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Abstract

Prompt tuning learns soft prompts to condi-
tion the frozen Pre-trained Language Models
(PLMs) for performing downstream tasks in
a parameter-efficient manner. While prompt
tuning has gradually reached the performance
level of fine-tuning as the model scale increases,
there is still a large performance gap between
prompt tuning and fine-tuning for models of
moderate and small scales (typically less than
11B parameters). In this paper, we empirically
show that the trained prompt tokens can have
a negative impact on a downstream task and
thus degrade its performance. To bridge the
gap, we propose a novel PROMPT tuning model
with an eXtremely small scale (XPROMPT) un-
der the regime of lottery tickets hypothesis.
Specifically, XPROMPT eliminates the negative
prompt tokens at different granularity levels
through a hierarchical structured pruning, yield-
ing a more parameter-efficient prompt yet with
a competitive performance. Comprehensive ex-
periments are carried out on the SuperGLUE
tasks, and the results indicate that XPROMPT
is able to close the performance gap at smaller
model scales. 1

1 Introduction

Pre-trained Language Models (PLMs) have been
widely applied and achieved a remarkable suc-
cess in various NLP tasks (Devlin et al., 2019;
Raffel et al., 2020; Zhou et al., 2020) under the
pretrain-then-finetune paradigm (Liu et al., 2019).
Despite of its compelling performance, fine-tuning
is parameter-inefficient for large scale PLMs due to
the fact that the memory footprint is proportional
to the number of trainable parameters whose gra-
dients and optimizer states need to be stored (Guo
et al., 2021).

Dawei Song and Jingang Wang are the corresponding
authors.

1The code is available at https://github.com/BD-MF/
XPrompt.
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Figure 1: XPROMPT outperforms the vanilla Prompt-
Tuning (Lester et al., 2021) and can significantly im-
prove over Prompt-Tuning across tasks and model
scales. It is worth noting that there is a small perfor-
mance gap between prompt tuning and fine-tuning on
T5-XXL (11B) due to different hyperparameter settings
and initialization. Similar observations have been found
in Figure3-a and Figure3-b of Lester et al. (2021).

Recently, Prompt-Tuning (Lester et al., 2021;
Liu et al., 2021b) has been proposed to address
this issue by prepending a soft prompt to the in-
put and only updating the parameters of prompt
tokens during tuning. Prompt-Tuning provides a
parameter-efficient alternative to fine-tuning, since
the scale of the soft prompt is tens of thousand
smaller. It is also conceptually simpler and more
flexible than other parameter-efficient tuning meth-
ods (such as Adapters), that require intrusive mod-
ifications to transformer layers (Houlsby et al.,
2019; Guo et al., 2021). Using fewer tunable pa-
rameters, prompt tuning achieves competitive per-
formance to fine-tuning with the increase of the
model scale. However, there is still a large perfor-
mance gap between prompt tuning and fine-tuning
for models of smaller scales (as shown in Figure 1).

This paper aims to fill the gap, from the perspec-
tive of the lottery tickets hypothesis (LTH) (Frankle
and Carbin, 2019). We are motivated by an obser-
vation that, on a specific task, not all prompt tokens
contribute equally to the task performance, while
certain prompt tokens may even bring a negative
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Figure 2: The performance comparison of Prompt-
Tuning, Negative Prompt Masking and Random Prompt
Masking with T5-XL(3B) on three SuperGLUE tasks.
Prompt-Turning uses all prompt tokens. Negative
Prompt Masking masks selected (negative) prompt to-
kens with low importance scores. Random Prompt
Masking randomly masks the same number of tokens
as in Negative Prompt Masking.

impact. Figure 2 provides a preliminary result of
this observation. These negative prompt tokens
can be circumvented under the regime of LTH. Es-
sentially, LTH states that an over-parameterized
network contains a sub-network that, when initial-
ized and trained in isolation, can match or exceed
the test accuracy of the original network after train-
ing for at most the same number of iterations. The
sub-network is called lottery ticket, and the collec-
tion of the tickets is referred to as winning tickets
in PLMs (Liang et al., 2021). In the problem of
prompt-tuning, we refer the winning tickets to as
the collection of positive prompt tokens that can
achieve the same performance as using the entire
collection of prompts, while the losing tickets as
the collection of negative prompt tokens.

Therefore, the key is to identify the winning
tickets and eliminate the losing ones, in the col-
lection of trained prompt tokens. In particular, we
propose to eliminate the losing tickets through a hi-
erarchical structured pruning, which first removes
negative tokens at the token-level and then prunes
the remaining ones at a finer granularity level, i.e.,
the piece-level, for a better trade-off between effec-
tiveness and efficiency. In line with LTH, weight
rewinding (Renda et al., 2020) is adopted to re-
train the identified positive soft prompts. With
the elimination of negative prompt tokens, a more
parameter-efficient PROMPT of an eXtremely small
scale (XPROMPT) is obtained.

To verify the effectiveness of XPROMPT, we
conduct an extensive set of experiments on Super-
GLUE (Wang et al., 2019) in both high-resource
and low-resource scenarios. As shown in Figure 1
and Table 1, the results demonstrate that XPROMPT

significantly improves the prompt-tuning methods
across tasks and model scales. For models of mod-
erate scales, XPROMPT closes the gap and achieves
a performance comparable to fine-tuning. For mod-
els of large scales, XPROMPT also leads to large
performance gains over Prompt-Tuning, and even
exceeds fine-tuning for most tasks.

