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Abstract

In the past few years, pre-trained BERT
has become one of the most popular deep-
learning language models due to their remark-
able performance in natural language process-
ing (NLP) tasks. However, the superior perfor-
mance of BERT comes at the cost of high com-
putational and memory complexity, hindering
its envisioned widespread deployment in edge
devices with limited computing resources. Bi-
narization can alleviate these limitations by
reducing storage requirements and improving
computing performance. However, obtaining
a comparable accuracy performance for bi-
nary BERT w.r.t. its full-precision counterpart
is still a difficult task. We observe that di-
rect binarization of pre-trained BERT provides
a poor initialization during the fine-tuning
phase, making the model incapable of achiev-
ing a decent accuracy on downstream tasks.
Based on this observation, we put forward
the following hypothesis: partially randomly-
initialized BERT with binary weights and ac-
tivations can reach to a decent accuracy per-
formance by distilling knowledge from the
its full-precision counterpart. We show that
BERT with pre-trained embedding layer and
randomly-initialized encoder is a smoking gun
for this hypothesis. We identify the smoking
gun through a series of experiments and show
that it yields a new set of state-of-the-art re-
sults on the GLUE and SQuAD benchmarks.

1 Introduction

In the past few years, pre-trained language mod-
els, particularity BERT (Devlin et al., 2019), have
shown a great success across various natural lan-
guage processing (NLP) tasks. As such, it is en-
visioned that BERT will be widely deployed in
edge devices with limited computing resources in
the near future. Such a widespread deployment,
however, requires a significant decrease in both
memory storage and computational complexity of
BERT. Therefore, model compression techniques,

such as pruning (McCarley et al., 2019; Gordon
et al., 2020), quantization (Shen et al., 2020; Zafrir
et al., 2019), parameter sharing (Lan et al., 2020)
and distillation (Jiao et al., 2019; Sanh et al., 2019),
have been an active field of studies among practi-
tioners to meet the required computing constraints
of edge devices. Among the aforementioned com-
pression methods, quantization is considered as
an effective edge computing approach that can re-
duce the model size by up to 32× and replace ex-
pensive floating-point multiplications with simpler
fixed-point counterparts. However, quantization of
BERT comes at the cost of a severe performance
degradation due to the low bit-width representation
(Qin et al., 2022). To compensate for the perfor-
mance drop of quantization in BERT, knowledge
distillation (KD) is used an auxiliary optimization
approach, which encourages the quantized BERT
to mimic the behavior of its full-precision counter-
part.

Extreme 1-bit quantization, which is commonly
referred to as binary representation, is the ideal
scenario for edge computing due to the significant
decrease in the model size and the computation
gain from the bit-wise operations. However, binary
representation of weights and activations in BERT
while obtaining a comparable performance is still
a challenging task even when the binarization pro-
cess is assisted with KD. In fact, binarization of
activations in BERT accounts for most of the perfor-
mance drop in NLP tasks (Qin et al., 2022). There-
fore, previous works mainly focused on binariza-
tion of weights in the encoder and word embedding
layer of BERT (Zhang et al., 2020; Bai et al., 2021).

In this paper, we first investigate the root cause of
the performance drop in BERT with binary weights
and activations. Our finding shows that the binariza-
tion of pre-trained BERT completely undermines
the good initialization point obtained from pre-
training, leading to its poor generalization on un-
seen data. Moreover, the binary representation con-
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straint significantly reduces the learning capacity
of BERT, making KD incapable of finding the right
optimization direction during the fine-tuning stage.
Motivated by these observations, we then propose a
hypothesis stating that introducing some degrees of
freedom to the binarized network suffices to fully
distill knowledge from its full-precision counter-
part using KD. We introduce such a freedom by
randomly initializing some parts of the binarized
network, allowing it to mainly focus on minimizing
the total loss with less concern about preserving
information from pre-training. We finally search
for a smoking gun of this hypothesis and identify
it as binary BERT whose weights are initialized
randomly except for its embedding weights which
are initialized from pre-training.

