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Abstract

Pre-trained language models (PLM) have ad-
vanced the state-of-the-art across NLP applica-
tions, but lack domain-specific knowledge that
does not naturally occur in pre-training data.
Previous studies augmented PLMs with sym-
bolic knowledge for different downstream NLP
tasks. However, knowledge bases (KBs) uti-
lized in these studies are usually large-scale and
static, in contrast to small, domain-specific, and
modifiable knowledge bases that are prominent
in real-world task-oriented dialogue (TOD) sys-
tems. In this paper, we showcase the advan-
tages of injecting domain-specific knowledge
prior to fine-tuning on TOD tasks. To this end,
we utilize light-weight adapters that can be eas-
ily integrated with PLMs and serve as a repos-
itory for facts learned from different KBs. To
measure the efficacy of proposed knowledge
injection methods, we introduce Knowledge
Probing using Response Selection (KPRS) – a
probe designed specifically for TOD models.
Experiments1 on KPRS and the response gen-
eration task show improvements of knowledge
injection with adapters over strong baselines.

1 Introduction

Pre-trained language models (PLMs), such as
BERT (Devlin et al., 2018), BART (Lewis et al.,
2020), GPT (Brown et al., 2020), and XLNet (Yang
et al., 2019), have advanced the state-of-the-art of
various natural language processing (NLP) tech-
nologies and demonstrated an exceptional ability
to store and utilize linguistic, factual, and com-
monsense knowledge. Consequently, PLMs form
the backbone of many recent NLP applications
and have been successfully employed as modu-
lar components in the context of task-oriented dia-
logue (TOD), responsible for sub-tasks including

∗ Work performed while at AWS AI Labs
1https://github.com/amazon-research/

domain-knowledge-injection

Figure 1: A high-level representation of the KB-adapter
architecture (decoder only, for clarity). Adapter states
are fused with the hidden states of the PLM to produce
a knowledge-informed predictive distribution. Dashed
elements are used only if multiple adapters are active.

dialogue state tracking and response generation
(Hosseini-Asl et al., 2020; Lee et al., 2021).

Since they are exposed to large quantities of
general data during training, PLMs store a wide
variety of diverse and general knowledge in their
parameters (Petroni et al., 2019) such as capitals of
nations, biographical details of famous individuals,
and other facts of varying granularity. Commer-
cially deployed TOD systems, however, typically
require access to more restricted, domain-specific
categories of knowledge in order to produce in-
formative and factually accurate responses to user
queries.2 Such information may include addresses
of particular local attractions, detailed restaurant
menus, train routes, or ticket prices, and is unlikely
to be found in the PLM’s training data. Due to its
specialized nature, this knowledge is often stored in
external knowledge bases (KBs) that are accessed
at run-time by TOD systems via external queries.

2The term domain here refers to a specific application use-
case (e.g. expedia.com (travel) and opentable.com
(restaurant) represent different domains).
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This process introduces additional complexity
into the dialogue model design and requires imple-
menting KB queries and code wrappers as part of
system setup, causing a substantial overhead espe-
cially for non-experts. Querying external KBs can
also be disadvantageous when the KB is small, or
is not changing in real time (as is the case with
catalogs, restaurants’ menus, etc). We identify the
decoupling of domain-specific knowledge from the
dialogue model as a shortcoming to be remedied
and instead propose to inject this knowledge di-
rectly into the model’s parameters. This eliminates
the need for querying external KBs, streamlining
the creation and deployment of TOD systems.

Injecting domain-specific information into TOD
systems that can guide and inform model behav-
ior and may be subsequently updated and modi-
fied by the user is not a trivial task. Ideally, this
should be accomplished in a manner that is effi-
cient, architecture-agnostic, and compatible with
off-the-shelf PLMs. In order to satisfy these re-
quirements, we adopt light-weight adapter net-
works as repositories of domain-specific knowl-
edge (KB-adapters for short). Such adapters can
be trained to memorize KB facts3 and integrated
into pretrained PLMs through the fusion of hidden
representations, as illustrated in Figure 1. Our work
is in line with past studies that demonstrated the
utility of adapters as stores of factual and linguis-
tic knowledge outside of TOD (Wang et al., 2020).
Importantly, injecting knowledge into TOD models
through adapters is computationally less demand-
ing than injecting domain-specific facts by fine-
tuning entire dialogue models on synthetic data, as
explored in (Madotto et al., 2020), which facilitates
efficient updating of the injected knowledge.

To quantify the success of the knowledge injec-
tion procedure, we develop the Knowledge Probing
using Response Selection (KPRS) task and bench-
mark (see §3). KPRS leverages contrastive dia-
logue response pairs to probe the extent of memo-
rization of domain-specific facts by the evaluated
dialogue model, whereby one response is consis-
tent with the corresponding KB, while the other
is not. To our knowledge, both KPRS and the use
of adapters for domain-specific knowledge injec-
tion in TOD represent novel contributions of our
work. We conduct experiments that evaluate PLMs
equipped with domain-specific KB-adapters on the
KPRS benchmark as well as the more conventional

3We use the term fact to refer to individual KB entries.

response generation (RG) task, comparing them
against strong baselines.