2 Related Work

2.1 Pre-trained Language Models

Pre-trained Language Models (PLMs) have
achieved remarkable success in various NLP tasks
(Zhou et al., 2020; Raffel et al., 2020; Brown et al.,
2020). BERT (Devlin et al., 2019) and RoBERTa
(Liu et al., 2019) are two pioneers that learn contex-
tual representations with masked language model
(MLM) and next sentence prediction pre-training
tasks. Recently, a series of large scale PLMs have
emerged with different pre-training designs, such
as GPT-2 (Radford et al., 2019), GPT-3 (Brown
et al., 2020), ELECTRA (Clark et al., 2020), XL-
Net (Yang et al., 2019), BART (Lewis et al., 2020)
and T5 (Raffel et al., 2020). However, with the ex-
ploding number of parameters, fine-tuning models
become parameter-inefficient and computationally
expensive due to the maintenance of all parame-
ters in the PLMs. Moreover, one has to fine-tune
different models for different tasks and store them
separately, which is resource-intensive.

2.2 Prompt Learning in NLP

With the development of GPT-3 (Brown et al.,
2020), prompt learning has drawn much attention
in the NLP community (Liu et al., 2021a; Ding
et al., 2022; Zhang et al., 2022), which enables effi-
cient learning by adding a number of prompt tokens
to the input. Prompt learning has been proven to
be effective in various downstream tasks (Davison
et al., 2019; Gong and Eldardiry, 2021; Radford
et al., 2019; Wang et al., 2021; Khashabi et al.,
2020). Recently, prompt has been extended from
discrete tokens (tokens in the vocabularies) to con-
tinuous tokens (trainable embeddings), i.e., soft
prompt (Li and Liang, 2021; Zhong et al., 2021;
Qin and Eisner, 2021). For example, (Lester et al.,
2021) proposes a parameter-efficient prompt tun-
ing approach by only tuning soft prompts and fix-
ing the entire parameters in PLM. Prompt tuning
achieves great success and shows that it can reach
the performance of fine-tuning with large PLM.
However, there is still a large performance gap
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Figure 3: The illustration of our proposed XPROMPT approach. XPROMPT consists of three stages, namely
Prompt-Tuning, Hierarchical Structured Pruning and Rewinding. Among all the stages, the parameters of T5 are
frozen - only the parameters of the prompts are tuned. The prompts trained in the previous stage are fed into the next
stage as the initialization prompts. The change of color represents the process that the parameters of the prompts are
tuned or pruned.

between prompt tuning and fine-tuning for mod-
els of moderate scales. More recently, (Vu et al.,
2021) proposes a prompt-based transfer learning
approach, SPOT, to improve the performance of
prompt tuning, which learns a prompt on source
tasks and then applied to initialize the target task’s
prompt. Most recently, (He et al., 2022) proposes
HyperPrompt which uses the hypernetworks to gen-
erate hyper-prompts and obtains superior perfor-
mance. However, it needs to tune all parameters
and shows that only tuning task-conditioned param-
eters is not enough to achieve competitive results
as full model fine-tuning for multi-task learning.

2.3 Lottery Ticket Hypothesis

The lottery ticket hypothesis (Frankle and Carbin,
2019) finds that an over-parameterized network
contains a subnetwork that is initialized such that
- when trained in isolation - it can match the test
accuracy of the original network after training for
at most the same number of iterations. The subnet-
work is called lottery ticket. In NLP, the collection
of lottery tickets is referred to as winning tickets
in highly over-parametrized models, e.g., PLMs
(Liang et al., 2021; Yang et al., 2022b,a). Such
winning tickets have demonstrated their abilities
to transfer across tasks and datasets (Morcos et al.,
2019; Yu et al., 2020; Desai et al., 2019). Recently,
Chen et al. (2021) has shown the existence of the
winning tickets in PLMs. Liang et al. (2021) ob-
serves that the generalization performance of the
winning tickets can even exceed that of the full
model.

3 Preliminary

Built upon the text-to-text approach of T5 (Raffel
et al., 2020), prompt tuning formulates all tasks

as text generation by prepending additional l tun-
able soft prompt tokens to the input and only up-
dating the parameters of the inserted soft prompt
tokens. Specifically, given a series of n input to-
kens X = {x1, x2, ..., xn}, T5 first generates the
token embeddings Xe ∈ Rn×e, where e is the di-
mension of the embedding space. It also generates
soft prompt embeddings Pe = {p1, p2, ..., pm} ∈
Rm×e, where m is the length of the soft prompt.
Then the soft prompts are prepended to the input
sequence as [Pe;Xe] ∈ R(m+n)×e. The goal of
prompt tuning is to maximize the likelihood of the
labels Y by only optimizing over Pe:

argmax
Pe

log p(Y |[Pe;Xe]) (1)

Prompt tuning becomes more effective as the
model scale increases. However, there is still a
significant performance gap between prompt tun-
ing and fine-tuning especially for models of small
and moderate scales. Our hypothesis is that not all
soft prompt tokens contribute equally to the per-
formance after training on the target task. There
exist certain soft prompt tokens that may have neg-
ative impacts on the task. Therefore, combining
the idea of the lottery ticket hypothesis, we propose
XPROMPT with hierarchical structured pruning to
identify the optimal soft prompts and bridge the
performance gap.

