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Abstract

Document-level relation extraction (RE) aims
to extract the relations between entities from
the input document that usually containing
many difficultly-predicted entity pairs whose
relations can only be predicted through rela-
tional inference. Existing methods usually di-
rectly predict the relations of all entity pairs of
input document in a one-pass manner, ignoring
the fact that predictions of some entity pairs
heavily depend on the predicted results of other
pairs. To deal with this issue, in this paper,
we propose a novel document-level RE model
with iterative inference. Our model is mainly
composed of two modules: 1) a base module
expected to provide preliminary relation pre-
dictions on entity pairs; 2) an inference mod-
ule introduced to refine these preliminary pre-
dictions by iteratively dealing with difficultly-
predicted entity pairs depending on other pairs
in an easy-to-hard manner. Unlike previous
methods which only consider feature informa-
tion of entity pairs, our inference module is
equipped with two Extended Cross Attention
units, allowing it to exploit both feature infor-
mation and previous predictions of entity pairs
during relational inference. Furthermore, we
adopt a two-stage strategy to train our model.
At the first stage, we only train our base module.
During the second stage, we train the whole
model, where contrastive learning is introduced
to enhance the training of inference module.
Experimental results on three commonly-used
datasets show that our model consistently out-
performs other competitive baselines. Our
source code is available at https://github.
com/DeepLearnXMU/DocRE-II.

1 Introduction

Relation extraction (RE) aims to identify the rela-
tion between two entities from raw texts. Due to
its wide applications in many subsequent natural

∗Equal Contribution.
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Figure 1: An example comes from the DocRED dataset.
(a) is an input document, where different colors repre-
sent different entities. (b) lists some easily-predicted
entity pairs whose predictions do not require reference
to the predictions of other pairs. (c) shows a difficultly-
predicted entity pair, of which prediction depends on the
predicted results of its overlapping pairs. The arrows
between (b) and (c) indicate the dependencies among
entity pairs, which can be exploited to benefit the rela-
tion prediction of the difficultly-predicted one.

language processing (NLP) tasks, such as large-
scale knowledge graph construction (Zeng et al.,
2020) and question answering (Yu et al., 2017),
RE has attracted increasing attention and become a
fundamental NLP task. Most of the existing works
focus on sentence-level RE, where both consid-
ered entities come from a single sentence (Zhang
et al., 2018; Baldini Soares et al., 2019). How-
ever, large amounts of relations, such as relational
facts from Wikipedia articles, are expressed by mul-
tiple sentences in real-world applications (Verga
et al., 2018; Zhou et al., 2021). As calculated by
Yao et al. (2019), in the commonly-used DocRED
dataset, the identifications of more than 40.7% rela-
tional facts involve multiple sentences. Therefore,
a natural extension is document-level RE, which is
required to exploit the input document to infer all
relations between entities.

However, compared with sentence-level RE,
document-level RE is a more challenging task. This
is because each document often contains a large
number of entity pairs whose relations need to be
predicted. More importantly, the relation prediction
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difficulties of these pairs are usually significantly
different. The relations of some entity pairs can
be directly predicted while there also exist many
entity pairs whose relations can only be inferred by
referring to other pairs. As calculated by Yao et al.
(2019), about 61.6% entity pairs fall into the latter
category in the DocRED dataset.

Figure 1 shows an example from the DocRED
dataset, which contains totally five entity pairs with
relations. Among these entity pairs, the relations
of some pairs can be easily identified even with-
out knowing relations of other pairs, such as (Al-
tomonte, Martino Altomonte) and (Altomonte, Aus-
trian) (See Figure 1b). By contrast, it is difficult
to correctly identify the relation of (Martino Al-
tomonte, Austrian) because the document does not
contain sufficient evidence information for it. Fur-
thermore, if the relations of (Altomonte, Martino
Altomonte) and (Altomonte, Austrian) are predicted
first, it will become easier to predict the relations
of (Martino Altomonte, Austrian) with the help of
these previously-predicted results (See Figure 1c).

To deal with the above issues, many researchers
introduce graph neural networks (GNNs) (Kipf
and Welling, 2017; Guo et al., 2019) to exploit
the dependencies among entities or mentions for
document-level RE (Christopoulou et al., 2019;
Zeng et al., 2020; Nan et al., 2020; Wang et al.,
2020a). However, these methods only focus on
the dependencies at the entity- or mention-level
while neglecting the dependencies among entity
pairs, which has an important impact on the re-
lation identification of difficultly-predicted entity
pairs depending on other pairs. Further, Zhang
et al. (2021) model document-slevel RE as a se-
mantic segmentation problem. In this way, the
dependencies among entity pairs can be captured
via CNN, which, however, ignores the fact that
relation prediction difficulties of entity pairs are
different. Instead, Zeng et al. (2021) treat intra-
and inter-sentence entity pairs as easily-predicted
and difficultly-predicted ones, and use different en-
coders to learn their representations, respectively.
Although this method is simple, it cannot accu-
rately distinguish prediction difficulties of entity
pairs.

