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Abstract
In task-oriented dialogue systems, response
generation from meaning representations
(MRs) often suffers from limited training ex-
amples, due to the high cost of annotating MR-
to-Text pairs. Previous works on self-training
leverage fine-tuned conversational models to
automatically generate pseudo-labeled MR-to-
Text pairs for further fine-tuning. However,
some self-augmented data may be noisy or
uninformative for the model to learn from.
In this work, we propose a two-phase self-
augmentation procedure to generate high-
quality pseudo-labeled MR-to-Text pairs: the
first phase selects the most informative MRs
based on model’s prediction uncertainty; with
the selected MRs, the second phase gener-
ates accurate responses by aggregating mul-
tiple perturbed latent representations from each
MR. Empirical experiments on two benchmark
datasets, FEWSHOTWOZ and FEWSHOTSGD,
show that our method generally outperforms ex-
isting self-training methods on both automatic
and human evaluations.1

1 Introduction

In task-oriented dialogue systems, a natural lan-
guage generation (NLG) module is an essential
component: it maps structured dialogue meaning
representations (MRs) into natural language re-
sponses. The NLG module has a great impact on
users’ experience because it directly interacts with
users using text responses (Wen et al., 2015; Ras-
togi et al., 2020a; Kale and Rastogi, 2020; Peng
et al., 2020). However, in real-world applications,
developers often only have a few well-annotated
data and confront a high data collection cost in
specific domains. This real-world challenge makes
building an NLG module in the low-data setting a
valuable research problem (Kale and Rastogi, 2020;
Chen et al., 2020; Peng et al., 2020).

1Please check the code, data, and evaluation scripts
of this work at: https://github.com/wyu-du/
Self-Training-Dialogue-Generation

Self-augmented Data E[pθ] V ar[pθ]

1 request (ref = ?) & i am sorry i do not
have any restaurants with those criteria

low low

2 inform (choice = many) @ request (foo

d = ?) & there are many restaurants
that serve vegetarian food

low high

3 inform (food = seafood) & it is seafood high low

4
✓

inform (choice = several) @ request (a

rea = ?) & there are several restaurants
you’d like to dine in?

high high

Table 1: Examples of our self-augmented data and data
selection strategy. text is the input MR (e.g. request
is the dialogue intent, and (ref = ?) is the slot-value
pair of the current intent). The model pθ generates
synthetic dialogue response conditioning on the text .
For each self-augmented data, a low predictive mean
E[pθ] indicates that the model finds the augmented data
“too noisy” (e.g. out-of-domain or invalid response),
and a low predictive variance V ar[pθ] indicates that
the model finds the augmented data “too certain” (e.g.
uninformative response). In this work, we propose to
select examples with high E[pθ] and high V ar[pθ].

While language models have been widely
adopted to build the NLG module in task-oriented
dialogue systems, they usually require thousands of
MR-to-Text pairs for learning the domain-specific
knowledge (Wen et al., 2016; Zhu et al., 2019; Yang
et al., 2021; Lee, 2021). To collect more training
data under a feasible budget, previous works pro-
pose three general approaches: (1) designing hand-
craft rules to augment new data, which is hard to
scale up (Wei and Zou, 2019; Feng et al., 2020);
(2) building task-specific data retriever to search
related data, which may overfit on the few training
data (Xu et al., 2021); or (3) leveraging pre-trained
language models to generate new data, which may
generate “too noisy” data (Peng et al., 2021; Fabbri
et al., 2021; Heidari et al., 2021).

Ideally, the augmented data should help the
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Figure 1: Our two-phase self-augmentation (SA2) self-training framework for few-shot MR-to-Text generation.

model better learn the domain-specific knowledge.
However, some augmented data can be “too noisy”
that leads the model to learn irrelevant or inap-
propriate data patterns. This phenomenon is also
described as negative transfer in other works (Chen
et al., 2011; Wang et al., 2019; Meftah et al., 2021;
Feng et al., 2021). To address this challenge, some
works leverage human judgements to filter out the
“too noisy” augmented data, which are difficult to
scale up across different domains and tasks (Peris
and Casacuberta, 2018; P.V.S and Meyer, 2019).
Other works train task-specific discriminators to
pick up the valid augmented data, which are likely
to overfit in the low-data setting (Mi et al., 2021;
Xu et al., 2021; Bakshi et al., 2021; Heidari et al.,
2021; Mehta et al., 2022).

In this work, we propose to address the issue
of selecting high-quality self-augmented examples
with a two-phase procedure, where each phase will
take care of selecting inputs and generating outputs
independently. As illustrated in Figure 1, the first
phase evaluates input MRs with model’s prediction
uncertainty, aiming at selecting input examples that
are informative to the current model. Specifically,
for each input MR, we let the current model gen-
erate a response, and then apply the Monte Carlo
Dropout method (Gal and Ghahramani, 2016) to
estimate the predictive mean E[pθ] and predictive
variance V ar[pθ] of the generated response. In
uncertainty quantification (Gal, 2016), high predic-
tive mean indicates that the model is familiar with
this input (i.e. in-domain data) and high predictive
variance reflects that the model is sensitive to this
input (i.e. informative data). Hence, we propose
to select input MRs with high predictive mean and
variance. Note that our uncertainty-based data se-
lection strategy neither requires training additional

neural models to select the valid data (Bakshi et al.,
2021; Heidari et al., 2021; Mehta et al., 2022), nor
need to calculate the data statistics across all train-
ing epochs and re-train the model overall again
(Swayamdipta et al., 2020). The second phase aims
at further improving the quality of the selected data.
We adopt an idea from contrastive representation
learning (Gao et al., 2021) and use the aggrega-
tion of randomly perturbed latent representations
to help the model produce more accurate responses.
The combination of these two phases guarantees
the proposed method selects more informative MR
inputs and generates less noisy responses for fur-
ther model fine-tuning.

In summary, the contributions of this work are
as follows:

1. Proposing a novel self-training algorithm for
the few-shot MR-to-Text generation problem
in task-oriented dialogue systems, which ap-
plies a two-phase self-augmentation strategy
to identify informative MRs and generate ac-
curate responses for further fine-tuning.

2. Showing that the proposed method generally
outperforms other few-shot NLG baselines
on two benchmark datasets, FEWSHOTWOZ
(Peng et al., 2020) and FEWSHOTSGD (Xu
et al., 2021) in both automatic and human
evaluations.

3. Conducting in-depth empirical analysis on key
components of the proposed few-shot self-
training framework: the pre-trained language
model, the data selection strategy, and the
model training configurations.

2 Related Works

Task-oriented dialogue generation. Previous
NLG methods generate system responses by: (1)
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designing handcraft response templates and filling
in slot-value pairs from system actions, or (2) build-
ing data-driven neural models, which encode sys-
tems actions into latent feature representations and
decode natural language responses with more diver-
sity in realization. However, both approaches cause
high data collection costs. The template-based
methods (Langkilde and Knight, 1998; Cheyer and
Guzzoni, 2006) require collecting a comprehen-
sive set of templates to cover all possible combi-
nations of dialog acts and slot-value pairs, while
data-driven methods (Wen et al., 2015, 2017; Zhu
et al., 2019) require collecting thousands of sys-
tem action and response pairs to ensure the neural
model generating fluent responses.

