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Abstract

Chinese Spell Checking (CSC) aims to detect
and correct Chinese spelling errors. Recent re-
searches start from the pretrained knowledge
of language models and take multimodal infor-
mation into CSC models to improve the per-
formance. However, they overlook the rich
knowledge in the dictionary, the reference book
where one can learn how one character should
be pronounced, written, and used. In this pa-
per, we propose the LEAD framework, which
renders the CSC model to learn heterogeneous
knowledge from the dictionary in terms of pho-
netics, vision, and meaning. LEAD first con-
structs positive and negative samples accord-
ing to the knowledge of character phonetics,
glyphs, and definitions in the dictionary. Then
a unified contrastive learning-based training
scheme is employed to refine the representa-
tions of the CSC models. Extensive experi-
ments1 and detailed analyses on the SIGHAN
benchmark datasets demonstrate the effective-
ness of our proposed methods.

1 Introduction

As a crucial Chinese processing task, Chinese Spell
Checking (CSC) aims to detect and correct Chinese
spelling errors (Wu et al., 2013a), which are mainly
caused by phonetically or visually similar charac-
ters (Liu et al., 2010). Recent researches propose to
introduce phonetics and vision information to help
pretrained language models (PLMs) deal with con-
fusing characters (Liu et al., 2021; Xu et al., 2021;
Huang et al., 2021). However, CSC is challeng-
ing because it requires not only phonetics/vision
information but also complex definition knowledge
to assist in finding the truly correct character. As
shown in Table 1, the “货(huò)” and “火(huǒ)” are
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Phonetically Similar Error
Input 铁轨上有一列或(huò)车在行驶。

Candidate 1 铁轨上有一列货(huò)车在行驶。
There is a truck running on the railway.

Candidate 2 铁轨上有一列火(huǒ)车在行驶。
There is a train running on the railway.

Definition 【火车】一种交通工具，由机车牵
引若干节车厢在铁路上行驶。

A means of transportation in which a
number of carriages are pulled by a lo-
comotive to travel on a railway.
Visually Similar Error

Input 炉子上正绕(rào)着水。
Candidate 1 炉子上正浇(jiāo)着水。

Water is pouring on the stove.
Candidate 2 炉子上正烧(shāo)着水。

Water is burning on the stove.
Definition 【烧】加热使物体发生变化。

Change matters by heating.

Table 1: Examples of Chinese spelling errors.
The wrong/candidate/golden characters are in
red/purple/blue. The key information is in orange.

phonetically similar, and both are suitable colloca-
tions with “车”. But if the model pays attention to
the keyword “铁轨(railway)” and knows the mean-
ing of the “火车(train)”, then the model can not be
disturbed by the “货” and easily make the correct
judgment. The same situation also occurs in the
visual case. For these hard samples, PLMs do not
perform well in that the masked-language model-
ing objective determines their pretrained semantic
knowledge is more about the collocation of charac-
ters, rather than the definitions of their meanings.
Therefore, if the model understands the word mean-
ings, it can be further enhanced to handle more hard
samples and get performance improvements.

To help people learn Chinese, the meanings
of Chinese characters and words have been pre-
organized as the definition sentences in the dictio-
nary. The dictionary contains a wealth of useful
knowledge for CSC, including character phonetics,
glyphs, and definitions. It is also the most impor-
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tant resource for Chinese beginners to learn how to
pronounce, write, and use one character. Inspired
by this, we focus on utilizing the rich knowledge
in the dictionary to improve the CSC performance.

In this paper, we propose LEAD, a unified fine-
tuning framework to guide the CSC models to learn
heterogeneous knowledge from the dictionary. In
general, LEAD has one training paradigm but three
different training objectives besides the traditional
CSC objective. This enables models to learn three
different kinds of knowledge, namely phonetics,
vision, and definition knowledge. Specifically, we
construct various positive and negative samples ac-
cording to the respective characteristics of different
knowledge, and then utilize these generated sam-
ple pairs to train models with our designed unified
contrastive learning paradigm.

Through the optimization of LEAD, the fine-
tuned model handles various phonetically/visually
similar character errors as well as previous multi-
modal models, and goes a further step to deal with
more confusing errors with the help of the defini-
tion knowledge contained in the dictionary. Ad-
ditionally, LEAD is a model-agnostic fine-tuning
framework, which has no restrictions on the fine-
tuned models. In practice, we fine-tune BERT and
a more complex multimodal CSC model (Xu et al.,
2021) with LEAD, and experimental results on the
SIGHAN datasets show consistent improvements.