Our contributions can be summarized as follows:

• We define and implement adapter-based meth-
ods for injecting highly specific and retriev-
able domain knowledge into TOD models

• We design and develop the KPRS probing task
that can be used to evaluate the effectiveness
of knowledge injection for TOD systems

• We show that PLMs with KB-adapters are
usually preferable to knowledge-unaware and
sequentially-finetuned PLMs for TOD

2 KB-Adapters for Domain-Specific
Knowledge Injection

We conceptualize KB adapters as repositories of
domain-specific information that guide the PLMs’
predictions to be consistent with KB contents. The
proposed knowledge injection process is divided
into two stages: (1) Memorization: adapters are
trained to memorize domain-specific KB facts; (2)
Utilization: PLMs are trained to leverage adapters
when reasoning about entities and their attributes.

During the memorization stage, adapters are con-
nected to the frozen PLM and tasked with recon-
structing corrupted KB facts, thereby memorizing
associations between entity and attribute mentions.
During the utilization stage, the PLM (now un-
frozen) is given access to frozen adapters and learns
to leverage their memorized knowledge to make
more accurate predictions on downstream tasks
such as RG. As a result, PLMs can generalize to
unseen inputs by virtue of their domain-general pre-
training while receiving domain-specific guidance
in their predictions by the knowledge encoded in
adapter representations.

When training KB-adapters, we allocate a single
adapter for each individual domain KB (e.g. ho-
tel or restaurant). This results in shorter training
times per adapter and (if needed) facilitates effi-
cient re-training of adapters to reflect changes in
the associated KBs.4 This allows for a straight-
forward extension of TOD systems equipped with
KB-adapters to new domains, as this only requires
training a single, new domain-specific adapter that
can be used in concert with existing ones. Never-
theless, we also consider a setting where we train a

4E.g. if the user updates the prices of certain items on a
restaurant’s menu.
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Figure 2: Example MultiWOZ 2.2 KB entry.

single, mixed-domain adapter on the concatenation
of all KBs in our experiments (see §5.5).

2.1 System Overview

Unlike the vast amounts of data used to pre-
train PLMs, information stored in KBs is usu-
ally structured and does not resemble natural lan-
guage expressions. Figure 2 shows a single KB
entry (or fact) from the MultiWOZ 2.2 dataset
(Budzianowski et al., 2018; Ye et al., 2021). Since
KB-adapters need to be compatible with PLMs and
their internal representations, we therefore convert
KB entries prior to the memorization stage from
their initial format into declarative statements of
varying complexity (§2.2). Each statement men-
tions exactly one entity (e.g. a restaurant’s name)
and one or more entity attributes (e.g. the types of
cuisine served by a restaurant). Each statement is
subsequently corrupted by masking out a single at-
tribute.5 By denoising the input sequence, adapters
learn to correlate entities with their attributes, ef-
fectively memorizing entire KBs with high accu-
racy (§2.3). The obtained KB-adapters are utilized
to guide PLMs’ predictions during fine-tuning on
downstream TOD tasks (§2.4).

In our experiments, BART (Lewis et al., 2019)
is chosen as the PLM that forms the backbone of
the adapter-augmented TOD model, due to its com-
petitive performance on generative tasks.6 While
the proposed knowledge injection approach is ag-
nostic to the choice of particular PLM, we leave
such validation for future work.

We employ bottleneck adapters (Houlsby et al.,

5The entity mention is never masked out, as multiple enti-
ties can have the same attribute resulting in ambiguous model
inputs, e.g. multiple restaurants can serve Indian food.

6We utilize the BART-Large provided as part of the
Transformers library (Wolf et al., 2019).

atomic
facts

Pizza Hut City Centre is located in the cen-
tre area of the city.
Pizza Hut City Centre serves food in the
cheap price range.
The postcode of Pizza Hut City Centre is
cb21ab.
. . .

composite
facts

Pizza Hut City Centre is a restaurant that
serves Italian food in the cheap price range.
It is located at [51.20103, 0.126023], in the
centre area of the city, in the cb21ab post-
code. Its phone number is 01223323737.

Table 1: Examples of the natural language formats used
to represent KB facts in our study. Entity mentions are
underlined, whereas entity attributes are italicized.

2019) due to their established effectiveness and
insert them after the final layer of the encoder and
decoder.

The PLM’s hidden state given to the adapter as
input is combined with the adapter’s output using
a weighted fusion function which is a linear trans-
formation of the PLM’s hidden state followed by a
softmax activation that produces the fusion weights.
This allows the final model to dynamically adjust
the extent to which adapter knowledge is used at
each prediction step. In this work, we ran two sets
of experiments by applying this gating function to
either the logits obtained from both the PLM and
the adapters, or to their pre-logit hidden states.

