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Foreword from the General Chair

As president of the European Association for Machine Translation (EAMT) and General Chair
of the 23rd Annual Conference of the EAMT, it is with great pleasure that [ write these opening
words to the Proceedings of EAMT 2022 (a first time for me!). The preparations for EAMT
2022 were initially started by the former President, Mikel Forcada, to whom I am deeply grateful

for all the assistance and hand over.

A first note of appreciation and gratitude to the Executive Board Members who have moved
to new plans in life, after long and outstanding dedicated service to the EAMT community.
Firstly, Tony Clarke, EAMT treasurer for 23 years, in appreciation for his invaluable service as
the longest-standing treasurer of our Association. To Andy Way, in appreciation for his years
of service as secretary, president, conference organizer, and member of the Executive Board of
our Association. To Viggo Hansen, our gratitude for his years of service as secretary, conference

organizer, and member of the Executive Board of our Association.

One of the most significant milestones this year was the John Hutchins Machine Translation
Archive new domain, an achievement built upon the hard work of our former president, Mikel
Forcada, and a group of dedicated members, Barry Haddow, Leopoldo Pla, and Matt Post. The
John Hutchins Machine Translation Archive is alive at: https://mt-archive.net/. We invite

our community to visit John’s archive!

A few lines more of gratitude to Matt Post, for being responsible for the import of the MT
Archive conference proceedings into the ACL anthology. Our community is very thankful to

Matt Post for the massive import work and patience along the way!

Now our EAMT 2022 event! After an online-edition in Lisbon, in 2020 (in which I had no
opportunity to welcome you in person as a co-chair) and a cancellation in 2021, we now move
forward to a fully and much hoped for live event in Ghent, Belgium! Winds of change in the
pandemics are bringing a new hope. Embedded in this spirit, the local organizers are enthusiastic
about hosting an in-person event, after the two-years interregnum, anticipating a much needed
gathering of the community. Let us hope that these changes are here to stay.

Despite the positive changes in terms of covid, our community reached out to us requesting
for support, specifically for freelance translators and/or members from low-income areas and
war zones. For the first time, we have opened two calls for grants, encompassing, on one hand,
students from Translation Studies and, on another, members from Middle East and African
countries. A total of seven grants were given. We hope this initiative may mitigate the hard times

we are living and may bring richer discussions into our EAMT 2022, diversifying geographically
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our membership.

EAMT 2022 will have a three-day, four-track programme put together by our chairs: Loic
Barrault and Marta Costa-Jussa, research track co-chairs; Ellie Kemp and Spyridon Pilos, user
track co-chairs; Maarit Koponen and Christophe Declercq, translator track co-chairs; and Mikel
Forcada, as the projects/products track chair. Carolina Scarton, Secretary of EAMT, was the
chair of the Best Thesis Award and also the technical coordinator of the reviewing process (our
gratitude to Carolina who is always willing to support our community).

This year, the programme will also include two keynotes speakers, invited by Lieve Macken
and Andrew Rufener (with our full support and enthusiasm), Laura Rossi (Medtronic) and Jorg
Tiedemann (University of Helsinki), combining industry and academia visions on the field, a
true honour to have them and to be able to discuss their talks in person.

EAMT 2022 brings a new breeze of hope and it is the result of the hard work of our local
organizers from the Language and Translation Technology Team (LT3) of Ghent University and
CrossLang. Our gratitude and appreciation to the LT3 team, Lieve Macken (co-chair), Joke
Daems, Arda Tezcan, and Bram Vanroy; and to the CrossLang team, Andrew Rufener (co-
chair), Joachim Van den Bogaert, and especially to Martine Massiera for her outstanding work
taking care of our sponsors, registration process, all social events, and smoothly handling the
logistics of the new calls for grants.

EAMT has been supported by generous sponsors in its initiatives along the years. This year
is no exception. Our gratitude to our sponsors: Microsoft (platinum sponsor, who will also
be giving a talk entitled “Microsoft and Translators’ quest to break down language barriers”),
Pangeanic and Yamagata (silver sponsors), STAR Group, Unbabel and Welocalize (bronze spon-
sors), Apertium (collaborator sponsor), Springer (best paper award supporter) and MultiLingual
(media sponsor).

A final note to our participants! By the time I am writing these lines, there are already 113
participants and the number continues growing! Even in unstable times, this number is a very
positive sign! We can finally meet in person! Let us take this opportunity to revive fruitful
discussions, scientific collaborations, and constructive feedback in our community. I’'m looking

forward to seeing you all, finally!

Lisboa, 2022

Helena Moniz

President of the EAMT

General Chair of EAMT 2022

University of Lisbon / INESC-ID, Portugal
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Message from the Organising
Committee Chairs

It is with great pleasure that we finally welcome you in Ghent to attend the 23rd Annual
Conference of the European Association for Machine Translation.

The idea of organizing the 23rd Annual Conference of EAMT in Ghent jointly by the LT3
research team and CrossLang emerged in 2019 at the Croke Park stadium in Dublin where
we enjoyed the Gala Dinner of the MT Summit. Unfortunately, COVID-19 prevented us from
organizing an on-site event and EAMT2021 was first postponed and eventually cancelled. We
are therefore extremely pleased to be able to welcome you all in our beautiful city for EAMT2022
and to meet you all in person.

A lot can happen in two years. The venue we had originally booked, the Aula Academica
of Ghent University, a historic building of 1826, was no longer available due to renovation work.
As Ghent is a great mix of old and new, we instead welcome you in the trendy Zebrastraat
and keep the historic part for the conference dinner, which will be organized in the church of
Monasterium PoortAckere.

People also change jobs. With a new team (and a new EAMT president) we continued the
preparations for the conference. We kept the basic format of previous editions, but added a
second keynote speaker. This not only allowed us to find the optimal balance between academia
and industry but also ensured gender balance. We are really looking forward to the talks of Jorg
Tiedemann and Laura Rossi.

We did not opt for a hybrid conference as the advantages did not outweigh the disadvantages.
As a compromise, we will record the oral sessions and make the recordings available after the
conference.

We would express our sincerest gratitude to everyone who made EAMT2022 possible: Mikel
Forcada as former president of EAMT; Helena Moniz as new president of EAMT; Carolina
Scarton as EAMT Secretary; Loic Barrault and Marta Costa-Jussa as research track chairs; Ellie
Kemp and Spyridon Pilos as user track co-chairs; Maarit Koponen and Christophe Declercq as
translator track chairs.

We extend our thanks to our sponsors for their invaluable support: Microsoft (Platinum
sponsor), Pangeanic and Yamagata (Silver sponsors), STAR Group, Unbabel and Welocalize
(Bronze sponsors), Apertium (Collaborator sponsor), Springer (Supporter sponsor), and Multi-
Lingual (media sponsor).

This conference would not have been possible without the hard work of all members of the
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joint organizing team: Andrew Rufener, Martine Massiera and Joachim Van den Bogaert of
CrossLang; Lieve Macken, Joke Daems, Arda Tezcan, Bram Vanroy and Margot Fonteyne of
the Language and Translation Technology Team (LT?) of Ghent University. Sincere thanks as
well to Sam Delmotte of Ghent University for recording the oral sessions.

Lieve Macken Andrew Rufener
Ghent University, LT3 CrossLang

On behalf of the local organizers



Preface by the Programme Chairs

On behalf of the programme chairs, a warm welcome to the 23rd annual conference of the
European Association for Machine Translation in Ghent, Belgium. After all the restrictions,
rescheduling and cancellations of events in the past couple of years, and after a prolonged period
with almost all meetings online, we are delighted to finally be meeting our colleagues face-to-face
again!

Following the approach which has proven so successful in the previous editions of EAMT,
the conference programme consists of papers and posters divided into four tracks. These relate

to research, users, translators and projects/products.

The research track this year was one of the most competitive tracks ever in the history of
EAMT. Only 17 out of 39 papers were accepted (an acceptance rate of 44%), based on three-peer
reviews. The papers describe state-of-the-art work being conducted and, therefore, are highly
relevant to our community. Eight papers will be presented orally and nine as posters, as you
may already find in the programme. We invite our community to reach out to the authors and
discuss the relevant work conducted in such a demanding track.

The submissions for the user track in this edition mostly tackle the customer support domain
- a particular focus of the oral sessions of the programme - and industry usage of MT. This track
will discuss a number of practical issues for users. These range from the notion of “users” in a
very challenging domain, to conversational data with strict time constraints, and the quality of
the MT produced.

The translator’s track, as is evident from the name, emphasises the perspective of translators
on MT. This year, the track features three peer-reviewed papers, each of which addresses aspects
of machine translation and post-editing carried out by translators in different settings. The
diverging uses of post-editing and machine translation cover a survey of corporate use of post-
editing and revision in the NMT era, post-editing practices for automatically generated subtitles,
and annotation of post-editing and machine translation errors using speech-to-text technology.

Forty-four papers were submitted to the largest ever project/product track in the history of
EAMT conferences. Of them, 41 were eventually accepted, some of them after an additional
round of improvements with the general audience of EAMT in sight. As these lines are written,
authors are preparing their posters, and also their poster booster slides, in anticipation of their
(strictly-timed) two minutes of glory before the poster session.

In addition to the papers and posters relating to the different tracks, the programme also

features two fascinating invited talks: Laura Rossi with her talk titled “I once said to my boss
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‘SMT will never work...” ” and Jorg Tiedemann with “Democratizing machine translation with

OPUS-MT".

We wish to thank the members of the scientific programme committee for their time and
support, and for their invaluable expertise in peer-reviewing the submissions. Our thanks nat-
urally go to all the authors, without whom the programme would not exist, the local organisers
for all their hard work, as well as Carol Scarton, Helena Moniz and Mikel Forcada for their
unfailing advice and support.

Lo6ic Barrault Marta Costa-jussa
META Al Research META AI Research

Ellie Kemp Spyridon Pilos

CLEAR Global European Court of Auditors
Christophe Declercq Maarit Koponen

Univ. of Utrecht & Univ. College London University of Eastern Finland

Mikel Forcada
Universitat d’Alacant
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Invited Speeches

Democratizing machine translation with OPUS-MT

Jorg Tiedemann, University of Helsinki, Finland

The demand for translation is ever growing and this trend will not stop. Being able to access
the same kind of information is a fundamental prerequisite for equality in society and translation
plays a crucial role when fighting discrimination based on language barriers. Efficient tools and
a better coverage of the linguistic diversity in the World are necessary to cope with the amount
of material that needs to be handled. Our mission is to support the development of high quality
tools for automatic and computer-assisted translation by providing open services and resources
that are independent of commercial interests and profit-driven companies. Equal information
access is a human right and not only a privilege for people who can pay for it. In this talk I will
discuss the current state of OPUS-MT, our project on open neural machine translation and the
challenges that we try to tackle with multilingual NLP, transfer learning and data augmentation.
I will report about on-going work on knowledge distillation, the creation of compact models for
real-time translation and our work on modularization of neural MT.

“I once said to my boss ‘SMT will never work...” ”

Laura Rossi, Medtronic

I once said to my boss: ‘SMT will never work...”; yet here we are: after being statistical,
MT became neural and even adaptive, and achieved levels of quality that were unthinkable 20
years ago, covering, in addition, more and more language pairs every day. Customizations of
MT systems have turned into a commodity, made available through specialized companies, LSPs
and even as a self-service model. MT is very well integrated in human translation workflows
to lower prices and shorten turnarounds. So, what are users, and in particular corporate users,
looking for next? What creates a differentiative and appealing offer?” What makes them choose
for one or the other vendor? The race is moving towards automation, integration, well-being
and sustainability.






EAMT 2020 and EAMT 2021 Best
Thesis Award — Anthony C Clarke
Award

Despite not having an EAMT conference in 2021, we still had the EAMT Best Thesis Awards for
PhD theses defended in 2020. Therefore, this EAMT 2022 proceedings contains the abstracts
for the winners of both EAMT 2020 and EAMT 2021 Best Thesis Award (Anthony C Clarke
Award).

Four PhD theses defended in 2020 were received as candidates for the 2020 edition of the
Anthony C Clarke Award — EAMT Best Thesis Award, and all four were eligible. Eight EAMT
Executive Committee members were recruited to examine and score the theses, considering how
challenging the problem tackled in each thesis was, how relevant the results were for machine
translation as a field, and what the strength of its impact in terms of scientific publications was.
Two EAMT Executive Committee members also analysed all theses.

The scores of the best theses were extremely close, which made it very hard to select a
single winner. A panel of seven EAMT Executive Committee members (Khalil Sima’an, Barry
Haddow, Celia Rico, Lieve Macken, Carolina Scarton, Helena Moniz and Mikel L. Forcada) was
assembled to process and discuss the reviews.

The panel has decided to have two ex aequo winners for the 2020 edition of the EAMT Best
Thesis Award:

e Maha Elbayad: Rethinking the Design of Sequence-to-Sequence Models for Efficient Ma-
chine Translation (University Grenoble Alpes, France) — supervised by Laurent Besacier
and Jakob Verbeek

e Mattia Antonino Di Gangi: Neural Speech Translation: From Neural Machine Trans-
lation to Direct Speech Translation (University of Trento, Italy) — supervised by Marcello
Federico, Marco Turchi and Matteo Negri

Six PhD theses defended in 2021 were received as candidates for the 2021 edition of the
Anthony C Clarke Award for the EAMT Best Thesis, and all six were eligible. 12 reviewers
and five EAMT Executive Committee members were recruited to examine and score the theses,
considering how challenging the problem tackled in each thesis was, how relevant the results

were for machine translation as a field, and what the strength of its impact in terms of scientific



publications was. Two EAMT Executive Committee members (Helena Moniz - EAMT President
—and Carolina Scarton — EAMT Secretary) formed a panel to analyse all theses and discuss all
reviews.

The year of 2021 was again a very good year for PhD theses in machine translation. The
scores of the best theses were very close, which made it very hard to select a winner. After
discussing all the theses and their reviews, the panel proposed a winner that was approved by
the EAMT executive committee, represented by members André Martins, Barry Haddow, Celia
Rico, Lieve Macken, Lucia Specia and Heidi Depraetere. The awardee of the 2021 edition of
the EAMT Best Thesis is Danielle Saunders’ thesis Domain Adaptation for Neural Machine
Translation (University of Cambridge, UK), supervised by Professor Bill Byrne.

We are very grateful to all reviewers that helped in assessing the theses defended in 2021

and provided their invaluable and high quality feedback.