Few-shot NLG. Recent works on few-shot NLG
mainly focus on developing or adapting pre-trained
language models. Peng et al. (2020) presents the
first few-shot NLG benchmark for task-oriented
dialog systems, and develops a pre-trained lan-
guage model which can be fine-tuned with only
a few domain-specific labels to adapt to new do-
mains. Chen et al. (2020) applies the switch mech-
anism to combine the information from both in-
put data and pre-trained language models, which
achieves good performance in table-to-text genera-
tion tasks. Chang et al. (2021) studies the training
data selection strategies in few-shot NLG, and finds
that clustering-based selection strategy consistently
helps generative models get better performance
than randomly sampling.

Self-training for NLG. There has been some
works applying the self-training technique to im-
prove the model’s generalization ability in NLG
tasks. Some works (Mi et al., 2021; Xu et al., 2021)
leverage the self-training framework to pseudo-
label the unlabeled data and select the training data
based on the confidence score from a single student
model. Other works (Kedzie and McKeown, 2019;
He et al., 2020) show that the noisy self-training
is able to utilize unlabeled data and improve the
performance of the supervised baseline. However,
their observations come from large-scale training
datasets, which may not necessarily hold in the
few-shot data setting, because a single Transformer-
based model may heavily overfit on the few-shot
training data in the early iteration.

We also find some works (Bakshi et al., 2021;
Heidari et al., 2021; Mehta et al., 2022) leverage
generation models to produce pseudo-labeled data.

However, they train additional neural models to
select the pseudo-labeled data. Bakshi et al. (2021)
and Heidari et al. (2021) use the reconstruction
loss from a fine-tuned BART model (Lewis et al.,
2020) to select the pseudo-labeled data. Besides,
Mehta et al. (2022) leverage a fine-tuned BLEURT
model (Sellam et al., 2020) with a selection thresh-
old to select pseudo-responses for self-training. In-
tuitively, the pseudo-labeled data should bring new
domain-specific knowledge to the model. While
prior works select the pseudo-labeled data using
an independent neural model, we propose to select
the pseudo-labeled data using the generation model
itself and eliminate the requirement for training
additional models.

Data selection strategies. Some works in ac-
tive learning leverage human judgments to se-
lect the augmented data. Peris and Casacuberta
(2018); P.V.S and Meyer (2019) design data selec-
tion functions to select a subset of representative
unlabeled data for humans to annotate, and get
better model performance by leveraging human
annotation. However, the additional requirement
of human judgments will increase the difficulty
of adapting the method across different domains.
Another work (Swayamdipta et al., 2020) lever-
ages the model training dynamics to categorize
and select the data, but their method requires mas-
sive ground-truth labeled data. In contrast, our
self-training framework does not require additional
human judgments or massive ground-truth labeled
data, which can be easily adapted to different tasks
across different domains.

3 Proposed Method

In task-oriented dialogue systems, the NLG mod-
ule translates a structured dialogue meaning rep-
resentation A into a natural language response
x = {x1, ..., xT }. One structured dialogue mean-
ing representation A consists of K dialogue intents
and a list of slot-value pairs for each intent:

A = {Ik, (sk,1, vk,1), ..., (sk,Pk
, vk,Pk

)}Kk=1 (1)

where the dialogue intent Ik indicates different
types of system actions and the slot-value pairs
{(sk,i, vk,i)}Pk

i=1 shows the category names and
their content information to be expressed in the re-
sponse. For example, inform (area = west; choice
= many), where inform is the dialogue intent, area
and choice are the slot names, west and many are
the slot values.
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We define pθ(x | A) as the generation model
that generates the response x in an auto-regressive
way conditioning on A:

pθ(x | A) =
T∏

t=1

pθ(xt | x1:t−1,A) (2)

where θ is the model parameter. A typical way of
learning θ is by maximizing the log-likelihood of
the conditional probabilities in Equation 2 over the
original training set DL:

Lθ(DL) =

|DL|∑

n=1

Tn∑

t=1

log pθ(xt,n | x1:t−1,n,An)

(3)
In the few-shot MR-to-Text generation setting, the
size of training data |DL| is a small number (e.g.
≤ 50).

3.1 Self-training with Two-phase
Self-augmentation (SA2)

The SA2 self-training algorithm starts from a
warm-up stage, where a base generation model
is trained on the original training set DL for a few
epochs. Then, in each iteration of self-training, the
algorithm consists of four steps: synthetic text an-
notation, uncertainty-based data selection, response
refinement, and model fine-tuning.

The synthetic text annotation uses the current
model to generate synthetic text responses based
on input MRs and constructs a preliminary version
of self-augmented data DA. Next, the data selec-
tion uses the prediction uncertainty of the current
model on the synthetic responses to select infor-
mative MRs in DA, which is the first phase of
self-augmentation. Given the selected MRs, the
second phase of self-augmentation is to generate
more accurate text responses via aggregating mul-
tiple latent representations from model parame-
ters with different dropout masks, which produces
the pseudo-labeled data DL′ . Finally, the current
model is fine-tuned with both the original training
set DL and the pseudo-labeled dataset DL′ .

The detailed procedure of SA2 self-training
algorithm is demonstrated in algorithm 1. We
describe the proposed uncertainty-based data se-
lection method in §3.2 and response refinement
method in §3.3 respectively.

3.2 Phase I: Uncertainty-based Data Selection
We hypothesize that the generation model is likely
to gain little by learning from the data, if (1) it

Algorithm 1: SA2 Self-training Algorithm
Input: The original training set DL,
in-domain MRs DU , base generation
model pθ, number of self-training
iterations S

Output: A fine-tuned generation model pθ
1: Load pθ and train pθ on DL

2: for s = 1, . . . , S do
3: Initialize DA = ∅ and DL′ = ∅
4: // Synthetic Text Annotation
5: for An ∈ DU do
6: Generate xn ∼ pθ(xn | An)
7: DA ∪ {(xn,An)}
8: end for
9: // Data Selection

10: Compute threshold µ̄ and s̄ using Eq. (6)
11: for (xn,An) ∈ DA do
12: if E[pθ] > µ̄ and V ar[pθ] > s̄ then
13: // Response Refinement
14: Generate x̄n using Eq.(7)
15: DL′ ∪ {(x̄n,An)}
16: end if
17: end for
18: Fine-tune pθ on DL ∪ DL′

19: end for

finds “too noisy”, which may be out-of-domain
or invalid; (2) it finds “too certain”, which may
be uninformative to learn from. Therefore, we
propose to select the data which the current model
finds “less noisy” and “more uncertain”. Intuitively,
data with “less noise” may provide helpful domain-
specific knowledge to the model, meanwhile “more
uncertainty” indicates the model has not learned
well from the data yet, thus may produce incoherent
responses.

