
the following works such as RoBERTa (Liu et al.,
2019) and ALBERT (Lan et al., 2019). In the
Chinese NLP domain, Sun et al. (2021) proposed
ChinseBERT, which incorporates both the glyph
and pinyin features of Chinese characters into lan-
guage model pre-training, and also gained SOTA
performance on many Chinese NLP tasks. How-
ever, these works mainly focus on improving the
model performance on benign texts, and the effort
of enhancing model robustness is fairly limited.

Exploration on the model robustness. To fur-
ther explore the vulnerabilities of NLP models in
the real adversarial scenarios, a plenty of black-box
attacks have been proposed under the practical as-
sumption that adversary only has query access to
the target models without any model knowledge (Li
et al., 2019; Ren et al., 2019; Garg and Ramakrish-
nan, 2020). To defend against such attacks, coun-
termeasures like AT and adversarial detection have
been proposed to mitigate the inherent model vul-
nerability. Concretely, AT usually refers to retrain-
ing the target model by mixing adversarial texts
into the original training dataset, which could be
viewed as a kind of data augmentation (Si et al.,
2021; Ng et al., 2020). Adversarial detection is to
check whether the input contains spelling errors
or adversarial perturbation, and then restore it to
the benign counterparts (Zhang et al., 2020a; Bao
et al., 2021). Such methods both exhibit great ef-
ficacy in the English NLP domain, but they are
hard to extend to the Chinese domain directly due
to the language differences. Hence, many studies
have tried to design specific defense in terms of the
unique property of Chinese. For instance, Wang
et al. (2018) and Cheng et al. (2020) improved
the Chinese-specific spelling check using the pho-
netic and glyph information. Li et al. (2021) pro-
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Figure 2: Overview of RoChBert. The left part is the model architecture, and the right part is its workflow.

posed AdvGraph that involves an undirected graph
to model the phonetic and glyph adversarial rela-
tionships among Chinese characters and improves
the robustness of several traditional models. (Su
et al., 2022) proposed RoCBERT to enhance the
robustness by pre-training the model from scratch
with adversarial texts covering combinations of var-
ious Chinese-specific attacks, which may not be
maintained in the downstream tasks.

3 Methodology
Given a benign input text x ∈ X with the ground-
truth label y ∈ Y , a classifier F has learned the
mapping f : X →Y , which maps x from the feature
space X to the label space Y as Ff (x) = y. The
adversary intend to obtain an adversarial text x∗ by
adding some perturbations ∆x on x with ‖∆x‖p <
ε, and deceive F into making a wrong prediction
on x∗, i.e., Ff (x∗) = ŷ and y 6= ŷ. In this paper,
we aim to improve the inherent robustness of F
so to get a more robust model F ′ such that F ′ can
resist the adversarial text x∗, i.e., F ′f (x∗) = y.

Overview. As illustrated in Figure 2, we first
generate an updated adversarial graph based on
phonetic and glyph relationships between all com-
monly used Chinese characters. Then, we adopt
node2vec (Grover and Leskovec, 2016) to learn
the representation of each character xi, which will
then be used as the node embedding. For xi in text
x, its node embedding is concatenated and passed
through feature extraction module. Simultaneously,
x is also fed into the target PLM. We utilize the hid-
den states of last layer as the pre-trained representa-
tion of x. After concatenating pre-trained represen-
tation and feature embedding, we use a multimodal

fusion module to further fuse the information from
two channels. Finally, the fused representation can
be used for most of the downstream tasks. More-
over, to better enhance the fusion process, we have
designed an efficient data augmentation method,
which makes full use of adversarial texts and helps
the model further understand which characters may
be similar in pronunciation and glyph.

3.1 Adversarial Graph

Adversarial graph is first presented in (Li et al.,
2021) as AdvGraph to improve robustness of clas-
sic deep learning model (e.g., TextCNN, LSTM). In
AdvGraph, each node represents a Chinese charac-
ter and each edge represents the phonetic or glyph
relationship between two nodes.

However, the aforementioned AdvGraph only
covers 3,000 commonly used characters. More-
over, the glyph relation in AdvGraph is constructed
heavily relied on a g-CNN model which first con-
verts each character into a image and then extracts
the visual feature as glyph representation. It hence
pays more attention to characters with similar struc-
tures, which will affect the representation learning
of those characters with dissimilar structures. For
instance, “微” and “徵” is considered to be closer
by g-CNN since they are both left-middle-right rad-
ical structure, while “微” and “薇” is considered
dissimilar since “薇” is up-down radical structure.
This is because when converting to images, differ-
ent radicals may cause the position of characters to
shift, which will have a great impact on CNN.

To tackle the above problem, we intend to ad-
vance the adversarial graph as follows. First, we
adopt the algorithm in Argot (Zhang et al., 2020b)
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to generate similar candidate sets for each charac-
ter, with a combination of candidates in AdvGraph
and StoneSkipping (Jiang et al., 2019). Next, we
utilize stroke code to calculate similarity score for
candidates. Stroke refers to a line that is continu-
ously written at a time, which is the smallest unit
of Chinese characters. Each number in stroke code
represents a specific stroke, so it can be used to
capture the same components between two char-
acters. Concretely, we calculate the longest com-
mon substring between two codes as a part of our
similarity score in addition to the distance of rep-
resentation learned in g-CNN. For each character
in candidate set, once the similarity score exceeds
the given threshold, we assume them as the similar
pair. Then, we add an edge between two characters
for each similar pair, indicating they share similar
pronunciation or glyph.