Carolina Scarton
EAMT Secretary
University of Sheffield, UK



Rethinking the Design of Sequence-to-Sequence Models for Efficient
Machine Translation

Maha Elbayad'
LIG - Université Grenoble Alpes, France
Inria - Grenoble, France
maha.elbayad@inria. fr

In recent years, deep learning has enabled im-
pressive achievements in Machine Translation.
Neural Machine Translation (NMT) relies on train-
ing deep neural networks with large number of pa-
rameters on vast amounts of parallel data to learn
how to translate from one language to another. One
crucial factor to the success of NMT is the de-
sign of new powerful and efficient architectures.
State-of-the-art systems are encoder-decoder mod-
els (Cho et al., 2014; Sutskever et al., 2014; Bah-
danau et al., 2015; Gehring et al., 2017; Vaswani et
al., 2017) that first encode a source sequence into a
set of feature vectors and then decode the target se-
quence conditioning on the source features. In this
thesis we question the encoder-decoder paradigm
and advocate for an intertwined encoding of the
source and target so that the two sequences inter-
act at increasing levels of abstraction. For this pur-
pose, we introduce Pervasive Attention, an NMT
model with a computational graph different from
existing encoder-decoder models. In Pervasive at-
tention, the source and the target communicate and
interact throughout the encoding process towards
abstract features. To this end, our NMT model uses
two-dimensional convolutional neural networks to
process a grid of features where every position rep-
resents an interaction between a target and a source
tokens.

To tackle a different aspect of efficiency in NMT
systems, we explore the challenging task of on-
line (also called simultaneous) machine transla-
tion (Fiigen et al., 2007; Mieno et al., 2015; Dalvi
et al., 2018; Ma et al., 2019) where the source is
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read incrementally and the decoder is fed partial
contexts so that the model can alternate between
reading and writing. To improve the translation’s
delay in online NMT systems, we first setup a com-
mon framework for online sequence-to-sequence
models that will allow us to train existing de-
terministic decoders that alternate between read-
ing the source and writing the target in a pre-
determined fashion, and dynamic decoders that
condition their decoding path on the current input.
We first prove the effectiveness of the determin-
istic online decoders and their ability to perform
well outside the delay range they were optimized
for. We then adapt Pervasive Attention models for
the task of online translation with both a determin-
istic and a dynamic decoding strategy.

We also address the resource-efficiency of
encoder-decoder models, namely Transformer
models (Vaswani et al., 2017), state-of-the-art in
a wide range of NLP tasks (Devlin et al., 2019;
Yang et al., 2019; Liu et al., 2019; Ng et al., 2019).
Models based on the Transformer architecture can
grow deep, accumulating billions of parameters.
We posit that going deeper in a neural network is
not required for all instances, and design depth-
adaptive Transformer decoders. These decoders
allow for anytime prediction and sample-adaptive
halting mechanisms, to favor low cost predictions
for low complexity instances, and save deeper pre-
dictions for complex scenarios.

Pervasive Attention models and our Online
NMT framework are implemented on top of the
Fairseq library (Ott et al., 2019) in our open-source
code.!
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Neural Speech Translation: from Neural Machine Translation
to Direct Speech translation

Mattia A. Di Gangi*
Fondazione Bruno Kessler (FBK)
ICT Doctoral School - University of Trento
via Sommarive, Povo, Trento, Italy
mattia.digangi@unitn.it

Speech-to-text translation, or simply speech
translation (ST), is the task of translating automati-
cally a spoken speech. The problem has classically
been tackled by combining the technologies of au-
tomatic speech recognition (ASR) and machine
translation (MT) with different degrees of coupling
(Takezawa et al., 1998; Waibel et al., 1991). The
most popular approach is to cascade ASR and MT
systems, as it can make use of the state of the art in
such mature fields (Black et al., 2002). The goal of
this thesis was to develop the so-called approach
of direct speech translation, which translates au-
dio without intermediate transcription (Duong et
al., 2016; Bérard et al., 2016; Weiss et al., 2017).
Direct speech translation (DST) is based on the
sequence-to-sequence learning technology that al-
lowed the spectacular advances of the field of neu-
ral MT (NMT) but introducing its own challenges
(Sutskever et al., 2014; Bahdanau et al., 2015).

We started with a study about the effects of
NMT in cascaded ST, where we analyzed the
translation errors of NMT and phrase-based MT
(PBMT) for automatically transcribed input text.
Our results showed that NMT achieves an overall
higher quality also in this setting, but its ability to
model a theoretically-unlimited context can intro-
duce subtle errors. Indeed, we found that in PBMT
the errors are localized in correspondence to the
source error, whereas NMT can introduce errors
far from the source-side error position.

Motivated by application needs, in a following
work we studied how to use a single NMT system
to translate effectively clean source text and auto-
matic transcripts. We found that a simple training
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algorithm that fine-tunes the model on both kinds
of inputs improves the translation quality of cor-
rupted input without any degradation on clean in-
put.

In a parallel research line, we were interested
in making the training of RNN-based NMT more
efficient, as it required at the time long training
time also for relatively small datasets. For this,
we proposed simple-recurrent NMT (SR-NMT),
an encoder-decoder architecture that requires a
fraction of parameters and computing power than
LSTM-based NMT. It is built on top of simple re-
current units (Lei et al., 2017), which are faster to
train but achieve a lower translation quality than
LSTMs, particularly because they do not bene-
fit from the addition of computation layers. On
the other side, SR-NMT has been designed to be
trained as a deep network and our results show how
the performance improves significantly up to 8 lay-
ers in the encoder and in the decoder.

Our two research lines converge in our work on
DST. We start with a participation in IWSLT 2018,
which introduced a separate evaluation for direct
models in order to encourage participants to ex-
plore this new and promising technology. From
this participation we learn that training such kind
of models is really difficult, findings confirmed by
the very low results of all but the winning model.
We hypothesize that such difficulty is due also to
the low availability of training data for the task,
which in fact requires source audio matched with
its translation. It is much easier to find transcribed
audio data and separate translated text.

In a first effort to overcome this data paucity, we
propose MuST-C, a Multilingual Speech Transla-
tion Corpus (Di Gangi et al., 2019a). It is obtained
from TED talks and provides the audio (in English)
segmented into sentences matched with the cor-
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responding audio transcripts and translations to 8
languages. MuST-C provides audio data ranging
from 385 to 504 hours, according to the target lan-
guage, filtered for achieving a high quality of par-
allel data.

With MuST-C available, we focused on deep
learning methods for DST and proposed S-
Transformer, an adaptation of Transformer to the
task (Di Gangi et al., 2019b). The problems that
S-Transformer aims to solve are the high resource
burden in terms of computing power and training
time of LSTM-based DST, and the difficulty of
self-attention to model audio-like sequences, char-
acterized by a very high number of time steps and
low information density per step. The first prob-
lem is tackled effectively by the use of Trans-
former, which trains faster and scales better than
LSTMs, while for modeling we used 2D CNNSs,
2D self-attention, and time-biased self-attention,
which help with both convergence time and trans-
lation quality.

Finally, we applied S-Transformer in a one-to-
many multilingual fashion to make better use of
the MusT-C data, as well as comparing character-
level against BPE-level segmentation of the tar-
get sentence. Our results showed that the BPE-
segmentation is generally better and achieves
larger improvement also in the multilingual sce-
nario. Moreover, we participated in the DST evalu-
ation at IWSLT 2019 and 2020, where MuST-C be-
came the main in-task training corpus, and our sub-
missions’ results were competitive with the ones of
teams from the industry. The results and products
of this thesis contributed to the fast development
of the technology of DST and lowered the barrier
of entry into the field by making data! and code?
publicly available.
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Domain Adaptation for Neural Machine Translation

Danielle Saunders*
Department of Engineering
University of Cambridge
Cambridge, UK
ds636@cantab.ac.uk

The development of deep learning techniques
has allowed Neural Machine Translation (NMT)
models to become extremely powerful, given suf-
ficient training data and training time. However,
such translation models struggle when translating
text of a new or unfamiliar domain (Koehn and
Knowles, 2017). A domain may be a well-defined
topic, text of a specific provenance, text of un-
known provenance with an identifiable vocabulary
distribution, or language with some other stylo-
metric feature.

NMT models can achieve good translation per-
formance on domain-specific data via simple tun-
ing on a representative training corpus. However,
such data-centric approaches have negative side-
effects, including over-fitting and brittleness on
narrow-distribution samples and catastrophic for-
getting of previously seen domains.

This thesis focuses instead on more robust ap-
proaches to domain adaptation for NMT. We con-
sider the case where a system is adapted to a spec-
ified domain of interest, but may also need to ac-
commodate new language, or domain-mismatched
sentences. As well, the thesis highlights that lines
of MT research other than performance on tradi-
tional ‘domains’ can be framed as domain adapta-
tion problems. Techniques that are effective for
e.g. adapting machine translation to a biomedi-
cal domain can also be used when making use of
language representations beyond the surface-level,
or when encouraging better machine translation of
gendered terms.

Over the course of the thesis we pose and answer
five research questions:
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How effective are data-centric approaches to
NMT domain adaptation? We find that simply
selecting-domain relevant training data and fine-
tuning an existing model achieves strong results,
especially when a domain-specific data curriculum
is used during training. However, we also demon-
strate the side-effects of exposure bias and catas-
trophic forgetting.

Given an adaptation set, what training schemes
improve NMT quality? We investigate two varia-
tions on the NMT adaptation algorithm, regular-
ized tuning including Elastic Weighting Consoli-
dation, and a new variant of Minimum Risk Train-
ing. We show they can mitigate the pitfalls of data-
centric adaptation. Aside from avoiding the fail-
ure modes of data-centric methods, we show these
methods may also give better model convergence.

Can domain adaptation help when the test do-
main is unknown? Most approaches to domain
adaptation in the literature assume any unseen test
data of interest has a known, fixed domain, with a
matching set of tuning data. This thesis works to-
wards relaxing these assumptions. We show that
adapting sequentially across domains with regu-
larization can achieve good cross-domain perfor-
mance without knowing the specific test domain.
We also explore domain adaptive model ensem-
bling and automatic model selection. We find
this can outperform oracle approaches, which se-
lect the best model for inference by using known
provenance labels.

Can changing data representation have similar
effects to changing data domain? Unlike data do-
main, data representation — for example, choice
of subword granularity or use of syntactic anno-
tation — does not change meaning or correspond
to provenance. However, like domain, it can af-
fect the information available to the model, and
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therefore impacts NMT quality for a given input.
We combine multiple representations in a single
model or in ensembles in a way reminiscent of
multi-domain translation. In particular, we de-
velop a scheme for ensembles of models produc-
ing multiple target language representations, and
show that multi-representation ensembles improve
syntax-based NMT.

Can gender bias in NMT systems be mitigated
by treating it as a domain? We show that trans-
lation of gendered language is strongly influenced
by vocabulary distributions in the training data, a
hallmark of a domain. We also show that data
selection methods have a strong effect on appar-
ent NMT gender bias. We apply techniques from
elsewhere in the thesis to tune NMT on a ‘gen-
der’ domain, specifically regularized adaptation
and multi-domain inference. We show this can im-
prove gendered language translation while main-
taining generic translation quality.

Human language itself is constantly adapting,
and people’s interactions with and expectations of
MT are likewise evolving. With this thesis we hope
to draw attention to the possible benefits and ap-
plications of different approaches to adapting ma-
chine translation. We hope that future work on
adaptive NMT will focus not only on the language
of immediate interest but the machine translation
abilities or tendencies that we wish to maintain or
abandon.
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Abstract

Building effective Neural Machine Trans-
lation models often implies accommodat-
ing diverse sets of heterogeneous data so
as to optimize performance for the do-
main(s) of interest. Such multi-source /
multi-domain adaptation problems are typi-
cally approached through instance selection
or reweighting strategies, based on a static
assessment of the relevance of training in-
stances with respect to the task at hand. In
this paper, we study dynamic data selec-
tion strategies that are able to automatically
re-evaluate the usefulness of data samples
in the course of training. Based on the re-
sults of multiple experiments, we show that
our method offer a generic framework to
automatically handle several real-world sit-
uations, from multi-source or unsupervised
domain adaptation to multidomain learning.

1 Introduction

A typical setting in machine translation (MT) is
to collect the largest possible collection of parallel
data for the chosen language pair, with the intent to
achieve optimal performance for the task of inter-
est. In such situations, the training data distribution
is opportunistic, while the test data distribution is
chosen and fixed; a key aspect of training is then to
mitigate the detrimental effects of a mismatch be-
tween these distributions. Single-source and multi-
source! domain adaptation (DA) is a well-studied
© 2022 The authors. This article is licensed under a Creative

Commons 3.0 licence, no derivative works, attribution, CC-
BY-ND.

'In this paper, multi-source DA means having multiple do-
mains to adapt from; this setting differs from multi-source
translation, where several source languages are considered.

5 rue Feydeau, F-75002 Paris
crego@systrangroup.com

F-91405 Orsay, France
yvon@limsi.fr

instance of this setting (see (Chu et al., 2017; Saun-
ders, 2021) for a review), and so is multi-domain
(MD) learning (Chu and Dabre, 2018; Zeng et al.,
2018; Jiang et al., 2020; Pham et al., 2021). A re-
lated situation is multilingual MT (Firat et al., 2016;
Ha et al., 2016; Johnson et al., 2017; Aharoni et
al., 2019), where the diversity of training data not
only corresponds to variations in the topic, genre,
or register but also in language.

This problem is often approached by static in-
stance selection or re-weighting strategies, where
the available training data is used in proportion
to its relevance for the testing conditions (Moore
and Lewis, 2010; Axelrod et al., 2011). Finding
the optimal balance of training data is however, a
challenging task due, for instance, to the similarity
between domains/languages, or to the regulariza-
tion effects of out-of-domain data (Miceli Barone et
al., 2017). A static policy may also be suboptimal
when some target domains or languages are easier
to train than others. Finally, improving the perfor-
mance of the MT system in one domain will often
hurt that of another (van der Wees et al., 2017; Britz
et al., 2017) and improving model generalization
across all domains (Koehn et al., 2018) may not
achieve optimally for any particular domain.

Several recent proposals explore ways to in-
stead consider dynamic data selection and sampling
strategies: van der Wees et al. (2017) and Zhang
et al. (2019) construct a static curriculum, while
Wang et al. (2020a) and Wang et al. (2020b) build
curricula that automatically adapt to the training
data. In this paper, we contribute to this line of
research in several ways.

* First, we propose a novel framework (Multi-
Domain Automated Curriculum, MDAC for
short), a variant of Differentiable Data Selec-
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tion (DDS) of Wang et al. (2020b), initially
applied to multilingual NMT, that simultane-
ously accounts for the domain adaptation and
the multidomain adaptation problems.

* We show that MDAC achieves performance
that compare to fine-tuning strategies for DA
(§ 5.1) and outperform some static data sam-
pling strategies for multidomain settings (5.3).

* We show that our variant MDAC mitigates
some failures of DDS in multidomain training.

* We illustrate the generality of differentiable
data selection frameworks (both MDAC and
DDS) on less common situations such as DA
using unsupervised clustering (§ 5.5); DA
using out-of-domain training data and small
in-domain validation data (§ 5.4); and two-
domain adaptation where the test distribution
only mixes two of the training domain (§ 5.2).

2 Learning with multiple data sources

We conventionally define a domain d as a distri-
bution Dy(x) over some feature space X that is
shared across domains (Pan and Yang, 2010): in
machine translation, X is the representation space
for input sentences; each domain corresponds to a
specific source of data, and may differ from other
data sources in terms of textual genre, thematic con-
tent (Chen et al., 2016; Zhang et al., 2016), register,
style (Niu et al., 2018), etc. Translation in domain
d is formalized by a translation function hy(y|z)
pairing sentences in a source language with sen-
tences in a target language y € ). hg is usually
assumed to be deterministic (hence y = hy(z)) but
may differ across domains.

