
Findings of the Association for Computational Linguistics: EMNLP 2022, pages 3262–3272
December 7-11, 2022 ©2022 Association for Computational Linguistics

Improving English-Arabic Transliteration with Phonemic Memories

Yuanhe Tian♠♥, Renze Lou♡, Xiangyu Pang♢

Lianxi Wang♣, Shengyi Jiang♣, Yan Song♠†

♠University of Science and Technology of China ♥University of Washington
♡Temple University ♢China Merchants Securities

♣Guangdong University of Foreign Studies
♥yhtian@uw.edu ♡renze.lou@temple.edu ♢xypang11@foxmail.com

♣wanglianxi@gdufs.edu.cn ♣jiangshengyi@163.com ♠clksong@gmail.com

Abstract

Transliteration is an important task in natural
language processing (NLP) which aims to con-
vert a name in the source language to the tar-
get language without changing its pronuncia-
tion. Particularly, transliteration from English
to Arabic is highly needed in many applica-
tions, especially in countries (e.g., United Arab
Emirates (UAE)) whose most citizens are for-
eigners but the official language is Arabic. In
such a task-oriented scenario, namely translit-
erating the English names to the corresponding
Arabic ones, the performance of the translitera-
tion model is highly important. However, most
existing neural approaches mainly apply a uni-
versal transliteration model with advanced en-
coders and decoders to the task, where limited
attention is paid to leveraging the phonemic as-
sociation between English and Arabic to further
improve model performance. In this paper, we
focus on transliteration of people’s names from
English to Arabic for the general public. In do-
ing so, we collect a corpus named EANames by
extracting high quality name pairs from online
resources which better represent the names in
the general public than linked Wikipedia en-
tries that are always names of famous people).
We propose a model for English-Arabic translit-
eration, where a memory module modeling the
phonemic association between English and Ara-
bic is used to guide the transliteration process.
We run experiments on the collected data and
the results demonstrate the effectiveness of our
approach for English-Arabic transliteration.1

1 Introduction

With the rapid development of globalization, the
number of people working and living cross coun-
tries has been significantly grown in the past

†Corresponding author.
1The source of the paper is available under https://

github.com/synlp/EATrans.

decades. Therefore, there are increasing needs of
transliterating the name of the migrants from their
original language to the local language, especially
for countries such as United Arab Emirates (UAE),
whose majority citizens are migrants coming from
foreigner countries such as India, Pakistan, and
Philippines, etc. In these cases, a well-performing
model to transliteration the names of the general
public from one language (e.g., English) to the
other (e.g., Arabic) is highly needed.

Conventional studies use grapheme-based,
phoneme-based, and hybrid approaches to learn
the mapping of the features and phonemes be-
tween the source and target languages (Arbabi
et al., 1994; Knight and Graehl, 1998; Li et al.,
2004; Habash et al., 2007; Pervouchine et al.,
2009; Ravi and Knight, 2009; Kumar and Kumar,
2013). Recently, end-to-end neural approaches are
also applied to transliteration tasks (Finch et al.,
2016; Hadj Ameur et al., 2017; Upadhyay et al.,
2018; Kundu et al., 2018; Moran and Lignos, 2020;
Alkhatib and Shaalan, 2020) and achieve good per-
formance. Among these studies, most neural ap-
proaches focus more on using advanced encoders
and decoders (such as RNN, GRU, LSTM, and
Transformer (Vaswani et al., 2017)) following the
standard sequence-to-sequence paradigm, where
less attention is paid to leverage the phonemic in-
formation of the source and target languages to
improve model performance, especially for translit-
eration from English to Arabic.