Finally, our adversarial graph incorporates 7,707
characters, and it has 109,706 edges, 32,894 of
which is phonetic relationship, and the 81,108 is
glyph relationship. Note that the Chinese pronun-
ciation, glyph and their relationships in our adver-
sarial graph are general knowledge. We model
the adversarial relationship in advance so that
RoChBert can protect target models against both
known and unknown attacks.

3.2 Multimodal Fusion
In AdvGraph, graph embedding and semantic em-
bedding are simply concatenated to generate fused
representation and there is almost no interaction
between these two kinds of feature. Hence, we
design a multimodal fusion module to make them
more fully integrated during training process.

We first feed x of length l into PLM with hidden
size d1 to obtain pre-trained presentation. Assume
the target language model as the function FLM , we
get the hidden states H1 of its last layer:

H1 = FLM (x) ∈ Rl×d1 . (1)

Then we pass x into Node Embedding Layer FG

whose weights are learned from adversarial graph
to get H2. We freeze the weights of FG to preserve
the independent phonetic and glyph features with-
out being impacted by semantic information during
training. The size of the vector H2 is d2, which is
decided by the parameter of node2vec algorithm:

H2 = FG(x) ∈ Rl×d2 . (2)

Since the focus of model should be different on the

benign and adversarial text, we introduce Trans-
former Encoder layer T1 to help model capture the
differences. There still exists the out-of-vocabulary
problem in the node embedding though we have up-
dated the original AdvGraph, since if the character
is not similar with any character or its frequency is
too low, it will not be included in the graph. In addi-
tion, node embedding doesn’t incorporate English
letters, numbers, punctuation, and special symbols,
it will be hard to align with pre-trained embedding
H1 and it may even bring negative effects. We use
flattening to preserve its phonetic and glyph fea-
tures and alleviate the problem that some features
may be too sparse caused by out-of-vocabulary.
Then we pass it into a linear layer with weights
W and bias b to map it into a vector of size d1 as
sequence feature representation H3:

H3 = W>(T1(H2)) + b ∈ Rd1 . (3)

In order to facilitate the subsequent concatenation,
we repeat the vector l times to obtain H ′3 ∈ Rl×d1

as the final feature embedding.
We first fuse these two kinds of embedding by

concatenating H1 and H ′3. To make them better
interact with each other during training, we apply
Transformer Encoder layer T2 for the fusion. The
final embedding H4 of input x is given by:

H4 = T2(H1 ⊕H ′3) ∈ Rl×d1 . (4)

Finally, we flatten H4 and feed it into a classifier
to get output ŷ ∈ Y .

3.3 Efficient Data Augmentation

It has been reported that data augmentation can im-
prove the robustness of models (Si et al., 2021; Ng
et al., 2020). The intuitive method is to retrain the
target model by mixing the generated adversarial
texts into the original training dataset. However,
most of the conventional AT methods are usually
very cost-expensive. For instance, in the black-box
attacks, it often requires an extremely large amount
of queries for accessing the target models to de-
termine the attack direction in each iteration when
generating just one adversarial text.

Conventional AT typically involves the entire
dataset to conduct attacks while only collecting
successful adversarial samples for augmentation.
To efficiently utilize the generated texts and obtain
more samples in the shortest time, we have made
some improvements to the traditional AT.
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Algorithm 1 : The detail of data augmentation.
Input: Training dataset D, the target classifier F with map-

ping f .
Output: New training dataset Dag .
1: for x ∈ D do
2: tmp← {}
3: ŷ = Ff (x)
4: if ŷ is not the ground-truth label then
5: continue
6: end if
7: x∗ = x, ŷ∗ = ŷ
8: while ŷ∗ == ŷ do
9: x∗ = x∗ + ∆x . According to attack algorithms

10: ŷ∗ = Ff (x∗)
11: tmp← tmp

⋃{x∗}
12: if all the words in x are modified then
13: break
14: end if
15: end while
16: if ŷ∗ 6= ŷ and ‖x∗ − x‖p < εmax then
17: Dag ← Dag

⋃
tmp

18: end if
19: if size(Dag) > size(D) then
20: Dag ← Dag

⋃
D

21: break
22: end if
23: end for
24: return Dag;

For generating adversarial texts with fewest per-
turbations, there are various strategies designed in
the attacks to determine the added perturbation in
each iteration. Usually, this perturbation can cause
the most significant drop on the output probabil-
ity of its original label, which is most hopeful to
mislead the target model within the next iterations
among all the candidate generated texts. Therefore,
during the attack, many intermediate texts will be
generated before the final adversarial text is gen-
erated. Although the labels of these intermediate
texts are still correct, their confidences have de-
clined to varying degrees. Hence, to some extend,
in addition to adversarial texts, the intermediate
texts can also help models make firm decisions.