It is usual in MT to opportunistically collect cor-
pora from several domains, which means that train-
ing instances are distributed according to a mixture
D# such that D(z) = > 74, A*(d)Dg(x), with
{N(d),d = 1...n4} the mixture weights satis-
fying ), A°(d) = 1. In the sequel, boldface A
denotes a vector with \(d) the d"* component of .

The main challenge in this situation is to make
the best of heterogeneous data, with the aim to
achieve optimal performance for the target test con-
ditions. These might correspond to data from just
one of the training domains, as in standard super-
vised domain adaptation; a more difficult case is
when the test data is from one domain unseen in
training (unseen domain adaptation); in multido-
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main adaptation finally, the test distribution is it-
self a mixture of domains, some of which may
also be observed in training. We thus assume
that the test distribution takes the form D!(x) =
>4 AH(d)Dy(x) - with only one non-null compo-
nent in the case of domain adaptation (see Figure 1).

Figure 1: Training and testing with distribution mismatch.
We consider three domains and represent A° and A’ in the
3-dimensional simplex. Training with weights in (a) and test-
ing with weights in (c) is supervised multi-source domain
adaptation to domain 2 (d2), while (b)-(c) is the unsupervised
version, with no training data from ds; training with weights
in (a) and testing with weights in (d) is multi-domain learning,
also illustrated with settings (a)-(e) (training domain d; is not
seen in test), and (b)-(d) (test domain da is unseen in training).

These situations have been amply documented
from a theoretical perspective (Mansour et al.,
2009b; Mansour et al., 2009a; Hoffman et al., 2018).
A general recommendation in the DA setting is to
adjust the sampling distribution used to optimize
the system so as to compensate for the mismatch be-
tween D*(x) and D! (z). This can be approximated
by reweighting instances, or more conveniently do-
mains, which are selected during training with a
probability A (d), with X(d) # \*(d).

A widely-used approach to supervised DA is
fine-tuning (Luong and Manning, 2015), where by
varies during learning. With our notations, this ap-
proach first learns an initial parameter value with
all the data (Vd, \'(d) = A\*(d)), then continues
training with only batches from the test domain
dy \(d) = I(d = dy)), with I(A) the indicator
function for predicate A. This strategy is poten-
tially suboptimal as some out-of-domain samples
may contribute to the final performance due to e.g.
domain similarity. Optimizing the learning distri-
bution in multidomain settings is even more chal-
lenging as the learner needs to take advantage of
possible domains overlaps and also of the fact that



some domains might be easier to learn than others.

3 Multi-Domain Automated Curriculum

3.1 Basic principles

Assuming training data in each of the ngy domains
dy ...dp,, the size of the training corpus in domain
d is denoted Nj, and N® = >, Nj is the total

number of training samples. Dfi and D}, denote the
empirical train and test distributions for domain d
and D%(x; A") = Y, A“(d)Dy(x) for u € {I,t}.
In our setting, A’ and hence Z/D\t(:c, %) are fixed
and predefined, approximated with an equivalent
number of development corpora.

MDAC builds an adaptative training distribution
X! that optimizes the data selection policy along
with the training of the model. We parameter-
ize X! by a differentiable function A!(1)), which
is described in § 4.4. We divide the training into
many short sessions; in each session ¢, the model is
trained with a static data distribution A (1). After
one learning session, we update the data distribu-
tion using the REINFORCE algorithm of Williams
(1992). The evolution of 1) is thus defined by:

ng I
Y1 = Y +1ry ZR(d) * OX(d; 1)
d=1

oy
where the reward R(d) is computed as:
R(d) = J" (01, AY) — JH (0, A),
and where we also define:

)

Orri = %date(9t+i71a[$§'ay§']§y:1)
ah oyt~ Di(x)
nd
JHONY) = D N(d) Y 10,2k yh).
d=1

aty4eDy
In these equations, N denotes the size of a batch;
Ir; is the learning rate of the sampling distribution;
[(0, x,y) is the loss of the NMT model on sample
(z,); JHO,A) is the weighted loss aggregated
over ng dev-sets corresponding to the ng domains.
To compute the reward R(d) associated to train-
ing the model with data from domain d, we simulate
k training steps from the current checkpoint, using
k batches sampled from D'!(d) and computing the
gain of the weighted dev-loss. This computation
is inspired by the target prediction gain of Graves
et al. (2017). However, where Graves et al. (2017)
used accumulated gains from the past as rewards,
we instead predict the usefulness of each domain
for improving the future performance of the system
given its current state. This is achieved by simulat-
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ing a round of training with only the data from one
domain. We also differ from these authors in the
parameterization of the sampling distribution.

The work of Wang et al. (2020b) is also related:
it is based on the bi-level optimization framework,
which aims to find an optimal static distribution by
that will result in the best model with respect to a
given target dev set at the end of training. These
authors also derive a similar form of update for
1. However, their reward is the cosine similarity
between the gradient computed with the training
data from one domain and the gradient computed
with the dev set. We compare this approach with
ours in the experiment section.

3.2 MDAC for (multi) domain adaptation

The setting developed in previous sections is quite
general and can, in principle, accommodate the
variety of situations mentioned above, and many
more: basic DA, multidomain adaptation with vari-
ous target distributions, possibly including domains
unseen in training. In our experiments, we would
like to better assess the potential of MDAC in these
settings and seek to study the following questions:

* is MDAC a viable alternative to fine-tuning?
In particular, does it enable to better take ad-
vantage of relevant data from other domains?

* is MDAC a viable option in multidomain adap-
tation scenarios?

* does MDAC enable to perform unsupervised
(multi-)domain adaptation?

These questions are further explored in Section 5.
We now turn to our experimental conditions.

4 [Experimental settings

4.1 Data and metrics

We experiment with translation from English into
French in 6 domains, corresponding to the fol-
lowing data sources: the UFAL Medical corpus
V1.0 (MED)?; the European Central Bank corpus
(Bank); the JRC-Acquis Communautaire corpus
(Law) (Steinberger et al., 2006); documentations
for KDE, Ubuntu, GNOME and PHP from the
Opus collection, merged in a 1 T-domain; TedTalks
(Ta1nx) (Cettolo et al., 2012), and the Koran (REL).
Additional experiments use the News Commentary
2https ://ufal.mff.cuni.cz/ufal_medical_

corpus. We only use the in-domain (medical) subcorpora:
PATR, EMEA, CESTA, ECDC.



ME D LAW BANK IT TALK REL NEWS
# lines 2609 (0.68) 501 (0.13) 190 (0.05) 270(0.07) 160 (0.04) 130(0.03) 260 (0)
# tokens 133 /154 17.1/19.6 63/173 3.6/4.6 3.6/4.0 32/34 7.8/9.2
# types 771/720  52.7/63.1 923/947 75.8/91.4 615/733 224/10.5 -
# uniq 700/640  20.2/23.77 429/40.1 44.7/55.7 20.7/25.6 7.1/2.1 -

Table 1: Corpora statistics: number of parallel lines (x 10%) and proportion in the training domain mixture (exluding NEWS),
number English and French tokens (x 10°), types and uniq types (x 10%): the latter are types that only appear in a given domain.

corpus (NEWs). Most corpora are available from
the Opus website®. These corpora were dedupli-
cated and tokenized with in-house tools; statistics
are in Table 1. To reduce the number of types, we
use Byte-Pair Encoding (Sennrich et al., 2016) with
30,000 merge operations on a corpus containing
all sentences in both languages.We randomly se-
lect in each corpus a development and a test set
of 1,000 lines and keep the rest for training. Val-
idation sets are used to chose the best model ac-
cording to the average BLEU score (Papineni et
al., 2002).* Significance testing is performed using
bootstrap resampling (Koehn, 2004), implemented
in compare-mt> (Neubig et al., 2019). We report
significant differences at the level of p = 0.05.

4.2 Baseline systems

Our baselines are standard for multidomain set-
tings.® Using Transformers (Vaswani et al., 2017)
implemented in OpenNMT-tf” (Klein et al., 2017),
we build the following systems:

* Generic models trained with predefined mix-
tures of the training data taking the form:
S | Vi |
Aa(d) = (D ad) ' (a§) a0 =5
d=1
with a € {0,0.25,0.5,0.75,1.0}. We denote
these as Mixed-a below. Mixed-0 uses a

uniform distribution, Mixed-1.0 the empiri-
cal distribution of domains.

(2)

fine-tuned models based on Mixed-1.0, fur-
ther trained on each domain for at most 50 000
iterations, with early stopping when the dev
BLEU stops increasing for 5 successive itera-
tions. The fine-tuning (FT-Full) procedure
updates all the parameters of the initial model,
resulting in six systems, one per domain, with
no parameter sharing across domains.

*http://opus.nlpl.eu

“We use truecasing and sacrebleu (Post, 2018).
Shttps://github.com/neulab/compare-mt

5We however omit domain-specific systems trained only with
the corresponding subset of the data, which are always inferior
to the mix-domain strategy (Britz et al., 2017).
"https://github.com/OpenNMT/OpenNMT—t £
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* systems trained with fixed mixtures with A\ €
[)\0, A0.25, A0.55 A0.75, )\1_0] ; these are used
in the multidomain experiments of § 5.3;

 our implementations of dynamic sampling pro-
posals from the literature: Curriculum Learn-
ing (CL) of Zhang et al. (2019) and Differ-
ential Data Selection (DDS) of Wang et al.
(2020b) (see below);

All models use embeddings and hidden layers
of dimension 512. Transformer models contain
8 attention heads in each of the 6+6 layers; the inner
feedforward layer contains 2048 cells. Training
lasts for 200K iterations, with batches of 12,288
tokens, Adam with parameters 51 = 0.9, 5o
0.98, Noam decay (warmup_steps = 4000), and
a dropout rate of 0.1 in all layers.

4.3 CL and DDS re-implementations

We re-implement DDS in Tensorflow without any
change in the choices of parameterization and
hyper-parameters compared to the original code
of Wang et al. (2020b).3 We also re-implement the
approach of Zhang et al. (2019) according to the
authors’ description. For each DA experiment, we
combine the training data of all other domains into
one corpus then compute the cross-entropy differ-
ence score of each source sentence of this combined
dataset. We then sort and split the corpus into 9
shards and execute curriculum learning with 10
shards, using the in-domain data as the first shard.

4.4 MDAC systems

The behavior of MDAC only depends on (a) the
initial domain distribution at the start of training
}\izo, and (b) the target (dev/test) distribution A’
We thus report these systems as MDAC ()\ézo , D
and compare with DDS using the same settings.

In our work, we parameterize the distribution by
as follows (with 3 = 2 in all experiments):’

M)~ 2T

>l

$https://github.com/cindyxinyiwang/
multiDDS
9The spherical softmax in (de Brébisson and Vincent, 2016).



This parameterization avoids the “rich-get-richer”
effect that we observe with A(¢)) = softmax(v)),
which yields gradients wrt. 1)[d] that are propor-
tional to exp(t[d]) (see also Figure 2). Additional
settings for the hyper-parameters of our method in-
clude the number of simulation steps k = 10 and
the learning rate lry,,, = 0.001. We update the
sampling distribution via 100 gradient descent iter-
ations for almost all experimental settings except
that for adaptation with automatic clusters (§ 5.5),
where we use 20 gradient descent iterations to avoid
converging to degenerate distributions. We split
the training into 100 short sessions that last 2000
training steps each. The choice of those hyper-
parameters is mostly heuristic except for the learn-
ing rate Ir;,¢, Which is optimized via grid search
over a set of values {0.001, 0.0025, 0.005}.

The computational cost of our approach is due
to the simulation step, which is conducted after
every 2,000 iterations to compute the reward of
each domain (eq. (1)). During this step, we update
the temporary checkpoint with k£ updates for each
domain, which costs as much as & training updates.
Therefore, we execute k X ng updates after every
2,000 iterations. Our algorithm approximately costs

1+ %gg times as much as a standard training.

4.5 Experimental tasks

We evaluate our method in the 5 following condi-
tions. In the supervised domain adaptation task,
given the data from 6 domains (MED, BANK, LAW,
IT, TALK, REL), we aim to build expert NMT
models for each domain. To challenge the flexibil-
ity of the method, we also consider a two-domain
adaptation task, where given the same 6 domains,
we focus on adapting to a mixture of 2 domains.
In the multidomain adaptation task, we use the
same 6 domains to build one single NMT model
that should perform optimally, assuming a uniform
distribution of domains during the test. A fourth
experiment (unseen domain adaptation), adds to
the training data for 6 domains a small dev set in a
new domain (NEws): our target is a model which
performs well for the unseen domain. Finally, in
the unsupervised domain adaptation task, we clus-
ter all available training data into 30 clusters using
the KNN algorithm as in (Tars and Fishel, 2018),
then learn mixture weights these clusters to one of
6 domains using the corresponding dev set. We
compare MDAC to DDS for each of our 6 test sets.
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5 Results and discussion

5.1 Domain Adaptation

In this setting, we aim to build an NMT model
for one single domain: we accordingly set A’ to
a deterministic distribution Ay, where the target
domain d has probability 1.

We consider three initializations for MDAC and
DDS, using Ag, A1 and A4. According to Table 2,
MDAC achieves the overall best performance when
Ai=0 = Ag. Doing so proves much better than ini-
tializing with A4 for small domains: TALX, BANK
and1 1. Conversely, initializing with A4 is benefi-
cial when targeting large domains such as MEDp and
Law. The same conclusion holds for DDS.

We now compare the best MDAC system (using
Ai=0 = Ap) to full fine-tuning. According to Ta-
ble 2, fine-tuning is better for large domains such
as MED and 1.aw, while MDAC outperforms fine-
tuning by approximately 1.2 BLEU for Bank and
1.0 BLEU for re 1. This suggests that for small do-
mains, out-of-domain data helps improve the gener-
alization and that MDAC is able to exploit both the
in-domain and the out-of-domain training data in-
stead of edging out the out-of-domain training data
as in fine-tuning. Results for DDS display similar
trends but are always outperformed by MDAC. Re-
sults for CL, which does only well the large domain
MED, lag somewhat behind.

5.2 Two-domain adaptation

In these control experiments, we showcase the flex-
ibility of dynamic sampling and adapt to (arbi-
trary) pairs of target domains with equal weight,
contrasting MDAC with DDS in Table 3. Here,
MDAC significantly outperforms DDS in two set-
tings (MED+1T and LAW+BANK) out of three.

5.3 Multi-domain NMT

We now turn to a more realistic scenario and con-
sider multidomain NMT, which aims to train one
single system with optimal performance averaged
over 6 domains and targets a uniform test distribu-
tion X! = X¢. In this situation, CL (Zhang et al.,
2019) does not apply: we only contrast the perfor-
mance of MDAC, DDS and several fixed training
data distribution )\l S [)\0, A0.25, A0.5, A0.75, )\1.0] ,
where A\, is defined according to equation (2).