We train a single encoder and a single decoder
adapter per domain (hyper-parameter settings are
reported in Appendix C).7

2.2 From KB Facts to Declarative Statements

Previous studies that investigated knowledge injec-
tion methods often use relational tuples to repre-
sent individual facts contained within a KB, e.g.
where an entity is connected to one of its at-
tributes via the relevant relation: [Pizza Hut
City Centre, food, Italian]. While
this knowledge representation format has been
found to be effective in the past, our preliminary
studies indicated that the mismatch between the
natural language input format expected by a PLM
and the structured tuple causes slight performance
degradation. Hence, we choose to represent indi-
vidual KB entries as natural language statements

7We also investigated several other fusion functions, in-
cluding unweighted state averaging, state concatenation fol-
lowed by a projection as used in (Wang et al., 2020), atten-
tion, GRU cell, and a combination of softmax distributions
produced separately by the PLM and the adapter. However,
neither of these performed better than the proposed approach.
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Figure 3: On the left, a schematic representation of
the memorization stage, where the adapter is trained
to memorize KB contents by reconstructing corrupted
statements derived from KB facts. Note that the PLM
parameters are frozen at this stage. On the right, a rep-
resentation of the utilization stage, where the adapter-
augmented PLM is fine-tuned on a downstream TOD
task and learns how to utilize adapter knowledge. Note
that the adapter parameters are frozen at this stage.

that are fully consistent with the data seen by the
PLM during pretraining.

There are several intuitive ways in which a KB
entries can be translated into natural language state-
ments. Referring again to Figure 2, we consider (1)
atomic statements, where each statement mentions
the entity and one of its attributes, connected by the
attribute’s relation, and (2) composite statements
where each statement communicates the entirety
of the entry, covering all provided entity attributes
and relations. Table 1 illustrates both formats based
on the MultiWOZ KB entry in Figure 2. All state-
ments are derived by filling-in pre-defined, human-
authored templates with the appropriate entity and
attribute values.8 Designing the templates intro-
duces minimal overhead, as they reuse attribute
designations where possible and do not introduce
any information beyond the contents of KB entries.
The exhaustive list of templates used in our experi-
ments is provided in Tables 9 and 10. During the
memorization stage, KB-adapters are trained on a
mixture of all atomic and composite facts, so as to
familiarize the TOD model with different represen-
tations of the same information.

2.3 Memorization Stage

Following the construction of natural language rep-
resentations of KB facts, the memorization stage
involves training adapters to memorize and recall

8We note that we did not optimize the templates’ design
as part of our investigation. Our goal in creating the templates
was to render structured KB content into natural language
without introducing any superfluous information, so as to
verify the efficacy of our adapter-based knowledge injection
method without additional confounding factors.

Figure 4: Samples from the KPRS benchmark. Each
sample consists of (1) a dialogue context that includes
the available history and the active user turn and (2) two
candidate responses to be scored by the model – a refer-
ence response that is consistent with both the dialogue
context and the KB, and a perturbed response that is not.
Reference values are set in green and perturbed values
are set in red. Note that "Tenpin" is not in the centre
area and "Alexander Bed and Breakfast" does not have
free WiFi according to their respective KB entries.

KB information. As shown on the left in Figure 3,
the adapter-augmented PLM learns to reconstruct
masked declarative statements that are derived from
KB contents, whereby the weights of the PLM
itself are kept frozen – only adapter parameters
are being updated. By filling-in masked tokens,
adapters learn correlations between entities (e.g.
hotel names) and their attributes (e.g. phone num-
bers). Adapter training resembles masked language
modeling and is easy to implement and scale.

2.4 Utilization Stage

After the memorization stage, PLMs are trained to
leverage the domain-specific knowledge encoded in
adapter representations with the goal of producing
more accurate predictions on a downstream task,
such as RG, as illustrated on the right in Figure 3.
Throughout this fine-tuning process, adapter param-
eters are kept frozen so as to preserve the domain-
specific knowledge injected during the memoriza-
tion stage. PLM parameters, on the other hand,
are unfrozen to allow the model to learn to exploit
adapter representations.
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3 Knowledge-Probing using Response
Selection (KPRS) Benchmark

In this study, we investigate the ability of language
models to verify and retrieve domain-specific facts
within the TOD setting. To this end, we propose the
"Knowledge-Probing using Response Selection"
(KPRS) task and the associated benchmark. KPRS
allows us to examine whether domain-specific
knowledge, such as entities and their attributes,
that is stored within the parameters of the evaluated
model can be successfully accessed and guide the
model’s predictions. Being knowledgeable about
domain-specific entities in this manner can benefit
dialogue models when reasoning about and reply-
ing to user queries. We show this to be the case for
the response generation task in §5.3.

