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Abstract

Semantic parsing is an important task that al-
lows to democratize human-computer interac-
tion. One of the most popular text-to-SQL
datasets with complex and diverse natural lan-
guage (NL) questions and SQL queries is Spi-
der. We construct and complement a Spider
dataset for the Russian language, thus cre-
ating the first publicly available text-to-SQL
dataset in Russian. While examining dataset
components—NL questions, SQL queries, and
database content—we identify limitations of
the existing database structure, fill out miss-
ing values for tables and add new requests for
underrepresented categories. We select thirty
functional test sets with different features for
evaluating the capabilities of neural models.
To conduct the experiment, we adapt base-
line models RAT-SQL and BRIDGE and pro-
vide in-depth query component analysis. Both
models demonstrate strong single language re-
sults and improved accuracy with multilingual
training on the target language. In this work,
we also study tradeoffs between automatically
translated and manually created NL queries.
At present, Russian text-to-SQL is lacking in
datasets as well as trained models, and we
view this work as an important step toward fill-
ing this gap.

1 Introduction

Semantic parsing (SP) is the task of transform-
ing a natural language (NL) utterance to a formal
machine-understandable representation. Such rep-
resentations include a variety of forms: from pars-
ing linguistic features to generating a code in a
specific programming language. In this paper, we
focus on a SP subtask – mapping of NL questions
to Structured Query Language (text-to-SQL).

Machine learning systems which are based on
supervised learning and aimed at solving text-to-
SQL, continue to appear and evolve actively (Kim
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and Lee, 2021; Cai et al., 2021; Gan et al., 2022).
The key ingredient in the process of training is the
data: a parallel corpus of NL questions and corre-
sponding SQL queries along with the databases.
The majority of text-to-SQL datasets consist of
questions and database contents written in En-
glish. As a consequence, the development of such
models has been limited to the English language.
Spider dataset (Yu et al., 2018) remains one of the
most popular benchmarks in the field due to the
variety of domains and complexity of the ques-
tions.

This paper presents the Russian version of the
Spider: PAUQ1, the first text-to-SQL dataset in
Russian2. In PAUQ, all three components have
been modified and localized: the NL questions,
the SQL queries, and the content of the databases.
During this in-depth work, we discover several
limitations of the original Spider and propose
ways to overcome them. The new version of Spi-
der database collection is presented. Apart from
being bilingual, it is more complete – in order to
use not only exact match as the evaluation met-
ric but also execution accuracy, avoiding false-
positive results. We also complement the dataset
with the new samples of underrepresented types,
including questions regarding columns with bi-
nary values, columns containing date and time val-
ues, and the ones that have a fuzzy and partial
match with the database content.

We adapt and evaluate on PAUQ two strong
ML models relating to different types of architec-
ture: RAT-SQL (grammar-based) and BRIDGE
(sequence-to-sequence). We compare the perfor-
mance of these models in terms of component
understanding of SQL and schema linking. Our
evaluation demonstrates that both models present
strong results with monolingual training and im-
proved accuracy in a multilingual set-up.

1Pioneer dAtaset for rUssian text-to-SQL
2https://github.com/ai-spiderweb/pauq
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Another important result of this work is the de-
velopment of functional test sets, subsets of sam-
ples in English and Russian with particular fea-
tures. They can be used by other researchers to
evaluate the models’ performance on particular
types of questions – thus, in a more precise and
informative way. Our experiments with machine-
translated data suggest that in terms of resources
expended and model performance, it could be ben-
eficial to use machine translation for easy cases
(such as questions not containing values) and man-
ual translation for questions that imply referring
to the database values. We regard this work as
an important step in Russian text-to-SQL. Further-
more, we hope that our contributions will help
other researchers in adaptation of Spider to other
languages.

2 Related Work

Text-to-SQL is a topic that has been actively stud-
ied in recent years with a number of datasets
and benchmarks (Hemphill et al., 1990; Zelle and
Mooney, 1996; Ana-Maria Popescu and Kautz,
2003; Li and Jagadish, 2014; Navid Yaghmazadeh
and Dillig, 2017; Victor Zhong and Socher, 2017).
The goal of the Spider benchmark is to develop
NL interfaces to cross-domain databases. It con-
sists of 10,181 questions and 5,693 unique com-
plex SQL queries on 200 databases with multiple
tables covering 138 different domains. In Spider
1.0, different complex SQL queries and databases
appear in train and test sets. To do well on it, sys-
tems must generalize well to not only new SQL
queries but also new database schemas.

There have been several attempts to adapt the
Spider dataset to other languages. The first one is
Chinese Spider (CSpider) (Min et al., 2019) with
original questions from the Spider dataset trans-
lated from English into Chinese. In this case, the
translation is not literal: a specific cultural local-
ization of some values was conducted. The princi-
ples of this localization, however, were not explic-
itly stated. Authors also compare results obtained
by the models trained on the machine-translated
questions with the results of the models that were
trained on NL queries translated manually and
subjected to localization. The study shows that
models trained on human translation significantly
outperform machine-translation-based. This fact
highlights the idea that adaptation of English
datasets to other languages requires professional

translation and localization. However, databases
content in CSpider was not complemented by new
localized values, so its impossible to make a com-
plete evaluation of the obtained results.

Another two specific versions of the Spider
dataset are Vietnamese (Nguyen et al., 2020) and
Portuguese (José and Cozman, 2021). In the case
of Vietnamese, not only NL questions were trans-
lated, but also the database schema, including ta-
ble and column names along with values in SQL
queries. Translated values, unlike those of Chi-
nese Spider, were not localized; they also were
not added to the databases content. In line with
the experimental setup of research on CSpider,
a comparison between manually-translated and
machine-translated versions of the Vietnamese
dataset was conducted. In Portuguese Spider
only NL questions, excluding database values,
were translated, thus no modifications affecting
the database schema or content were made. As can
be seen, in all currently existing versions of the
Spider dataset, although they differ in principles
by which the language adaptation is carried out,
not all components of the original dataset are mod-
ified: database content is left unchanged and isn’t
aligned with the questions. It also means that exe-
cution accuracy can’t be used to measure models’
performance, thus only exact match is reported.

3 Dataset

When managing the translation process of the
original Spider dataset into Russian, we were
guided by a similar experience with the transla-
tion into Chinese (Min et al., 2019). After careful
review of the Chinese Spider (CSpider), we iden-
tified two aspects that were not reflected in it – and
which we would like to take into account: the for-
mulation of the principles according to which the
original English query has to be modified during
translation in order to comply with Russian lan-
guage and culture; the insertion of the modified
values into database content so that models could
be evaluated with the execution accuracy correctly.
As database content is enriched by Russian val-
ues, we should pay regard to another significant is-
sue – unambiguity of the questions. This principle
also means that Russian values shouldn’t be direct
translations of English values as in this case it’s
not obvious what results we expect to get: should
SQL queries be formulated so that English values
are taken into consideration or should it be Rus-
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sian values or, perhaps, a combination of both lan-
guages. For real-world databases in Russia, just
like in Brazil, according to (José and Cozman,
2021), it is common to have English table and col-
umn names although the content can be in Rus-
sian. For this reason, all table and column names
in SQL queries and database schemas remain in
English.

