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Abstract

Few-shot Named Entity Recognition (NER)
aims to identify named entities with very lit-
tle annotated data. Previous methods solve
this problem based on token-wise classification,
which ignores the information of entity bound-
aries, and inevitably the performance is affected
by the massive non-entity tokens. To this end,
we propose a seminal span-based prototypical
network (SpanProto) that tackles few-shot NER
via a two-stage approach, including span ex-
traction and mention classification. In the span
extraction stage, we transform the sequential
tags into a global boundary matrix, enabling the
model to focus on the explicit boundary infor-
mation. For mention classification, we leverage
prototypical learning to capture the semantic
representations for each labeled span and make
the model better adapt to novel-class entities.
To further improve the model performance, we
split out the false positives generated by the
span extractor but not labeled in the current
episode set, and then present a margin-based
loss to separate them from each prototype re-
gion. Experiments over multiple benchmarks
demonstrate that our model outperforms strong
baselines by a large margin. 1

1 Introduction

Named Entity Recognition (NER) is one of the cru-
cial tasks in natural language processing (NLP),
which aims at extracting mention spans and clas-
sifying them into a set of pre-defined entity type
classes. Previous methods (Huang et al., 2015;
Santoro et al., 2016; Ma and Hovy, 2016; Lample
et al., 2016; Peters et al., 2017) present multiple

∗ Corresponding author.
1All the codes and datasets will be released to the EasyNLP

framework (Wang et al., 2022a). URL: https://github.
com/alibaba/EasyNLP

Support Set Query Example

Target Types: PER, LOC

Support Examples: Query Example:

Outputs:
PER: James
LOC: Akron, Ohio

A record 66.6 million tourists visit-
ed [New York City]LOC. 

[James Francis Cameron]PER was
born on August 16, 1954. 

James played basketball for St.
Vincent–St. Mary High School in
his hometown of Akron, Ohio.

Figure 1: An example of the 2-way 1-shot NER problem.
Given a support set with 2 target types where each type
is associated with 1 labeled entity, the task is to identify
entities in the query example.

deep neural architectures and achieve impressive
performance. Yet, these conventional approaches
heavily depend on the time-consuming and labor-
intensive process of data annotation. Thus, an
attractive problem of few-shot NER (Ding et al.,
2021; Huang et al., 2021; Ma et al., 2022b) has
been introduced which involves recognizing novel-
class entities based on very few labeled examples
(i.e. support examples). An example of the 2-way
1-shot NER problem is shown in Figure 1.

To solve the problem, multiple methods (Das
et al., 2022; Hou et al., 2020; Ziyadi et al., 2020;
Fritzler et al., 2019; Ma et al., 2022a) follow the
sequence labeling strategy that directly categorizes
the entity type at the token level by calculating the
distance between each query token and the proto-
type of each entity type class or the support tokens.
However, the effect of these approaches are dis-
turbed by numerous non-entity tokens (i.e. “O”
class) and the token-wise label dependency (i.e.
“BIO” rules) (Wang et al., 2021; Shen et al., 2021).
To bypass these issues, a branch of two-stage meth-
ods arise to decompose NER into two separate
processes (Shen et al., 2021; Wang et al., 2021;
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Ma et al., 2022b; Wu et al., 2022), including span
extraction and mention classification. Specifically,
they first extract multiple spans via a class-agnostic
model and then assign the label for each predicted
span based on metric learning. Despite the success,
there could still be two remaining problems. 1) The
performance of span extraction is the upper limit
for the whole system, which is still far away from
satisfaction. 2) Previous methods ignore false posi-
tives generated during span extraction. Intuitively,
because the decomposed model is class-agnostic in
the span extraction stage, it could generate some
entities which have no available entity type to be
assigned in the target type set. In Figure 1, the
model could extract a span of “August 16, 1954”
(may be an entity of time type in another episode),
yet, the existing methods still assign it a label as
“PER” or “LOC” 2.

To address these limitations, we present a
novel Span-based Prototypical Network (Span-
Proto) via a two-stage approach. For span extrac-
tion, we introduce a Span Extractor, which aims
to find the candidate spans. Different from the re-
cent work (Ma et al., 2022b) which models it as a
sequence labeling task, we convert the sequential
tags to a global boundary matrix, which denotes
the sentence-level target label, enabling the model
to learn the explicit span boundary information re-
gardless of the token-wise label dependency. For
mention classification, we propose a Mention Clas-
sifier which aims at assigning a pre-defined entity
type for each recalled span. When training the men-
tion classifier, we compute the prototype embed-
dings for each entity type class based on the support
examples, and leverage the prototypical learning
to adjust the span representations in the semantic
space. To address the problem of false positives,
we additionally design a margin-based loss to en-
large the semantic distance between false positives
and all prototypes. We conduct extensive experi-
ments over multiple benchmarks, including Few-
NERD (Ding et al., 2021) and CrossNER (Hou
et al., 2020). Results show that our method con-
sistently outperforms state-of-the-art baselines by
a large margin. We summarize our main contribu-
tions as follows:

• We propose a novel two-stage framework
named SpanProto that solves the problem

2Previous works suppose that all spans generated by the
span extractor can be assigned with a type, which is unrealistic
in the two-stage scenario.

of few-shot NER with two mainly modules,
i.e. Span Extractor, and Mention Classifier.

• In SpanProto, we introduce a global bound-
ary matrix to learn the explicit span bound-
ary information. Additionally, we effectively
train the model with prototypical learning and
margin-based learning to improve the abili-
ties of generalization and adaptation on novel-
class entities.

• Extensive experiments conducted over two
widely-used benchmarks illustrate that our
method achieves the best performance.