KPRS is a contrastive evaluation benchmark that
measures whether the probed model has memo-
rized and can accurately retrieve domain-specific
knowledge contained within a specified KB. It is
derived from MultiWOZ 2.2 dialogues (Zang et al.,
2020) (development and test portions only) and
covers four domains: restaurant, hotel, attraction,
and train. Given a dialogue context, the task pre-
sented to the evaluated model is to score responses
that are either compatible or incompatible with the
information contained in the KB.

Importantly, KPRS should not be regarded as a
stand-alone evaluation task, but rather as a probing
mechanism that can offer informative insights into
a model’s ability to access domain-specific facts
stored within its parameters, similar to other knowl-
edge probes, e.g. (Petroni et al., 2019). Specifically,
a fact-aware model should be able to distinguish
between an appropriate ("reference") dialogue
response that is compatible with the knowledge
base information from an inappropriate ("dis-
tractor") response that contradicts the domain-
specific knowledge. By design, the two responses
are minimally different – identical except for at-
tribute values associated with entities described in
the KB, such as restaurant names or departure times
of trains. Hence, to identify the correct dialogue re-
sponse, a model must be able to distinguish values
that are compatible with domain-specific informa-
tion from those that are not.

3.1 Benchmark Design

In order to derive KPRS from MultiWOZ 2.2 de-
velopment and test set dialogues, we (1) extract
dialogue contexts that precede a system response

that contains a mention of an entity from the KB or
its attributes, and (2) perturb the corresponding sys-
tem response to make it incompatible with the KB
by modifying said entity and attribute mentions.

Different perturbation strategies are used for dif-
ferent types of attribute slots. For phone numbers, a
single digit is randomly changed. For integers (e.g.
denoting the price of a train ticket), we randomly
increment or decrement the numbers by a small
amount. For other slot types, distractor values are
chosen so that they differ from the reference value
while producing inadmissible responses. Distrac-
tors are chosen adversarially, i.e., candidates are
sampled from the KB until the perturbed response
becomes incompatible with the domain-knowledge
and the dialogue context up to the response, while
also achieving a lower sentence-level perplexity
than the reference response according to a filter-
LM (BART-Large). The latter is to ensure the
well-formedness and plausibility of the perturbed
responses. To guarantee that the perturbed response
is indeed unsuitable, we make sure that the selected
distractor does not share attriutes that have been
mentioned in the dialogue context with the replaced
slot value.9

Figure 4 shows examples included in the KPRS
benchmark. Each KPRS sample contains the di-
alogue context that includes reference dialogue
states, and two response options – reference re-
sponse and distractor response. Overall, the
KPRS benchmark dataset includes 3,055 samples
(1,711 single-domain, 1,324 multi-domain). Sam-
ples had been derived from 831 unique dialogues /
1,997 unique dialogue contexts. On average, 3.65
samples were obtained from each individual dia-
logue / 1.52 samples from each individual dialogue
context.

4 Experimental Setup

4.1 Knowledge Base Resource
Throughout our experiments, we use MultiWOZ
2.2 (Zang et al., 2020) which contains several rel-
atively small-scale domain-specific KBs that are
aligned with task-oriented dialogues.10 After fil-

9E.g. if the response originally mentioned the name of a
restaurant that serves Italian food and the dialogue context
up to the response only mentions Italian cuisine as a desired
restaurant property, the distractor is explicitly chosen, using
string-matching heuristics, to be a restaurant that serves some
other type of food, so as not to unintentionally yield a valid
response.

10In practical settings, businesses maintain similar knowl-
edge bases in-house which could be utilized in TOD servicees.
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restaurant hotel attraction train
1,540 594 1,106 39,592

Table 2: Number of facts in each KB.

tering out KBs with missing information, we are
left with four domains: restaurant, hotel, attrac-
tion, and train. Table 2 shows the number of facts
available per domain. Note the substantial gap in
the number of facts where trains is approximately
25X to 66X larger than the other domains.

4.2 Intrinsic Evaluation

To examine whether they can accurately retrieve the
injected KB facts, we task knowledge-augmented
PLMs with reconstructing masked facts, using in-
puts of the same format as described in §2.2. Since
this task measures success as a model’s ability to
memorize and recall learned KB information rather
than generalize it to unseen inputs, we evaluate our
models on the same set of data as was used for
knowledge injection as part of the memorization
stage. Memorization accuracy is employed as the
evaluation metric, representing the number of facts
that have been correctly reconstructed. We refer to
this task as fact memorization task.

4.3 Downstream Evaluation

Additionally, we evaluate our models on the KPRS
probe (§3) as well as the response generation (RG)
task. While KPRS directly estimates models’ pref-
erence for dialogue continuations that are either
consistent or inconsistent with KB information, RG
examines model’s ability to integrate the injected
KB knowledge into the generated response as part
of the TOD pipeline.