Uncertainty estimation. We use the Monte
Carlo Dropout method (Gal and Ghahramani, 2016;
Mukherjee and Awadallah, 2020) to estimate the
“noise” and “uncertainty” of each self-augmented
data regarding the current model. For each self-
augmented data (x,A), we enable dropouts be-
fore every hidden layer in the generation model,
perform M forward passes through the model,
and get M i.i.d. model likelihood estimations
{pθi(x | A)}Mi=1. These M outputs are empirical
samples of an approximated posterior distribution
p(x | A) (Gal, 2016). Then, we compute the pre-
dictive mean E[pθ] of the approximated distribution
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p(x | A) and predictive variance V ar[pθ] of the
empirical samples:

E[pθ] ≈ 1

M

M∑

i=1

pθi(x | A) (4)

V ar[pθ] ≈ 1

M

M∑

i=1

(pθi(x | A)− E[pθ])2 (5)

A low predictive mean E[pθ] means the model finds
the current data “too noisy”, because it has a low
likelihood estimation of the current data, which in-
dicates the current data may be out-of-domain or
invalid; while a low predictive variance V ar[pθ]
means the model finds the current data “too cer-
tain”, because all empirical samples have a similar
likelihood estimation of the current data, which
indicates the current data may be uninformative
for the model to learn from. Therefore, we con-
sider self-augmented data with both high predictive
means and variances are examples of interest.

Selection strategy. The next question is what
are the thresholds for high predictive means and
variances? First, we calculate the corpus-level pre-
dictive mean µA of the self-augmented DA, and
filter out the augmented data which have a lower
predictive mean than µA, because we observe that
such data are often very noisy and contain many
redundant slots. Then, we combine and sort the
original training data DL and the remaining self-
augmented data, and further remove the outliers
(i.e. first and last 1% of datapoints). Assume that
the collection of predictive mean scores E[pθ] and
variance scores V ar[pθ] of the selected data fol-
lows a Gaussian distribution respectively, then the
data selection threshold is defined as

µ̄ =
1

N

N∑

n=1

pn, s̄ =
1

N

N∑

n=1

vn (6)

where pn is the predictive mean and vn is the pre-
dictive variance of the n-th selected data, N is the
total number of original training data and remaining
self-augmented data (after removing the outliers).

We select the self-augmented data with high
E[pθ] (above the average predictive mean µ̄) and
high V ar[pθ] (above the average predictive vari-
ance s̄). We also explored other data selection
strategies (detailed in §4.4), and find that select-
ing high E[pθ] and high V ar[pθ] data empirically
brings more performance improvements than other
strategies.

3.3 Phase II: Response Refinement

Since the large generation model is trained on a
small training set, it is very likely to overfit and pro-
duce high-biased latent representations that cause
the generation of inaccurate text responses. To
reduce the risk of producing high-biased latent rep-
resentations, we adopt dropout noise proposed in
contrastive learning (Gao et al., 2021) into the la-
tent representation during inference.

Specifically, for each selected input MR from
Phase I, we enable the dropout masks of the model
(placed on fully-connected layers as well as atten-
tion probabilities) at the decoding timestamp t, and
compute R latent representations {ht

θi
}Ri=1, then

take an average over all latent representations to
obtain the final latent representation for the current
probability distribution:

p(x̄t | x̄1:t−1,A) = softmax(
1

R

R∑

i=1

ht
θi
) (7)

Then, we generate the text response x̄ according to
the probability distribution p(x̄t | x̄1:t−1,A) and
add the data (x̄,A) into the pseudo-labeled dataset
DL′ . We fine-tune the generation model on both
the original training set DL and the pseudo-labeled
dataset DL′ . Fine-tuning the refined responses is
shown to improve the model’s final performances
(detailed in §4.3).

4 Experiments

We conduct experiments to answer three research
questions: (1) Is SA2 self-training algorithm a help-
ful method to deal with the few-shot dialogue gener-
ation problem? (2) Can our data selection strategy
effectively filter out the “too noisy” and “uninfor-
mative” augmented data? (3) Can our response
refinement method help improve the performance
of the NLG model?

4.1 Setups

Benchmark datasets. We evaluate our method
on two few-shot dialogue generation benchmark
datasets: FEWSHOTWOZ (Peng et al., 2020) and
FEWSHOTSGD (Xu et al., 2021). FEWSHOTWOZ
has 7 domains and an average number of 50 train-
ing examples per domain. FEWSHOTSGD has 16
domains and an average number of 35 training ex-
amples per domain. However, both datasets do not
provide the development sets for hyper-parameter
tuning. To create the standard training/dev/test data
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Restaurant Laptop Hotel TV Attraction Train Taxi
BLEU ERR BLEU ERR BLEU ERR BLEU ERR BLEU ERR BLEU ERR BLEU ERR

SC-GPT 34.62 1.95 33.31 3.01 40.74 3.55 33.72 1.72 23.77 1.40 25.09 1.90 18.22 0.00
AUG-NLG 29.94 2.28 30.02 4.29 38.30 4.73 32.41 3.34 21.76 3.95 24.06 3.81 17.99 0.00

ST-ALL 33.84 6.51 34.40 4.28 39.68 1.78 34.88 1.76 24.32 3.19 24.47 3.87 17.89 0.00
ST-NLL 33.07 9.44 34.99 3.37 41.40 5.92 35.98 2.26 24.87 4.85 23.53 5.27 20.21 0.00
ST-SA2 (ours) 36.48 2.60 35.42 2.04 42.63 1.77 36.39 1.63 25.63 1.40 25.34 1.62 20.95 0.00

Table 2: Automatic evaluation results on the test set of FEWSHOTWOZ (BLEU↑, ERR↓). The results of AUG-NLG
come from the data and code released by Xu et al. (2021), the other results come from our implementation.

Restaurants Hotels Flights Buses Events Rentalcars Services Ridesharing

SC-GPT 19.86 22.21 26.63 19.87 26.41 20.21 27.32 22.03
AUG-NLG 19.73 12.38 23.20 16.81 19.62 16.64 20.18 17.20

ST-ALL 19.71 21.45 26.90 19.76 25.68 20.22 27.59 21.14
ST-NLL 14.52 21.29 27.59 20.27 25.81 20.07 26.54 19.84
ST-SA2 (ours) 20.42 22.90 27.12 21.16 25.32 20.70 28.34 23.28

Movies Calendar Banks Music Homes Media Travel Weather

SC-GPT 25.71 23.53 25.99 24.01 24.90 26.24 24.97 27.89
AUG-NLG 16.93 13.60 12.89 9.56 18.06 10.51 15.77 10.74

ST-ALL 26.19 24.86 25.03 24.62 24.97 26.56 25.28 28.06
ST-NLL 23.98 23.67 25.70 18.88 24.82 26.99 24.95 28.64
ST-SA2 (ours) 28.95 25.24 28.14 27.23 25.03 28.76 25.34 29.27

Table 3: Automatic evaluation results of BLEU scores on the test set of FEWSHOTSGD. The results of AUG-NLG
come from the data and code released by Xu et al. (2021), the other results come from our implementation.

splits, we randomly sampled 10% data from the
original test set as the dev set, and kept the training
set unchanged. For fair comparisons across differ-
ent methods, we evaluated all methods on the new
split test set. The detailed data statistics of the two
benchmarks are described in Appendix B.

Unlabeled data. The two benchmark datasets
are sampled and constructed based on the three
datasets: RNNLG (Wen et al., 2016), MultiWOZ
(Budzianowski et al., 2018) and SGD (Rastogi
et al., 2020b). To ensure the input MRs are within
the same domain of the original training set DL,
we collect all augmented MRs from the training
set of RNNLG, MultiWOZ, and SGD. For FEW-
SHOTWOZ, we collect an average number of 9,080
unlabeled MRs per domain. For FEWSHOTSGD,
we collect an average number of 7,532 unlabeled
MRs per domain. The detailed data statistics of
each domain are demonstrated in Appendix B.

