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Abstract

Recent advances in large pretrained language
models have increased attention to zero-shot
text classification. In particular, models fine-
tuned on natural language inference datasets
have been widely adopted as zero-shot clas-
sifiers due to their promising results and off-
the-shelf availability. However, the fact that
such models are unfamiliar with the target task
can lead to instability and performance issues.
We propose a plug-and-play method to bridge
this gap using a simple self-training approach,
requiring only the class names along with an
unlabeled dataset, and without the need for do-
main expertise or trial and error. We show that
fine-tuning the zero-shot classifier on its most
confident predictions leads to significant per-
formance gains across a wide range of text clas-
sification tasks, presumably since self-training
adapts the zero-shot model to the task at hand.

1 Introduction

Large language models have revolutionized the
field of natural language processing, leading to
great leaps in performance across the NLP task
landscape (Devlin et al., 2018; Raffel et al.,
2020; Brown et al., 2020). The pretrain-finetune
paradigm has led to a significant reduction in the
amount of labeled data required for obtaining high
performance on downstream tasks. However, the
need to collect labeled examples for each target task
remains an obstacle, limiting the usage of language
models in practice, at scale.

Thus, the more ambitious vision of a general-
purpose zero-shot model – one that can tackle many
different tasks without requiring labeled data – has
become an enticing goal for the community. This
notion is increasingly gaining attention, with recent
works suggesting new paradigms that aim to utilize
the language understanding capabilities of large
models for the zero-shot scenario.

∗These authors contributed equally to this work.

In their pioneering work on more general-
purpose zero-shot models, Yin et al. (2019) pro-
pose to formulate text classification tasks as a tex-
tual entailment problem (Dagan et al., 2005). This
mapping enables using a model trained on natural
language inference (NLI) as a zero-shot text classi-
fier for a wide variety of unseen downstream tasks.
The underlying idea is fairly intuitive. To deter-
mine if a particular text should be assigned to, e.g.,
the "sports" class or the "politics" class, one con-
structs sentences such as "This text is about sports"
and "This text is about politics", respectively; the
model prediction as to which one is most entailed
by the original text can then be used to determine
the predicted class label. Similarly, some recent
works have tried to map even more varied types
of NLP tasks into a unified cross-task format (Wei
et al., 2022; Zhong et al., 2021; Bragg et al., 2021;
Sanh et al., 2022). Such unified task formats en-
able “meta-tuning” a model using existing labeled
data from different tasks. By teaching the model
to solve the broader “meta-task”, it is then able to
cope with a wide variety of unseen tasks at infer-
ence time.

While zero-shot models hold great promise by
eliminating the burden of collecting task-specific
labeled data, they often still come at the cost of
providing mediocre performance compared to mod-
els trained in the conventional supervised learning
paradigm. Thus, improving the prediction perfor-
mance of zero-shot models is of great practical im-
portance. One of the simplest and most effective ap-
proaches for improving performance of classifiers
is self-training (Scudder, 1965). In this paradigm,
a model’s own predictions on unlabelled data are
leveraged for creating pseudo-labels, which are
then used for further training the model.

In the original setting of self-training, some la-
beled data is available for training an initial clas-
sifier, and the predictions of the classifier on unla-
beled data are used for data augmentation (Van En-
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Premise (t)
Hypothesis Entailment

ScoresTemplate Class (c)

I was thrilled when my 
paper was accepted to 

EMNLP

This example is guilt 0.3
This example is anger 0.1
This example is joy 0.9

Figure 1: Entailment-based zero-shot classification.
A text t serves as the Premise while the Hypothesis is
created by placing the class name c within a template.
The class with the highest entailment score, joy in this
example, is taken as the label for t.

gelen and Hoos, 2020). More recently, the use
of self-training has been extended to the scenario
of unsupervised domain adaptation, where labeled
data is available only for a source domain, and only
unlabeled data is available for the target domain
(e.g., Du et al., 2021; Zou et al., 2019).

Here, we aim to study self-training as a method
for improving general-purpose zero-shot models,
by adapting them to the task at hand. Given the
distinct properties of such models, applying self-
training in this scenario is not trivial and poses
unique challenges. Our approach can be viewed
as a further extension of self-training – from unsu-
pervised domain-adaptation to unsupervised task-
adaptation, where only unlabeled data is available
for the target task.

