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Abstract

Conceptual knowledge is fundamental to hu-
man cognition and knowledge bases. However,
existing knowledge probing works only focus
on evaluating factual knowledge of pre-trained
language models (PLMs) and ignore concep-
tual knowledge. Since conceptual knowledge
often appears as implicit commonsense behind
texts, designing probes for conceptual knowl-
edge is hard. Inspired by knowledge represen-
tation schemata, we comprehensively evaluate
conceptual knowledge of PLMs by designing
three tasks to probe whether PLMs organize
entities by conceptual similarities, learn con-
ceptual properties, and conceptualize entities
in contexts, respectively. For the tasks, we col-
lect and annotate 24k data instances covering
393 concepts, which is COPEN, a COncep-
tual knowledge Probing bENchmark. Exten-
sive experiments on different sizes and types
of PLMs show that existing PLMs systemat-
ically lack conceptual knowledge and suffer
from various spurious correlations. We be-
lieve this is a critical bottleneck for realiz-
ing human-like cognition in PLMs. COPEN
and our codes are publicly released at https:
//github.com/THU-KEG/COPEN.

1 Introduction

Pre-trained language models (PLMs) have achieved
superior performance on most NLP tasks requir-
ing substantial world knowledge (Qiu et al., 2020;
Han et al., 2021). It is interesting and meaning-
ful to probe the extent and scope of world knowl-
edge within PLMs. Existing knowledge probing
works have evaluated PLMs’ knowledge about en-
tities (Broscheit, 2019; Tenney et al., 2019a) and
their relations (Petroni et al., 2019; Jiang et al.,
2020; Roberts et al., 2020), i.e., factual knowledge,
but ignore conceptual knowledge.
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Figure 1: An example knowledge graph. Entities are or-
ganized by concepts through the Instance of relation
and concepts are organized into a taxonomy through the
Subclass of relation. Each concept has certain prop-
erties. Existing work only probes factual knowledge
in entity graphs, ignoring conceptual knowledge in the
concept taxonomy and Instance of relation.

Conceptual knowledge, especially the abstrac-
tion ability, is fundamental to all kinds of hu-
man cognition (Carey, 1991; Collins and Olson,
2014) including language processing (Waxman and
Markow, 1995; Wellsby and Pexman, 2014). Just
as the quote of psychologist Gregory Murphy, con-
cepts are the glue that holds our mental world
together (Murphy, 2004). Moreover, knowledge
bases (Suchanek et al., 2007; Auer et al., 2007;
Vrandečić, 2012) organize massive entities via con-
cept taxonomies as illustrated in Figure 1, which
enable broad applications (Lv et al., 2018; Zhou
et al., 2021). Therefore, probing whether PLMs
have human-like conceptual knowledge is neces-
sary in knowledge probing.

Inspired by the conceptual schema in knowledge
representations (Sowa, 1976; Decker et al., 2000;
McGuinness et al., 2004; Antoniou and Van Harme-
len, 2004), we comprehensively evaluate the con-
ceptual knowledge of PLMs by asking three ques-
tions: Do PLMs organize entities by conceptual
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similarities? Do PLMs know the properties of con-
cepts? Can PLMs correctly conceptualize entities
in contexts? In this paper, we design three probing
tasks for these questions: (1) The conceptual simi-
larity judgment (CSJ) task studies whether PLMs
organize entities by conceptual similarities, which
is the basis of understanding concepts. Given a
query entity, CSJ requires PLMs to choose the most
conceptually similar entity among candidate enti-
ties. For example, in Figure 1, given Dolly as the
query entity, although UK has a direct relation and
more co-occurrences with it, PLMs should choose
Grumpy Cat. (2) The conceptual property judg-
ment (CPJ) task probes whether PLMs have the
knowledge of conceptual properties, which are the
generic abstractions of factual knowledge. Given a
statement about a specific property, such as “have
feathers”, CPJ requires PLMs to judge whether it
is true for a specific concept and also a concept
chain, which evaluates whether PLMs understand
the property transitivity among a chain of hierar-
chical concepts. (3) The conceptualization in con-
texts (CiC) task evaluates the abilities of PLMs
to correctly conceptualize entities within contexts.
Given an entity mentioned in a specific context,
PLMs are required to choose the most appropri-
ate concept in a concept taxonomy according to
its context. CiC requires not only disambiguating
entity mentions, but also distinguishing superordi-
nate and subordinate concepts. For instance, given
the context “Dolly is running on the grassland”,
PLMs should conceptualize Dolly as an Animal
since there is no enough evidence for Mammal.

Based on the above considerations, we con-
struct a conceptual knowledge probing benchmark,
COPEN, which contains a concept taxonomy with
446 concepts and high-quality data of 24K in-
stances for the three probing tasks. The concept
taxonomy is curated by experts based on DBpe-
dia (Auer et al., 2007) and Wikidata (Vrandečić
and Krötzsch, 2014) to form a well-defined hierar-
chy and cover broad entities. The data instances
for three tasks are collected by aligning entities
in Wikidata and sentences in GenericsKB (Bhak-
thavatsalam et al., 2020), Wikipedia1, and Simple
Wikipedia2 into the concept taxonomy and then
manually annotated by crowd-sourcing annotators.

We conduct extensive experiments on COPEN
to evaluate various widely-used language mod-

1https://en.wikipedia.org/
2https://simple.wikipedia.org/

els (LMs), which include three types: masked
LMs (Devlin et al., 2019; Liu et al., 2019b), autore-
gressive LMs (Radford et al., 2019; Black et al.,
2021), and sequence-to-sequence LMs (Lewis
et al., 2020; Raffel et al., 2020). We conduct the
experiments in three settings: (1) zero-shot prob-
ing, which reformulates the probing tasks into pre-
training objectives and lets PLMs score answers
without any training (Petroni et al., 2019); (2) linear
probing, which only tunes additional linear classifi-
cation heads and uses them to handle probing tasks
with the frozen representations produced by PLMs;
(3) fine-tuning, which tunes all the PLM parame-
ters. Experiments show that existing PLMs achieve
non-trivial performance but still significantly un-
derperform ordinary persons on all three probing
tasks. Further analyses show that PLMs suffer from
spurious correlations like word co-occurrences and
out-of-context predictions, and increasing model
scale brings marginal improvements.

To summarize, our contributions are three-fold:
(1) We propose to probe PLMs for conceptual
knowledge, which has long been ignored, and de-
sign three probing tasks inspired by the knowledge
representation works. (2) We construct COPEN,
a probing benchmark containing high-quality con-
cept taxonomy and probes. (3) We empirically
show that existing PLMs systematically lack con-
ceptual knowledge and analyze the reasons. We
hope our benchmark and findings could facili-
tate further research on concept-aware PLMs and
human-like language understandings.

2 COPEN Benchmark

In this session, we introduce our COPEN bench-
mark, including the construction of the concept
taxonomy (§ 2.1) and the datasets for three prob-
ing tasks (§§ 2.2 to 2.4). More construction and
annotation details are shown in appendix D.