We again initialize MDAC and DDS with two dis-
tribution Ay and A;. According to Table 4, MDAC
achieves the best performance with initial (uniform)
Ao- The same conclusion holds for DDS. For this



domain d = MED LAW | BANK | TALK IT REL | avg.
FT-Full(d) 40.3 63.8 544 385 | 520 91.0 | 56.7
CL (d) 40.2 60.2 53.7 36.5 | 51.1 91.1 | 55.5
DDS (Ao, Aq) 39.6 60.1 55.0 385 | 525 92.0 | 56.3
MDAC (Ao, Ad) 39.6 | 62.57 | 55.6" 385 | 524 | 92" | 56.8
DDS (A1, Aq) 39.7 53.9 49.6 37.9 | 43.1 64.3 | 48.1
MDAC (A1, Ad) 40.2 59.9 52.6 38.5 | 50.7 79.8 | 53.6
DDS (Ag, Ad) 399 63.9 54.5 354 | 512 91.8 | 56.1
MDAC (g, Aa) 40.6 63.9 54.5 35.6 | 51.3 923 | 56.4

Table 2: Single domain adaptation. We report BLEU scores of each method for 6 target domains and their average: each column
corresponds to a distinct system. () MDAC is significantly better than CL, fine-tuning and DDS with p < 0.05. (**) MDAC is
significantly better than CL and DDS with p < 0.05. (***) MDAC is significantly better than CL, fine-tuning with p < 0.05.

configuration, MDAC outperforms static training
distributions including [}\0, A0.75, }\1,0] by a sig-
nificant margin, and performs slightly better than
[)\0_25, )\0,5]. Using MDAC thus dispenses with
the empirical search of an optimal training mixture.
A second observation is that MDAC again out-
performs DDS by a wide margin (+1.5 BLEU on
average); the only domain where DDS does bet-
ter is MED. Figure 2, which plots the evolution of
the mixture weights during training, helps to under-
stand the difference between the two methods. For
DDS (Figure 2a), the sampling distribution quickly
reaches a bi-modal regime in which only MED and
REL have significant probability — hence the good
performance on the former domain. In contrast,
the distribution computed by MDAC evolves more
smoothly; small domains such as BANK, IT, TALK
and REL receive a larger part of training data in
the early stages; their weights then slowly decrease
as larger domains such as MEp and LAw increase
their share. This only happens at the end of training,
when some NMT models might already be close to
their peak performance for the small domains.

5.4 Unseen domain

The left part of Table 5 displays the performance
on the unseen domain nEws for systems trained
with mixtures )\l € [}\0, A0.25, A0.5, A0.75, )\1,0]
and with dynamic data selection (MDAC and DDS).
These systems have insignificant differences in
BLEU, suggesting that dynamic mixtures do not
improve the robustness of NMT systems against un-
seen domains. However, the performance of MDAC
and DDS remains close to the best performance,
showing that they also apply in such settings.

5.5 Automatic clustering

The right part of Table 5 reports the performance of
NMT systems adapted to each domain. In compari-
son to Section 5.1, the training data is distributed
in 30 automatic clusters instead of the 6 original

domains. Splitting the train data into small groups
gives the learner extra degrees of freedom when
selecting the best distribution. However, as these
clusters are built automatically, they are noisier in
nature. According to results in Table 5, this scenario
is hard both for DDS and MDAC, which performs
much worse than for the supervised DA setting.
This again signals the importance of initialization:
analyzing the clustering, we find that the data for
REL mostly correspond to one single cluster. With
a uniform initialization, this cluster starts with a
small weight and never succeeds in matching the
good performance observed in the DA setting.

6 Related Work

Domain adaptation is an old problem that has been
studied from many angles, both for SMT and NMT.
A survey of supervised and unsupervised DA for
NMT is in (Chu et al., 2017), where the authors
distinguish between data-centric and model-centric
DA, a view also adopted in the recent survey of
Saunders (2021). Our approach to DA in this paper
falls under the former category. We refer readers
interested in DA to these papers.

Multidomain NMT (MDMT) aims to develop
systems that simultaneously bode well for several
domains. Like for DA, techniques for supervised
MDMT combine one or several ingredients: (a) the
specialization of data representations (Kobus et al.,
2017) or of sub-networks (Pham et al., 2019) to
differentiate the processing of each domain; (b) the
use of adversarial techniques to neutralize differ-
ences between domains (Britz et al., 2017; Zeng
et al., 2018); (c) the use of automatic domain iden-
tification e.g. (Jiang et al., 2020). Unsupervised
MDMT is studied in (Farajian et al., 2017), as an
instance of unsupervised DA.

Most approaches to adaptive/dynamic data se-
lection take inspiration from Bengio et al. (2009),
where the notion of curriculum learning is intro-
duced. CL relies on the notion of the “easiness” of
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[ domain d= [ MED | LaAW | BANK | TALK | IT | REL
DDS (Ao, A2) 39.5 - - - 50.1 -
MDAC (Ao, A2) 39.1 - - - | 51.8" -
DDS (Ao, A2) - 60.8 53.3 - - -
MDAC (Ao, A2) - | 619" | 5457 - - -
DDS()\o,Az) - - - 37.9 - 91.3
MDAC (Ao, A2) - - - 36.9 - 90.4

Table 3: Adapting to two domains. For a given line, non empty columns correspond to the pair of target domains. (*) MDAC is

significantly better than DDS with p < 0.05.

[ domain d= [ MED [ 1aw [ Bank | TALK | IT | REL | mean |
Mixed-0 38.6 59.3 53.7 37.3 51.0 90.4 55.1
Mixed-0.25 38.9 59.6 53.3 37.6 50.5 90.6 55.1
Mixed-0.5 39.0 60.2 52.5 38.5 51.9 90.3 55.4
Mixed-0.75 394 59.9 519 38.8 50.0 87.6 54.6
Mixed-1 40.3 59.5 49.8 36.4 49.0 80.0 52.5
DDS (Ao, Ao) 40.1 56.9 50.7 37.4 46.8 92.0 54.0
MDAC (Ao, Ao) 38.5 | 60.3** 54.4* 373 | 51.3** 91.4* | 55.5**
DDS (A1, Ao) 40.6 55.5 48.0 36.2 46.9 60.1 479
MDAC (A1, Ao) 40.2 | 59.3** | 51.0"" | 36.9* | 48.6" | 80.7*" | 52.8**

Table 4: Multidomain adaptation. For a given line, all the columns correspond to the same multi-domain system. (*) MDAC is
significantly better than Mixed—a with p < 0.05. (**) MDAC is significantly better than DDS with p < 0.05.

DDS MDAC

W Takk @ Rel W Law IT [ Bank [ Med W Talk @ Rel W Law

100%

IT [ Bank [ Med

25000 50000 75000 100000 125000 150000 175000 50000 100000

Step Step

(a) DDS (b) MDAC

Figure 2: Evolution of the sampling distribution during training.

150000

domain d= | NEWS domain d= ] MED | LawW [ BANK [ TALK | IT [ REL | mean
Unseen domain Training with 30 clusters
Mixed-0 25.7 DDS (A%, Aq) 383 60.1 50.3 358 | 49.1 90.1 53.9
Mixed-0.25 25.8 MDAC (A", Agq) 39.2" | 61.6" | 52.0" | 38.2" | 49.1 89.7 | 55.0"
Mixed-0.5 26.5
Mixed-0.75 26.8
Mixed-1 26.9
DDS (Ao, Anews) 26.3
MDAC (Ao, Anews) 26.3

Table 5: Unseen domain adaptation (left) and automatic clustering adaptation (right). For a given line, each column corresponds

to one distinct system. (*) MDAC is significantly better than DDS.
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a sample to schedule the presentation of training
data so as to start with the easiest examples and end
with the hardest. Various ways to automate CL in
the framework of multi-armed bandits are explored
in (Graves et al., 2017), which has been an inspi-
ration for our implementation. While the initial
aim was primarily to improve and speed up train-
ing, CL has also proven useful for multidomain and
multilingual MT, based on alternative definitions
of “easiness”. For instance, Zhang et al. (2019)
study supervised DA and propose a curriculum ap-
proach which progressively augments the training
data: early stages only use in-data, while less rel-
evant!® data are introduced in later stages. This is
opposite to the policy of van der Wees et al. (2017),
whose gradual fine-tuning progressively increases
the focus on in-domain data.

Kumar et al. (2019) use reinforcement learning
to learn the curriculum strategy: in this work, com-
plexity corresponds to difficulty levels which are
binned using contrastive data selection. The re-
ward is based on the increase of the devset loss
that results from the current data selection strat-
egy. This technique is applied to multilingual NMT
in (Kumar et al., 2021). Zhou et al. (2020) pro-
pose another CL-based approach which relies on
instance uncertainty as a measure of their difficulty
and presents data samples starting with the easiest.
Another contribution of this work is a new stop-
ping criterium. Closest to our problems, Wang et al.
(2020a) adapt CL for multidomain NMT, where an
optimal instance weighting scheme is found using
Bayesian optimization techniques. Each step con-
sists of (a) weighting instances based on relevance
features, (b) fine-tuning a pretrained model using
the weighted training set, and is applied to train a
sequence of models. The one that maximizes the
devset performance is finally retained.

7 Conclusion and outlook

In this study, we have presented a generic frame-
work to perform multiple adaptation tasks for ma-
chine translation, ranging from supervised domain
adaptation to multidomain NMT and unseen do-
main adaptation. In our experiments, we have
shown that the same algorithm, aimed at automati-
cally finding an effective data sampling scheme dur-
ing the course of training, can be used in all these
situations. This algorithm, we believe, provides

"Domain distance is computed with Lewis-Moore scores
(based on the cross-entropy of in-domain LM).
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us with a more sound approach to (multi-domain)
DA than existing heuristics and dispenses with the
costly search of optimal meta-parameters. Another
contribution of our work is an experimental compar-
ison of recent approaches to dynamic data selection.

Our future work will continue developing this ap-
proach and improve its effectiveness. One issue that
we have left unaddressed is reward normalization,
which is especially important in the early stages of
training (Kumar et al., 2019). Another area where
we need to progress is the unsupervised learning
setting of § 5.5, where our results lag behind super-
vised DA. This might be due to the inability of our
simplistic optimization strategy to handle situations
where the number of clusters is large.
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Abstract

In this paper, we discuss a use of machine
translation (MT) that has been quite over-
looked up to now, namely by students not
enrolled in a professional translation pro-
gram. A number of studies have reported
massive use of free online translators
(OTs), and it seems important to uncover
such users’ abilities and difficulties when
using MT output, whether to improve their
understanding, writing, or translation
skills. We report here a study on students
enrolled in a French ‘applied languages
program’ (where students study two lan-
guages, as well as law, economics, and
management). The aim was to uncover
how they use OTs, as well as their (in)abil-
ity to identify and correct MT errors. Ob-
tained through two online surveys and
several tests conducted with students from
2020 to 2022, our results show an unsur-
prising widespread use of OTs for many
different tasks, but also some specific dif-
ficulties in identifying MT errors, in par-
ticular in relation to target language flu-
ency.

1 Introduction

Most professional translation training programs
now include specific training on machine
translation (MT) and post-editing (MTPE). MT-
related skills, in connection with project
management, are for instance an important
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component of the European Commission
Directorate-General for Translation’s competence
framework for the European Master’s in
Translation network (DGT, 2017). A lot of
research has already been done on such students’
ability to post-edit MT output and on how to teach
professional MT skills for the translation market.
However, a professional use of MT is not
restricted to the translation industry; for example,
free OTs might also be used by tourism or
international relations professionals, and before
that by students of such disciplines. Not a lot of
research has been done on this issue so far, and
our work aims to help fill such a gap by studying
how students enrolled in a French applied
languages program, where they study two
languages in addition to law, economics, and
management, actually use OTs. We believe more
research is necessary on the use of MT outside the
translation industry, especially as no specific
training is generally provided (see below), and as
there is a link between MT use and language
acquisition (Resende and Way, 2020, 2021). Also,
raising awareness concerning the capabilities and
limits of using OTs is all the more crucial these
days because of (i) a real improvement in the
quality of MT output since the advent of neural
MT (NMT), and (ii) the biased perception of the
general public, including students who never
received any specific training. This bias is related,
on the one hand, to contempt for the technology
(see the numerous, supposedly funny MT fails all
over the internet) and on the other hand to the
belief that translators are obsolete because MT has
reached “human parity”.

Macken, Rufener, Van den Bogaert, Daems, Tezcan, Vanroy, Fonteyne, Barrault, Costa-jussa, Kemp, Pilos, Declercq, Koponen, Forcada,
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2 Research questions and methodology

A number of studies have shown that a very large
majority of students regularly use OTs (e.g.
O’Neill, 2019; Resende and Way, 2021; Loock
and Léchauguette, 2021; Dorst et al., 2022), for
both graded and non-graded work, and regardless
of whether this is allowed by their institution.
While these studies focus on students enrolled in
language programs or with a background in
humanities, there is no reason to consider that
other students do not use OTs. And yet, this
widespread use generally takes place without any
specific training: according to Benites et al.
(2021), for example, 77.1% of trainers in 4 Swiss
universities (n=666) did not mention OTs, and
83.9% of the students (n=1,926) claimed that they
had never received any specific guidelines on the
use of MT. This makes MT a real “clephant in the
classroom” (Loock et al., to appear). However,
recently, researchers have been working on how
to help MT users outside the translation industry
adopt a critical approach (see Bowker and
Buitrago Ciro (2019) for the research community,
or Bowker (2020) for international business
students for suggestions, which both put forward
the concept “MT literacy”, see below).

From this starting point, we decided to investi-
gate the use of OTs by our students, in order to
understand their uses and also to measure their ef-
ficiency when using MT output. To do so, we sub-
mitted groups of students to an online question-
naire (in 2020 and 2021) and to different types of
exercises meant to evaluate their capacity to iden-
tify and correct errors in English-French MT out-
put. This is ongoing research, as after a pilot study
(Loock and Léchauguette, 2021) to get an over-
view of our starting point, we have been trying to
find the best ways to train (and evaluate) our stu-
dents’ capacity to use OTs, hence regular tests
since 2020. As discussed below, this is not an easy
task, with students finding it hard to identify MT
errors. The different tests aim to determine
whether the language direction, the necessity to
both identify and correct MT errors vs. only cor-
rect errors identified for them, the order of presen-
tation for the original input and MT output, have
an influence on our students’ performance.

Our students’ profile

Our students are applied languages students,
which in the French academic context means that
they major in English and another language, and
attend economics, law, and management classes.
The three-year program includes pedagogical
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translation classes from the second to the sixth se-
mesters, in which they translate press texts, tour-
ism brochures, extracts from websites, or in-
fographics, with a pedagogical approach meant to
help them develop their language skills. The clas-
ses do not focus on professional translation train-
ing. Specifically, our study was conducted on un-
dergraduate students in their third and final year
from the 2019-2020 to 2021-2022 academic
years at the University of Lille, France. Most stu-
dents go on to work in tourism, international rela-
tions, international commerce, and for some of
them, the translation industry. All students who
took part in our study are native speakers of
French; international students’ responses were not
included in our analysis.

