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Abstract

One of the most impressive results of recent
NLP history is the ability of pre-trained lan-
guage models to solve new tasks in a zero-
shot setting. To achieve this, NLP tasks are
framed as natural language prompts, generat-
ing a response indicating the predicted output.
Nonetheless, the performance in such settings
often lags far behind its supervised counterpart,
suggesting a large space for potential improve-
ment. In this paper, we explore methods to
utilize unlabeled data to improve zero-shot per-
formance. Specifically, we take advantage of
the fact that multiple prompts can be used to
specify a single task, and propose to regular-
ize prompt consistency, encouraging consistent
predictions over this diverse set of prompts.
Our method makes it possible to fine-tune the
model either with extra unlabeled training data,
or directly on test input at inference time in
an unsupervised manner. In experiments, our
approach outperforms the state-of-the-art zero-
shot learner, T0 (Sanh et al., 2022), on 9 out of
11 datasets across 4 NLP tasks by up to 10.6
absolute points in terms of accuracy. The gains
are often attained with a small number of unla-
beled examples. 1

1 Introduction

While the past decade has demonstrated that pre-
trained language models (PLMs) are powerful tools
for improving generalization from training datasets
to test datasets (Devlin et al., 2019; Liu et al., 2019;
Raffel et al., 2020), more recent work has shown
that they can even perform zero-shot generaliza-
tion to new tasks without any annotated examples
(Brown et al., 2020; Wei et al., 2022; Sanh et al.,
2022). These systems leverage natural language
prompts that specify the task for the model and
represent different tasks in a unified format (Liu

∗Equal contribution. Order determined by swapping the
one in He et al. (2022).

1Code is available at https://github.com/violet-zct/swarm-
distillation-zero-shot.

et al., 2021b). Zero-shot task generalization sug-
gests a path towards generic systems that perform
a wide variety of NLP tasks with no annotated
examples. However, while enticing conceptually,
zero-shot performance often remains relatively low
compared to systems trained using even a small
amount of task-specific labeled data.

In this paper, we examine methods to make
PLMs better zero-shot learners using unlabeled
text. Our work is motivated by consistency training
methods that regularize model predictions to be
invariant to perturbation (e.g. noise or paraphras-
ing) of the input examples. Consistency training is
widely used in semi-supervised learning literature
as an effective technique to utilize unannotated ex-
amples (Bachman et al., 2014; Sajjadi et al., 2016;
Beyer et al., 2019; Xie et al., 2020a). It is often
understood as a type of smoothness regularization
or data augmentation (Xie et al., 2020a) and attains
strong performance in semi-supervised learning.
Instead of example-level consistency, we propose
to regularize prompt consistency, where a model is
regularized to make the same prediction across a
diverse set of synonymous task prompts. Prompt
consistency regularization makes sense intuitively
since PLMs should be robust across synonymous
prompts, whereas it is known that model predic-
tions are empirically very sensitive to the wording
of the task prompts (Jiang et al., 2020).

Specifically, we design a pairwise distillation
loss that encourages consistency between every
pair of prompts (Figure 1). We refer to our method
as swarm distillation, and it has the advantage of
being fully unsupervised, only requiring unanno-
tated inputs. Notably, unannotated examples are
often relatively easy to collect. Drafting several
prompts for a task is also far cheaper than anno-
tating labels for each example – in fact, there are
already well-designed prompts available for a wide
range of NLP tasks (Bach et al., 2022).

Previous work on example-level consistency reg-
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Sentence: proves once again he has 
n't lost his touch , bringing off 
a  superb  performance  in  an 
admittedly middling film . 

{Sentence}
Question: Was that sentence 
positive or negative? Answer:

Does the following sentence have 
a positive or negative sentiment?
{Sentence}

Someone sent me an email with 
the sentence {Sentence}. Do you 
think they are feeling good or 
bad?

Someone just said to me 
{Sentence}.
Do you think they are sad or 
happy?

PLM

Unlabeled Input Apply Multiple Task Prompts Predict Prompt-Formatted Target

Positive

Negative

Happy

Good

Swarm Distillation
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Figure 1: An example of the proposed approach in an sentiment classification task. We apply multiple synonymous
prompts to the unlabeled example, then we regularize the consistency of the predictions from different prompts,
through our swarm distillation loss as detailed in Eq. 2.

ularization typically minimizes a consistency loss
along with a supervised loss in a semi-supervised
setting (Miyato et al., 2018; Xie et al., 2020a). Re-
cently, Elazar et al. (2021) performed experiments
optimizing a prompt consistency loss in the context
of a relation prediction task, also incorporating a
supervised version of the masked language model
pretraining objective. In contrast, we (1) optimize
a novel prompt consistency loss alone, making our
approach completely unsupervised and agnostic to
the model’s pretraining objective, and (2) experi-
ment on and demonstrate the practicality of such an
approach for a broad variety of NLP tasks. Notably,
this unsupervised setting poses additional learn-
ing challenges: without explicit supervision, the
model may suffer from catastrophic forgetting and
even exhibit a form of collapse where the model
always makes the same predictions for any input.
To address this issue, we adopt two simple strate-
gies: (1) we utilize parameter-efficient tuning tech-
niques (Houlsby et al., 2019; He et al., 2022) to
only update a small number of extra parameters,
naturally mitigating catastrophic forgetting by fix-
ing the original PLM parameters; (2) we propose
an unsupervised criterion to select the model check-
point before it falls into a collapsed local optimum.