2.1 COPEN Concept Taxonomy

Designing the three probing tasks takes inspira-
tion from concept schemata in knowledge rep-
resentations (Decker et al., 2000; McGuinness
et al., 2004), which are widely used in knowledge
graphs (Suchanek et al., 2007; Auer et al., 2007;
Vrandečić, 2012). In general, it uses the instance
of relation to link the entities (specific instances)
into abstract concepts, and uses the subclass of
relation to organize the concepts into a taxonomy.
Each concept has certain properties describing it as
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Figure 2: Examples for casting the data of three probing tasks into natural language prompts in zero-shot probing.
The names of entities or concepts are the text looked up in Wikidata using their IDs. In Figure (b), texts in bold
(true or false) denote answers. In Figure (b) and (c), the concept chain is Horse –> Mammal –> Animal. In Figure
(c), for entities with multiple concept chains, each concept will be scored independently by PLMs, i.e., the PLMs
make concept-level predictions only. There is no dedicated chain selection procedure.

the example shown in Figure 1.
To support probing dataset construction, we man-

ually curate a concept taxonomy based on DBpe-
dia (Auer et al., 2007) and Wikidata (Vrandečić
and Krötzsch, 2014) in 3 steps: (1) Obtain a basic
taxonomy from DBpedia. We extract the frequent
concepts of DBpedia, which are the concepts with
at least 5 instances, and keep the subclass of
relations between them. (2) Align DBpedia and
Wikidata. For each DBpedia concept, we man-
ually find its equivalent Wikidata item and then
use the subclass of (P279) relations in Wiki-
data to expand the concept taxonomy and use the
instance of (P31) relations to link massive Wiki-
data entities into the concepts. (3) Simplify the
taxonomy. We further remove some unusual con-
cepts to simplify the taxonomy by the guidance
from Schema.org (Guha et al., 2016). For example,
Person is a sub-concept of Animal, Eukaryote,
and Species in DBpedia, which is reasonable but
inconvenient for real-world applications. Follow-
ing Schema.org, we set Person as a top-level con-
cept in the taxonomy. Finally, we achieve a tree-
structure concise concept taxonomy, which con-
tains 446 concepts covering 45 million Wikidata
entities. There are 23 top-level concepts, and we
use 11 of them and their sub-concepts for construct-
ing training and development datasets as well as
the other concepts for the testing datasets.

2.2 Conceptual Similarity Judgment
The conceptual similarity judgment (CSJ) task is
a multiple-choice classification task, which probes
whether PLMs organize entities by conceptual sim-
ilarities, i.e., whether PLMs learn the instance
of relation. Given a query entity, CSJ requires
PLMs to choose the most conceptually similar en-

Train Dev Test

CSJ #Instance 4,462 1,116 3,909
#Concept 84 84 90

CPJ #Instance 3,274 823 4,758
#Concept 215 195 178

CiC #Instance 2,888 722 2,368
#Concept 193 184 155

Table 1: COPEN data statistics for three probing tasks.

tity (instance of the same superordinate concept)
among some candidates. As in Figure 2 (a), PLMs
should choose Pohang Steelers for Inter Milan
since they are both football clubs, although Milan
and Inter Milan co-occur more frequently. The
conceptual similarity here is similar to the cohy-
ponym relation in lexical semantics (Cruse, 1986),
which has been shown to be distinct from but eas-
ily influenced by spurious co-occurrence associa-
tions (Hill et al., 2015). Thus we need to control the
influence of co-occurrences to get faithful results.

Data Collection The data for CSJ is collected
in two steps: (1) Automatic collection. We first
sample 174 concepts that are not subordinates to
each other. Then we retrieve 50 Wikidata entities
most frequently showing up in the Wikipedia cor-
pus for each concept, and then build data instances
by combining them. Each instance consists of a
query entity, an answer entity of the same concept,
and 20 distractor entities, among which 5 are hard
distractors of concepts sharing superordinates with
the concept of query entity. To check the data qual-
ity, we sample 200 instances and find little noise.
(2) Co-occurrence-based filtering. To reduce the
influence of co-occurrences, we need to filter out
the instances that can be easily solved with co-

5017



occurrences. Lastra-Díaz et al. (2019) show that
Glove word embedding (Pennington et al., 2014)
contains rich word co-occurrence information but
limited cohyponym knowledge. Hence we use it
to filter out instances with higher word similarity
between the query and answer entity than distrac-
tor entities. We finally get 9,487 instances, each
including a query entity and 21 candidate entities.
The statistics of data subsets are shown in Table 1.

2.3 Conceptual Property Judgment

The conceptual property judgment (CPJ) task is a
binary sentence classification task, which probes
whether PLMs know the properties of concepts.
Given a statement describing a certain conceptual
property, PLMs are required to judge whether it is
true. For example in Figure 2 (b), PLMs should
predict “true” for the statement instance Mammals
raise their young on milk.

Besides evaluating CPJ at instance level, which
reflects the PLMs’ knowledge about properties for
different individual concepts, we also set a chain-
level evaluation, in which a PLM correctly judges
a property if and only if it correctly judges the
property for every concept in a concept chain. As
the example in Figure 2 (b), a concept chain is a
chain of concepts connected with the subclass
of relation in order. The chain-level evaluation
evaluates whether PLMs understand the transitivity
of conceptual properties. It means that a property
holds for a concept also holds for its subordinate
concepts, but may not hold for its superordinate
concepts like the case in Figure 2 (b).

Data Collection The data for CPJ is collected
in two steps: (1) Automatic collection. For each
concept in our taxonomy, we align it with the
statements of GenericsKB (Bhakthavatsalam et al.,
2020), a high-quality knowledge base for naturally
occurring generic statements, by lexical matching
so as to get positive instances. Then we replace the
concept mention with other concept names to ob-
tain negative instances. (2) Human annotation. To
ensure data quality, we invite annotators to check
whether the instances are correctly labeled, gram-
matically correct, and describing concept proper-
ties. All annotators are well-trained and pass a qual-
ification before annotation. We finally get 8,855
instances for CPJ and the statistics of data subsets
are shown in Table 1. Additionally, the final test
data includes 102 concept chains and correspond-
ing properties used for chain-level evaluation.

2.4 Conceptualization in Contexts

The conceptualization in contexts (CiC) task is a
multiple-choice classification task, which probes
whether PLMs can correctly conceptualize entities
within contexts. Given an entity mentioned in a
specific sentence, PLMs are required to choose the
most appropriate concept among a concept chain,
which is a chain of concepts connected with the
subclass of relation in order. This requires PLMs
to understand the subclass of relation and cap-
ture the subtle differences of different-level con-
cepts in a hierarchy. For example in Figure 2
(c), given the sentence Dolly is running on the
grassland. and a concept chain Horse –> Mammal
–> Animal, PLMs shall choose Animal for Dolly
since the context do not support more fine-grained
concepts. Sometimes the entity is of multiple con-
cept chains, for example, Jimmy Carter is both
a Writer and a Politician, which additionally
requires PLMs to disambiguate.

Data Collection The data for CiC is collected
in two steps: (1) Sentence collection. For each
concept, we first retrieve 10 Wikidata entities most
frequently showing up in the Wikipedia corpus.
Among the retrieved entities, we only keep the enti-
ties linked with the concept chains containing more
than one concepts and collect 5 sentences for each
of them from Wikipedia and SimpleWiki, which
provides various contexts for conceptualization. A
sentence, together with an entity mentioned in the
sentence and concept chains of the entity, consti-
tutes an instance. (2) Human annotation. We then
organize crowd-sourcing annotation to obtain the
labels. All annotators are well-trained and quali-
fied. We finally get 5,978 instances for CiC and the
statistics of data subsets are shown in Table 1.

3 Evaluation Setup

We introduce the various widely-used PLMs inves-
tigated in our experiments (§ 3.1) and the three
adopted probing methods (§ 3.2).