The main principle of translation is the follow-
ing: if there are only tables/columns names in an
SQL query and no values, such query and corre-
sponding text question are not subjected to local-
ization or modification – they are just translated;
in case an SQL query contains values, this query
as well as corresponding text question are changed
on the basis of several criteria foremost among
which is the following: Russian values should not
be literal translations of English ones, but rather
should be close analogues that are at the same time
absent in the original database content. Principles
of values localization could be find in Appendix A.

The translation from English to Russian is un-
dertaken by a professional human translator. The
original Spider dataset consists of 10,181 samples,
however the test set is closed which means that
only 9,691 of them are available for processing.
Preliminary work includes dividing questions into
those that have values – thus, need modifications
– and those that do not. For questions with values,
lists with all corresponding column’s values from
database are obtained in order to ease the selection
process of Russian values that do not have English
direct analogues in the database. The translator
is in advance informed of the SQL query struc-
ture and provided with the instruction in which all
basic principles of the translation are stated. The
translator is encouraged to translate question as
closely to the original text as possible and rephrase
it as necessary to obtain most natural Russian text.
We also strive for a variety of questions, that is
why no textual patterns are used.

As regards the updating of the database content,
we added all localized/modified values to the cor-
responding fields. Without this, fair evaluation of
the models with the execution accuracy would be
impossible as for the questions containing absent
values, the ground truth and predicted requests –
incorrect as well as correct – would return the
same result when executed. In case of binary val-
ues, we delete English analogues in order to avoid
ambiguity and keep the column’s values binary.

A verification of the translated questions and
their conformity with the queries, and an updat-
ing of the databases are undertaken by 4 computer
science students. At first, all databases with cor-
responding questions in Russian and SQL queries
are divided between annotators. Each of the stu-
dents checks the correctness of a question and a
query; if the values in the query has been changed
(there is also a special mark indicating it), the an-
notator adds the new values to the corresponding
fields of the database table(s) so that when the
database is accessed by the query, the added val-
ues are retrieved. After that the very same ques-
tion and query are cross-checked by another anno-
tator who also makes sure that the database request
works as expected.

We made a revision of the original Spider
dataset: for those SQL queries that return None
or empty list, corresponding values are added to
the original databases; databases that were empty
(geo, scholar, yelp, academic, imdb, restaurants)
are filled with values. Further information on these
changes could be find in subsection 4.1.

Following research that has been conducted
previously on building the Spider dataset for
other languages, we also constructed machine-
translated (MT) dataset, using Yandex Translate
API (Yandex, 2022). The experiments with Chi-
nese and Vietnamese Spider versions show that
the performance of the models trained on such
data drops compared to that of the models trained
on human-translated dataset. The quality of MT
dataset certainly depends on the quality of the ma-
chine translation model itself; in addition, there
is even more problematic issue – the translation
of values. Without human revision and database
updating, values in NL questions will not match
database content in most cases. In order to exam-
ine the trade-off between the performance of the
models trained on the data and the resources spent
to obtain this data, we also experiment with the
combined dataset, in which questions without val-
ues are machine-translated whereas for questions
that include values, manual translation is used to
avoid inconsistency (see subsection 5.2).

4 Comparative Analysis

Besides manual translation of the questions from
the original Spider we (i) add new samples, (ii)
insert in the tables new values, and (iii) compose
a suit of functional test sets. In order to assess
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whether the basic properties of the Spider are not
violated and whether its limitations are improved,
we make a detailed analysis of the datasets and
present it in the Appendix B. Here we outline the
motivation for the updates, highlight the main dif-
ferences and define an approach for estimation of
the key dataset features like complexity, balance
and diversity.

4.1 Component Analysis

The dataset for text-to-SQL task consists of three
components: (i) the content of the databases, (ii)
NL questions, and (iii) SQL queries. We divide
our comparative analysis of Spider and PAUQ into
three parts, respectively.

4.1.1 Databases Contents
The number of values in PAUQ increased by
2% compared to Spider. The main reasons for
this are the following: the requirement that there
should be no ambiguity between Russian and
English elements (so all new Cyrillic values are
unique and have no direct English analogues in the
column) and the aspiration to reduce the likeli-
hood of false-positive errors. The content of the
databases and its relations with the NL questions
can negatively affect the evaluation of the text-to-
SQL models (Kim et al., 2020). One of the com-
mon drawbacks of execution metric is that it com-
pares results of ground-truth and generated SQL
requests and, therefore, tends to give false posi-
tive results for accidentally matching returns. The
most common case is a null match when a ground-
truth SQL request refers to non-existent values and
coincides with many inappropriate SQL requests
by return.

We analyse such errors made by the models on
the original dataset and make several modifica-
tions that lead to the following changes in PAUQ
compared to Spider: 1. All empty tables are filled
with values. 2. The amount of empty columns
decreases by more than 2 times (from 86 to 32).
3. All mentioned columns have non-zero sizes.
4. The requests are constructed as follows: a non-
zero set of rows in the database corresponds to the
set of conditions in a query.

To estimate the maintaining of the dataset bal-
ance and diversity, we calculate the set of quanti-
tative indicators (Appendix B.1). The key results
are: 1. The variety of column sizes and content
increases. In PAUQ, there is less standard set of
column values (in Spider, relatively low diversity

is a result of automatic table generation – see Ap-
pendix B.1.2). 2. Russian values have the same
range of contained token amounts. 3. We found
out that in Spider, values longer than 8 tokens are
not mentioned in the requests. In PAUQ, a set of
requests to the entities of bigger token amounts is
included (Appendix B.1.3).

Mapping question parts and database entities is
often the major and the most complex part of text-
to-SQL translation systems (Kim et al., 2020, Lei
et al., 2020, Wang et al., 2021b). Thus, questions
containing tokens that are present in several en-
tities at once are particularly difficult. The chal-
lenging case is shown in Fig. 1. There are two
requests mentioning the token “name”. It is often
encountered in the database (as column name and
as a value in the column), so it’s impossible sim-
ply map text tokens into entities. Hence, a model
has to process the context of the request.

Thus, the amount of intersections of entity
names within a database determines the poten-
tial complexity of the database set. We increase
the indicator of overlapping entities in PAUQ
(Appendix B.1.4), making the entity linking task
harder for text-to-SQL models.

4.1.2 Questions
The questions translated into Russian are slightly
shorter than the English ones due to peculiarities
of the Russian language: see Fig. 2. Yet, the qual-
ity properties of the Spider questions are preserved
(Appendix B.2.1).