Methodology

Two groups of students anonymously completed
an online survey in March 2020 (n=159) and in
September 2021 (n=164). They were explicitly as-
sured of the anonymity of their answers so that
they could feel free to reply honestly (for some
students —and some trainers — using OTs might be
considered cheating). The questions dealt with
which OTs were used, how they were used, why
they were used, and overall satisfaction.

Between March 2020 and December 2021,
three groups of students took a series of tests.
They had to identify and/or correct errors in the
MT output. The first test (part of our pilot study
and conducted in March 2020) consisted in an
English press text that had been machine trans-
lated into French with DeepL
(https://www.deepl.com/translator). The instruc-
tions were to correct all accuracy and fluency er-
rors in the MT output (no justifications were re-
quired). The evaluators had pre-identified a series
of 20 errors (see examples in (1) and in Loock and
Léchauguette, 2021 for a complete list) and the
aim was to measure the number and types of errors
identified and corrected by the students.

(1) a. The line in front of the Louis Vuitton store
was barely a line by Paris standards.

MT output: La file d'attente devant le magasin
Louis Vuitton était a peine plus longue que celle
de Paris (accuracy issue)

Example of expected correction: La file n’avait
rien de la file d’attente parisienne typique/ne res-
semblait pas a une file d’attente parisienne tradi-
tionnelle

b. [I]t snakes around the back.

MT output: [E]lle serpente dans le dos (accuracy
issue due to lexical ambiguity of back)



Example of expected correction: [E]lle serpente
jusqu’a I’arriére du magasin.

c. after an 80-year-old Chinese tourist died of the
virus

MT output: aprés qu'un touriste chinois de 80 ans
soit mort du virus (grammar mistake, wrong
mood)

Example of expected correction: aprés qu’un tou-
riste chinois est mort/aprés la mort d’un touriste
chinois

The second test (April 2021) introduced two
changes: (i) the translation direction was now
French—English, and (ii) a series of sentences
were given instead of a text, with a hint that each
sentence contained at least one error to be cor-
rected — some examples are provided in (2):

(2) a. Ce dispositif, qui est rendu public seulement
quelques jours avant son entrée en vigueur, vient
contrarier de nombreux projets de départs organi-
sés par les agences de voyages et les tour-opéra-
teurs.

MT output: This device, which is made public
only a few days before its entry into force, thwarts
many departure projects organized by travel agen-
cies and tour operators. (accuracy issue: lexical
ambiguity of dispositif)

Example of expected correction: This system,
which was made public a few days before being
enforced, has hampered/thwarted many plans for
departures organized by travel agencies and tour
operators.

b. Fréquentation en berne, absence des touristes
étrangers... L’année 2020 s’est révélée morne sur
le plan touristique.

MT output: Attendance at half-mast, absence of
foreign tourists... The year 2020 has turned out to
be a dull year for tourism. (accuracy/fluency is-
sue: literal translation of idiomatic expression)
Example of expected correction: With visits de-
clining and no foreign tourists, 2020 has turned
out to be a dismal year for tourism.

A third test (December 2021) introduced a hnew
element: evaluators underlined parts of the French
MT output with English as a source language
(words, strings of words) meant to be corrected by
the students (the identification part of the process
was therefore done for them). Examples are pro-
vided in (3):

(3) a. “Do you get them from supermarket bins?”
| asked them. They told me they regularly col-
lected and redistributed the contents of the big
skip-like bins behind supermarkets.
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MT output: « Les obtenez-vous dans les pou-
belles des supermarchés ? » leur ai-je demandé. s
m'ont dit qu'ils récupéraient et redistribuaient ré-
guliérement le contenu des grandes bennes a
benne derriere les supermarchés. (fluency issue:
unnatural word order and choice of verb; nonsen-
sical translation of skip-like bins)

Example of expected correction: « Vous les trou-
vez dans les poubelles des supermarchés ? » leur
ai-je demandé. lls m'ont répondu qu'ils récupé-
raient et redistribuaient réguliérement le contenu
des grandes bennes a ordures derriéere les super-
marchés.

b. I had heard of people bin-diving before and |
was captivated by their story.

MT output: Javais déja entendu parler de per-
sonnes faisant de la plongée sous-marine et j'ai
été captivé par leur histoire. (accuracy issue : bin-
diving interpreted as scuba-diving).

Example of expected correction: J'avais déja en-
tendu parler de personnes qui fouillaient dans les
poubelles et j'ai été captivé par leur histoire.

A fourth test was implemented in April 2022
to test a new hypothesis: instead of presenting stu-
dents with a table showing the original sentences
in English on the left and the MT outputs on the
right, the reverse was done to check whether read-
ing the MT output first helps them to better iden-
tify fluency-related issues (avoiding a “priming
effect”, see discussion). The results of this test are
being processed at the time of writing this paper.

All texts belonged to the press genre, a type of
text that students are familiar with thanks to their
translation classes, and all MT outputs were ob-
tained via the free version of DeepL with no mod-
ifications whatsoever. The students were pre-
sented with the source text and the MT output side
by side (the English original text on the left and
the MT output on the right, except for the fourth
test).

3

In line with the few studies mentioned above, our
results confirmed that our students are regular us-
ers of online translators: 83% in the first survey
and 78% in the second answered that they used
OTs on a regular basis, mostly DeepL (8 students
out of 10) and Google Translate (3 students out of
10).

However, the mentioning of WordReference
(https://www.wordreference.com) and Linguee
(https://www.linguee.com/) in the category ‘other
OTs’ indicates some confusion as to what an OT

Results



—and therefore MT — is. According to our survey,
students use OTs for many different kinds of
tasks: translation tasks of course (80% of stu-
dents), but also as writing aids (45% of students),
e.g. when writing an essay, as a comprehension
tool (50% of students), and as a grammatical tool
(16% of students) for help with grammar exer-
cises.

Students do not seem to be informed users,
since they do not systematically provide enough
context to obtain relevant MT output: only 5% of
them actually copy/paste full texts; instead, they
generally type words or parts of sentences (40%
of students). Nevertheless, 80% are satisfied with
what OTs have to offer (40% often, and another
40% sometimes). A large majority of students
(93.8% in the first survey, 83.3% in the second
one) thought that they were able to identify MT
errors, either with no difficulty whatsoever or
quite easily.

However, such confidence is blatantly contra-
dicted by the results obtained in the different tests,
with students clearly overestimating their ability
to correct errors in the MT output. Out of the 20
errors identified by the evaluators in the first test,
only 5.29 on average (1 out of 4) were correctly
identified and corrected, with another 2.29 identi-
fied but wrongly corrected, meaning that 12.42
(nearly 2 out of 3) were simply overlooked by the
students (n=159). In the second test, some im-
provement was noticed despite the fact that the
MT output was now in a foreign language for the
students (n=196). This time, thanks to the seg-
mentation into sentences, an average of 10.2 er-
rors out of 23 (that is a 44% success rate) were
correctly identified. Still, more than half of the
MT errors were overlooked, and only half (56%)
of those identified were actually corrected in a rel-
evant way. Finally, the third test, in which the stu-
dents (n=158) only had to correct the pre-identi-
fied errors in the MT output, showed a real im-
provement with 67% of cases of relevant correc-
tions.

In the different tests, a qualitative analysis of
students’ corrections showed that students tend to
focus more on lexical choices than on the syntac-
tic organization of the sentences, and are better at
identifying accuracy issues than fluency issues.

4  Discussion

The results of our two surveys and series of tests
clearly show that in spite of a very widespread use
of OTs, for many different tasks ranging from
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understanding a text to actually translating it, our
language students fail to use OTs effectively and
are not sufficiently able to identify and correct
errors in the MT output. In other words, they need
to develop their “MT literacy”, a concept put
forward by Bowker and Buitrago Ciro (2019: 88)
to refer to a series of skills in relation to users’
capacity to understand how MT systems work,
when it is relevant to use them, and when and how
to modify MT output.

We can think of two possible explanations for our
results which clearly show a lack of critical
thinking when using OTs while “a healthy level of
mistrust in [MT] output” or a kind of “healthy
skepticism” (O’Brien and Ehrensberger-Dow,
2020) are required (OTs are no calculators). First,
since our students find it particularly hard to
identify MT errors related to the fluency of the
target language, one might think they have a poor
command of the target language’s linguistic
system, even when the target language is their
native language. For example, the choice of a
wrong mood in (2c) clearly shows that a
grammatical rule is not known (74% of our
students left the mood unchanged). Also, as we
noticed direct calques that were left unchanged, it
seems that our students are influenced, or “heavily
primed”, by the MT output that they see on the
screen (see Carl and Schaeffer (2017) for the
concept of priming). This has already been noted
for professional post-editors, who “more easily
accept sub-optimal translations which human
translators, working from scratch, would
otherwise not produce” (Carl and Schaeffer, 2017:
44). This might explain why our students are
better at correcting MT errors when these have
been identified for them (results of third test).

Specific training for an informed, professional,
and critical use of OTs thus seems necessary. To
address this need, we have introduced specific
training in the translation class for our third-year
students (hence perhaps the decrease from 93.8%
to 83.3% between our two surveys in the rate of
students who consider that they are able to iden-
tify MT errors). Our approach combines a theoret-
ical and a practical approach. First, it seems im-
portant to address some technical considerations
by defining what an OT is, how it differs from
other online tools such as dictionaries or con-
cordancers, and how it works (roughly) so that
they understand why results vary from one OT to
another and over time. Through comparisons be-
tween OTSs, students can then be made aware of
the importance of the corpus data behind the tool.



Also, thanks to the prolific scientific literature on
the subject, a list of recurring MT errors can be
provided to sensitize students to the limits of OTs.
These cover language-independent errors: issues
related to lexical/syntactic ambiguities, idiomatic
expressions, word play, neologisms or rare words,
proper names, omissions, production of non-exist-
ing words (Macken et al., 2019, De Clercq et al.,
2021), algorithmic bias leading to lesser lexical
variety (Vanmassenhove et al., 2019), gender bias
(Salvodi et al., 2021), and literal translations lead-
ing to an over-/under-representation of some lin-
guistic features in MT output (Loock, 2020; De
Clercq et al., 2021). MT errors can also be lan-
guage-dependent: for the English-French lan-
guage pair, issues include the translation of com-
pounds, the present perfect, or pronouns. All these
issues (see Loock et al., to appear, for concrete ex-
amples) should not lead students to believe that
MT output is systematically full of errors. How-
ever, they can help them become aware of the ex-
istence of so-called “machine translationese”, and
of the need for human intervention in the form of
post-editing. Raising students’ awareness of ethi-
cal considerations is also necessary for an in-
formed use in a professional context other than the
translation industry. These include confidentiality
issues, the environmental impact of the technol-
ogy (Strubell et al., 2019), and also the fact that
MT engines are trained on data produced by hu-
man translators. Students should be sensitized to a
“fair use” of OTs (Moorkens et al., 2020), and
teaching institutions need to implement clear pol-
icies.

Practical training may include different activi-
ties, such as the correction of MT output, but also
the comparison between output from different
OTs, and between MT output and ‘human’ trans-
lation. Making students aware of functionalities
that allow them to choose between alternative so-
lutions can help them realize that the MT output
on the screen is but one possibility among many:
DeepL allows users to see other possible transla-
tions in a drop-down list when they click on a
word in the MT output, and Google Translate pro-
vides alternative translations for the whole sen-
tence. Such a dynamic approach to online transla-
tors, far from simply copying and pasting, then
makes the use of OTs a decision-making process.
The final goal should be to empower students with
the skills necessary to use OTs independently and
critically on their own.

Finally, we would like to stress that our stu-
dents’ difficulties in dealing with MT output are
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not isolated. MT is a challenge for everyone these
days, and being able to use MT critically is also a
challenge for translation students as well as trans-
lation professionals. The fact that MT errors have
become more human-like with the development of
NMT makes them harder to identify (and correct)
for translation trainees (Yamada, 2019) and pro-
fessionals (Castilho et al., 2017). Our non-transla-
tion students’ difficulties should therefore come
as no surprise, and it is actually incumbent upon
trainers to ensure that OTs are integrated effi-
ciently into students’ set of online language tools
alongside different types dictionaries (with or
without concordancers and thesauruses), corpus
tools, and grammar checkers.

5 Conclusion

In this paper, we cited our own studies that
showed widespread use of OTs among students,
combined with a striking inability of these same
students to identify and correct errors in MT out-
put. This led us to advocate for specific training
on online translators/machine translation for stu-
dents not enrolled in a professional translation
program, for an informed, professional use. Like
other studies, ours has shown that OTs are widely
used by students, who nevertheless still need to
develop their MT literacy. While a lot of attention
has been paid to how to train translators transla-
tors-to-be, the use of machine translation by other
categories of students is often overlooked (no
training or guidelines by trainers or institutions),
making the use of OTs an “elephant in the class-
room”.

In order to train students from all disciplines
other than professional translation studies, spe-
cific pedagogical material is needed. In addition
to the scientific literature mentioned above, some
projects aim to make such material accessible,
e.g., the European MultiTraINMT project (Ma-
chine Translation training for multilingual citi-
zens, http://www.multitrainmt.eu) or the Machine
Translation Literacy project
(https://sites.google.com/view/machinetransla-
tionliteracy/). As for the specific case of our stu-
dents, an example-based methodology to sensitize
them to recurring issues is being developed
(Loock et al., to appear). Further research is how-
ever still needed to uncover the best way to intro-
duce specific training on OTs: so far, as our find-
ings demonstrate that students still encounter dif-
ficulties in identifying MT errors, training could
emphasize the use of grammatical categories and



sentence analysis as a means to strengthen stu-
dents’ fluency in the target language, be it their
mother tongue or not. Being familiar with and us-
ing basic grammatical notions to analyze MT out-
put is necessary for a professional use of OT.
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Abstract

Recently, diverse refinements to the back-
translation process have been proposed for
improving the performance of Neural Ma-
chine Translation (NMT) systems, includ-
ing the use of sampling instead of beam
search as decoding algorithm, or append-
ing a tag to the back-translated corpus.
However, not all the combinations of the
previous approaches have been tested, re-
maining unclear which is the best ap-
proach for developing a given NMT sys-
tem. In this work, we empirically com-
pare and combine existing techniques for
back-translation in a real low resource set-
ting: the translation of clinical notes from
Basque into Spanish. Apart from auto-
matically evaluating the NMT systems, we
ask bilingual healthcare workers to per-
form a human evaluation, and analyze the
different synthetic corpora by measuring
their lexical diversity. For reproducibil-
ity and generalizability, we repeat our ex-
periments for German to English transla-
tion using public data. The results suggest
that in lower resource scenarios tagging
only helps when using sampling for decod-
ing, complementing the previous literature
using bigger corpora from the news do-
main. When fine-tuning with a few thou-
sand bilingual in-domain sentences, one of
our proposed methods (tagged restricted
sampling) obtains the best results both in
terms of automatic and human evaluation.