In experiments, we build our method on top of
a state-of-the-art zero-shot task learner, T0 (Sanh
et al., 2022), and validate its performance on 11
datasets from 4 NLP tasks: natural language in-
ference, coreference resolution, word sense disam-
biguation, and sentence completion. We perform
experiments under two secenarios: (1) training the
model with unlabeled training data; or (2) tuning
the model with unlabeled test inputs directly. In

both settings, we show that our swarm distillation
method improves the accuracy of the 3B-parameter
T0 model on 9 out of 11 datasets by up to 10.6 abso-
lute points. We further scale model size up to 11B
parameters, and demonstrate that our approach out-
performs the 11B-parameter T0 model on 4 out of
4 datasets. Remarkably, analysis implies that these
gains are often possible with only tens of examples,
suggesting a small computation overhead.

2 Prompt-based Zero-Shot Task
Generalization

Given a task where the input is denoted as x ∈ X
and the goal is to predict y ∈ Y , we focus on the
zero-shot task generalization setting: we aim to
feed a PLM with x to predict y, where the PLM is
never trained on the specific task to be performed.
Zero-shot task generalization goes beyond tradi-
tional dataset generalization, as the model must
generalize to new functions f : X → Y as op-
posed to new input examples, x. Recently, the
development of prompting methods has advanced
zero-shot task generalization by representing dif-
ferent tasks in a unified format (Liu et al., 2021b),
and several prompt-based approaches have attained
reasonable zero-shot performance (Brown et al.,
2020; Sanh et al., 2022; Wei et al., 2022).

A prompt r consists of an input template rx,
an output template ry, and metadata to re-format
the original x and y into new prompt-formatted
input and target, rx(x) and ry(y). For exam-
ple, as shown in Figure 1, in a sentiment classi-
fication task where we must predict positive or
negative sentiment of the text, the input includes
the field Sentence and the target consists of the
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field Label. An input template could be “Does
the following sentence have a positive or nega-
tive sentiment? {Sentence}”, and the target tem-
plate is “Choices[{label}]”. Here Choices is
the metadata that is a list containing [Positive,
Negative] to correspond to the numeric label ids.
We note that such metadata is prompt-specific and
can differ with different prompts for the same
task – for instance, in Figure 1 the Choices
list of the last prompt on the bottom is [Good,
Bad]. In prompt-based approaches the PLM mod-
els the conditional probability q(y|x, r) through
pθ(ry(y)|rx(x)) where θ denotes the model pa-
rameters. In classification tasks where Y is a finite
label set, q(y|x, r) is normalized over the possible
labels at inference time to predict y:

q(y|x, r) = pθ(ry(y)|rx(x))∑
y′∈Y pθ(ry(y′)|rx(x))

. (1)

In generation tasks where Y is an infinite sequence
space, the target template is typically instanti-
ated as the target itself, i.e. pθ(ry(y)|rx(x)) =
pθ(y|rx(x)), then the output can be directly de-
coded through sequence decoding approaches.
Through designing such prompts for each task, all
NLP tasks share the same data format, and models
trained on one task may generalize to others.

3 Prompt Consistency Training

3.1 Problem Definition

In this paper, we aim to explore unannotated exam-
ples to improve prompt-based zero-shot task gen-
eralization. Formally, we are given an unlabeled
dataset in the task of interest {x1,x2, · · · ,xN},
and we assume the dataset has K different prompts,
{(r(1)x , r

(1)
y ), · · · , (r(K)

x , r
(K)
y )}. Our goal is to uti-

lize these resources and adapt a PLM to predict
ry(y) conditioned on rx(x). Unlabeled inputs are
often available in practice, we consider two such
scenarios in the paper.

First, we consider the case when unannotated
examples from a non-test set are available. For
many NLP tasks their inputs are plain text such as
reviews, documents, or questions and can be easily
collected (less so for other NLP tasks, like natural
language inference the inputs are paired hypothe-
ses and premises that can be non-trivial to obtain
automatically). In this paper, we test this setting
by utilizing the inputs of the training dataset. This
is similar to Schick and Schütze (2021a,b) where

they directly use the inputs of the training split as
unlabeled resources to help few-shot learning.

Second is the case when unannotated test inputs
are available. This is almost always true for any
task. We use the test split to mimic the setting.
While the limited number of unlabeled examples
could potentially limit the effectiveness of some un-
supervised learning methods, we show in §4.4 that
our method is effective even with tens to hundreds
of unlabeled examples.

On the other hand, a diverse set of prompts is not
exceedingly difficult to collect practically – draft-
ing prompts for each task is easier than annotating
labels for many examples. In fact, the community
efforts have pushed out a Public Pool of Prompts
(P3) that contains thousands of prompts for hun-
dreds of NLP datasets already (Bach et al., 2022).