A smoking gun is an undeniable piece of em-
pirical evidence that proves our hypothesis. We
refer to the binary BERT obtained from the smok-
ing gun as SGBERT. We empirically support the
proposed hypothesis and the importance of this for-
tuitous initialization of SGBERT through a series
of experiments. The empirical results show that
our SGBERT outperforms existing binary BERT
models and achieves a new set of state-of-the-art re-
sults on the GLUE and SQuAD benchmarks. More
specifically, our SGBERT outperforms BiBERT
(Qin et al., 2022) by 15% in terms of the average
accuracy of the GLUE benchmark. The accuracy
performance and the hardware benefits (i.e., the
binary representation and the bit-wise operations)
of SGBERT show its great potential for adoption
in edge computing.

2 Our Binary BERT Architecture

BERT architecture is consisted of three main parts:
embedding layer, encoder and classifier. The en-
coder module itself contains two main components:
multi-head attention (MHA) module and feed-
forward network (FFN). We binarize the weights
of the aforementioned components using the sign
function as follows:

αw =
1

n
||W||1,

Wb = αwsign(W− µ(W)), (1)

where W and Wb denote full-precision weight and
its binary counterpart, respectively. As suggested
in (Qin et al., 2022), we redistribute the weight to
zero-mean during the bianarization of weights to

retain their representation information. The mean
value of weight is denoted by µ(·). We also apply
the scaling factor αw to minimize the binarization
error.

Activations in BERT are also binarized in a sim-
ilar manner to weights using the sign function in
the forward path and its gradient is computed using
the straight-through estimator (STE) (Courbariaux
et al., 2015) in the backward propagation, i.e.,

Xb = αxsign(X),

∂sign
∂X

=

{
1, if |X| ≤ 1

0, otherwise
, (2)

where X and Xb denotes full-precision weight and
its binary representation, respectively. We consider
an sclaing factor for binarization of activations,
which is denoted as αx. The scaling factor for ac-
tivations is computed similar to that of weights,
i.e., using the averaged `1 norm. However, such
an approach requires on-the-fly computation of `1
norm for each minibatch, which undermines the
efficiency of the binary computations. To address
this issue, we estimate the scaling factor for activa-
tions using the exponential running average similar
to (Ardakani et al., 2022) such that

αxt+1 = (1−m)× αxt +m× 1

n
||X||1, (3)

where m is the momentum controlling the update
rate of the scaling factor. We use m = 0.01 in our
experiments throughout this paper.

In BERT, the inputs are first passed into the
embedding layers among which the word embed-
ding layer is binarized only as it contains most of
the parameters while the position and type embed-
ding layers are kept in full-precision (Qin et al.,
2022). In MHA module, queries Q, keys K and
values V are computed in a binary manner accord-
ing to Eq. (1) and Eq. (2). It is worth mentioning
that the scaling factors for both weights and ac-
tivations are combined together and severs as a
single scaling factor during inference. Since the di-
rect binarization of softmax results in a significant
performance drop based on our empirical experi-
ments, we adopted a boolean function similar to
(Qin et al., 2022) where the attention computation
is performed by

Attention(Qb,Kb,Vb) = bool
(

Qb �KT
b√

d

)
� Vb, (4)
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Figure 1: The overall training paradigm for our binary BERT is shown on the left. On the right side, the binary
attention computations are illustrated where multiplications are performed using bit-wise operations.

bool(X) =

{
1, if X ≥ 0

0, otherwise
, (5)

where Qb, Kb and Vb denote binary query, key and
value matrices, respectively. d denotes the dimen-
sion of the features. The gradient of bool function
is computed using the STE similar to the gradient
of sign function. The bit-wise multiplications be-
tween binary query and key matrices are computed
using XNOR which is denoted by �. It is worth
mentioning that 0 in the binary representation de-
notes the value of −1 and 0 as the output of the
sign function and the bool function, respectively.
The former representation is referred to as bipo-
lar whereas the latter one is called unipolar. Since
the result of the multiplication between the bipolar
and unipolar formats can take three different values
(i.e.,−1, 0, and 1), the result of such multiplication
requires two bits in the two’s complement format.
Given the unipolar input A, the bipolar input B,
and the result of multiplication as C, the least sig-
nificant bit of C is equal to A and the most signifi-
cant bit of C is equal to A · NOT(B) where · and
NOT denote the bit-wiseAND and logical comple-
ment operations, respectively. Figure 1 shows the
details of the attention computations in the binary
BERT. The rest of the encoder module contains
linear layers which are binarized using Eq. (1) and
Eq. (2).