In this paper, we propose a document-level RE
model with iterative inference. Overall, as shown
in Figure 2, our model mainly consists of two mod-
ules: 1) an base module used to firstly predict the
relations of entity pairs roughly; 2) a inference mod-

ule exploiting the prediction results of the previous
iteration to refine the predictions in an iterative
manner. Particularly, we equip the inference mod-
ule with an attention mechanism, which enables
the module to accurately exploit the dependencies
among overlapping entity pairs. By doing so, we
expect that based on the prediction results of the
previous iteration, inference module can deal with
difficultly-predicted entity pairs depending on other
pairs in an easy-to-hard manner.

Furthermore, we adopt a two-stage strategy to
train our model. First, we only train our base mod-
ule. Second, we train the entire model, where the
base module is set with a relatively small learning
rate to keep its parameters and performance stable.
Particularly, at the second stage, we introduce con-
trastive learning to encourage inference module to
exploit the previously-predicted results better.

To investigate the effectiveness of our model,
we conduct several groups of experiments on
commonly-used datasets. Experimental results and
in-depth analyses strongly demonstrate the superi-
ority of our model.

2 Our Proposed Model

In this section, we elaborate on our model. As
shown in Figure 2, our model is composed of two
modules: base module (Section 2.1) and inference
module (Section 2.2). Finally, we give a detailed
description of the model training (Section 2.3).

2.1 Base Module

We chose a competitive baseline model, ATLOP
(Zhou et al., 2021), to construct our base module.
It is used to make preliminary predictions on rela-
tions of entity pairs providing basic information for
inference module. Here, we give a brief introduc-
tion to ATLOP. Please refer to (Zhou et al., 2021)
for more details.

Let D=[w1, w2, ..., wL] denotes the input doc-
ument that contains a set of entities {ei}Ni=1. Note
that an entity ei may appear multiple times in the
document by mentions {mi

j}
Nei
j=1. To obtain bet-

ter entity representations, we first insert a special
symbol “∗” at the start and end of the mention
to mark its span. Then, we feed the document
into a pre-trained language model, obtaining its
contextual embeddings: H=[h1, h2, ..., hL]. Par-
ticularly, we take the context embedding of each
mention’s start symbol “∗” as its feature vector. Fi-
nally, via logsumexp pooling (Jia et al., 2019), we
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Figure 2: The overall architecture of our model. We
first use base module to make preliminary predictions.
Then, inference module gradually revises the prelimi-
nary predictions through K-iteration inference. F0 and
R

(∗)
0 refer to the feature matrix and relation matrix of

entity pairs, respectively. Note that the initial input of
inference module is (F0,R

(0)
0 ) (k=0), while the input of

inference module becomes (F0,R
(k)
0 ) in the subsequent

iterations (k>0).

aggregate all mention-level context embeddings of
entity ei to obtain its final representation vector,
i.e., h(ei) = log

∑Nei
j=1 exp(h(m

i
j )).

Unlike ATLOP directly using a bilinear function
to predict the relations of entity pairs, we firstly
compute a feature vector for each entity pair, and
then stack a single linear layer to predict their re-
lations. Specifically, for an entity pair (es, eo), we
calculate a local context vector cs,o according to
the attention matrix A of the last BERT layer:

cs,o = HT As ◦Ao

1T(As ◦Ao)
, (1)

where As and Ao denote the attention weights of
entity es and eo to all tokens in document, respec-
tively, and ◦ refers to element-wise multiplication.
By doing so, cs,o can effectively capture the lo-
cal contextual information related to both entities,
which can be further used to enhance the repre-
sentation of entity pair (es, eo). Afterwards, we
compute the initial feature vector Fs,o of (es,eo) as

Fs,o = FNN
([

tanh(Ws[h(es), cs,o]), (2)

tanh(Wo[h(eo), cs,o])
)
, (3)

where FNN(·) refers to a feed-forward neural net-
work, Wo and Ws are learnable weight matrices.
Finally, we obtain the probability distribution ps,o
of relations assigned to (es, eo) through a simple
linear layer:

ps,o = σ(WrFs,o + br), (4)

where Wr and br are model parameters.