3.1 Investigated PLMs

We investigate three mainstream types of PLMs: (1)
Masked LM, including BERT (Devlin et al., 2019),
which is pre-trained with the bidirectional masked
language modeling and next sentence prediction
objectives, and RoBERTa (Liu et al., 2019b), which
is a robustly optimized version of BERT. (2) Au-
toregressive LM, including GPT-2 (Radford et al.,
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Model
CSJ CPJ CiC

Instance-Level Chain-Level

ZP LP FT ZP LP FT ZP LP FT ZP LP FT

Random 4.8 4.8 4.8 50.0 50.0 50.0 7.2 7.2 7.2 27.7 27.7 27.7

BERTBASE 20.3 16.10.21 27.30.86 49.4 61.60.28 68.10.98 22.5 24.21.22 23.21.22 37.6 34.30.59 49.50.60
RoBERTaBASE 15.5 12.00.21 22.30.51 49.2 61.90.13 72.00.54 21.6 13.11.67 18.31.22 31.4 30.01.98 52.61.02
GPT-2BASE 7.9 4.30.24 20.10.23 51.5 64.81.14 70.40.72 14.7 14.40.92 20.32.01 32.3 34.52.08 54.20.12
GPT-Neo125M 7.9 11.00.20 18.30.42 52.2 62.20.21 68.20.62 22.5 15.02.01 19.02.81 32.6 39.60.93 47.40.25
BARTBASE 14.4 8.40.10 21.00.50 48.7 58.50.27 68.20.86 20.6 10.51.22 16.70.80 33.6 43.71.19 51.31.56
T5BASE 15.2 4.90.21 27.90.60 55.9 66.90.25 72.50.28 22.5 18.00.46 18.03.95 42.3 24.70.66 53.20.18

Human 79.5 79.5 79.5 91.4 91.4 91.4 91.2 91.2 91.2 85.6 85.6 85.6

Table 2: Accuracies (%) of various PLMs on the three tasks using different probing methods. ZP: Zero-shot probing.
LP: Linear probing. FT: Fine-tuning. LP and FT results are Meanstandard deviation over three random trials. Human
performance is obtained by ordinary people trained with a few instances.

2019), which is pre-trained with the unidirectional
left-to-right language modeling objective, and GPT-
Neo (Black et al., 2021), which adopts the same ob-
jective but improves some implementation details.
(3) Sequence-to-sequence LM, which adopts the
encoder-decoder architecture. This type includes
BART (Lewis et al., 2020), which is pre-trained
with the text infilling and sentence permutation
objectives, and T5 (Raffel et al., 2020), which is
pre-trained with the span-corruption objective and
multiple downstream tasks.

In § 4, we report the results of the frequently-
used BASE versions of these PLMs, and results
for the other versions are shown in appendix C.

3.2 Probing Method
Zero-Shot Probing reformulates probing tasks to
the format of pre-training language modeling objec-
tives (Liu et al., 2021a) so that PLMs can do these
tasks without any training. It is widely adopted
by knowledge probing work (Petroni et al., 2019;
Tenney et al., 2019a) since it prevents PLMs from
learning new knowledge from training data so that
the achieved performance reflects PLMs’ intrin-
sic knowledge. Hence the performance of zero-
shot probing is commonly interpreted as the lower
bound of PLMs’ knowledge (Jiang et al., 2020).

As illustrated in Figure 2, for each data instance
of the three probing tasks, we cast its choices into
natural language prompts by filling them into man-
ually designed templates, and then let PLMs score
the prompts by the likelihood of language model-
ing. The choice with the highest score is regarded
as the predicted answer of PLMs. Some implemen-
tation details like taking which parts of the prompts
into scoring calculation may influence the PLMs’
performance. We search these details with prelimi-
nary trials and only report the performance of the

best configuration in experiments.
Linear Probing adds an additional shallow lin-

ear classifier on top of the output contextualized
representations of PLMs, and only trains the addi-
tional classifier while keeping the PLMs’ parame-
ters fixed. Since the model capacity of the shallow
linear classifier is too limited to fit the tasks, the
achieved performance shall mainly come from the
knowledge in the PLMs’ representations (Alain
and Bengio, 2017). Hence linear probing is widely
used in knowledge probing (Tenney et al., 2019b;
Hewitt and Manning, 2019).

Fine-Tuning is the standard method to adapt
PLMs to downstream tasks, which trains all the
PLMs’ parameters on the training data with task-
specific objectives. Considering the strong model
capacity of the PLMs, PLMs will inevitably fit
the probing tasks through the information in train-
ing data rather than only resort to their intrinsic
knowledge. Hence the fine-tuning performance
shall serve as an upper bound of the PLMs’ con-
ceptual knowledge in our experiments.

For CSJ and CiC, we take the filled prompts of
identical templates in zero-shot probing as inputs
and train PLMs with the cross-entropy loss. For
CPJ, we take the property statements as inputs and
use the binary cross entropy loss.

More detailed implementations about three prob-
ing methods are shown in appendix A.

4 Experiment and Analysis

We first introduce the overall results in § 4.1 and
conduct detailed analyses on the three probing tasks
(§§ 4.2 to 4.4), respectively. We then analyze the
performance at different model scales (§ 4.5). More
observations and discussions on experimental re-
sults are placed in appendix B.
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Model Hard Distractor Easy Distractor

BERTBASE 25.1 15.7
RoBERTaBASE 25.3 15.7
GPT-2BASE 21.1 17.0
GPT-Neo125M 20.7 17.1
BARTBASE 24.2 16.0
T5BASE 24.6 15.9

Table 3: Mean reciprocal ranks (%) for hard distractors
and easy distractors on CSJ in zero-shot probing results
of various PLMs. Larger values for higher ranks.

4.1 Overall Results

The overall experimental results are shown in Ta-
ble 2, from which we can observe that: (1) All the
PLMs can achieve non-trivial (better than random
guess) performance on all the probing tasks with
zero-shot probing or linear probing, which indi-
cates that existing PLMs capture a certain concep-
tual knowledge with pre-training on massive texts.
(2) However, even with fine-tuning, all PLMs’ ac-
curacies are still well below human performance,
which urges further efforts on concept-aware pre-
training. (3) The accuracies of PLMs using differ-
ent types of pre-training objectives are generally
on the same level. It suggests that any existing
pre-training objective has no special advantages in
understanding concepts and further improvements
may come from targeted pre-training design. We
provide some analyses in the following sections to
help targeted concept-aware PLMs development.

4.2 Conceptual Similarity Judgment

We analyze the predictions and performance of
various PLMs on CSJ, and find that:

PLMs better distinguish coarse-grained con-
cepts. As mentioned in § 2.2, among 20 distrac-
tor entities, 5 of them are hard distractors of con-
cepts sharing superordinates with the concept of
the query entity, and the others are easy distrac-
tors. For example, if the query entity is of Mammal
concept, the entities of Bird concept are hard dis-
tractors and the entities of Country concept are
easy distractors. Table 3 shows the mean reciprocal
ranks of these two kinds of distractors. We can
see that the hard distractors are significantly ranked
higher than easy distractors, which indicates that
PLMs generally better distinguish coarse-grained
concepts, such as telling the differences between
Animal and Country, but fail in distinguishing fine-
grained concepts. It suggests that future methods
should focus more on how to capture the subtle

BERT RoBERTa GPT-2 GPT-Neo BART T5

78.0 72.5 64.6 52.5 65.9 58.3

Table 4: Percentage (%) of false positive predictions
among all incorrect predictions in fine-tuning results of
various PLMs on the CPJ dataset.

differences between fine-grained concepts.