3 Knowledge Distillation

In this section, we describe the KD method used in
this paper. In general, we use KD for the embed-
ding output, hidden states and logits.

3.1 Intermediate KD

We define f lt(x) and f ls(x) as the output of the
lth layer for the teacher network and the student
network given a batch of data (x, y), respectively.
The student model is binary BERT whereas the
teacher model is its fine-tuned full-precision coun-
terpart. Since the embedding layer contains infor-
mation about unseen data, it is important to accu-
rately deliver such information to the rest of the net-
work using KD. We use the root mean squared er-
rors (RMSE) as the embedding loss function Lemb

to measure the distance between the embedding
layer’s output of student model (i.e., Es) and that
of teacher model (i.e., Et) by

Lemb =

∥∥∥∥
Et

‖Et‖2
− Es

‖Es‖2

∥∥∥∥
2

. (6)

Early hierarchical layers of fine-tuned full-
precision BERT provides generic linguistic patterns
whereas the latter layers extract task-specific pat-
terns (Devlin et al., 2019; Merchant et al., 2020).
To make sure that binary BERT also learns similar
patterns, we distill knowledge from the lth hidden
states of the teacher model H l

t to that of the student
model H l

s using the RMSE as the loss function for
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Table 1: The role of pre-training in the performance of GLUE tasks on the development set. We measure the
performance using Spearman correlation for STS-B, Matthews correlation for CoLA and accuracy for RTE, MRPC,
SST-2 QQP, and MNLI (matched).

Method Pre-training MNLI-m QQP QNLI SST-2 CoLA STS-B MRPC RTE
BERT 3 84.9 91.4 92.1 93.2 59.7 90.1 86.3 72.2

BERT (re-initialization)1 7 84.8 91.5 91.9 92.9 60.2 90.2 86.4 71.7
BERT (Random initialization)2 7 68.1 84.7 61.3 81.4 16.4 21.5 72.1 54.9

Binary BERT3 3 38.4 68.1 64.9 78.9 0.1 41.1 70.8 54.9
1 The parameters of each task are initialized by the parameters of fine-tuned BERT from another task. The parameters of fine-tuned BERT on SST-2 is used for
CoLA and MRPC, CoLA for SST-2 and QQP, RTE for STS-B and QNLI, MRPC for RTE, and STS-B for MNLI. The parameters of the classifier is still randomly
initialized.
2 The parameters of each task are randomly initialized using PyTorch default.
3 The parameters of binary BERT are initialized from pre-training.

hidden states (i.e., Lhid) such that

Lhid =

∥∥∥∥∥
H l

t∥∥H l
t

∥∥
2

− H l
s

‖H l
s‖2

∥∥∥∥∥
2

. (7)

3.2 Prediction-Layer Distillation
As the last term in our KD scheme, we con-
duct prediction-layer distillation where soft cross-
entropy (SCE) between teacher logits Yt and stu-
dent logits Ys is minimized, i.e.,

Lpred = SCE(Yt, Ys). (8)

Given the aforementioned KD losses, the total dis-
tillation loss can be written as follow:

LKD = Lemb + Lhid + Lpred. (9)

4 The Proposed Binarization Method

The unsupervised pre-training on enormous unla-
beled data is the key factor in the remarkable suc-
cess of BERT in the context of few-shot learning
across various NLP tasks. In fact, the pre-training
process provides a good initial point for BERT that
leads to a better generalization on unseen data of
downstream tasks. The fine-tuning procedure of
BERT is performed by adjusting the pre-training
weights to minimize the loss of downstream tasks.
It is worth mentioning that these adjustments are
usually small such that even fine-tuned parame-
ters of BERT on a specific task can be used as
an initialization point for another task while still
achieving a decent performance. For instance, Ta-
ble 1 shows the performance of downstream tasks
from the GLUE benchmark where the initializa-
tion point of each task was obtained from a fined-
tuned BERT on a different task. This experiment
shows that fine-tuned BERT maintains its informa-
tion from pre-training. On the other hand, while
training from scratch can reach to the same loss

(or even better in some cases) as fine-tuning BERT,
the randomly-initialized model results in a poor
performance on the unseen data (see Table 1).