2 Related Work

In this section, we briefly summarize the related
work in various aspects.
Few-shot Learning and Meta Learning. Few-
shot learning is a challenging problem which aims
to learn models that can quickly adapt to differ-
ent tasks with low-resource labeled data (Wang
et al., 2020; Huisman et al., 2021). A series of typ-
ical meta-learning algorithms for few-shot learning
consist of optimization-based learning (Kulkarni
et al., 2016), metric-based learning (Snell et al.,
2017), and augmentation-based learning (Wei and
Zou, 2019), etc. Recently, multiple approaches
have been applied in few-shot NLP tasks, such as
text classification (Geng et al., 2020), question an-
swering (Wang et al., 2022b) and knowledge base
completion (Sheng et al., 2020). Our SpanProto is
a typical N -way K-shot paradigm, which is based
on meta learning to make the model better adapt to
new domains with little training data available.
Few-shot Named Entity Recognition. Few-shot
NER aims to identify and classify the entity type
based on low-resource data. Recently, Ding et al.
(2021) and Hou et al. (2020) provide well-designed
few-shot NER benchmarks in a unified N -way K-
shot paradigm. A series of approaches typically
adopt the metric-based learning method to learn
the representations of the entities in the semantic
space, i.e. prototypical learning (Snell et al., 2017),
margin-based learning (Levi et al., 2021) and con-
trastive learning (Gao et al., 2021). Existing ap-
proaches can be divided into two kinds, i.e., one-
stage (Snell et al., 2017; Hou et al., 2020; Das et al.,
2022; Ziyadi et al., 2020) and two-stage (Ma et al.,
2022b; Wu et al., 2022; Shen et al., 2021). Gener-
ally, the methods in the kind of one-stage typically
categorize the entity type by the token-level metric
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Figure 2: The model architecture of SpanProto. Given one episode data, we first transform the sequential tags
into labeled spans and obtain the corresponding global boundary matrix. We train the span extractor over support
examples and predict the spans for query examples. In the classification stage, we introduce prototypical learning
and margin-based learning to teach the model to learn better semantic representations. (Best viewed in color.)

learning. In contrast, two-stage mainly focuses on
two training stages consist of entity span extrac-
tion and mention type classification. (Ma et al.,
2022b) is a related work of our paper, which uti-
lizes model-agnostic meta-learning (MAML) (Finn
et al., 2017) to improve the adaptation ability of
the two-stage model. Different from them, we aim
to 1) further improve the performance on detect-
ing and extracting the candidate entity spans, and
2) alleviate the bottleneck of false positives in the
two-stage few-shot NER system.

3 Our Proposal: SpanProto

We formally present the notations and the tech-
niques of our proposed SpanProto. The model
architecture is shown in Figure 2.

3.1 Notations
Different from token-wise classification (Ding
et al., 2021; Hou et al., 2020), we define the span-
based N -way K-shot setting for few-shot NER.
Suppose that we have a training set Dtrain and an
evaluation set Deval. Given one training episode
data Etrain = (Strain,Qtrain, Ttrain) ∈ Dtrain,
where Strain and Qtrain denote the support set and
the query set, respectively. Ttrain denotes the en-
tity type set, and |Ttrain| = N . For each example
(X,M,Y) ∈ Strain ∪ Qtrain, X = {xi}Li=1 de-
notes the input sentence with L language tokens.

M = {(sj , ej)}L′
j=1 represents the mention span

set for the sentence X , where sj , ej denote the start
and end position in the sentence for the j-th span,
and 0 ≤ sj ≤ ej ≤ L. L′ is the number of spans.
Y = {yj}L′

j=1 is the entity type set and yj ∈ Ttrain
is the label for the j-th span (sj , ej).

3.2 Span Extractor

The span extractor aims to generate all candi-
date entity spans. Specifically, given one train-
ing episode data Etrain = (Strain,Qtrain, Ttrain)
from Dtrain, we use the support example
(Xs,Ms,Ys) ∈ Strain to train the span extractor,
where Xs = {xi}Li=1 denotes the input sentence
with L tokens, Ms and Ys are the labeled spans
and labeled entity types for Xs, respectively.

We first obtain the contextual embeddings by
H = F(Xs), where F(·) denotes the encoder (e.g.
BERT (Devlin et al., 2019)), H ∈ RL×h is the
output representation at the last layer of the encoder,
h denotes the embedding size. For each token xi ∈
Xs, the token embedding is denoted as hi ∈ Rh.

Rather than detecting the entity mention based
on token-wise sequence labeling (Ma et al., 2022b),
we expect that the span extractor captures the ex-
plicit boundary information regardless of the token-
wise label dependency. We follow the idea of self-
attention (Vaswani et al., 2017) which can be used
to calculate the attentive correlation for a token pair
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(xi, xj) without any dependencies. Specifically, we
first compute the query and key item for each token
xi. Formally, we have:

qi = Wqhi + bq, ki = Wkhi + bk (1)

where qi,ki ∈ Rh denote the query and key em-
beddings, respectively. Wq,Wk ∈ Rh×h are the
trainable weights and bq, bk ∈ Rh denote the bias.
Similar to the biaffine decoder (Yu et al., 2020),
we design a score function f(i, j) to evaluate the
probability of the token pair (xi, xj) being an entity
span boundary:

f(i, j) = qT
i kj +Wv(hi + hj) (2)

where Wv ∈ Rh×h denotes the trainable weight.
Based on the label spans, we then generate a la-
beled global boundary matrix for each support sen-
tence:

Ωi,j =





1 i ≤ j ∧ (i, j) ∈ Ms;
0 i ≤ j ∧ (i, j) /∈ Ms;

− inf i > j;
(3)

where Ωi,j is the score of the span (i, j). To explicit
learn the span boundary, inspired by Su (2021)3,
we design a span-based cross-entropy loss to urge
the model to learn the boundary information on
each training support example:

Lspan = log

(
1 +

∑

1≤i≤j≤L

exp
(
(−1)Ωi,jf(i, j)

))

(4)
For each query example (Xq,Mq,Yq) in Qtrain,

we can obtain the predicted global boundary matrix
Ω′ generated by the span extractor. We follow (Yu
et al., 2020) to recall the candidate spans which
have a higher score than the pre-defined confidence
threshold θ. We denote M̂q = {(sj , ej)|Ω′

sj ,ej ≥
θ} as the predict result.