As prominent representatives of general-purpose
zero-shot models, in this work we focus on NLI-
based models (Yin et al., 2019), which are in-
creasingly being utilized for zero-shot classifica-
tion (Davison, 2020; Sainz and Rigau, 2021; Basile
et al., 2021). To the best of our knowledge, this
is the first work that explores self-training in the
context of general-purpose zero-shot models. We
release our code1, including access to all datasets,
and an associated automatic evaluation framework,
aiming to facilitate further research along the lines
explored here.

2 Self-Training of Zero-Shot Text
Classifiers

In self-training, a model M is applied on a collec-
tion of unlabeled examples U . The instances on
which M provides the most confident predictions
are taken as a pseudo-labeled training set. This set
is used to re-train M , giving rise to a new model,
M ′. This procedure can be repeated to obtain M ′′,
and so on, in an iterative manner.

1https://github.com/IBM/
zero-shot-classification-boost-with-self-training

Next, we describe the motivation of applying
self-training to zero-shot text classifiers, and the
details of our approach.

2.1 Motivation
We hypothesize that self-training brings forth
unique benefits to general-purpose zero-shot mod-
els, going beyond data augmentation and the expo-
sure to the target domain.

A zero-shot model, as implied by its name, has
never been directly exposed to the task it should
perform. Moreover, one should expect significant
differences between the characteristics and distri-
butions of the task(s) used to create the general-
purpose model, and those of the downstream task.
Self-training may help bridge this gap, by adapting
the model to the properties of the target task.

Specifically, for NLI-based classification mod-
els (Yin et al., 2019), which are at the focus of
this work, self-training may provide two important
benefits, discussed next.

Exposure to class names. As a language model,
the zero-shot model presumably embodies some
knowledge about the meaning of the target class
names, considering each class name independently;
however, chances are it has never been trained
to consider their potential interactions. Pseudo-
labeled examples, obtained via self-training, can
force the zero-shot model to contrast the class
names with one another, and to learn more sub-
tle distinctions that will be required at test time. As
a simple example, ’guilt’ and ’shame’ may often
be considered synonyms, but represent two distinct
classes in one of our datasets. Explicit exposure to
even weakly labeled data is presumably essential
to learn such distinctions.

Exposure to the task and template/prompt.
Entailment-based models are originally trained on
general NLI datasets, which aim to capture a broad
and diverse range of textual entailment instances.
Utilizing these models for text classification im-
plies that they should focus on a narrower set of
entailment types, namely those that map to the text
classification problem under consideration. More-
over, the application of these models as zero-shot
classifiers involves the use of generic hypothesis
templates that aim to formulate the downstream
classification task in terms of textual entailment –
e.g., "This text is about X". Both the relevant en-
tailment sub-types, and the generic templates used
at test time, are presumably not common in the
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data used to train the model. Thus, self-training ex-
poses the model to the specific hypothesis template
that will be used for text classification, as well as
to the underlying distribution of text classification
entailment problems it will need to face.

2.2 Our approach

We consider an entailment-based zero-shot model,
M , for a multi-class classification task, with a set
of target class names C.

Yin et al. (2019) proposed to map the text clas-
sification task into an entailment task, as depicted
in Fig. 1. Specifically, a target text, t, is taken
as the premise. For every class c ∈ C, a hy-
pothesis is constructed from a template such as
“This example is c” (e.g., “This example is joy”,
or “This example is anger”). The entailment model
is presented with t and a set of hypotheses that cor-
respond to the different classes. The class whose
hypothesis receives the top entailment score is pre-
dicted as the label for t (see Fig. 1).

We further assume a collection of unlabeled ex-
amples U is available. Following the entailment
approach, we generate pseudo-labeled examples
from U based on the predictions given by M .

First, for each u∈U and each class name c∈C
we obtain Suc, the confidence score for u entail-
ing the hypothesis constructed for c (entailment
score in Fig. 1). In other words, Suc represents the
confidence of assigning u to c.

2.2.1 Selecting positive examples

Our goal is to collect for each class c, a set of n
pseudo-labeled positive examples in U . As com-
mon in self-training, we aim to focus on the most
confident predictions. We follow a “Best-versus-
Second-Best” approach, as in Slonim et al. (2011).