3.2 The Prompt Consistency Loss
Consistency regularization is a method that cre-
ates different views (e.g. paraphrases of text) of
the input and regularizes the outputs to be close to
each other, and has achieved significant success in
semi-supervised learning (Clark et al., 2018; Xie
et al., 2020a,b). While previous methods use an ad-
ditional module to perturb each example and then
optimize example-level consistency, we propose
to optimize prompt-level consistency which (1) is
conceptually simple, and (2) can mitigate the fact
that the predictions of PLMs are typically inconsis-
tent with different prompts for the same task (Jiang
et al., 2020; Elazar et al., 2021). Intuitively, we
propose to regularize the predictions of different
prompts for a given input to be close to each other,
using a pairwise distillation loss to draw the pre-
dictions from one prompt closer to those from the
other. Concretely, we randomly sample a few pairs
of prompts and distill the pseudo target ŷ from one
prompt r(i) to the other prompt r(j), as illustrated
in Figure 1. The loss function is defined as:

L = −Ex∼pd(x)Er(i),r(j)∼p(r)

Eŷ∼q̂(y|x,r(i)) log pθ(r
(j)
y (ŷ)|r(j)x (x)),

(2)

where pd(x) is the empirical data distribution, p(r)
is a uniform distribution over possible prompts,
and q̂(y|x, r) is the conditional target distribu-
tion defined as in Eq. 1 but with a stopping gra-
dient operator. We do not propagate gradients to
q̂(y|x, r(i)) following Miyato et al. (2018) and Xie
et al. (2020a).2 Stopping the gradient of one side

2Note that q̂(y|x, r) still changes as we train the model.

2615



in a pairwise consistency loss is also shown to help
mitigate the collapse issue where all inputs lead to
the same predictions (Chen and He, 2021). Differ-
ent from traditional distillation that distills from
a teacher model to a student model (Hinton et al.,
2015), or previous consistency training that a sin-
gle teacher distills to several students (Clark et al.,
2018; Xie et al., 2020a), we perform distillation
among a swarm of prompts where each prompt is a
teacher and student at the same time, thus we term
our method as swarm distillation. In our implemen-
tation, we approximate the expectation over the
paired prompts (r(i), r(j)) with k randomly sam-
pled pairs for training efficiency.

Prompt consistency is related to example-
level consistency when viewing different prompt-
formatted inputs r

(i)
x (x) as separated views of

the same example, thus our swarm distillation ap-
proach shares spirit with previous work on example-
level consistency training and can be understood
similarly from the perspective of unsupervised data
augmentation, smoothness regularization, or label
propagation (Xie et al., 2020a). In this paper, we
focus on classification tasks where Y is a finite
label set, while Eq. 2 can be directly applied to
sequence generation tasks as well with sequence
distillation (Kim and Rush, 2016).

Our approach differs from previous consistency
training methods which often combine an unsuper-
vised consistency loss with a supervised loss in a
semi-supervised setting (Miyato et al., 2018; Clark
et al., 2018; Xie et al., 2020a). Elazar et al. (2021)
try to improve prompt consistency for a relation fill-
ing task with a pairwise two-sided KL divergence
loss, while they also optimize a supervised version
of the original PLM objective that turns out to be
important. In contrast, our approach minimizes the
swarm distillation loss in Eq. 2 alone, and therefore
is completely unsupervised and agnostic to the pre-
training objective. However, this setting also poses
challenges in learning, which we discuss next.

3.3 Training

Being trained without explicit supervision, the
PLM may forget what it learns during pretraining
since the unsupervised consistency loss is differ-
ent from the pretraining objective. Also, we note
that prompt consistency may be achieved with a
trivial solution – if the predictions from each ex-
ample and each prompt collapse to the same label
then maximal consistency among prompts can be

+
pretrained weight
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B 2 Rd⇥b

Figure 2: A diagram of LoRA in the FFN sublayer. Only
the LoRA parameters, A and B, are updated during
training.

reached. To mitigate such catastrophic forgetting
and collapse issues, we propose two techniques:

Parameter-efficient tuning: It has recently been
observed that updating a small number of added
parameters in a PLM is able to achieve comparable
performance to tuning all the parameters (Houlsby
et al., 2019; Li and Liang, 2021; Hu et al., 2022;
He et al., 2022). Parameter-efficient tuning meth-
ods naturally mitigate catastrophic forgetting and
collapse through fixing the original PLM parame-
ters. Specifically, we use LoRA (Hu et al., 2022), a
low-rank adaptation method for PLMs. As shown
in Figure 2, LoRA learns a low-rank approxi-
mation of the pretrained matrix updates: given
a pretrained weight matrix W ∈ Rd×m, LoRA
learns to update it as W ← W + αBA, where
B ∈ Rd×b, A ∈ Rb×m are low-rank matrices and α
is a hyperparameter, and only B and A are updated
during training. b≪ d is referred to as the bottle-
neck dimension. Following He et al. (2022), we
apply LoRA to the feed-forward weight matrices of
every layer in the pretrained transformer (Vaswani
et al., 2017) model. In our preliminary experiments,
we found that LoRA is less likely to suffer from
collapse, while on some datasets the model still
collapses in the end even though it learns well in
the middle. This motivates us to develop a criterion
to select the model checkpoint before it falls into a
collapsed local optimum, which we describe next.