In this paper, we focus on transliteration from
English to Arabic2 for the general public. To train
a model, it is intuitive to directly use existing cor-
pora for named entity transliteration (Rosca and
Breuel, 2016; Chen and Skiena, 2016; Merhav and

2In this paper, we follow previous studies to focus on the
transliteration to modern standard Arabic (MSA) since it is
used in formal occasions where name transliteration is needed.
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Ash, 2018; Chen et al., 2018; Benites et al., 2020;
Murikinati et al., 2020). However, many of those
corpora are not public available and most of them
are constructed by extracting the named entity pairs
from linked Wikipedia entries without distinguish-
ing different types of named entities. Therefore,
the instances from the other types of named entities
(e.g., locations) could introduce noise to a model
that is designed mainly for name transliteration.
More importantly, since the names in Wikipedia are
more likely to come from famous people, they may
fail to represent the names in the general public. As
a result, models trained with existing corpora may
not be satisfying in real applications (e.g., translit-
erate a migrant’s name from English to Arabic).
Therefore, we collect a corpus named EANames for
English-Arabic transliteration. The training and de-
velopment data of EANames are obtained by crawl-
ing English names from the profile of LinkedIn3

users who are working in a representative Arabic
speaking contrary, i.e., UAE, and the corresponding
Arabic ones are obtained from well-known translit-
eration systems and human annotation. The test
set contains 3,000 English-Arabic name pairs ex-
tracted from large English-Arabic parallel news
corpus with their quality justified by well-known
transliteration systems and human annotation.

Besides, we propose a neural sequence-to-
sequence model following the encoder-decoder
paradigm for English-Arabic transliteration, which
is enhanced by phonemic memories that are de-
signed to memorize the phonemic association be-
tween English and Arabic names and thus guide the
transliteration process. Specifically, for each input
English letter, we firstly associate it with the phone-
mic symbols extracted from a phoneme inventory
constructed based on the phonetic systems of En-
glish and Arabic. Next, in the memory module, we
weigh the associated symbols according to their
contribution to the transliteration process and incor-
porate the weighed information into the backbone
encoder-decoder model. We run experiments with
different models on EANames, where our model
outperforms strong baselines and achieves the bast
results under different metrics on the test set.

2 The EANames Corpus

Generally, it is significantly important to train and
evaluate models on data that is similar to the ones
in real applications. However, most public avail-

3https://www.linkedin.com/

Figure 1: The ratio of the number of newly crawled
English names and the size of the crawled datasets with
respect to the crawling time.

able transliteration corpora are constructed from
associated Wikipedia entity entries in different lan-
guages and thus are more representative to names
of famous people rather than the general public.
Therefore, instead of using existing corpora for
English-Arabic transliteration, we collect a corpus
named EANames with English names and their Ara-
bic counterparts collected from online resources
and human annotation.

In doing so, we use different approaches to ex-
tract training and test data because they have vari-
ous requirements on the quantity and quality. Gen-
erally, the quantity of training data is much more
important, where some noises in it would not sig-
nificantly hurt the performance of a model trained
on it; on the contrary, test data requires more on the
quality with limited tolerance on mislabeled data.
In the following text, we illustrate our approaches
to extract the training and test data and finally re-
port the statistics of the collected EANames.

2.1 Training Data Collection
Generally, a larger training data results in a bet-
ter performing model, since it reduces the rate of
unseen instances during the test time. Therefore,
to train a well performing model, it is important
to collect as many English names, as well as their
Arabic transliterations, as possible. Online social
platform could be a good resource to collect En-
glish names, especially the platforms for job hunt-
ing on which users are more likely to post their
real names. Therefore, for the training data, we col-
lect English names from online resources and then
use machine translation/transliteration systems to
obtain the corresponding Arabic names.