4.3 Conceptual Property Judgment
We analyze the error cases on CPJ and find that:

Conceptual transitivity challenges PLMs. Ta-
ble 2 shows that PLMs can achieve high instance-
level accuracies, but all perform poorly in the chain-
level evaluation. It suggests that PLMs can rela-
tively well recall the properties for individual con-
cepts like recalling the facts about entities in factual
knowledge probing, but hardly understand the hier-
archical relations of concepts and the property tran-
sitivity. It suggests that further PLM works should
not only focus on better memorizing knowledge but
also consider how to better organize knowledge.

PLMs have conceptual hallucination. It has
been observed that PLMs frequently generate non-
sensical and unfaithful outputs, which are factu-
ally incorrect, and previous work (Rohrbach et al.,
2018; Reiter, 2018; Ji et al., 2022) dubs this phe-
nomenon as hallucination. In our experiments, we
observe that many PLMs’ failure cases on CPJ task
can be described as conceptual hallucination, i.e.,
PLMs hallucinate that concepts have certain proper-
ties while they actually do not. As shown in Table 4,
the errors of most PLMs are generally mainly from
making false positive predictions, i.e., taking false
conceptual property statements as true. It suggests
that PLMs tend to hallucinate the false conceptual
properties as true rather than cannot recall the true
conceptual properties, which is interesting and we
further explore whether there are certain spurious
correlations causing this.

Word co-occurrence causes conceptual hal-
lucination. We hypothesize that the word co-
occurrence in the pre-training corpora causes
PLMs’ conceptual hallucination. For example, if
a PLM has seen the text “The temple’s Jufu Hall
was included in the 1998 World Monuments Watch
by the World Monuments Fund (WMF) ...preser-
vation of the painted decoration”3, it may be more

3https://en.wikipedia.org/wiki/Temple_of_
Agriculture
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Figure 3: The false positive rate of BERT’s fine-tuning
results on CPJ negative instances with different BM25
scores. Results of other PLMs are left in appendix C.1.

likely to predict the statement “Monuments are
used for decoration” as true. We empirically
find pieces of evidence supporting this hypothe-
sis. For each CPJ instance, to assess the word
co-occurrence in pre-training corpora, we retrieve
the most similar document of it from Wikipedia,
which is a widely-used corpus in pre-training, with
the BM25 (Robertson et al., 1995) algorithm im-
plemented in Whoosh (Mchaput, 2016), and use
the BM25 score of the top one of retrieved docu-
ments as the indicator of this CPJ instance’s word
co-occurrence rate in pre-training corpus. We di-
vide the negative instances of CPJ dataset into dif-
ferent subsets by their BM25 scores and observe
the false positive rate of BERT’s fine-tuning pre-
dictions on them. The results are plotted in Fig-
ure 3, from which we can see that the false positive
prediction rates, indicating conceptual hallucina-
tion, have strong positive correlations to the BM25
scores, indicating word co-occurrence. This sug-
gests that the conceptual hallucination of PLMs
comes from capturing the spurious correlations of
word co-occurrence in pre-training, and further pre-
training work shall explore to fix it.

4.4 Conceptualization in Contexts
We analyze the error cases on CiC and find that:

PLMs conceptualize entities over-relying on
memories. In CiC, we find that if we remove
the contexts, PLMs can still predict a possibly
correct concept, which is similar to previous
works (Petroni et al., 2019; Roberts et al., 2020;
Cao et al., 2021) showing that PLMs memorize a
certain knowledge about entities’ types. We dub
these predictions out-of-context predictions, which
can be regarded as the PLMs’ memories obtained
in pre-training. What we evaluate in CiC is the

BERT RoBERTa GPT-2 GPT-Neo BART T5

72.9 75.9 76.7 60.4 71.8 59.2

Table 5: Percentage (%) of out-of-context predictions
among all incorrect predictions in zero-shot probing
results of various PLMs on the CiC dataset.

in-context conceptualization abilities rather than
the memorized knowledge about the concepts of
entities, which is evaluated by CSJ. Hence rely-
ing on the memories and making out-of-context
predictions are wrong for handling CiC. However,
as shown in Table 5, in most of the error cases,
PLMs wrongly conceptualize the entities within
contexts as the default out-of-context predictions.
It demonstrates that PLMs conceptualize entities
by over-relying on memories rather than under-
standing the contexts, which reflects the lack of
genuine conceptualization abilities. We encourage
future works to study whether the memories inhibit
learning to conceptualize during pre-training.

Understanding hierarchy is more difficult than
disambiguation. In Table 6, we analyze the two
error types on CiC task. Disambiguation indicates
the PLM selects a wrong concept chain for the
given entity and Wrong Level indicates the PLM
selects a wrong-level concept in the correct chain.
In the analysis, we only consider entities with more
than one concept chain. The Wrong Level errors
take up the majority, which shows that understand-
ing concept hierarchy is more difficult than disam-
biguation for PLMs and how to teach the PLMs to
understand it is essential.

4.5 Analysis on Model Scale

Inspired by recent advances showing the superior
advantages of large-scale models (Kaplan et al.,
2020; Lester et al., 2021), we explore how the
model scale influences PLMs’ conceptual knowl-
edge. We investigate the family of three repre-
sentative PLMs: BERT, GPT-2 and T5. Since
fine-tuning extremely-large PLMs is too compu-
tationally expensive, for models with more than
2.5 billion parameters, we instead adopt BitFit (Za-
ken et al., 2022), which can achieve similar perfor-
mance to fine-tuning (He et al., 2021) but requires
much less computation. The results are shown in
Figure 4, and we have following observations: (1)
Larger-scale PLMs generally achieve better perfor-
mance on all the probing tasks, which suggests that
increasing model scale can store more conceptual
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Error Type Context Concept Chains

Disambiguation He was nominated by President Person –> BusinessPerson
29.0% Jimmy Carter to the court. Person –> Writer

Person –> Politician

Wrong Level Dolly is running on the grassland. Horse –> Mammal –> Animal
71.0%

Table 6: Error examples sampled from zero-shot probing results of BERTBASE on the CiC dataset. Italics denote
entities. Underlines denote model predictions. Texts in bold denote answers.
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Figure 4: Accuracies (%) of various PLMs at different scales. The accuracies on CPJ are instance-level.

knowledge. However, the improvements brought
by increasing model scale are generally marginal,
especially on CiC task, and the improvements in
zero-shot probing and linear probing results are
not so obvious like in fine-tuning, which poses a
question that whether the fine-tuning improvements
come from the intrinsic knowledge of PLMs. (2)
The fine-tuning accuracies of T511B with 11 bil-
lion parameters, are still well below ordinary peo-
ple, which demonstrates that acquiring conceptual
knowledge is quite challenging for existing pre-
training methods, which encourages further efforts
on building concept-aware PLMs.

5 Related Work

Knowledge Probing To understand the success
of PLMs, extensive works explore to know what
PLMs know, and find PLMs have strong linguis-
tic knowledge (Liu et al., 2019a; Hewitt and Man-
ning, 2019; Tenney et al., 2019b; Vulić et al., 2020).
Moreover, it has been shown that PLMs have a cer-
tain world knowledge, which is typically stored
in world knowledge bases, such as the knowl-
edge about entities (Broscheit, 2019; Tenney et al.,
2019a) and their relationships (Petroni et al., 2019;
Roberts et al., 2020; Jiang et al., 2020; Bouraoui
et al., 2020; Zhong et al., 2021). However, these ex-

plorations are limited in the scope of factual knowl-
edge, ignoring the conceptual knowledge, which
is essential for both knowledge bases (Wu et al.,
2012; Ji et al., 2019) and intelligence (Carey, 1991;
Collins and Olson, 2014). Hence we explore the
conceptual knowledge probing in this paper.