To summarize, the contributions of our work are
in three folds: (1) We focus on the importance of
the dictionary knowledge for the CSC task, which
is instructive for future CSC research. (2) We pro-
pose the LEAD framework, which fine-tunes the
models to learn heterogeneous knowledge benefi-
cial to the CSC task in a unified manner. (3) We
conduct extensive experiments and detailed analy-
ses on widely used SIGHAN datasets and LEAD
outperforms previous state-of-the-art methods.

2 Related Work

2.1 Chinese Spell Checking

Recently, deep learning-based models have gradu-
ally become the mainstream CSC methods (Wang
et al., 2018; Hong et al., 2019; Zhang et al., 2020;
Li et al., 2022b). SpellGCN (Cheng et al., 2020)
uses GCN (Kipf and Welling, 2017) to fuse char-
acter embedding with similar pronunciation and
shape, explicitly modeling the relationship between
characters. GAD (Guo et al., 2021) proposes a
global attention decoder method and pre-trains the

BERT (Devlin et al., 2019) with a confusion set
guided replacement strategy. Li et al. (2021) pro-
poses a method that continually identifies the weak
spots of a model to generate more valuable training
samples, and applies a task-specific pre-training
strategy to enhance the model. Additionally, many
CSC works have focused on the importance of mul-
timodal knowledge for CSC. DCN (Wang et al.,
2021), MLM-phonetics (Zhang et al., 2021), and
SpellBERT (Ji et al., 2021) all utilize phonetic fea-
tures to improve CSC performance. PLOME (Liu
et al., 2021) designs a confusion set-based mask-
ing strategy and introduces phonetics and stroke
information. REALISE (Xu et al., 2021) and PH-
MOSpell (Huang et al., 2021) both employ kinds
of encoders to learn multimodal knowledge. Dif-
ferent from previous works, our work is the first to
introduce definition knowledge from the dictionary
to enhance CSC models.

2.2 Contrastive Learning

Contrastive learning is a kind of representation
learning method that has been widely used in NLP
and CV (Chen et al., 2020; He et al., 2020a; Gao
et al., 2021). The main motivation of contrastive
learning is to attract the positive samples and re-
pulse the negative samples in a certain space (Had-
sell et al., 2006; Chen et al., 2020; Khosla et al.,
2020). In the NLP field, various contrastive learn-
ing methods have been studied for learning all
kinds of better representations, such as entity (Li
et al., 2022a), sentence (Kim et al., 2021), and
relation (Qin et al., 2021). To the best of our knowl-
edge, we are the first to leverage the idea of con-
trastive learning to learn better phonetics, vision,
and definition knowledge for CSC.

3 Methodology

In this section, we first introduce the overview
of the LEAD framework, as illustrated in Fig-
ure 1, and describe our designed unified contrastive
learning mechanism for heterogeneous dictionary
knowledge. Then, for each knowledge-guided fine-
tuning, we explain its motivation, positive/negative
pairs construction, and representation metric which
is used in the contrastive learning mechanism.

3.1 Overview of LEAD

In LEAD, in addition to using the CSC samples to
train the traditional CSC objective, various positive
and negative pairs are generated for the contrastive
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Figure 1: Overview of our LEAD framework. According to the contrastive learning mechanism proposed in (He
et al., 2020b), the gradients of LP,LV,LD are propagated back to the CSC model so that it is optimized accordingly.

learning of three kinds of knowledge (i.e., phonet-
ics, vision, and definition). Specifically, for a partic-
ular knowledge K, to achieve a training mini-batch,
we construct a positive pair (xo

K,x
p
K) and N neg-

ative pairs {(xo
K,x

ni
K )}N−1

i=0 , where K ∈ {P,V,D}
represents “Phonetics, Vision, Definition” knowl-
edge. Note that the original sample xo

K is directly
from the CSC samples, the positive sample xp

K and
negative samples {xni

K } are generated from xo
K ac-

cording to the characteristics of the knowledge K.
Then, for the positive and negative sentences

(i.e., xp
K and {xni

K }) of length T , we use vari-
ous encoders (i.e., EK ∈ {EP,EV,ED}) to map
them to a sequence of representations kp =
[kp1 , ..., k

p
T ], {kni} = {[kni1 , ..., kniT ]}, kpj , knij ∈

Rh, where h is the size of the EK’s hidden state:

kp = EK(x
p
K),k

p ∈ {pp,vp,dp}, (1)

{kni} = {EK(x
ni
K )},kni ∈ {pni ,vni ,dni}. (2)

