
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 3680–3687
December 7-11, 2022 ©2022 Association for Computational Linguistics

PATS: Sensitivity-aware Noisy Learning for Pretrained Language Models

Yupeng Zhang1, Hongzhi Zhang2, Sirui Wang2, Wei Wu2 and Zhoujun Li1∗
1Beihang University, Beijing, China 2Meituan Inc., Beijing, China

{G0vi_qyx, lizj}@buaa.edu.cn
{zhanghongzhi03, wangsirui, wuwei30}@meituan.com

Abstract

A wide range of NLP tasks benefit from
the fine-tuning of pretrained language mod-
els (PLMs). However, a number of redundant
parameters which contribute less to the down-
stream task are observed in a directly fine-tuned
model. We think the gap between pretraining
and downstream tasks hinders the training of
these redundant parameters, and results in a
suboptimal performance of the overall model.
In this paper, we present PATS (Perturbation
According To Sensitivity), a noisy training
mechanism which considers each parameter’s
importance in the downstream task to help
fine-tune PLMs. The main idea of PATS is
to add bigger noise to parameters with lower
sensitivity and vice versa, in order to activate
more parameters’ contributions to downstream
tasks without affecting the sensitive ones much.
Extensive experiments conducted on different
tasks of the GLUE benchmark show PATS can
consistently empower the fine-tuning of differ-
ent sizes of PLMs, and the parameters in the
well-performing models always have more con-
centrated distributions of sensitivities, which
experimentally proves the effectiveness of our
method.

1 Introduction

With a huge number of model parameters and well
designed training objectives, pretrained language
models (PLMs) have brought a new era to NLP
(Guu et al., 2020; Liu, 2019; Zhu et al., 2020b;
Qiu et al., 2020). Fine-tuning PLMs such as BERT
(Devlin et al., 2019) has become a basic and effec-
tive way in many downstream tasks (Wadden et al.,
2019; Sun et al., 2019; Howard and Ruder, 2018).

However, recent study has shown that aggres-
sive fine-tuning can induce an unstable and subop-
timal performance of the models especially with
insufficient data (Dodge et al., 2020; Raffel et al.,
2019), which attracts some researchers to figure

∗Corresponding author.

out the culprits and explore effective methods to
solve them (Peters et al., 2019; Houlsby et al., 2019;
Mosbach et al., 2020). For example, there are some
regularization methods like RecAdam (Chen et al.,
2020) and Mixout (Lee et al., 2020), and adversar-
ial training techniques like SMART (Jiang et al.,
2020) and FreeLB (Zhu et al., 2020a) to alleviate
the overfitting of data in downstream tasks; Be-
yond that, Wu et al. (2022) proposed NoisyTune
with the argument that in addition to the overfitting
of the limited downstream data, there could also
exist overfitting in pretraining tasks, which could
result in enormous gaps between pretraining and
downstream task data. In order to overcome the
gaps, NoisyTune simply adds some noise to pa-
rameters in the PLM before fine-tuning. Besides,
it has also been demonstrated that the existence
of a large number of redundant parameters could
also be a factor in the suboptimal performances
of aggressively fine-tuned PLMs (Fan et al., 2019;
Sanh et al., 2020; Dalvi et al., 2020). Consider-
ing the redundant parameters in a model are not
insufficiently trained, Liang et al. (2022) proposed
a learning rate scheduler named SAGE in which
larger learning rates are assigned to these param-
eters of low sensitivity (a measure of parameter’s
importance to downstream tasks).

There could be some connection between the
gaps caused by overfitting of pretraining tasks and
the redundancy of parameters. We consider it could
be the gaps between pretraining and downstream
tasks that hinder the training of these redundant
parameters. SAGE enlarges the learning rates of
insensitive parameters to help their training. How-
ever, with the sensitivity measurement considered,
the insensitive parameters usually have smaller gra-
dients, so enlarged learning rates may help them
little to escape the sub-optimal areas compared
to involving additional noise. One noisy training
method to alleviate the gaps is NoisyTune, in which
parameters of a matrix in a PLM are added with

3680

noise according to the standard deviation of the
matrix before fine-tuning. Nevertheless, there are
few explanations about why or whether the param-
eters in the same matrix should be perturbed with
the same intensity. Considering different parame-
ters have different contributions to the model, noise
from a unified distribution may disturb knowledge
of some sensitive parameters, resulting in a loss
of performance. Besides, since each task needs to
capture an appropriate textual pattern and the data
of it usually comes from a special domain, differ-
ent downstream tasks could have different kinds
of gaps with those of the pretraining. So the noise
added to overcome the gaps should also be related
to the downstream task data.