© 2022 The authors. This article is licensed under a Creative
Commons 3.0 licence, no derivative works, attribution, CC-

BY-ND.

1 Introduction

Neural Machine Translation (NMT) (Kalchbren-
ner and Blunsom, 2013; Sutskever et al., 2014) is
the state-of-the-art approach for developing Ma-
chine Translation (MT) systems. However, as
NMT is based on artificial neural networks, its per-
formance is dependent on big quantities of bilin-
gual sentences, which are not available for all lan-
guage pairs and domains.

Back-translation (BT) (Sennrich et al., 2016a),
based on the automatic translation of a corpus
from the target language into the source language
for augmenting the training data, has become a
de facto standard for improving the performance
of NMT models, provided that large monolingual
corpora in the target language and domain are
available.

When generating a translation, considering that
looking for all the possible output sentences is
practically infeasible, MT systems have to imple-
ment an efficient technique for selecting the most
probable sentence according to the distribution of
the training data. Typically, beam search (Tillmann
and Ney, 2003) is used for generating both the out-
put sentences of NMT systems and the synthetic
sentences produced by BT systems.

Edunov et al. (2018) proposed to use sampling
for BT as one way to further improve the perfor-
mance of NMT systems. Specifically, their ‘un-
restricted sampling’! approach, consisting of ran-
domly sampling from the output distribution, ob-
tained the best results on average comparing to
other decoding algorithms, including beam search.

On the contrary, Caswell et al. (2019) suggest
that the improvement derived from using sampling

"In recent literature, unrestricted sampling is also referred as
‘ancestral sampling’.

Macken, Rufener, Van den Bogaert, Daems, Tezcan, Vanroy, Fonteyne, Barrault, Costa-jussa, Kemp, Pilos, Declercq, Koponen, Forcada,
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for BT comes from the fact that the final NMT
system can identify the synthetic corpus for hav-
ing been generated by sampling instead of beam
search, so they propose a simple alternative con-
sisting of adding a tag to the corpus generated by
the BT system using traditional beam search. They
also tried to tag the output of the BT system using
noising as proposed by Edunov et al. (2018), but
they did not combine tagging with sampling.

Concurrent work by Graga et al. (2019) instead
propose some variations to the sampling approach,
consisting of disabling the label smoothing option
when training the BT system, and restricting the
sampling by setting a minimum value to the prob-
ability of the output sentences or limiting it to the
top-k values. From these options, the last one ob-
tained the best results, which we refer to as ‘re-
stricted sampling’.

Thus, we would have six options for generat-
ing the BT corpus, depending on which decoding
algorithm is used, and whether tagging is used or
not. From these combinations, the last two are pro-
posed for the first time in this work:

1. beam search (Tillmann and Ney, 2003)

2. unrestricted sampling (Edunov et al., 2018)

. restricted sampling (Graga et al., 2019)
. tagged beam search (Caswell et al., 2019)

. tagged unrestricted sampling (our contribu-
tion)

6. tagged restricted sampling (our contribution)

We compare these 6 methods both in terms of
automatic evaluation of NMT systems, and lex-
ical diversity (LD) of the synthetic corpora cre-
ated by the BT systems. For MT automatic
evaluation we use BLEU (Papineni et al., 2002),
TER (Snover et al., 2006), chrF (Popovié, 2015),
and METEOR (Banerjee and Lavie, 2005); while
for lexical diversity we measure TTR (Templin,
1975), Yule’s I (Yule, 1944) and MTLD (Mc-
Carthy, 2005).

In the following, we briefly describe the lexical
diversity metrics, for being less known.

TTR, standing for Type-Token Ratio, is the most
common measure for lexical diversity. Its value
is obtained by dividing the number of types —
defined as the number of different words— by the
total number of tokens or words in a given corpus.
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While easy to interpret, TTR is limited in the sense
that their values differ significantly when chang-
ing the corpora size, thus it is only a valid met-
ric for comparing lexical diversity of similar sized
corpora.

Yule’s I is the reversion of Yule’s K, or ”’charac-
teristic constant”, which represents the variability
of the lexical frequency as the analysed text from
the corpus under study gets bigger. Yule’s I and
Yule’s K are thought to be less sensitive to changes
in the corpora size. However, both TTR and Yule’s
I are considered as better suited for small sized cor-
pora.

MTLD or Measure of Textual, Lexical Diver-
sity, sequentially measures the mean length of sub-
sequent n-grams that have the same TTR value.
As it is measured sequentially, it is less prone to
changes in the values measured on different sized
corpora, and it is considered as the most represen-
tative metric for measuring the lexical diversity of
big corpora as the ones typically used in MT.

As a complement to our MT and LD metrics,
we add the results coming from a preliminary hu-
man evaluation done by a bilingual biomedical ex-
pert. According to these results, we select the best
two systems for translating clinical reports from
Basque to Spanish, and ask bilingual healthcare
workers to post-edit the outputs of these systems,
as well as the system trained in the opposite direc-
tion.

Finally, we report an estimation of the carbon
footprint produced when developing our systems,
which can be considered for deciding which ap-
proach to take in future works.

2 Related Work

Apart from the works mentioned in the introduc-
tion proposing different methods for decoding or
tagging the synthetic BT corpus (Edunov et al.,
2018; Graga et al., 2019; Caswell et al., 2019),
there is some other previous work on comparing
different systems for BT.

Probably the most relevant work in this respect
is the one that compares different techniques (i.e.:
rule-based, statistical or neural MT) for generat-
ing the synthetic BT corpus. In this area, the work
by Burlot and Yvon (2018) firstly compared the
use of statistical (SMT) and neural (NMT) systems
for BT, without observing significant differences.
More similarly to our work, Soto et al. (2019) tried
rule-based (RBMT), SMT and NMT for BT ap-



plied to the translation of clinical texts, obtain-
ing better results with NMT, and specifically the
Transformer architecture (Vaswani et al., 2017).

Poncelas et al. (2019) went one step further and
not only compared the performance of different
techniques for BT, but combined the synthetic cor-
pora created by SMT and NMT systems, probing
that the combination of the outputs of both systems
was useful. Furthermore, Soto et al. (2020) com-
pared and combined the outputs of RBMT, SMT
and NMT systems for BT, also analysing the lex-
ical diversity of the generated corpora. They ob-
served that the combination of all systems was in
general better than using the output of only one
system, and tried to improve the performance by
applying data selection (Bigici and Yuret, 2015;
Poncelas et al., 2018) to the BT corpus, condi-
tioned on the measured MT and LD metrics for
each of the BT systems.

Regarding the use of tags for identifying the BT
corpus, Marie et al. (2020) concluded that it was
advisable to add a tag when the origin of the text
was unknown, since systems using BT without a
tag overfitted to the synthetic corpus, and even
shown to be detrimental when used to translate text
originally written in the source language.

Finally, our analysis of the lexical diversity of
the BT data generated by different methods fol-
lows the work of Vanmassenhove et al. (2019),
where the authors study the loss of lexical diver-
sity of a given corpus after being translated with
SMT and NMT systems. Therefore, in our work
we measure the lexical diversity of the BT corpora
according to the same metrics they calculate.

3 Material and methods

We test the six methods presented in the introduc-
tion for a real use case: the translation of clinical
notes from Basque to Spanish (eu—es). This work
is part of an ongoing project that aims to imple-
ment an MT system in the Basque public health
service (Osakidetza), so Basque speaking health-
care workers can write their reports in Basque
without compromising the safety of their patients.?

The first step in this project is the compilation of
a Basque/Spanish (eu/es) parallel corpus of health
records to be used for fine-tuning and evaluation,
while previously collected Spanish monolingual

It is expected that the output of the MT system will be
post-edited before making it available to Spanish monolingual
healthcare workers.
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corpora will be used for BT. Since these corpora
are private, we reproduce our experiments in a sim-
ilar setting for translating biomedical texts from
German to English (de—en), using only publicly
available data.

For both language pairs, we preprocess our cor-
pora by tokenizing and truecasing through Moses
tools.> Further, we apply BPE (Sennrich et al.,
2016b) for 90,000 (eu/es) and 40,000 (de/en) it-
erations. The number of BPE steps for eu/es was
optimized in previous experiments, while the de/en
one was taken from a reference system (Bawden et
al., 2020) that will be described in Section 3.2.

For training all our systems, we use the Trans-
former architecture as implemented in Fairseq (Ott
et al., 2019), with 6 encoder-decoder layers and an
embedding size of 512.

All the systems were trained for 30 epochs,
except the es—eu system that was trained
for 50 epochs due to applying the BPE-
dropout (Provilkov et al., 2020) regularization
technique, as this setting obtained better results
on preliminary experiments. In the future, we
plan to do the same for the best performing eu—es
systems. For de/en, we opt to use regular BPE for
better reproducibility.

In the following subsections, we describe the
data used for each language pair.

3.1 eu-es corpora

In the eu—es scenario we define four types of data:
1) out-of-domain bilingual sentences, 2) bilingual
clinical terms, 3) bilingual clinical notes, and 4)
monolingual health records in Spanish. We use the
sets 1-3 to train the BT system (es—eu), and later
train the final eu—es systems adding the monolin-
gual corpora through BT.

In both translation directions, we apply regular
fine-tuning, dividing the training process in two
steps: 1) pretraining, using all except the bilin-
gual clinical notes, and 2) fine-tuning, continu-
ing the training of the pretrained systems with the
bilingual in-domain sentences. In this case, we
pretrain+fine-tune the systems for 30+30 epochs.

Table 1 sums up the domain, languages, number
of sentences and use of each of our corpora.

*https://github.com/moses—smt/
mosesdecoder/blob/master/scripts/
tokenizer/tokenizer.perl and https://
github.com/moses-smt/mosesdecoder/blob/
master/scripts/recaser/truecase.perl
spectively

Ire-



Domain Languages Sentences Use
out-of-domain  eu/es 4,896,719  pretrain
clinical terms  eu/es 924,804 pretrain
clinical notes eu/es 28,602 fine-tune
health records  es 4,946,293  back-tr.

Table 1: Characteristics and use of the eu/es corpora.

In the following lines, we present some of the
details of the training corpora, as enumerated in
the beginning of this subsection.

3.1.1 Out-of-domain bilingual sentences

In this work, we use around 5 million out-of-
domain sentences. Among these, around 3 million
sentences are from the news domain, formed by
the 3 times repetition of a corpus from the Basque
public broadcast service EiTB (Etchegoyhen et al.,
2016), along with a more recent one from the same
source (Etchegoyhen and Gete, 2020). The re-
maining 2 million sentences are from different do-
mains as administrative (IVAP), consumer mag-
azines (Eroski), online magazines (Irrika), trans-
lation memories (EIZIE), movie synopses, web
crawling (San Vicente and Manterola, 2012) and
literature (Sarasola et al., 2015).

We also include as out-of-domain data the sen-
tences extracted from documents published in Os-
akidetza’s website, since their domain is not close
to the clinical notes focus of our study. These doc-
uments are available online,* and for this work
we omitted the administrative ones (in Spanish:
‘Planes y programas anuales y plurianuales’ and
‘Memorias Osakidetza’).

3.1.2 Bilingual clinical terms

For adapting the pretraining systems to the
clinical domain, we leverage clinical terminology
available in Basque and Spanish. Most of the
900,000 bilingual terms come from the automatic
translation of SNOMED CT into Basque (Perez-
de-Vinaspre, 2017), while another 30,000 are man-
ual translations into Basque of ICD-10 concept de-
scriptions in Spanish made available for the WMT
Biomedical shared task (Bawden et al., 2020).

Finally, around 200 terms related to the COVID-
19 pandemic are compiled, coming around half of
them from an interim release of SNOMED CT that
was made available in the beginning of the pan-

‘https://www.osakidetza.
euskadi.eus/profesionales/—/
publicaciones—-profesionales/,

October 1, 2020.

accessed on
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demic,’ and translated into Basque by a transla-
tor of Osakidetza. The remaining terms were col-
lected by Elhuyar.®

3.1.3 Bilingual clinical notes

For fine-tuning and evaluation, we use the bilin-
gual corpus compiled in the project with Os-
akidetza, where 149 Basque speaking healthcare
workers volunteered writing their clinical notes in
Basque and Spanish.

These sentences are classified among 5 types:
1) discharge reports, 2) progress reports, 3) hospi-
talization reports, 4) informative permissions and
5) others. Since the main aim of Osakidetza is to
translate discharge and progress reports, only sen-
tences coming from these document types are used
for evaluation.

The documents were written by professionals of
different specialties (e.g.: pediatrics), from where
2,000 sentences were reserved half for validation
and another half for testing purposes. The remain-
ing 28,602 were used for fine-tuning.

3.1.4 Monolingual health records in Spanish

In addition to the collected bilingual data, from
previous projects developed with Osakidetza we
had access to discharge reports from Galdakao-
Usansolo hospital, adding up to around 2 million
non-repeated sentences; as well as discharge (1
million) and progress (2 million) reports from Ba-
surto hospital.

Both the bilingual and monolingual corpora
from Osakidetza were provided to us without any
personally identifiable information (names, sur-
names, etc.), and it was further de-identified by
shuffling the sentences coming from each source.
The authors had to sign a non-disclosure commit-
ment before getting access to this private data.

3.2 de-en corpora

For generalization and reproducibility, we also per-
form our experiments using available data in de—
en, as well as clinical notes in English for BT.
The bilingual data is the same used for training the
baseline systems in the WMT Biomedical shared
task (Bawden et al., 2020), consisting of around
3 million sentences extracted from the UFAL cor-

Shttps://www.snomed.org/
news—and-events/articles/

march-2020-interim-snomedct-release-COVID-19

®We can make them available upon permission from Elhuyar.



pus’ after removing the “Subtitles” subset. For
evaluation we use Khresmoi,® also used in Baw-
den et al. (2020), where 500 sentences are defined
for validation and 1,000 sentences for testing.

For evaluation, and when generating the syn-
thetic corpus through beam search, we use a beam
size of 16.° This value, along with the 40,000 BPE
iterations mentioned above, were optimized for the
en—de language pair in Bawden et al. (2020).

Finally, for BT we use the discharge reports
in English available in MIMIC III (Johnson et
al., 2016).!0 After removing the headers contain-
ing unnecessary information, deleting the tags for
identifying dates, and erasing the empty lines, this
monolingual corpus is reduced to around 2 mil-
lion sentences. We choose to not perform sentence
splitting to avoid introducing errors associated
with this process. As a consequence, before trans-
lating this corpus we filter out the sentences longer
than 1,000 BPE (sub)words using Moses cleaning
corpus tool.!! Note that, although there are longer
sentences in the training corpus, fairseq skips by
default all the sentences longer than 1,024 tokens,
so the maximum sentence length of the training
corpus is similar to the one of the monolingual
corpus used for BT. All the necessary scripts for
reproducing the de-en experiments can be found
in https://gitlab.com/xabiersotol/
bt_tagging_and_decoding.