3.3 Mention Classifier
In the mention classification stage, we introduce a
mention classifier to assign the pre-defined entity
type for each generated span in the query exam-
ple. We leverage prototypical learning to teach
the model to learn the semantic representations for
each labeled span and enable it to adapt to a new-
class domain. To remedy the problem of false posi-
tives, we further propose a margin-based learning
objective to improve the model performance.

3https://spaces.ac.cn/archives/8373.

3.3.1 Prototypical Learning
Specifically, given one episode data Etrain =
(Strain,Qtrain, Ttrain), we can compute the pro-
totype ct ∈ Rh for each class by averaging the
representations of all spans in Strain which share
the same entity type t ∈ Ttrain. Formally, we have:

ct =
1

Kt

∑

(Xs,Ms,Ys)∈Strain

∑

(sj ,ej)∈Ms
yj∈Ys

I(yj = t)uj

(5)
where

Kt =
∑

(Xs,Ms,Ys)∈Strain

∑

(sj ,ej)∈Ms
yj∈Ys

I(yj = t)
(6)

represents the span number of the entity type t.
uj ∈ Rh denotes the span boundary representa-
tions, and uj = hsj + hej . I(·) is the indicator
function.

Note that, the labeled span set Mq and corre-
sponding type set Yq for each query sentence Xq in
Qtrain is visible during the training stage. Hence,
the prototypical learning loss for each sentence can
be calculated as:

Lproto =
1

|Mq|
∑

(sj ,ej)∈Mq
yj∈Yq

− log p(yj |sj , ej) (7)

where

p(yj |sj , ej) = SoftMax(−d(uj , cyj )) (8)

is the probability distribution with a distance func-
tion d(·, ·).
3.3.2 Margin-based Learning
Recall that the span set M̂q is extracted by the
span extractor for the query sentence Xq ∈ Qtrain.
We find that some mention spans in M̂q do not
exist in the ground truth Mq which can be viewed
as false positives. Formally, We denote M−

q =

{(sj , ej)|(sj , ej) ∈ M̂q ∧ (sj , ej) /∈ Mq} as the
set of these false positives. Take Figure 2 as an ex-
ample, the span extractor generates four candidate
mentions for the query example, i.e., “Jim”, “Patty
Pravo”, “Italian” and “2011”, where “Italian” and
“2011” are the false positives in this case.

Intuitively, the false positive can be viewed as
a special entity mention, which has no type to be
assigned in Ttrain, but could be an entity in other
episode data. In other words, the real type of this
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Algorithm 1 Training Procedure of SpanProto
Require: Training data Dtrain, Training total step T , Pre-

training step of the span extractor T ′ < T .
1: for each step st ∈ {1, 2, · · · , T} do
2: λ = 0 if st < T ′ else λ = 1;
3: Sample (Strain,Qtrain, Ttrain) from Dtrain;
4: Lspan_eps = Lproto_eps = Lmrg_eps = 0.
5: for (Xs,Ms,Ys) ∈ Strain do
6: Compute Lspan for the span extractor in Eq. 4;
7: Lspan_eps = Lspan_eps + Lspan;
8: end for
9: Get the prototype for each type t ∈ Ttrain in Eq. 5;

10: for (Xq,Mq,Yq) ∈ Qtrain do
11: Based on Mq and Yq , calculate prototypical learn-

ing loss Lproto in Eq. 7;
12: Obtain the false positives set M−

q , and calculate
margin-based learning loss Lmrg in Eq. 9;

13: Lproto_eps = Lproto_eps + Lproto;
14: Lmrg_eps = Lmrg_eps + Lmrg;
15: end for
16: Obtain the overall loss by L = 1

|Strain|Lspan_eps +
λ

|Qtrain| (Lproto_eps + Lmrg_eps);
17: Update the model by backpropagation to reduce L;
18: end for
19: return The trained SpanProto model.

false positive is unknown. Thus, a natural idea is
that we can keep it away from all current prototypes
in the semantic space. Specifically, we have:

Lmrg =
1

|Ttrain||M−
q |

∑

t∈Ttrain

∑

(sj ,ej)∈M−
q

max(0, r − d(u−
j , ct))

(9)

where u−
j ∈ Rh denotes the span boundary repre-

sentations of the false positive span (sj , ej) ∈ M−
q .

Specially, we let Lmrg be 0 if M−
q = ∅. r > 0 is

the pre-defined margin value. Under the margin-
based learning, we can obtain a noise-aware model
by pulling away the false positive spans from all
prototype regions which can be viewed as the hy-
persphere with a radius r.

3.4 Training and Evaluation of SpanProto

We provide a brief description of the training and
evaluate the algorithm for our framework. During
the training stage, the procedure can be found in
Algorithm 1. For each training step, we randomly
sample one episode data from Dtrain, and then
enumerate each support example to obtain the span-
based loss (Algorithm 1, Line 3-8). For the support
set, we obtain the span boundary representations,
and then calculate the prototype for each target type
(Algorithm 1, Line 9). Further, we leverage the
span extractor to perform model inference on each
query example to recall multiple candidate spans,

Datasets Domain #Types #Sentences #Entities

Few-NERD General 66 188.2k 491.7k
OntoNotes General 18 103.8k 161.8k
CoNLL-03 News 4 22.1k 35.1k
GUM Wiki 11 3.5k 6.1k
WNUT-17 Social 6 4.7k 3.1k

Table 1: The statistics of each source dataset.

and then compute the prototypical learning loss and
margin-based learning loss (Algorithm 1, Line 10-
15). For the model training, the total training steps
denote as T . We first pre-train the span extractor
for T ′(T ′ < T ) steps, and then both of the span
extractor and mention classifier are jointly trained
with three objective losses (Algorithm 1, Line 16-
17).