2.2 Inference Module
As mentioned previously, we introduce inference
module to iteratively refine the predictions of base

Figure 3: Illustration of Inference Module. It contains
NI inference layers and a classifier. With two ECA
units, inference layers perform feature- and relation-
level inference on the feature and relation matrices.

module, until the maximal iteration number K is
reached. As illustrated in Figure 3, this module
consists of NI inference layers and a classifier. In-
ference layers are used to perform inference, where
the dependencies among overlapping entity pairs
are leveraged to learn better entity pair representa-
tions. Then, with the output of the top inference
layer, the classifier produces better predictions.

To facilitate the computation of inference mod-
ule, we combine the feature vectors of all en-
tity pairs into a feature matrix F0=[Fs,o]N×N ,
where each row F0[s,∗] corresponds to a subject
entity es and each column F0[∗,o] corresponds to
an object entity eo. Similarly, we employ the em-
bedding operation emb(·) to construct a relation
matrix R(0)

0 =[emb(argmax (ps,o))]N×N from the
prediction results of base module, where ps,o is cal-
culated in Equation (4), the subscript ∗ and super-
script (∗) of R(0)

0 denote the inference layer index
and iterative index, respectively.

Inference Layer At the k-th iteration, with F0

and R
(k)
0 as inputs, inference layers are committed

to learning more expressive feature matrix FNI
and

relation matrix R
(k)
NI

. Back to Figure 3, each infer-
ence layer contains three core components: 1) two
Extended Cross Attention (ECA) units performing
feature- and relation-level inference, respectively
(See the blue and black lines in Figure 3), and 2)
a Fusion sub-layer combining the outputs of ECA
units. Since inference layers perform the feature-
and relation-level inference in the same way, we
take the feature-level inference as an example to
illustrate its details.

ECA is a variant of the conventional multi-head
self-attention. The basic intuition behind ECA is
that for each entity pair (es, eo), its overlapping
entity pairs can provide important information for
inferring its relations. To model this intuition, we
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extend the multi-head self-attention to ECA that
only focuses on overlapping entity pairs. Note that
these overlapping entity pairs are only located in
the s-th row, s-th column, o-th row and o-th column
of the feature matrix. To effectively exploit their
information, we equip ECA with four attention
heads to capture their effects, respectively. For
example, at the l-th layer, we calculate the first
attention head of ECA as follows:

head1=Attention(Fl[s,o],Ml[s,∗],Ml[s,∗]), (5)

Attention(Q,K,V) = softmax(
QKT

√
dk

)V, (6)

where Ml=[Fl, R
(k)
l ] is the concatenated matrix of

Fl and R
(k)
l , Ml[s,∗] denotes the s-th row of Ml, dk

is the dimension of key (K) and query (Q). Then,
we merge all attention heads to obtain the output
of ECA, which is a temporary feature matrix F̃l:

F̃l = Concat(head1, ...,head4)WO, (7)

where WO is a model parameter matrix. Likewise,
we use the other ECA to obtain a temporary rela-
tion matrix R̃

(k)
l . Subsequently, fusion sub-layer

combines F̃l and R̃
(k)
l through a gating mechanism:

sl = Sigmoid([F̃l , R̃
(k)
l ]Wg + bg), (8)

M̃l = sl ◦ F̃l + (1− sl) ◦ R̃(k)
l , (9)

where Wg and bg are trainable parameters.
Finally, we obtain the output of the l-th inference

layer as follows:

Fl+1=LayerNorm(Fl + FNN(M̃l )), (10)

R
(k)
l+1=LayerNorm(R

(k)
l + FNN(M̃l )), (11)

where LayerNorm(·) is layer normalization (Ba
et al., 2016).

After repeating this inference process NI times,
we get the updated feature matrix FNI

and relation
matrix R

(k)
NI

.

Classifier On the basis of R
(k)
NI

and FNI
, we

stack a single-layer classifier to provide more re-
fined predictions on entity pairs:

P (k+1) = σ(Wc

[
FNI

, R
(k)
NI

]
+ bc). (12)

Finally, we obtain the relation matrix of the (k+1)-
th iteration: R(k+1)

0 = emb
(
argmax(P (k+1))

)
.

We perform the above-mentioned inference for
K times, obtaining the final predictions P (K).

2.3 Model Training

We adopt a two-stage strategy to train our model.
At the first stage, we use an adaptive threshold loss

Figure 4: Illustration of our contrastive learning. The
stop-gradient operation stop-grad can effectively pre-
vent the representation space of the model from collaps-
ing. Note the feature matrix and relation matrix fed into
the two inference modules sharing parameters are in
reverse order, which forces the inference module to treat
both types of matrices equally.

LR to only train base module. At the second stage,
we train the entire model, where we set a relatively
small learning rate for base module to maintain its
parameters and performance stable. Particularly,
in addition to LR, we introduce a contrastive loss
LC to enhance the training of inference module.
To improve the training efficiency at this stage,
following Ghazvininejad et al. (2019), we train
inference module to directly correct the predictions
of base module in a one-pass manner, as opposed
to the multiple iterations used during testing. Next,
we describe our losses in detail.