4 Results and discussion

4.1 MT automatic evaluation

Table 2 presents the MT automatic evaluation
scores of the es—eu and en—de systems used for
back-translating the monolingual corpora from the
clinical domain. Note that both target languages
Basque and German are morphologically richer
than the corresponding source languages, so met-
rics like BLEU, based on word-level accuracy, un-
derestimate the actual MT quality comparing to
the same systems trained in the opposite direction
(‘pretraining+fine-tuning’ for eu—es and ‘pretrain-
ing’ for de—en in Table 3).

7https://ufal.mff.cuni.cz/ufal_medical_
corpus

$https://lindat .mff.cuni.cz/repository/
xmlui/handle/11234/1-2122

9Beam size is 10 for evaluation in the eu/es language pair.
Uhttps://mimic.physionet.org/
gettingstarted/access/
"https://github.com/moses—smt/
mosesdecoder/blob/master/scripts/
training/clean-corpus—-n.perl
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BLEUt TER| METEOR{ CHRF{
33.88 49.27 4702 61.02
2996 52.63 4764 60.60

es—eu
en—de

Table 2: MT scores of the back-translation systems.

Table 3 shows the MT evaluation scores of the
final eu—es and de—en systems. The first rows
for each language pair present the results before
adding the BT corpus, while the next lines present
the values obtained when applying each of the de-
coding algorithms tested in this work, whether us-
ing tagging or not. In the case of eu—es, we include
the scores before and after fine-tuning.

System BLEUT TER| MET.T CHRF{
pretraining 26.99 58.61 47.70 53.35
+fine-tuning 46.67 38.74 63.56 66.46
+BT (beam search) 44.11 41.54 6148 66.24
+fine-tuning 51.37 35.15 67.11 70.10
+BT (tag. beam search) 41.29 44.45 59.47 64.22
+fine-tuning 51.99 3496 67.27 70.11
$ +BT (unr. sampling) 43.48 4139 6136 6594
g +fine-tuning 52.68 33.84 6793 71.06
+BT (tag. unr. sampl.)  42.07 44.33 59.97 65.13
+fine-tuning 5242 3475 6751 70.72
+BT (res. sampling) 44.69 40.83 6223 66.85
+fine-tuning 52.90 33.96 6823 71.12
+BT (tag. res. sampl.) 42.13 4371 60.22 65.40
+fine-tuning 53.10 33.55 68.30 71.34
pretraining 42.34 3855 3991 67.93
+BT (beam search) 44.67 37.46 40.97 69.62
+BT (tag. beam search) 44.40 37.63 40.79 69.41
5 +BT (unr. sampling) 4247 41.17 39.58 67.65
S +BT (tag. unr. sampl.) ~ 43.14 3842 4035 68.59
+BT (res. sampling) 40.03 45.73 38.60 66.42
+BT (tag. res. sampl.) 43.27 38.28 40.51 68.68

Table 3: MT scores of the final eu—es and de—en systems

Beyond the scope of this work, we want to
start highlighting that for the eu—es direction, fine-
tuning with less than 30,000 sentences (row 2)
obtains higher improvements than any of the BT
methods (rows starting with ‘+BT’) tried in this
work, with the only exception of the chrF value
for restricted sampling.

Focusing on the methods under study after fine-
tuning, we observe that one of the new combina-
tions tried in this work, tagged restricted sampling,
obtains the best scores according to all the MT
metrics in the eu—es direction, closely followed by
restricted sampling and unrestricted sampling, in-
verting the order of these two according to TER.

Looking to the generated translations, we see
that, regardless of the decoding algorithm, the sys-
tems before fine-tuning and not using tagging hal-
lucinate ‘j/- ... -/;’ style marks when translat-
ing sentences corresponding to typical headers like



‘CURRENT DISEASE’ or ‘TREATMENT’. An-
alyzing the training corpora, we detect this kind
of marked headers in the reports coming from Ba-
surto Hospital, so we will remove these tags in fu-
ture developments. However, we want to highlight
that, not only fine-tuning with clean bilingual data,
but also tagging the BT corpora, had the effect of
removing this particular noise.

Regarding the de—en direction, where, condi-
tioned by the privacy of clinical data, the size of
the training corpora is smaller than for the eu—es
counterpart, traditional beam search still obtains
the best results, followed by tagged beam search.
Most interestingly, we see that, in this particu-
lar setting, the effect of tagging is only beneficial
when using sampling for BT, complementing the
hypothesis of Caswell et al. (2019), that presents
tagged back-translation as a “simpler alternative to
noising”. With these results, we show that both
tagging and sampling can be orthogonal methods
to improve the performance in lower resource set-
tings.

For complementing the de/en MT scores cal-
culated in biomedical data from Khresmoi, we
test these same systems with clinical data from
HimL,'? to analyze possible distortions by the
slight domain mismatch between the bilingual
biomedical data from WMT Biomedical shared
task and the monolingual clinical data from
MIMIC III. For converting the HimL. data from
.sgm to raw text we use the tool available on Ne-
matus.'> Later we tokenize, truecase and apply
BPE as done for the rest of the de/en data. Table 4
presents the results on HimL.!'4

System BLEU?T TER| MET.T CHRF{
en—de pretraining 2471 59.50 41.06 52.30
pretraining 32.39 50.96 33.52 55.95
+BT (beam search) 33.58 4993 3496 57.89
+BT (tag. beam search) 33.31 50.01 34.36 57.29
§ +BT (unr. sampling) 28.70 59.68 3136 53.12
8 +BT (tag. unr. sampl.) 3242 51.23 33.89 56.42
+BT (res. sampling) 29.04 58.71 3190 54.12
+BT (tag. res. sampl.) 33.31 50.26 34.40 57.06

Table 4: MT scores of the de/en systems on HimL

We observe that beam search also obtains the
best results on HimL data in the de—en direction,

Phttp://www.himl.eu/test-sets
Bhttps://github.com/EdinburghNLP/
nematus/blob/master/data/strip_sgml.py
4Specifically, on the 1044 sentences coming from the NHS
subset, since the remaining sentences from Cochrane are used
for validation purposes.
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again followed by tagged beam search for BLEU,
TER and chrF, being the results of tagged restricted
sampling equal to the latter according to BLEU,
and slightly better in terms of METEOR. The main
difference comes from the worst results obtained
by unrestricted sampling, which in this setting
achieves the lowest scores according to all metrics,
confirming the hypothesis that unrestricted sam-
pling only works with big corpora.

4.2 Lexical diversity derived from BT

Table 5 presents the LD values measured on the
BT corpora created by each of the methods under
study, including the results on the original mono-
lingual corpora for reference.

Language Corpus MTLD Yule’sI TTR
es original 13.99 0.668 0.438
BT (beam search) 13.71 0.863 0.578

BT (tag. beam search) 14.72 0.799 0.387

cu BT (unr. sam.) 1399 7.628 65.22
BT (tag. unr. sam.) 14.84 7.123 41.69

BT (res. sam.) 13.73 2.545 5.851

BT (tag. res. sam.) 14.72 2359 3.748

en original 14.14 0.347 0.129
BT (beam search) 14.50 0.899 0.754

BT (tag. beam search) 15.37 0.841 0.521

de BT (unr. sam.) 15.15 8.376 93.62
BT (tag. unr. sam.) 15.86 7.890 62.19

BT (res. sam.) 1439 3.374 12.64

BT (tag. res. sam.) 15.15 3.167 8.566

Table S: Lexical diversity scores of the monolingual cor-
pora before and after BT using different decoding algorithms,
whether tagging or not. Yule’s I and TTR values are multi-
plied by 100 for improved readability.

Comparing the results on each language, we sur-
prisingly see that the MTLD values increase when
adding a tag to the BT corpus, while Yule’s I
and TTR metrics follow our intuition and decrease
when adding the same prefix to each sentence com-
ing from BT. Focusing on the more linguistically
relevant LD scores without tagging, we observe
that, as expected, unrestricted sampling obtains
the highest scores in each language for all met-
rics. By definition, translations generated through
restricted sampling are less diverse than the ones
produced by unrestricted sampling, since the for-
mer will generally produce words that appear more
in the training corpus. Considering these LD re-
sults, a human MT evaluation is needed in the eu—
es direction to see if the higher MT scores for re-
stricted sampling correspond to an actual increase
on MT quality or, as it happens with beam search,
these higher MT scores are an artifact of automatic



metrics that use to overestimate systems that tend
to output more frequent words.

4.3 Preliminary human evaluation

Before carrying out a proper human evaluation by
the same healthcare workers who compiled the
bilingual clinical eu/es data, we make a first esti-
mation by asking a bilingual biomedical expert to
blindly evaluate the quality of the 3 systems that
obtained higher MT automatic scores in the eu—es
setting, namely 1) tagged restricted sampling, 2)
restricted sampling and 3) unrestricted sampling.
For assessing the quality of these systems we fo-
cus on the adequacy of the generated translations,
comparing their semantics with the ones of the cor-
responding source sentences and checking the ref-
erence translations in case of doubt. Table 6 shows
the number of sentences from the first 100 non-
repeated sentences of the test set identified as to-
tally correct in terms of meaning for each of the
best performing systems in the eu—es direction.

tag. res. sam.
83

res. sam. unr. sam.

75 83

Table 6: Number of sentences perfectly translated from the
first 100 non-repeated sentences of the test set for each of the
best ranked systems in the eu—es direction.

We clearly observe that restricted sampling,
which obtained the second best MT automatic
scores but the lowest LD scores according to the
most relevant MTLD metric, gets significantly
lower adequacy scores (75/100) in this preliminary
human evaluation, while tagged restricted sam-
pling and unrestricted sampling obtain the same
number of totally correct translations (83/100).
This confirms our intuition that, in the absence of
a human evaluation, LD metrics can be used as a
proxy to assess the MT quality of different systems
trained with the same corpus.

4.4 Human evaluation

In this section we present the results of the hu-
man evaluation performed by 37 bilingual health-
care workers. For doing this, we use PET? tool,
asking each evaluator to post-edit 100 out of 500
sentences translated by the es—eu system and the
best performing eu—es systems. Each of these 500
sentences was post-edited by 3 different evalua-
tors. Considering that some of the sentences were
translated equally by the two eu—es systems, 22

Bhnttps://github.com/wilkeraziz/PET
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volunteers evaluated the eu—es translations, while
15 post-edited the outputs of the es—eu system.

Table 7 presents the post-editing times regis-
tered for each system. For a better comparison, we
normalize the post-editing time by sentence length
in the second column.

Seconds Seconds/Word
es—eu 65.88 7.19
eu—es (tag. res. sam.) 23.23 2.67
eu—es (unr. sam.) 22.78 2.66

Table 7: Average post-editing times by the best performing
eu—es systems and the es—eu system, before and after normal-
izing per sentence length.

Comparing the results in each direction, we see
that post-editing times are much larger for es—eu
translation, while the difference between the two
eu—es systems is very small, especially after nor-
malization.

Table 8 shows the calculated HTER values, by
distinguishing its post-edition types corresponding
to insertions (INS), deletions (DEL), substitutions
(SUB) and shifts (SHIFT).

HTER HTER HTER HTER HTER

(ALL) (INS) (DEL) (SUB) (SHIFT)
es—eu 1247 095 339 7.21 0.92
eu—es (trs.) 550 054 260 2.17 0.20
eu—es (u.s.) 6.24 060 3.00 230 0.35

Table 8: HTER values by the best performing eu—es systems
and the es—eu system, disaggregated by post-edition types.

As it happened with post-editing times, we ob-
serve that the HTER values are higher for the es—
eu direction. On the other hand, while post-editing
times were slightly higher for the ‘tagged restricted
sampling’ system, we see that this system outper-
forms the ‘unrestricted sampling’ system regard-
ing HTER and all its post-edition types.

Finally, Table 9 shows the average keystrokes
registered by PET in all its 3 main values.

VISIBLE KEYSTROKES ALLKEYS

es—eu 7.32 10.20 11.13
eu—es (t.r.s.) 3.23 4.21 442
eu—es (u.s.) 4.16 5.41 5.63

Table 9: Registered keystrokes for the best performing eu—es
systems and the es—eu system, where "VISIBLE”: letters +
digits + spaces + symbols; "KEYSTROKES”: "VISIBLE” +
erase; and "ALLKEYS”: "KEYSTROKES” + navigation +
commands.

Again, for the eu—es direction, we see that the
‘tagged restricted sampling’ system obtains better
results than the ‘unrestricted sampling’ system in



terms of keystrokes, so we select this system for a

System Time (h) Power (kWh) COze (Ibs)

. es—eu 81.93 32.36 30.88

final error analysis. cu—cs 3866 1527 1457
eu—es + BT (b.s.)  71.90 28.40 27.10

4.5 Error analysis eu—es + BT (tb.s.) 65.92 26.04 24.84
Table 10 shows the number of omissions, addi- eiu_eis : lfl:r (Euusg)) ;g:gg 33233 gg:gé
tions, mistranslations and shift errors by the best eu—es + BT (r.s.)  70.83 27.98 26.69
performing ‘tagged restricted sampling’ system in eu—es + BT (trs.) 67.96 26.85 25.61
. . .. C . . en—de 42.30 16.71 15.94

the eu—es direction, distinguishing between single do—en 3731 1274 1406
and multiple word errors. de—en + BT (b.s.) 51.53 20.35 19.42
de—en + BT (t.b.s.) 53.08 20.97 20.00

Omissions Additions Mistransl. Shifts de—en + BT (u.s.) 54.37 21.48 20.49

TOTAL 51 6 103 4 de—en + BT (t.u.s.) 55.94 22.10 21.08
Single words 35 4 30 1 de-en + BT (r.s.) 52.26 20.64 19.69
Multiple words 16 2 23 3 de-en + BT (trs.) 53.47 21.12 20.15
TOTAL 355.53

Table 10: Classification of the MT errors for the best per-
forming eu—es system (tagged restricted sampling).

We observe that most of the errors correspond to
mistranslations, approximately doubling the omis-
sions, and being the additions and shifts very
scarce. For the most common omissions and mis-
translations, most of the time these errors are re-
lated to a single word, especially for the latter.

From the omitted words, 12 are articles, while
one of the added words is also an article. Among
the mistranslations, there are 15 clinical terms
translated as acronyms, 8 abbreviations, 3 missing
accents and 3 singular/plural mismatches. Notice
that all of these errors will not substantially alter
the sentence meaning.

4.6 Carbon footprint

To conclude this section, answering to the call
made by Strubell et al. (2019), we report the car-
bon footprint derived from training our systems.
For doing that, we obtain the training times from
the log files for each system, accordingly calculate
the consumed power, and then estimate the corre-
sponding CO, emissions.

Table 11 shows the measured time, power con-
sumption and CO; emissions estimated for each
of the developed systems. Each experiment was
done using a single Nvidia Titan V GPU with a
maximum power of 250W. We estimate the CO,
emissions by applying equations (1) and (2) in
Strubell et al. (2019), considering only the power
consumed by our GPUs. Note that the training of
the es—eu system is done for 50 epochs, while the
rest are performed for 30 epochs.