Conceptual Knowledge in PLMs Previous
works also explore the concept in PLMs (Michael
et al., 2020; Talmor et al., 2020; Aspillaga et al.,
2021; Dalvi et al., 2021), which study principally
similar topics with us. However, the concept they
refer to is essentially word sense. They focus on
whether PLMs discover the word senses and rec-
ognize their hierarchical relations. While in this
work, we study the concepts defined in knowledge
bases to abstract real-world entities, which support
broader applications (Lv et al., 2018; Zhou et al.,
2021; Zeng et al., 2021), and probe knowledge
about conceptual similarity and properties of con-
cepts as well as PLMs’ conceptualization ability.

6 Conclusion and Future Work

In this paper, we systematically analyze the concep-
tual knowledge in existing PLMs by constructing a
high-quality conceptual knowledge probing bench-
mark (COPEN). Extensive experiments show that
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existing PLMs have a certain conceptual knowl-
edge, but are significantly worse than humans,
even with billions of parameters. We further find
that PLMs fail in distinguishing fine-grained con-
cepts and understanding concept hierarchy, and
suffer from conceptual hallucination caused by
word occurrence and out-of-context bias. In the fu-
ture, inspired by works infusing factual knowledge,
we will try to develop conceptual knowledgeable
PLMs by exploring concept-aware pre-training ob-
jectives and knowledge-enhanced architectures.

Limitations

In the section, we discuss the limitations of this
work: (1) COPEN benchmark. COPEN only in-
volves English corpora, which limits the use of the
benchmark to PLMs pre-trained on other languages.
In the future, we will consider more languages and
construct multilingual COPEN. (2) Large PLMs.
We do not experiment on very large PLMs, such as
GPT-3 (Brown et al., 2020) and PaLM (Chowdhery
et al., 2022), due to our limited access to them. We
conduct experiments on T511B with 11 billion pa-
rameters instead. Experimental results demonstrate
that acquiring conceptual knowledge is quite chal-
lenging for existing pre-training methods, which
urges concept-aware pre-training objectives and
model architectures. (3) Environmental impact.
In this paper, we conduct a lot of experiments with
various PLMs, some of which even contain several
billions of parameters. It consumes large amounts
of energy and causes large amounts of carbon diox-
ide emissions, which incurs negative influence to
our environment (Strubell et al., 2019). But the
experiments are necessary for drawing faithful and
comprehensive conclusions. We hope our findings
could facilitate further research on more powerful
PLMs with fewer parameters.

Ethical Considerations

We discuss the ethical considerations and broader
impact of this work in this section: (1) Intellec-
tual property. The Wikipedia, Simple Wikipedia
corpora, and Wikidata are obtained from the Wiki-
media dump4, which is shared under the CC BY-
SA 3.0 license5. The DBpedia6 is shared under
the CC BY-SA 3.0 license and GNU Free Docu-

4https://dumps.wikimedia.org/
5https://creativecommons.org/licenses/by-sa/3.

0/
6www.dbpedia.org

mentation License7. The GenericsKB corpus8 is
shared under the CC BY 4.0 license9. These are
all public and established resources, which are in-
tended to support broad artificial intelligence and
NLP research. We believe these resources are well
desensitized and anonymized. (2) Data annota-
tion. We invite 19 annotators without background
of expertise to annotate our datasets and produce
human performance. They are all employed by
commercial data production companies. The in-
vited annotators are fairly paid according to agreed
working hours and prices. The annotators are all
informed about how the data will be processed,
used, and released, and this is confirmed in the data
production contract. (3) Intended use. COPEN
is a high-quality benchmark used for evaluating
conceptual knowledge in PLMs and developing
concept-knowledgeable PLMs. Researchers can
use COPEN to assess new concept-aware objec-
tives and conceptual-knowledge-enhanced archi-
tectures. (4) Misuse risks. Considering COPEN is
built on top of a limited scope of natural texts and
the probing methods are inevitably influenced by
some spurious correlations, a good enough perfor-
mance on COPEN cannot fully guarantee that the
developed methods really understand concepts and
shall not be used to support relevant commercial
and political claims. (5) Potential risks control.
The texts in COPEN are from public data and do
not involve private information, sensitive topics
and social issues. The three tasks in COPEN also
do not involve sensitive topics or social issues. We
manually check some randomly sampled instances
in COPEN and find no sensitive information or
other risky issues. Hence we believe that COPEN
does not create additional risks.
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Appendices

Model model_name

BERTSMALL prajjwal1/bert-small
BERTMEDIUM prajjwal1/bert-medium
BERTBASE bert-base-uncased
BERTLARGE bert-large-uncased
RoBERTaBASE roberta-base
GPT-2BASE gpt2
GPT-2MEDIUM gpt2-medium
GPT-2LARGE gpt2-large
GPT-2XL gpt2-xl
GPT-Neo125M EleutherAI/gpt-neo-125M
BARTBASE facebook/bart-base
T5SMALL t5-small
T5BASE t5-base
T5LARGE t5-large
T53B t5-3b
T511B t5-11b

Table 7: The corresponding model_names in Transform-
ers library (Wolf et al., 2020) for different PLMs.

A Implementation Details

We use the implementation code and pre-trained pa-
rameters of PLMs released in HuggingFace Trans-
formers library (Wolf et al., 2020) to run our experi-
ments. The model_names we used in Transformers
for different PLMs are shown in Table 7. We run
experiments for large models (T53B, and T511B) on
NVIDIA V100 GPUs, which approximately con-
sumes 160 GPU hours, and the other PLMs on
Nvidia GEFORCE RTX 3090 GPUs, which con-
sumes about 300 GPU hours. We will introduce
the implementation details for zero-shot probing
(appendix A.1), linear probing (appendix A.2), and
fine-tuning (appendix A.3).

A.1 Zero-Shot Probing
As mentioned in § 3.2, we take different text parts
of the prompts into scoring calculation. Table 8
shows the text parts used by various PLMs to score
prompts on the three datasets.

A.2 Linear Probing
We use the final outputs of specific tokens as the
features extracted by PLMs: [CLS] for BERT; <s>
for RoBERTa; the last token for GPT-2, GPT-Neo,
and BART; the first token for T5. We then tune a
lightweight linear classifier on the fixed features
for BERT, RoBERTa, GPT-2, GPT-Neo, BART and
tune the final vocabulary classification head for T5.
Moreover, we reformulate the original instances
into the text-to-text format for T5, and the input
and output formats are shown in Table 9.

Model CSJ CPJ CiC

BERTBASE Query Entity Concept All
RoBERTaBASE Query Entity Concept Concept
GPT-2BASE All All Concept
GPT-Neo125M All Concept Concept
BARTBASE Query Entity Concept Concept
T5BASE Query Entity Concept All

Table 8: The text parts used to calculate scores of
prompts in zero-shot probing on the three datasets. All:
use the negative perplexities of prompts as scores. The
meanings of the other text parts are shown in Figure 2.