During the model evaluation, given one episode
data Eeval = (Seval,Qeval, Teval) ∈ Deval. We
first calculate the prototype representations based
on the support set Seval. Then, for each query sen-
tence in Qeval, we can utilize the the span extractor
to extract all candidate spans M̂q. In the mention
classification stage, we calculate the distance be-
tween the extracted span and each prototype, and
select the type of the nearest prototype as the result.
Note that the ground truth in Deval is invisible, to
recognize the false positives, we remove all spans
whose distances between them and all prototypes
are larger than r.

4 Experiments

4.1 Datasets and Baselines
We choose two widely used N -way K-shot based
benchmarks to evaluate our SpanProto, includ-
ing Few-NERD (Ding et al., 2021) 4 and Cross-
NER (Hou et al., 2020). Specifically, Few-NERD
is annotated with 8 coarse-grained and 66 fine-
grained entity types, which consists of two few-
shot settings, i.e. Intra, and Inter. In the Intra set-
ting, all entities in the training set, development set,
and testing set belong to different coarse-grained
types. In contrast, in the Inter setting, only the
fine-grained entity types are mutually disjoint in
different datasets. To make a fair comparison, we
utilize the processed episode data released by Ding
et al. (2021). CrossNER consists of four different
NER domains, such as OntoNotes 5.0 (Weischedel
et al., 2013), CoNLL-03 (Sang and Meulder, 2003),
GUM (Zeldes, 2017) and WNUT-17 (Derczynski
et al., 2017). During training, we randomly select

4https://github.com/thunlp/Few-NERD.
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Paradigms Models
Intra Inter

1∼2-shot 5∼10-shot
Avg.

1∼2-shot 5∼10-shot
Avg.

5 way 10 way 5 way 10 way 5 way 10 way 5 way 10 way

One-stage

ProtoBERT† 23.45±0.92 19.76±0.59 41.93±0.55 34.61±0.59 29.94 44.44±0.11 39.09±0.87 58.80±1.42 53.97±0.38 49.08
NNShot† 31.01±1.21 21.88±0.23 35.74±2.36 27.67±1.06 29.08 54.29±0.40 46.98±1.96 50.56±3.33 50.00±0.36 50.46
StructShot† 35.92±0.69 25.38±0.84 38.83±1.72 26.39±2.59 31.63 57.33±0.53 49.46±0.53 57.16±2.09 49.39±1.77 53.34
CONTaiNER‡ 40.43 33.84 53.70 47.49 43.87 55.95 48.35 61.83 57.12 55.81

Two-stage
ESD 41.44±1.16 32.29±1.10 50.68±0.94 42.92±0.75 41.83 66.46±0.49 59.95±0.69 74.14±0.80 67.91±1.41 67.12
DecomMeta 52.04±0.44 43.50±0.59 63.23±0.45 56.84±0.14 53.90 68.77±0.24 63.26±0.40 71.62±0.16 68.32±0.10 67.99
SpanProto 54.49±0.39 45.39±0.72 73.10±1.15 64.63±0.22 59.40 73.36±0.18 66.26±0.33 82.68±0.42 78.69±0.50 75.25

Table 2: F1 scores with standard deviations on Few-NERD for both inter and intra settings. † denotes the results
reported in Das et al. (2022). ‡ is taken from Das et al. (2022) with no standard deviations reported.

Paradigms Models 1-shot 5-shot

CONLL-03 GUM WNUT-17 OntoNotes Avg. CONLL-03 GUM WNUT-17 OntoNotes Avg.

One-stage
Matching Network‡ 19.50±0.35 4.73±0.16 17.23±2.75 15.06±1.61 14.13 19.85±0.74 5.58±0.23 6.61±1.75 8.08±0.47 10.03
ProtoBERT‡ 32.49±2.01 3.89±0.24 10.68±1.40 6.67±0.46 13.43 50.06±1.57 9.54±0.44 17.26±2.65 13.59±1.61 22.61
L-TapNet+CDT 44.30±3.15 12.04±0.65 20.80±1.06 15.17±1.25 23.08 45.35±2.67 11.65±2.34 23.30±2.80 20.95±2.81 25.31

Two-stage
DecomMeta 46.09±0.44 17.54±0.98 25.14±0.24 34.13±0.92 30.73 58.18±0.87 31.36±0.91 31.02±1.28 45.55±0.90 41.53
SpanProto 47.70±0.51 20.16±0.80 30.19±0.94 37.91±0.79 33.99 61.61±1.03 43.75±0.50 31.37±0.94 49.04±0.93 46.44

Table 3: F1 scores with standard deviations on CrossNER. ‡ denotes the results reported in Hou et al. (2020).

two of them as the training set, and the remaining
two others are used for the development set and the
testing set. The final results are derived from the
testing set. We follow (Ma et al., 2022b) to utilize
the generated episode data provided by Hou et al.
(2020) 5.

For the baselines, we choose multiple strong ap-
proaches from the paradigms of one-stage and two-
stage. Concretely, the one-stage paradigm con-
sists of ProtoBERT (Snell et al., 2017), Matching
Network (Vinyals et al., 2016), StructShot (Yang
and Katiyar, 2020), NNShot (Yang and Katiyar,
2020), CONTaiNER (Das et al., 2022) and L-
TapNet+CDT (Hou et al., 2020). The two-stage
paradigm includes ESD (Wang et al., 2021) and
DecomMeta (Ma et al., 2022b).