For the original sentence xo
K, we utilize the encoder

of CSC model (i.e., EC) to get its sentence represen-
tation ko = [ko1, ..., k

o
T ], k

o
j ∈ Rh, the EC’s hidden

size is equal the dimension of the EK’s hidden state:

ko = EC(x
o
K),k

o ∈ {po,vo,do}. (3)

After obtaining the representations of our gen-
erated sentence pairs, following the widely used
InfoNCE (van den Oord et al., 2018), we train these

sample pairs in a contrastive manner:

LK = − log
fK(k

o,kp, s)

fK(k
o,kp, s) +

N−1∑
i=0

fK(k
o,kni , s)

,

(4)
where the LK is the training objective of the knowl-
edge K, and the fK is the representation metric
function in the respective space of each knowledge,
which will be introduced in later sections. In the
mini-batch, all sentences are of length T and their
s-th character is the spelling error.

It is worth emphasizing that the three knowledge
encoders (i.e., EP, EV, and ED) are frozen, while
the EC receives gradients from multiple dimensions
and is optimized during the training process. Be-
sides, our proposed LEAD is model-agnostic so
that we can arbitrarily configure EP, EV, ED and
easily use previous CSC models as EC. The imple-
mentation details of various encoders in our experi-
ments are shown in Appendix A.2.

Briefly, our proposed LEAD performs specific
contrastive fine-tuning guided by heterogeneous
knowledge, thereby introducing various beneficial
information into CSC models to improve their per-
formance. In the Sections 3.2- 3.4, we will detail
the positive and negative pairs construction and rep-
resentation metric we design for each knowledge.
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3.2 Phonetics Guided Fine-tuning
According to the phonetics knowledge, Chinese
characters are represented by Pinyin. Therefore, to
make the model better handle phonetic errors, we
aim to guide it to pay more attention to characters
with similar Pinyin. To this end, we propose the
Phonetics Guided Fine-tuning, which aims to re-
fine the representation space learned by models so
that the representations of the similar Pinyin char-
acters are pulled closer while the representations
of different Pinyin characters are pushed outward.
Thus, when handling phonetically spelling errors,
our model will preferentially associate with their
corresponding phonetically similar characters.

Positive and Negative Pairs For the phonet-
ics knowledge, we regard characters with similar
Pinyin as positive pairs and characters with differ-
ent Pinyin as negative pairs. As shown in Figure 1,
given a training sample xo

P “那时天起(qı̌, rise)非
常好” that has a phonological spelling error, we
replace “起(qı̌, rise)” with its phonetically similar
character “奇(qí, strange)” to achieve a positive
sample xp

P. To generate negative samples {xni
P },

we randomly select N characters with different
Pinyin, such as “色(sè, color)”, to replace “起(qı̌,
rise)”. Finally, we will get a positive pair (xo

P,x
p
P)

and N negative pairs {(xo
P,x

ni
P )} to form a mini-

batch for the fine-tuning of phonetics knowledge.

Representation Metric Note that the motivation
of phonetics guided fine-tuning is to refine the
character-level representation of CSC models un-
der the constraints of phonetics knowledge, so we
only need the representation of the spelling error
position, i.e., the s-th character. Therefore, the rep-
resentation metric of phonetics guided fine-tuning
(i.e., fP) is calculated as the dot product function:

fP(p
o,pp, s) = exp(po⊤s pps ), (5)

fP(p
o,pni , s) = exp(po⊤s pnis ). (6)

3.3 Vision Guided Fine-tuning
Similar to the phonetics guided fine-tuning, we
propose the Vision Guided Fine-tuning for better
vision representations and improving the visual er-
ror correction ability of models. Specifically, based
on the fact that Chinese characters are composed
of strokes in the dimension of vision knowledge,
the purpose of this module is to train models to rep-
resent characters with more similar strokes closer
and characters with more different strokes farther
away in the visual representation space.

Positive and Negative Pairs Based on the vi-
sual similarity between characters, for a specific
Chinese character, we directly obtain its characters
with similar strokes from the pre-defined confusion
set widely used in previous works (Wang et al.,
2019; Cheng et al., 2020; Zhang et al., 2020). Take
Figure 1 as an example, for a training sample xo

V
“街上正在晒(shài, bask)水”, its positive sample
xp

V is generated by replacing “晒(shài, bask)” with
“栖(qı̄, habitat)”. Similar to the phonetics guided
fine-tuning, characters with different strokes are
randomly selected to generate the {xni

V }.