For KPRS, we fine-tune BART-large on the
training data for each domain, using correct re-
sponses as targets, and evaluate subsequent model
performance on the KPRS benchmark. An aug-
mented PLM that can accurately access the injected
domain-specific facts is expected to assign a higher
likelihood to the reference response, compared to
the permuted distractor. Response selection accu-
racy is used as the evaluation metric, defined as
(c/N ), where N is the total number of contrastive
sentence pairs and c is the number of pairs in which
the reference response (i.e. the one consistent with
the KB) is assigned lower perplexity by the model.

For RG, given a dialogue context, models must
generate a response that is consistent with KB facts
without performing external KB queries. To test

restaurant hotel attraction train
98.1 98.2 97.6 93.2

Table 3: Fact memorization accuracy for KB-adapters.

the model’s ability for fact retrieval, we use un-
weighted mean of two informative metrics: inform
rate (n/N ) and success rate (m/N ) (Zang et al.,
2020), where N is the total number of turns in the
test set, n is the number of turns in which the enti-
ties generated by the model are all consistent with
the KB, and m is the number of turns in which the
model generation provides at least as much of the
user-requested information as the gold response.11

4.4 Baselines

We compare the performance of the knowledge-
injected model with two baselines: (1) BART-large
without any knowledge augmentation; (2) BART-
large that has been sequentially fine-tuned on each
KB (Seq-BART). We fine-tune all models on the
downstream task prior to the downstream evalua-
tion.

5 Results & Analysis

We examine the models’ ability to memorize and
retrieve facts learned from the knowledge base in
§5.1 and the impact of knowledge injection on
downstream tasks in §5.2 and §5.3. Models were
evaluated in the single-domain setting where only
one single adapter corresponding to the specified
domain was active at evaluation time with test sam-
ples belonging exclusively to the adapter domain
(a multi-domain setting is discussed in §5.5)

5.1 Fact Memorization

As discussed in §4.2, we evaluate whether the
knowledge-augmented model is able to success-
fully denoise masked facts seen during training,
thus testing its memorization capabilities. Table
3 shows the results of the fact memorization task
for BART equipped with KB-adapters. The memo-
rization accuracy is generally very high across all
domains and appears to correlate with KB size.

11BLEU (Papineni et al., 2002), as typically used for text
generation, is not sufficient as an evaluation metric for our
purpose. Previous work evaluated generated responses that
contain slot value placeholders instead of concrete informa-
tion such as entity attributes, as in the case in our study. In
addition, any evaluation of response factuality must consider
all permissible entities given the dialogue context, rather than
only one out of many, as is implicitly done by BLEU.
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Model rest. hotel attr. train all
BART 70.8 72.5 71.3 78.9 76.5
Seq-BART 71.5 72.1 72.7 74.4 75.6
ada-logits 81.5 83.1 81.2 94.3 78.2
ada-hidden 81.3 82.0 80.6 94.0 78.4

Table 4: Response selection accuracy on KPRS. ada-
logits and ada-hidden refer to experiments utilizing KB-
adapters with different fusion mechanisms (either at the
level of logits or pre-logits hidden states).

5.2 Knowledge-Probing using Response
Selection (KPRS)

Table 4 reports the performance of the knowledge-
augmented PLM compared to baselines introduced
in §4.4. We found that injecting domain-specific
knowledge into the PLM significantly improves
KPRS accuracy – by 9-15% – compared to BART.
The largest improvement can be observed in the
train domain, which is at odds with the fact mem-
orization results (§5.1), where our model under-
performed on that domain. As such, while perfect
memorization of a of all facts contained within a
large KBs remains a challenge in the current train-
ing setup, the domain knowledge embedded within
the adapter network can nevertheless be effectively
exploited by the PLM.

5.3 Response Generation (RG)

Presumably, having access to the domain knowl-
edge stored in KB-adapters should enable a PLM
to generate responses that are more consistent with
the respective KBs. Table 5 reports the results for
our RG experiments, providing empirical support
for this hypothesis. Interestingly, a large discrep-
ancy can be observed for the hotel domain between
the two examined representation fusion techniques
(ada-logit that combines PLM and adapter repre-
sentations at the logit level vs. ada-hidden that
combines their pre-logits hidden states). We hy-
pothesise that this is, at least in part, due to the hotel
KB containing a small number of facts, which may
have caused instability during training. Accord-
ingly, although knowledge injection can clearly
benefit generation of factual system responses in
both the single-domain setting, the extent of the
improvements is contingent on the target domain
and its properties, as is the best-performing repre-
sentation combination function.12

12It would be valuable to investigate the general impact of
KBs’ size on the PLMs’ performance. However, this falls
outside the scope of this paper, as such study would require a
greater diversity in the sizes of available KBs.

Model rest. hotel attr. train all
BART 54.7 44.3 50.3 38.2 54.2
ada-logit 46.0 12.6 69.7 55.0 61.4
ada-hidden 53.3 55.9 68.6 48.6 62.3

Table 5: RG performance calculated as the average of
inform rate and success rate metrics. The all column
reports results for the multi-domain setting.