4.2 Implementation Details

We choose BERT-base-uncased (Devlin et al.,
2019) from HuggingFace6 as the default pre-
trained encoder F . The max sequence length we
set is 128. We choose AdamW as the optimizer
with a warm up rate of 0.1. The training steps T and
T ′ are set as 2000 and 200, respectively. We use
the grid search to find the best hyper-parameters
for each benchmark 7. As a result, the threshold θ

5https://atmahou.github.io/
attachments/ACL2020data.zip.

6https://huggingface.co/transformers.
7The details are shown in Appendix B

and the margin r are set as 0.8 and 3.0, respectively.
We choose five random seeds from {12, 21, 42, 87,
100} and report the averaged results with standard
deviations. We implement our model by Pytorch
1.8, and train the model with 8 V100-32G GPUs.

4.3 Main Results

Table 2 and 3 illustrate the main results of our pro-
posal compared with other baselines. We thus make
the following observations: 1) Our proposed Span-
Proto achieves the best performance and outper-
forms the state-of-the-art baselines with a large
margin. Compared with DecomMeta (Ma et al.,
2022b), the overall averaged results over Few-
NERD Intra and Few-NERD Inter are improved by
5.5% and 7.26%, respectively. Likewise, we also
have more than 3.0% advantages on CrossNER. 2)
All the methods in the two-stage paradigm perform
better than those one-stage approaches, which indi-
cates the merit of the span-based approach for the
task of few-shot NER. 3) In Few-NERD, the over-
all performance of the Intra scenario is lower than
Inter. This phenomenon reflects that Intra is more
challenging than Inter where the coarse-grained
types are different in training/development/testing
set. Despite this, we still obtain satisfying effec-
tiveness. Results suggest that our method can adapt
to a new domain in which the coarse-grained and
fine-grained entity types are both unseen.
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Methods Few-NERD CrossNER
Intra Inter 1-shot 5-shot

SpanProto 59.40 75.25 33.99 46.44

w/o. Span Extractor 29.24 49.08 13.43 22.61
w/o. Mention Classifier 18.41 26.36 10.53 6.08
w/o. Margin-based Learning 54.29 71.37 30.88 43.37

Table 4: The ablation study results (averaged F1 score
%) for Few-NERD and CrossNER. Detail results are
listed in Appendix C.

Methods Few-NERD CrossNER
Intra Inter 1-shot 5-shot

ESD 70.56 70.99 - -
DecomMeta 76.11 76.48 46.53 54.58
SpanProto 84.02 84.55 63.75 63.51

Table 5: The averaged performance (F1 score %) in the
span extraction stage over Few-NERD and CrossNER.

4.4 Ablation Study

We conduct an ablation study to investigate the
characteristics of the main components in Span-
Proto. We implement the following list of variants
of SpanProto for the experiments. 1) w/o. Span Ex-
tractor: we remove the span extractor, and train the
model with a conventional token-wise prototypical
network 8. 2) w/o. Mention Classifier: we remove
all techniques in the mention classifier. To classify
the span, we directly leverage the K-Means algo-
rithm. 3) w/o. Margin-based Learning: we only
remove the margin-based learning objective. More
details of these variants are shown in Appendix A.

As shown in Table 4, the results demonstrate
that 1) the performance of SpanProto drops when
removing each component, which shows the sig-
nificance of all components. 2) When removing
the span extractor, the averaged F1 scores are de-
creased by more than 20%, indicating that the
span extractor which bypasses the issues of multi-
ple non-entity classes and token-level label depen-
dency does make a contribution to the model per-
formance. 3) SpanProto outperforms w/o. Margin-
based Learning, which demonstrates that a model
jointly trained by prototypical learning and margin-
based learning objectives can mitigate the problem
of false positives.

4.5 Performance of the Span Extractor

To further analyze how the span extractor con-
tributes to the few-shot NER. Specifically, we aim

8When removing the span extractor, the margin-based
learning will not work because no spans can be recalled.
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[[a classic symptom]0.59% of [polycythemia vera]0.88%]0.57%
( and the related [[myeloproliferative disease]49% [essential
thrombocythemia]0.89%]0.74% ) is [erythromelalgia]95% .

Figure 3: The case visualization of the global boundary
matrix. The span could be an entity if the corresponding
color is dark. (Best viewed in color.)

to solve the following research questions about the
span extractor: 1) RQ1: Whether the proposed
span extractor is better than previous methods?
2) RQ2: How does the model learn explicit span
boundary information? 3) RQ3: How do the hyper-
parameters T ′ and θ affect the model performance?
Comparison with Baselines. We first perform
a comparison between our proposal and previous
methods. Specifically, we choose two strong base-
lines: 1) ESD (Wang et al., 2021) which leverages
a sliding window to recall all candidate spans, and
2) DecomMeta (Ma et al., 2022b) which leverages
the sequence labeling method with “BIOE” rules
to detect the spans. From Table 5, we see that
our span extractor outperforms other baselines by
a large margin, which indicates that our method
can produce more accurate predictions for span
extraction.
Case Study for the Span Extractor. To explore
how the model learns the span boundary, we ran-
domly select one query sentence from Few-NERD
and obtain the predicted global boundary matrix.
As shown in Figure 3, our span extractor success-
fully recognizes the explicit boundary for the input
sentence. In addition, we find that there existing
nested entity mentions in few-shot NER, which
share the same overlap sub-sequence. For exam-
ple, “myeloproliferative disease”, “essential throm-
bocythemia”, and “myeloproliferative disease es-
sential thrombocythemia” are the nested entities.
Based on the global boundary matrix, our approach
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Figure 4: Hyper-parameter effectiveness (averaged F1
score %) of T ′ and θ over Few-NERD Inter. We report
the F1 curve for both span extractor and mention classi-
fier. θ = 0.0 denotes to recall all mention spans, which
is equal to the method of ESD (Wang et al., 2021).