Representation Metric Similar to the fP, we
also utilize the dot product metric to measure the
representation distance in vision space:

fV(v
o,vp, s) = exp(vo⊤s vps ), (7)

fV(v
o,vni , s) = exp(vo⊤s vnis ). (8)

3.4 Definition Guided Fine-tuning
As described in Section 1, the meanings of words
in a structured dictionary are very useful for hu-
man spell checking when spelling errors cannot
be corrected with only phonetics and vision in-
formation. To better utilize definition knowledge,
we specially design the Definition Guided Fine-
tuning to make the model better understand the
word meanings. Benefiting from the enhancement
of definition knowledge, our model will be human-
like, seeing spelling errors and associating them
with their definitions, and then making reasonable
corrections based on the original word meanings.

Positive and Negative Pairs As shown in Fig-
ure 1, given a random training sample xo

D “举办一
个误会” and its ground truth sentence xg

D “举办一
个舞会”. To get the word meaning, we must first
get the original word that contains the wrong posi-
tion s. Therefore, we tokenize2 the xg

D into words
“举办/一个/舞会” and index the original word (i.e.,
“舞会”) in the dictionary3 to get its corresponding
definition sentence as a positive sample xp

D. As
for the negative samples {xni

D }, we will randomly
select N definition sentences of other words.

Considering that some words have multiple defi-
nitions, we design different word definition selec-
tion strategies as follows:

1. Select a random definition: This is the easi-
est way to randomly select one sentence from
multiple definition sentences.

2We utilize the HanLP to tokenize sentences into words.
3The pre-defined dictionary file we use is in the attachment.
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2. Select the first definition: Through prelim-
inary analysis of the dictionary, we find that
when a word has multiple definitions, the
more forwardly positioned definition is often
the more commonly used meaning of the word.
Based on this observation, we propose to se-
lect the first definition to be the word meaning.

3. Select the most similar definition: Intu-
itively, the meaning of a word can be revealed
through its context. Therefore, we can also
judge which definition sentence should be se-
lected by the similarity between the sentence
xg

D and the definition sentence. More prac-
tically, we obtain sentence representations
through an encoder such as BERT (Devlin
et al., 2019), and further use the distance met-
ric such as the cosine function to calculate the
similarity between sentence representations.

The effects of different word definition selection
strategies will be analyzed in Section 4.6.2.

Representation Metric When we tokenize the
xg

D, we obtain the index position of the original
word in the sentence at the same time. Thus, as-
suming that the index positions of the original word
are [s, ..., s+w], s+w ≤ T , then we calculate the
distance between representations as follows:

fD(d
o,dp, s) = cos(avg([dos, ..., d

o
s+w]), avg(dp)),

(9)

fD(d
o,dni , s) = cos(avg([dos, ..., d

o
s+w]), avg(dni)),

(10)

where the cos(y1, y2) is the cosine distance, and the
avg([rn, ..., rm]) is the mean pooling operation that
calculates the average value of [rn, ..., rm]. In other
words, the avg([dos, ..., d

o
s+w]) is the representation

of the phrase at index positions [s, ..., s+w] in the
sentence xo

D and the avg(dp), {avg(dni)} are the
sentence representations of xp

D, {xni
D }.

3.5 Summary of Methodology
In the above Sections 3.2-3.4, we describe in detail
the contrastive learning objectives designed for the
three types of knowledge. The purpose of these
three kinds of contrastive learning objectives is to
let the CSC model learn the external knowledge
of phonetics, vision, and definition, and finally im-
prove the model’s CSC performance. Additionally,
because the model is to be used for the CSC task, it
is still necessary to train the CSC training objective

LCSC with the CSC training data. So finally we
have the following training loss:

L = λ1LCSC + λ2LP + λ3LV + λ4LD, (11)

where λi is the task weighting. The LCSC is the
traditional CSC objective and the LP,LV,LD are
the contrastive objectives we design for “Phonetics,
Vision, Definition” knowledge respectively.

4 Experiments

In this section, we first introduce the experiment
settings and the main performance of LEAD. Then
we conduct detailed discussions and analyses to
verify the effectiveness of our proposed methods.

4.1 Datasets

Training Data In all our experiments, we use
the widely used training data of most previous
works (Zhang et al., 2020; Liu et al., 2021; Xu
et al., 2021), including the training sentences from
SIGHAN13 (Wu et al., 2013b), SIGHAN14 (Yu
et al., 2014), SIGHAN15 (Tseng et al., 2015), and
the generated training sentences (the size of this
part data is 271K, we denote them as Wang271K
in our paper) (Wang et al., 2018).