To that end, we first consider all examples in U
for which c obtained the top entailment score, i.e.,
Suc > Suc′ , ∀c′ ̸= c. Next, we focus our attention
on examples that maximize the delta between the
top ranked class and the second highest class (in
Fig. 1, the delta is between the entailment score
for joy and guilt). Loosely speaking, such exam-
ples correspond to points farthest from the decision
boundary, and thus the points that the model is most
certain about. Assuming c and c′ are the top-ranked
and second-ranked classes for u, respectively, let
δuc = Suc − Suc′ .

Next, for a given class c, we sort all examples in
U for which c was the top-ranked class by δuc in a

decreasing order, and select the top n examples as
the positive examples for class c.

In order to utilize these pseudo-labeled examples
as training examples for the entailment model M ,
we use a similar transformation to the one described
above – the example is taken as the premise, the
class name is incorporated into the hypothesis tem-
plate, and the premise-hypothesis pair is assigned
the entail pseudo-label.

2.2.2 Selecting negative examples
To train the entailment model to contrast between
classes we need to generate negative entailment
examples, with the contradict pseudo-label. For
that, we examine four approaches:

Contrast-random For each entail pair for a hy-
pothesis based on c, add a pair with the con-
tradict label, which is composed of the same
premise, and a hypothesis in which c is re-
placed at random with another class.

Contrast-closest For each entail pair for a hypoth-
esis based on c, add a pair with the contradict
label, which is composed of the same premise,
and a hypothesis in which c is replaced with
the class receiving the second-highest entail-
ment score for this premise (guilt in the exam-
ple of Fig. 1).

Contrast-furthest For each entail pair for a hy-
pothesis based on c, add a pair with the con-
tradict label, which is composed of the same
premise, and a hypothesis in which c is re-
placed with the class receiving the lowest en-
tailment score for this premise (anger in the
example of Fig. 1).

Contrast-all For each entail pair for a hypothe-
sis based on c, add |C| − 1 pairs with the
contradict label, all with same premise and a
hypothesis in which c is replaced with each
of the other target class c′ ̸= c. Note that for
datasets with a large number of classes, this
setting significantly increases the size of the
training set, and correspondingly the run time.

The full training data, including both entail and
contradict pseudo-labeled examples, is used to
fine-tune the general entailment model M , yielding
an entailment zero-shot model M ′ that has been
adapted to the target task. We continue this pro-
cedure in iterations: we generate a new pseudo-
labeled dataset based on the predictions of M ′,
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which is then fine-tuned to generate M ′′, and so
forth.

2.2.3 Balancing noise and informativeness
with token masking

Self-training relies on a delicate balance. On the
one hand, the pseudo-labels are noisy. Training on
noisy data may lead to overconfidence and prop-
agation of errors (Zou et al., 2019). Therefore, a
standard self-training practice is to take the most
confident predictions, which are presumed to be
less noisy. On the other hand, the most confident
examples are more likely to be the easy and less
informative ones, and thus less useful for train-
ing (Hajmohammadi et al., 2015; Mukherjee and
Awadallah, 2020).

With zero-shot models, this trade-off becomes
even more pronounced. As these models were not
trained on the target task, the pseudo-labels that
are obtained from their predictions are likely to be
noisier than those obtained from a model trained
on some labeled data. Thus, with zero-shot models
we are compelled to raise the confidence bar in
order to obtain pseudo-labels of reasonable quality,
which in turn may focus the training on the easy
and thus less informative examples.

To increase the informativeness of the selected
examples, we apply the following heuristic: in each
example we identify the token which is the most
similar to the positive class name assigned to this
example, and mask it. In the example of Fig. 1, the
word thrilled will be masked when this example is
used as a positive or as a negative example for the
class "joy". By masking those most similar tokens,
the selected examples become more challenging,
and the model is forced to rely on other signals –
e.g., in Fig. 1, on the understanding that the event
of a paper getting accepted to a conference is a
joyful one.

3 Experimental Setup

3.1 Datasets and Tasks

We experiment with 8 datasets representing a vari-
ety of text classification tasks: 20 newsgroup (Lang,
1995), AG’s news (Zhang et al., 2015), Amazon
reviews (McAuley and Leskovec, 2013), DBPedia
(Zhang et al., 2015), GoEmotions (Demszky et al.,
2020), IMDB reviews (Maas et al., 2011), ISEAR
(Shao et al., 2015), and Yahoo! Answers (Zhang
et al., 2015). All datasets, except GoEmotions,
are balanced. Generally, the original dataset class

I was thrilled when my paper was accepted to EMNLPPremise (t)
GloVe similarity 
score with joy