Margin r
Few-NERD CrossNER

Intra Inter 1-shot 5-shot

r = 1 52.10 64.98 27.42 40.85
r = 2 58.08 74.60 34.13 46.19
r = 3 59.40 75.25 33.99 46.44
r = 4 58.15 74.43 33.04 45.82
r = 5 56.40 73.61 31.99 44.22
r = 6 55.10 72.08 31.17 43.50

Table 6: The parameter analysis of the margin r.

can be extended to few-shot nested NER without
difficulty, which is ignored by previous works.
Effectiveness of Hyper-parameters. We aim to
investigate the influence of two hyper-parameters
T ′ and θ, where T ′ is the pre-training step num-
ber of the span extractor, and θ denotes the confi-
dence threshold for predicting candidate spans. We
conduct experiments over Few-NERD Inter. As
shown in Figure 4. We can draw the following
suggestions: 1) For the parameter T ′, we find that
pre-training the span extractor for T ′ = 200 steps
does improve the performance for both the span ex-
tractor and the mention classifier. When T ′ > 200,
the F1 scores will decrease due to the over-fitting
problem. 2) For the parameter θ, we observe that
the overall F1 score increases when increasing the
threshold θ, and we achieve the best performance
when θ ∈ [0.8, 0.85].

4.6 Effectiveness of the Mention Classifier

In this section, we specifically explore the effec-
tiveness of the mention classifier by answering two
questions. 1) RQ4: How does the hyper-parameter
r affects the model performance? and 2) RQ5:
How does the mention classifier adjust the seman-
tic representations of each entity span?
Effectiveness of the Hyper-parameter. We fur-
ther perform a hyper-parameter study on the margin

Figure 5: The t-SNE visualization of the span represen-
tations with 5-way 5∼10-shot episode data from Few-
NERD Inter. The points with different colors denote the
entity span with different types. The circle represents
the prototype region. (Best viewed in color.)

value r, which aims to separate the false positives
via the margin-based learning objective. We con-
duct the experiments over Few-NERD and Cross-
NER, and the report the averaged F1 scores in Ta-
ble 6. Through the experimental results, we find
the best value is in 2 ≤ r ≤ 3. Specifically, when
the margin value is larger than 3, the performance
is similar to the variants SpanProto (w/o. Margin-
based Learning). In other words, it is hard to detect
false positives. In addition, we find that the perfor-
mance declines a lot when r < 2. We think that
the general distance between the prototype and the
true positive span is larger than 2. If the margin
value is very small, more and more true positives
could be viewed as the noises and be discarded.
Visualizations. We end this section with an in-
vestigation of how the SpanProto learns the rep-
resentations in the semantic space. We randomly
choose a 5-way 5∼10-shot episode data from Few-
NERD Inter, and then obtain the visualization by
t-SNE (Van der Maaten and Hinton, 2008) toolkit.
As shown in Figure 5, our method can cluster the
span representations into the corresponding type
prototype region, which can be viewed as a circle
with a radius of 2. In addition, owing to the pro-
posed margin-based learning, we observe that most
of the false positives can be separated successfully.

4.7 Error Analysis

Finally, we follow Wang et al. (2021) to conduct an
error analysis into two types, i.e. “FP-Span” and
“FP-Type”. As shown in Table 7, our SpanProto
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Methods F1 FP-Span FP-Type

ProtoBERT 44.44 86.70 13.30
NNShot 54.29 84.70 15.30
StructShot 57.33 80.00 20.00
ESD 66.46 72.80 27.20
DecomMeta 76.11 76.48 46.53
SpanProto 73.36 61.40 10.90

Table 7: Error analysis (%) of 5-way 1 2-shot on
FewNERD-INTER. “FP-Span” denotes extracted en-
tities with the wrong span boundary, and “FP-Type”
represents extracted entities with the right span bound-
ary but the wrong entity type.

outperforms other strong baselines and has much
less false positive prediction errors. Specifically,
we achieve 61.40% of “FP-Span” and the result re-
duces by more than 10%, which demonstrates the
effectiveness of the span extractor. Meanwhile, we
also obtain the lowest error rate of “FP-Type”, ow-
ing to the introduction of the margin-based learning
objective in the mention classifier.

5 Conclusion

We propose a span-based prototypical network
(SpanProto) for few-shot NER, which is a two-
stage approach includes span extraction and men-
tion classification. To improve the performance of
the span extraction, we introduce a global boundary
matrix to urge the model to learn explicit bound-
ary information regardless of token-wise label de-
pendency. We further utilize prototypical learn-
ing to adjust the span representations and solve
the issue of false positives by the margin-based
learning objective. Extensive experiments demon-
strate that our framework consistently outperforms
strong baselines. In the future, we will extend our
framework to other NLP tasks, such as slot filling,
Part-Of-Speech (POS) tagging, etc.

Limitations

Our proposed span extractor is based on the global
boundary matrix, which could consume more mem-
ory than the conventional sequence labeling meth-
ods. This drives us to further improve the overall
space efficiency of the framework. In addition,
we only focus on the few-shot NER in a N -way
K-shot settings in this paper. But, we think it is
possible to extend our work to other NER scenarios,
such as transfer learning, semi-supervised learning
or full-data supervised learning. We also leave
them as our future research.