We generate augmented data based on the train-
ing dataset D. For each x in D, we perturb it and
collect the intermediate texts tmp. If the generated
x∗ can deceive the model Ff , we will incorporate
tmp (the final generated x∗ is also in tmp) into
new dataset Dag. Specifically, to ensure the quality
of texts, we will limit the modification rate εmax

during the generation process. If the size of Dag is
larger than the size of D, we assume we have got
enough texts and early stop the process. Finally, we
add D into Dag and Dag will be our new training
dataset. The details of the algorithm are presented
in Algorithm 1, in which εmax and size(Dag) have

the following relationship:

size(Dag) ≤ lx∗1 × ε1 + lx∗2 × ε2 + ...+ lx∗n × εn,
s.t. εi ≤ εmax, i ∈ 1...n

lx∗i denotes the length of adversarial text x∗i . n
denotes the number of generated adversarial texts.
As the base of perturbation is word, we can get:

size(Dag) ≤ (lx∗1 + lx∗2 + ...+ lx∗n)× εmax

≤ lavg × n× εmax.
(5)

Therefore we have:

n ≥ size(Dag)

lavg × εmax
. (6)

So n increases as lavg and εmax decrease. In the
augmentation stage, more used adversarial texts
(n is bigger) will result in better model robustness,
but the more computation is needed. If we set
small εmax, we will get high quality adversarial
texts. They will promote the model robustness with
less impact on accuracy when added into training
dataset. On the contrary, when we set big εmax, the
adversarial texts we need to generate become fewer,
which reflects the high efficiency of RoChBert.

So when the accuracy of the target model is rela-
tively high and the average length of texts is long,
we recommend to use smaller εmax to make n big-
ger and improve robustness. If the average length
of texts is short, n will increase, so we urge to use
bigger εmax for efficiency boosting. And when the
model accuracy is not very high, we suggest to
use smaller εmax to keep the accuracy as high as
possible.

Our method inherits the main idea of curriculum
training (Bengio et al., 2009), and the model can
learn the features of the adversarial text at different
stages. Moreover, it can improve model’s robust-
ness without compromising the accuracy on benign
texts, which can be proved in Section 4.2.

4 Experiment

4.1 Experiment Settings
Datasets. We use three different tasks, sentiment
analysis, text classification and natural language
inference to evaluate RoChBert. The datasets
are ChnSentiCorp2, DMSC3, THUCNews (Sun
et al., 2016) and OCNLI 4. The details are shown

2https://github.com/pengming617/bert_
classification/tree/master/data

3https://www.kaggle.com/utmhikari/
doubanmovieshortcomments/

4https://github.com/cluebenchmark/
OCNLI
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Model Chnsenti. DMSC THUC. OCNLI

ChineseBERT 95.25 92.95 97.87 73.20

BERTbase 95.33 93.02 98.07 71.57
+SC 94.42 92.85 98.07 70.57
+RoChBert (PWWS) 95.58 93.05 97.87 67.76
+RoChBert (TextBugger) 95.83 92.75 98.00 67.34
+RoChBert (Random) 95.92 92.70 98.13 70.25

BERTwwm 94.58 92.51 97.87 70.33
+SC 93.58 92.45 97.93 69.08
+RoChBert (PWWS) 94.92 92.70 97.93 67.23
+RoChBert (TextBugger) 95.75 93.30 97.80 67.71
+RoChBert (Random) 95.25 91.45 98.00 70.09

BERTwwm/ext 96.00 93.29 97.73 71.16
+SC 95.00 93.20 97.80 70.68
+RoChBert (PWWS) 95.58 94.00 97.80 68.31
+RoChBert (TextBugger) 95.42 93.30 97.87 68.65
+RoChBert (Random) 95.83 93.60 97.73 71.40

RoBERTawwm/ext 95.58 92.89 98.00 71.29
+SC 94.50 92.95 97.87 70.88
+RoChBert (PWWS) 95.58 93.10 98.13 68.31
+RoChBert (TextBugger) 95.83 93.56 97.93 69.09
+RoChBert (Random) 95.50 93.45 98.07 72.45

Table 1: Model performances on benign texts.

in Appendix A.1. For OCNLI, we attack the
two sentences, premise and hypothesis separately.
Here, we only present the corresponding results of
premise, the other part is shown in Appendix A.4.

Setup. As the target models are Chinese BERT-
based models and the perturbation strategies are
quite different from those for English, we can-
not use the specialized BERT attack methods like
BERT-ATTACK (Li et al., 2020). Hence, we uti-
lize three widely used attacks, i.e., PWWS (Ren
et al., 2019), TextBugger (Li et al., 2019) and
random attack in the black-box setting to evalu-
ate the robustness of RoChBert. The details are
shown in Appendix A.2. We leverage the charac-
ters with similar glyph or pronunciation to form
words and substitute the original ones after locat-
ing the important parts by corresponding attack
algorithms. The attacks are conducted on 1,000
texts sampled from test set. We use base BERT
(BERTbase), BERT trained with whole word mask-
ing strategy (BERTwwm) and with extended data
(BERTwwm/ext), and RoBERTa (RoBERTawwm/ext)
as the target models.5 We also take ChineseBERT
which incorporates pronunciation and glyph fea-
tures into pre-training, as a baseline. In addition,
we compare RoChBert with the Chinese spelling
corrector (SC) 6 method. In SC-based defenses,
each input text is firstly restored by a corrector to
eliminate errors in the text before being sent into
the target model. For fair comparison, the adversar-
ial texts against the SC baseline are generated by

5https://huggingface.co
6https://github.com/shibing624/

pycorrector

treating corrector and the model as a whole pipeline.
And εmax in data augmentation are shown in Ap-
pendix A.3.