Baselines. We compare our method with four
baselines and describe the model configuration and
training details in Appendix C. (1) SC-GPT (Peng
et al., 2020) is the state-of-the-art pre-trained lan-
guage model for NLG in task-oriented dialogue
systems, which is further fine-tuned on each spe-

cific domain using the original training data DL;
(2) AUG-NLG (Xu et al., 2021) leverages the pre-
trained SC-GPT model, first trains it on its auto-
matically retrieved augmented data, then fine-tunes
it on each few-shot domain; (3) ST-ALL is the
traditional self-training baseline which learns from
all self-augmented data without any data selection
and text refinement; (4) ST-NLL adopts the tra-
ditional self-training baseline but learns from the
self-augmented data which has a lower than the av-
erage reconstruction loss according to the current
generation model; (5) ST-SA2 is our method, in
addition to our proposed data selection strategy and
response refinement method, we apply a rule-based
parser (Kedzie and McKeown, 2019) to heuristi-
cally filter out invalid responses that do not match
the slot-value pairs in the input MRs on the FEW-
SHOTWOZ dataset in order to achieve lower ERR.

Automatic evaluation. We follow the prior
works (Wen et al., 2015; Peng et al., 2020; Xu
et al., 2021) and use BLEU score and Slot Error
Rate (ERR) for automatic evaluation. ERR is com-
puted by exact matching the slot tokens in the gen-
erated responses as ERR = (p + q)/N , where
N is the total number of slots in the MR, and p,q
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Restaurant Laptop Hotel TV Attraction Train Taxi
BLEU ERR BLEU ERR BLEU ERR BLEU ERR BLEU ERR BLEU ERR BLEU ERR

ST-SA2 (ours) 36.48 2.60 35.42 2.04 42.63 1.77 36.39 1.63 25.63 1.40 25.34 1.62 20.95 0.00
w/o aggregation 35.30 3.25 34.30 3.57 39.08 2.96 36.24 5.25 24.44 2.55 24.15 2.01 20.17 1.69
w/o filter 36.17 3.90 34.19 5.85 39.52 3.55 35.45 2.76 25.51 2.42 24.89 2.24 20.60 0.00

Table 4: Ablation study results on the test set of FEWSHOTWOZ (BLEU↑, ERR↓).

Informativeness ↑ Naturalness ↑
SC-GPT 2.62 2.32
ST-NLL 2.69 2.31
ST-SA2 (ours) 2.69 2.41

Human 2.71 2.49

Table 5: Human evaluation results on the sampled test
set of FEWSHOTWOZ.

is the number of missing and redundant slots in
the generated response. For each MR, we gener-
ate five responses and select the top one with the
lowest ERR as the final output. Note that we only
compute ERR on the FEWSHOTWOZ dataset, be-
cause the FEWSHOTSGD dataset does not release
its evaluation script.

Human evaluation. We follow the prior works
(Peng et al., 2020; Kale and Rastogi, 2020) and
use Amazon Mechanical Turk to conduct human
evaluation. We recruited master level workers with
over 90% approval rate to compare and rate the
responses generated by different methods and the
the ground truth response. The workers are asked
to rate the response on a scale of 1 (bad) to 3 (good)
in terms of informativeness and naturalness. Infor-
mativeness indicates how much information from
the input MR has been covered in the response, and
naturalness measures whether the response looks
coherent, grammatical, and natural. Each data pair
is rated by 3 workers. We randomly sample 120
examples from each dataset, and collect a total of
2880 ratings.

4.2 Result Analysis

On FEWSHOTWOZ. The automatic evaluation
results in Table 2 show that ST-SA2 outperforms
other baselines across all domains in both BLEU
and ERR. Besides, we observe that SC-GPT is
a strong baseline, and ST-NLL can bring more
performance improvements than AUG-NLG and
ST-ALL in 5 out of 7 domains, which shows the
effectiveness of data selection in self-training. The
human evaluation results in Table 5 indicate that

Informativeness ↑ Naturalness ↑
SC-GPT 2.53 2.31
ST-ALL 2.55 2.40
ST-SA2 (ours) 2.69 2.42

Human 2.69 2.56

Table 6: Human evaluation results on the sampled test
set of FEWSHOTSGD.

ST-SA2 can generate more natural and informative
responses than SC-GPT and ST-NLL. We provide
some model generation results of different methods
in Appendix E.

On FEWSHOTSGD. The automatic evaluation
results in Table 3 illustrate that ST-SA2 outper-
forms other baselines in 14 out of 16 domains
in BLEU score. Additionally, we find that ST-
ALL generally outperforms AUG-NLG, which
indicates that additional pre-training on the re-
trieved task-relevant data does not necessarily help
the model generate better responses. In contrast,
the self-training method ST-ALL generally im-
proves the model performances in 10 out of 16
domains, which shows the benefit of learning from
self-augmented data. The human evaluation re-
sults in Table 6 demonstrate that ST-SA2 is capa-
ble to generate more informative and natural re-
sponses than SC-GPT and ST-ALL. We provide
some model generation results of different methods
in Appendix E.

4.3 Ablation Study on Response Refinement

To validate the effectiveness of the proposed re-
sponse refinement method, we conduct ablation
study on ST-SA2 by removing the representation
aggregation in Equation 7 and the rule-based filter
(Kedzie and McKeown, 2019) respectively. We ob-
serve from Table 4 that removing the representation
aggregation during response refinement will lead
to degraded performances in both BLEU and ERR
across all domains, which indicates the importance
of obtaining lower-biased latent representations
during self-augmentation. Besides, we find that
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E[pθ] V ar[pθ] BLEU ↑ ERR ↓
1 low low 32.72 1.62
2 low high 32.24 1.62
3 high low 33.18 2.28
4 high high 36.48 2.60

Table 7: Different data selection strategy comparison
of ST-SA2 in the Restaurant domain on the test set of
FEWSHOTWOZ.

Base Model BLEU ↑ ERR ↓
1 GPT2 24.22 13.68
2 DialoGPT 14.77 20.84
3 SC-GPT 36.48 2.60

Table 8: Different base generation model comparison
of ST-SA2 in the Restaurant domain on the test set of
FEWSHOTWOZ.

removing the rule-based filter will lead to worse
performances in ERR across all domains, which
reveals that the model is still likely to generate
incorrect responses, and those incorrect pseudo-
labeled data will cause the model to learn irrelevant
patterns and perform worse on the unseen test set.

4.4 Analysis of Other Components in SA2

Self-training Algorithm

In this section, we provide additional empirical
analysis on other components that will affect the
performance of the SA2 self-training algorithm, in
order to gain more insights about the self-training
technique in solving the few-shot NLG problem.

Data selection strategies. Table 7 compares dif-
ferent data selection strategies of ST-SA2 in the
restaurant domain of FEWSHOTWOZ. We find
that selecting low E[pθ] data will lead to degraded
performance in BLEU score, because low E[pθ]
data often contains more redundant tokens com-
pared with the ground-truth response. Although
low E[pθ] data gives lower ERR, the generated
texts are not very natural and fluent. Selecting high
E[pθ] and low V ar[pθ] data will also lead to de-
graded performance in the BLEU score, which is
probably because the model overfits on the uninfor-
mative data. We provide some self-augmented and
pseudo-labeled examples of different data selection
strategies in Appendix D.