Since the good performance of BERT relies on
its parameters obtained from pre-training, bina-
rization has been always integrated into the fine-
tuning stage in previous studies (Qin et al., 2022;
Zhang et al., 2020; Bai et al., 2021). However,
fully binarization of BERT (i.e., binarization of
its weights and activations) using this approach re-
sults in a huge performance drop (Qin et al., 2022).
We attribute this issue to disruption of the pre-
training initialization incurred by fully binarization
of BERT. In other words, the fully binary model
cannot hold on to its information from pre-training
with binary weights and activations. For instance,
the binary BERT in Table 1, whose weights are ini-
tialized from pre-training, results in a significant ac-
curacy drop, confirming the disruptive effect of bi-
narization on the pre-training initialization. That is
why the fine-tuning procedure of quantized BERT
models is assisted with KD (Qin et al., 2022).

During the past few years, distillation–in
isolation–has been used as a compression tech-
nique where a small student model (which is in
full-precision) is trained to mimic the behavior of a
larger teacher model. In this compression method,
the student model can have a similar structure
(Sanh et al., 2019; Jiao et al., 2019; Sun et al., 2019)
to or a different architecture (Chen et al., 2020)
from its teacher model. For instance, in BERT-
PKD (Sun et al., 2019), the student model only
differs in the number layers from its teacher model
(i.e., BERT) and KD was used to distill knowledge
from the BERT’s intermediate layer during the fine-
tuning phase. When the student model’s structure
is similar to its teacher model, it is a common ap-
proach to initialize the student model’s parameters
from the pre-trained BERT (e.g., BERT-PKD). On
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Figure 2: The training loss curves of four different tasks of the GLUE benchmark for four combinations of the
initialization identifier. All binary models are trained under the same training setting.

the other hand, when the student model’s structure
is different from its teacher model, its parameters
are initialized either partially from the pre-trained
BERT or randomly (e.g., AdaBERT (Chen et al.,
2020)). In either case (i.e., having a similar or
different structure), the student model can acquire
sufficient knowledge from its teacher model to per-
form well on downstream tasks. Based on these
distillation works, we put forward the binarization
hypothesis.

4.1 The Binarization Hypothesis
A binary BERT contains sub-networks that if ini-
tialized randomly, it can reach to a decent perfor-
mance on NLP downstream tasks when trained in
isolation using KD.

Let’s consider a BERT model f(x; θ) with
the parameter set of θ = {θemb; θMHA; θFFN ;
θclassifier} with the embedding parameter θemb,
multi-head attention parameter θMHA, feed-
forward network parameter θFFN , and classifier
parameter θclassifier obtained from pre-training.
f reaches the test accuracy a when fine-tuning
with binary weights and activations on a down-
stream task. Now, let’s consider a BERT model
f(x; θ′, r) with the parameter set of θ′ and ini-
tialization identifier r = {remb; rMHA; rFFN ;
rclassifier} ∈ {0, 1}4. If the initialization iden-
tifier is equal to one, its associated parameters are

randomly initialized; otherwise, they are initialized
from pre-training. When f(x; θ′, r) is trained on
a downstream task, it yields the test accuracy a′.
Our hypothesis predicts that there exists r such that
a′ > a.

4.2 The Smoking Gun of the Binarization
Hypothesis

Due to the small size of the initialization identifier,
we perform a brute-force search to identify support-
ing examples for our hypothesis. Before doing so,
however, we can still make the search space smaller.
Of course the classifier of BERT is always initial-
ized randomly, which makes rclassifier equal to 1.
Moreover, the embedding layer is the key element
in the fine-tuning process since it contains informa-
tion about unseen data. Random initialization of
the embedding layer drastically degrades the accu-
racy performance on downstream tasks. Therefore,
we set remb to 0.

To decide about the remaining initialization iden-
tifiers (i.e., rMHA and rFFN ), we run an experi-
ment on four different tasks of the GLUE bench-
mark for all four possible initialization combina-
tions as illustrated in Figure 2. According to Figure
2, the binary BERT with r = {0; 1; 1; 1} shows a
smoother and faster convergence across four dif-
ferent tasks and reaches to a lower training loss
among the four possible combinations. Therefore,

2607



the binary BERT with r = {0; 1; 1; 1} constitutes
the smoking gun.