Raw Data Collection We use LinkedIn for train-
ing data collection. As one of the world-famous
online platforms primarily used for registered users
to build networks with others, LinkedIn allows job
seekers to post their resumes and employers to post
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Crawled 117,434

Auto Annotated 68,553
Human Annotated 36,668

Final 105,221

Table 1: The statistics of the unique English name col-
lected from LinkedIn users from UAE. “Crawled” refers
to the number of English names crawled from LinkedIn.
“Auto Annotated” and “Human Annotated” mean the the
number of English names with silver standard Arabic
transliteration obtained from the transliteration system
voting and human annotation, respectively. “Final” is
the final number of English names with silver standard
Arabic transliteration.

jobs, where registered users create their profiles
including their names, affiliations, regions, experi-
ence, etc. We crawl the English names of the regis-
tered users in LinkedIn from their profiles. Since
most needs of English-Arabic transliteration lo-
cate in the Mideast countries, we use United Arab
Emirates (UAE) as a representative country and
mainly crawl English names from the users who
are working in UAE. When crawling, we split the
crawled name with more than one word into multi-
ple names, where each resulting English name cor-
responds to a single word. To monitor the progress
of crawling, we compute the ratio of the number of
newly crawled names and the size of the crawled
dataset. We stop crawling when the ratio converge
to a low degree, which means most widely used
English names have been crawled. The daily ratio
of the crawled names is visualized in Figure 1. The
number of the unique English names crawled from
LinkedIn users from UAE is reported in the first
row (i.e., “Crawled”) of Table 1.

Data Annotation To obtain the Arabic transliter-
ation of the crawled datasets, we use several exist-
ing machine translation/transliteration systems to
transliterate the crawled English names into Arabic
and then ask them to vote for the best candidate. In
practice, we use the three systems, namely, Google
translation, Bing translation, and Bing translitera-
tion, and selected the candidate agreed by at least
two systems as the sliver standard for Arabic name
transliteration.4 Through this process, we obtain
the auto-annotated silver standards for some of the

4We use the Google Translation API provided by Google
Could (https://cloud.google.com/) and Microsoft Trans-
lation and Transliteration API provided by Microsoft Azure
(https://azure.microsoft.com/).

Agreement (Cohen’s kappa) 0.934

Table 2: The inter-annotator agreement (Cohen’s kappa)
of two annotators on the shared data.

crawled English names, where the statistics are re-
ported in the second row (i.e., “Auto Annotated”) in
Table 1. For the remaining crawled English names
without silver standard, we asked two human anno-
tators who can speak English and Arabic to anno-
tated whether the Arabic transliteration of the Bing
transliteration system5 could be used as the sliver
standard (in other words, whether the Arabic name
is similar to the original English name in terms of
their pronunciation). In doing so, we split the data
into two groups where 10% of them are shared by
both annotators. For the shared data, if there are
disagreements, the annotators are asked to discuss
and resolve it. Table 2 reports the inter-annotator
agreement (Cohen’s kappa) with the high kappa
confirms the high quality of the annotation. The
number of Arabic names that are annotated to be
used as the silver standard is reported in the third
row (i.e., “Human Annotated”) of Table 1.

Finally, we collect the English-Arabic name
pairs annotated by transliteration system voting
and human annotation and obtain 105,221 name
pairs which are reported in the last row of Table 1.

2.2 Test Data Collection
The quality of the test set is significantly impor-
tant, but it is remarkably expensive to create a test
set by manually annotating Arabic names with the
given English ones from stretch. Therefore, we
propose to automatically extract English-Arabic
name pairs from existing English-Arabic parallel
corpus, which contains more English and Arabic
name pairs from people in the general public than
linked Wikipedia entries. The details of the raw
parallel corpus and the extraction process are elab-
orated in the following text.

The Raw Parallel Corpus We use the ISI Arabic-
English Automatically Extracted Parallel Text cor-
pus6 to extract English-Arabic name pairs. The
corpus contains news articles published by Xinhua
News Agency and Agence France Presse and thus
are more likely to contain names from the general
public. In addition, the raw corpus is significantly

5We use the Arabic transliteration from Bing transliteration
system because it is originally designed for transliteration and
thus is more likely to generate a plausible transliteration.

6https://catalog.ldc.upenn.edu/LDC2007T08/
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large, where there are more than 1M English sen-
tences paired with a parallel Arabic sentence. As a
result, the corpus is an appropriate choice for name
pair extraction.