Ethical Considerations

Our contribution in this work is fully methodolog-
ical, namely a Span-based Prototypical Network
(SpanProto) to boost the performance of the few-
shot NER. Hence, there are no direct negative so-
cial impacts of this contribution.

Acknowledgments

This work has been supported by the National Nat-
ural Science Foundation of China under Grant No.
U1911203, Alibaba Group through the Alibaba
Innovation Research Program, the National Natu-
ral Science Foundation of China under Grant No.
61877018, the Research Project of Shanghai Sci-
ence and Technology Commission (20dz2260300)
and The Fundamental Research Funds for the Cen-
tral Universities.

References
Sarkar Snigdha Sarathi Das, Arzoo Katiyar, Rebecca J.

Passonneau, and Rui Zhang. 2022. Container: Few-
shot named entity recognition via contrastive learn-
ing. In ACL, pages 6338–6353.

Leon Derczynski, Eric Nichols, Marieke van Erp, and
Nut Limsopatham. 2017. Results of the WNUT2017
shared task on novel and emerging entity recognition.
In EMNLP, pages 140–147.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In NAACL-HLT, pages 4171–4186.

Ning Ding, Guangwei Xu, Yulin Chen, Xiaobin Wang,
Xu Han, Pengjun Xie, Haitao Zheng, and Zhiyuan
Liu. 2021. Few-nerd: A few-shot named entity recog-
nition dataset. In ACL, pages 3198–3213.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017.
Model-agnostic meta-learning for fast adaptation of
deep networks. In ICML, volume 70 of Proceedings
of Machine Learning Research, pages 1126–1135.

Alexander Fritzler, Varvara Logacheva, and Maksim
Kretov. 2019. Few-shot classification in named entity
recognition task. In SAC, pages 993–1000.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
Simcse: Simple contrastive learning of sentence em-
beddings. In EMNLP, pages 6894–6910.

Ruiying Geng, Binhua Li, Yongbin Li, Jian Sun, and
Xiaodan Zhu. 2020. Dynamic memory induction
networks for few-shot text classification. In ACL,
pages 1087–1094.

3474



Yutai Hou, Wanxiang Che, Yongkui Lai, Zhihan Zhou,
Yijia Liu, Han Liu, and Ting Liu. 2020. Few-shot
slot tagging with collapsed dependency transfer and
label-enhanced task-adaptive projection network. In
ACL, pages 1381–1393.

Jiaxin Huang, Chunyuan Li, Krishan Subudhi, Damien
Jose, Shobana Balakrishnan, Weizhu Chen, Baolin
Peng, Jianfeng Gao, and Jiawei Han. 2021. Few-
shot named entity recognition: An empirical baseline
study. In EMNLP, pages 10408–10423.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidi-
rectional LSTM-CRF models for sequence tagging.
CoRR, abs/1508.01991.

Mike Huisman, Jan N. van Rijn, and Aske Plaat. 2021.
A survey of deep meta-learning. Artif. Intell. Rev.,
54(6):4483–4541.

Vivek Kulkarni, Yashar Mehdad, and Troy Chevalier.
2016. Domain adaptation for named entity recogni-
tion in online media with word embeddings. CoRR,
abs/1612.00148.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition. In
NAACL, pages 260–270.

Elad Levi, Tete Xiao, Xiaolong Wang, and Trevor Dar-
rell. 2021. Rethinking preventing class-collapsing in
metric learning with margin-based losses. In ICCV,
pages 10296–10305.

Jie Ma, Miguel Ballesteros, Srikanth Doss, Rishita
Anubhai, Sunil Mallya, Yaser Al-Onaizan, and Dan
Roth. 2022a. Label semantics for few shot named
entity recognition. In ACL, pages 1956–1971.

Tingting Ma, Huiqiang Jiang, Qianhui Wu, Tiejun
Zhao, and Chin-Yew Lin. 2022b. Decomposed meta-
learning for few-shot named entity recognition. In
ACL, pages 1584–1596.

Xuezhe Ma and Eduard H. Hovy. 2016. End-to-end
sequence labeling via bi-directional lstm-cnns-crf. In
ACL.

Matthew E. Peters, Waleed Ammar, Chandra Bhaga-
vatula, and Russell Power. 2017. Semi-supervised
sequence tagging with bidirectional language models.
In ACL, pages 1756–1765.

Erik F. Tjong Kim Sang and Fien De Meulder. 2003.
Introduction to the conll-2003 shared task: Language-
independent named entity recognition. In NAACL,
pages 142–147.

Adam Santoro, Sergey Bartunov, Matthew M.
Botvinick, Daan Wierstra, and Timothy P. Lillicrap.
2016. Meta-learning with memory-augmented neural
networks. In ICML, volume 48, pages 1842–1850.

Yongliang Shen, Xinyin Ma, Zeqi Tan, Shuai Zhang,
Wen Wang, and Weiming Lu. 2021. Locate and la-
bel: A two-stage identifier for nested named entity
recognition. In ACL, pages 2782–2794.

Jiawei Sheng, Shu Guo, Zhenyu Chen, Juwei Yue, Li-
hong Wang, Tingwen Liu, and Hongbo Xu. 2020.
Adaptive attentional network for few-shot knowledge
graph completion. In EMNLP, pages 1681–1691.

Jake Snell, Kevin Swersky, and Richard S. Zemel. 2017.
Prototypical networks for few-shot learning. In NIPS,
pages 4077–4087.

Jianling Su. 2021. Globalpointer: A unified framework
for nested and flat named entity recognition.

Laurens Van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of machine
learning research, 9(11).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NIPS, pages 5998–6008.

Oriol Vinyals, Charles Blundell, Tim Lillicrap, Koray
Kavukcuoglu, and Daan Wierstra. 2016. Matching
networks for one shot learning. In NIPS, pages 3630–
3638.