4 XPROMPT

The overall process of XPROMPT is illustrated
in Figure 3, which consists of three main stages:
Prompt-Tuning, Hierarchical Structured Pruning
and Rewinding. Specifically, the prompt tuning
learns an initial set of values for all soft prompt
tokens on the target task. During the hierarchi-
cal structured pruning, token-level and piece-level
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Figure 4: The illustration of Hierarchical Structured
Pruning. Among them, the shade of the color indicates
the level of the importance score, and the darker the
color, the higher the importance score of the correspond-
ing structure (token or piece).

pruning processes are repeatedly conducted to iden-
tify the optimal soft tokens and pieces at different
compression ratios. Finally, a weight rewinding
technique is applied to re-train the soft prompts.

4.1 Prompt Tuning

Prompt tuning approaches prepend a number of
soft prompt tokens to the input, and only tune soft
prompts by fixing the entire parameters in PLM.
Prompt tuning has been proven to be effective in
various downstream tasks. In our prompt tuning
stage, following previous work (Liang et al., 2021),
we conduct a complete tuning on the target task
to obtain the embeddings for all the soft prompt
tokens. These trained soft prompts are used as
initialization in the hierarchical structured pruning.

4.2 Hierarchical Structured Pruning

Hierarchical structured pruning is designed to sep-
arate negative prompt tokens from the trained
prompt tokens, and identify an optimal set of soft
prompts. The approach is illustrated in Figure 4.
The token-level pruning is first used to identify
negative prompt tokens, however, the rest prompt
tokens may still contain negative pieces. Thus, the
piece-level pruning is then applied to identify more
fine-grained negative prompt pieces within each
prompt token. Token-level and piece-level pruning
together play a better trade-off between effective-
ness and efficiency.

4.2.1 Token-level Pruning

To identify negative prompt tokens in the trained
prompt tokens, we associate mask variable γi to
each soft prompt token vector pi:

P̂e = γ · Pe (2)

where γ = {γ1, γ2, ..., γm}, γi ∈ {0, 1}, and a 0
value indicates that the corresponding soft prompt
token is pruned.

We then calculate the importance score (Michel
et al., 2019) of each token to distinguish the nega-
tive prompt tokens from the other ones. The impor-
tance score is defined as the expected sensitivity of
the model outputs to the mask variables. Formally,
the importance score Ipi of each soft prompt token
pi is calculated as:

Ipi = Ex∼Dx | ∂L(x)
∂γi

| (3)

where L is the loss function and Dx is the training
data distribution.

Essentially, the importance score of each soft
prompt token indicates its individual contribution
to the model performance. A low importance score
means that the corresponding soft prompt token has
a small or even negative contribution to the model.
In other words, such a soft prompt token contains
negligible prompt information for generating the
outputs. On the contrary, a large importance score
implies a major contribution with more meaningful
prompt information. Therefore, the prompt tokens
with low importance scores are most likely negative
prompt tokens, which are pruned during the token-
level pruning stage.

4.2.2 Piece-level Pruning
Token-level pruning finds the most important soft
prompt tokens. However, it may not be sufficient as
there are still fine-grained negative prompt pieces
remaining in the embedding of each soft prompt
token. Different pieces of the embedding may lead
to different effects on downstream tasks. Therefore,
we further conduct piece-level pruning to eliminate
the negative prompt pieces within each token. In
particular, we divide the embedding vector of each
soft prompt token pie into k pieces with equal scale,
qe = {q1e, q2e, ..., qke}, and treat each piece as
an independent unit that can be optimized with
gradient updates. Mask variable ζi is associated
with each piece in the soft prompt token to identify
the negative prompt pieces:

q̂e = ζ · qe (4)

where ζ = {ζ1, ζ2, ..., ζk}, ζi ∈ {0, 1}, and 0 value
indicates that the corresponding piece is pruned.

We then calculate the importance score Iqi of
each piece for every prompt token embedding to
prune the low-importance pieces:

Iqi = Ex∼Dx | ∂L(x)
∂ζi

| (5)
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Similar to the token-level importance score, a
low piece-level importance score indicates that
the piece has a small or even negative contribu-
tion towards the model performance. Such low-
importance pieces contain limited information for
generating the outputs. We repeatedly conduct both
token-level and piece-level pruning to obtain the
sub-prompt tokens and pieces at different compres-
sion ratios.

4.3 Rewinding
The lottery ticket hypothesis (LTH) (Frankle and
Carbin, 2019) states that sparse subnetworks (the
unpruned prompts) can be trained in isolation to
the same accuracy as the original network (all
prompts), and proposes training to pruning and
then rewinding the unpruned weights. Following
the idea in LTH, we adopt the weight rewinding
technique (Renda et al., 2020) to re-train the soft
prompts after the two-level hierarchical structured
pruning. Specifically, we reset the parameters of
the selected optimal soft prompts using their val-
ues after the prompt tuning stage. The other soft
prompts are pruned by setting the corresponding
mask variables to 0. Finally, we re-train the soft
prompts using the original learning strategies in
prompt tuning.