Hyperparameters We set the learning rate as
1× 10−3 and apply early stopping (Prechelt, 1996)
on the accuracy on the development dataset with a
patience of 20 epochs. We keep the other hyperpa-
rameters the same as in Table 10.

A.3 Fine-Tuning

We follow the fine-tuning methods in original
papers to fine-tune BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019b), GPT-2 (Radford
et al., 2019), GPT-Neo (Black et al., 2021), and
BART (Lewis et al., 2020). As in appendix A.2,
we reformulate the original instances into the text-
to-text format for T5 (Raffel et al., 2020), and the
input and output formats are shown in Table 9.

Hyperparameters We follow the hyperparame-
ters mostly used in previous literature. The hyper-
parameters are shown in Table 10. And we apply
early stopping (Prechelt, 1996) on the accuracy on
the development dataset.

Parameter-efficient Tuning for Big Models
Due to the limits of computation, we consider the
parameter-efficient tuning for models with more
than 2.5 billion parameters (T53B and T511B). Pre-
vious works (He et al., 2021) have proven that
parameter-efficient tuning methods can save GPU
memory, accelerate training for PLMs, and achieve
comparable performance to fine-tuning all parame-
ters, especially at large scales. Therefore, we adopt
BitFit (Zaken et al., 2022) implemented by Open-
Delta10 to fine-tune big models.

B More Discussions on Experimental
Results

In the section, we discuss some detailed and inter-
esting observations.

10https://github.com/thunlp/OpenDelta
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Conceptual Similarity Judgment

Original Query: Inter Milan
Original Candidates: Milan, Milan Fashion Week, Pohang Steelers, Series A
Original Label: Pohang Steelers
Processed Input: choose the most similar entity to Inter Milan: (A) Milan, (B) Milan Fashion Week, (C) Pohang Steelers, (D) Series A.
Processed Label: C

Conceptual Property Judgment

Original Statement: Mammals raise their young on milk.
Original Label: True
Processed Input: verify: Mammals raise their young on milk.
Processed Label: true

Conceptualization in Contexts

Original Context: Dolly is running on the grassland.
Concept Chain: Horse –> Mammal –> Animal
Original Label: Animal
Processed Input: select concept: <entity> Dolly </entity> is running on the grassland. Select a contextually related concept for

Dolly from (A) Horse, (B) Mammal, (C) Animal.
Processed Label: C

Table 9: The input and output format used to linear probe and fine-tune T5 on the three datasets.

CSJ CPJ CiC
The Others T5 The Others T5 The Others T5

Learning Rate 3× 10−5 5× 10−5 3× 10−5 5× 10−5 3× 10−5 5× 10−5

Weight Decay 1× 10−5 1× 10−5 1× 10−5 1× 10−5 1× 10−5 1× 10−5

Batch Size 4 16 64 32 4 16
Warmup Rate 0.1 0.1 0.1 0.1 0.1 0.1

Table 10: Hyperparameters used to fine-tune PLMs on COPEN.

CSJ CPJ CiC
Query Entity Candidate Entity All Concept Answer All Concept All

BERTSMALL 15.0 6.5 8.1 50.7 48.5 51.5 31.9 35.1
BERTMEDIUM 16.8 7.2 10.0 49.3 46.7 49.2 29.6 33.3
BERTBASE 20.3 7.5 11.3 49.4 47.2 49.2 32.6 37.6
BERTLARGE 22.3 8.2 13.4 50.5 47.6 50.4 31.1 36.9
RoBERTaBASE 15.5 5.1 10.0 49.2 46.7 47.6 31.4 25.5
GPT-2BASE 2.9 6.6 7.9 49.4 48.4 51.5 32.3 31.1
GPT-2MEDIUM 3.7 8.6 10.5 52.0 47.2 47.2 30.3 32.0
GPT-2LARGE 4.6 9.0 11.3 51.8 47.3 47.2 34.3 33.8
GPT-2XL 3.9 9.6 11.7 50.7 47.2 47.1 35.3 37.0
GPT-Neo125M 2.6 6.6 7.9 52.2 47.2 47.6 32.6 28.8
BARTBASE 14.4 5.0 7.1 48.7 48.4 48.0 33.6 27.4
T5SMALL 11.6 5.4 6.5 52.5 47.6 53.2 34.9 40.1
T5BASE 15.2 7.2 10.3 55.9 47.2 49.5 39.1 42.3
T5LARGE 20.9 7.8 14.0 52.4 47.2 49.8 40.5 42.6
T53B 19.2 7.9 14.1 49.4 47.7 49.4 38.6 47.0
T511B 24.8 7.8 14.5 46.7 46.7 49.9 37.2 41.3

Table 11: Overall zero-shot probing accuracies (%) of using different text parts to score prompts on COPEN.
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Model Linear Probing Fine-tuning
Seed=42 Seed=43 Seed=44 Mean Std Seed=42 Seed=43 Seed=44 Mean Std

Conceptual Similarity Judgment

BERTSMALL 9.1 8.2 8.9 8.7 0.37 17.6 17.1 19.2 18.0 0.91
BERTMEDIUM 13.1 12.3 13.1 12.8 0.35 20.3 21.1 21.6 21.0 0.57
BERTBASE 16.3 16.3 15.8 16.1 0.21 28.5 26.6 26.9 27.3 0.86
BERTLARGE 16.5 16.9 17.3 16.9 0.31 28.7 30.2 29.5 29.5 0.61
RoBERTaBASE 11.8 12.0 12.3 12.0 0.21 22.8 21.6 22.4 22.3 0.51
GPT-2BASE 4.6 4.1 4.1 4.3 0.24 19.7 20.1 20.3 20.1 0.23
GPT-2MEDIUM 5.3 5.2 5.2 5.2 0.02 24.9 22.2 23.0 23.4 1.15
GPT-2LARGE 4.0 6.8 5.6 5.5 1.13 22.2 24.0 23.4 23.2 0.77
GPT-2XL 7.8 15.0 10.1 11.0 3.00 25.9 24.2 25.7 25.3 0.75
GPT-Neo125M 11.1 10.7 11.2 11.0 0.20 18.8 18.4 17.8 18.3 0.42
BARTBASE 8.5 8.3 8.4 8.4 0.10 20.4 21.0 21.7 21.0 0.50
T5SMALL 4.8 4.8 4.7 4.8 0.05 10.1 17.6 6.9 11.5 4.48
T5BASE 5.2 4.8 4.7 4.9 0.21 27.4 27.5 28.7 27.9 0.60
T5LARGE 4.7 4.9 4.8 4.8 0.09 31.0 33.4 32.5 32.3 1.01
T53B 5.0 4.9 5.2 5.0 0.11 41.0 40.6 42.0 41.2 0.61
T511B 4.7 4.7 4.7 4.7 0.01 43.7 43.6 43.8 43.7 0.08