Base generation models. For the base genera-
tion model selection, we compare different pre-
trained language models, including GPT2 (Rad-
ford et al., 2019), DialoGPT (Zhang et al., 2020)

Epoch LR BLEUdev ↑ BLEUtest ↑ ERRtest ↓
1 10 1e-6 23.22 24.75 2.93
2 20 1e-6 22.96 24.63 2.04
3 20 5e-7 23.43 25.63 1.40
4 20 5e-8 23.29 24.82 1.91

Table 9: Different training hyper-parameters compari-
son of ST-SA2 in the Attraction domain of FEWSHOT-
WOZ, where Epoch is the number of training epochs
within a self-training iteration, and LR is the initial
learning rate at the beginning of each training epoch. We
select the best model which has the highest BLEUdev .

and SC-GPT. GPT2 is an open-end text generation
model, and DialoGPT is an open-domain dialogue
generation model. In contrast, SC-GPT is trained
on around 400K MR-to-Text pairs in task-oriented
dialogue generation datasets. As can be seen in
Table 8, SC-GPT gives much better performance
than GPT2 and DialoGPT, which indicates that se-
lecting a suitable base generation model is critical
for self-training.

Training hyper-parameters. Table 9 compares
different training hyper-parameters of ST-SA2 in
the attraction domain of FEWSHOTWOZ dataset.
We observe that the learning rate plays an essen-
tial role in training NLG models under the low-
data setting. If the learning rate is too large, the
development loss may not converge because the
training set is too small; if the learning rate is too
small, the model may get stuck into the local opti-
mal. Finally, we find a good combination of learn-
ing rate and training epoch can help the model
achieves the best performance, but the specific val-
ues vary across different domains. We provide
training hyper-parameter configurations of each do-
main in Appendix C.

5 Conclusions

In this work, we present a two-phase self-
augmentation self-training algorithm to deal with
the few-shot dialogue generation problem in task-
oriented dialogue systems. We propose to select
informative input MRs based on model’s prediction
uncertainty, and improve the pseudo response gen-
eration by aggregating randomly perturbed latent
representations. Empirical experiments on two few-
shot NLG datasets show that our proposed method
achieves the best performance among other base-
lines in both automatic and human evaluations.
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Limitations

The performance of SA2 self-training algorithm
is influenced by the pre-trained language model
used as the base generation model, because it of-
fers the starting point for data selection and data
augmentation. Building a good pre-trained lan-
guage model for the MR-to-Text generation task
is non-trivial, but future work in this direction
will certainly benefit few-shot learning on dialogue
generation. Besides, the SA2 self-training algo-
rithm requires large GPU resources for augment-
ing pseudo-labeled data. A more computationally
efficient decoding method of Transformer-based
models would save a significant amount of time
and GPU resources.
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madan, and Milica Gašić. 2018. MultiWOZ - a large-
scale multi-domain Wizard-of-Oz dataset for task-
oriented dialogue modelling. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 5016–5026, Brussels,
Belgium. Association for Computational Linguistics.

Ernie Chang, Xiaoyu Shen, Hui-Syuan Yeh, and Vera
Demberg. 2021. On training instance selection for
few-shot neural text generation. In Proceedings of
the 59th Annual Meeting of the Association for Com-
putational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 2: Short Papers), pages 8–13, Online. Asso-
ciation for Computational Linguistics.

Minmin Chen, Kilian Q Weinberger, and John Blitzer.
2011. Co-training for domain adaptation. In Ad-
vances in Neural Information Processing Systems,
volume 24. Curran Associates, Inc.

Zhiyu Chen, Harini Eavani, Wenhu Chen, Yinyin Liu,
and William Yang Wang. 2020. Few-shot NLG with

pre-trained language model. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 183–190, Online. Associ-
ation for Computational Linguistics.

Adam Cheyer and Didier Guzzoni. 2006. Method and
apparatus for building an intelligent automated assis-
tant. EPFL Scientific Publications.

Alexander Fabbri, Simeng Han, Haoyuan Li, Haoran
Li, Marjan Ghazvininejad, Shafiq Joty, Dragomir
Radev, and Yashar Mehdad. 2021. Improving zero
and few-shot abstractive summarization with inter-
mediate fine-tuning and data augmentation. In Pro-
ceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
704–717, Online. Association for Computational Lin-
guistics.

Lingyun Feng, Minghui Qiu, Yaliang Li, Haitao Zheng,
and Ying Shen. 2021. Wasserstein selective transfer
learning for cross-domain text mining. In Proceed-
ings of the 2021 Conference on Empirical Methods
in Natural Language Processing, pages 9772–9783,
Online and Punta Cana, Dominican Republic. Asso-
ciation for Computational Linguistics.

Steven Y. Feng, Varun Gangal, Dongyeop Kang, Teruko
Mitamura, and Eduard Hovy. 2020. GenAug: Data
augmentation for finetuning text generators. In Pro-
ceedings of Deep Learning Inside Out (DeeLIO): The
First Workshop on Knowledge Extraction and Integra-
tion for Deep Learning Architectures, pages 29–42,
Online. Association for Computational Linguistics.

Yarin Gal. 2016. Uncertainty in Deep Learning. Ph.D.
thesis, University of Cambridge.

Yarin Gal and Zoubin Ghahramani. 2016. Dropout as
a bayesian approximation: Representing model un-
certainty in deep learning. In Proceedings of The
33rd International Conference on Machine Learn-
ing, volume 48 of Proceedings of Machine Learning
Research, pages 1050–1059, New York, New York,
USA. PMLR.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
SimCSE: Simple contrastive learning of sentence em-
beddings. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, pages 6894–6910, Online and Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Junxian He, Jiatao Gu, Jiajun Shen, and Marc’Aurelio
Ranzato. 2020. Revisiting self-training for neural
sequence generation. In International Conference on
Learning Representations.

Peyman Heidari, Arash Einolghozati, Shashank Jain,
Soumya Batra, Lee Callender, Ankit Arun, Shawn
Mei, Sonal Gupta, Pinar Donmez, Vikas Bhardwaj,
Anuj Kumar, and Michael White. 2021. Getting to
production with few-shot natural language genera-
tion models. In Proceedings of the 22nd Annual

2778

https://doi.org/10.18653/v1/2021.gem-1.12
https://doi.org/10.18653/v1/2021.gem-1.12
https://doi.org/10.18653/v1/2021.gem-1.12
https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/2021.acl-short.2
https://doi.org/10.18653/v1/2021.acl-short.2
https://proceedings.neurips.cc/paper/2011/file/93fb9d4b16aa750c7475b6d601c35c2c-Paper.pdf
https://doi.org/10.18653/v1/2020.acl-main.18
https://doi.org/10.18653/v1/2020.acl-main.18
http://infoscience.epfl.ch/record/99043
http://infoscience.epfl.ch/record/99043
http://infoscience.epfl.ch/record/99043
https://doi.org/10.18653/v1/2021.naacl-main.57
https://doi.org/10.18653/v1/2021.naacl-main.57
https://doi.org/10.18653/v1/2021.naacl-main.57
https://doi.org/10.18653/v1/2021.emnlp-main.770
https://doi.org/10.18653/v1/2021.emnlp-main.770
https://doi.org/10.18653/v1/2020.deelio-1.4
https://doi.org/10.18653/v1/2020.deelio-1.4
https://mlg.eng.cam.ac.uk/yarin/thesis/thesis.pdf
https://proceedings.mlr.press/v48/gal16.html
https://proceedings.mlr.press/v48/gal16.html
https://proceedings.mlr.press/v48/gal16.html
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://openreview.net/forum?id=SJgdnAVKDH
https://openreview.net/forum?id=SJgdnAVKDH
https://aclanthology.org/2021.sigdial-1.8
https://aclanthology.org/2021.sigdial-1.8
https://aclanthology.org/2021.sigdial-1.8


Meeting of the Special Interest Group on Discourse
and Dialogue, pages 66–76, Singapore and Online.
Association for Computational Linguistics.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2020. The curious case of neural text de-
generation. In International Conference on Learning
Representations.