5 Experiments

5.1 Datasets
To cover broad and diverse NLP tasks in our exper-
iments, we evaluate our method on various datasets
of SuperGLUE benchmark (Wang et al., 2019)
in both high-resource and low-resource scenarios.
Due to restricted test access for SuperGLUE, fol-
lowing previous works (Lester et al., 2021; Ding
et al., 2021), we tune the prompt model on the train-
ing set for a fixed number of steps and report results
on the validation set using the best checkpoint. The
detailed description, statistics and metrics of Super-
GLUE tasks are provided in Table 9 of Appendix
E. The soft prompt templates and generation ver-
balizers are provided in Table 10 of Appendix E.

5.2 Baselines
Fine-Tuning We compare with the standard fine-
tuning approach (Raffel et al., 2020; Aribandi et al.,
2021) of T5, where all the pre-trained parameters
are fine-tuned on each target task separately.

Prompt-Tuning The vanilla prompt tuning ap-
proach of (Lester et al., 2021) showed that prompt

tuning is a competitive technique for adapting
frozen PLMs to downstream tasks.

P-Tuning (Liu et al., 2021c) is a prompt-based
method that uses the masked PLM to convert the
target task into a cloze problem. It employs soft-
prompting techniques to optimize prompts in the
continuous space. We also compare with its second
version P-TuningV2 (Liu et al., 2021b).

Prefix-Tuning (Li and Liang, 2021) is a
lightweight alternative to fine-tuning for natural
language generation tasks, which only optimizes a
small continuous task-specific vector (called pre-
fix). Prefix-Tuning prepends the prefix to inputs of
every transformer layer independently.

5.3 Implementation

Our method is implemented with the OpenPrompt
library (Ding et al., 2021), which is a unified and
extensible toolkit for prompt learning. We translate
each SuperGLUE dataset into a text-to-text format
following (Raffel et al., 2020), except that we omit
the task names prepend to inputs indicating which
SuperGLUE task an example belongs to.

Our XPROMPT is built on top of the pre-trained
T5 checkpoints of three scales: Large, XL, XXL with
770M, 3B and 11B parameters, respectively. Fol-
lowing previous studies (Lester et al., 2021; Ding
et al., 2021), we train our prompts for 100 epochs
with a constant learning rate of 0.3 and a batch
size of 16. (Lester et al., 2021) shows that an
increase beyond 20 tokens only yields marginal
gains, so throughout our experiments, we set the
default number of prompt tokens to 20 to control
the number of trainable parameters and use sam-
pled vocabulary to initialize the prompt parame-
ters. The number of pieces in each token is set to
16. The pruning frequencies are linearly searched
from {10%, 20%, 30%, 40%, 50%, 60%, 70%,
80%, 90%}. The weight rewinding is applied only
once to re-train the pruned soft prompts. The best
checkpoints are selected via early stopping on the
development set. The models are trained using
the Adafactor (Shazeer and Stern, 2018) optimizer
with weight decay 1e-5.

6 Results

6.1 Results on High-resource Scenarios

XPROMPT significantly improves the perfor-
mance of prompt tuning and helps close the
gap with fine-tuning across all model scales.
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Model WiC WSC CB COPA RTE Boolq MultiRC Average
Acc Acc Acc Acc Acc Acc F1a Score

T5-
Large
770M

Fine-Tuning∗ 73.50 88.50 94.30 72.0 90.60 88.30 85.40 84.65
P-Tuning 70.37 64.42 92.85 76.0 79.78 83.02 79.96 78.06

Prefix-Tuning 62.50 64.46 78.78 - 55.70 65.17 60.19 64.46
Prompt-Tuning 72.25 68.26 82.14 76.0 85.19 83.02 79.86 78.10

XPROMPT 73.51↑1.26 70.39↑2.13 91.07↑8.93 82.0↑6.0 87.72↑2.53 83.82↑0.8 81.02↑1.16 81.36↑3.26

T5-XL
3B

Fine-Tuning∗ 74.30 95.20 92.00 96.0 91.70 89.60 88.20 89.57
P-Tuning 72.54 81.73 91.07 73.0 89.53 84.54 85.45 82.55

Prompt-Tuning 74.29 86.53 91.07 91.0 89.16 87.58 84.89 86.36
XPROMPT 76.95↑2.66 91.34↑4.84 92.85↑1.78 95.0↑4.0 92.79↑3.63 89.00↑1.42 87.34↑2.45 89.32↑2.96

T5-XXL
11B

Fine-Tuning∗ 78.50 95.20 100.00 99.0 92.10 90.40 88.60 91.97
P-Tuning 76.80 94.23 92.85 93.0 89.80 86.98 87.56 88.75

Prompt-Tuning 76.10 96.15 96.42 98.0 91.69 89.08 87.90 90.76
XPROMPT 77.69↑1.59 97.11↑0.96 100.00↑3.58 99.0↑1.0 94.94↑3.25 90.87↑1.79 88.90↑1.0 92.64↑1.88

Table 1: Main experimental results (%) on seven SuperGLUE tasks. Our method and better results are in bold (the
larger, the better). The small number next to each score indicates performance improvement (↑) compared with the
vanilla Prompt-Tuning. Methods with ‘∗’ indicate the results reported in Aribandi et al. (2021). We only present
the results of Prefix-Tuning on T5-Large, since it can diverge with larger models (Ding et al., 2022). The ‘-’ results
in Prefix-Tuning indicate diverged results in the corresponding task.