English-Arabic Name Pair Extraction In this
paper, we use an existing named entity tagger to
extract English and Arabic names from the paral-
lel corpus. Specifically, we employ the English
and Arabic named entity taggers from Stanford
CoreNLP Toolkits7 (Manning et al., 2014). The
detailed process to extract English-Arabic name
pairs from the parallel text is described as follows.

Firstly, for each English-Arabic sentence pair in
the parallel corpus, we use the named entity taggers
to extract the person’s name from the English and
Arabic sentences. If exactly one person’s name is
recognized in both English and Arabic sentences,
we collect the names from the sentences and regard
them as an English-Arabic name pair. Herein, we
exclude sentence pairs where the taggers extract
multiple person’s names from either sentence, and
thus we do not need to annotate the exact mappings
between multiple English and Arabic names. This
step results in 74,772 English-Arabic name pairs.

Next, since generally, one word in an English
name corresponds to one word in an Arabic name
(and vice versa), we filter out English-Arabic name
pairs where the number of words on the Arabic side
does not match the number of words on the English
side. For each English-Arabic name pair, we also
split the pair into multiple English-Arabic name
pairs if there are more than one word in the English
and Arabic name. For example, an English-Arabic
name pair (Ahmad Hussein, ��md �sy�) with
two words on both sides is split into two Arabic-
English name pairs, i.e., (Ahmad, ��md) and (Hus-
sein, �sy�) for the first and last name, respec-
tively. Then, we remove the redundant English-
Arabic name pairs and obtain 19,921 name pairs.

Afterwards, to further confirm the Arabic
transliteration of the English names, we run afore-
mentioned three machine translation/transliteration
systems, i.e., Google translation, Bing translation,
and Bing transliteration, to transliterate the En-
glish names in the pairs into the corresponding
Arabic ones. We keep the English-Arabic name
pairs where the transliteration of all the three ma-
chine translation/transliteration systems matches
the Arabic name in the pair and ask a native Arabic

7We use the latest version 4.4.0 downloaded from https:
//stanfordnlp.github.io/CoreNLP/.

Train Dev Test

# of English-Arabic name pairs 94,688 10,522 3,000

Max length of English names 24 18 15
Max length of Arabic names 33 23 15

Min length of English names 2 2 2
Min length of Arabic names 2 2 2

Avg. length of English names 6.9 7.0 6.4
Avg. length of Arabic names 6.1 6.2 5.7

Table 3: The statistics of the English and Arabic name
pairs in the train, dev, and test sets of EANames. The
length of names is based on the number of letters.

speaker (who are also able to speak English) to
double-check the resulting English-Arabic name
pairs. Finally, we obtain a corpus with 3,000 En-
glish names with their Arabic transliteration.

2.3 The Statistics of EANames

To summarize, EANames contains a large number
of English-Arabic name pairs, where the training
data of EANames is relatively large and the test
data is of high quality since the test name pairs are
extracted by well performing named entity taggers
with the Arabic transliterations further confirmed
by well-known machine transliteration systems and
human annotators. Furthermore, since all names
are extracted from online resources, they are more
representative for the general public than the names
extracted from linked Wikipedia entries, which are
usually names of famous people. In experiments,
we randomly sample 10% name pairs from all train-
ing data and use them as the development set. The
statistics of the final training, development, and test
sets in EANames are reported in Table 3, where the
length of names is based on the number of English
and Arabic letters.