Adaptive Threshold Loss LR This loss is pro-
posed by Zhou et al. (2021), aiming to alleviate
the imbalanced relation distribution problem in
document-level RE. In this work, we introduce this
loss into our model training, which is defined as

LR=−
∑

r∈PT

log
( exp(logitr )∑

r′∈{PT ,TH} exp(logitr ′)

)

− log
( exp(logitTH)∑

r′∈{NT ,TH} exp(logitr ′)

)
, (13)

where TH is a threshold relation used to distinguish
between positive and negative relations. This loss
will push the logits of all positive relations PT to
be higher than that of TH, and pull the logits of all
negative relations NT to be lower than that of TH.

Contrastive Loss LC To prevent inference mod-
ule from just simply replicating the predictions
of base module, we inject noises into the relation
matrix R

(0)
0 by randomly substituting r percent of

predicted relations with incorrect ones. However,
such a noises injection renders the relation matrix
R

(0)
0 less stable than the feature matrix F0. As a re-

sult, inference module prefers predicting relations
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using only F0. To address this defect, we introduce
a variant method of contrastive learning, SimSiam
(Chen and He, 2021), to enhance the training of
our inference module. Unlike the conventional con-
trastive learning, such as (Chen et al., 2020a; He
et al., 2020; Khosla et al., 2020), it only focuses
on pulling together the representations of exam-
ples in positive pairs. In this way, it can avoid the
drawback of pushing negative pairs far apart in
conventional contrastive learning, which may limit
the potential of inference module to capture the
dependencies among entity pairs.

Concretely, as shown in Figure 4, we generate
two different relation matrices, R(0)

0 and R̂
(0)
0 , by

adding various noises to relation matrix R
(0)
0 . Then,

we obtain a positive pair consisting of two exam-
ples (F0, R

(0)
0 ) and (R̂

(0)
0 , F0), which are fed into

inference module to produce the corresponding out-
puts MNI

and M̂NI
, respectively. Please note that

the input order of the feature and relation matri-
ces is inverted in these two examples. Finally, we
define the contrastive loss as follows:

LC=2−
(
Cosine

(
MLP(M̂NI

), SG(MNI

)

+Cosine
(
MLP(MNI

), SG(M̂NI
)
))

,
(14)

where MNI
=[FNI

, R
(0)
NI

] and M̂NI
=[FNI

, R̂
(0)
NI

]
are the outputs of the top inference layer, Cosine(·)
indicates a cosine similarity function, SG(·) refers
to a stop-gradient operation that prevents the model
training from collapsing (Chen and He, 2021), and
MLP(·) stands for a multi-layer perceptron func-
tion, our predictor, which helps the model learn
better representations (Chen and He, 2021; Chen
et al., 2020a). In this way, inference module will
be encouraged to fully utilize the relation matrix.

3 Experiments

3.1 Datasets
DocRED (Yao et al., 2019) This dataset is a large-
scale crowdsourced dataset for document-level RE,
which is constructed from Wikipedia and Wikidata.
It contains 3,053 documents for training, 1,000 for
development, and 1,000 for testing. Each document
contains 26 entities on average. In total, this dataset
involves 97 target relations.

CDR (Li et al., 2016) It is a biomedical dataset
that is constructed from the PubMed abstracts.
CDR has only one target relation: Chemical-
Induced-Disease between chemical and disease en-
tities. It includes about 1,500 human-annotated

documents, which are equally split into training,
development and test sets.

GDA (Wu et al., 2019) It is also a biomed-
ical dataset, which is constructed from MED-
LINE abstracts via distant supervision. Following
Christopoulou et al. (2019), we split its training
set into two parts: training set (23,353 documents)
and development set (5,839 documents), and di-
rectly evaluate the model on its test set (1,000 doc-
uments).

3.2 Settings

We develop the proposed model based on Py-
Torch. We used BERT-base (Devlin et al., 2019)
or RoBERTa-large (Liu et al., 2019) as the encoder
on DocRED and SciBERT (Beltagy et al., 2019)
on CDR and GDA. Inspired by Ghazvininejad et al.
(2019), we sample the noise rate r of the relation
matrix from a uniform distribution U(0, 0.4) dur-
ing training. We apply AdamW (Loshchilov and
Hutter, 2019) to optimize our model, with a linear
warmup (Goyal et al., 2017) during the first 6%
steps followed by a linear decay to 0. All hyper-
parameters are tuned on the development set, and
some of them are listed in Appendix A.