In this paper, we propose a novel parameter-
wise noisy fine-tuning method called PATS
(Perturbation According To Sensitivity) to make
full use of perturbation on parameters to handle
the problems above. We focus on balancing the
contributions of all parameters in the model by ac-
tivating the insensitive ones to play better roles in
downstream tasks. So the main idea of our method
is adding different intensities of noise to parame-
ters according to their sensitivity when fine-tuning
PLMs, different from NoisyTune (Fig. 1 (b)) in
which noise added to a matrix of parameters is
from a unified distribution and unrelated to down-
stream task data. Specifically, during fine-tuning
in PATS (Fig. 1 (c)), larger noise will be added to
the parameters with lower sensitivity (such as the
parameter shown in red), while sensitive parame-
ters (such as the parameter shown in purple) will
be barely perturbed.

Our contributions can be summarized as follows:
1) We propose a simple but effective method to
help all parameters be trained sufficiently when
fine-tuning PLMs in downstream tasks. 2) Among
all the training methods with noise, PATS is the
first sensitivity-aware one which perturbs models
with noise of different distributions according to pa-
rameters’ sensitivity, to the best of our knowledge.
3) Extensive experiments on the GLUE benchmark
show PATS makes a difference in boosting the per-
formance of PLMs in downstream NLP tasks.

2 Approach

In this section, we present our PATS for PLMs
fine-tuning. Previous matrix-wise noisy methods
perturb a PLM by adding noise from a uniform
distribution to a matrix of parameters. Different

PLM

Fine-
tuning

(a) Commonly
Fine-tuning

PLM

(b) NoisyTune:
Fine-tuning

Perturbed PLM

(c) PATS: Fine-
tuning PLM with
Sensitivity-based

Noise

Task
Data

Task
Data

Task
Data

Sensitivity from low to high

Neuron Parameter

Perturbation Perturbed Parameter

Figure 1: Different schemata of fine-tuning PLMs.
In NoisyTune, a matrix of parameters in a PLM are
perturbed with the same intensity before fine-tuning;
In PATS, parameters with lower sensitivity (the "red"
parameter) to downstream data are added with larger
noise, and vice versa (like the "purple" parameter).

from them, in PATS, each parameter even from
the same matrix will be paid to different attention
according to its sensitivity. It is also worth noting
that in PATS, a PLM is not perturbed in advance
like NoisyTune, instead the perturbation happens
during training as the task data comes in. In the fol-
lowing sections, we will introduce the calculation
of parameter sensitivity first and then present the
noisy learning mechanism in detail.

2.1 Sensitivity Measurement
The sensitivity of a parameter is used to measure
the change of the output or loss after setting it to
zero (Molchanov et al., 2017, 2019; Ding et al.,
2019; Xiao et al., 2019; Lee et al., 2019). To be
specific, given a BERT-like pre-trained language
model M with parameters Θ = {θ1, θ2, · · · , θn} ∈
Rn, the sensitivity of the j-th parameter θj is writ-
ten as sj , which can be defined as:

sj = |L(Θ)− L(θ1, · · · , θj−1, 0, θj+1, · · · , θn)|
≈ |θj∇θjL(Θ)|, (1)

where L is a loss function and we use the first-
degree Taylor polynomial to approximate sj ignor-
ing the higher order remainder to accelerate the
calculation of it.

In order to avoid huge oscillation of sj caused
by an abnormal batch of data, we adopt the expo-

3681

nential moving average of sj used in many other
models and optimizers (Liang et al., 2022; Klinker,
2010; Zhuang et al., 2022; Shahidi et al., 2020)
as the real sensitivity indicator, which can be ex-
pressed by the following equation:

s̄j = βs̄j
∗ + (1− β)sj , β ∈ (0, 1), (2)

where s̄j and s̄j
∗ are the exponential moving aver-

age of sj in the current and previous iteration. β is
a hyper-parameter used to adjust the importance of
sj calculated by the current batch of data.

2.2 Training with Noise

Algorithm 1 PATS for Adamax(max(·) returns a
matrix with the maximum values of each element of
the input matrices or vectors; sum(·) returns a scalar
equal to the sum of all values of a matrix or vector;
I denotes an all-ones matrix; ⊙ denotes Hadamard
product and ⊘ denotes Hadamard division)
Input:Step size α; Model parameters Θ ∈ Rn;
Number of training iterations T ; Number of
parameters in the current matrix N ; Exponen-
tial decay rates β, β1, β2 ∈ [0, 1); Basic noise
λ; Minimum effective sensitivity indicator γ; A
small number that prevents an error of divid-
ing by zero ϵ ∈ (0, 1); Data D; Loss function
L(·).