Metrics. We utilize four metrics, i.e., accu-
racy, modification rate (MR), unlimited attack suc-
cess rate (UASR) and limited attack success rate
(LASR), to comprehensively evaluate RoChBert.
Accuracy reflects model’s generalization on benign
texts. MR reflects the average percentage of per-
turbed characters in adversarial texts under unlim-
ited attack setting. UASR means the percentage
of texts that can generate adversarial texts success-
fully without any limitations. To guarantee the
quality of adversarial texts, the maximum MR will
be 0.2 when calculating LASR.

4.2 Model Performance
We first evaluate the model performances on be-
nign texts since defense shouldn’t compromise the
natural generalization of models. As summarized
in Table 1, SC reduces the accuracy of models due
to its own errors. It is observed that RoChBert
achieves relatively high accuracy, which is com-
parable with the original BERT-based models and
ChineseBERT. In some cases, models defended by
RoChBert even outperform the baselines. This is
mainly because the additional phonetic and glyph
features can help model capture semantic infor-
mation in some degree, which has been proved in
ChineseBERT. In addition, the gains on accuracy
also reflect the key impact of data augmentation.

4.3 Robustness Against Attack
Effectiveness. Then, we evaluate the efficacy and
robustness of RoChBert. The results are shown
in Table 2. It is observed that the defend effect
of SC on the target model is not obvious, which
means that when it is combined with the target
model as a whole, the attacker regards them as a
black-box model to conduct attack, and can still
easily generate adversarial texts. ChineseBERT
indeed enhance the robustness compared with orig-
inal models, but the improvement is very limited
while RoChBert brings noticeable reduction on
both UASR and LASR. In the best case, UASR
is decreased by 75.75% when RoChBert is fine-
tuned on RoBERTawwm/ext with THUCNews and
attacked by TextBugger, and LASR is decreased
by 42.86% when it is fine-tuned on BERTwwm with
DMSC and attacked by TextBugger. This indicates
that RoChBert can significantly weaken the at-
tack and enhance robustness of models without
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Model PWWS TextBugger Random

UASR LASR MR UASR LASR MR UASR LASR MR

ChnSetiCorp

ChineseBERT 79.73 40.97 27.22 93.25 42.67 23.64 54.91 3.38 51.23

BERTbase 83.62 67.66 12.96 97.45 69.26 16.12 52.77 8.19 42.85
+SC 82.75 64.86 13.74 96.49 71.25 14.85 54.42 7.56 43.01
+RoChBert 65.18 31.63 29.49 64.45 34.92 20.35 39.49 10.98 37.48

BERTwwm 87.53 56.56 19.86 98.28 64.73 16.89 48.27 6.45 44.91
+SC 84.62 57.42 18.75 97.63 68.60 15.95 50.54 5.59 45.62
+RoChBert 64.42 22.94 41.94 62.24 35.23 19.6 42.31 6.36 44.88

BERTwwm/ext 72.04 42.93 22.21 92.93 53.27 20.16 56.96 5.80 40.44
+SC 75.00 50.53 18.19 90.93 57.59 17.47 57.07 5.91 41.04
+RoChBert 62.75 24.44 37.08 65.74 31.70 23.17 38.45 6.45 44.26

RoBERTawwm/ext 76.46 44.11 23.25 99.78 54.19 21.49 57.58 5.83 44.14
+SC 80.47 52.23 19.62 98.20 59.66 18.26 55.94 6.90 44.00
+RoChBert 65.85 22.69 39.14 54.18 28.57 20.49 38.59 8.41 36.60

DMSC

ChineseBERT 78.76 60.35 16.64 92.20 59.37 18.47 53.30 7.04 48.75

BERTbase 76.70 61.06 15.74 78.75 60.19 13.79 56.31 7.66 46.69
+SC 83.24 63.24 17.87 82.49 63.24 13.54 57.51 6.38 47.25
+RoChBert 68.67 46.70 23.66 36.36 29.22 12.43 44.94 10.13 39.21

BERTwwm 95.66 76.66 13.53 99.67 76.33 13.92 52.88 6.30 43.41
+SC 94.46 74.38 13.66 98.91 77.96 13.07 55.70 7.38 43.59
+RoChBert 64.94 50.00 14.00 44.85 33.47 15.94 46.78 11.91 40.22

BERTwwm/ext 85.52 60.30 17.63 99.79 69.31 16.35 57.51 5.90 49.93
+SC 88.41 63.95 16.98 99.36 72.85 15.36 59.12 6.76 48.85
+RoChBert 75.40 46.31 22.37 40.36 29.98 14.65 37.38 6.87 47.99

RoBERTawwm/ext 69.70 50.76 20.04 83.12 53.90 18.69 52.71 7.79 39.31
+SC 75.54 55.19 18.54 85.82 57.47 17.57 54.87 7.68 40.70
+RoChBert 55.15 28.06 34.80 59.25 35.27 19.52 44.86 7.92 43.98