3.3 Baselines

We compare our model with the following two
types of baselines:

Graph-based Models These models first con-
struct a document graph from the input document
and then perform inference on the graph through
GNNs. We include EoG (Christopoulou et al.,
2019), DHG (Zhang et al., 2020), GEDA (Li et al.,
2020), LSR (Nan et al., 2020), GLRE (Wang et al.,
2020a), GAIN (Zeng et al., 2020), HeterGSAN
(Xu et al., 2021), and SSAN (Xu et al., 2021) for
comparison.

Transformer-based Models These models di-
rectly use the pre-trained language models for
document-level RE without graph structures. We
compare BERT-base (Wang et al., 2019a), BERT-
TS (Wang et al., 2019a), HIN-BERT (Tang et al.,
2020), Coref-BERT (Ye et al., 2020), and ATLOP-
BERT (Zhou et al., 2021) with our model.

Besides, we consider some recently-proposed
methods that exploit the dependencies among en-
tity pairs to improve the performance of document-
level RE, including DocuNet (Zhang et al., 2021),
SIRE (Zeng et al., 2021), and KD (Tan et al., 2022).
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Model Dev Test

IgnF1 F1 Intra-F1 Inter-F1 IgnF1 F1

GEDA-BERT (Li et al., 2020) 54.52 56.16 − − 53.71 55.74
LSR-BERT (Nan et al., 2020) 52.43 59.00 65.26 52.05 56.97 59.05
GLRE-BERT (Wang et al., 2020a) − − − − 55.40 57.40
GAIN-BERT (Zeng et al., 2020) 59.14 61.22 67.10 53.90 59.00 61.24
HeterGSAN-BERT (Xu et al., 2021) 58.13 60.18 − − 57.12 59.45
SSAN-BERT (Xu et al., 2021) 56.68 58.95 − − 56.06 58.41

BERT (Wang et al., 2019a) − 54.16 61.61 47.15 − 53.20
BERT-Two-Step (Tang et al., 2020) − 54.42 61.80 47.28 − 53.92
HIN-BERT (Tang et al., 2020) 54.29 56.31 − − 53.70 55.60
CorefBERT (Ye et al., 2020) 55.32 57.51 − − 54.54 56.96
ATLOP-BERT (Zhou et al., 2021) 59.22 61.09 − − 59.31 61.30

DocuNet-BERT (Zhang et al., 2021) 59.86 61.83 − − 59.93 61.86
SIRE-BERT (Zeng et al., 2021) 59.82 61.60 68.07 54.01 60.18 62.05
KD-BERT (Tan et al., 2022) 60.08 62.03 − − 60.04 62.08

Ours-BERT 60.75±0.12 62.74±0.15 69.14±0.10 55.54±0.19 60.68 62.65

Table 1: The model performance on the development and test sets of DocRED. We run experiments 5 times with
different random seeds and report the mean and standard deviation on the development set. We save the best
checkpoint on the development set and then report the official test scores on the CodaLab scoreboard. The results of
RoBERTa-large-based model are reported in Appendix B.

K/NI 1 2 3 4

1 61.53 61.85 61.80 61.66
2 61.96 62.29 62.07 62.01
3 62.41 62.74 62.66 62.47
4 62.25 62.65 62.53 62.33

Table 2: The performance (F1 points) of our model
with different values of K and NI on the development
set of DocRED.

3.4 Effect of Iteration Number K and Layer
Number NI

The iteration number K of inference module and
the layer number NI of inference layers are two
important hyper-parameters of our model, which
directly affect the performance of inference mod-
ule. Thus, we conduct an experiment with different
values of K and NI on the development set of Do-
cRED. From Figure 5, we observe that our model
achieves the best performance when K and NI are
set to 3 and 2, respectively. Hence, we use K=3
and NI=2 in all subsequent experiments.

3.5 Main Results

Results on DocRED Following Zeng et al. (2020),
we use F1 and IgnF1 as the evaluation metrics.
IgnF1 denotes the F1 points excluding the rela-
tional facts that are shared by the training and de-
velopmen/test sets. As shown in Table 1, our model
consistently outperforms all baselines. Besides, we
draw the following interesting conclusions:

First, our model performs better than ATLOP-

BERT, our base model, by 1.35 F1 and 1.37 IgnF1

points on the test set, which demonstrates the effec-
tiveness of our inference module.

Second, our model also obtains improvements of
1.41 F1 and 1.86 IgnF1 points on the test set, com-
pared with the graph-based SOTA model, GAIN-
BERT, which exploits the entity- and mention-level
dependencies for document-level RE. These results
demonstrate that the dependencies among entity
pairs are more important for document-level RE
than ones among entities or mentions.

Third, our model surpasses SIRE-BERT and KD-
BERT, both of which use an attention mechanism
to capture the dependencies among entity pairs.
This verifies that our model can more effectively
capture the dependencies among entity pairs.