To enlarge the coverage of database entities
used in questions we enrich the set of PAUQ ques-
tions with new samples related to 15 tables that are
not used in the original Spider question set (Ap-
pendix B.3). The number of question patterns is
also increased by adding questions containing new
request template words (these are the words that
frame the request – imperative verbs, polite words
and expressions, etc. – see Appendix B.4).

4.1.3 Queries
During the translation process we “repaired” more
than 10 Spider samples (see Appendix B.5). The
problems were mostly connected with the ambigu-
ity of the questions and SQL structures.

One of the natural characteristics of the text-to-
SQL dataset is the diversity of SQL patterns. We
find out some quantitative imbalances in the set of
queries (Appendix B.6). We note that these arte-
facts also exist in other text-to-SQL datasets like
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Figure 1: Example of a database containing different entities with the same names. To translate the questions in
which they are mentioned, it is necessary to consider the location of the correct DB content and the context in the
request.
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Figure 2: Distribution of question sizes (in tokens).

WikiSQL and ATIS (Finegan-Dollak et al., 2018).

4.2 New requests

Our observations show that some categories of re-
quests are underrepresented in Spider. Therefore,
we added 213 new samples to PAUQ, divided into
five groups to diversify and supplement existing
suit and to make the dataset more balanced. These
groups are the following: 1. Requests containing
“long” values (containing more than 4 tokens).
2. Samples containing references to one of the two
possible values (which are opposed to each other)
from the column (we refer to such columns as bi-
nary columns; querying this type of values is also
different from referring to other types from the se-
mantic point of view. 3. Queries containing date
or time filters. 4. Requests with “fuzzy” men-

tioning of entities (e.g. using synonyms, words
reordering, etc.). 5. Queries with empty return
(which conditions, for instance, don’t correspond
to any row of the database). This suite is separated
from others to prevent false positive errors on it.

The details on new requests can be found in Ap-
pendix C.

BRIDGE and RAT-SQL (text-to-SQL models
experiments with which are described in detail in
the Section 5) achieve 19.2% and 21.1% of exact
match accuracy, respectively, being trained on the
existing English and Russian data and evaluated
on the set of new samples. That is 3 times less than
accuracy obtained on all Spider questions (Table
1). These results demonstrate the complexity of
added examples.

4.3 Functional Test Sets

Measuring the performance of the models with a
single number (e.g. exact match score) is a simple
and convenient way. Yet, this makes it difficult
to identify model’s weak points and estimate its
ability to cope with the hard cases.

The complexity of requests is defined based on
the number of SQL components and is divided
into four categories: “Easy”, “Medium”, “Hard”
and “Extra hard” (Yu et al., 2018). But this
division is not universe. In particular, (Lei et al.,
2020) shows the example that “is actually difficult
as it requires a model to perform logic reasoning”,
but is classified as “medium”. SQL-request, corre-
sponding to the question “What is the total surface
area of the continents Asia and Europe?”, has a
really simple structure: SUM(surface area)
FROM country WHERE continent =
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«Asia» OR continent = «Europe».
However, text-to-SQL models struggle to choose
the correct logical connective because it differs
from the connective used in the question.

One of the most effective approaches to in-
depth detailed analysis is the generation of eval-
uation suits - multiple (probably overlapping) test
sets (also called challenge sets), that assess spe-
cific capabilities of a model. Now it applies to the
widest range of NLP tasks, e.g., (Röttger et al.,
2020) introduced a suite of functional tests for hate
speech detection models, (Cho et al., 2021) pro-
posed augmented test sets for the dialogue state
tracking (DST) task.

To encourage text-to-SQL researchers to inves-
tigate the soft spots of the models, we extracted
from our dataset the subsets of samples with dif-
ferent features divided into three classes:

• Features of NL questions: (1) use of syn-
onyms for existing database entities (e.g. in
the question “What is the final station for the
train 56701?”, a term “final station” refer to
the column name “destionation”), (2) atyp-
ical size:“short” and “long” questions (the
ones for which the ratio of the number of
tokens in the query to the number of to-
kens in the question, has extreme value), (3)
questions that contain several different logi-
cal structures at once (“How many students
are over 18 and do not have allergy to food
type or animal type?”), etc. Other features
with corresponding examples are presented
in the Tables 10, 11, 12 from Appendix C.

• Features of SQL queries: (1) nested queries
(SELECT * FROM participants
WHERE name in (SELECT id FROM
winners)), (2) queries with several JOIN
operations, (3) queries with several aggrega-
tions for one column (“Maximal, minimal
average temperature last year”), (4) and,
vice versa, several columns with one aggre-
gation (“Maximal temperature and pressure
last year”), etc. Details can be found in the
Table 13 from Appendix C.

• Database features: (1) questions with enti-
ties that cause the ambiguity problem for the
models (e.g. a request “Name of user with id
26” mentions column “Name” from the table
“Employers”, while there is the column with
the same title in the table “Workers”), (2)

queries with the binary filters like 0/1, “yes”
/ “no”, ... (A request “Number of cancelled
flights” filters all flights that have value “No”
in the the column “Completed”); (3) mention
of the multi-sentence values in the request,
etc. Other examples can be found in the Ta-
ble 9 from Appendix C.

The choice of these particular features is based
notably on the analysis of the results described in
the evaluation sections of different papers (the ref-
erences can be found in the Appendix C). The va-
lidity of this choice is confirmed by low results
obtained on the extracted suit in comparison with
the scores obtained on the whole set of questions.
Thus, on all functional test sets (excluding “sim-
ple” and “extra simple” requests created for com-
parison reasons) the average exact match accuracy
is 0.23 (BRIDGE) and 0.27 (RAT-SQL) while on
the full development dataset the results are 0.55
and 0.57 correspondingly. All metric values and
the list of test set descriptions are presented in Ta-
bles 9, 10, 11, 12, 13 from Appendix.

5 Experiments

In this paper, we provide an empirical evaluation
of baseline neural network models for text-to-SQL
on our dataset. To date, there are many differ-
ent models present and there are three major cate-
gories of these models (Katsogiannis-Meimarakis
and Koutrika, 2021): (i) sequence-to-sequence,
(ii) grammar-based, and (iii) sketch-based slot fill-
ing. We have analyzed the Spider leaderboard (spi,
2022) and concluded that the sketch-based slot fill-
ing method does not stand up to the competition
with the other two methods, which leaves us with
two other approaches. We kept in mind the follow-
ing requirements for models during our selection:

1. Both models have different nature of schema
encoding, architecture, and decoding pro-
cesses. This way we can test the method’s
performance on new datasets and languages;

2. Since we are also complementing Spider with
the new database content we want to explore
how it affects the result scores. Therefore,
models must work with database content;

3. The models have identical encoder models
for us to exclude language modeling bias.
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Train Data Infer Data BRIDGE RAT-SQL

Spider Spider 0.60 / 0.60 0.66 / 0.63

MT RU PAUQ 0.49 / 0.40 0.46 / 0.37
MT + HT RU PAUQ 0.52 / 0.49 0.52 / 0.5

PAUQ PAUQ 0.52 / 0.48 0.51 / 0.49

RU + ENG Spider 0.68 / 0.65 0.66 / 0.65
RU + ENG PAUQ 0.55 / 0.50 0.57 / 0.53

Table 1: Exact match (left) and execution accuracy
(right) results.