Model rest. hotel attr. train all
BART 12.59 11.53 15 17.71 13.41
ada-logit 12.69 6.5 15.09 19.33 15.98
ada-hidden 10.39 12.64 15.94 17.56 15.33

Table 6: Response generation BLEU score performance.

Table 6 provides estimates of RG quality accord-
ing to BLEU. Overall, we see minor to substantial
improvements with respect to the BLEU metric
over the baseline lacking KB-adapters. This can
be taken as further evidence in support of the ef-
fectiveness of the proposed knowledge injection
methodology. However, it should be noted that the
extent of the observed improvements varies across
domains and representation combination functions.

5.4 Randomly-initialized Adapters
We investigate how equipping PLMs with our pro-
posed KB-adapters compares to equipping them
with randomly-initialized adapters during the fine-
tuning stage (a setting to which we refer as rand-
BART). This effectively isolates the impact of
knowledge injection on the KPRS and RG perfor-
mance, by factoring out the increased model ca-
pacity due to the additional parameters introduced
by the adapters. Table 7 shows the experimen-
tal results for both tasks. We find that injecting
domain-specific knowledge into the PLM does in-
deed significantly improve KPRS performance – by
6-15% – compared with rand-BART, thus further
validating our approach.

5.5 Integration of Multiple Knowledge Bases
The modular nature of of the proposed knowledge-
injection method allows us to equip PLMs with
multiple adapters, with each adapter encoding in-
formation from a different domain. This enables
the augmented PLM to access facts from differ-
ent domains simultaneously, without running the
risk of catastrophic forgetting, whereby informa-
tion from one domain overwrites previously ac-
quired domain-specific knowledge, e.g. as a result
of sequential fine-tuning. Aligned with our mo-
tivation to allow users to easily add and modify
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Model rest. hotel attr. train
KPRS

rand-BART 70.3 76.6 74.4 79.6
ada-logits 81.5 83.1 81.2 94.3
ada-hidden 81.3 82.0 80.6 94.0

RG
rand-BART 0 47.0 66.1 28.2
ada-logit 46.0 12.6 69.7 55.0
ada-hidden 53.3 55.9 68.6 48.6

Table 7: Response selection accuracy on KPRS and the
average of inform and success rate metrics for RG. For
RG in the the restaurant domain, rand-BART failed to
converge given our hyper-parameter settings.

KBs in practical settings, we investigate whether
our proposed system can effectively integrate in-
formation from multiple adapters. We utilize the
same representation combination functions as de-
scribed in §2.1, generalizing them to an unbound
number of adapters by computing normalized fu-
sion weights for each adapter and the PLM itself.
In this multi-domain setting, multiple adapters are
active simultaneously, while test samples are drawn
from all four studied domains.

Tables 4 and 5 report multi-domain results for
KPRS and RG in the multi column. For both tasks,
we observe clear improvements compared to base-
line models when providing the model with ac-
cess to all domain-specific adapters simultaneously.
However, we note that the gap between the adapter-
augmented PLM and the best-performing baseline
is much smaller compared to single-domain experi-
ments where the model only has access to a single,
relevant adapter (1.9% vs. 12.25% on average for
KPRS and 8.1% vs. 11.6% on average for RG).

One reason for the limited improvements ob-
served in the multi-domain setting could be the
PLM’s inability to correctly identify adapters corre-
sponding to the dialogues’ domains and to promote
their representations. The more pronounced gains
observed in the single-domain setting – where the
model does not have to chose between multiple
adapters – appears to support this interpretation.
To verify our hypothesis, we preclude the need
for adapter selection by instead training a single
adapter on the concatenation of facts from all four
domains, which preserves the multi-domain setting.
Evaluating the performance of the resultant model
on KPRS, we observe improvements over the mul-
tiple adapters setting, with ada-logis obtaining an
accuracy of 83.0% and ada-hidden reaching 85.9%,
thus improving over the best-performing baseline

by a substantial 9.4%. This, however, comes at
the expense of increased training time during the
memorization stage and a significant reduction in
flexibility for the addition of new KBs (which will
require costly re-training the single, multi-domain
adapter rather than simply introducing a new single-
domain adapter).

It may be possible to improve the performance
of PLMs equipped with multiple single-domain
adapters by implementing more expressive com-
bination representation functions or by adjusting
the training regime. We regard as a promising re-
search direction that could more effectively extend
the flexibility of adapter-based knowledge injection
to more complex dialogue settings.