PWWS TextBugger Random

UASR LASR MR UASR LASR MR UASR LASR MR

THUCNews

71.55 23.44 44.82 69.80 36.23 23.63 78.40 1.13 64.68

81.31 25.64 44.60 58.43 43.21 14.87 80.59 2.56 61.42
80.51 29.18 40.87 59.90 46.02 13.26 79.08 2.55 61.96
66.35 5.11 63.71 9.66 9.10 8.05 51.17 0.81 66.57

73.77 36.27 35.17 78.28 46.93 21.07 74.90 2.67 58.81
76.66 30.19 38.37 72.26 45.45 17.96 73.49 2.97 58.68
76.60 5.19 64.00 13.09 11.15 11.94 45.77 0.72 64.67

79.63 21.29 48.05 86.39 29.99 31.85 78.81 1.74 60.79
82.72 21.98 46.59 79.04 33.54 26.08 79.24 2.76 60.04
66.80 7.89 60.09 13.10 8.80 16.31 51.07 0.61 66.04

72.58 17.02 50.12 81.24 30.27 28.46 79.51 1.22 62.27
81.51 19.41 48.52 77.22 35.55 24.33 79.57 1.23 62.43
59.92 4.68 63.54 5.49 4.88 7.70 59.04 1.83 60.33

OCNLI

62.57 46.22 17.32 73.78 35.27 25.16 38.92 8.38 40.92

58.68 42.29 17.39 65.84 35.95 22.96 40.08 10.06 38.59
56.50 42.38 15.81 65.73 36.08 21.87 38.88 8.81 38.82
43.58 29.73 17.90 48.99 24.21 24.53 36.50 5.65 47.04

56.06 40.42 17.09 64.23 32.54 23.97 36.34 8.03 42.91
55.33 40.68 16.28 63.30 33.43 22.69 36.56 8.68 41.33
50.00 30.18 20.79 50.36 20.32 27.54 39.21 7.05 46.48

62.22 45.56 16.46 69.31 37.08 23.15 40.69 8.61 41.58
61.79 47.70 15.26 69.32 37.10 21.83 43.10 10.74 40.65
51.75 32.75 21.27 54.69 20.23 28.24 39.52 7.45 45.33

66.21 46.02 17.65 80.08 37.09 26.35 40.66 7.01 43.34
65.10 47.31 17.48 79.03 40.14 24.01 41.66 8.83 40.91
60.14 35.11 22.33 51.43 21.57 27.31 36.86 7.70 42.60

Table 2: Model performance against different attacks.

sacrificing their performance. Simultaneously, MR
of adversarial texts generated against RoChBert
is higher, which means that attackers need to mod-
ify more words to deceive RoChBert, and the
generated texts will be harder to comprehend. In
some cases, MR is decreased, this is because the
UASR has dropped significantly, adversaries fail to
attack even if they modify the texts extensively.

Then, we analyze the relation between MR and
ASR by setting the maximum MR from 0.1 to 0.5.
The results of TextBugger attack on THUCNews
are shown in Figure 3. The other results are in
Appendix A.6. The dashed, dotted and solid lines
in the same color represent the target model, the
model protected by SC and RoChBert respec-
tively. It proves that RoChBert retains robustness
against attack facing with the change of MR. Com-
pared with baselines, ASR of models protected by
RoChBert increases slightly as the MR grows, in-
dicating that RoChBert can significantly enhance
model robustness even in adaptive settings.

The above experiments have shown the robust-
ness of RoChBert against known attacks as it will
use the specified attack algorithm during data aug-
mentation. Here we conduct another experiment to
demonstrate RoChBert’s performance against un-
known attack. We leverage TextBugger to generate
adversarial texts and their immediate texts since we
have known that TextBugger is the strongest attack

Attack Dataset UASR LASR MR

PWWS

ChnSetiCorp 64.87 28.06 35.09
DMSC 63.20 27.27 39.72
THUCNews 81.08 6.95 61.63
OCNLI 43.80 30.55 19.79

Random

ChnSetiCorp 41.88 3.48 52.74
DMSC 51.51 7.03 45.53
THUCNews 79.86 1.22 64.72
OCNLI 27.81 8.93 39.42

Table 3: Model performance against unknown attacks.
Target models are BERTbase and training sets are aug-
mented with adversarial texts generated by TextBugger.

among the three attacks as shown in Table 2. And
we assume that using the strongest attack during
data augmentation can strengthen the robustness
of the model against unknown attacks as much as
possible. As shown in Table 3, we can see that both
UASR and LASR have decreased greatly while MR
increases, indicating that when facing unknown at-
tacks, RoChBert still has the ability to defend.
Hence we can add defense to the target model in
advance without knowing the specific adversaries.
Obviously, we can leverage other stronger or multi-
ple attacks during data augmentation.

Generalizability. It is seen from Table 2 that
both the UASR and LASR against each models
protected by RoChBert have a different degree of
decline. All models are commonly used in Chinese
NLP tasks, indicating that RoChBert has good
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Figure 3: Relation between maximum MR and ASR.