Test Data To ensure the fairness of our ex-
periments, we use the exact same test data
as the baseline methods, which are from the
SIGHAN13/14/15 test datasets. The details of the
training/test data we use in our experiments are
presented in Appendix A.1.

4.2 Baseline Methods

To evaluate the performance of LEAD, we select
several latest CSC models as our baselines, in-
cluding the previous state-of-the-art methods on
SIGHAN13/14/15 datasets: BERT (Devlin et al.,
2019) is fine-tuned on the training data only with
the cross-entropy. SpellGCN (Cheng et al., 2020)
introduces the confusion set information through
GCNs. GAD (Guo et al., 2021) combines a global
attention decoder with BERT and trains the model
under a confusion set guided replacement strat-
egy. Two-Ways (Li et al., 2021) continually identi-
fies the model’s weak spots to generate more valu-
able training sentences. DCN (Wang et al., 2021)
utilizes the Pinyin enhanced candidate generator
and proposes the dynamic connected networks to
build the dependencies. MLM-phonetics (Zhang
et al., 2021) introduces the phonetic features into
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Dataset Method Detection Level Correction Level
Pre Rec F1 Pre Rec F1

SIGHAN13

SpellGCN (Cheng et al., 2020) 80.1 74.4 77.2 78.3 72.7 75.4
MLM-phonetics (Zhang et al., 2021) 82.0 78.3 80.1 79.5 77.0 78.2
DCN (Wang et al., 2021) 86.8 79.6 83.0 84.7 77.7 81.0
GAD (Guo et al., 2021) 85.7 79.5 82.5 84.9 78.7 81.6
REALISE (Xu et al., 2021) 88.6 82.5 85.4 87.2 81.2 84.1
Two-Ways (Li et al., 2021) - - 84.9 - - 84.4

BERT (Xu et al., 2021) 85.0 77.0 80.8 83.0 75.2 78.9
LEAD 88.3 83.4 85.8 87.2 82.4 84.7

SIGHAN14

SpellGCN (Cheng et al., 2020) 65.1 69.5 67.2 63.1 67.2 65.3
DCN (Wang et al., 2021) 67.4 70.4 68.9 65.8 68.7 67.2
GAD (Guo et al., 2021) 66.6 71.8 69.1 65.0 70.1 67.5
REALISE (Xu et al., 2021) 67.8 71.5 69.6 66.3 70.0 68.1
Two-Ways (Li et al., 2021) - - 70.4 - - 68.6
MLM-phonetics (Zhang et al., 2021) 66.2 73.8 69.8 64.2 73.8 68.7

BERT (Xu et al., 2021) 64.5 68.6 66.5 62.4 66.3 64.3
LEAD 70.7 71.0 70.8 69.3 69.6 69.5

GAD (Guo et al., 2021) 75.6 80.4 77.9 73.2 77.8 75.4

SIGHAN15

SpellGCN (Cheng et al., 2020) 74.8 80.7 77.7 72.1 77.7 75.9
DCN (Wang et al., 2021) 77.1 80.9 79.0 74.5 78.2 76.3
PLOME (Liu et al., 2021) 77.4 81.5 79.4 75.3 79.3 77.2
MLM-phonetics (Zhang et al., 2021) 77.5 83.1 80.2 74.9 80.2 77.5
REALISE (Xu et al., 2021) 77.3 81.3 79.3 75.9 79.9 77.8
Two-Ways (Li et al., 2021) - - 80.0 - - 78.2

BERT (Xu et al., 2021) 74.2 78.0 76.1 71.6 75.3 73.4
LEAD 79.2 82.8 80.9 77.6 81.2 79.3

Table 2: The performance of LEAD and baselines. For each dataset, we rank baselines from low to high performance
according to the most important metric (i.e., correction level F1 score). Note that all results of baselines are directly
from published papers. We underline the previous state-of-the-art performance for convenient comparison.

the ERNIE (Sun et al., 2020) and uses the enhanced
ERNIE model for CSC. PLOME (Liu et al., 2021)
pre-trains BERT with a confusion set-based mask-
ing strategy and utilizes GRU (Dey and Salem,
2017) to encode phonetics/strokes as input. RE-
ALISE (Xu et al., 2021) is a multimodal model
which mixes the semantic, phonetic, and graphic
information to improve the model performance.