0.1 0.2   0.95 0.01 0.21  0.4    0.05     0.91   0.1   0.6

I was <UNK> when my paper was accepted to EMNLPMasked premise

Premise words I was thrilled when my paper was accepted to EMNLP
GloVe similarity 

with class joy 0.1 0.2 0.95 0.01 0.2 0.4 0.05 0.91 0.1 0.6

Masked premise I was <UNK> when my paper was accepted to EMNLP

Premise (t) I was thrilled … was accepted to EMNLP
GloVe similarity 
with class joy 0.1 0.2 0.95 … 0.05 0.91 0.1 0.6

Masked premise I was <unk> … was accepted to EMNLP

Figure 2: GloVe token masking. All words of the
Premise t are scored according to the GloVe similarity
with class name c. The word with the top similarity
score is replaced with an <UNK> token.

names were used to describe the target labels for
zero-shot inference2. We report results on the test
set of each dataset (the labels of the train sets were
not used as there is no training in our method); pre-
liminary experiments were conducted on separate
development sets. Since we aim for a practical set-
ting with lower computational costs, we limit the
size of our unlabeled set U to a maximum of 10K
examples sampled from the full training set of each
dataset. For details on the dataset sizes, task types,
and label names, see App. A.

3.2 Zero-Shot Models
We evaluate 3 off-the-shelf entailment models,
trained on the MNLI (Williams et al., 2018)
dataset: roberta-large-mnli, deberta-large-mnli-
zero-cls, and bart-large-mnli. To infer zero-shot
predictions from these models with respect to the
target labels we rely on the dedicated zero-shot clas-
sification pipeline from the Hugging Face Trans-
formers library3, using the default hypothesis tem-
plate "This example is [].".

3.3 Implementation Details
Each experiment is repeated 5 times, with each
repetition using a different random seed. All mod-
els are fine-tuned for one epoch with a learning
rate of 2× 10−5 and a batch size of 32, using the
AdamW optimizer (Kingma and Ba, 2014) and
cross entropy loss to optimize the models. A single
NVIDIA A100 GPU was used for fine-tuning and
inference. We base our implementation on Hug-
ging Face Transformers (Wolf et al., 2019) version
4.16.2 and pytorch (Paszke et al., 2019) version
1.10.

3.4 Token masking
As mentioned in 2.2.3, when collecting pseudo-
labeled examples from the model predictions, we

2Only where labels could not be used as-is (e.g.,
soc.religion.christian in 20 newsgroup) we manually picked a
more readable name to represent the class.

3https://huggingface.co/zero-shot/
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20NG AG DBPed. Yahoo GoEmo. ISEAR Amazon IMDB Avg.
BART 45.0 66.2 74.7 48.3 19.7 56.0 93.3 91.7 61.9
+Self-training 63.7 74.2 94.1 61.0 28.1 65.3 94.7 92.2 71.7
DeBERTa 50.8 73.2 74.7 43.5 25.0 58.5 92.2 90.3 63.5
+Self-training 67.8 81.4 94.5 62.0 30.3 59.5 95.0 92.3 72.8
RoBERTa 34.1 62.4 69.8 35.9 21.4 52.0 93.1 90.7 57.4
+Self-training 65.8 76.5 92.2 59.8 29.3 56.7 94.3 92.5 70.9

Table 1: Zero-shot classification accuracy of entailment models. For each zero-shot entailment model and
dataset, we compare the test accuracy of the off-the-shelf model to its accuracy after 2 iterations of self-training.
RoBERTa, DeBERTa, and BART correspond to the following models from Hugging Face Hub: roberta-large-mnli,
deberta-large-mnli-zero-cls, and bart-large-mnli. Each result is the average of 5 repetitions using different random
seeds.

mask a token in the example texts based on similar-
ity to the predicted class names. For each example
we extract the GloVe (Pennington et al., 2014) rep-
resentations for each token in the example text, and
for the predicted class name. Where the class name
is an ngram, we average over its unigrams. Repre-
sentations are extracted using the en-core-web-lg
model from the spacy library, after removing punc-
tuation and stopwords.

As illustrated in Fig. 2, for each example, we
select the token with the largest GloVe similarity
to the class name. This token is then masked from
the text by replacing it with the model’s special
unknown token (<unk> for RoBERTa and BART,
[UNK] for DeBERTa).