Model Acc. UASR LASR MR

BERTbase 93.02 78.75 60.19 13.79
+graph 93.05 71.53 50.32 16.40
+aug. 93.85 68.01 48.01 17.56
+graph+aug. 94.15 73.16 19.36 40.69
+RoChBert 92.75 36.36 29.22 12.43

Table 4: Performance of models enhanced by different
modules against TextBugger attack.

generalizability on other PLMs, and can be applied
on different tasks to defend against various attack.

Efficiency. We assess efficiency of RoChBert
via comparing the samples used in data augmen-
tation module with the traditional AT by taking
the BERTbase fine-tuned on ChnSentiCorp as
an example. For AT, we conduct attack against the
target model with the whole training set and collect
successful adversarial texts as the augmentation
data. RoChBert only uses 25.40%, 17.22% and
16.54% of the training dataset when performing
PWWS, TextBugger and Random attacks respec-
tively, and achieves more robust models than AT. It
proves that the data augmentation in RoChBert is
efficient and effective. In addition, it also indicates
the key impact of multimodal fusion. The complete
results are shown in Appendix A.7.

4.4 Ablation Study

Then we will discuss the effects of different mod-
ules, i.e., adversarial graph and data augmentation.
To observe the gains on adversarial graph, after ob-
taining feature embedding, we simply concatenate

it with pre-trained representation and feed them
into the model. To evaluate the effect of data aug-
mentation, we directly attack the target BERT via
TextBugger and collect the the intermediate and
adversarial texts by taking the BERTbase fine-tuned
on DMSC as an example. The results are shown in
Table 4. Observe that either using adversarial graph
or data augmentation alone can still decrease the
UASR and LASR. Then, we utilize both adversar-
ial graph and data augmentation to defend BERT
against attack, we can see that compared with using
one module alone, UASR rises but LASR drops.
When BERT is protected by RoChBert, we can
obtain the optimal model in general situation with
relative low UASR and LASR. So the two modules
we proposed play important role in strengthening
robustness of models. In addition, the differences
between +graph+aug and +RoChBert demon-
strate that the effect of simply concatenating fea-
ture embedding H1 and pre-trained embedding H2

is relatively limited, which is used in the original
AdvGraph. And transformer in RoChBert makes
two kinds of embedding fully interact with each
other and helps lower the UASR significantly.

(a) (b)

(c) (d)

Figure 4: Representation Visualization. (a) is benign
texts on BERTbase. (b) is adversarial texts on BERTbase.
(c) is adversarial texts on ChineseBERT. (d) is adversar-
ial texts on BERTbase+RoChBert.

4.5 Representation Visualization
To further explore the robustness of different mod-
els, we project representation vectors to two dimen-
sional vectors through T-SNE. Taking BERTbase
on DMSC against TextBugger as an instance, we
choose the same 500 samples. In Figure 4(a), the
decision boundary for benign texts are quite clear.
However in Figure 4(b), with the addition of ad-
versarial texts, the representations are entangled
together, making it difficult to distinguish between
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the two kinds of data. As shown in Figure 4(c),
ChineseBERT does not significantly improve this
situation. After being protected by RoChBert,
most of the adversarial texts are effectively sepa-
rated in Figure 4(d), which proves that RoChBert
exhibits impressive robustness against attacks.

5 Conclusion

In this paper, we propose RoChBert, a
lightweight defense method to strengthen robust-
ness for pre-trained Chinese BERT-based mod-
els. First, we update the current adversarial graph
and learn the feature representation of characters
based on Chinese pronunciation and glyph. Then
RoChBert fuse semantic and feature embeddings
to fine-tune the target model with specified down-
stream NLP task, e.g., classification. To enhance fu-
sion, we further introduce an augmentation method
inspired by curriculum learning. We evaluate
RoChBert against several attack algorithms, the
results show that RoChBert greatly strengthen
the model robustness without compromising their
normal generalization. In addition, RoChBert
can be used to improve most Chinese BERT-based
models and it is computationally efficient.

Limitations

RoChBert focuses on solving the perturbations
that substitutes target character with the ones shar-
ing similar pronunciation or glyph. In fact, there
are other perturbations such as substituting with
synonyms, splitting Chinese characters and insert-
ing special characters. In most of the Chinese
BERT models, characters are often seen as the
basic unit of operations. So compared with word-
based models, e.g., TextCNN and LSTM, it will be
harder for adversaries to attack BERT models suc-
cessfully only by synonyms substitution. Besides,
such kind of perturbations can be easily defended
by adversarial training. And the other perturbations
are limited, they can be filtered by rules easily. For
completeness of the work, we will include these
perturbations into the experiments in future work.
In addition, there are not as many types of Chinese
datasets as English ones, and the quality is uneven.
We are temporarily unable to verify RoChBert on
more tasks. In the future, we will consider applying
our work on other tasks.

Ethics Statement

In our experiments, all adversarial texts are gener-
ated from the public benchmark datasets via open-
source adversarial attack algorithms. These gener-
ated adversarial texts are used only for the purpose
of enhancing the robustness of target models and
will not be used for any illegal purposes or unsuit-
able intentions. We will also open source the code
of our RoChBert later to aid those users and re-
searchers involved in pre-trained language models
in improving the robustness of their models and
thus mitigate the potential physical threats brought
by adversarial attacks.
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A Appendix

A.1 Details of Datasets
The datasets we used to evaluate RoChBert are
shown in Table 5.