4.3 Experimental Setup

The character/sentence-level metrics are both used
in the CSC task. According to the sentence-level
metric, one test sentence will be judged to be cor-
rect only when all the wrong characters in it are
detected and corrected successfully. Therefore, the
sentence-level metric is stricter than the character-
level metric because some sentences may have mul-
tiple wrong characters. So we report the sentence-
level metrics for the evaluation in all our experi-
ments, this setting is also widely used in previous
works (Li et al., 2021; Liu et al., 2021; Xu et al.,
2021). More specifically, we report the metrics
including Precision, Recall, and F1 score for detec-
tion and correction levels. At the detection level,

all positions of wrong characters in a test sample
should be detected correctly. At the correction
level, we require the model must not only detect
but also correct all the spelling errors. Additionally,
other implementation details of our experiments
are shown in Appendix A.2.

4.4 Main Results
From Table 2, we observe that:

1. Because LEAD is essentially a fine-tuning
framework of BERT, its direct baseline
should be the BERT. The comparison re-
sults between LEAD and BERT show that
LEAD outperforms BERT significantly on
SIGHAN13/14/15, which verifies the ef-
fectiveness of our proposed heterogeneous
knowledge guided fine-tuning methods.

2. Compared with previous state-of-the-art mod-
els (i.e., Two-Ways, REALISE, and MLM-
phonetics), our model utilizes only a thin
BERT as the main body to achieve better
performance, while REALISE and MLM-
phonetics both explicitly introduce multi-
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modal information into their inference pro-
cess, which demonstrates the competitive per-
formance of our proposed methods.

3. Considering the effect of different knowledge,
LEAD is trained under the guidance of phonet-
ics, vision, and definition knowledge, while
most baselines (e.g., SpellGCN, DCN, and
PLOME) also use different mechanisms to
leverage the phonetics and vision knowledge.
That our method outperforms these baselines
indicates that the unique definition knowledge
we focus on is very important for CSC.

4.5 Ablation Study

We explore the effectiveness of each contrastive
learning objective in LEAD by conducting abla-
tion studies with different variants. Specifically,
in Table 3, MODEL + K, K ∈ {P, V, D} means
that we use the CSC training objective LCSC and
corresponding contrastive training objective LK to
train the MODEL. Besides, because REALISE
has its own way of using vision/phonetics features,
which makes LV and LP not meaningful, so we
only perform LD on REALISE.

From the three rows of results using a single
training objective (i.e., BERT+V/P/D), we know
that each of our proposed contrastive learning
strategies leads to significant performance improve-
ments when applied to BERT alone. Particu-
larly, the phenomenon that BERT+P outperforms
BERT+V at the correction level is in line with the
fact that 83% of errors belong to phonological er-
rors and 48% belong to visual errors in the real
scene (Liu et al., 2021). Furthermore, we also see
that all methods including the previous state-of-the-
art model (i.e., REALISE) have further improve-
ments after adding our proposed definition guided
fine-tuning objective, which demonstrates that the
definition information we focus on is very useful
for enhancing CSC models.

4.6 Analysis and Discussion

4.6.1 Visualization of Better Phonetic/Vision
Representations

The key motivation of our proposed phonet-
ics/vision guided fine-tuning is to refine the repre-
sentations of the models for characters on different
dimensions of knowledge. We hope that through
the phonetics/vision guided fine-tuning, the model
can be guided to represent characters with similar

Method Det-F1 Cor-F1

BERT 76.1 73.4
+ V(ision) 78.4 77.1
+ P(honetics) 78.2 77.3
+ D(efinition) 79.0 77.4
+ V(ision) + P(honetics) 79.6 78.1
+ V(ision) + D(efinition) 78.9 78.2
+ P(honetics) + D(efinition) 80.3 78.3

REALISE 79.3 77.8
+ D(efinition) 80.3 78.6

LEAD 80.9 79.3

Table 3: Ablation results on the SIGHAN15 test set.
Note that the LEAD is equivalent to BERT+V+P+D.
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Figure 2: Visualization (t-SNE) of phonetically/ visually
similar characters.

Pinyin/strokes closer, and characters with differ-
ent Pinyin/strokes to represent farther. Therefore,
it is necessary to visualize the representations of
the characters before and after the model is com-
bined with our methods. Specifically, we randomly
select two groups of phonetically/visually similar
characters (e.g., characters with similar Pinyin to
“ji/zhi” and similar strokes to “新/营”), then apply
BERT and BERT+P/V to obtain their representa-
tions. Finally, we use t-SNE to visualize these
high-dimensional representations of characters.