Unsupervised model selection criterion: Our
zero-shot setting does not have labeled validation
data for model selection, and the swarm distilla-
tion objective is not an ideal selection criterion
since it is minimized at collapse. Therefore, we
would like to have an unsupervised criterion that
encourages consistency but simultaneously penal-
izes collapse. With that in mind, we focus on Fleiss’
kappa (Fleiss, 1971), a commonly used metric to
assess the reliability of agreement. In our setting,
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Fleiss’ kappa expresses the extent to which the
amount of agreement among prompts exceeds what
would be expected if all prompts made their predic-
tions according to the marginalized distribution of
labels. This design computes a notion of “relative
consistency” and naturally penalizes collapse. For-
mally, let nij be the number of prompts that predict
the j-th label for the i-th example. There are a total
of NK predictions where N is the number of ex-
amples and K is the number of prompts. Given an
example xi, the agreement probability pi computes
the normalized number of agreeing prompt pairs:

pi =
∑

j
nij(nij − 1)/(K(K − 1)), (3)

then the “absolute consistency” P̄ is:

P̄ =
∑N

i=1
pi/N. (4)

P̄ is maximized in the case of collapse. However,
Fleiss’ kappa considers the marginalized distribu-
tion of labels: how likely are two prompts consis-
tent if they make predictions randomly according
to the marginalized label distribution? This chance
probability P̄e is:

P̄e =
∑

j
q2j , qj =

∑N

i=1
nij/(NK), (5)

where qj represents the marginalized distribution
of labels, i.e. p(y = j). P̄e is large when col-
lapse happens and one label dominates in the entire
corpus. Finally, Fleiss’ kappa is computed as:

κ =
P̄ − P̄e

1− P̄e
, (6)

where 1− P̄e gives the degree of consistency that
is attainable above chance, P̄ − P̄e gives the degree
of consistency actually achieved above chance. κ
ranges from -1 to 1. Eq. 6 naturally penalizes col-
lapse, and in our experiments, we always observe
a monotonic decrease of κ when collapse happens.
Therefore, we select the model checkpoint after
which κ monotonically decreases.3 We empha-
size that we perform validation on the data that
the model is trained on and do not require an ad-
ditional development dataset. We include ablation
analysis for both LoRA and the model selection
components in Appendix C that shows that they are
important for the success of our method.

3In most of the settings, this criterion is equivalent to using
maximal κ as the criterion, except for few cases where the
beginning of training exhibits large fluctuations in κ.

4 Experiments

Our experiments below are designed to (1) mea-
sure whether swarm distillation is able to improve
zero-shot task generalization; and (2) analyze how
much resource (number of prompts and unlabeled
examples) our method demands.

4.1 General Setup

Datasets: Following Sanh et al. (2022), we evalu-
ate our method on 11 NLP datasets across 4 unseen
tasks. They are (1) natural language inference:
ANLI (Nie et al., 2020) (there are three versions
of ANLI with different levels of difficulty, which
we denote as ANLI R1/R2/R3), CB (De Marn-
effe et al., 2019), RTE (Wang et al., 2019a); (2)
sentence completion: COPA (Roemmele et al.,
2011), HellaSwag (Zellers et al., 2019), Story
Cloze (Mostafazadeh et al., 2016); (3) corefer-
ence resolution: WSC, Winogrande (Levesque
et al., 2012); and (4) word sense disambiguation:
WIC (Pilehvar and Camacho-Collados, 2019). We
access them using Hugging Face Datasets (Lhoest
et al., 2021) and most of them are from the Su-
perGLUE benchmark (Wang et al., 2019a). All of
these datasets are classification-based, predicting
a discrete label from a finite set. Each of these
datasets has a diverse set of prompts provided by
the Public Pool of Prompts (Sanh et al., 2022) The
number of prompts ranges from 4 to 15. Please
refer to Appendix A for detailed statistics of these
datasets.

Setup: We build our method on top of the PLM
T0 (Sanh et al., 2022). T0 is an adapted version
of the pretrained T5 model (Raffel et al., 2020)
that is continually trained on multiple tasks with
supervised, prompt-formatted examples. T0 outper-
forms GPT3 (Brown et al., 2020) and demonstrates
state-of-the-art performance in zero-shot task gen-
eralization. All the tasks that we are studying are
not included in T0’s training data. We focus our
major study on the T0 model version with 3 billion
parameters (T0-3B), while we also include results
using the largest T0 model with 11 billion param-
eters (T0-11B) on some datasets, due to the high
computational cost of training T0-11B. The hyper-
parameters (e.g. the optimization hyperparameters)
are tuned on the RTE dataset with its validation set
and fixed for all other datasets. We use a bottleneck
dimension of 1 for LoRA. Complete setup details
can be found in Appendix B.
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T0-3B Self Dist. (train) Swarm Dist. (train) Swarm Dist. (test)
Task Dataset Ens. Med. Ens. Med. Ens. Med. Ens. Med.

NLI

RTE 64.6 64.1 64.9±0.2 63.8±0.1 75.2±0.8 ↑10.6 73.9±0.8 ↑9.8 75.2±0.2 ↑10.6 73.5±0.1 ↑9.4

CB 46.4 50.0 47.0±1.0 49.4±2.7 47.6±1.0 ↑1.2 48.2±0.0 ↓1.8 46.4±0.0 ↑0.0 48.8±1.0 ↓1.2

ANLI R1 34.6 33.7 36.1±0.1 34.7±0.1 38.4±0.5 ↑3.8 35.7±0.4 ↑2.0 38.5±0.3 ↑3.9 35.7±0.5 ↑2.0

ANLI R2 33.7 33.4 35.3±0.1 33.2±0.2 37.9±0.8 ↑4.2 36.6±0.5 ↑3.2 37.7±0.2 ↑4.0 35.4±0.4 ↑2.0

ANLI R3 34.7 33.3 33.1±0.0 33.8±0.2 34.0±0.3 ↓0.7 34.6±0.1 ↑1.3 34.1±0.2 ↓0.6 33.5±0.0 ↑0.2

Compl.
COPA 78.0 79.0 82.3±0.6 78.2±0.3 82.7±0.6 ↑4.7 79.0±0.5 ↑0.0 83.0±1.0 ↑5.0 79.7±0.6 ↑0.7