MT + HT PAUQ RU + ENG

easy 0.60 / 0.61 0.65 / 0.57 0.65 / 0.65
medium 0.70 / 0.59 0.71 / 0.66 0.70 / 0.66

hard 0.77 / 0.73 0.77 / 0.73 0.81 / 0.80
extra 0.83 / 0.78 0.79 / 0.78 0.82 / 0.82

Table 2: Component errors intersection for BRIDGE
(left) and RAT-SQL (right).

According to our requirements, we utilized two
popular Spider models – RAT-SQL (grammar-
based) (Wang et al. 2021b) and BRIDGE
(sequence-to-sequence) (Lin et al. 2020). RAT-
SQL is an encoder-decoder framework that uses
relation-aware transformer within the encoder to
model alignments between database schema and
content and question tokens. The decoder of
the model is tree-structured and generates abstract
syntax tree in the context-free SQL grammar.
BRIDGE, in turn, utilizes database schema and
content as input to the model. It has an encoder-
decoder architecture with the pointer-generator
network using beam-search. The model generates
queries in execution-guided order.

Within the experiments, we seek to answer to
following research questions (RQs): RQ1 What is
the performance difference between models which
were trained on English, or on various Russian
datasets, or in multilingual setup (English and
Russian)? RQ2 Do we need to use qualified hu-
man translation while adapting the original dataset
to different language (in our case, Russian)? RQ3
How does query component prediction differ de-
pending on the language?

5.1 Overall Results

We evaluated performance of our models trained
on 5 different types of NL data: 1. human-
translated Russian (PAUQ); 2. machine-translated
Russian (MT); 3. machine-translated Russian for

queries without values and human-translated Rus-
sian for queries with values (MT + HT); 4. origi-
nal English (Spider); 5. union of Russian (PAUQ)
and English (Spider) datasets (RU + ENG).

The details on hyperparameters are presented
in Appendix E. mBERT base language model is
used as an encoder for all experiments on Rus-
sian data and in multilingual setup. For English
models, we have replaced the base encoder BERT-
large with BERT-base to get comparable results.
For evaluation of Russian models (PAUQ, MT,
MT + HT) we used PAUQ dev set and for En-
glish models – original Spider dev set. For all sets
during training and testing, revised and comple-
mented databases from PAUQ were used. For met-
rics calculation, we utilized original Spider eval-
uation script provided at https://github.
com/taoyds/spider. Since we are working
with multi-language data, we explored how train-
ing simultaneously on PAUQ and Spider would af-
fect evaluation metrics. The experiment was con-
ducted in the following way: we merged PAUQ
with original English Spider NL – SQL pairs
and used revised databases from PAUQ as target
databases. After training the models on this data,
we measured the performance on Spider develop-
ment set and PAUQ independently. In Table 1 we
present the obtained results. The answer to RQ1
is that the English model on BERT-base has better
performance than all Russian models on mBERT-
base. However, training systems on combined En-
glish and Russian dataset increases performance
on both languages.

5.2 Human vs Machine Translation
Comparison

To answer RQ2, we have compared the per-
formance of the models trained on manually
translated PAUQ dataset with those trained on
machine-translated (MT) or combined (MT + HT)
data. Experiments showed that MT + HT models
perform on par with the models trained on PAUQ.
Hence, in order to get a qualitative dataset in Rus-
sian, it is enough to resort to manual translation
only for queries containing values. If we compare
these results with those of the models trained on
MT data, we see a decrease in execution accuracy
which corresponds to weak value matching ability
of such models. This happens because MT data
doesn’t correspond well with the database values.
This observation is supported by train value match
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accuracy: for PAUQ and MT + HT models it has
0.69 error rate and for MT 0.94.

5.3 Structure & Logic Understanding Error
Analysis

We focus on structure and logic understanding
component match errors to answer RQ3. Such
components correspond to the core logic of the
question projected on the schema and SQL syn-
tax in the expected query. Selected compo-
nents are WHERE (operations only), SELECT (ag-
gregations only), GROUP (no having), ORDER,
AND/OR, IUEN, JOIN. We use the following eval-
uation setup: for every predicted query in the
development dataset extract structure components
that are incorrect according to the component set
match metric. Then we count all errors per com-
ponent and scale them by the total amount of com-
ponents in the development dataset to get the dis-
tribution of errors per component. We analyze and
compare predictions of MT + HT, PAUQ, RU +
ENG, and Spider models. MT + HT, PAUQ, RU
+ ENG models are evaluated on PAUQ develop-
ment set, Spider models – on the original develop-
ment set. These metrics are presented in Table 3.
As we can see, for both languages models, on av-
erage, most often make incorrect predictions on
JOIN, ORDER and GROUP components. English
models, however, seem to perform better on these
components while on other components (SELECT,
WHERE, AND/OR, IUEN) the difference between
models is not drastic.

We have also explored how structure and logic
model’s errors on Russian and English data differ-
entiate based on the complexity of the Spider split
queries in Table 2. The analysis of how predicted
structure & logic components errors on PAUQ de-
velopment set intersect with those on Spider de-
velopment set reveals that the more complex the
queries are, the more structure & logic component
errors of models trained on different languages be-
gin to intersect with each other.

5.4 Schema Linking Error Analysis
Along with semantic errors analysis, we intend
to evaluate how the models trained on Rus-
sian queries cope with substituting the necessary
database schema elements into the query.

To evaluate this we extracted gold and predicted
database schema elements from queries generated
by BRIDGE and RAT-SQL and calculated error
rate per each element. These elements refer to

query components such as SELECT (without ag-
gregations), WHERE (value components), FROM,
GROUP BY, ORDER BY.

Table 4 illustrates the error rates related to par-
ticular components for BRIDGE and RAT-SQL
models predictions from development subsets of
each of four datasets (Spider, MT + HT, PAUQ,
EN + RU). This percentage is calculated relative
to the total number of queries from the develop-
ment subset containing such components. Our
study shows, that both models have very similar
schema linking errors distribution. The average
number of errors related to entity linking is much
higher than the average number of errors related to
structure and logic understanding. English models
perform better results on schema linking – appar-
ently, BERT encoder often fails with linking enti-
ties. All models perform well on database tables
names prediction: FROM components, 8% of er-
rors. The models show lower results on column
names prediction: SELECT, WHERE (columns),
ORDER BY, GROUP BY components, 23% of
errors for Russian data sets. Predictions made on
the English set are better in terms of column names
linking, they contain only 18% of such errors.