3 The Approach

In this paper, we propose a neural model for translit-
eration from English to Arabic, where the architec-
ture is illustrated in Figure 2. Overall, our approach
follows the sequence-to-sequence paradigm for text
generation, where phonemic memories are pro-
posed and added on the top of every encoder layer
to enhance the model performance by modeling
the phonemic information extracted from a phone-
mic inventory V . At the time step t, we denote the
input English name as X = x1 · · ·xi · · ·xn with
n letters and the existing output Arabic name as
Yt−1 = y1 · · · yt−1. Therefore, the object of our
transliteration model is to predict the next Arabic
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Figure 2: The overall architecture of the proposed model following the sequence-to-sequence paradigm. The
proposed phonemic memories is added on the top of every encoder layer, where the phonemic information
associated with each input letter is weighed and incorporated into the transliteration process.

letter ŷt through

ŷt = fd (M (fe (X ) ,V) ,Yt−1) (1)

where fd and fe are standard decoder and encoder,
respectively, and M stands for the proposed mem-
ory module. In the following text, we first illustrate
the process to extract the phonemic information
of each input letter. Then we introduce the mem-
ory module. Finally elaborate the transliteration
process with the phonemic memories.

3.1 Phonemic Information Extraction
In the conventional phoneme-based approaches for
transliteration, the word in the source language
is firstly converted into a sequence of universal
phonemic symbols (e.g., the international phonetic
alphabet (IPA)) to represent its sound in the source
language. Then, the universal phonemic symbols
are modified to represent the sounds in the target
language and finally converted into the word in the
target language accordingly. Particularly, for the
transliteration from English to Arabic, Alshuwaier
and Areshey (2011) proposed a rule-based ap-
proach which firstly maps an English word to its
universal phonemic symbols based on the Carnegie
Mellon University pronouncing dictionary8 (CMU-
Dict), then converts the phonemic symbols into
the diacritized Arabic phonemes according to a

8http://www.speech.cs.cmu.edu/cgi-bin/cmudict

phoneme set that illustrates the rules for conver-
sion, and finally transforms the diacritized Arabic
phonemes to the undiacritized form. Motivated by
such process, in our approach for Arabic transliter-
ation, we propose to leverage the phonemic infor-
mation in the phoneme set proposed by Alshuwaier
and Areshey (2011), so as to learn the phonemic
association between English and Arabic.

Specifically, we firstly use the universal phone-
mic symbols in the phoneme set9 as the phonemic
inventory10 V in our approach. Next, for each in-
put English letter xi and each phonemic symbol
s ∈ V , we compute the pointwise mutual informa-
tion (PMI) score of them by

PMI (xi, s) = log
p(xi, s)

p(xi)p(s)
(2)

where p(xi) and p(s) represent the probability of
the English letter xi and the phonemic symbol s
in CMUDict, respectively, and p(xi, s) denotes the
probability that xi appears in an English word and
s is in the corresponding transcription. Herein,
a high PMI score indicates that the letter xi and
the phonemic symbol s co-occur a lot in terms of
the writing and the corresponding pronunciation,
respectively. Therefore, phonemic symbols with
higher PMI are more likely to provide useful phone-

9See Table 2 in Alshuwaier and Areshey (2011).
10There are 41 distinct phonemic symbols in the inventory.
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Letter Phonemic Symbols

A AE0 AA0 EY0 AH0 AW0
D D OY0 EY0 AY0 IH0
I AY0 NG IH0 ZH IY0
Q W K EY0 EH0 UH0
W W ER2 AW0 DH HH
Y OY0 OY1 IY0 Y AY0

Table 4: An illustration of the top 5 phonemic symbols
with the highest PMI scores for some example English
letters. The phonemic symbols are based on CMUDict.

mic information for transliteration. Then, for each
xi we rank the phonemic symbols according to
their PMI scores. Afterwards, we select the top m
phonemic symbols and associate them (denoted as
si,1 · · · si,j · · · si,m) with xi. For reference, Table
4 illustrates the top 5 phonemic symbols of some
example English letters. Finally, we feed the phone-
mic symbols into the phonemic memories to guide
the transliteration process.