1: Initialize S̃(0) ← 0 ∈ RN .
2: Initialize M(0) ← 0 ∈ RN .
3: Initialize U(0) ← 0 ∈ RN .
4: for t← 1 to T do
5: d(t) sample←− D.
6: G(t) ← ∇Θ(t)L(d(t),Θ(t)).
7: S(t) ← Θ(t) ⊙G(t).
8: M(t) ← β1M

(t−1) + (1− β1)G
(t).

9: U(t) ← max(β2U(t−1), |G(t)|).
10: S̃(t) ← βS̃(t−1) + (1− β)S(t).
11: R ← λmax(sum(S̃(t))I ⊘ (N S̃(t) + ϵI) −

γI,0).
12: Q ∼ N (0,R).
13: Z ∼ B(N, p).
14: Θ(t+1) ← Θ(t)−(α/(1−βt

1))M
(t)⊘U(t)+

Q⊙ Z.
15: t← t+ 1
16: end for

Our goal is to mainly activate the contributions
of less sensitive parameters by perturbing them
with bigger noise and leave parameters with larger
sensitivity less affected at the same time. In our

framework, we use a hyper-parameter λ as initial
noise and the degree of perturbation to different
parameters will be scaled up and down based on
it according to their sensitivity. The intensity of
perturbation can be formulated by the following
equations:

s̄ =
1

N

N∑

i=1

s̄i (3)

rj = λ ·max(
s̄

s̄j + ϵ
− γ, 0), 0 < ϵ≪ 1 (4)

In Eq. 3, s̄ is the average sensitivity of the ma-
trix containing θj with N parameters. rj in Eq. 4
means the intensity of the noise to be added on a
parameter θj , which is scaled on λ by the division
of s̄ and s̄j . ϵ is a small number used to prevent
zero denominator. Since rj and s̄j are inversely
correlated, the intensity of noise added to every
parameter with a lower sensitivity than the average
will be larger than λ, and vice versa as we expect.
As for the reason why s̄ is restricted to the cur-
rent matrix, as we found, the value distributions
of different matrix parameters are sometimes very
different. For example, values of parameters in ma-
trix A are significant higher than those in matrix B.
And with the sensitivity measurement considered,
sensitive parameters are usually themselves large
on value. So if s̄ is calculated based on all parame-
ters of the model, some matrices of parameters with
low values and sensitivity may be perturbed fiercely
to some values very far from their original ones,
which has unstable performances on experiments.
To further reduce the perturbation on sensitive pa-
rameters and let them keep regular gradient-driven
update, we use a margin constant γ in Eq. 4 to
zero-out the noise added on the parameters that are
highly sensitive.

For each parameter θj , the noise qj that may
finally be added to it is independently randomly
sampled from a Gaussian distribution with the
mean of zero and the standard deviation of σj as
qj ∼ N(0, σ2

j), where σj =
√
rj . So in an itera-

tion, we update each parameter by:

θ̃j = θj − η · ∇θjL(Θ) + qj · z, (5)

where η is learning rate and z ∼ B(1, p) is a
random value sampled from Bernoulli distribution
which outputs 1 with probability p and 0 with prob-
ability 1 − p. Algorithm 1 shows the PATS algo-
rithm for Adamax (Kingma and Ba, 2014) opti-
mizer.

3682

Model CoLA
Mcc

MRPC
F1

RTE
Acc

STS-B
Pcc

QQP
F1

QNLI
Acc

MNLI
Acc

SST
Acc

Avg
Score

BERTbase 58.94 90.19 68.03 89.28 88.53 91.96 84.63 92.77 83.18
BERTbase + SAGE 59.45 90.53 71.78 89.81 88.61 91.87 84.59 93.06 83.65
BERTbase + NoisyTune 60.01 90.34 69.71 89.81 88.58 91.82 84.64 92.85 83.47
BERTbase + PATS 60.67 91.05 72.08 89.86 88.64 92.02 84.80 92.89 84.00
RoBERTalarge 66.67 91.89 85.44 91.98 89.26 94.45 90.25 96.10 88.25
RoBERTalarge + SAGE 67.36 93.27 85.56 92.05 89.27 94.54 90.25 96.25 88.57
RoBERTalarge + NoisyTune 67.47 93.26 85.52 92.00 89.36 94.53 90.04 96.12 88.56
RoBERTalarge + PATS 68.62 93.52 86.29 92.23 89.40 94.64 90.44 96.30 88.90

Table 1: Results of models on GLUE dev set.