Mihir Kale and Abhinav Rastogi. 2020. Template
guided text generation for task-oriented dialogue. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 6505–6520, Online. Association for Computa-
tional Linguistics.

Chris Kedzie and Kathleen McKeown. 2019. A good
sample is hard to find: Noise injection sampling and
self-training for neural language generation models.
In Proceedings of the 12th International Conference
on Natural Language Generation, pages 584–593,
Tokyo, Japan. Association for Computational Lin-
guistics.

Irene Langkilde and Kevin Knight. 1998. Generation
that exploits corpus-based statistical knowledge. In
36th Annual Meeting of the Association for Compu-
tational Linguistics and 17th International Confer-
ence on Computational Linguistics, Volume 1, pages
704–710, Montreal, Quebec, Canada. Association for
Computational Linguistics.

Yohan Lee. 2021. Improving end-to-end task-oriented
dialog system with a simple auxiliary task. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2021, pages 1296–1303, Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

Sara Meftah, Nasredine Semmar, Youssef Tamaazousti,
Hassane Essafi, and Fatiha Sadat. 2021. On the hid-
den negative transfer in sequential transfer learning
for domain adaptation from news to tweets. In Pro-
ceedings of the Second Workshop on Domain Adap-
tation for NLP, pages 140–145, Kyiv, Ukraine. Asso-
ciation for Computational Linguistics.

Sanket Vaibhav Mehta, Jinfeng Rao, Yi Tay, Mihir Kale,
Ankur P. Parikh, and Emma Strubell. 2022. Improv-
ing compositional generalization with self-training
for data-to-text generation.

Fei Mi, Wanhao Zhou, Lingjing Kong, Fengyu Cai,
Minlie Huang, and Boi Faltings. 2021. Self-training
improves pre-training for few-shot learning in task-
oriented dialog systems. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1887–1898, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Subhabrata Mukherjee and Ahmed Awadallah. 2020.
Uncertainty-aware self-training for few-shot text clas-
sification. In Advances in Neural Information Pro-
cessing Systems, volume 33, pages 21199–21212.
Curran Associates, Inc.

Baolin Peng, Chenguang Zhu, Chunyuan Li, Xiujun
Li, Jinchao Li, Michael Zeng, and Jianfeng Gao.
2020. Few-shot natural language generation for task-
oriented dialog. In Findings of the Association for
Computational Linguistics: EMNLP 2020, pages
172–182, Online. Association for Computational Lin-
guistics.

Baolin Peng, Chenguang Zhu, Michael Zeng, and Jian-
feng Gao. 2021. Data Augmentation for Spoken
Language Understanding via Pretrained Language
Models. In Proc. Interspeech 2021, pages 1219–
1223.

Álvaro Peris and Francisco Casacuberta. 2018. Active
learning for interactive neural machine translation
of data streams. In Proceedings of the 22nd Confer-
ence on Computational Natural Language Learning,
pages 151–160, Brussels, Belgium. Association for
Computational Linguistics.

Avinesh P.V.S and Christian M. Meyer. 2019. Data-
efficient neural text compression with interactive
learning. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
2543–2554, Minneapolis, Minnesota. Association for
Computational Linguistics.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
blog.

Abhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara,
Raghav Gupta, and Pranav Khaitan. 2020a. To-
wards scalable multi-domain conversational agents:
The schema-guided dialogue dataset. Proceedings
of the AAAI Conference on Artificial Intelligence,
34(05):8689–8696.

Abhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara,
Raghav Gupta, and Pranav Khaitan. 2020b. Towards
scalable multi-domain conversational agents: The
schema-guided dialogue dataset. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 34, pages 8689–8696.

2779

https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://doi.org/10.18653/v1/2020.emnlp-main.527
https://doi.org/10.18653/v1/2020.emnlp-main.527
https://doi.org/10.18653/v1/W19-8672
https://doi.org/10.18653/v1/W19-8672
https://doi.org/10.18653/v1/W19-8672
https://doi.org/10.3115/980845.980963
https://doi.org/10.3115/980845.980963
https://doi.org/10.18653/v1/2021.findings-emnlp.112
https://doi.org/10.18653/v1/2021.findings-emnlp.112
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://aclanthology.org/2021.adaptnlp-1.14
https://aclanthology.org/2021.adaptnlp-1.14
https://aclanthology.org/2021.adaptnlp-1.14
http://arxiv.org/abs/2110.08467
http://arxiv.org/abs/2110.08467
http://arxiv.org/abs/2110.08467
https://doi.org/10.18653/v1/2021.emnlp-main.142
https://doi.org/10.18653/v1/2021.emnlp-main.142
https://doi.org/10.18653/v1/2021.emnlp-main.142
https://proceedings.neurips.cc/paper/2020/file/f23d125da1e29e34c552f448610ff25f-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/f23d125da1e29e34c552f448610ff25f-Paper.pdf
https://doi.org/10.18653/v1/2020.findings-emnlp.17
https://doi.org/10.18653/v1/2020.findings-emnlp.17
https://doi.org/10.21437/Interspeech.2021-117
https://doi.org/10.21437/Interspeech.2021-117
https://doi.org/10.21437/Interspeech.2021-117
https://doi.org/10.18653/v1/K18-1015
https://doi.org/10.18653/v1/K18-1015
https://doi.org/10.18653/v1/K18-1015
https://doi.org/10.18653/v1/N19-1262
https://doi.org/10.18653/v1/N19-1262
https://doi.org/10.18653/v1/N19-1262
https://doi.org/10.1609/aaai.v34i05.6394
https://doi.org/10.1609/aaai.v34i05.6394
https://doi.org/10.1609/aaai.v34i05.6394


Thibault Sellam, Dipanjan Das, and Ankur Parikh. 2020.
BLEURT: Learning robust metrics for text genera-
tion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
7881–7892, Online. Association for Computational
Linguistics.

Swabha Swayamdipta, Roy Schwartz, Nicholas Lourie,
Yizhong Wang, Hannaneh Hajishirzi, Noah A. Smith,
and Yejin Choi. 2020. Dataset cartography: Mapping
and diagnosing datasets with training dynamics. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 9275–9293, Online. Association for Computa-
tional Linguistics.