• ChnSentiCorp: a binary sentiment classifi-
cation dataset containing 9,600/1,200/1,200
texts in train/dev/test datasets respectively.
The content of these texts is the reviews of
product and hotel. And their labels are posi-
tive or negative.

• DMSC: a Chinese movie review datasets
released by Kaggle. We follow Li et al.
(2021) to sample the original datasets. In
our datasets, there are 16,000/2,000/2,000
texts with positive or negative labels in
train/dev/test datasets.

• THUCNews: a news multi-classification
dataset with a total of fourteen categories.
Like (Zhang et al., 2020b), we select five of
them for experiments. In our dataset, there
are 12,000/1,500/1,500 texts in train/dev/test
datasets.

• OCNLI: a Chinese natural language inference
dataset from CLUE Benchmark (Xu et al.,
2020). Each sample contains two sentences,
premise and hypothesis. We count the aver-
age length of the texts separately for these
two parts. And the label (Entailment, Con-
tradiction, or Neutral) represents the relation
between premise and hypothesis. There are
9,985 and 2,950 samples in train and dev
datasets. As the samples in test datasets don’t
have labels, we use the dev datasets to conduct
robustness evaluation.

A.2 Details of Attack algorithms
we utilize three widely used attacks, i.e.,
PWWS (Ren et al., 2019), TextBugger (Li et al.,
2019) and random attack in the black-box setting
to evaluate the robustness of RoChBert. In order
to adapt the attack algorithms to Chinese text, we
have made some modifications to them.

• PWWS: It first generates a candidate set for
each word, including the synonym of the word
and a similar name entity, and then replaces
the words to find the optimal candidate word
according to the confidence drop. The next
step is to determine which word in the text

should be replaced preferentially. It still uses
confidence drop to evaluate the priority. In
order to make PWWS generate Chinese adver-
sarial texts, we changed the candidate words
from the original synonyms and name entities
to phrases composed of Chinese phonetic and
glyph-similar words.

• TextBugger: It first segments the text into
individual sentences, and it ranks the impor-
tance of the sentences by querying the target
model with single sentence in turn. Then the
words in the sentence are removed one by
one, and the drops of confidence are used to
determine the importance of the words. In
order to make TextBugger generate Chinese
adversarial texts, we only keep one of its bug
generation methods, Word Substitution, and
the candidate words are phrases composed of
Chinese phonetic and glyph-similar words.

• Random Attack: It is the baseline method
compared with other two attack algorithms. It
randomly selects words in the text and use the
candidate words to substitute the original one.

In general, we use Chinese characters with similar
glyph or pronunciation to form candidate words
(there are at most 40 candidate words). And after
locating the important parts through the correspond-
ing attack algorithm, we select suitable candidate
words to replace the original words. Specifically,
we use the same perturbation strategies in both data
augmentation and robustness evaluations.

A.3 Details of epsilonmax

The details of εmax we used in experiment are
shown in Table 6.

A.4 Results of Attacking Hypothesis in
OCNLI

A.4.1 Model Performance
The results are presented in Table 7. We can see
that ChineseBERT outperforms other models on
OCNLI. The data augmentation does affects the
accuracy in some degree, especially the models us-
ing hypothesis examples generated by PWWS and
TextBugger algorithms. But in some cases, models
defended by RoChBert can help models improve
accuracy on benign texts, which is consistent with
the results of other tasks and datasets. In addition,
SC reduces the accuracy of models due to its own
errors.
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Dataset Task Label Train Dev Test Length

ChnSentiCorp Sentiment Analysis 2 9,600 1,200 1,200 108
DMSC Sentiment Analysis 2 16,000 2,000 2,000 64
THUCNews Text Classification 5 12,000 1,500 1,500 189
OCNLI Natural Language Inference 3 9,985 2,950 - 24/11

Table 5: Overview of datasets.

Dataset Attack Algorithm
PWWS TextBugger Random

ChnSentiCorp 0.45 0.45 0.45
DMSC 0.45 0.45 0.45

THUCNews 0.3 0.3 0.3
OCNLI 0.3 0.3 0.1

Table 6: The εmax we used in experiment.

Model OCNLI

ChineseBERT 73.20

BERTbase 71.57
+SC 70.57

+RoChBert (PWWS) 68.34
+RoChBert (TextBugger) 68.48

+RoChBert (Random) 70.52

BERTwwm 70.33
+SC 69.08

+RoChBert (PWWS) 69.41
+RoChBert (TextBugger) 67.87

+RoChBert (Random) 70.30

BERTwwm/ext 71.16
+SC 70.68

+RoChBert (PWWS) 69.29
+RoChBert (TextBugger) 71.27

+RoChBert (Random) 71.56

RoBERTawwm/ext 71.29
+SC 70.88

+RoChBert (PWWS) 70.07
+RoChBert (TextBugger) 70.30

+RoChBert (Random) 71.61

Table 7: Model performances on benign texts.

A.4.2 Robustness Against Attack
The results of attacking hypothesis in OCNLI are
shown in Table 8. It proves that RoChBert can
enhance the robustness of BERT-based models. We
can see that RoChBert is not as effective in attack-
ing hypothesis as it is on other tasks and datasets.
This may be because the length of the hypothesis
sentences is very short, and modifying a small num-
ber of characters will have a great impact on the
original embedding, so it is easy to attack success-
fully.