3 Experiments

3.1 Datasets and Baselines

We conduct extensive experiments on the eight
tasks of the GLUE benchmark (Wang et al., 2018)
and adopt the publicly available BERT-base (De-
vlin et al., 2019) and RoBERTa-large (Liu et al.,
2019) models on every task individually. The fol-
lowing three baselines are selected for comparison:
(1) Standard PLM fine-tuning, which fine-tunes
PLMs directly; (2) NoisyTune (Wu et al., 2022),
which is a noisy training method that adds matrix-
wise noise before fine-tuning; (3) SAGE (Liang
et al., 2022), which is an optimized learning rate
schedule which adjusts the learning rate of every
parameter according to its sensitivity.

3.2 Performance Evaluation

On each task, we repeat our experiments 5 times
with different random seeds and report the aver-
age scores of every model, which are shown in
Table 1.1 According to the results, PATS opti-
mized models consistently outperforms directly
fine-tuned ones on different downstream tasks, es-
pecially on those with small datasets (CoLA &
MRPC & RTE). Specifically, PATS improves by
around 2 points on CoLA and RTE, and around 1
point on MRPC. In addition, as a parameter-wise
method based on sensitivity, PATS experimentally
outperforms the matrix-wise noisy method Noisy-
Tune and the sensitivity-based learning rate sched-
uler SAGE on 7 out of the 8 tasks. The experimen-
tal results demonstrate the effectiveness of PATS.

1The results of the MNLI task are obtained by averag-
ing the output accuracies of the models on the mnli-matched
dataset and the mnli-mismatched dataset.

0.0 0.5 1.0 1.5 2.0
Sensitivity 1e 6

0

1

2

3

D
en

si
ty

1e6 CoLA
PATS-CoLA
standard-CoLA

0.0 0.5 1.0 1.5
Sensitivity 1e 6

0.0

0.5

1.0

1.5

2.0

D
en

si
ty

1e6 MRPC
PATS-MRPC
standard-MRPC

0.0 0.5 1.0 1.5
Sensitivity 1e 6

0

1

2

D
en

si
ty

1e6 RTE
PATS-RTE
standard-RTE

0 1 2
Sensitivity 1e 6

0.0

0.5

1.0

1.5

D
en

si
ty

1e6 STS-b
PATS-STS-b
standard-STS-b

Figure 2: The sensitivity distributions of the parameters
in different optimized models.

3.3 Empirical Analysis

In this section, we conduct additional analyses on
sensitivity of parameters in the fine-tuned models.

Fig. 2 shows the sensitivity distribution of the
model parameters fine-tuned in different ways. It
is found that the sensitivity of the parameters in the
PATS optimized models is more tightly clustered
than that in the models fine-tuned in the common
way. Besides, there remain fewer insensitive pa-
rameters in PATS optimized models than those in
baseline models. And it is no longer a few high-
sensitive parameters that dominate the models as
what happens in normal fine-tuning, which indi-
cates that perturbation helps parameters with low
sensitivity gain more attention during training and
lets the contribution of each parameter in the opti-
mized models more balanced.

To further investigate the effect of PATS on small
datasets, we also post the accuracies of the models
fine-tuned on different proportions of training data
sampled from the CoLA2 dataset with and with-

2The phenomena observed on other tasks are similar.

3683

1.0

1.5

2.0

2.5
st

d
of

 se
ns

iti
vi

ty
1e 6

PATS
standard

20 30 40 50 60 70 80 90 100
percentage of training data

40

45

50

55

60

ac
cu

ra
cy

PATS
standard

Figure 3: Performances of PATS on data of different
sizes.

out PATS. Fig. 3 shows PATS optimized models
consistently outperform directly fine-tuned ones on
different sizes of datasets, demonstrating the gener-
alizability of the approach. Moreover, we can also
observe that as the size of training data increases,
the performances of the models improve along with
concomitant decreases in the standard deviations
of sensitivity. This phenomenon further indicates
that training with limited data will lose some of
the performance capabilities of PLMs by leaving
more undertrained or insensitive parameters, be-
cause small datasets is insufficient for PLMs to
overcome the gap between pretraining and down-
stream tasks. The inverse correlation between ac-
curacy and sensitivity concentration justifies our
original intention of balancing the sensitivity of
parameters. And the displayed performances ex-
perimentally demonstrate its availability.

4 Conclusion

We propose a novel noisy training method called
PATS to optimize fine-tuning of PLMs. Since ag-
gressive fine-tuning PLMs will leave a large num-
ber of insensitive parameters which contribute little
to the overall model, PATS activates them and bal-
ance the contributions of all parameters in down-
stream tasks by adding noise to each parameter
according to its sensitivity in the process of train-
ing. PATS is a simple mechanism without much
computational and memory overhead compared
to adversarial training which requires additional
backwards passes. Extensive experiments on eight
tasks of the GLUE benchmark show that PATS can
consistently improve the performance of PLMs on
downstream tasks with the sensitivity of the pa-

rameters more concentrated, which is especially
pronounced on small datasets.