Value Match The most notable difference is re-
lated to WHERE (values) component – it is the
most difficult part for all English and Russian
models. However, both models trained on PAUQ,
MT+HT, RU+ENG make mistakes twice as of-
ten as those trained on Spider. Moreover, Russian
MT model predictions fail to link value entities at
all: since translation is made automatically, there
are often no such entities in the database. That
is one of the main reasons for using dataset cre-
ated by annotators instead of less labour-intensive
machine translation. BRIDGE model trained on
English Spider performs better results on database
values match than RAT-SQL because it augments
model input with automatically extracted database
cell values mentioned in the question to align the
schema components with the NL utterance using
the fuzzy match algorithm. However, since Rus-
sian is a highly inflectional language, fuzzy match
works correctly in a much smaller amount of cases
than in English. Thus, for Russian, both models
perform reasonably poor on the value matching .

6 Conclusion

In this paper, we have presented the first pub-
lic text-to-SQL dataset for the Russian language.
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SELECT WHERE JOIN AND/OR IUEN ORDER GROUP

Spider 0.04 / 0.04 0.04 / 0.04 0.35 / 0.27 0.10 / 0.10 0.10 / 0.11 0.18 / 0.18 0.26 / 0.21
MT + HT 0.03 / 0.05 0.04 / 0.04 0.39 / 0.34 0.10 / 0.09 0.11 / 0.12 0.24 / 0.23 0.32 / 0.33

PAUQ 0.04 / 0.04 0.05 / 0.06 0.32 / 0.38 0.08 / 0.10 0.11 / 0.11 0.26 / 0.23 0.33 / 0.33
RU + ENG 0.03 / 0.04 0.03 / 0.04 0.34 / 0.34 0.08 / 0.10 0.09 / 0.10 0.23 / 0.20 0.29 / 0.27

Table 3: Component error rate for BRIDGE (left), RAT-SQL (right) per structure and logic components.

SELECT
(w/o agg.)

WHERE
(columns)

WHERE
(values)

FROM GROUP BY ORDER BY

Spider 0.20 / 0.18 0.17 / 0.16 0.23 / 0.31 0.08 / 0.07 0.20 / 0.21 0.16 / 0.13
MT + HT 0.32 / 0.29 0.22 / 0.31 0.57 / 0.57 0.10 / 0.08 0.28 / 0.32 0.35 / 0.29
PAUQ 0.29 / 0.28 0.25 / 0.22 0.55 / 0.57 0.09 / 0.09 0.29 / 0.30 0.22 / 0.23
RU + ENG 0.29 / 0.24 0.28 / 0.28 0.56 / 0.57 0.08 / 0.07 0.29 / 0.24 0.22 / 0.19

Table 4: Schema linking error rate for BRIDGE (left), RAT-SQL (right) per database schema components.

Based on the Spider – large-scale, cross-domain
benchmark composed of table interconnected
databases and corresponding NL queries. We im-
proved the original Spider by inserting the miss-
ing values, correcting errors, and adding new sam-
ples of poorly represented types. To answer the
stated research questions, we conducted experi-
ments with RAT-SQL and BRIDGE architectures
trained on different combinations of Russian and
English data. Based on the results obtained, we
got the following key observations. Lexical and
semantic diversity of questions, queries and ta-
ble values was improved. Extracted categories of
requests with different artifacts in mentioned en-
tities, question formulation and logical structure
show model weaknesses and open perspectives for
further development. Although Russian and En-
glish differ considerably from each other, similar
models show similar performance on these lan-
guages. As we can see, errors in the structure and
logic components are quite similar, but errors re-
lated to schema linking are different: it is much
harder for Russian models to generalize and match
on these components than for English ones. Ma-
chine translation works in comparably for queries
without values for selected text-to-SQL models,
but human translation is needed for queries with
values in order to get qualitative data and provide
better results. Our experiments show that training
on Russian and English languages simultaneously
using a multilingual encoder brings a notable in-
crease on both Russian and English development
datasets. We mark the development of multilin-
gual models as a prospect for future work.

7 Limitations

As our dataset is an adaptation of the Spider
dataset to Russian language, it indeed inherits
most of Spider’s limitations. First of all, the data
is still ‘artificial’ which means that it was cre-
ated by a limited number of people specifically
for training and evaluating text-to-SQL models,
thus it lacks the diversity and complexity of natu-
ral data formed by questions that people formulate
in order to get the desired information from the
database. For instance, the real-world data con-
tain NL queries that require common sense knowl-
edge which can’t be extracted directly from the
database; ambiguous questions allowing various
ways of interpretation that are quite frequent and
queries with window functions that make the pro-
cess easier and more convenient, – all of these
aren’t included in the Spider dataset, as well as in
our. Some of these and other limitations have al-
ready been resolved in more recent datasets (Yu
et al., 2019; Hazoom et al., 2021), some oth-
ers we partially fulfill by our functional testsets.
Another limitation concerns evaluation metrics –
exact match and execution accuracy, which are
the most commonly used to evaluate text-to-SQL
models performance. However, the first one is too
strict and prone to false negative results (Zhong
et al., 2020) while the latter is problematic with
respect to spurious questions and ambiguous ques-
tions (Hazoom et al., 2021). More sophisticated
metrics such as proposed in Kim et al., 2020; Ha-
zoom et al., 2021 may be used in future work to
adequately evaluate model performance.
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8 Ethical Considerations

The presented dataset have been collected in a
manner which is consistent with the terms of use
of the original Spider, which is distributed under
the CC BY-SA 4.0 license. We also used the origi-
nal evaluation code scripts from Spider repository.

The translation of queries from English to Rus-
sian is made by a professional translator; the
database changes are made by annotators. All of
them received fair compensation (more than the
minimum wage in Moscow, Russia). We would
like to thank the authors of the Spider for provid-
ing access to the original data. We also thank the
translator and annotators for their time and effort.
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A Principles of values localization

• abbreviations: if there is a widely used
Russian-language analogue of the abbrevia-
tion, then it is translated and changed; if an
unknown abbreviation is found, then it is kept
in the original form, without transliteration;

• names of films/songs/metrics/events/technics
etc.: such names are localized, that is, re-
placed with an analogue known in Russian
culture (which is familiar to a native speaker
from the media/culture); however, a name
should be kept in English, if this name is used
in the media in the original form;

• proper names: personal proper names are
substituted by Russian-language analogues;
company/brand names aren’t translated;

• addresses: the addresses without specifying
the country are localized;

• binary values (e.g. "yes/no", "true/false"):
such values should be translated into Russian.

B Comparative Analysis

B.1 Database Content
B.1.1 Number of Entities
To quantify the scope of newly added values,
we counted the number of different elements of
databases.

Since the translation affected only the values in
our tables, the number of databases, tables and
columns hasn’t changed. The total number of val-
ues increased by 2%.

• Databases: 166 entities (88.0% – train set,
12.0% – dev set).

• Tables: 876 entities (90.8% – train set, 9.2%
– dev set).