6 Related Work

6.1 Knowledge Injection

Our work contributes to the growing body of re-
search that explores strategies for introducing exter-
nal knowledge into the internal reasoning processes
of PLMs, with the aim of aligning their predic-
tions with respective knowledge sources (Colon-
Hernandez et al., 2021). Previous work in this
area incorporated linguistic (Lauscher et al., 2019;
Wang et al., 2020), factual (Wang et al., 2020;
Agarwal et al., 2020), and commonsense (Lauscher
et al., 2020) knowledge into pretrained models,
with studies differing in the exact format of the
injected knowledge and potential modifications to
the PLMs’ architecture. Nevertheless, injection of
highly specific, fine-grained, tabular information
commonly associated with TOD (as exemplified
by MultiWOZ 2.2 KBs) has so far received limited
attention, both within dialogue literature and be-
yond. The use of natural language statements as the
primary mechanism for injecting external informa-
tion into PLMs has been previously considered in
works such as (Lu et al., 2021), who trained a gen-
erative model to transform knowledge triplets into
declarative statements. We rely on template-based
generation, instead, to account for the relatively
small size of our KBs, the highly structured nature
of KB entries, and the lack of natural language
sequences that can be trivially aligned with KB
contents.

6.2 Knowledge-Grounded Dialogue

Of particular relevance to our work is the study by
(Madotto et al., 2020) who fine-tune all parameters
of a PLM on synthetic dialogues constructed so as
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to communicate all information contained within
a TOD KB. The limitations of their approach, as
noted by its authors, are that the synthetic dialogues
are noisy and any subsequent updates to the in-
jected KB information require finetuning the entire
model anew which is computationally demanding.
We address both issues by relying on grammati-
cally sound templates during knowledge injection
and by leveraging light-weight adapters that can be
updated for a small fraction of cost incurred by up-
dating the full PLM. The Adapter-Bot introduced in
(Lin et al., 2021) is likewise related to our models
in that it employs adapters in the context of TOD.
However, rather than training adapters to memorize
KB content that can be exploited by the dialogue
model without additional supervision, the authors
rely on knowledge-aligned dialogues to introduce
domain-specific information into their model which
may not always be available. More recently, (Fan
et al., 2021) proposed equipping transformer mod-
els with specialized modules that fetch embedded
information from external resources, integrating
it into the model’s reasoning process. While the
authors apply their model to dialogue generation,
their work differs substantially from ours, as they
do not consider the task-oriented setting or struc-
tured KBs (instead using training set utterances and
Wikipedia excerpts). However, combining knowl-
edge memorization and differential information re-
trieval is a promising direction for future research.

Moreover, external knowledge has found applica-
tion in dialogue literature outside of directly guid-
ing response generation. For instance, (Lertvit-
tayakumjorn et al., 2021) annotated dialogue data
with constraint violations based on valid links be-
tween entities as specified in the corresponding
KBs. Similar to KPRS, detection of constraint
violations can be regarded as a probing task that
provides insights about the ability of a dialogue
model to reason about KB entities.

7 Limitations

One of the main limitations of the presented ap-
proach is its reliance on manually constructed
fact templates. We experimented with fine-tuning
KG-adapters directly on < ent1, rel, ent2 > KB
triples, but found that the use of templates improves
the ability of models to apply the memorized knowl-
edge in downstream applications. In light of this,
possible future extensions of our work may include
creation of domain-agnostic strategies for knowl-

edge injection that do not necessitate manual design
of templates for each new domain.

Another limitation comes from the fact that the
proposed approach is suitable only for static and
pseudo-dynamic KBs , i.e. that can change periodi-
cally, such as a seasonal menu or a database of cars
manufactured by a company. However, it is not
suited for real-time databases (e.g. databases that
store the availability of rooms in a hotel) since for
every KB change the corresponding adapter needs
to be retrained in order to be updated.

Additionally, while injecting knowledge into the
language model has been shown to be effective for
making it available during fine-tuning on down-
stream tasks, the knowledge stored in the adapters’
parameters might not be accurate enough for cer-
tain real world applications due to the imperfect
fact memorization we observed in our experiments.

Finally, the introduced KPRS task only evalu-
ates the extent to which a model can access factual
information stored in its parameters. It does not
not assess the model’s ability to understand and
use this knowledge for complex reasoning tasks,
e.g. counting the number of cars in a specific price
range, or listing the items on a menu that do not
contain a certain ingredient. This could be an ex-
citing direction for future research.

8 Discussion and Conclusion
In this study, we proposed a method for tightly in-
tegrating external knowledge with the internal rep-
resentations of PLMs by storing domain-specific
information within light-weight adapter networks
that guide model predictions. Such adapters can
memorize KB contents with high accuracy, which
decreases slightly for larger KBs. An important
contribution of our work is the KPRS probe de-
signed to measure the ability of TOD models to rea-
son about KB entities and their attributes. As part
of our experiments, we showed that KB-adapters
clearly benefit the identification and generation of
TOD responses that are consistent with dialogue
history and relevant KB entries, and showcased
the advantages of using adapters for knowledge
injection as opposed to sequential fine-tuning.