Limitations

PATS introduces four additional hyperparameters,
which increases some work of users on hyperparam-
eter tuning. For example, a too small λ could make
few differences while an overlarge λ may result in
unstable performances of models. Though we have
summarized effective parameter configurations on
the NLU tasks of the GLUE benchmark, it cannot
guarantee that these settings are still applicable on
other tasks such as neural machine translation. We
will explore the connections between the hyperpa-
rameters in theory and narrow the search ranges of
the hyperparameter group in future work.

References
Hangbo Bao, Li Dong, Furu Wei, Wenhui Wang, Nan

Yang, Xiaodong Liu, Yu Wang, Jianfeng Gao, Song-
hao Piao, Ming Zhou, and Hsiao-Wuen Hon. 2020.
UniLMv2: Pseudo-masked language models for uni-
fied language model pre-training. In Proceedings of
the 37th International Conference on Machine Learn-
ing, volume 119 of Proceedings of Machine Learning
Research, pages 642–652. PMLR.

Roy Bar-Haim, Ido Dagan, Bill Dolan, Lisa Ferro,
Danilo Giampiccolo, Bernardo Magnini, and Idan
Szpektor. 2006. The second pascal recognising tex-
tual entailment challenge. In Proceedings of the sec-
ond PASCAL challenges workshop on recognising
textual entailment, volume 6, pages 6–4. Venice.

Luisa Bentivogli, Peter Clark, Ido Dagan, and Danilo
Giampiccolo. 2009. The fifth pascal recognizing
textual entailment challenge. In TAC.

Samuel R Bowman, Gabor Angeli, Christopher Potts,
and Christopher D Manning. 2015. A large annotated
corpus for learning natural language inference. arXiv
preprint arXiv:1508.05326.

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-
Gazpio, and Lucia Specia. 2017. SemEval-2017
task 1: Semantic textual similarity multilingual and
crosslingual focused evaluation. In Proceedings
of the 11th International Workshop on Semantic
Evaluation (SemEval-2017), pages 1–14, Vancouver,
Canada. Association for Computational Linguistics.

Sanyuan Chen, Yutai Hou, Yiming Cui, Wanxiang Che,
Ting Liu, and Xiangzhan Yu. 2020. Recall and learn:
Fine-tuning deep pretrained language models with
less forgetting. In Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP), pages 7870–7881, Online. As-
sociation for Computational Linguistics.

3684

https://proceedings.mlr.press/v119/bao20a.html
https://proceedings.mlr.press/v119/bao20a.html
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/2020.emnlp-main.634
https://doi.org/10.18653/v1/2020.emnlp-main.634
https://doi.org/10.18653/v1/2020.emnlp-main.634

Kevin Clark, Minh-Thang Luong, Quoc Le, and Christo-
pher D. Manning. 2020. Pre-training transformers
as energy-based cloze models. In Proceedings of
the 2020 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP), pages 285–294,
Online. Association for Computational Linguistics.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2005. The pascal recognising textual entailment chal-
lenge. In Machine Learning Challenges Workshop,
pages 177–190. Springer.

Fahim Dalvi, Hassan Sajjad, Nadir Durrani, and
Yonatan Belinkov. 2020. Analyzing redundancy in
pretrained transformer models. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 4908–4926,
Online. Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Xiaohan Ding, guiguang ding, Xiangxin Zhou, Yuchen
Guo, Jungong Han, and Ji Liu. 2019. Global sparse
momentum sgd for pruning very deep neural net-
works. In Advances in Neural Information Process-
ing Systems, volume 32. Curran Associates, Inc.

Jesse Dodge, Gabriel Ilharco, Roy Schwartz, Ali
Farhadi, Hannaneh Hajishirzi, and Noah Smith. 2020.
Fine-tuning pretrained language models: Weight ini-
tializations, data orders, and early stopping. arXiv
preprint arXiv:2022.06305.

Angela Fan, Edouard Grave, and Armand Joulin. 2019.
Reducing transformer depth on demand with struc-
tured dropout. arXiv preprint arXiv:1909.11556.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan,
and Bill Dolan. 2007. The third pascal recognizing
textual entailment challenge. In Proceedings of the
ACL-PASCAL workshop on textual entailment and
paraphrasing, pages 1–9. Association for Computa-
tional Linguistics.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasu-
pat, and Ming-Wei Chang. 2020. REALM: retrieval-
augmented language model pre-training. CoRR,
abs/2002.08909.

Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao
Chen, and Qun Liu. 2020. Dynabert: Dynamic bert
with adaptive width and depth. In Advances in Neural
Information Processing Systems, volume 33, pages
9782–9793. Curran Associates, Inc.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin de Laroussilhe, Andrea Ges-
mundo, Mona Attariyan, and Sylvain Gelly. 2019.

Parameter-efficient transfer learning for nlp. In In-
ternational Conference on Machine Learning, pages
2790–2799.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification.
In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), pages 328–339, Melbourne, Australia.
Association for Computational Linguistics.

Zhiqi Huang, Lu Hou, Lifeng Shang, Xin Jiang, Xiao
Chen, and Qun Liu. 2021. GhostBERT: Generate
more features with cheap operations for BERT. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 6512–
6523, Online. Association for Computational Lin-
guistics.

Haoming Jiang, Pengcheng He, Weizhu Chen, Xi-
aodong Liu, Jianfeng Gao, and Tuo Zhao. 2020.
SMART: Robust and efficient fine-tuning for pre-
trained natural language models through principled
regularized optimization. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 2177–2190, Online. Association
for Computational Linguistics.

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Frank Klinker. 2010. Exponential moving average ver-
sus moving exponential average. Mathematische
Semesterberichte, 58(1):97–107.

Cheolhyoung Lee, Kyunghyun Cho, and Wanmo Kang.
2020. Mixout: Effective regularization to finetune
large-scale pretrained language models. In Interna-
tional Conference on Learning Representations.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip
Torr. 2019. SNIP: Single-Shot Network Pruning
Based on Connectiono Sensitivity. In International
Conference on Learning Representations.

Hector Levesque, Ernest Davis, and Leora Morgenstern.
2012. The winograd schema challenge. In Thir-
teenth International Conference on the Principles of
Knowledge Representation and Reasoning.

Chen Liang, Haoming Jiang, Simiao Zuo, Pengcheng
He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen, and
Tuo Zhao. 2022. No parameters left behind: Sensi-
tivity guided adaptive learning rate for training large
transformer models. In International Conference on
Learning Representations.

Yang Liu. 2019. Fine-tune BERT for extractive summa-
rization. CoRR, abs/1903.10318.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.

3685

https://doi.org/10.18653/v1/2020.emnlp-main.20
https://doi.org/10.18653/v1/2020.emnlp-main.20
https://doi.org/10.18653/v1/2020.emnlp-main.398
https://doi.org/10.18653/v1/2020.emnlp-main.398
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://proceedings.neurips.cc/paper/2019/file/f34185c4ca5d58e781d4f14173d41e5d-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/f34185c4ca5d58e781d4f14173d41e5d-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/f34185c4ca5d58e781d4f14173d41e5d-Paper.pdf
https://doi.org/10.48550/ARXIV.2002.06305
https://doi.org/10.48550/ARXIV.2002.06305
https://doi.org/10.48550/ARXIV.1909.11556
https://doi.org/10.48550/ARXIV.1909.11556
http://arxiv.org/abs/2002.08909
http://arxiv.org/abs/2002.08909
https://proceedings.neurips.cc/paper/2020/file/6f5216f8d89b086c18298e043bfe48ed-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/6f5216f8d89b086c18298e043bfe48ed-Paper.pdf
https://doi.org/10.18653/v1/P18-1031
https://doi.org/10.18653/v1/P18-1031
https://doi.org/10.18653/v1/2021.acl-long.509
https://doi.org/10.18653/v1/2021.acl-long.509
https://doi.org/10.18653/v1/2020.acl-main.197
https://doi.org/10.18653/v1/2020.acl-main.197
https://doi.org/10.18653/v1/2020.acl-main.197
https://doi.org/10.48550/ARXIV.1412.6980
https://doi.org/10.48550/ARXIV.1412.6980
https://doi.org/10.1007/s00591-010-0080-8
https://doi.org/10.1007/s00591-010-0080-8
https://openreview.net/forum?id=HkgaETNtDB
https://openreview.net/forum?id=HkgaETNtDB
https://openreview.net/forum?id=B1VZqjAcYX
https://openreview.net/forum?id=B1VZqjAcYX
https://openreview.net/forum?id=cuvga_CiVND
https://openreview.net/forum?id=cuvga_CiVND
https://openreview.net/forum?id=cuvga_CiVND
http://arxiv.org/abs/1903.10318
http://arxiv.org/abs/1903.10318

Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri
Frosio, and Jan Kautz. 2019. Importance estimation
for neural network pruning. In 2019 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pages 11256–11264.