3.2 Phonemic Memories
To leverage the associated phonemic symbols of xi,
one straightforward approach is to compute the av-
erage of their representations and concatenate the
resulting vector with the hidden vector of xi. How-
ever, various phonemic symbols may have their
distinct contribution in different contexts. Consider
that memories have been demonstrated to be effec-
tive in encoding and weighing different features
in many natural language processing tasks (Miller
et al., 2016; Nie et al., 2020; Tian et al., 2020a,
2021; Jain and Lapata, 2021; Chen et al., 2021;
Tandon et al., 2022; Tian et al., 2022), we propose
to use memories to leverage the phonemic sym-
bols where different weights are assigned to the
associated phonemic symbols so as to distinguish
their contribution on the transliteration process and
leverage them accordingly.

In doing so, for each word xi, we firstly map
every si,j to its corresponding memory vector ei,j .
Next, for the l-th (1 ≤ l ≤ L, L is the total num-
ber of encoder layers) encoder layer, we obtain its
output hidden vector h(l)

i for xi and compute the
weight a(l)i,j for si,j by

a
(l)
i,j =

exp
(
ei,j · h(l)

i

)

∑m
j=1 exp

(
ei,j · h(l)

i

) (3)

where · denotes the inner production of two vectors.

Hyper-parameters Values

Learning Rate 1e− 4,2e− 4, 5e-4
Warmup Rate 0.06,0.1
Dropout Rate 0.1
Beam Size 8, 10
Batch Size 8, 16, 32

Table 5: The hyper-parameter values tested when tuning
our models, and the ones used in our final experiments
are in boldface.

Then, we apply the weight ai,j to the corresponding
phonemic symbol and compute the weighted sum
of the phonemic information (denoted by o

(l)
i ) by

o
(l)
i =

m∑

j=1

a
(l)
i,jei,j (4)

Afterwards, we concatenate o(l)i with h
(l)
i to obtain

the phonemic enhanced representation and feed the
resulting vector to a fully connected layer

h̃
(l)
i = σ

(
W(l) ·

(
o
(l)
i ⊕ h

(l)
i

)
+ b(l)

)
(5)

where σ stands for the ReLU activation function,
⊕ denotes the vector concatenation operation, W(l)

and b(l) are trainable weight matrix and bias vector,
respectively, and h̃

(l)
i is the output of the memory

module and is fed into the decoder and the next
encoder layer following the standard process.

3.3 Transliteration with Phonemic Memories
Overall, our transliteration model follows the
encoding-decoding paradigm, where a multi-layer
encoder and a multi-layer decoder are used and
the memory module is added on the top of every
encoder layer. Specifically, in the encoder, the
l-th layer f (l)

e takes output h̃(l−1)
1 · · · h̃(l−1)

n of the
memory module at the (l-1)-th layer (for the first en-
coder layer, it takes the embedding of the input let-
ter sequence) and compute the output h(l)

1 · · ·h(l)
n

following the standard encoding process (e.g., us-
ing multi-head attentions in a transformer-based
encoder), which is formally written as

h
(l)
1 · · ·h(l)

n = f (l)
e

(
h̃
(l−1)
1 · · · h̃(l−1)

n

)
(6)

Then, h(l)
1 · · ·h(l)

n are fed into the memory mod-
ule to obtain the phonemic enhanced representa-
tion h̃

(l)
1 · · · h̃(l)

n , which are then fed into the next
encoder layer and the l-th decoder layer. In the
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Models Dev Test
MRR ACC F-score MAP MRR ACC F-score MAP

Lookup Table - 0.00 - - - 46.10 - -

LSTM 63.34 60.91 65.43 85.35 91.33 89.90 92.36 98.25
+ M 64.55 61.95 67.09 87.21 91.94 90.87 93.13 98.45

Transformer 64.18 61.68 67.01 86.97 91.95 90.97 93.26 98.49
+ M 65.67 62.50 68.28 87.94 93.34 92.11 95.04 98.90