HellaSwag 27.8 27.5 32.5±0.2 32.7±0.3 34.2±0.2 ↑6.4 33.4±0.2 ↑5.9 33.7±0.6 ↑5.9 33.2±0.3 ↑5.7

Story Cloze 86.5 85.1 89.6±0.0 88.7±0.0 – – 87.3±0.1 ↑0.8 86.9±0.2 ↑1.8

Coref.
Wino. 50.9 50.5 51.1±0.1 50.7±0.1 52.0±0.3 ↑1.1 51.4±0.0 ↑0.9 52.1±0.3 ↑1.2 51.2±0.2 ↑0.7

WSC 69.2 64.4 69.2±0.0 64.6±0.3 58.3±1.1 ↓10.9 59.3±2.0 ↓5.1 57.7±0.0 ↓11.5 58.8±0.6 ↓5.6

WSD WIC 50.3 50.4 50.3±0.0 50.3±0.0 55.4±1.1 ↑5.1 54.4±0.7 ↑4.0 55.5±0.8 ↑5.2 54.8±0.5 ↑4.4

Table 1: Accuracy results on the validation set of 11 NLP datasets based on the T0-3B model. Swarm Distillation
(train) and Swarm Distillation (test) use the unlabeled training split and validation split of datasets to train the model
respectively, corresponding to training-time and test-time tuning. The Story Cloze dataset does not have a training
split and its self distillation results are from tuning on the validation split. We report the mean and std across 3
random runs, and also denote the absolute accuracy change compared to the T0-3B baseline.

4.2 Evaluation

Metrics: We use accuracy as the metric for all
datasets. We report two different types of accuracy
given that we have multiple prompts. The ensem-
ble accuracy (Ens.) averages the output distribu-
tions of multiple prompts and makes predictions
according to it. Ensembling multiple prompts has
been explored before and found superior to using a
single prompt (Jiang et al., 2020; Qin and Eisner,
2021). The median accuracy (Med.) within the
set of prompts serves as a proxy for the expected
performance when users specify a single prompt
and input a prompt-formatted example. As our
approach assumes availability of a set of prompts
for the downstream task, and it is relatively cheap
to craft several prompts for a task, ensemble pre-
diction is the better option given input x, and it
does empirically yield higher accuracy overall than
the median for both the baseline and our method.
Therefore, we will report both numbers but mainly
discuss ensemble accuracy. We report these met-
rics on the validation split of each dataset. We run
the experiments with 3 random seeds and report
the mean and standard deviation.

Evaluation scenarios: We provide our methods
with different unlabeled sources which lead to two
practical scenarios during evaluation: (1) training-
time tuning: we use the unlabeled training split
from the corresponding dataset to train the model.
This is similar to traditional settings where train-
ing and test data are different; and (2) test-time

tuning (Sun et al., 2020; Wang et al., 2021): we
directly adapt the PLM on the test data. This set-
ting is reasonable, as we will always have access
to the test inputs at test time. Intuitively, the unla-
beled test sample x often provides hints about the
distribution it was drawn, suggesting that we may
update the model before making the prediction.
This scenario is attractive since it alleviates the
common distribution mismatch issue when there
is a distribution shift between the training and test
data. Compared to training-time tuning, test-time
tuning typically uses less unlabeled data in our ex-
periments since it uses the validation split itself. In
the major experiments, we focus on the offline test-
time tuning where we assume access to the entire
test data4 and train our approach on all test exam-
ples, while in §4.4 we will discuss the potential for
online adaptation where data arrives in a stream.

Baselines: As far as we know, there is no prior
work studying unsupervised approaches for this
prompt-based task generalization setting, thus T0
is the main baseline that we compare our approach
against. However, we still implement an abla-
tion baseline, self distillation, to separate the im-
provement from optimizing prompt consistency
and pseudo-label distillation. Specifically, self dis-
tillation minimizes the same loss as in Eq. 2 but
with r(i) = r(j) – instead of pairwise distillation,
the prompt always distills its own prediction to
itself. This baseline can be viewed as a prompt

4To clarify, test data is not the test split of the dataset, but
the data that we evaluate on, i.e. the validation split.
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T0-11B Swarm Dist.
Dataset Ens. Med. Ens. Med.

WSC 63.5 62.5 65.4 ↑1.9 62.0 ↓0.5

RTE 83.8 82.0 86.6 ↑2.8 85.0 ↑3.0

HellaSwag 34.4 33.6 45.0 ↑10.6 43.0 ↑9.4

WIC 57.2 56.8 62.1 ↑4.9 60.7 ↑3.9

Table 2: Accuracy based on T0-11B.

T0-3B No Shift SD on MNLI SD on QNLI

RTE 64.6 75.2 75.5 72.9
ANLI R1 34.6 38.4 38.2 37.4
ANLI R2 33.7 37.9 38.5 35.3
ANLI R3 34.7 34.0 36.9 34.4

Table 3: Ensemble accuracy on the distribution shift
setting based on T0-3B. “No Shift” represents the orig-
inal setting where we train the swarm distillation loss
on the training split from the same dataset as the test
examples. “SD on MNLI/QNLI” represents swarm dis-
tillation trained on the training split of MNLI/QNLI.

version of self-training, which has proven to ef-
fectively utilize unlabeled data (He et al., 2020;
Xie et al., 2020b; Zhang et al., 2020). We report
self distillation results in the training-time tuning
setting only for simplicity.