Table 1 and Table 8 (in the appendix) present
the main results on SuperGLUE. We compare
XPROMPT with strong prompt learning baselines,
including Prompt-Tuning, Prefix-Tuning, P-Tuning
and P-TuningV2 for different PLMs and model
scales. It can be seen that XPROMPT outper-
forms vanilla Prompt-Tuning by a large margin
across all tasks and model scales. For instance,
XPROMPT yields an improvement of 3.26 %, 2.96
%, and 1.88 % in terms of average score on T5-
Large, T5-XL, and T5-XXL, respectively. We also
observe that the performance of Prompt-Tuning
and P-Tuning are comparable at the same model
scale. Moreover, P-TuningV2 outperforms Prompt-
Tuning and P-Tuning on CB, RTE, and Boolq.
However, XPROMPT achieves more predominant
performances than P-TuningV2 at similar model
scales, demonstrating its effectiveness. It is worth
noting that Prefix-Tuning is less performable on
most NLU tasks, since it is designed for natural
language generation (NLG) tasks.

It is clear from Table 1 that XPROMPT enables
prompt tuning to match the fine-tuning perfor-
mance on all tasks with T5-XL, and even exceeds
fine-tuning performance on most tasks at the T5-
XXL scale. For example, XPROMPT achieves the
best average score of 89.32% with T5-XL, leaving
only 0.25% gap to fine-tuning. It is worth men-
tioning that XPROMPT significantly outperforms
fine-tuning on WiC, CB and RTE with T5-XL,
as well as COPA and WiC with T5-Large. Es-
pecially for T5-XXL, XPROMPT achieves the best
score of 97.11%, 100.00%, 94.94%, 90.87% and

Model Boolq WiC RTE
P-Tuning 64.99 54.23 57.40

GPT-3 XL1.3B‡ 64.10 53.00 50.90
GPT-3 2.7B‡ 70.30 51.60 56.30

PromptTuning 69.81 60.81 66.08
XPROMPT 70.23 62.85 67.87

Table 2: The few-shot (32 samples) results (Acc, %) on
three SuperGLUE tasks for the T5-XL model with 20
soft prompt tokens. Methods with ‘‡’ indicate results
reported in Schick and Schütze (2021). XPROMPT is
better than vanilla Prompt-Tuning and P-Tuning in low
resource scenarios.

88.90% on WSC, CB, RTE, Boolq, MultiRC re-
spectively, leading to +1.91%, +0.0%, +2.84%,
+0.47%, +0.30% improvements over fine-tuning.
We also observe that there are certain gaps between
prompt tuning and fine-tuning, especially for small
and moderate scale models (see Figure 1). How-
ever, our XPROMPT narrows down the gap signifi-
cantly across all model scales, demonstrating that it
learns efficient and informative soft prompts which
empower downstream tasks effectively.

6.2 Results on Low-resource Scenarios

XPROMPT performs much better in low re-
source scenarios. Since prompt learning is sur-
prisingly effective in low-resource regime (Schick
and Schütze, 2021), we also explore the effect of
XPROMPT in low-resource scenarios. Following
the setting used in (Schick and Schütze, 2021), we
randomly select 32 examples as the new training
set for each task using a fixed random seed. We
tune the prompt model on the 32-shot training set
and directly report the full dev set results using the
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best checkpoint.
As demonstrated in Table 2, our XPROMPT

further improves the performance of prompt tun-
ing and outperforms the baseline models at the
same scale on Boolq, WiC, and RTE. For example,
XPROMPT achieves the best score of 62.85% on
WiC, +2.04% improvement over Prompt-Tuning.
These few-shot results suggest that although overfit-
ting is severe especially when training with limited
data, XPROMPT consistently lifts the performance
of prompt tuning.

7 Analysis and Discussion

To better understand the effectiveness of the
XPROMPT and explore the impact of various fac-
tors in XPROMPT, we further conduct a series of
ablation studies and analysis.

7.1 Do Positive Prompts and Negative
Prompts Exist?

We identify both positive and negative prompts
through hierarchical structured pruning. For
positive prompts, the first evidence is the large per-
formance improvement of XPROMPT over vanilla
prompt tuning across all tasks and model scales,
which shows the effectiveness of these positive
prompts. Another evidence is the high sparsities
of pruning. Figure 9 and Figure 10 in Appendix D
show the original and pruned gradient saliency
maps (Simonyan et al., 2014) of the importance
scores on WSC task, i.e., the gray elements in Fig-
ure 10 indicate that the prompt tokens or pieces
are pruned due to low importance scores, and the
remaining parts are the winning tickets. The per-
formance of XPROMPT with 15% positive sub-
prompts is 4.8% higher than the full prompt tuning.