• Columns: 4503 entities (90.2% – train set,
9.8% – dev set).

• Values: increased by 498 490 entities (2 587
unique values) from 23 435 505 to 23 933
995; 531 164 and 533 751 unique values re-
spectively (88.4% – train set, 11.6% – dev
set).

B.1.2 Table Sizes
In terms of diversity, the variety of column sizes
increased from 122 variants of unique values to
151.

Fig. 3 shows the distribution of column sizes for
“small” tables – tables shorter than 25 rows (the
biggest table contains 510 437 rows).

An outlier at 15 is the result of automatic table
values generation – filling table’s columns with the
values {1, 2, ..., 15}. In PAUQ, this arti-
fact becomes less pronounced.

B.1.3 Value Sizes
All English values are preserved in PAUQ. Thus,
the longest one also contains 31 tokens and 213
symbols ("Et totam est quibusdam aspernatur
ut. Vitae perferendis eligendi voluptatem moles-
tiae rem ut enim. Ipsum expedita quae earum
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Figure 3: Distribution of column sizes.

unde est. Repellendus ut ipsam nihil accusantium
sit. Magni accusantium numquam quod et.", DB
cre_Doc_Tracking_DB). In Spider, however,
the longest entity mentioned in the request con-
sists of just 8 tokens. In PAUQ, there is a set of
requests referring to the entities expressed in big-
ger amount of tokens.

The length of Cyrillic values varies from 1 to
20 tokens and such values are also mentioned in
the requests. The longest one is the following:
"Человеку сложно обидеть бога, – ответил Ак-

инфий Иванович. – Худшее, что может слу-

читься – вы его собой не заинтересуете" (DB
twitter_1).

B.1.4 Overlapping Entities

Almost every fourth Spider entity (table name,
column name, column value) contains a token
from some other element, but only an eighth of

them is used in some query. While adding Russian
values and new requests we tried to increase both
indicators – quantity of overlapping and common
tokens in questions that can cause ambiguity prob-
lem for text-to-SQL models.

For precise analysis we calculate the amount of
overlapping tokens found in several entities in Spi-
der and PAUQ. The results are presented in Table
5.

B.2 Questions
B.2.1 Length of Questions

• Average length of natural language query:

– English: 13.2 tokens, 66.4 symbols;
– Russian: 63.8 tokens, 10.6 symbols.

• The longest question:

"Display the employee number, name (first
name and last name), and salary for all
employees who earn more than the average
salary and who work in a department with
any employee with a ’J’ in their first name."
(45 tokens, DB "movie_1", is the same for
both languages).

• The shortest question:

– English:
"chi" (DB "scholar"). It’s interesting
that corresponding SQL request is
rather long: SELECT DISTINCT
t1.paperid FROM venue AS
t2 JOIN paper AS t1 ON
t2.venueid = t1.venueid
WHERE t2.venuename = "chi".

– Russian:
"Авторы NIPS" (DB "scholar").

B.3 Coverage by Mentions
An important advantage of Spider is a large num-
ber of multi-domain databases of different sizes.
But not all DB elements are addressed in the re-
quests. Thus, 92.0% of all tables are used, 48.3%
of columns and less than 0.1% of all values (see
Fig. 4).

We add new mentions of 15 tables that are not
used in Spider, to PAUQ.

B.4 Request Template Words
A lot of queries contain standard request template
words like different imperative verbs with or with-
out affirmative “please”.
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Spider
databases

PAUQ
databases

Spider
queries

PAUQ
queries

Number of tokens found in:

...entities of different types
from one DB

7261 8637↑ 1538 (21.2%) 1952 (22.6%)

...different table names from
one DB

227 227 42 (18.5%) 101 (44.5%) ↑

...different column names
from one DB

1425 1425 156 (10.9%) 215 (15.1%) ↑

...different values from one
DB

5659 7070↑, of which
464 are Cyrillic

154 (2.7%) 234 (3.3%) ↑

Table 5: Overlapping DB entities

Figure 4: Coverage of database entities by mentions in questions. Left bar in every category corresponds to Spider,
right bar – to PAUQ. Dark color is for the entities from the databases, light – for the entities used in the requests.

Some examples:

• Please, show the most common type of ships.

– Покажи, пожалуйста, наиболее

распространенные типы кораблей.

• Split the number of killed ships by type.

– Разбить количество потопленных

кораблей по типам.

This set is not too diverse, but is slightly ex-
panded in the PAUQ. It is given in Table 6.

B.5 Queries

B.5.1 Corrections
During the translation process we have “repaired”
more than 10 Spider samples. The problems were

mostly connected with the ambiguity of the ques-
tions and logical patterns. E.g. in the query corre-
sponds to the question “What are the names of all
reviewers that have given 3 or 4 stars for reviews¿‘
should be used union-operator instead of “INTER-
SECTION“ in the Spiderground truth. List of cor-
rections is on the repository.

B.6 SQL query sets imbalances

In the Spider queries we found several quantata-
tive imbalances:

1. One of the constructions is found one and a
half times more often than the next variant
(more details in Appendix B.5).

2. Queries are dominated by the aggregation
function "COUNT" that is more than half of
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Spider: PAUQ:

What Какой (-ая, -ое, -ие) / Какова

Find Покажи (-те, -зать)

How many Найди (-те, -ти) / Поищи

Who Где

Which Кто

Show Перечисли (-те, -ть)

List Отобрази (-те, -ть)

Return Назови (-те)

Order Сколько

Type Отортируй (-те, -ть)

Whose Топ

Give Упорядочи

Count Напечатай

Where Который из

Top Узнай

Rank Выведи

Sort Посмотри

Display Как

How Как много

Детализируй

Разбей

Сравни (-те)

Соответствие

Нужно (-ы)

Попробуй (-ы)

Table 6: Lists of request template words in natural lan-
guage questions sorted by frequency of using in de-
scending order

total amounts.

3. More than half of the requests query only one
table.

B.6.1 SQL Query Structures
We replace all entity names, aggregations and fil-
ter constructions in the queries and extract 402 dif-
ferent constructions. The most common schemes
are:
"SELECT <column> FROM <table>

WHERE <condition>" (13.7%)
and
"SELECT <column> FROM <table-

1> JOIN <table-2> WHERE
<condition>" (9.0%).

Surprisingly, they are more common than
the simplest one: "SELECT <column> FROM
<table>" (8.3%). This ratio is approximately
the same for the training and validation sets.

We extract rare and short structures (with less
than 5 components, they occur less than in 1% of
samples) and use them in our new samples:

• SELECT <column> FROM <table>
WHERE <ent> ORDER BY <ent>
ASC (0.02%)

• SELECT <column> FROM <table>
WHERE <condition> GROUP BY
<column> (0.02%)

• SELECT <column-1>, <column-
2>, <column-3>, <column-
4> FROM <table> ORDER BY
<column> (0.02%)

B.6.2 Joined Tables
During the analysis of joined tables, we found out
that in the validation set, the average amount of
tables that need to be accessed to answer the NL
question, is less than that in the train set (1.7 vs
1.4), as shown in Table 7.