Chengyu Wang, Minghui Qiu, Taolin Zhang, Tingting
Liu, Lei Li, Jianing Wang, Ming Wang, Jun Huang,
and Wei Lin. 2022a. Easynlp: A comprehensive and
easy-to-use toolkit for natural language processing.
CoRR, abs/2205.00258.

Jianing Wang, Chengyu Wang, Minghui Qiu, Qiuhui
Shi, Hongbin Wang, Jun Huang, and Ming Gao.
2022b. KECP: knowledge enhanced contrastive
prompting for few-shot extractive question answer-
ing. CoRR, abs/2205.03071.

Peiyi Wang, Runxin Xu, Tianyu Liu, Qingyu Zhou,
Yunbo Cao, Baobao Chang, and Zhifang Sui. 2021.
An enhanced span-based decomposition method for
few-shot sequence labeling. In NAACL, pages 5012–
5024.

Yaqing Wang, Quanming Yao, James T. Kwok, and Li-
onel M. Ni. 2020. Generalizing from a few examples:
A survey on few-shot learning. ACM Comput. Surv.,
53(3):63:1–63:34.

Jason W. Wei and Kai Zou. 2019. EDA: easy data
augmentation techniques for boosting performance
on text classification tasks. In EMNLP, pages 6381–
6387.

Ralph Weischedel, Martha Palmer, Mitchell Marcus, Ed-
uard Hovy, Sameer Pradhan, Lance Ramshaw, Nian-
wen Xue, Ann Taylor, Jeff Kaufman, Michelle Fran-
chini, et al. 2013. Ontonotes release 5.0 ldc2013t19.
Linguistic Data Consortium, Philadelphia, PA, 23.

3475



Models
Intra Inter

1∼2-shot 5∼10-shot
Avg.

1∼2-shot 5∼10-shot
Avg.

5 way 10 way 5 way 10 way 5 way 10 way 5 way 10 way

SpanProto 54.49±0.39 45.39±0.72 73.10±1.15 64.63±0.22 59.40 73.36±0.18 66.26±0.33 82.68±0.42 78.69±0.50 75.25
w/o. Span Extractor 23.10±0.37 21.63±0.29 37.91±0.44 34.32±0.44 29.24 45.17±0.25 36.18±0.35 59.52±1.0 55.45±0.90 49.08
w/o. Mention Classifier 14.02±0.25 11.33±0.33 31.20±0.75 17.09±0.20 18.41 25.40±0.22 19.77±0.36 26.88±0.41 33.39±0.50 26.36
w/o. Margin-based Learning 51.92±0.40 40.32±0.52 68.10±0.88 56.82±0.19 54.29 68.07±0.22 62.52±0.30 79.10±0.35 75.79±0.33 71.37

Table 8: F1 scores with standard deviations on Few-NERD for both inter and intra settings. † denotes the results
reported in Das et al. (2022). ‡ is taken from Das et al. (2022) with no standard deviations reported.

Models 1-shot 5-shot

CONLL-03 GUM WNUT-17 OntoNotes Avg. CONLL-03 GUM WNUT-17 OntoNotes Avg.

SpanProto 47.70±0.51 20.16±0.80 30.19±0.94 37.91±0.79 33.99 61.61±1.03 43.75±0.50 31.37±0.94 49.04±0.93 46.44
w/o. Span Extractor 9.10±0.37 11.13±0.21 17.28±0.44 16.21±0.40 13.43 25.63±0.23 21.76±0.39 33.31±0.33 9.74±0.50 22.61
w/o. Mention Classifier 13.68±0.35 9.13±0.30 11.10±0.35 8.21±0.23 10.53 6.17±0.29 5.02±0.31 5.81±0.31 7.32±0.20 6.08
w/o. Margin-based Learning 32.11±0.16 29.10±0.20 30.32±0.31 31.99±0.13 30.88 40.07±0.20 43.50±0.29 44.80±0.31 45.11±0.27 43.37

Table 9: F1 scores with standard deviations on CrossNER. ‡ denotes the results reported in Hou et al. (2020).

Hyper-parameter Value

Batch Size {1, 2, 4, 8}
Learning Rate {1e-5, 2e-5, 5e-5, 1e-4, 2e-4}
Dropout Rate {0.1, 0.3, 0.5}
T ′ {0, 100, 200, 500, 1,000}
θ {0.0, 0.50, 0.75, 0.80, 0.85, 0.90, 0.95}
r {1, 2, 3, 4, 5, 6}

Table 10: The searching scope for each hyper-parameter.
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A Details of Our Variants

SpanProto w/o. Span Extractor. We remove
the span extractor. We leverage the standard pro-
totypical network to perform the token-level type
classification, which is the same as ProtoBERT.

SpanProto w/o. Mention Classifier. We remove
the mention classifier. To support the classification,
we directly use the K-Means algorithm. Specifi-
cally, we first train the span extractor on the support
set and extract all candidates for each query exam-
ple. We then obtain the span embedding based
on the contextual representations. Thus, for each
episode data, we can obtain all span representa-
tions, we leverage the K-Means to obtain N cluster
on all support spans, and then predict each type of
the query span based on the nearest cluster.
SpanProto w/o. Margin-based Learning. We
remove the margin-based learning objective to vali-
date its contribution. Therefore, we do not obtain
the false positives from the query set in the training
episode. Specifically, we first obtain all candidates
for each query example, and then directly classify
each span based on the prototypical network.

B Details of the Grid Search

The searching scope of each hyper-parameter is
shown in Table 10. Note that, the batch size in
the N -way K-shot setting means the number of
episode data in one batch.

C Details of the Ablation Study

The detail results of ablation study are listed in
Table 8 and Table 9.
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