Table 6: Experimental results of different models with LSTM and Transformer as the encoder and decoder on the
development and test set of EANames. “+ M” denotes our approach with the memory module. “Lookup Table” is
an approach that uses the training set as a lookup table and makes predictions by searching the corresponding Arabic
transliteration of the input English name in inference. We only report the accuracy of this approach for reference.

decoder, it takes the existing output Yt−1, as well
as the output of the memory module in all layers,
so as to predict the current letter ŷt in the target
language through the standard decoding process.
Therefore, the decoding process is formalized as

ŷt = fd

(
Yt−1, H̃

(1), · · · , H̃(L)
)

(7)

where H(l) = h̃
(l)
1 · · · h̃(l)

n (1 ≤ l ≤ L) denotes the
sequence of the phonemic enhanced representation
obtained from the memory module in the l-th layer.

4 Experiments

4.1 Settings

Since neural models have achieved state-of-the-art
performance in many natural language processing
tasks (Han et al., 2018; Devlin et al., 2019; Rad-
ford et al., 2019; Tian et al., 2020b; Lewis et al.,
2020; Diao et al., 2020; Raffel et al., 2020; Qin
et al., 2021; Diao et al., 2021; Song et al., 2021),
including machine transliteration/translation, we
try two well-known models, namely, LSTM and
Transformer (Vaswani et al., 2017), for the English-
Arabic transliteration task. For LSTM and Trans-
former models, we use two layers for encoding
and another two layers for decoding. The hidden
vector for each LSTM layer is set to 512. For
Transformer, we follow the convention in most ex-
isting Transformer-based models, where each layer
uses 768 dimensional vectors with 12 heads. The
trainable parameters in all models are randomly
initialized and updated during training. For other
hyper-parameters, we report them in Table 5. We
tried all combinations of them and used the ones
(highlighted in boldface) that achieve the best per-
formance on the development set in the final exper-

iments. All models are performed on an NVIDIA
Tesla V100 GPU with 16G memory.

For evaluation, we use four metrics following
previous studies (Song and Kit, 2010; Kumaran
et al., 2010; Chen et al., 2018), namely, the mean
reciprocal rank (MRR), the top-1 accuracy (ACC),
the top-1 mean F-score (F-score), and mean aver-
age precision (MAP).11

4.2 Overall Results
We run experiments with LSTM and Transformer
with and without our memory module (i.e., M)
on the collected EANames corpus. We run each
model five times with different random seeds and
report the average results (i.e., MRR, ACC, F-score,
and MAP) on the development and the test set in
Table 6. For reference, we also employ an approach
named “Lookup Table”, which uses the training set
as an English-Arabic dictionary and predicts the
Arabic transliteration of the input English names
by searching, and report its accuracy in Table 6.

Here are some observations. First, the Lookup
Table approach obtains 0.00% and 46.10% accu-
racy on the development and test sets, respectively,
indicating that there is no overlap between the train-
ing and development set and 46.10% test instances
are seen in the training data. This observation
demonstrates the validity of our approach in collect-
ing training data for transliteration, which results
in a high overlapping rate between the training and
test data, and thus enhance model performance.
Second, overall, the performance of all models on
the development set is much lower than that on
the test set, which is expected since it is normally
challenging to handle unseen cases for any NLP
models. Third, for both LSTM and Transformer

11We use the top-5 candidates for MRR and MAP.
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based models, our approach with memories (i.e., “+
M”) outperforms the baselines without the memo-
ries with respect to all evaluation metrics, although
the baselines have already achieved outstanding
performance on the test set. This demonstrates the
effectiveness of the proposed memory module in
leveraging the phonemic information.