The negative prompts perform worse than
Prompt Tuning and XPROMPT. To further inves-
tigate the existence and effect of negative prompts,
we conduct another experiment to compare prompt
tuning performances with different configurations.
Specifically, in addition to the vanilla Prompt-
Tuning (using all prompts) and our XPROMPT, we
introduce three variations - Reversed XPROMPT,
Random Prompt and Length Prompt. The Reversed
XPROMPT reverses the masked sub-prompt struc-
tures in XPROMPT, which essentially uses all the
low score prompt tokens and pieces. For Random
Prompt, we mask tokens and pieces randomly at the
rewind stage. The Length Prompt retrains prompt
tuning with the same prompt length of the result-
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Figure 5: The performance of Prompt-Tuning,
XPROMPT, Reversed XPROMPT, Random Prompts and
Length Prompt comparison with T5-XL model on three
tasks. Among them, Reversed XPROMPT denotes the
masked sub-prompt, Random Prompt denotes the ran-
domly masked sub-prompt, and Length Prompt denotes
the reserved prompt whose prompt length is the same
as XPROMPT.

ing XPROMPT. The comparison results are shown
in Figure 5. It can be seen that our XPROMPT

achieves the best performance among them. We
also observe that the Reversed XPROMPT performs
significantly worse than all other prompt tuning
variants, including Random Prompt and Length
Prompt. This observation is consistent with our ex-
pectation and further validates the existence of the
negative prompts. It is worth noting that the Length
Prompt performs worse than Random Prompt and
Prompt Tuning on average, indicating the effective-
ness of our hierarchical structured pruning. The
distribution of the importance scores of the prompt
tokens is shown in Figure 6 in the appendix.

Model WiC WSC CB COPA RTE Boolq MultiRC
Fine-Tuning 3× 109 3× 109 3× 109 3× 109 3× 109 3× 109 3× 109

Prompt-Tuning 40960 40960 40960 40960 40960 40960 40960
XPROMPT 2560 6144 2560 15232 512 29184 27648
Percentage 6.25% 15% 6.25% 37.18% 1.25% 71.25% 67.5%

Table 3: The number of tunable parameters compar-
ison for T5-XL model with 20 prompt tokens. The
percentage means the number of tunable parameters in
XPROMPT compared to Prompt-Tuning.

7.2 Parameter Efficiency

XPROMPT is more parameter-efficient than
Prompt-Tuning. The number of tunable param-
eters comparison is shown in Table 3. Clearly,
Prompt-Tuning is already parameter-efficient,
which only needs to tune 0.0014% parameters
compared to full model fine-tuning. However,
XPROMPT further reduces the tunable parame-
ters in Prompt-Tuning through hierarchical struc-
tured pruning. For instance, XPROMPT only tunes
15% and 37.18% parameters compared to Prompt-
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Tuning.

Model WSC CB COPA RTE

T5-
Large

Prompt-Tuning 68.26 82.14 76.0 85.19
Token-level 70.19 91.07 80.0 86.28
Piece-level 69.23 89.28 79.0 86.64
XPROMPT 70.39 91.07 82.0 87.72

T5-XL

Prompt-Tuning 86.53 91.07 91.0 89.16
Token-level 89.42 92.85 93.0 92.41
Piece-level 90.38 92.85 93.0 91.33
XPROMPT 91.34 92.85 95.0 92.79

Table 4: The results of different pruning levels on four
SuperGLUE tasks using T5-Large and T5-XL models.

7.3 Granularity of Pruning

Token-level pruning and fine-grained piece-level
pruning are both important. To further investi-
gate the effects of the two-level pruning, we con-
duct extensive ablation experiments on four Super-
GLUE tasks, whose results are included in Table 4.
In general, both two levels of structured pruning
outperform vanilla Prompt-Tuning, demonstrating
the effectiveness of both token-level and piece-level
pruning. The results also show the existence of sub-
prompt structures in trained prompts that can be fur-
ther optimized. Obviously, XPROMPT outperforms
individual one level pruning, which suggests the
combination of the two levels of structured pruning
further benefits the training of the soft prompts for
downstream tasks.

Length Model WSC CB COPA RTE

10 Prompt-Tuning 82.69 87.50 87.0 88.44
XPROMPT 87.50 91.07 93.0 90.61

20 Prompt-Tuning 86.53 91.07 91.0 89.16
XPROMPT 91.34 92.85 95.0 92.79

100 Prompt-Tuning 89.42 91.07 90.0 89.16
XPROMPT 91.94 92.85 94.0 92.79

Table 5: The results of different prompt lengths on four
SuperGLUE tasks using the T5-XL model.

7.4 Prompt Length

Increasing prompt length (beyond 20) only
yields marginal gains for XPROMPT. To ex-
plore the effect of prompt length on XPROMPT,
we train XPROMPT for the T5-XL model with dif-
ferent prompt lengths in {10, 20, 100}. The results
are reported in Table 5. From these results we
can see that although prompt length plays an im-
portance role for XPROMPT and Prompt-Tuning,
the improvements are limited when increasing the
prompt length to beyond 20 tokens. This observa-
tion is consistent with the findings in (Lester et al.,
2021), and that is why we set the number of prompt
tokens to 20 in all our experiments.

Initialization Methods WSC COPA
Prompt-Tuning(SampledVocab) 86.53 91.0

XPrompt
Initialization

RandomUniform 88.61 93.0
SampledVocab 91.34 95.0

Table 6: The results of different prompt initialization
methods for XPROMPT on two SuperGLUE tasks using
T5-XL model.

TransferMethod WSC ⇔ COPA
TaskTransfer 86.53 92.0

XPromptTransfero 86.93 95.0
XPromptTransfer 91.40 98.0

Table 7: The results of XPROMPT Transfer
on two SuperGLUE tasks using T5-XL model.
XPROMPTTransfero only uses the resulting prompts
of the source task through XPROMPT to initialize the
prompts of the target task, without the rewinding phase.