Conceptual Property Judgment

BERTSMALL 57.8 58.8 57.8 58.1 0.47 66.3 66.5 67.2 66.7 0.39
BERTMEDIUM 58.2 59.6 58.5 58.8 0.59 66.7 67.5 67.3 67.2 0.35
BERTBASE 61.2 61.9 61.5 61.6 0.28 66.8 68.3 69.2 68.1 0.98
BERTLARGE 61.6 61.7 59.0 60.8 1.26 67.8 69.6 71.2 69.5 1.41
RoBERTaBASE 61.7 62.0 61.9 61.9 0.13 71.4 72.7 71.8 72.0 0.54
GPT-2BASE 65.2 63.3 66.0 64.8 1.14 71.3 69.5 70.5 70.4 0.72
GPT-2MEDIUM 67.0 67.4 67.4 67.3 0.17 73.0 68.6 72.9 71.5 2.07
GPT-2LARGE 66.2 67.8 66.8 66.9 0.62 74.5 72.7 73.4 73.5 0.74
GPT-2XL 67.8 68.1 68.6 68.2 0.36 74.5 75.1 74.7 74.8 0.22
GPT-Neo125M 61.9 62.4 62.1 62.2 0.21 68.9 68.4 67.4 68.2 0.62
BARTBASE 58.8 58.2 58.7 58.5 0.27 68.5 69.2 67.1 68.2 0.86
T5SMALL 67.7 67.2 65.0 66.6 1.18 71.3 72.2 72.1 71.9 0.40
T5BASE 67.3 66.8 66.8 66.9 0.25 72.6 72.1 72.8 72.5 0.28
T5LARGE 68.9 69.7 69.3 69.3 0.33 72.5 73.4 75.2 73.7 1.10
T53B 69.2 69.7 69.5 69.5 0.22 76.6 76.6 76.2 76.4 0.19
T511B 67.3 66.5 66.0 66.6 0.53 78.2 78.3 79.2 78.6 0.46

Conceptualization in Contexts

BERTSMALL 32.4 32.7 33.3 32.8 0.38 44.6 47.0 48.4 46.6 1.55
BERTMEDIUM 31.6 31.2 31.1 31.3 0.22 49.4 49.1 49.8 49.4 0.31
BERTBASE 33.6 34.5 35.0 34.3 0.59 49.3 48.9 50.3 49.5 0.60
BERTLARGE 35.4 38.9 35.3 36.6 1.67 50.7 53.0 51.6 51.8 0.92
RoBERTaBASE 27.3 32.0 30.7 30.0 1.98 51.3 52.6 53.8 52.6 1.02
GPT-2BASE 31.7 36.7 35.1 34.5 2.08 54.0 54.2 54.3 54.2 0.12
GPT-2MEDIUM 29.3 25.6 29.1 28.0 1.69 54.6 54.5 54.9 54.7 0.14
GPT-2LARGE 32.8 28.8 33.7 31.8 2.16 53.4 52.7 53.6 53.3 0.36
GPT-2XL 27.7 32.2 29.9 29.9 1.83 52.6 54.4 54.4 53.8 0.88
GPT-Neo125M 38.9 38.9 40.9 39.6 0.93 47.6 47.0 47.5 47.4 0.25
BARTBASE 44.1 42.1 44.9 43.7 1.19 50.8 49.7 53.5 51.3 1.56
T5SMALL 25.7 26.1 24.9 25.6 0.53 43.5 44.4 45.0 44.3 0.64
T5BASE 25.5 23.9 24.7 24.7 0.66 53.2 53.3 52.9 53.2 0.18
T5LARGE 24.3 24.3 25.3 24.6 0.49 52.4 56.9 57.2 55.5 2.21
T53B 26.7 27.5 26.8 27.0 0.35 59.2 57.5 55.9 57.5 1.35
T511B 25.1 26.6 26.4 26.0 0.66 56.7 58.7 56.5 57.3 0.97

Table 12: Overall linear probing and fine-tuning accuracies (%) of all PLMs on COPEN. We run experiments 3
times using three seeds: 42, 43, 44. Mean: mean accuracy of the three trials; Std: standard deviation.
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Comparison of Pre-training Method In Fig-
ure 2, we can observe that: (1) For PLMs using
the same architecture, T5 generally outperforms
BART, and BERT generally outperforms RoBERTa.
The differences may come from the different pre-
training corpora. (2) Autoregressive LMs (GPT-2,
GPT-Neo) perform worse on CSJ, which is con-
sistent with the observations on factual knowledge
probing (Liu et al., 2021b). As we are the first to
study conceptual knowledge in PLMs, we focus
on the general question “to what extent do current
PLMs understand conceptual knowledge?” and
provide more general conclusions in the paper. We
leave the detailed and in-depth analysis of a spe-
cific PLM, e.g., layer-wise analysis (Dalvi et al.,
2021), in future works.

Comparison of Probing Method Intuitively,
zero-shot probing reflects the lower bound of
PLMs’ knowledge (Jiang et al., 2020), while linear
probing learns a task-specific linear classifier and
performs better than zero-shot probing, and fine-
tuning reflects the upper bound of PLMs’ knowl-
edge. However, as shown in Figure 2, linear prob-
ing sometimes underperforms zero-shot probing,
especially in CSJ and chain-level CPJ. The reason
may be that the concepts used for training and test-
ing are disjoint, and linear probing involves train-
able parameters, which may learn spurious or shal-
low correlations on training sets and hence strug-
gles on generalization. Meanwhile, fine-tuning still
performs poorly, which demonstrates that existing
PLMs systematically lack conceptual knowledge.

Comparison of Instance-Level and Chain-Level
CPJ For chain-level, BERT performs the best,
but for instance-level performs worse than T5. The
reason may be that BERT better understands con-
cept transitivity (i.e., making more consistent pre-
dictions) but stores fewer conceptual properties
overall. A thorough and comprehensive analysis
is needed on this phenomenon and we leave it in
future works.

C Additional Experimental Results

Table 11 shows overall zero-shot probing results on
COPEN. The experimental results of linear prob-
ing and fine-tuning are obtained at 3 random trials
using seeds 42, 43, 44. Table 12 shows overall
linear probing and fine-tuning results on COPEN.
And we provide additional results for the analytical
experiments: analysis of conceptual hallucination

Model Disambiguation Wrong Level

BERTBASE 29.0% 71.0%
RoBERTaBASE 12.8% 87.2%
GPT-2BASE 12.5% 87.5%
GPT-Neo125M 11.9% 88.1%
BARTBASE 11.5% 88.5%
T5BASE 32.0% 68.0%

Table 13: The proportion of different error types of
zero-shot probing results on the CiC dataset. We only
consider the entities with more than one concept chain.

on the CPJ dataset (appendix C.1), error analysis
on the CiC dataset (appendix C.2), and analysis on
avoiding dataset artifacts (appendix C.3).

C.1 Conceptual Hallucination on CPJ

Figure 5 shows the false negative rates on subsets
with different BM25 scores for various PLMs. We
can observe that the false positive rates, which indi-
cates conceptual hallucination, have strong positive
correlations to the BM25 scores, which indicates
word co-occurrence.

C.2 Error Analysis on CiC

Table 13 shows the proportions of different error
types. We can observe that in most wrong predic-
tions, PLMs select concepts of wrong levels. It
indicates that PLMs lack a comprehensive under-
standing of concept hierarchy and fail to conceptu-
alize entities according to contexts.

C.3 Analysis on Avoiding Dataset Artifacts

Dataset artifacts leak shallow information and
cause the PLMs to learn spurious correlations
rather than exhibit inner knowledge. When con-
struct COPEN, we avoid two kinds of artifacts:

Lexical Overlap means that the query and the an-
swer have word overlap, which may enable PLMs
to make correct predictions using spurious corre-
lations without the correct knowledge. For ex-
ample, in CSJ, if the query entity is Stanford
University and the answer entity is University
of California; in CiC, if the context is She grad-
uated from Stanford University and the answer
concept is University; they have lexical overlap.