We add to the development set requests which
refer to more than 4 tables (in Spider, there is a
lack of such questions).

Tables Share of the total Train/Dev ratio

1 57.01% 88:12
2 26.01% 87:13
3 11.36% 93:7
4 3.76% 97:3
5 1.63% 96:4
6 0.16% 100:0
7 0.06% 100:0
8 0.02% 100:0

Table 7: Number of tables used in one Spider request

B.6.3 Aggregations
Just for analytical purposes we calculate the
amount of aggregation functions used in Spider.
The most popular one is COUNT (see table 8). A
curious fact is that MAX is requested almost twice
as often as MIN.

C New Requests

C.1 Long Values

The presence of “long” values in databases is im-
portant, since accessing them in a query is usually
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Aggregation Share of the total

COUNT 65.45%
AVG 11.97%
MAX 10.02%
SUM 6.88%
MIN 5.68%

Table 8: Aggregations used in Spider requests

difficult for the text-to-SQL models. A user prob-
ably uses only a part of tokens and changes the
order while mentioning them.

The values with the length greater than 8 tokens
are not mentioned in the Spider queries. But it is
an important case for the models that can predict
values and for the systems used in real life appli-
cations.

We add 20 requests to the train set and 10 – to
the test set – the requests that refer to the values
longer then 8 tokens. As in real-world examples
key word in question are disordered and not full-
matched with entity names.

Example:
“Name of film about moose, composer and den-

tist”
→ “A Touching Saga of a

Composer And a Moose who must
Discover a Dentist in A MySQL
Convention from column “description”
of table “film” (DB sakila_1).

C.2 Binary Columns

Querying entities from the columns with the two
opposite values3 (binary columns) is different to
querying other types of values from the semantic
point of view.

Typically user mentions a value with or without
the name of the column:

“Number of participants from New York” (“Ко-
личество участников из Новосибирска”), - re-
fer to the value New York (''Новосибирск'')
from the column “City”.

But when a value from the binary column is ac-
cessed, it is often just the name of the column with
or without negative particle that is used. The value
itself is not mentioned:

“Number of registered participants” (``Ко-
личество зарегестрированных участни-

ков''), - refer to value “True” from column
3Like: “Yes” / “No”, “True” / “False”, “1” / “0”

Is_registered.
We extract all binary columns from Spider and

divide them into five categories:

• “True” / “False” – 8 columns, 8 requests;

• “Yes” / “No” – 12 columns, 11 requests;

• “1” / “0” – 19 columns, 17 requests;

• Gender (“F” / “M”, “1” / “0”, ``муж'' /

``жен'', etc.) – 33 columns, 32 requests;

• Antonyms (“Satisfied” / “Unsatisfied”
“good” / “bad”, etc.) – 17 columns, 13
requests.

The use of values from different categories is
slightly different from each other. We found out
that the models under consideration show low re-
sults on these requests (exact match is 0.09 for
BRIDGE and 0.18 for RAT-SQL). Besides, the
amount of such samples in the dev set is extremely
small. Thus, we decided to enrich the train set with
44 such queries and the dev set – with 8 queries.

C.3 Dates and Times
In Spider there is a wide variety of date and time
data. Some examples are shown in Figure 5.

Unfortunately, in only 71 questions within the
train set, some date or time information should be
used as filters and there are just 4 such samples in
the dev set. Since it looks natural to use this type
of data in the requests, we added 48 queries (train:
39, dev: 9) that have different formats of date and
time information and are not used in Spider.

C.4 Fuzzy and partial matching
In Gan et al., 2021 it is stated that “existing text-
to-SQL models typically rely on the lexical match-
ing between words in natural language (NL) ques-
tions and tokens in table schemas”. For this reason
it is important to evaluate models on the requests
containing nontrivial mention of a value from a
database. It is hard to extract all such examples
from Spider. Thus, for the evaluation purposes we
added 62 new samples which can cause difficulties
in the entity linking process. They can be divided
into several types:

• Fuzzy matching: the use of synonyms or
paraphrases for the value names in the ques-
tion.

What is the final station for the train 56701?
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Figure 5: Example of date and time values in Spider

Какая конечная станция у поезда

№56701?

→ A column "destination" (DB “sta-
tion_weather”)

• Part of speech change (a common subtype
of the previous type): the use of value names
different from the original form used in the
DB.

Verbal form:

What are the mountains called in Ethiopia

Перечисли, как называются все горы в

России.

→ A column “name” from the table “moun-
tain” (DB “mountain_photos”)

Adjective form:

The number of matches in which the loser
was higher than the winner.

Количество матчей, в которых проиграв-

ший был выше победителя.

→ SELECT COUNT(*) FROM matches
WHERE loser_ht > winner_ht (DB
“wta1_1”)

• Partial match: only part of the tokens from
the original entity name are used in the ques-
tion.

Location of Webber University

→ Value “Webber International University”
(DB “protein_institute”). In the mentioned
column “Institution” there are other values
with the keywords “Webber” and “Univer-
sity”.

• Overlapping (an important subtype of the
previous type): the use of multiple intersect-
ing mentions of several entities.

ID of race and drive for the first position

Идентификатор заезда и водителя у пер-

вого места

→ Columns “raceId” and “driverId” (DB
“formula_1”). In this table there are other
columns with the keywords “race” and
“driver”, thus for a model it is important to
understand that the word “ID” is connected
not only with the word “race”, but also with
the word “driver”.

C.5 Empty Return

As mentioned above, all queries were redesigned
so that the result of their execution was non-empty
set of cells. To prevent the occurrence of imbal-
ance in the dataset we add another separate pool
of samples, the conditions of which do not cor-
respond to any row of the database. This set
of queries can be easily excluded from the main
dataset.

There are:

• Requests with empty returns;

• Zero-result requests with COUNT aggrega-
tion;

• Requests with AVG (average) aggregation
that refer to the empty set of rows and thus
produce NaN as a part of the return.

D Functional Test Sets

The descriptions and sizes of the functional test
sets can be found below (Tables 9, 10, 11, 12, 13).
In all tables, exact match accuracy of BRIDGE
(values on the left) and RAT-SQL (values on the
right) base models trained on PAUQ without new
samples described at C, are presented.
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E Experimental Setup

Both RAT-SQL and BRIDGE systems were
trained on one Tesla V100 32 GB. We used Ten-
sor2Struct package (Wang et al., 2021a) to train
RAT-SQL. The hyperparameters are taken from
the original implementation of RAT-SQL pro-
vided at https://github.com/berlino/
tensor2struct-public. In monolingual
setup, RAT-SQL models are trained for a maxi-
mum of 25k iterations, then the best checkpoint
on the corresponding dev set in terms of exact
match was picked (in all cases it is a checkpoint
obtained after training in the range of 20k to 25k
iterations). In multilingual setup, when training
data is double-sized, the maximum number of it-
erations is increased to 40k.