4 Experimental Results

We set n, the number of training examples per class,
to be 1% of the unlabeled set U (i.e., n=100 for
a U of size 10k). For each dataset and zero-shot
model, we perform two iterations of self-training.4

We test 4 settings of adding contradict examples as
described in Section 2.2.2.

Classification accuracy before and after self-
training for all models using the Contrast-random
setting is shown in Table 1. The results demonstrate
a clear and significant benefit to the self-training
process, across all models and datasets. Signif-
icance was tested with paired t-tests to compare
accuracy with and without self-training, pooling
together all datasets and seeds for each of the three
models.

Fig. 3 compares the 4 settings of selecting neg-
ative examples. As can be seen, among the four
settings, Contrast-furthest yields the poorest re-

4We did not observe consistent improvements after the
second iteration.

sults. A possible explanation is that in this setting
the negative examples are too trivial for the model.
Contrast-closest yields better results, probably be-
cause the negative examples in this setting are more
difficult and thus more informative for the model.
However, for this same reason, these pseudo la-
beled examples are expected to suffer from the
largest noise. The best performing settings are
Contrast-all and Contrast-random, which represent
a better balance between the informativeness of the
negative examples and their noise level. Taking the
computational costs into account, Contrast-random
emerges as the preferred setting.

5 Analysis

5.1 The contribution of token masking

One component of our approach, which aims at
increasing the informativeness of pseudo-labeled
examples, is the masking of the token closest to the
class name (§3.4).

We examine the performance of self-training
without the masking procedure. A comparison of
classification accuracy with and without applying
token masking is shown in Table 2. Overall, ap-
plying token masking does provide a performance
gainas confirmed by a paired t-test (p = 3×10−4,
pooling together all models, datasets and seeds).
However, as can be seen in Table 2, results do dif-
fer across models and datasets. For instance, mask-
ing affords more consistent benefits in the case of
the RoBERTa entailment model, and has a more
pronounced effect in the case of the ISEAR dataset.

The beneficial effect of masking raises the ques-
tion of whether the pseudo-labeled train set, i.e.,
the model’s most confident predictions, are trivial
examples that could just as easily have been ob-
tained using a simple heuristic. To test this, we
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Figure 3: Self-training with different settings of selecting negative examples. Lines depict zero-shot classification
accuracy (±SEM, standard error of the mean) of the bart-large-mnli model over 2 self-training iterations, using
different approaches for selecting negative examples (see §2.2.2). Iteration 0 denotes the accuracy without self-
training.

20NG AG DBPed. Yahoo GoEmo. ISEAR Amazon IMDB Avg.
BART+ST 66.7 74.3 92.8 61.1 28.9 48.0 94.6 92.2 69.8
+Mask 63.7 74.2 94.1 61.0 28.1 65.3 94.7 92.2 71.7
DeBERTa+ST 70.1 79.7 93.2 62.3 30.2 52.2 94.1 92.0 71.7
+Mask 67.8 81.4 94.5 62.0 30.3 59.5 95.0 92.3 72.8
RoBERTa+ST 63.7 72.7 91.5 58.7 28.9 48.1 93.3 91.8 68.6
+Mask 65.8 76.5 92.2 59.8 29.3 56.7 94.3 92.5 70.9

Table 2: The effect of token masking. For each zero-shot entailment model and dataset, we compare the test
accuracy after 2 iterations of self-training, with and without applying token masking to the self-training examples.
RoBERTa, DeBERTa, and BART correspond to the following models from Hugging Face Hub: roberta-large-mnli,
deberta-large-mnli-zero-cls, and bart-large-mnli. Each result is the average of 5 repetitions using different random
seeds.

construct an alternative pseudo-labeled set that is
based on a token-level heuristic rather than the
model predictions. This example selection method
had a substantial negative effect on performance
(see App. B for details).

5.2 Cross-task effects

A recurring question in transfer learning is whether
fine-tuning on a task Ti can translate to benefits
on another task, Tj (e.g., Phang et al., 2018; Agha-
janyan et al., 2021). It is thus interesting to study
this question in the present context of self-training
zero-shot classifiers. In other words, can exposure
to pseudo-labels for task Ti improve zero-shot per-
formance on task Tj . One aspect that is specific to
our scenario is that fine-tuning with pseudo-labels
on Ti exposes the model to the task template which
is also used for Tj .