4.3 Results

How well does swarm distillation work? We
first compare swarm distillation against the T0-3B
baseline. As shown in Table 1, the ensemble ac-
curacy of swarm distillation exceeds the T0-3B
baseline on 9 out of 11 datasets in both training-
and test-time tuning settings. Particularly, our ap-
proach improves the zero-shot performance on RTE
by around 10 absolute points in all cases. Our ap-
proach slightly hurts ensemble accuracy of ANLI
R3 and median accuracy of CB, but is overall com-
parable on these two datasets. Compared to self
distillation, swarm distillation outperforms it on
9 out of 11 datasets in terms of ensemble accu-
racy, by up to 10.3 absolute points. These results
further confirm the effectiveness of encouraging
prompt consistency. We note that swarm distilla-
tion severely fails on WSC with a 10-point accuracy
decrease compared to both T0 and self distillation,
this is because Fleiss’ kappa selects a bad model
checkpoint, while our approach actually improves
the performance on WSC in the middle of train-
ing as we will discuss more in §4.4. Notably, our
approach is helpful on several datasets where T0-
3B only shows nearly chance accuracy, such as

ANLI R1/R2/R3 (3 labels), HellaSwag (4 labels),
Winogrande (2 labels), and WIC (2 labels). In ad-
dition, we observe that swarm distillation in the
test-time tuning setting performs comparably well
to the training-time one despite using much less
training data, as shown in Appendix A. It is worth
noting that prompt-based zero-shot task general-
ization is challenging, for example, T0 with even
11 billion parameters reports a median accuracy of
only∼ 40 on ANLI R1/R2/R3, 33.7 on HellaSwag,
and 57.2 on WIC (Sanh et al., 2022). Our results
are surely still far from satisfactory, yet we hope to
inspire future research to explore unlabeled data to
build better zero-shot learners.

Scaling to 11B parameters: We now evaluate
our method based on the largest version of T0
model, T0-11B. T0-11B is a very powerful zero-
shot baseline that greatly outperforms GPT3. Due
to the expensive computation to train T0-11B, we
use one dataset per task, a total of 4 datasets as our
benchmark, and only run with one random seed in
the test-time tuning setting. Results are shown in
Table 2. Swarm distillation outperforms T0-11B on
all 4 datasets in terms of ensemble accuracy, and
notably, improves the ensemble accuracy on Hel-
laSwag from 34.4 to 45.0 without any annotation.
Table 1 and Table 2 demonstrate the effectiveness
of swarm distillation across different model sizes.

Robustness of swarm distillation: The main ex-
periments so far train and test on examples from the
same dataset, thus the results are based on the as-
sumption that the training and test distributions are
similar. To relax this assumption, here we evaluate
swarm distillation with a more difficult setting by
collecting unlabeled training examples from other
datasets that are not listed in §4.1. Specifically,
we focus on the NLI task, train swarm distillation
on the unlabeled training split of MNLI (Williams
et al., 2018) and QNLI (Wang et al., 2019b) respec-
tively, and evaluate it on RTE and ANLI. Table 3
shows that our proposed method still performs well
in such a distribution shift setup — the models
trained on MNLI or QNLI help improve the T0-3B
baseline in most cases. The results from MNLI
training are generally comparable to the original
“No Shift” numbers, while QNLI training causes a
mild accuracy drop.

4.4 Analysis
Are predictions more consistent across prompts
after swarm distillation? We wonder whether
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RTE CB ANLI R1 ANLI R2 ANLI R3 COPA HS Story. Wino. WSC WIC Avg.

T0-3B 0.644 0.440 0.221 0.189 0.170 0.586 0.164 0.765 0.396 0.255 0.398 0.384
Swarm Dist. 0.662 0.254 0.145 0.156 0.177 0.699 0.402 0.862 0.509 0.462 0.517 0.440

Table 4: Fleiss’ kappa on 11 datasets based on T0-3B. Swarm distillation is trained on the training split of the
respective dataset.
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Figure 3: Analysis results to compare the model checkpoints selected by the unsupervised criterion Fleiss’ kappa
with the oracle model checkpoints selected by validation accuracy.

the gains of swarm distillation are attained together
with more consistent predictions across different
prompts. To this end, we report Fleiss’ kappa, a
commonly used metric for group agreement as
detailed in §3.3. Results are shown in Table 4.
Fleiss’ kappa on 8 out of 11 datasets increases af-
ter swarm distillation, which boosts the averaged
Fleiss’ kappa of T0-3B by 14.6% relatively. This
implies that swarm distillation facilitates prompt
consistency, and potentially improves the robust-
ness of PLMs to different wording of prompts.