4.3 Ablation Study

To leverage the phonemic information, in our ap-
proach, we design an attention mechanism to dis-
tinguish the distinct contribution of different phone-
mic symbols. To explore the effect of the attention
design, we conduct experiments with models with-
out the attention mechanism. That is, we compute
the average of the memory vectors of all associated
phonemic symbols to obtain the phonemic informa-
tion. We run each model five times with different
random seeds and report the average performance
in Table 7, where the performance of the standard
LSTM and Transformer baseline without the mem-
ory module is also reported for reference. It is ob-
served that for both LSTM and Transformer based
models, the ablation of the attention mechanism
(i.e., “- Att.”) significantly hurts the performance
of our model. This indicates that equally modeling
all associated phonemic symbols could introduce
noise to transliterating process, since the contri-
bution of different phonemic symbols varies in a
particular context. On the contrary, the attention
mechanism in our approach is able to distinguish
the contribution of the phonemic symbols and as-
sign different weights to them accordingly, so as to
leverage them to improve model performance.

5 Related Work

Transliteration is an important task that is relevant
to translation and has been studied for decades.
Conventional approaches for transliteration are
categorized into grapheme-based, phoneme-based,
and hybrid approaches to learn the phonemic con-
nections between the sounds of the source and
target languages (Knight and Graehl, 1998; Al-
Onaizan and Knight, 2002; Oh et al., 2006; Song
et al., 2009; Pervouchine et al., 2009; Ravi and
Knight, 2009; Song and Kit, 2010; Alshuwaier
and Areshey, 2011; Chalabi and Gerges, 2012; Al-
Badrashiny et al., 2014). These approaches usually
contain the following steps. First, the text in the
source language is converted into the sounds in the
source language. Then, the sounds are modified to

Models MRR ACC F-score MAP

Full Model 91.94 90.87 93.13 98.45
- Att. 91.39 89.93 92.50 98.30

Baseline 91.33 89.90 92.36 98.25

(a) LSTM

Models MRR ACC F-score MAP

Full Model 93.34 92.11 95.04 98.90
- Att. 92.10 91.02 93.39 98.60

Baseline 91.95 90.97 93.26 98.49

(b) Transformer

Table 7: Test set results of models based on LSTM (a)
and Transformer (b). “Full Model” denotes our model
with the attention mechanism to leverage phonemic in-
formation; “- Att.” refers to the model where the atten-
tion is ablated. We also report the results of standard
LSTM and Transformer baselines for reference.

fit the sound inventory of the target language. Fi-
nally, the sounds are transformed into the target lan-
guage. Recently, many studies applied end-to-end
neural approaches to transliteration (Finch et al.,
2016; Guellil et al., 2017; Hadj Ameur et al., 2017;
Kundu et al., 2018; Grundkiewicz and Heafield,
2018; Le et al., 2019; Moran and Lignos, 2020)
and achieved good performance. Compared with
conventional approaches, the neural approaches
provide a one-step solution for transliteration and
do not require manually created rules. To train
a well-performing neural model, particularly, for
the transliteration from English and Arabic, sev-
eral datasets are created (Kumaran et al., 2010;
Chen and Skiena, 2016; Merhav and Ash, 2018;
Chen et al., 2018). However, most existing stud-
ies mainly apply standard sequence-to-sequence
approaches to English-Arabic transliteration, with-
out leveraging the phonemic information between
the two languages. In addition, the datasets used
in existing studies are constructed from linked
Wikipedia entries in different languages with lim-
ited attention paid to other resources.

Compared with previous studies, the name pairs
in EANames are collected online sources rather
than Wikipedia entries and the proposed neural
approach for English-Arabic transliteration uses a
memory-based module to leverage the language
specific phonemic information.
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6 Conclusions

In this paper, we collect a corpus named EANames
for English-Arabic transliteration, where the names
pairs are collected from online resources rather
than Wikipedia entries. Based on the real data
from EANames, we propose a neural transliteration
model enhanced by memories to take advantage
of phonemic information from English and Arabic.
Specifically, in the memory module, the phone-
mic symbols associated with each input English
letter are weighed and leveraged discriminatively
to guide the transliteration process from English
to Arabic. The experimental results and analysis
on EANames demonstrate the effectiveness of our
approach, which outperforms strong baselines with
respect to all widely used evaluation metrics.
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