To explore this question, each model that was
self-trained on Ti is evaluated over all the other
datasets as well. Fig. 4 depicts the cross-task ef-
fects of self-training on performance. This analysis
reveals that self-training on a different task can
be beneficial or harmful. The topical datasets (20
newsgroup, AG’s news, DBPedia, and Yahoo! an-
swers) appear to be beneficial to each other; as
do the two emotion classification datasets (GoE-
motions and ISEAR). In contrast, self-training on
sentiment data (Amazon, IMDB) leads to signifi-
cant degradation in results on the emotion datasets.
Possibly, this is related to particular characteris-
tics of the reviews domain, along with the sharp
binary distinction between positive and negative
sentiment, as opposed to the subtle nuances that
are necessary to distinguish between different types
of emotions.
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Figure 4: Cross-task effects of self-training. The number in each cell is the zero-shot test accuracy over the target
dataset after two iterations of self-training over the source dataset, minus the test accuracy over the target dataset
with no self-training. The model used is BART (bart-large-mnli).

6 Related Work

Self-training (Scudder, 1965) has a long history
as a method for semi-supervised learning, where
predictions of a supervised classifier on unlabeled
examples are used as pseudo-labels to augment the
amount of training data. This approach has suc-
cessfully been applied to a wide range of machine
learning problems (Van Engelen and Hoos, 2020).
Many variations of self-training have been put forth,
varying in terms of the selection strategy of samples
to pseudo-label, the amount – and characteristics –
of the models involved in the procedure, and other
specific design decisions (Triguero et al., 2015).

From a more theoretical standpoint, previous
works (Lee et al., 2013) have described self-
training as somewhat equivalent to entropy min-
imization (Grandvalet and Bengio, 2004), in that it
modifies the model’s decision boundaries by driv-
ing the model to make more confident predictions.

Aiming for more general-purpose models, that
can achieve cross-task generalization and perform
in a zero-shot scenario, recent works have pro-
posed different strategies for mapping a range of
NLP tasks into a generic and unified framework.
Yin et al. (2019) suggest the textual entailment
paradigm as one that can encompass different types
of text classification tasks. Zhong et al. (2021) map
classification tasks to a question-answering format,
where each class is formulated as a question and

given as a prompt, and the decoder probabilities of
the Yes and No tokens correspond to a positive or
negative prediction for the class. They also propose
a "meta-tuning" paradigm, where labeled data for
different tasks – formulated in terms of the unified
task format – is utilized in order to teach the model
how to solve the generic "meta-task", and thus bet-
ter cope with unseen tasks at test time. By opting
for a generic cross-task format of natural language
instructions, Wei et al. (2022) and Sanh et al. (2022)
extend this notion even further, where meta-tuning
on multiple types of NLP tasks enables zero-shot
prediction even on tasks of a very different nature
from those seen during training.

In the present work we explore the intersection
of these two threads – namely, self-training and
general purpose zero-shot models, while focusing
on zero-shot text classifiers that use the entailment
paradigm, and on a scenario where only unlabeled
data is available.

Ye et al. (2020) apply self-training to text clas-
sification in order to transfer to unseen classes for
which there is no labeled data, and propose a rein-
forcement learning method for selecting examples
to pseudo-label. This scenario differs substantially
from ours in that self-training is not applied to an
existing general-purpose zero-shot model. In addi-
tion, they deal with a setting where labeled data for
some of the target classes is available.

Like the present work, Zhou et al. (2022) also
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aim to improve existing general-purpose zero-shot
learners by utilizing unlabeled data. Starting from
T0, the prompt-based zero-shot learner from Sanh
et al. (2022), they use unlabeled texts to apply a
prompt consistency loss: an example is fed into the
model multiple times, each time in the context of a
different – but synonymous – task prompt; then, the
model is trained to assign similar predictions across
differently-phrased prompts (Zhou et al., 2022).
Thus, whereas we explore improving a general-
purpose model using a form of self-training, they
do so using a variation on the paradigm of consis-
tency training (Xie et al., 2020).

Some works attempt to improve the performance
of general-purpose models within a few-shot sce-
nario. For example, Basile et al. (2021) experiment
with entailment-based classifiers. They show that
compared to a standard pre-trained language model,
off-the-shelf entailment models require less labeled
examples for fine-tuning to reach reasonable per-
formance on an emotion classification task.