7.5 Prompt Initialization and Transfer

Motivated by the soft prompts transfer approach
(SPOT) (Vu et al., 2021), to explore the effect
of task transfer and different prompt initialization
methods, we introduce a XPROMPT based trans-
fer learning approach - XPROMPT Transfer. It first
trains the prompts through XPROMPT on the source
task and then uses the learned prompts to initialize
the prompts on the target task. More details are
provided in Appendix C.

Prompt initialization plays an important role
in XPROMPT, and XPROMPT Transfer can lead
to performance gains. We compare two sample
initialization methods for XPROMPT, including ran-
dom uniform and sampled vocabulary, the results
are shown in Table 6. We observe that sampled
vocabulary performs best, and our XPROMPT can
also lead to performance gains for the random uni-
form initialization. Furthermore, we compare our
XPROMPT Transfer with the TaskTransfer, which
only uses the resulting prompts of the source task to
initialize the prompts of the target task, the results
are shown in Table 7. We can see that XPROMPT

Transfer without rewinding stage outperforms the
TaskTransfer, resulting in large performance gains
through the pruning and rewinding. These results
further validate our hypothesis and the effect of our
XPROMPT Transfer.

8 Conclusions

This paper aims to close the large performance
gap between prompt tuning and fine-tuning, espe-
cially for models of small and moderate scales. By
exploring the lottery ticket hypothesis in the con-
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text of prompt tuning, we have proposed a novel
hierarchical structured pruning approach, namely
XPROMPT, to separate the positive prompts from
the negative ones at both token-level and piece-
level. Extensive experimental results have demon-
strated that XPROMPT yields a more parameter-
efficient prompt at an extremely small scale, yet
with a competitive performance in effectiveness.
Taken as a whole, our work sheds light on the de-
velopment of more efficient and effective prompt-
based learning approaches.

Limitations

Eliminating negative prompt tokens at different
granularity levels through hierarchical structured
pruning requires rewinding the pruned model at dif-
ferent compression ratios. Therefore, a key ques-
tion is left under-explored: how to find the opti-
mal compression ratio without trial training, which
can automate the training process and improve the
efficiency. Moreover, there are other scenarios
in prompt tuning that we plan to further investi-
gate, including the multi-task learning scenario (He
et al., 2022), out-of-domain (domain shift) scenario
(Lester et al., 2021) and prompt ensembling sce-
nario (Lester et al., 2021). We leave these for future
research.
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A More Results of P-TuningV2

We observe that the performance of Prompt-Tuning
and P-Tuning are comparable at the same model
scale. Moreover, P-TuningV2 outperforms Prompt-
Tuning and P-Tuning on CB, RTE, and Boolq.
However, XPROMPT achieves more predominant
performances than P-TuningV2 at similar model
scales, demonstrating its effectiveness.

Model CB RTE Boolq

GLM-XL
2B

Fine-Tuning† 96.40 90.30 88.30
P-Tuning† 76.40 85.60 79.70

P-TuningV2† 96.40 90.30 87.00
T5-XL 3B XPROMPT 92.85 92.79 89.00

GLM-XXL
10B

Fine-Tuning† 98.70 93.10 88.70
P-Tuning† 98.20 89.90 88.80

P-TuningV2† 96.40 93.10 88.80
T5-XXL 11B XPROMPT 100.00 94.94 90.87

Table 8: The results on three SuperGLUE tasks for
different models and similar model scales. The better
results are in bold. Methods with ‘†’ indicate results
reported in Liu et al. (2021b). XPROMPT surpasses
P-tuningV2 on models with similar scales.

B Token and Piece Importance Score
Distribution

Figure 6 and Figure 7 show the distribution of
prompt tokens’ and prompt token pieces’ impor-
tance scores on the WSC task. It is clear that most
prompt tokens have a low importance score, and
only a few prompt tokens have a large importance
score. These results further demonstrate our hy-
pothesis that the existence of negative prompts, and
their stability.
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Figure 6: The distribution of prompt tokens’ importance
scores on WSC task.

C XPROMPT Transfer

As shown in Figure 8, given a source task and
a target task, XPROMPT Transfer first trains the
prompts through our XPROMPT on the source task
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Figure 7: The distribution of prompt token pieces’ im-
portance scores on WSC task.

and then uses the resulting prompts to initialize
the prompts of the target task, followed by the
XPrompt training on the target task. Different from
SPOT, we do not use the trained prompts to ini-
tialize the prompts for the target task, and our ap-
proach can provide more cross tasks information
to the prompts. The results of different prompt ini-
tialization methods are shown in Table 6, and the
results of XPROMPT Transfer are shown in Table 7.