Does the unsupervised criterion select the best
model checkpoint? In §3.3, we discussed using
Fleiss’ kappa to select the best model checkpoint
for evaluation, here we report the oracle accuracy
numbers obtained by selecting the model check-
point with the best validation accuracy, and com-
pare it to the one selected by Fleiss’ kappa. We
compare the ensemble accuracy using T0-3B in
the training-time tuning setting, with results in Fig-
ure 3. On most of the datasets, Fleiss’ kappa is
able to achieve numbers close to the best ones. On
all 11 datasets, our oracle number outperforms the
T0-3B baseline. In Table 1 we show that swarm
distillation hurts the performance on WSC a lot,
while in Figure 3 swarm distillation (oracle) in fact
outperforms T0-3B, implying that the issue lies
on model selection. Therefore, swarm distillation
could potentially work better if an annotated dev set
is available or when it is combined with other tech-
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Figure 4: Ensemble accuracy of swarm distillation on
three example datasets based on T0-3B, demonstrating
the effect of prompt size and unlabeled data size.

niques in few-shot learning settings, where good
checkpoints may be selected out more easily.

How many prompts do we need? Our approach
requires a diverse set of prompts to regularize
prompt consistency. Here we perform ablation ex-
periments to understand the effect of the number of
prompts on the performance. We take COPA and
ANLI R2 as example datasets which have 8 and
15 prompts, respectively. We then vary the num-
ber of available prompts by randomly sampling a
subset of prompts before training. We report the
ensemble accuracy of swarm distillation (train) in
Figure 4a. On both COPA and ANLI R2, we ob-
serve gains as we increase the number of prompts
from 0 (the baseline), yet the performance satu-
rates very quickly and relatively stabilizes when
we provide 4 prompts. This implies that swarm
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distillation is not prompt-hungry and could work
well with a small number of prompts. We note
the with one prompt here Eq. 2 degenerates to a
weaker version of self distillation compared to the
one in Table 1 – self distillation in Table 1 utilizes
all prompts during training while we assume access
to only one prompt here.

How many unlabeled examples do we need?
We measure the effect of unlabeled data size.
Specifically, we randomly sample a subset of ex-
amples from the train split for training and report
results on the entire validation dataset. Results on
WIC and ANLI R2 are shown in Figure 4b. No-
tably, swarm distillation is able to outperform the
baselines (#examples=0) by a large margin on both
datasets with only 10 unlabeled examples, and the
performance starts to saturate quickly afterward.
These results suggest that swarm distillation is not
data-hungry and works reasonably well with few
unlabeled examples, allowing swarm distillation
to remain as a relatively light approach while typ-
ical unsupervised training (e.g. pretraining) often
requires a large amount of data and computation.
Also, we argue that the phenomenon demonstrated
in the results implies that swarm distillation may
be applied to the online setting of test-time tuning,
where the batches of test data arrive in a stream.
Online test-time tuning is a practical setting in real
life, and we leave it as future work to study.

5 Discussion

In this paper, we explore prompt consistency reg-
ularization to make PLMs better zero-shot learn-
ers. Our approach, swarm distillation, utilizes unla-
beled examples to attain zero-shot gains. While we
use swarm distillation in a post-adaptation manner,
it could be potentially combined with the pretrain-
ing objectives in the pretraining stage (e.g. the
multi-prompt training loss (Sanh et al., 2022; Wei
et al., 2022)), or even with annotated data in few-
shot learning settings. Combining swarm distilla-
tion with these other losses may easily bypass the
model collapse issue since the other loss typically
discourages the collapsed local optimum.
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Limitations

There are two limitations of our work: (1) Because
our method is operated in a fully unsupervised
manner, there is no supervised development data
for us to either select the best model or tune hy-
perparameters. Thus, we propose to use Fleiss’
Kappa as our unsupervised development metric
for model selection, which attains decent perfor-
mance in most cases. However, we also observe
on very few datasets that the proposed metric fails
to select the best checkpoints and hurt the model’s
performance. As discussed in §4.4, our method
can be combined with few-shot learning where a
few labeled data are provided, and we believe this
can largely alleviate the issues of model selection
in the unsupervised setting. (2) The other limi-
tation and at the same time an advantage of our
method is that the proposed method can work well
even with 10 unlabeled data points. This certainly
makes our method a good candidate for the online
setting where batches of test data come in a stream.
However, as we discussed in §4.4, the performance
of our model saturates quickly as we increase the
number of unlabeled data, which means the perfor-
mance of our method cannot scale well with tons of
unlabeled data like self-supervised pretraining. As
discussed in §5, we expect combining our method
with few-shot learning setting / pre-training can
lead to further improvements as the supervised sig-
nals may guide the model to a better local optimum.

Ethics Statement

Similar to T0, this work aims to produce an open-
ended system that could perform all text-based
tasks through designing different prompts. While
the performance of GPT3, T0, and this work is far
from the practical level on unseen tasks, we expect
a greatly improved prompt-based system in the fu-
ture could be built to help perform many daily tasks
in real life. However, the resulted model in this pa-
per also admits the same ethics concerns that T0
has. For example, the unrestricted use of prompts
may easily trigger offensive generations or private
information leakage, and how to fix unwanted LM
behaviors is still an active research problem (Liu
et al., 2021a; Perez et al., 2022).
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Task Dataset #train set #validation set #labels #prompts

NLI

RTE 2,490 277 2 10
CB 250 57 3 15
ANLI R1 16,946 1000 3 15
ANLI R2 45,460 1000 3 15
ANLI R3 100,459 1200 3 15

Compl.
COPA 400 100 2 8
HellaSwag 39,905 10,042 4 4
Story Cloze - 1,871 2 5

Coref.
Winogrande 40,398 1,267 2 5
WSC 554 104 2 10

WSD WIC 5,428 637 2 10

Table 5: Statistics of the datasets

A Datasets

We present the statistics of the 11 datasets in Ta-
ble 5. For the training-time tuning scenario, we use
up to 10,000 data points from the training set for
training if the train set contains more than 10,000
data points.