7 Discussion

In this paper we look at the applicability of self-
training for adapting a general-purpose zero-shot
model, focusing on the scenario of entailment-
based models. We opted for this specific setting
due to the high accessibility of these off-the-shelf
models. In other words, given that these models
are readily available for use, we ask whether self-
training provides a straightforward way for practi-
tioners to adapt the general model for their down-
stream task, using only a modest collection of unla-
beled data. We show that in this setting self-training
does indeed provide value, delivering significant
performance gains for text classification.

The notion of using self-training as a tool to
adapt a general-purpose zero-shot model is not spe-
cific to entailment models, nor is it limited to classi-
fication tasks. Thus, a major avenue for future work
would be to explore this combination on models
that rely on different kinds of mapping functions
or “meta-tasks” for formulating downstream tasks
within a generic cross-task framework (Wei et al.,
2022; Zhong et al., 2021; Bragg et al., 2021; Sanh
et al., 2022).

Zero-shot text classification is recently drawing
much attention, with prominent recent works show-
ing promising results using different kinds of iter-
ative approaches (Meng et al., 2020; Zhang et al.,
2021). Such approaches build their zero-shot classi-

fiers from scratch – and therefore typically require
larger unlabeled datasets to perform well – whereas
we aim to utilize and build on the knowledge con-
tained in general-purpose zero-shot classifiers. Ex-
ploring ways to combine these differing approaches
is left for future work.

Importantly, while our method does assume the
existence of a collection of unlabeled examples, our
results show that an order of 10K examples is suf-
ficient to benefit from self-training. Moreover, the
cross-task effects in section 5.2 demonstrate that
even unlabeled examples from a similar domain
and/or task may be useful in adapting the general-
purpose model for the downstream task. Determin-
ing the exact conditions under which self-training
is useful for adaptation across tasks is a matter for
future study. Moreover, it would be interesting
to explore the effects of self-training on multiple
datasets, akin to works on supervised multi-task
fine-tuning (e.g., Aghajanyan et al., 2021).

In our work, we select examples for pseudo-
labeling based solely on model confidence (see
§2.2). Some self-training works opt for more bal-
anced approaches for example selection, aiming for
a more diverse and/or more informative set of exam-
ples (e.g., Hajmohammadi et al., 2015; Mukherjee
and Awadallah, 2020). It would be interesting to
explore such questions in the zero-shot scenario.
In addition, in Section 2.2 we describe our method
to select confident examples, namely by looking at
the maximal delta between the highest and second
highest prediction scores. Other alternatives for
choosing confident examples, e.g., by looking at
the entropy across classes, could be tested as well.

To conclude, the method we proposed in this
paper can boost the performance of entailment-
based zero-shot text classifiers, with little effort and
a modest amount of domain data. This can prove
useful to the many practitioners who benefit from
the practicality and accessibility of these models.

Limitations

Our focus here is on off-the-shelf models that are
highly accessible – and thus potentially useful –
for practitioners. Nevertheless, these models are
quite large, and thus carry a non-negligible compu-
tational footprint. For instance, inferring on 10K
unlabeled samples does require a GPU, limiting
access to such approaches and models in practice.

Our work is empirical in nature. As such, we re-
port experimental results, with no theoretical guar-
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antees, and one should recognize the existence of
exceptions. In addition, our experimental results
are for relatively standard academic benchmarks
for text classification. Real-world datasets, espe-
cially in specific domains such as legal and health-
care, may pose additional challenges. The practical
value of our approach in these cases is yet to be
seen.

We formulate and test our approach in the sce-
nario where each example should be assigned to
exactly one class. Applying our method to the
multi-label classification scenario might not be
straightforward, and may require different ways
of selecting examples for the pseudo-labeled set.

Finally, the large scale of our experiments places
a non-trivial burden on trying to replicate our re-
sults. Moreover, the off-the-shelf models used in
our experiments are not guaranteed to be hosted
publicly in the future.
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A Datasets

To complete the details from subsection 3.1, Ta-
ble 3 shows the statistics of all datasets used while
Table 4 details the class names that we used in all
our experiments.

B Heuristic-based selection

As stated in section 5.1, we experiment with con-
structing an alternative pseudo-labeled train set that
is based on a token-level heuristic. In this method,
the examples are chosen based on GloVe-based sim-
ilarity to the class names. First, for each example
and class we calculate a "GloVe-to-closest-token"
score, which is the similarity between the class
and the closest token in the example, following a
similar protocol as that for finding tokens to mask
(cf. 3.4). Then, for each class c we construct a
list of size n of the top candidates: we take the ex-
amples where the "GloVe-to-closest-token" score
was highest for c; these examples are sorted by the
difference between the "GloVe-to-closest-token"
score for c and for the class with the second highest
score, and the top n examples are selected. We
apply masking for the selected examples using the
same protocol we use in the self-training approach.
Fig. 5 compares this approach to a single iteration
of self-training. As can be seen, for some datasets
this pseudo-labeling approach does improve the
zero-shot classifier, yet, the results are not consis-
tent across datasets and in 4 of the datasets applying
this approach results in a lower accuracy compared
to the zero-shot classifier.