Finally, we follow Zeng et al. (2020, 2021) to re-
port Intra-F1 and Inter-F1 points in Table 1. Please
note that these two metrics only consider intra- and
inter-sentence relations, respectively. Compared
with Intra-F1, Inter-F1 can better reflect the infer-
ence ability of the model. In terms of Inter-F1, our
model surpasses SIRE-BERT by 1.53 points.

Results on the Biomedical Datasets We also
conduct experiments on the biomedical datasets,
of which results are shown in Table 3. Our model
still consistently outperforms all previous baselines.
On CDR and GDA, our model obtains F1 points of
73.2 and 85.9, with absolute improvements of 3.8
and 2.0 over our base model (ATLOP-SciBERT),
respectively. Thus, we confirm that our model is
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Model CDR GDA

BRAN (Verga et al., 2018) 62.1 −
EoG (Christopoulou et al., 2019) 63.6 81.5
LSR (Nan et al., 2020) 64.8 82.2
DHG (Zhang et al., 2020) 65.9 83.1
SciBERT (Beltagy et al., 2019) 65.1 82.5
ATLOP-SciBERT (Zhou et al., 2021) 69.4 83.9
SIRE-BioBERT (Zeng et al., 2021) 70.8 84.7

Ours-SciBERT 73.2 85.9

Table 3: The F1 points on the CDR and GDA test sets.

also genralized to biomedicine.

3.6 Ablation Study

To investigate the effectiveness of different compo-
nents on our model, we further compare our model
with the following variants in Table 4.

(1) w/o fusion sub-layer. In this variant, we re-
move the fusion sub-layer from inference module,
which leads to a drop of 0.37 F1 points. It suggests
that combining the feature- and relation-level infer-
ence information of entity pairs is indeed useful for
improving the performance of the model.

(2) w/o ECA. In this variant, we replace each
ECA unit with a standard multi-head self-attention,
where all other entity pairs can be considered. This
change causes a significant performance decline.
The underlying reason is that focusing on all other
entity pairs introduces many noises to our model.

(3) w/o contrastive loss LC . When we discard the
contrastive loss during the second training stage,
the performance of our model degrades by 0.58
F1 points, which confirms that our contrastive loss
effectively enhances inference module. Inspired
by Wu et al. (2021b), we examine the average
weights of the feature matrix and relation matrix in
the classifier of the inference module, which can
intuitively reflect the importance of the two ma-
trices in relation prediction (See Wc in Equation
(12)). From Figure 5(a), we observe that inference
module prefers to predict relations using the more
stable feature matrix. However, when introduc-
ing the contrastive loss LC , inference module can
simultaneously exploit both feature matrix and rela-
tion matrix in relation prediction (See Figure 5(b)).
Specifically, in this variant, the average weights of
the feature matrix and the relation matrix are 0.045
and 0.007, while they are 0.026 and 0.023 in our
model. These results suggest that our contrastive
loss can encourage inference module to better ex-
ploit the relation matrix.

(4) w/ negative pairs. In this variant, we replace

Model IgnF1 F1

ATLOP-BERT (our base) 59.22 61.09

Ours-BERT 60.75 62.74
w/o fusion sub-layer 60.43 62.37
w/o ECA 59.29 61.22
w/o contrastive loss LC 60.26 62.16
w/ negative pairs 60.25 62.06
w/o pre-training 59.51 61.45
w/ freeze base module 60.35 62.31

Table 4: Ablation study of our model on the develop-
ment set of DocRED.

Figure 5: Illustration of the average weights of feature
matrix and relation matrix in the classifier of the infer-
ence module.

our contrastive learning with SimCLR (Chen et al.,
2020a) and take two different entity pairs from the
same entity pair matrix to produce negative pairs.
In addition to pulling together representations of
samples in positive pairs like our contrastive learn-
ing, this variant also pushs the representations of
samples in negative pairs far apart. Apparently, the
performance drop reported in line 7 indicates that
pushing entity pairs far apart limits the potential
of inference module to capture the dependencies
among entity pairs.

(5) w/o pre-training. Different from our two-
stage training strategy, this variant directly trains
our entire model without the pre-training of base
module. From the line 8 of Table 4, we can observe
a drop of 1.29 F1 points, confirming that the pre-
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Model Dev Test

IgnF1 F1 IgnF1 F1

Coref-RoBERTa-large (Ye et al., 2020) 57.35 59.43 57.90 60.25
GAIN-RoBERTa-large (Zeng et al., 2020) 60.87 63.09 60.31 62.76
SSAN-RoBERTa-large (Xu et al., 2021) 59.40 61.42 60.25 62.08
ATLOP-RoBERTa-large (Zhou et al., 2021) 61.32 63.18 61.39 62.40
DocuNet-RoBERTa-large (Zhang et al., 2021) 62.23 64.12 62.39 64.55
KD-RoBERTa-large (Tan et al., 2022) 62.16 64.19 62.57 64.28

Ours-RoBERTa-large 62.66±0.11 64.58±0.13 62.92 64.88*

Table 5: The performance of the RoBERTa-large-based model on the development and test sets of DocRED. *
denotes significant at ρ<0.01 with 1,000 bootstrap tests. We run experiments 5 times with different random seeds
and report the mean and standard deviation on the development set. We save the best checkpoint on the development
set and then report the official test scores on the CodaLab scoreboard.