The smoking gun that we found allows BERT to
be binarized in a similar way to the binarization of
networks without fine-tuning any parameters. For
example, in the binarization process of a convolu-
tional neural network on CIFAR10, which involves
no fine-tuning, the goal is to minimize the final loss
of the network with any possible values for activa-
tions and weights. It is worth mentioning that the
final loss of the network can also include a KD loss.
Similarly, the smoking gun suggests that weights
and activations of MHA and FFN modules can take
any values as long as they minimize the final loss
of the network. Of course the embedding layer
is still being fine-tuned which serves as a feature
extractor for the rest of the network. Therefore, the
performance of our binary BERT mainly relies on
the minimization of the total loss which includes
KD losses.

5 Experiments

In this section, we perform empirical experiments
to verify the effectiveness of the identified smoking
gun as the supporting example for our proposed
hypothesis on the GLUE (Wang et al., 2018) and
SQuAD (Rajpurkar et al., 2016) benchmarks. We
first define our experimental setup. We then present
our main experimental results on the aforemen-
tioned benchmarks and compare them with state-
of-the-art quantized models. Finally, we conduct
an ablation study to further discuss the importance
of initialization when binarizing BERT.

5.1 Experimental Setup

5.1.1 Dataset and Metrics
We assess the language understanding and general-
ization capabilities of our proposed binary BERT
using eight datasets from the GLUE benchmark.
More precisely, we consider four different types of
NLP tasks for our experiments: sentiment classifi-
cation (SST-2), natural language inference (RTE,
QNLI, MNLI), paraphrase detection (MRPC, QQP,
STS-B), and linguistic acceptability (CoLA). To
evaluate the performance of these tasks, we use
Spearman correlation for STS-B, Matthews cor-
relation for CoLA and accuracy for RTE, MRPC,
SST-2 QQP, MNLI-m (matched) and MNLI-mm
(mismatched). To evaluate the reading comprehen-
sion of our binary BERT, we perform the question
answering task on SQuAD v2.0, where its perfor-

mance is measured using the EM (i.e., exact match)
and F1 score.

We also report hardware performance of our
binary BERT using the model size in terms of
megabyte (MB) and the number of operations in
terms of FLOPs for a single inference run. To mea-
sure the number of operations for quantized models
including our binary BERT, we approximate the
multiplication between an m-bit weight and an n-
bit activation as m× n/64 FLOPs for a CPU with
instruction size of 64-bit similar to (Bai et al., 2021;
Zhou et al., 2016; Qin et al., 2022).

5.1.2 Architecture
The backbone architecture of our binary BERT is
similar to that of BERT-base. More specifically, the
number of transformer layers is set to 12, the hid-
den size to 768 and the number of attention heads
in MHA to 12. We also use a fine-tuned BERT-
base as the teacher model for knowledge distilla-
tion during the training phase. Unlike previously-
proposed binarization methods where the binariza-
tion is performed on full-precision weights from
pre-training, we use the pre-trained parameters as
an initial point for the embedding module only
whereas the rest of the network (i.e., MHA, FFN
and classifier modules) are randomly initialized ac-
cording to the smoking gun. We refer to our binary
BERT with the aforementioned configuration as
SGBERT.

5.1.3 Settings
For training our binary BERT, we use the AdamW
optimizer with the weight decay of 1e-2, learning
rate of 1e-4, gradient clipping of 2.5 and batch size
of 16 for all datasets. It is worth mentioning that no
data augmentation is used in our experiments. To
allow a sufficient training for our binary model, we
adopt more training epochs for each task, which is
a common approach for training quantized models.
More specifically, we use 1000 epochs for RTE,
SST-2, CoLA, STS-B and MRPC, and 100 epochs
for MNLI, QNLI, QQP and SQuAD v2.0. We also
used a linear learning rate decay with the warmup
portion of 0.1. We report the best validation ac-
curacy obtained during the training phase in this
paper.

5.2 Experimental Results

5.2.1 Results on GLUE Benchmark
Table 2 demonstrates the performance results of
SGBERT in terms of accuracy and efficiency on
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Table 2: The comparison with quantized BERT models on the development set of GLUE.