C Results on validation set

Table 5 shows the zero-shot classification accuracy
before and after self-training for the validation sets.
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Dataset Classification Type # Classes # Unlabeled # Test

AG News News Topic 4 10,000 7,600
DBPedia Wikipedia Topic 14 10,000 70,000

IMDB Movie Review Sentiment 2 10,000 25,000
Amazon Product Review Sentiment 2 10,000 400,000
ISEAR Emotion 7 5366 1534

GoEmotions Emotion 28 10,000 5427
20 newsgroup News 20 10,000 7532

Yahoo! Answers Question Topic 10 10,000 58966

Table 3: Dataset statistics.

Dataset Class names used
ISEAR ’anger’, ’disgust’, ’fear’, ’guilt’, ’joy’, ’sadness’, ’shame’
GoEmotions ’admiration’, ’amusement’, ’anger’, ’annoyance’, ’approval’, ’caring’, ’confusion’,

’curiosity’, ’desire’, ’disappointment’, ’disapproval’, ’disgust’, ’embarrassment’,
’excitement’, ’fear’, ’gratitude’, ’grief’, ’joy’, ’love’, ’nervousness’, ’neutral’, ’opti-
mism’, ’pride’, ’realization’, ’relief’, ’remorse’, ’sadness’, ’surprise’

AG’s news ’business’, ’world’, ’sports’, ’science and technology’
Yahoo! An-
swers

’business & finance’, ’computers & internet’, ’education & reference’, ’entertainment
& music’, ’family & relationships’, ’health’, ’politics & government’, ’science &
mathematics’, ’society & culture’, ’sports’

20 newsgroup ’atheism’, ’computer graphics’, ’hockey’, ’cryptography’, ’electronics’, ’medicine’,
’space’, ’christianity’, ’guns’, ’middle east’, ’politics’, ’religion’, ’microsoft win-
dows’, ’pc hardware’, ’mac hardware’, ’windows x’, ’for sale’, ’cars’, ’motorcycles’,
’baseball’

DBPedia ’album’, ’animal’, ’artist’, ’athlete’, ’building’, ’company’, ’educational institution’,
’film’, ’mean of transportation’, ’natural place’, ’office holder’, ’plant’, ’village’,
’written work’

Amazon ’bad’, ’good’
IMDB ’bad’, ’good’

Table 4: Dataset class names used in all our experiments.

20NG AG Amazon DBPed. GoEmo. IMDB ISEAR Yahoo Avg.
BART 47.7 67.3 93.1 75.3 20.0 92.4 55.0 48.0 62.3
+Self-training 65.3 75.0 94.4 93.4 28.1 91.9 61.6 61.5 71.7
DeBERTa 50.7 74.5 92.2 75.1 24.6 90.6 55.2 43.0 63.2
+Self-training 69.3 82.2 94.8 94.5 29.9 92.1 58.7 62.4 73.0
RoBERTa 32.7 63.5 92.7 69.4 21.2 90.6 49.5 35.8 56.9
+Self-training 66.7 77.0 94.2 92.1 29.1 92.9 55.2 60.3 70.9

Table 5: Zero-shot classification accuracy of entailment models. For each zero-shot entailment model and dataset,
we compare the validation accuracy of the off-the-shelf model to its accuracy after 2 iterations of self-training.
RoBERTa, DeBERTa, and BART correspond to the following models from Hugging Face Hub: roberta-large-mnli,
deberta-large-mnli-zero-cls, and bart-large-mnli. Each result is the average of 5 repetitions using different random
seeds.
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Figure 5: Self-training versus heuristic-based selection. Lines depict zero-shot classification accuracy (±SEM,
standard error of the mean) of the bart-large-mnli model over a single iteration of fine-tuning over pseudo-labeled
examples, using either model top predictions (orange) or a GloVe-based token-level heuristic (blue). Iteration 0
denotes the accuracy of the off-the-shelf model.
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