Figure 2 shows the representation distribution
of BERT and BERT+P/V for phonetically/visually
similar characters. From the comparison of Fig-
ures 2(a) and 2(b), Figure 2(a)’s representation of
characters is messy, while in 2(b), it can even be
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Method Pre Rec F1

Detection Level

BERT 74.2 78.0 76.1
LEAD (Random) 77.7 81.3 79.5
LEAD (First) 77.4 82.3 79.8
LEAD (Similar) 79.2 82.8 80.9

Correction Level

BERT 71.6 75.3 73.4
LEAD (Random) 75.8 80.6 78.1
LEAD (First) 76.7 80.2 78.4
LEAD (Similar) 77.6 81.2 79.3

Table 4: The results of LEAD on SIGHAN15 when
using different word definition selection strategies.

seen that there is a clear boundary between the
two kinds of characters, which indicates that after
the optimization of phonetics guided fine-tuning,
it does represent the phonetically similar charac-
ters closer. Also in the visual comparison, we see
that the points of the two colors in Figure 2(c) are
significantly more scattered, while Figure 2(d) is
more orderly, which also verifies our motivation
for proposing vision guided fine-tuning.

4.6.2 Effects of Different Word Definition
Selection Strategies

As mentioned in Section 3.4, we design three dif-
ferent word definition selection strategies for the
definition guided fine-tuning, namely “select a ran-
dom definition” (Random), “select the first defini-
tion” (First), and “select the most similar definition”
(Similar). To further empirically explain why these
strategies we proposed are effective, we conduct
analyses as shown in Table 4. We apply LEAD
with different strategies on the SIGHAN15 dataset
and observe the performance change.

From Table 4, we know that LEAD (Similar) has
the best performance, followed by LEAD (First),
and LEAD (Random) has the lowest improvement.
Such results are consistent with the mechanism
of these strategies. The better performance of
LEAD (First) than LEAD (Random) shows that
our observation on the dictionary is correct, that is,
the first of multiple definitions of a word is often
the most representative in most cases. Addition-
ally, the best performance of LEAD (Similar) also
proves the effectiveness of our designed selection
strategy that is based on sentence similarity. It is
worth mentioning that although the three strategies
have different effects on the model performance,
they all bring steady performance improvements

Input 1: 要永(yǒng)于面对逆境。
Please always face adversity.

Output 1: 要勇(yǒng)于面对逆境。
Please face adversity bravely.

Input 2: 秋天己经无声的来到了。
Autumn self come silently.

Output 2: 秋天已经无声的来到了。
Autumn has come silently.

Input 3: 迎接每一个固难，并克服它。
Meet every hardship and overcome it.

Output 3: 迎接每一个困难，并克服它。
Meet every difficulty and overcome it.

Definition: 【困难】: (名)工作、生活中遇到的不
易解决的问题或障碍,克服～
(noun) Problems or obstacles in work and
life that are not easy to solve, overcome～

Table 5: Examples of the input/output of LEAD. We
mark the wrong/correct/key characters.

compared to the baseline method (i.e., BERT).

4.7 Case Study
From the first/second cases in Table 5, we know
that our LEAD perceives the phonetic and visual
similarity of Chinese characters, so as to accurately
detect the wrong positions and make reasonable
corrections. Particularly, for the first example, if
ignoring the phonetic similarity, there are other can-
didate characters such as “乐(lè)” and “敢(yǒng)”.
But the LEAD’s output is the best correction be-
cause it is more in line with the essential of CSC.
Additionally, in the third example, “固(gù)” and
“困(kùn)” are neither phonetically nor visually sim-
ilar, and LEAD successfully correct this case be-
cause it perceives the definition of “困难” in the
dictionary. Without the help of the definition, we
can replace the “固(gù)” with the “苦(kǔ)” which
is more phonetically similar to “固(gù)”. However,
in daily use of Chinese, the combination of “克
服” and “苦难” is not common. Therefore, this
example just reflects the importance of definition
knowledge we are concerned with for CSC.

5 Conclusion

In this paper, we propose to promote CSC by utiliz-
ing various knowledge contained in the dictionary.
We introduce LEAD, a unified fine-tuning frame-
work that aims to perform contrastive learning for
three kinds of heterogeneous knowledge. Exten-
sive experiments and empirical analyses verify the
motivation of our study and the effectiveness of
our proposed methods. The dictionary knowledge

245



we focus on is not only beneficial for CSC, but
also crucial for other Chinese text processing tasks.
Therefore, in the future, we will continue to mine
the knowledge contained in the dictionary to im-
prove other Chinese text processing tasks.

6 Limitations

In this section, we discuss the limitations of our
work in detail and propose corresponding solutions
that we believe are feasible.