We conduct experiments on the data with lex-
ical overlap. As shown in Table 14, on the data
with lexical overlap, PLMs perform much better.
But this should be interpreted as they learn shallow
clues leaked by artifacts since they cannot achieve
similar performance on data without lexical over-
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Figure 5: The false positive rate of various PLMs’ fine-tuning results on negative instances of the CPJ dataset with
different BM25 scores.

Model CSJ CiC
w/ LO w/o LO w/ LO w/o LO

BERTBASE 68.9 20.3 52.5 37.6
RoBERTaBASE 62.2 15.5 48.5 31.4
GPT-2BASE 34.2 7.9 43.8 32.3
GPT-Neo125M 34.0 7.9 52.4 32.6
BARTBASE 75.9 14.4 53.2 33.6
T5BASE 69.2 15.2 62.7 42.3

Table 14: Zero-shot probing accuracies (%) of PLMs on
data with lexical overlap (w/ LO) and without lexical
overlap (w/o LO). We collect 688 and 1, 200 instances
with lexical overlap for CSJ and CiC, respectively.

lap. Hence, we filter out all instances with lexical
overlap in COPEN to avoid this kind of artifact.

Concept Overlap is that the same concepts show
up in both training and test datasets, which may
leak conceptual knowledge, i.e., the PLMs may
learn some knowledge from training data. In
COPEN, as mentioned in § 2.1, we split different
top-level concepts and their subconcepts into differ-
ent sub-datasets, so as to avoid concept overlap. To
empirically show the influence of concept overlap,
we randomly re-split the datasets into same-size
training, development, and test sets and see the
fine-tuning performance on the new split.

The results of fine-tuning BERT are shown in
Figure 6, and the results of fine-tuning and linear
probing for all PLMs are shown in Table 15. Fine-
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Figure 6: Fine-tuning accuracies of BERTBASE on data
with and without concept overlap.

tuning on datasets with concept overlap achieves
much higher accuracies, especially on CSJ. It indi-
cates that if we do not avoid concept overlap, PLMs
can easily learn conceptual knowledge from train-
ing data and lead to false optimistic conclusions.

D COPEN

We provide a detailed introduction to COPEN.

D.1 COPEN Taxonomy

Disjoint Concepts We divide all the concepts
into two disjoint sets: one set containing 11 top-
level concepts together with all their sub-concepts
for constructing training and development datasets,
and the other set containing the other concepts for

5031



Model CSJ CPJ CiC
w/ CO w/o CO w/ CO w/o CO w/ CO w/o CO

Linear Probing

BERTBASE 20.0 16.1 64.1 61.6 46.5 34.3
RoBERTaBASE 12.3 12.0 65.9 61.9 45.4 30.0
GPT-2BASE 5.2 4.3 67.2 64.8 39.0 34.5
GPT-Neo125M 15.4 11.0 64.6 62.2 58.3 39.6
BARTBASE 9.4 8.4 62.6 58.5 50.2 43.7
T5BASE 4.7 4.9 68.8 66.9 33.9 24.7

Fine-tuning

BERTBASE 63.4 27.3 75.4 68.1 65.4 49.5
RoBERTaBASE 61.0 22.3 77.0 72.0 66.6 52.6
GPT-2BASE 49.9 20.1 72.7 70.4 65.4 54.2
GPT-Neo125M 44.3 18.3 71.2 68.2 62.5 47.4
BARTBASE 54.7 21.0 73.1 68.2 67.4 51.3
T5BASE 50.6 27.9 77.6 72.5 67.6 53.2

Table 15: Accuracies (%) of linear probing and fine-tuning on data with concept overlap (w/ CO) and without
concept overlap (w/o CO).

#Concepts Top-Level Concepts

Training&
248

Organisation, Name, Award, MeanOfTransportation, Colour, Language, Person,
Development Holiday, Work, Currency, EthnicGroup

Testing 198 AnatomicalStructure, Species, Food, Event, TimePeriod, ChemicalSubstance,
Place, Device, Disease, Activity, Biomolecule, SportsSeason

Table 16: The top-level concepts and the number of concepts used for training, development, and testing.

testing datasets. As shown in Table 16, there are
248 concepts including 11 top-level concepts for
training and development datasets and 198 con-
cepts including 12 top-level concepts for testing.

Concept Hierarchy We present the concepts
for training and development datasets in Figure 7
and the concepts for testing datasets in Figure 8.
Object is a virtual concept for visualization and is
not included in the overall 446 concepts.

D.2 Concept Similarity Judgment

Human Performance We sample 1, 000 in-
stances from the testing dataset and invite anno-
tators with no linguistic background to perform the
CSJ task. All the annotators are trained with a few
instances before the evaluation.

Co-occurrence-based Filtering We filter out in-
stances of which query entities and answer entities
have a high association, which are estimated by
cosine similarity of their Glove word embeddings.
Specifically, for a query entity, we sample 5 answer
entities and select the entity with the lowest asso-
ciation with the query entity as the answer entity.
Then we choose distractor entities iteratively fol-
lowing the rules: (1) Sample a distractor entity, if

the entity has a higher association with the query
entity than the answer entity, then select the distrac-
tor entity as a candidate entity. (2) If not, select the
distractor entity as a candidate entity with a 20%
probability, otherwise start the next iteration until
the number of distractor entities reaches 20.

D.3 Conceptual Property Judgment

Human Annotation We invite annotators with
no linguistics background to check whether the
instances are correctly labeled, grammatically cor-
rect, and describing concept properties. All an-
notators are well-trained and required to pass a
qualification before the annotation. The instances
originally labeled as false are annotated 4 times,
and the other instances are annotated once. During
the annotation, an author of the paper and another
experienced annotator separately sample 10% of
the instances to check the quality of annotation.
The acceptance criterion of the annotation is that
the percentage of obvious annotation errors in the
sampled instances (e.g., label the statement The sun
has two eyes as true) does not exceed 3%, and the
inter-annotator agreement rates exceed 85% for the
instances annotated 4 times. Major voted results of
the instances annotated 4 times together with the
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instances annotated once constitute the CPJ dataset.

Human Performance We use the 2,159 in-
stances that are annotated 4 times in the testing
dataset to evaluate human performance. We con-
duct a 4-round evaluation: take the major voted
results of 3 annotators as labels and the other one
as human predictions to calculate the accuracy of
the round. The mean accuracy of 4 rounds is re-
ported as the human accuracy on the CPJ dataset.

D.4 Conceptualization in Contexts
Human Annotation We invite annotators with
no linguistics background to annotate the dataset.
To ensure quality, all annotators are well-trained
and required to pass a qualification before the an-
notation. All instances are annotated four times.
Moreover, during the annotation, an author of the
paper and another experienced annotator separately
sample 10% of the examples to check the qual-
ity of annotation. The acceptance criterion of the
annotation is that the percentage of obvious annota-
tion errors (e.g., Select Horse for Dolly according
to the context Dolly is running on the grassland.)
does not exceed 3%, and the inter-annotator agree-
ment rates exceed 80%. Major voted results of the
4 annotated results constitute the final CiC dataset.

Human Performance We use all instances in
the testing dataset, which are annotated 4 times,
to evaluate human performance. We conduct a 4-
round evaluation: take the major voted results of 3
annotators as labels and the other one as human pre-
dictions to calculate the accuracy of the round. The
mean accuracy of 4 rounds is the human accuracy.
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Figure 7: Concept taxonomy for training and development datasets. Object is a virtual concept without annotated
instances.
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Figure 8: Concept taxonomy for testing datasets. Object is a virtual concept without annotated instances.
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