Our investigation demonstrates that dialogue
models can access domain-specific knowledge
without having to query external KBs. This is an
important finding as it can pave the way towards
reducing the query engineering overhead in chatbot
design, thus lowering the entry barrier for develop-
ing and deploying real-world TOD systems.
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A Atomic vs. Compositional Fact
Formats

While developing the memorization stage of the
knowledge injection process, we compared the rela-
tive utility of representing KB facts as either atomic
or compositional statements, as measured by the
memorization accuracy attained by the adapter-
augmented PLM. The results of this pilot exper-
iment are summarized in Table 8, which paints a
mixed picture. While atomic statements result in
stronger memorization for the restaurant, hotel,
and attraction domains, compositional statements
are substantially more effective in the trains do-
main. We therefore decided to combine both for-
mats for our main set of experiments, as the resul-
tant mixture shows reasonable performance across
all domains. Furthermore, exposing the model to
different surface forms of the same underlying in-
formation is expected to enable better generaliza-
tion for downstream tasks.

Model rest hotel attract train
atomic 98.2 99.3 96.7 88.7

composite 95.8 97.6 93.7 97.0
both 98.1 98.2 97.6 93.2

Table 8: Memorization accuracy when training adapters
on different formats of declarative statements. both
denotes the combination of atomic and compositional
statements. Scores set in bold are the highest in their
respective column.

B Ethical Considerations

Injection of external knowledge into dialogue mod-
els may have both ethical and legal implication, if
said knowledge contains personal identifiable in-
formation (PII), such as social security numbers of
addresses of private individuals. Such information
would be memorized by the adapter-augmented
model and potentially exposed during response
generation, if there are no additional safeguards
in place to prevent this scenario. For this reason,
it is crucial to curate the memorized KBs by re-
moving any and all instances of PII prior to the
memorization stage.

C Hyper-parameters

All models were trained on V100 GPUs, using the
PyTorch implementation of the BART-Large model
distributed as part of the HuggingFace Transform-
ers library (Wolf et al., 2019). The training loop em-

ployed the AdamW (Loshchilov and Hutter, 2017)
optimizer. By conducting a grid search, we empiri-
cally determined that a learning rate (LR) of 3e−5

worked best for fine-tuning RG models and LR of
1e−6 yielded best results for KPRS. For knowledge
injection, LR of 3e−5 was found to be effective.
In all cases, LRs were kept constant across all do-
mains. For all domains and experiments, we re-use
the same bottleneck adapter configuration, by set-
ting the size of the hidden layer to 769. All models
were trained until convergence by terminating train-
ing after 10 epochs during which no improvement
had been observed on the development set.

D Fact Templates

This section provides a complete, exhaustive list of
all templates used in the generation of declarative
statements derived from the MultiWOZ 2.2 KB
facts.
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Domain Fact Type Templates

restaurant

address The restaurant {} is located at {}.
area The restaurant {} is located in the {} area of the city.’
food The restaurant {} serves {} food.
phone The phone number of the restaurant {} is {}.
postcode The postcode of the restaurant {} is {}.
pricerange The restaurant {} is in the {} price range.
type {} is a {}.

hotel

address The hotel {} is located at {}.
area The hotel {} is located in the {} area of the city.
internet The hotel {} does{}have free internet.
parking The hotel {} does{}have free parking.
phone The phone number of the hotel {} is {}.
pricerange The hotel {} is in the {} price range.
stars The hotel {} is rated as {} stars.
type The hotel {} is a {}.

attraction

address The attraction {} is located at {}.
area The attraction {} is located in the {} area of the city.
entrance fee The entrance fee for the attraction {} is {}.
phone The phone number of the attraction {} is {}.
postcode The postcode of the attraction {} is {}.
pricerange The attraction {} is in the {} price range.
type The attraction {} is {}.

train

arriveBy The {} train arrives at its destination by {}.
day The {} train operates every {}.
departure The {} train departs from {}.
destination The destination of the {} train is {}.
duration The duration of the journey with the {} train is {}.
leaveAt The {} train leaves at {}.
price The ticket price for the {} train is {}.

Table 9: An exhaustive list of human-authored templates used to generate atomic statements for use in the
memorization stage. Note that each domain is allocated exactly one template per entity attribute. Also note that the
mask in does{}have allows for negation in cases where the attribute is negative (e.g. if a hotel does not have free
WiFi).

Domain Templates

restaurant {} is a {} that serves {} food in the {} price range. It is located at
{}, in the {} area of the city, in the {} postcode. Its phone number is {}.

hotel The hotel {} is a {} in the {} price range. It is rated {} stars. It is located at {}, in the {} area of the city, in the
{} postcode. Its phone number is {}. It does{}have free parking and it does{}have free internet.

attraction The attraction {} is {} in the {} price range. The entrance fee is
{}. It is located at {}, in the {} area of the city, in the {} postcode. Its phone number is {}.

train The {} train departs from {} every {}. It leaves at {}. Its destination is {} where it arrives at
{}. The duration of the journey is {}. The ticket price for this train is {}.

Table 10: An exhaustive list of human-authored templates used to generate composite statements for use in the
memorization stage.
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