Method #Bits(E-W-A) Size(MB) FLOPs(G) MNLI(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE Avg.
BERT 32-32-32 418 22.5 84.9/85.5 91.4 92.1 93.2 59.7 90.1 86.3 72.2 83.9

Q-BERT (AAAI’20) 2-8-8 43 6.5 76.6/77.0 – – 84.6 – – 68.3 52.7 –
Q2BERT (EMC-2’19) 2-8-8 43 6.5 47.2/47.3 67.0 61.3 80.6 0 4.4 68.4 52.7 47.7

TinaryBERT (EMNLP’20) 2-2-8 28 6.4 83.3/83.3 90.1 – – 50.7 – 87.5 68.2 –
BinaryBERT (ACL’21) 1-1-4 16.5 1.5 83.9/84.2 91.2 90.9 92.3 44.4 87.2 83.3 65.3 79.9

TinaryBERT (EMNLP’20) 2-2-2 28 1.5 40.3/40.0 63.1 50.0 80.7 0 12.4 68.3 54.5 45.5
BinaryBERT (ACL’21) 1-1-1 16.5 0.4 35.6/35.3 66.2 51.5 53.2 0 6.1 68.3 52.7 41.0

BiBERT (ICLR’22) 1-1-1 13.4 0.4 66.1/67.5 84.8 72.6 88.7 25.4 33.6 72.5 57.4 63.2
SGBERT (ours) 1-1-1 13.4 0.4 74.3/75.2 86.6 82.7 91.4 36.9 70.1 77.2 61.7 72.9
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Figure 3: The one dimensional training loss curves for the binary BERT with r = {0; 0; 0; 1} and r = {0; 1; 1; 1}
on the GLUE benchmark. The models are trained under the same training setting.

the development set of each task in the GLUE
benchmark. Our SGBERT trained with its for-
tuitous initialization significantly outperforms its
qauntized counterparts such as BiBERT (Qin et al.,
2022), BinaryBERT (Bai et al., 2021), Ternary-
BERT (Zhang et al., 2020), Q-BERT (Shen et al.,
2020) and Q2BERT (Zafrir et al., 2019).

Q-BERT and Q2BERT are early quantization
methods that compress the model parameters to
low bit-width representation without KD assistant.
Due to the disruptive effect of quantization on the
initialization of BERT, these methods result in a
large performance drop in accuracy performance
and fall behind the existing quantization methods.

TernaryBERT uses both approximation-based
and loss-aware ternarization methods to quantize
weights into 2 bits. BinaryBERT, on the other
hand, introduced a ternary weight splitting method
for quantization of BERT. Both BinaryBERT and
TernaryBERT use the minimum of 4 bits for repre-
sentation of activations. For the sake of comparison
with fully binary BERT, their official code was used

in (Qin et al., 2022) to quantize activations into
binary and ternary values. In Table 2, we report
the performance of BinaryBERT and TernaryBERT
from (Qin et al., 2022) for a fair comparison. Given
the reported numbers, our binary BERT is far ahead
of both BinaryBERT and TernaryBERT in terms of
accuracy performance on each task.

BiBERT uses direction-matching distillation for
accurate optimization of the binarization process.
The accuracy performance of BiBERT is similar
to that of our binary BERT when trained with pre-
training weights, i.e., r = {0; 0; 0; 1} (see Section
5.3). However, compared to the smoking gun of
the hypothesis (i.e., r = {0; 1; 1; 1}), our SGBERT
significantly outperforms BiBERT on each task and
accordingly by a large margin in the average accu-
racy on the GLUE benchmark, leading to a new set
of state-of-the-art results among fully binary BERT
models.
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Table 3: The experimental results on the development
set (EM/F1) of SQuAD.

Method #Bits(E-W-A) Size(MB) FLOPs(G) SQuAD v2.0
BERT 32-32-32 418 22.5 74.4/77.6

BiBERT 1-1-1 13.4 0.4 49.9/49.9
SGBERT (ours) 1-1-1 13.4 0.4 54.6/55.2

5.2.2 Results on SQuAD Benchmark

Table 3 summarizes the results on the development
set of SQuAD v2.0. We have also used the original
code for BinaryBERT, TernaryBERT and BiBERT
to measure the EM and F1 scores of these works
on SQuAD v2.0. Our binary BERT outperforms
BiBERT by a large margin on this task. Note that
we use the official code of BiBERT to measure its
performance on the SQuAD benchmark.