A.5 Representation Visualization
We add the representation visualization results
on other models and their corresponding vari-

ant models protected by RoChBert in Figure 5.
We still use models trained on DMSC dataset
against TextBugger attack and choose the same
500 samples. Obviously, most of the adversar-
ial texts are effectively separated after being de-
fended by RoChBert, which once again proves
that RoChBert significantly strengthen models’
robustness and can be easily exploited on other
pre-trained language models.

(a) (b)

(c) (d)

(e) (f)

Figure 5: Representation with different models. (a)
is adversarial texts on BERTwwm. (b) is adver-
sarial texts on BERTwwm+RoChBert. (c) is ad-
versarial texts on BERTwwm/ext. (d) is adversarial
texts on BERTwwm/ext+RoChBert. (e) is adversarial
texts on RoBERTawwm/ext. (f) is adversarial texts on
RoBERTawwm/ext+RoChBert.

A.6 Impact of Modification Rate
In Figure 6, 7, 8 and 9 we list all the experi-
ment results about the impact of modification rate
with models trained on ChnSentiCorp, DMSC,
THUCNews and OCNLI against PWWS, TextBug-
ger and Random attacks.

We can see that as the allowed modification rate
increases, ASR is gradually growing. And the ASR
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Model PWWS TextBugger Random

UASR LASR Modi. UASR LASR Modi. UASR LASR Modi.

OCNLI

ChineseBERT 99.05 54.86 21.23 99.86 48.65 22.72 79.19 10.27 48.84

BERTbase 94.77 52.34 20.64 98.76 47.52 22.71 70.80 11.98 41.21
+SC 95.24 53.15 20.10 98.32 48.53 22.25 71.61 10.07 43.10

+RoChBert 97.83 47.39 24.07 97.95 36.40 26.56 70.00 10.97 46.05

BERTwwm 96.34 51.41 21.26 99.44 45.92 23.13 75.35 7.75 48.95
+SC 97.30 55.62 20.33 99.72 49.36 22.47 76.81 11.81 46.00

+RoChBert 97.99 49.43 22.76 99.86 40.11 25.64 73.45 10.25 47.99

BERTwwm/ext 97.36 51.11 22.09 99.86 45.14 23.44 78.47 8.75 50.52
+SC 97.07 54.95 21.06 99.58 49.09 21.73 79.78 8.65 48.14

+RoChBert 96.25 49.64 21.36 99.58 40.36 25.84 75.21 9.10 52.19

RoBERTawwm/ext 96.57 51.92 21.84 99.18 45.19 23.83 79.26 8.93 51.04
+SC 96.83 52.97 21.04 99.17 47.17 22.34 81.24 9.93 49.74

+RoChBert 96.03 52.19 22.30 99.17 40.33 25.77 71.91 13.16 42.64

Table 8: Model performance against different attacks.
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(a) PWWS Attack on ChnSentiCorp
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Figure 6: Relation of modification rate and ASR on ChnSentiCorp.
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(a) PWWS Attack on DMSC
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(b) TextBugger Attack on DMSC
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Figure 7: Relation of modification rate and ASR on DMSC.
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(a) PWWS Attack on THUCNews
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(b) TextBugger Attack on THUCNews
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Figure 8: Relation of modification rate and ASR on THUCNews.
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(a) PWWS Attack on OCNLI-premise
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(d) PWWS Attack on OCNLI-hypothesis
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(f) Random Attack on OCNLI-hypothesis

Figure 9: Relation of modification rate and ASR on OCNLI.
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Models Attack UASR LASR MR Used Samples Percentage

BERTbase

PWWS 83.62 67.66 12.96 0 0%
TextBuuger 97.45 69.26 16.12 0 0%

Random 52.77 8.19 42.85 0 0%

+Adversarial
Training

PWWS 70.67 50.27 19.02 9600 100%
TextBugger 96.36 64.09 16.69 9600 100%

Random 36.18 16.24 30.08 9600 100%

+RoChBert
PWWS 65.18 31.63 29.49 2438 25.40%

TextBugger 64.45 34.92 20.35 1653 17.22%
Random 39.49 10.98 37.48 1588 16.54%

Table 9: Efficiency of traditional adversarial training and RoChBert.

of the models with RoChBert have the least rise,
which proves that even in different settings, the
models defended by RoChBert still significantly
outperform the baselines.

A.7 Efficiency
To assess the efficiency of RoChBert, we take the
BERTbase fine-tuned on ChnSentiCorp dataset
as an example and compare RoChBert with the
traditional adversarial training. For adversarial
training method, we use attack algorithms on the
target model with all the training dataset and collect
the successful ones as the augmentation dataset.
The results are presented in Table 9. It shows
that RoChBert only uses 25.40%, 17.22% and
16.54% of the training dataset when conducting
PWWS, TextBugger and Random attacks respec-
tively. Even the adversarial training has used all the
training dataset, RoChBert still achieves more ro-
bust models. It proves that the data augmentation
method used in RoChBert is efficient and effec-
tive. It also indicates the key impact of multimodal
fusion.
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