Zirui Wang, Zihang Dai, Barnabas Poczos, and Jaime
Carbonell. 2019. Characterizing and avoiding nega-
tive transfer. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition
(CVPR).

Jason Wei and Kai Zou. 2019. EDA: Easy data augmen-
tation techniques for boosting performance on text
classification tasks. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 6382–6388, Hong Kong, China. As-
sociation for Computational Linguistics.

Tsung-Hsien Wen, Milica Gašić, Nikola Mrkšić, Lina M.
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A Details of SA2 Self-training Algorithm

We choose the pre-trained language model SC-GPT
(Peng et al., 2020) as our base generation model
pθ. We collect in-domain MRs from the training
set of existing task-oriented dialogue datasets, such
as MultiWOZ corpus (Budzianowski et al., 2018)
and Schema-Guided Dialog corpus (Rastogi et al.,
2020a). We use nucleus sampling (Holtzman et al.,
2020) with the threshold p = 0.9 to generate the
output tokens for both synthetic text annotation and
refined response generation.

B Dataset Details

Note that the original FEWSHOTWOZ and FEW-
SHOTSGD do not have a development set. To cre-
ate the standard training/dev/test data splits, we ran-
domly sampled 10% data from the original test set
as the dev set, and kept the training set unchanged.
For fair comparisons across different methods, we
evaluated all methods on the newly split test set.
The detailed data statistics of FEWSHOTWOZ is
presented in Table 10. The detailed data statistics
of FEWSHOTSGD is demonstrated in Table 11.

C Experimental Details

General Setups: The model is trained on an
NVIDIA GeForce GTX 1080 Ti GPU server with
12GB memory. For the learning rate, we use the lin-
ear rate scheduler with no warm-ups. The AdamW
optimizer (Loshchilov and Hutter, 2019) with de-
fault weight decay is used to update the parame-
ters. For generation, we use nucleus sampling with
p = 0.9 across all experiments.

SC-GPT: The pre-trained language model SC-
GPT is loaded and fine-tuned on the original few-
shot training set DL. The training epoch is set
to 10, the batch size is set to 1, and the initial
learning rate is set to 1e-5 across all domains in
both FEWSHOTWOZ and FEWSHOTSGD.

AUG-NLG: There are two learning stages. In the
first stage, the pre-trained language model SC-GPT
is loaded and trained on the retrieved augmented
data released by Xu et al. (2021), where the training
epoch is set to 10, the batch size is set to 4, and
the initial learning rate is set to 1e-5 across all
domains in both datasets. In the second stage, the
model checkpoint from the first stage is loaded and
fine-tuned on the original few-shot training set DL,
where the training epoch is set to 10, the batch size

is set to 4, and the initial learning rate is set to 1e-5
across all domains in both datasets.

ST-ALL, ST-NLL, ST-SA2: For all self-training
methods, we start with the model checkpoint from
the SC-GPT baseline. The maximum self-training
iteration is set to S = 5. For evaluation, we save all
model checkpoints at each self-training iteration,
and report the best-performed model which has the
highest BLEUdev score among all iterations (not
necessarily the last iteration).

For ST-ALL and ST-NLL, in each self-training
iteration, the training epoch is set to 10, the batch
size is set to 4, and the initial learning rate is set to
1e-5 across all domains in both datasets.

For the model hyper-parameters in ST-SA2, we
set M = 10 in Equation 4 and Equation 5, and
set R = 10 in Equation 7. For ST-SA2, the train-
ing batch size is set to 4, and we report the de-
tailed training epoch and initial learning rate across
different domains and datasets for reproducibility
purpose in Table 12 and Table 13.

D Self-Augmented Data Examples

Table 14 shows some examples of self-augmented
data DA and pseudo-labeled data DL′ under dif-
ferent data selection strategies in the Restaurant
domain of FEWSHOTWOZ.

E Model Prediction Examples

Table 15 demonstrates some examples of model
generation results in FEWSHOTSGD. Table 16
demonstrates some examples of model generation
results in FEWSHOTWOZ.
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Restaurant Laptop Hotel TV Attraction Train Taxi

# Training Pairs 51 51 51 51 50 50 40
# Dev Pairs 12 137 7 68 34 65 4
# Test Pairs 117 1242 71 612 306 592 43
# Unlabeled Data 10,000 10,000 10,000 7,035 10,000 10,000 6,527

Table 10: Data statistics for the original manual-labeled data DL and the unlabeled data DU on FEWSHOTWOZ.

Restaurants Hotels Flights Buses Events Rentalcars Services Ridesharing

# Training Pairs 50 50 50 50 50 50 50 48
# Dev Pairs 961 401 272 427 836 287 793 819
# Test Pairs 8,657 3,615 2,453 3,845 7,526 2,592 7,146 7,378
# Unlabeled Data 10,000 10,000 10,000 10,000 10,000 10,000 10,000 8,259

Movies Calendar Banks Music Homes Media Travel Weather

# Training Pairs 30 25 23 21 21 14 14 11
# Dev Pairs 737 532 332 732 563 568 528 193
# Test Pairs 6,634 4,793 2,988 6,594 5,073 5,121 4,753 1,742
# Unlabeled Data 7,604 5,355 3,343 7,347 5,657 5,703 5,299 1,947

Table 11: Data statistics for the original manual-labeled data DL and the unlabeled data DU on FEWSHOTSGD.

Domain Epoch LR BLEUdev BLEUtest ERRtest

1 Restaurant 10 8e-7 38.10 36.48 2.60
2 Laptop 10 5e-6 34.19 35.42 2.04
3 Hotel 10 1e-6 33.46 42.63 1.78
4 TV 10 1e-6 37.10 36.39 1.63
5 Attraction 20 5e-7 23.43 25.63 1.40
6 Train 10 8e-7 23.65 25.34 1.62
7 Taxi 10 1e-6 6.08 20.95 0.00

Table 12: Training hyper-parameter configurations of ST-SA2 in FEWSHOTWOZ, where Epoch is the number of
training epochs within a self-training iteration, and LR is the initial learning rate at the beginning of each training
epoch. We set the maximum self-training iteration S = 5, and select the model which has the highest BLEUdev

across all self-training iterations.

Domain Epoch LR BLEUdev BLEUtest

1 Restaurants 10 1e-6 20.69 20.42
2 Hotels 10 1e-6 22.69 22.90
3 Flights 10 5e-6 25.82 27.12
4 Buses 10 1e-6 21.74 21.16
5 Events 10 5e-6 26.46 25.32
6 Rentalcars 10 1e-5 20.67 20.70
7 Services 10 1e-6 28.57 28.34
8 Ridesharing 10 1e-6 23.61 23.28
9 Movies 10 1e-6 29.37 28.95
10 Calendar 10 1e-6 25.97 25.24
11 Banks 10 1e-6 27.45 28.14
12 Music 10 1e-6 27.06 27.23
13 Homes 10 1e-6 24.45 25.03
14 Media 10 1e-5 28.40 28.76
15 Travel 10 1e-6 24.09 25.34
16 Weather 10 5e-7 27.43 29.27