6.1 Language Limitation

Our work and the proposed method focus on the
Chinese Spell Checking (CSC) task. The language
characteristics of Chinese are very different from
other languages such as English. For example, the
phonetically or visually characters, which bring
great challenge to CSC, does not exist in English.
Therefore, the limitation of language characteris-
tics prevents our method from being directly trans-
ferable to English scenarios. However, we also
believe that the definition knowledge in the dic-
tionary we are concerned with still has important
implications for English text error correction.

6.2 Encoder Selection

Our proposed LEAD framework is a unified fine-
tuning framework to guide the CSC models to learn
heterogeneous knowledge. The unified paradigm
allows LEAD to impose no strict restrictions on
the various encoders used in it. To verify the ef-
fectiveness of LEAD, in our experiments, we just
choose the simple configuration as EP, EV, ED (see
Appendix A.2). In the future, we suggest that more
complex models and configurations can be used for
more performance improvements.

6.3 Running Efficiency

As academic verification experiments, we do
not consider the running efficiency of our pro-
posed methods in the specific code implementation.
Specifically, it takes about 10 hours on 1 V100
GPU to finish the training process and it takes up
to 24G GPU memory. We think that there are at
least two solutions to improve efficiency: (1) De-
ploying the model training process to multi-GPUs
and using data-parallel operations can increase the
training batch size and shorten the training time.
(2) Change the online positive and negative sample
construction to offline, that is, various positive and
negative sample pairs for training are constructed

and stored in advance, which can also greatly save
the time cost during training.
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A Appendix

A.1 Datasets Details

Please kindly note that the original sentences of
SIGHAN datasets are in Traditional Chinese, so
we need to convert these original texts to Simpli-
fied Chinese using the OpenCC tool4. This data
pre-process procedure has been widely used in pre-
viously published works (Wang et al., 2019; Cheng
et al., 2020; Zhang et al., 2020). The details of the
datasets we use in our experiments are presented in
Table 6.

Training Data #Sent Avg. Length #Errors
SIGHAN13 700 41.8 343
SIGHAN14 3,437 49.6 5,122
SIGHAN15 2,338 31.3 3,037
Wang271K 271,329 42.6 381,962
Total 277,804 42.6 390464
Test Data #Sent Avg. Length #Errors
SIGHAN13 1,000 74.3 1,224
SIGHAN14 1,062 50.0 771
SIGHAN15 1,100 30.6 703
Total 3,162 50.9 2,698

Table 6: Statistics of the datasets that we use in experi-
ments. We report the number of sentences (#Sent), the
average sentence length (Avg.Length), and the number
of spelling errors (#Errors).

A.2 Implementation Details

In our experiments, all the source code is imple-
mented using Pytorch (Paszke et al., 2019) based
on the Huggingface’s Transformer library5 (Wolf
et al., 2020). For the implementation of EC, we
use the cross-entropy function as the LCSC and
BERT as the main CSC model. The BERT’s archi-
tecture we use in our experiments is the same as
the BERTBASE , which has 12 transformers layers
with 12 attention heads and its hidden state size is
768. And the initial weights of BERT are from the
weights of Chinese BERT-wwm (Cui et al., 2020).
For the implementation of EP, EV, ED, we prelim-
inarily select the BERT consistent with the above
description as EP and ED, and we use the glyph
enhanced pre-training model proposed in Lyu et al.
(2021) as EV to obtain the strokes representations
of Chinese characters.

We set the maximum sentence length to
128. We train LEAD with the AdamW opti-
mizer (Loshchilov and Hutter, 2018) for 10 epochs
and set the training batch size to 32. The model is

4https://github.com/BYVoid/OpenCC
5https://github.com/huggingface/transformers

trained with learning rate warming up and linear
decay, while the initial learning rate is set to 5e-5.
The negative pairs size N of a mini-batch is set to 8
when we report the main results of LEAD. Besides,
the weighting factors λi of L are all set to 1.

As mentioned in (Cheng et al., 2020; Xu et al.,
2021; Li et al., 2022b), lots of the mixed usage
of auxiliary (such as “的”, “地”, and “得”) are
wrongly annotated, which makes the quality of the
SIGHAN13 test dataset very poor. To alleviate
this problem and more accurately evaluate the per-
formance of models on SIGHAN13, there exist
two main solutions in previous works. To avoid
the over-fitting problem brought by the method
proposed in (Cheng et al., 2020) that continues
to fine-tune the trained model on the SIGHAN13
training data before testing, we follow the post-
processing method implemented in (Xu et al., 2021;
Li et al., 2022b) and don’t consider all the de-
tected/corrected mixed auxiliary, which will not
compromise the fairness of our experiments and
can better reflect the model’s real performance.
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