Model Infer-F1 Pre. Recall

GAIN-GloVe 40.82 32.76 54.14
SIRE-GloVe 42.72 34.83 55.22

BERT-RE 39.62 34.12 47.23
GAIN-BERT 46.89 38.71 59.45

Ours-BERT 48.75 45.02 53.15
w/o ECA 46.91 41.05 54.73
w/o Inference module 46.76 38.74 58.96

Table 6: Infer-F1 points on the dev set of DocRED.

trained base module can provide inference module
with better basic information.

(6) w/ freeze base module. To confirm that the
performance improvement of our model mainly
benefits from inference module, we freeze base
module at the second stage of training. This vari-
ant still achieves an F1 score of 62.31, which im-
proves the performance of our base model (ATLOP-
BERT) by 1.22 F1 points. This also implies that
our inference module can be used with other types
of base modules in a plug-and-play manner.

3.7 Analysis of Inference Performance

To further evaluate the inference ability of our
model, we follow Zeng et al. (2020, 2021) to re-
port Infer-F1 points in Table 6, which only con-
siders the relations engaged in the relational infer-
ence process. For example, if the relational triples
(eh, r1, eo), (eo, r2, et) and (eh, r3, et) co-occur in
the same document, we take them into account in
the calculation of Infer-F1 points.

In terms of Infer-F1, our model yields an im-
provement of 1.86 points over GAIN. Moreover,
the performance of our model sharply drops by
1.84 Infer-F1 points when we replace ECA units
with standard multi-head self-attentions. Mean-
while, without inference module, our model also
suffers from performance degradation of 1.99 Infer-

F1 points. All these results also strongly demon-
strate that our inference module can effectively
improve the inference ability of the model.

Finally, we introduce a case study in Appendix B
to visually show the effectiveness of our model.

3.8 RoBERTa-large-based model

Following some recent studies(Zhou et al., 2021;
Zhang et al., 2021; Tan et al., 2022), we also report
the performance of the RoBERTa-large based mod-
els on the DocRED dataset. From Table 5, we can
observe that our model consistently outperforms all
baselines. Specifically, our model significantly sur-
passes our base module(ATLOP-RoBERTa-large)
by 1.48 F1 points (statistical significance ρ<0.01),
and also exceeds KD-RoBERTa-large by 0.6 F1
points on the test sets of DocRED.

4 Related Work

Early studies on RE mainly focus on sentence-level
RE, which predicts the relation between two enti-
ties within a single sentence. In this aspect, many
approaches (Zeng et al., 2015; Feng et al., 2018;
Wang et al., 2020b; Ye et al., 2020; Yu et al., 2020;
Wu et al., 2021a; Huang et al., 2021; Li et al., 2021)
have been proven to be effective in this task. How-
ever, because many relational facts in real appli-
cations are expressed by multiple sentences (Yao
et al., 2019), researchers gradually shift their atten-
tion to document-level RE.

To this end, researchers have proposed two
kinds of methods: Transformer-based and GNN-
based methods. Due to the fact that GNNs can
model the dependencies among entities or men-
tions and have strong inference ability, many re-
searchers explore GNNs for better document-level
RE (Christopoulou et al., 2019; Li et al., 2020;
Zhang et al., 2020; Zhou et al., 2020; Wang et al.,
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2020a; Nan et al., 2020; Zeng et al., 2020; Xu et al.,
2021). Usually, they first construct a document
graph, which uses mentions or entities as nodes and
leverages heuristic rules and semantic dependen-
cies to build edges. Then, they perform inference
with GNNs on the graph. For example, Nan et al.
(2020) treat the document graph as a latent variable
which can be dynamically induced via structure
attention. During this process, the induced graph
structure can be exploited for better inference in
document-level RE. Zeng et al. (2020) propose a
graph aggregation-and-inference network involv-
ing a heterogeneous mention-level graph and an
entity-level graph. These two graphs are utilized to
model dependencies among mentions and entities,
respectively. Meanwhile, due to the advantage of
Transformer (Vaswani et al., 2017) on implicitly
modeling long-distance dependencies, some stud-
ies (Wang et al., 2019b; Tang et al., 2020; Zhou
et al., 2021) directly apply pre-trained language
models to document-level RE. Zhou et al. (2021)
propose the ATLOP model that features two tech-
niques: adaptive thresholding (Chen et al., 2020b)
and localized context pooling. However, these two
types of methods mainly focus on mention- and
entity-level information, ignoring the dependencies
among entity pairs in same context, which have an
important impact on document-level RE.