Table 13: Training hyper-parameter configurations of ST-SA2 in FEWSHOTSGD, where Epoch is the number of
training epochs within a self-training iteration, and LR is the initial learning rate at the beginning of each training
epoch. We set the maximum self-training iteration S = 5, and select the model which has the highest BLEUdev

across all self-training iterations.
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low E[pθ] low V ar[pθ]
Input MR DU inform ( choice = several ) @ request ( area = ? )
Self-augmented data DA (Phase I) i have several restaurants that are good for lunch or dinner
Pseudo-labeled data DL′ (Phase II) there are several restaurants that meet your needs

low E[pθ] high V ar[pθ]
Input MR DU inform ( choice = several ) @ request ( area = ? )
Self-augmented data DA (Phase I) there are several restaurants that match your criteria
Pseudo-labeled data DL′ (Phase II) we have several restaurants that fit your criteria

high E[pθ] low V ar[pθ]
Input MR DU request ( area = ? )
Self-augmented data DA (Phase I) what is the area you looking for
Pseudo-labeled data DL′ (Phase II) what is the area you looking for

high E[pθ] high V ar[pθ]
Input MR DU inform ( choice = several ) @ request ( area = ? )
Self-augmented data DA (Phase I) there are several restaurants in the area you’d like to dine in
Pseudo-labeled data DL′ (Phase II) i have several restaurants that meet your criteria. what is the area you looking for

Table 14: Examples of self-augmented data DA and pseudo-labeled data DL′ under different data selection strategies
in the Restaurant domain of FEWSHOTWOZ.

Domain: Ridesharing
Input MR INFORM ( ride_fare = $11.02 ; approximate_ride_duration = 20 )
Human it should take around 20 minutes and cost $11.02.
SC-GPT the cost of the cab is $11.02 and the ride lasts 20 minutes.
AUG-NLG the ride lasts 20 minutes and will cost $11.02.
ST-ALL it will take 20 minutes and cost $11.02.
ST-NLL the cost of the cab is $11.02 and the ride will last 20 minutes.
ST-SA2 (ours) the cost is $11.02 and it will take 20 minutes.

Domain: Media
Input MR OFFER ( title = the visitor, viva las vegas )
Human how about the visitor or viva las vega?
SC-GPT the visitor, viva las vegas is the only movie that meets your criteria.
AUG-NLG the visitor viva las vegas.
ST-ALL the visitor, viva las vegas is also available.
ST-NLL the visitor, viva las vegas is playing.
ST-SA2 (ours) how about the visitor, viva las vegas?

Domain: Hotels
Input MR CONFIRM ( where_to = sydney ; number_of_adults = 1 ; check_in_date = next monday ;

check_out_date = march 11th )
Human please confirm: the location is sydney for a group of 1. the check in date will be next monday and the

check out date will be march 11th.
SC-GPT please confirm the following: you’d like to stay in sydney for 1 person from next monday to march

11th.
AUG-NLG this is for a hotel in sydney. the reservation is for 1 person. the check-in date is next monday.
ST-ALL sure. how about sydney? there’s 1 person in your group, and you’ll be arriving next monday. you’ll be

leaving march 11th.
ST-NLL okay, i’ve got that. you ’d like a 1 person reservation for a house in sydney that ’d be held next monday,

and will be’retired on march 11th. is that right?
ST-SA2 (ours) so to recap: you want a house in sydney for 1 person with a departure date of next monday and a march

11th check out.

Table 15: Examples of model generation results from the test set of FEWSHOTSGD.
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Domain: Restaurant
Input MR inform_no_match ( pricerange = expensive ; area = bernal heights )
Human there are no expensive restaurants in bernal heights
SC-GPT there are no expensive restaurants in the bernal heights area
AUG-NLG unfortunately there is no restaurant near bernal heights that is expensive
ST-ALL there is no restaurant in the expensive price range in the bernal heights
ST-NLL unfortunately there is no restaurants in the expensive price range in the bernal heights area
ST-SA2 (ours) there are no expensive restaurants in the bernal heights area

Domain: Laptop
Input MR inform_only_match ( name = tecra morpheus 65 ; type = laptop ; batteryrating = exceptional ;

pricerange = moderate )
Human the tecra morpheus 65 laptop is a moderate price range computer, with an exceptional battery rating
SC-GPT tecra morpheus 65 laptop is an exceptional laptop in the moderate price range
AUG-NLG tecra morpheus 65 is a nice laptop that is in the moderate price range. it has exceptional battery rating
ST-ALL tecra morpheus 65 is a laptop in the moderate price range and comes with an exceptional battery rating
ST-NLL the tecra morpheus 65 is a laptop in the moderate price range with exceptional battery rating
ST-SA2 (ours) tecra morpheus 65 is a laptop in the moderate price range with an exceptional battery rating

Domain: Hotel
Input MR inform_count ( type = hotel ; count = 182 ; hasinternet = dont_care )
Human there are 182 hotels if it does not matter if they have internet or not
SC-GPT there are 182 hotels that do not care if there internet is
AUG-NLG there are 182 hotels that do not care about internet access
ST-ALL there are 182 hotels that do not care if they have internet or wi-fi
ST-NLL there are 182 hotels that do not care if they have internet or not
ST-SA2 (ours) there are 182 hotels that do not care about internet

Domain: TV
Input MR inform_no_match ( type = television ; hasusbport = true ; screensizerange = medium ; family = l6 )
Human i apologize but there are no televisions with medium screen size , that has usb ports
SC-GPT no, there is no television in the l6 family with usb ports that is a medium screen size
AUG-NLG the l6 television has usb ports, whereas the television without has only a medium screen size.
ST-ALL there are no televisions that are in the medium family, with usb ports or in the l6 product family.
ST-NLL there are no televisions with usb ports in the medium size family or l6 family.
ST-SA2 (ours) there are no televisions in the medium screen size range with usb ports in the l6 family.

Domain: Attraction
Input MR sorry ( area = centre ; choice = none )
Human i have none available in the centre. would you like a different area or attraction?
SC-GPT i don’t have any results for centre. would you like me to look in any other areas?
AUG-NLG there aren’t any listings for centre. would you like to try a specific area?
ST-ALL there are none in the centre. would you like me to check other areas?
ST-NLL there are none in the centre. would you like me to check in another area?
ST-SA2 (ours) sorry, i don’t have any listings for centre. do you want me to check another area?

Domain: Train
Input MR inform ( leaveat = 16:34 ; id = tr8132 ) @ request ( people = ? )
Human i have the tr8132 which leaves at 16:34. how many tickets please?
SC-GPT tr8132 leaves at 16:34. how many tickets will you need?
AUG-NLG there is a train that leaves at 16:34. how many tickets would you like?
ST-ALL i have train tr8132 leaving at 16:34. how many tickets would you like?
ST-NLL i have train tr8132 that leaves at 16:34. how many tickets would you like to book?
ST-SA2 (ours) tr8132 leaves at 16:34. how many tickets would you like?

Domain: Taxi
Input MR request ( destination = ? ; arriveby = ? )
Human i would be happy to book your taxi but i will need your destination and preferred arrival time as well.
SC-GPT sure, where would you like to travel to? also where would you like to be picked up from?
AUG-NLG what time would you like to arrive?
ST-ALL sure, where would you like to go to and what time?
ST-NLL what is your destination? do you have a arrival time in mind?
ST-SA2 (ours) sure, where would you like to go to? also, what time would you like to arrive?

Table 16: Examples of model generation results from the test set of FEWSHOTWOZ.
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