B Experimental Setup

B.1 LoRA Setup
We use LoRA (Hu et al., 2022) as our parameter-
efficient tuning model and set the bottleneck di-
mension of LoRA weight matrices to be 1 for both
3B and 11B models. We emphasize that the lin-
ear mapping matrix B (or A) in LoRA needs to
be initialized as a zero matrix to ensure the output
distribution after adding LoRA layers is the same
as the original PLM before training, otherwise, the
zero-shot ability of PLMs would be broken upon
initialization and there is no supervision to learn it
back. For both models, we set the dropout probabil-
ity for the the LoRA intermediate representations
to be 0.3. Let α denote the scaling factor of LoRA
that is used to scale the output of the LoRA layer
before adding to the hidden states of the pre-trained
model. We set α to be 4 and 2 respectively for the
3B and 11B model. The peak learning rates of the
3B and 11B models are set to be 3e-5 and 5e-5
respectively with a warm-up stage of 100 steps and
polynomial learning rate scheduler. We train for
a maximum of 1,500 steps. Note that the hyper-
parameters for the 3B model is tuned on the RTE
dataset and used for other datasets. We did not tune
the hyperparameters of the 11B model.

B.2 Implementation Details
The reported T0 baseline numbers are obtained
from our own running using the released T0
weights. We are able to reproduce the numbers

reported in Sanh et al. (2022), except for COPA
where our T0 median number is higher than the
originally reported one.

During training, at each update we first sample
one input example x and apply all the prompts to
reformat it as r1x(x), · · · , rKx (x), then we perform
inference for them and randomly shuffle the pre-
dictions. Next we iterate over them with a batch
size of 5/10 (3B/11B)5 and use the shuffled predic-
tions to supervise them to compute the distillation
loss, this implements the swarm distillation mech-
anism in Eq. 2 and amounts to approximating the
expectation over paired prompts with K random
pairs. We accumulate the gradients for 16 steps for
one update so that each gradient descent is com-
puted from 16 data examples. And we use 1 A40
GPU (45GB memory) to train the 3B model and
4 A40 GPUs with DeepSpeed Zero-2 (Ren et al.,
2021) to train the 11B model. In general, training
converges pretty fast and takes around 1 - 3 GPU
hours for the 3B model and 2 - 6 hours for the 11B
model depending on early stop points of different
datasets. We use Adam (Kingma and Ba, 2015)
as the optimizer with β1 = 0.9, β2 = 0.98 and
ϵ = 1e− 6.

For the Transformer (Vaswani et al., 2017) mod-
els with model dimension d, the feed-forward inter-
mediate dimension m and number of layers l, the
additional parameters used in LoRA with bottle-
neck dimension b is calculated as b∗(m+d)∗2∗l∗2.
As we set b to be 1 for both the 3B and 11B mod-
els, the additional number of LoRA parameters is
1,671,168 for the T0-3B model (d = 1024,m =
16384, l = 24) and 6,389,760 for the T0-11B
model (d = 1024,m = 65536, l = 24).

C Ablation on LoRA and Model Selection

We report the ablation results on LoRA and un-
supervised model selection in Table 6. Full fine-
tuning hurts the T0-3B performance on all datasets –
actually it collapses on almost all the datasets when
we check its predictions, which could partially ex-
plain the low accuracies. Using LoRA alone is able
to improve full fine-tuning generally and outper-
forms the T0-3B baseline sometimes. Moreoever,
we find that unsupervised model selection is very
effective to mitigate collapse and greatly improves
full fine-tuning results. Finally, combining LoRA
and unsupervised model selection gives the best

5Because the GPU memory sometimes cannot handle all
the prompts within one batch.
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RTE CB ANLI R1 ANLI R2 ANLI R3 COPA HS Story. Wino. WSC WIC

T0-3B 64.6 46.4 34.6 33.7 34.7 78.0 27.8 86.5 50.9 69.2 50.3

Full fine-tuning 59.6 8.9 33.3 33.5 33.3 54.0 25.7 51.5 50.4 36.5 50.0
+ LoRA 54.0 44.6 33.3 33.3 34.4 82.7 33.6 87.4 52.0 36.5 50.0
+ model selection 75.8 35.7 37.0 33.5 33.3 80.0 32.2 86.5 50.8 71.2 54.6
+ LoRA + model selection 75.2 47.6 38.4 37.9 34.0 82.7 34.2 87.3 52.0 58.3 55.4

Table 6: Ablation results on LoRA and unsupervised model selection. The training objective is the swarm distillation
loss. Numbers are ensemble accuracy in the training-time tuning setting based on T0-3B. “Full fine-tuning” updates
all the model parameters, while “+LoRA” means that we freeze the T0 parameters and only update the LoRA
parameters.

results overall on these 11 datasets.
We clarify that the results in Table 6 are only for

analysis purpose to better understand the effect of
different components of our method, but were not
used by us to make design decisions in our prelimi-
nary experiments– as stated in §3.3, we use LoRA
because it collapses less often than full fine-tuning
and develop a unsupervised model selection crite-
rion since LoRA still collapses on some datasets.
To judge collapse or not, we simply checked the
model predictions, to see if the predictions for all
the examples are almost the same.
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