As for BRIDGE, in all cases it was trained
for a maximum of 20k iterations. Then the best
checkpoint according to exact-match top-1 metric
on the corresponding dev set was selected. During
training, we used default hyperparameters from
the original implementation of BRIDGE provided
at https://github.com/salesforce/
TabularSemanticParsing.
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Challenge set Example and description Accuracy Training
amount

Validation
amount

Mention of values from
a binary column

«What are the names of the reg-
istered nurses?»

0.09 / 0.18 83 22

Mention of gender «What is the average age of fe-
male students?»

0.67 / 0.67 82 3

Mention of dates or
times

«How many songs have 4 minute
duration?»

0.02 / 0.00 102 10

Mention of “long” val-
ues (more than 3 tokens)

«ID of documents in which
we can read something about
Google working process
→value «How Google people
work.»

0.62 / 0.54 51 13

Empty return «Amount of papers in 2004»,
query to value «2004» which is
absent in the column «YEAR».

0.40 / 0.50 20 10

Aggregation keyword in
the mentioned value

«Average maximum pressure.»
It is hard to identify the aggrega-
tion here, because column «max-
imum pressure» starts with key
word.

0.66 / 0.33 193 6

Mention of some tokens
from the DB entity that
aren’t used in correct
SQL query

«What is the first and second
line for all addresses?» Refer to
columns «line_1» and «line_w»,
while in the same table there
are columns «first_name» and
«last_name»

0.43 / 0.34 1699 177

Table 9: List of test sets for database features. The words defining features are highlighted by color.
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Challenge set Example and description Accuracy Training
amount

Validation
amount

Logical: union and
intersection of sub-
requests

«How many concerts are
there in year 2014 or 2015?»
→ SELECT count(*)
FROM concert WHERE
YEAR = 2014 OR YEAR
= 2015; «What are the ids
of students who both have
friends and are liked?» →
SELECT student_id
FROM Friend INTERSECT
SELECT liked_id FROM
Likes

0.58 / 0.53 864 111

Logical: using of Any-
or-All predicates.

«Find the average age of stu-
dents who do not have any
pet.» →SELECT avg(age)
FROM student where
stuid NOT IN (SELECT
stuid FROM has_pet)

0.73 / 0.54 245 41

Logical: negations «What are the name of the coun-
tries where there is not a single
car maker?»

0.51 / 0.47 601 106

Logical: using multiple
different logical connec-
tives in one question

«How many students are over 18
and do not have allergy to food
type or animal type?»

0.25 / 0.31 108 16

Logical: different con-
nectives in question and
SQL request

«What is the sum of bud-
gets of the Marketing and
Finance departments?»
→SELECT sum(budget)
FROM department
WHERE dept_name
= «Marketing» OR
dept_name = «Finance»
Most often, the logical connec-
tive linking the names of entities
in the question coincides with
the logical link in the request.
So, it is really hard to define
where it should be replaced with
opposite one. This demand deep
understanding of semantics.

0.00 / 0.00 3 1

Table 10: List of test sets for question logical features.
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Challenge set Example and description Accuracy Training
amount

Validation
amount

Fuzzy: partial mentions
of entities

«Location of Webber Univer-
sity» → value «Webber In-
ternational University» In the
mentioned column «Institution»
there are other values with key
words «Webbe» and «Univer-
sity».

0.45 / 0.40 1988 201

Fuzzy: overlapping of
several entities in one
question

«Winners and losers names» →
columns «winner_name» and
«loser_name»

0.16 / 0.23 253 37

Fuzzy: using synonyms
in question for some en-
tity in DB

«What is the final station for the
train 56701?» → column «des-
tination» from table «train»

0.62 / 0.50 1354 189

Fuzzy: Determining ag-
gregation by the com-
parative or superlative
adjective from column
name

«What is the age of the oldest
dog?» → SELECT MAX(age)
FROM Dogs

0.00 / 0.00 22 3

Table 11: List of test sets for questions with fuzzy and partial mentions of entities.
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Challenge set Example and description Accuracy Training
amount

Validation
amount

Long questions: Multi-
ple sentences in question

«Find the maximum weight
for each type of pet. List the
maximum weight and pet type.»
→ SELECT MAX(weight),
petType FROM pets
GROUP BY petType

0.51 / 0.38 358 53

Long questions: the ra-
tio of lengths of the
question to length of the
query is greater than 2/3
of all queries in the
database

«What are the dog names,
ages and weights of all the
dogs that were abandoned
(note that 1 stands for value
«yes», and 0 stands for value
«no» in the databases ta-
bles)» → SELECT name,
age, weight FROM Dogs
WHERE abandoned_yn =
1

0.00 / 0.00 33 4

Short questions: the
ratio of lengths of the
query to length of the
question is greater than
2/3 of all queries in the
database

«Parsing top papers» →
SELECT DISTINCT
t4.citedpaperid,
COUNT
(t4.citedpaperid)
FROM paperkeyphrase
AS t2 JOIN
keyphrase AS t1
ON t2.keyphraseid
= t1.keyphraseid
JOIN paper AS t3
ON t3.paperid =
t2.paperid JOIN cite
AS t4 ON t3.paperid =
t4.citedpaperid WHERE
t1.keyphrasename
="parsing" GROUP
BY t4.citedpaperid
ORDER BY COUNT
(t4.citedpaperid)
DESC

0.00 / 0.00 305 1

Table 12: List of test sets for questions of atypical sizes.
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Challenge set Example and description Accuracy Training
amount

Validation
amount

One aggregation for
multiple column entities

«What is the average lat-
itude and longitude in
San Jose?» → SELECT
avg(lat), avg(long)
FROM station WHERE
city = "San Jose"

0.00 / 0.00 57 4

Multiple aggregations
for one column entity

«What is the average, min-
imum, and maximum age
for all French singers?»
→ SELECT avg(age),
min(age), max(age)
FROM singer WHERE
country = "France"

0.67 / 0.84 807 90

Extra simple: SQL
request with scheme
SELECT <column>
FROM <table>

«Album titles» → SELECT
title FROM albums

0.67 / 0.84 721 92

Simple: SQL request
with scheme SELECT
<column> FROM
<table> WHERE
<condition>

«How many cars has
over 6 cylinders?» →
SELECT COUNT(*)
FROM CARS_DATA WHERE
Cylinders > 6

0.82 / 0.79 1028 131

One «JOIN» in SQL request 0.39 / 0.34 2233 320

More than one «JOIN» in SQL request 0.11 / 0.26 1579 88

Nested sub-queries in SQL query 0.25 / 0.33 320 12

Multiple columns in the «SELECT» part of request 0.44 / 0.39 4173 92

Multiple conditions for multiple column 0.00 / 0.00 1595 131

Table 13: List of test sets for SQL query features.

2376