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo
Aila, and Jan Kautz. 2017. Pruning convolutional
neural networks for resource efficient inference. In
5th International Conference on Learning Repre-
sentations, ICLR 2017, Toulon, France, April 24-
26, 2017, Conference Track Proceedings. OpenRe-
view.net.

Marius Mosbach, Maksym Andriushchenko, and Diet-
rich Klakow. 2020. On the stability of fine-tuning
bert: Misconceptions, explanations, and strong base-
lines. arXiv preprint arXiv:2006.04884.

Matthew E. Peters, Sebastian Ruder, and Noah A. Smith.
2019. To tune or not to tune? adapting pretrained
representations to diverse tasks. In Proceedings of
the 4th Workshop on Representation Learning for
NLP (RepL4NLP-2019), pages 7–14, Florence, Italy.
Association for Computational Linguistics.

XiPeng Qiu, TianXiang Sun, YiGe Xu, YunFan Shao,
Ning Dai, and XuanJing Huang. 2020. Pre-trained
models for natural language processing: A survey.
Science China Technological Sciences, 63(10):1872–
1897.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv preprint arXiv:1910.10683.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Victor Sanh, Thomas Wolf, and Alexander Rush. 2020.
Movement pruning: Adaptive sparsity by fine-tuning.
In Advances in Neural Information Processing Sys-
tems, volume 33, pages 20378–20389. Curran Asso-
ciates, Inc.

Hamidreza Shahidi, Ming Li, and Jimmy Lin. 2020.
Two birds, one stone: A simple, unified model for
text generation from structured and unstructured data.
In Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, pages 3864–
3870, Online. Association for Computational Lin-
guistics.

Chi Sun, Xipeng Qiu, Yige Xu, and Xuanjing Huang.
2019. How to fine-tune bert for text classification?
In Chinese Computational Linguistics, pages 194–
206, Cham. Springer International Publishing.

David Wadden, Ulme Wennberg, Yi Luan, and Han-
naneh Hajishirzi. 2019. Entity, relation, and event
extraction with contextualized span representations.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 5784–
5789, Hong Kong, China. Association for Computa-
tional Linguistics.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018. GLUE:
A multi-task benchmark and analysis platform for nat-
ural language understanding. In Proceedings of the
2018 EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pages
353–355, Brussels, Belgium. Association for Com-
putational Linguistics.

Alex Warstadt, Amanpreet Singh, and Samuel R. Bow-
man. 2019. Neural network acceptability judgments.
Transactions of the Association for Computational
Linguistics, 7:625–641.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long Papers), pages 1112–1122. Association for
Computational Linguistics.

Chuhan Wu, Fangzhao Wu, Tao Qi, and Yongfeng
Huang. 2022. NoisyTune: A little noise can help
you finetune pretrained language models better. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2:
Short Papers), pages 680–685, Dublin, Ireland. As-
sociation for Computational Linguistics.

Xia Xiao, Zigeng Wang, and Sanguthevar Rajasekaran.
2019. Autoprune: Automatic network pruning by
regularizing auxiliary parameters. In Advances in
Neural Information Processing Systems, volume 32.
Curran Associates, Inc.

Chen Zhu, Yu Cheng, Zhe Gan, Siqi Sun, Tom Gold-
stein, and Jingjing Liu. 2020a. Freelb: Enhanced ad-
versarial training for natural language understanding.
In International Conference on Learning Representa-
tions.

Jinhua Zhu, Yingce Xia, Lijun Wu, Di He, Tao Qin,
Wengang Zhou, Houqiang Li, and Tie-Yan Liu.
2020b. Incorporating bert into neural machine trans-
lation. arXiv preprint arXiv:2002.06823.

Weiming Zhuang, Yonggang Wen, and Shuai Zhang.
2022. Divergence-aware federated self-supervised
learning. In International Conference on Learning
Representations.