In contrast, Zhang et al. (2021) and Tan et al.
(2022) exploit the dependencies among entity pairs
to facilitate document-level RE, however, ignore
the fact that relation prediction difficulties of en-
tity pairs are different. Furthermore, Zeng et al.
(2021) divide entity pairs into intra- and inter-
sentence ones, which are considered to have dif-
ferent prediction difficulties. However, such a
division is too simple to accurately distinguish
easily- and difficultly-predicted entity pairs. Un-
like these methods only utilizing feature-level in-
formation of entity pairs in one pass, we leverage
both feature- and relation-level information of en-
tity pairs through iterative inference, allowing our
model to capture the dependencies among entity
pairs more comprehensively.

Besides, our work is inspired by the mask-
predict decoding strategy for non-autoregressive
NMT (Ghazvininejad et al., 2019; Zhou et al.,
2022). In this work, we adapt this strategy into
document-level RE. To the best of our knowledge,
our work is the first attempt to exploit iterative
decoding for this task. Finally, our work is also

related to the studies on GNN-based iterative en-
coding (Lee et al., 2018; Wadden et al., 2019; Lai
et al., 2021). Unlike these studies, we train infer-
ence module to directly correct the noisy predic-
tions of base module in a one-pass manner rather
than iterative manner, while iterative inference is
used only during testing.

5 Conclusion and Future Work

In this work, we have proposed a novel document-
level RE model with iterative inference, which
mainly contains two modules: base module and
inference module. We first use base module to
make preliminary predictions on the relations of
entity pairs. Then, via iterative inference, infer-
ence module gradually refines the predictions of
base module, which is expected to effectively deal
with difficultly-predicted entity pairs depending on
other pairs. Experiments on three public document-
level RE datasets show that our model significantly
outperforms existing competitive baselines. In fu-
ture, we attempt to apply our model to other inter-
sentence or document-level NLP tasks, such as
cross-sentence collective event detection.
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Limitations

The limitations of our method mainly include fol-
lowing two aspects: 1) since our method mainly
focuses on relational inference, which is rarely re-
quired in sentence-level RE, it has low scalability
to sentence-level RE. 2) because relational infer-
ence is a complex problem, we require a significant
amount of relational inference-specific labeled data
to effectively train our model.
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Hyper-parameter DocRED CDR GDA

BERT RoBERTa-large SciBERT SciBERT

At the first stage

Batch size 8 4 8 6
Epoch number 30 30 20 10
The learning rate for encoder 5e-5 5e-5 1e-5 2e-5
The learning rate for classifier 1e-4 1e-4 5e-5 8e-5

At the second stage

Batch size 8 4 8 6
Epoch number 15 15 10 5
The learning rate for base module 1e-5 5e-6 1e-6 2e-6
The learning rate for Inference module 1e-4 1e-4 5e-5 8e-5

Table 7: Hyper-parameter Setting.

Figure 6: The case study of our model and our base model (ATLOP). We can observe that our base model usually
focuses on identifying the relations of easily-predicted entity pairs. Meanwhile, based on the predictions of base
model, our inference module can infer the relations of difficultly-predicted entity pairs. We only show a part of
entities within the documents and the according sentences due to the space limitation.

A Hyper-parameters Setting

Table 7 details our hyper-parameter setting. All of
our hyper-parameters are tuned on the development
set.

B Supplementary Experiments

Case Study Figure 6 shows the case study of
our model and our base model (ATLOP). We can
observe that ATLOP usually focuses on easily-
predicted entity pairs, of which predictions do not
require reference to the predicted results of other
pairs. Meanwhile, based on the predictions of base
model, our inference module can infer difficultly-
predicted entity pairs, of which prediction depends
on the predicted results of its overlapping pairs.

Ablation studies on CDR and GDA: To further
illustrate the effectiveness of different modules in
the biomedical field, we also conduct ablation ex-
periments on CDR and GDA datasets. From Ta-
ble 8, we observe that all the components contribute

Model CDR GDA

Ours-SciBERT 73.2 85.9
w/o ECA 70.5 84.0
w/o fusion sub-layer 72.4 85.2
w/o contrastive loss 71.7 84.6

Table 8: Ablation study of our model on the CDR and
GDA test sets.

to the model performance on these two biomedical
datasets.
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