5.3 Ablation Study

So far, we have introduced a hypothesis stating that
compression by reducing bit-width representation
of BERT is not different from KD-based compres-
sion approaches; in either cases, the final perfor-
mance of the network relies on the accurate knowl-
edge transfer from the teacher model to the student
model. In KD-based approaches, the compressed
model (e.g., AdaBERT (Chen et al., 2020)) has
a different shape compared to the original BERT
model. As such, its parameters are usually ini-
tialized randomly and the information about un-
seen data is learned by KD. We showed that binary
BERT can be trained in a similar manner, i.e., by
relying on KD. We also showed that the key to ob-
tain a decent performance is to randomly initialize
the MHA and FFN modules along with the clas-
sifier. We referred to this supporting example for
our hypothesis as the smoking gun that provides
the best explanation why our hypothesis is true.
The smoking gun suggests that initialization of bi-
nary BERT from full-precision pre-training leads
to a bad global minima and the optimizer cannot
avoid it, which is compatible with the finding of the
experiments in (Liu et al., 2020). In other words,
initialization of binary BERT from full-precision
pre-training constructs a bad initialization without
the knowledge of the true loss landscape. Such
an undesirable priori justifies the priori preference
for a better generalization of binary BERT as sug-
gested by our hypothesis.

To illustrate the generalization capability of the
smoking gun versus the binary BERT initializa-
tion from full-precision pre-training, we plot one-

Table 4: The development set results of binary BERT
with different initializations on the GLUE benchmark.

{remb; rMHA; rFFN ; rclassifier} CoLA STS-B MRPC RTE
r = {0; 0; 0; 1} 28.6 45.6 70.3 57.7
r = {0; 0; 1; 1} 32.3 67.1 75.8 61.0
r = {0; 1; 0; 1} 29.7 40.8 70.3 58.2
r = {0; 1; 1; 1} 36.9 70.1 77.2 61.7

dimensional training loss curves for these two
models similar to (Hao et al., 2019). Such one-
dimensional curve represents the cross section of
two-dimensional loss surface and the optimization
direction. The loss curve is plotted by linear inter-
polation between θ0 and θ1 using the curve function
g(γ) as follows:

g(γ) = L(θ0 + γδ), (10)

where δ = θ1 − θ0 is the optimization direction,
L(θ) is the loss function for the model parame-
ters θ, θ0 is the initialized parameters, θ1 is the
trained parameters and γ ∈ [−4, 4] is a scaling
factor. We initialize θ0 with the initialization iden-
tifier r = {0; 1; 1; 1} for the smoking gun and
r = {0; 0; 0; 1} for the binary BERT with ini-
tialization from pre-training. Figure 3 shows the
one-dimensional training loss curves for these two
binary models for 40 sampling points. The loss
curves show more flatness for the optima of the
smoking gun while those of binary BERT with ini-
tialization from pre-training shows more sharpness
for the optima. As shown in previous studies (Hao
et al., 2019; Li et al., 2018; Keskar et al., 2016),
the flatness of the local optima is highly correlated
with the generalization capability, confirming the
better generalization of the smoking gun.

We have also studied the impact of different
initialization on the accuracy performance of the
GLUE benchmark as summarized in Table 4. The
empirical results show that the binary BERT with
r = {0; 1; 1; 1} (i.e., SGBERT) performs signifi-
cantly better compared to other initialization con-
figurations.

6 Conclusion

In this paper, we showed that fully binarization of
BERT initialized with parameters from pre-training
generalizes poorly. Based on this observation,
we put forward a hypothesis stating that partially-
random initialization of BERT leads to a better gen-
eralization in the context of binarization. We iden-
tified the best initialization approach for training
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binary BERT is to initialize the embedding layer’s
parameters from pre-training while randomly ini-
tializing the remaining modules (i.e., the MHA,
FFN and classifier modules). We referred to this
fortuitous initialization as the smoking gun that sup-
ports our hypothesis. Given the smoking gun, we
managed to outperform existing fully binary mod-
els and achieve a new set of state-of-the-art results
on both GLUE and SQuAD v2.0 benchmarks.
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