3686

https://doi.org/10.1109/CVPR.2019.01152
https://doi.org/10.1109/CVPR.2019.01152
https://openreview.net/forum?id=SJGCiw5gl
https://openreview.net/forum?id=SJGCiw5gl
https://doi.org/10.48550/ARXIV.2006.04884
https://doi.org/10.48550/ARXIV.2006.04884
https://doi.org/10.48550/ARXIV.2006.04884
https://doi.org/10.18653/v1/W19-4302
https://doi.org/10.18653/v1/W19-4302
https://doi.org/10.1007%2Fs11431-020-1647-3
https://doi.org/10.1007%2Fs11431-020-1647-3
https://doi.org/10.48550/ARXIV.1910.10683
https://doi.org/10.48550/ARXIV.1910.10683
https://doi.org/10.48550/ARXIV.1910.10683
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://proceedings.neurips.cc/paper/2020/file/eae15aabaa768ae4a5993a8a4f4fa6e4-Paper.pdf
https://doi.org/10.18653/v1/2020.acl-main.355
https://doi.org/10.18653/v1/2020.acl-main.355
https://aclanthology.org/D19-1585
https://aclanthology.org/D19-1585
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.1162/tacl_a_00290
http://aclweb.org/anthology/N18-1101
http://aclweb.org/anthology/N18-1101
https://doi.org/10.18653/v1/2022.acl-short.76
https://doi.org/10.18653/v1/2022.acl-short.76
https://proceedings.neurips.cc/paper/2019/file/4efc9e02abdab6b6166251918570a307-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/4efc9e02abdab6b6166251918570a307-Paper.pdf
https://openreview.net/forum?id=BygzbyHFvB
https://openreview.net/forum?id=BygzbyHFvB
https://arxiv.org/abs/2002.06823
https://arxiv.org/abs/2002.06823
https://openreview.net/forum?id=oVE1z8NlNe
https://openreview.net/forum?id=oVE1z8NlNe

Model COLA MRPC RTE STS-B QQP QNLI MNLI SST
BERTbase 1e-4 1e-4 1e-4 2e-4 1e-4 2e-4 8e-5 8e-5
RoBERTalarge 3e-5 5e-5 5e-5 5e-5 1e-4 1e-5 3e-5 3e-5
BERTbase+PATS 1e-4 3e-4 3e-4 3e-4 2e-4 2e-4 1e-4 3e-4
RoBERTalarge+PATS 8e-5 8e-5 8e-5 5e-5 1e-4 3e-5 1e-5 1e-5

Table 2: Learning rate settings for PATS on the tasks of the GLUE benchmark.

Hyperparameters Range
λ {5e-7, 8e-7, 1e-6, 2e-6, 3e-6}
γ {1e-3, 2e-3, 3e-3, 5e-3, 8e-3,2e-2}
β {0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85}

learning rate {1e-5, 3e-5, 5e-5, 7e-5, 8e-5, 1e-4, 2e-4, 3e-4, 5e-4}

Table 3: Searching ranges of hyperparameters in our experiments.

A Appendix

A.1 Datasets

The experiments are conducted on the GLUE
benchmark, which contains several types of Natural
Language Understanding (NLU) tasks such as lin-
guistic acceptability (CoLA, Warstadt et al. 2019),
text similarity (STS-B, Cer et al. 2017) and natural
language inference (RTE & MNLI & QNLI, Da-
gan et al. 2005; Bar-Haim et al. 2006; Giampiccolo
et al. 2007; Bentivogli et al. 2009; Williams et al.
2018; Bowman et al. 2015; Rajpurkar et al. 2016)
tasks. Among the nine tasks, WNLI (Levesque
et al., 2012) task is excluded in our experiments, on
which BERT-like models have no obvious advan-
tage over other mainstream baselines (Hou et al.,
2020; Clark et al., 2020; Huang et al., 2021). Con-
sistent with previous works (Bao et al., 2020; Wu
et al., 2022), we evaluate results on the dev set of
GLUE.

A.2 Training Details

For all the baseline models and our proposed PATS,
we adopt a linear-decay learning rate schedule and
choose Adamax (Kingma and Ba, 2014) which is
the best-performing optimizer for baseline models
on the GLUE benchmark to optimize the training.
In PATS, we perturb the parameters of all the en-
coder layers except the Layer Normalization layers.
In our training process, we set λ = 2 × 10−6,
γ = 0.002, β = 0.75, p = 0.2 for all tasks. In
addition, we adopt a linear warm-up learning rate
schedule with 0.1 of total training iterations. The
batch size of models is uniformly set to 32. We
post the best performance models on each task after

10 epochs of training. The learning rates that yields
the best generalization performance of models op-
timized by PATS and Standard PLM fine-tuning
on each task are listed in Table 2. We present the
searching range of hyperparameters in Table 3.

Our implementation is based on the MT-DNN
code-base.3. And we use Nvidia V100 GPUs for
all experiments.

A.3 Other Implemention Details
All datasets of the GLUE benchmark
are downloaded from https:// gluebench-
mark.com/tasks. For the baseline model SAGE,
we use the code from the Github respository
https://github.com/cliang1453/SAGE. The other
baseline models are implemented by ourselves.

For the distribution of sensitivity shown in Fig.
2, we discard some outliers and only choose the
parameters with sensitivity in the range of [5e-8,
1e-5] for visualization.

3https://github.com/namisan/mt-dnn

3687

https:// gluebenchmark.com/tasks
https:// gluebenchmark.com/tasks
https://github.com/cliang1453/SAGE
https://github.com/namisan/mt-dnn