Prom
pt Transfer

 XPrompt on Source Task A

The input sequence.…

T5 (Encoder       Decoder, Fixed)

Output

… … …
The input sequence.…… … …

T5 (Encoder       Decoder, Fixed)

Output

The input sequence.…… … …

T5 (Encoder       Decoder, Fixed)

Output

The input sequence.…… … …

T5 (Encoder       Decoder, Fixed)

Output

 XPrompt on Source Task B

Figure 8: The illustration of XPROMPT Transfer ap-
proach. XPROMPT Transfer first trains the prompts
through XPROMPT on the source task A and then uses
the resulting prompts to initialize the prompts of the
target task B, followed by the XPrompt training on the
target task B.
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D Importance Scores Visualization

Figure 9 and Figure 10 show the original and
pruned gradient saliency maps of the importance
scores on WSC task. The gray cells in Figure 10 in-
dicate that the prompt tokens and pieces are pruned
due to low importance scores, and the remaining
ones are the winning tickets.

Tokens Soft Prompt Token Pieces
T0 P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

T1 P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

T2 P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

T3 P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

T4 P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

T5 P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

T6 P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

T7 P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

T8 P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

T9 P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

T10 P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

T11 P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

T12 P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

T13 P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

T14 P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

T15 P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

T16 P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

T17 P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

T18 P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

T19 P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

Figure 9: Importance scores visualization on WSC task.
Among them, the shade of the red color indicates the
level of the importance score, and the darker the color,
the higher the importance score of the corresponding
structure (token or piece). Ti in first column denotes
the i-th prompt token. Pi in each row denotes the i-th
prompt token piece.

Tokens Soft Prompt Token Pieces
T0 P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

T1 P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

T2 P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

T3 P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

T4 P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

T5 P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

T6 P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

T7 P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

T8 P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

T9 P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

T10 P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

T11 P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

T12 P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

T13 P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

T14 P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

T15 P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

T16 P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

T17 P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

T18 P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

T19 P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

Figure 10: Importance scores visualization after
XPROMPT on WSC task. The gray elements indicate
that the prompt tokens or pieces are pruned due to low
importance scores, and the remaining parts are the posi-
tive tokens or positive pieces.

E SuperGLUE Statistics, Metrics and
Soft Prompt Templates

SuperGLUE benchmark is a collection of eight
challenging language understanding tasks designed
to be summarized into a single metric, including
question answering (BoolQ (Clark et al., 2019),
MultiRC (Khashabi et al., 2018), ReCoRD (Zhang
et al., 2018)), textual entailment (RTE (Dagan
et al., 2005), CB (Clark et al., 2019)), corefer-
ence resolution (WSC (Levesque et al., 2012)),
word sense disambiguation (WiC (Pilehvar and
Camacho-Collados, 2019)), and causal reasoning
(COPA (Roemmele et al., 2011)). Following pre-
vious works (Schick and Schütze, 2021; Liu et al.,
2021c), we focus on 7 of them, excepting ReCoRD
task, since the ReCoRD is also QA tasks. The
detailed statistics and metrics are provided in Ta-
ble 9, and the soft prompt templates and generation
verbalizers are provided in Table 10.
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Dataset Train Dev Test Task Metrics Text Sources
BoolQ 9427 3270 3245 QA Acc Google queries, Wikipedia

CB 250 57 250 NLI Acc Various
COPA 400 100 500 QA Acc Blogs, Photography encyclopedia

MultiRC 5100 953 1800 QA F1a Various
RTE 2500 278 300 NLI Acc News, Wikipedia
WiC 6000 638 1400 WSD Acc WordNet, VerbNet, Wiktionary
WSC 554 104 146 Coreference Acc Fiction books

Table 9: The data statistics and metrics of seven SuperGLUE tasks. WSD stands for word sense disambiguation,
NLI is natural language inference, Coreference is coreference resolution, and QA is question answering. Acc is
accuracy, and F1a is F1-score over all answer-options.

Dataset Task Soft Template Generation Verbalizers

BoolQ QA
{Soft Prompt Tokens} hypothesis: {"placeholder":"text_b", "shortenable":False,
"post_processing": lambda x:x+"."} premise: {"placeholder":"text_a"} {"mask"}

"yes" / "no"

CB NLI
{Soft Prompt Tokens} hypothesis: {"placeholder":"text_b","post_processing":
lambda x:x+"."} premise: {"placeholder":"text_a"} {"mask"}

"entailment" / "contradiction" / "neutral"

COPA QA
{Soft Prompt Tokens} choice1: {"meta":"choice1"} choice2: {"meta":"choice2"}
premise: {"placeholder":"text_a"} question: {"meta":"question"} {"mask"}

"choice1" / "choice2"

MultiRC QA
{Soft Prompt Tokens} question: {"placeholder":"text_b", "shortenable":False} answer: {"meta":"answer",
"shortenable":False, "post_processing": lambda x:x+"."} paragraph: {"placeholder":"text_a"} {"mask"}

"yes" / "no"

RTE NLI {Soft Prompt Token} sentence1: {"placeholder":"text_a"}
sentence2: {"placeholder":"text_b"} {"mask"} "entailment" / "contradiction"

WiC WSD
{Soft Prompt Tokens} sentence1: {"placeholder":"text_a"} sentence2:
{"placeholder":"text_b"} word: {"meta":"word", "shortenable": False} {"mask"}

"yes" / "no"

WSC Coreference
{Soft Prompt Tokens} {"placeholder":"text_a"} "{"meta":"span2_text"}"
refers to "{"meta":"span1_text"}" or another word ? {"mask"}

"another word" / "span1_text"

Table 10: The soft prompt templates and generation verbalizers for the seven SuperGLUE tasks used in our
experiments.
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