For interpreting these results, it must be consid-
ered that the default implementation of fairseq is
not optimized to use the maximum power of the
GPUs at any time, so the presented values must
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Table 11: Training time, power consumption and estimated
CO; emissions for each system. ‘t.’ stands for tagged; ‘b.s.’
for ‘beam search’; ‘u.s.” for ‘unrestricted sampling’; and ‘r.s.’
for ‘restricted sampling’.

be taken with caution as a clear overestimation.
We leave as future work modifying the fairseq hy-
perparameters to make a more efficient use of our
GPUs, at the same time adjusting our estimation of
the generated CO, emissions.

5 Conclusions and future work

In this work, we have empirically compared and
combined different methods for BT applied to the
MT of clinical texts. One of the new combinations
tried in this work, tagged restricted sampling, ob-
tained the best automatic scores according to all
the metrics studied in the eu—es direction, con-
firmed by the HTER and keystroke results from the
human evaluation performed by bilingual health-
care workers.

In the simulated low resource de—en scenario,
traditional beam search still obtained the best MT
results, followed by tagged beam search. This
confirms the generalized agreement that sampling
is only helpful when large monolingual data are
available. Moreover, we observe that tagging only
helps when using sampling for decoding the BT
systems, complementing previous work that pro-
posed tagging the synthetic corpora as an alterna-
tive to the use of sampling. However, to drive more
generalizable conclusions it would be necessary to
try these methods on more diverse scenarios.

Considering the LD metrics, the decoding algo-
rithm that obtained the best MT results in the eu—
es scenario (restricted sampling) obtained one of
the lowest MTLD scores. In a preliminary human



evaluation done by a bilingual biomedical expert to
assess the 3 systems that obtained higher MT eval-
uation scores, restricted sampling obtained signif-
icantly worse results than unrestricted sampling,
even that the latter obtained lower MT automatic
scores. This is a sign that LD metrics can be used
as a complement to the MT automatic evaluation
scores for identifying the best performing systems.

Finally, we have estimated the carbon footprint
derived from our experiments. We will consider
these values to study possible ways of reducing or
neutralizing our carbon footprint.
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Abstract

Existing syntax-enriched neural machine
translation (NMT) models work either
with the single most-likely unlabeled parse
or the set of n-best unlabeled parses com-
ing out of an external parser. Passing a
single or n-best parses to the NMT model
risks propagating parse errors. Further-
more, unlabeled parses represent only syn-
tactic groupings without their linguisti-
cally relevant categories. In this paper
we explore the question: Does passing
both parser uncertainty and labeled syn-
tactic knowledge to the Transformer im-
prove its translation performance? This
paper contributes a novel method for in-
fusing the whole labeled dependency dis-
tributions (LDD) of the source sentence’s
dependency forest into the self-attention
mechanism of the encoder of the Trans-
former. A range of experimental results on
three language pairs demonstrate that the
proposed approach outperforms both the
vanilla Transformer as well as the single
best-parse Transformer model across sev-
eral evaluation metrics.

1 Introduction

Neural Machine Translation (NMT) models based
on the seq2seq schema, e.g., Kalchbrenner and
Blunsom (2013); Cho et al. (2014); Sutskever et
al. (2014); Bahdanau et al. (2014), first encode the
source sentence into a high-dimensional content
vector before decoding it into the target sentence.

© 2022 The authors. This article is licensed under a Creative
Commons 3.0 licence, no derivative works, attribution, CC-
BY-ND.

Several prior studies (Shi et al., 2016; Belinkov
and Bisk, 2018) have pointed out that although
NMT models may induce aspects of syntactic re-
lations, they still cannot capture the subtleties of
syntactic structure that should be useful for accu-
rate translation, particularly by bridging long dis-
tance relations.

Previous work provides support for the hypoth-
esis that explicit incorporation of source syntactic
knowledge could result in better translation per-
formance, e.g., Eriguchi et al. (2016); Bastings et
al. (2017). Most models condition translation on a
single best parse syn:

arg max P(t|s,syn) (1)

t

where s and t are the source and target sentences
respectively. Other models incorporate the n-best
parses or forest (without parser probabilities and
labels), e.g., Neubig and Duh (2014). The idea
here is that the syntactically richer input (s, syn)
should be better than the bare sequential word or-
der of s, leading to a more accurate and sharper
translation distribution P(t|s, syn).

While most syntax-enriched strategies result in
performance improvements, there are two note-
worthy gaps in the literature addressing source
syntax. Firstly, none of the existing works con-
ditions on the probability distributions over source
syntactic relations. And secondly, none of the ex-
isting approaches conditions on the dependency
labels, thereby conditioning only on the binary
choice whether there is an unlabeled dependency
relation between two words.

Tu et al. (2010); Ma et al. (2018); Zaremoodi
and Haffari (2018) showed that the whole depen-
dency forest provides better performance than a
single best parse approach. In this paper we go

Macken, Rufener, Van den Bogaert, Daems, Tezcan, Vanroy, Fonteyne, Barrault, Costa-jussa, Kemp, Pilos, Declercq, Koponen, Forcada,
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one step further and propose that a syntactic parser
is more useful if it conveys to the NMT model
also its remaining uncertainty, expressed as the
whole probability distributions over dependency
relations rather than a mere forest.

To the best of our knowledge, there is no pub-
lished work that incorporates a parser’s distribu-
tions over dependency relations into the Trans-
former model (Vaswani et al., 2017), let alone in-
corporating distributions over labeled dependency
relations into NMT models at large.

This paper contributes a generic approach for
infusing labeled dependency distributions into the
encoder’s self-attention layer of the Transformer.
We represent a labeled dependency distributions
as a three-dimensional tensor of parser probabil-
ities, where the first and second dimensions con-
cern word-positions and the third concerns the de-
pendency labels.

The resulting tensor is infused into the compu-
tation of the multi-head self-attention, where every
head is made to specialize in a specific dependency
class. We contribute empirical evidence that pass-
ing uncertainty to the Transformer and passing la-
beled dependencies both give better performance
than passing a single unlabeled parse, or an unla-
beled/labeled set of dependency relations with uni-
form probabilities.

2 Related Work

The role of source syntactic knowledge in better
reordering was appreciated early on during the Sta-
tistical Machine Translation (SMT) era. For exam-
ple, Mylonakis and Sima’an (2011) propose that
source language parses should play a crucial role
in guiding the reordering within translation, and
do so by integrating constituency labels of varying
granularity into the source language. Although,
NMT encoders have been claimed to have the abil-
ity to learn syntax, work on RNNs-based mod-
els shows the value of external source syntax in
improving translation performance, e.g., Eriguchi
et al. (2016), by refining the encoder component,
leading to a combination of a tree-based encoder
and a sequential encoder.

Noteworthy to recall here that the atten-
tion mechanism was originally aimed to capture
all word-to-word relations, including syntactic-
semantic relations. whereas, the work of Bastings
et al. (2017) has shown that a single unlabeled de-
pendency parse, encoded utilizing Graph Convo-
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lutional Networks (GCNs), can help improve MT
performance. Ma et al. (2018) and Zaremoodi and
Haffari (2018) attempt to incorporate parse forests
into RNNs-based NMT models, mitigating parsing
errors by providing more candidate options. How-
ever, these two works only rely on the binary (un-
labeled) relations in all the sub-trees, ignoring the
elaborate probability relations between word posi-
tions and the type of these relations.

Although the Transformer (Vaswani et al.,
2017) is considered to have a better ability to
implicitly learn relations between words than the
RNNs-based models, existing work (Zhang et al.,
2019; Currey and Heafield, 2019) shows that even
incorporating a single best parse could improve the
Transformer translation performance. Followup
work (Bugliarello and Okazaki, 2020; Peng et
al., 2021) provides similar evidence by changing
the Transformer’s self-attention mechanism based
on the distance between the input words of de-
pendency relations, exploiting the single best un-
labeled dependency parse.

The work of Pham et al. (2019) suggests that
the benefits of incorporating a single (possibly
noisy) parse (using data manipulation, linearized
or embedding-based method) can be explained as
a mere regularization effect of the model, which
does not help the Transformer to exploit the ac-
tual syntactic knowledge. Interestingly, Pham et
al. (2019) arrive at a similar hypothesis, but they
concentrate on exploring how to train one of the
heads of the self-attention in the Transformer for a
combined objective of parsing and translation. The
parsing-translation training objective focuses the
self-attention of a single head at learning the distri-
bution of unlabeled dependencies while learning to
translate as well, i.e., the distribution is not taken
as source input but as a gold training objective. By
training a single head with syntax, they leave all
other heads without direct access to syntax.

Our work confirms the intuition of Pham et
al. (2019) regarding the utility of the parser’s full
dependency distributions, but in our model these
distributions are infused directly into the self-
attention while maintaining a single training ob-
jective (translation). Furthermore, we propose that
only when the full probability distribution matri-
ces over labeled dependency relations is infused
directly into the transformer’s self-attention mech-
anism (not as training objective), syntax has a
chance to teach the Transformer to better learn



syntax-informed self-attention weights.

3 Proposed Approach

A parser can be seen as an external expert sys-
tem that provides linguistic knowledge to assist the
NMT models in explicitly taking into account syn-
tactic structure. For some sentences, the parser
could be rather uncertain and spread its proba-
bility over multiple parses almost uniformly, but
in the majority of cases the parser could have a
rather sharp distribution over the alternative parses.
Therefore, simply passing a dependency forest
amounts merely to passing all alternative parses
accompanied with zero information on parser con-
fidence (maximum perplexity) to the Transformer
NMT model, which does not help it to distinguish
between the parsing information of the one input
from that of another. This could increase the com-
plexity of learning the NMT model unnecessarily.

An alternative is then to use for each sentence
a dependency distribution in the form of condi-
tional probabilities, which could be taken to rep-
resent the degree of confidence of the parser in the
individual dependency relations. Furthermore, we
propose that each dependency relation type (label),
provides a more granular local probability distri-
bution that could assist the Transformer model in
making more accurate estimation of the context
vector. This might enhance the quality of encod-
ing the source sentence, particularly because the
Transformer model relies on a weak notion or word
order, which is input in the form of positional en-
coding outside the self-attention mechanism.

Note that the word-to-word dependency proba-
bilities is not equivalent to using a distribution over
dependency parses. This is because in some cases
the word-to-word dependencies (just like word-to-
word attention) could combine together into gen-
eral graphs (not necessarily trees). We think that
using relations between pairs of words (rather than
upholding strict tree or forest structures) fits well
with the self-attention mechanism.

3.1 Dependency Distributions

Denote with |T'| target sentence length and with
encode(-) the NMT model’s encoder. We contrast
different syntax-driven models:

T
P(t|s,syn) =~ H P(t;|t<;, encode(s,syn)) (2)

=1
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with syn € {{L,U}DD, U{L,U}DD, {L,U}DP},
where {L,U}DD is the labeled/unlabeled de-
pendency distribution!, U{L,U}DD the uniform
labeled/unlabeled dependency distribution?, and
{L,U}DP the 1-best labeled/unlabeled depen-
dency parse. We also use LDA to stand for a model
were the attention weights are fixed equal to LDD
(i.e., not learned).

Our primary idea is to exert a soft influence on
the self-attention in the encoder of the Transformer
to allow it to fit its parameters with both syntax and
translation awareness together. For infusing the la-
beled dependency distributions, we start with “ma-
trixization” of labeled dependency distributions,
which results in a compact tensor representation
suitable for NMT models.
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Figure 1: Labeled dependency distributions

Figure 1 illustrates by example how we convert
the labeled dependency distribution (LDD) into a
three-dimensional LDD tensor. The x-axis and y-

"Unlabeled dependency distribution is the sum of labeled de-
pendency distributions on the z-axis, which is the same as
1-best unlabeled dependency parse.

1t is used for the purpose of ablation experiments, that is, the
value of each point in the 3-dimensional tensor is identical.



axis of the tensor are the words in the source sen-
tence, and the z-axis represents the type of depen-
dency relation. Each point representing a condi-
tional probability p(z, 7,1) = p(s;,1|s;) € [0,1] C
R of source word s; modifying another source
word s; with relation /.

LDD Matrix for a specific label [: The matrix
LDD' extracted from the LDD tensor for a depen-
dency label [ is defined as the matrix in which ev-
ery entry (4,7) contains the probability of a word
s; to modify word s; with dependency relation /.

3.2 Parser-Infused Self-attention

Inspired by Bugliarello and Okazaki (2020), we
propose a novel Transformer NMT model that in-
corporates the LDD into the first layer of the en-
coder side. Figure 2 shows our LDD sub-layer.

The standard self-attention layer employs a
multi-head attention mechanism of h heads. For
an input sentence of length 7', the input of self-
attention head h; in the LDD layer is the word
embedding matrix X € R7*@model and the depen-
dency distribution matrix LDD* € R”*7 for label
l; assigned to head h; uniquely®. Hence, when we
refer to head h;, we refer also to its uniquely as-
signed dependency label /;, but we omit /; to avoid
complicating the notation.

As usual in multi-head self-attention (h being
the number of heads) for head h;, first it linearly
maps three input vectors, q,k,v € R!X@model for
each token, resulting in three matrices QM ¢
RTxd KM ¢ RT*4 and V" € RT*? where
dmodel 18 the dimension of input vectors, and d =
dmodel/h. Subsequently, an attention weight for
each position is obtained by:

th . KhiT
= T

At this point we infuse the resulting self-
attention weight matrix S for head h; with the
specific LDD matrix LDD" for label I; using
element-wise multiplication. Assuming that déiq €
LDD', this is to say:

Shi 3)

hi _
npvq -

d;

ngq Xdy ., forp,g=1,...,T (4

The purpose of element-wise multiplication is to
nudge the attention mechanism to “dynamically”

3We group the original dependency labels into 16 alternative
group labels. The grouping is provided in Appendix A.
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learn weights that optimize the translation objec-
tive but also diverge the least from the parser prob-
abilities in the dependency distribution matrix.

Next, the resulting weights are softmaxed to ob-
tain the final syntax-infused distribution matrix for
head h; and the label attached to this head [;:

N" = softmax(S" © LDD") (5)

We stress that every attention head is infused
with a different dependency relation matrix LDD'
for a particular dependency relation /;. By focus-
ing every head on a different label we hope to “soft
label”, or specialize, it for that label.

Now that we have syntax-infused weights N’
we multiply them with the value matrix V" to get
the attention weight matrix of the attention head h;
for the relation ;.

M"i = NP . yh (6)

Subsequently, the multi-head attention linearly

maps the concatenation of all the heads with a pa-

rameter matrix WO € RfmodelXdmodel - and sends

this hidden representation to the standard Trans-
former encoder layers for further computations.

MultiHead(Q, K, V) = Concat(M", ..., M"™)W°® (7)

Finally, the objective function for training our
model with syntax knowledge is identical to that
of the vanilla Transformer (Vaswani et al., 2017):

T

Loss = — Z[yt In(ot) + (y: — 1) In(1—0¢)] (8)
t=1

Where y; and oy are, respectively, the true and
the model-predicted value at state ¢, and I" repre-
sents the number of states. The syntactic distribu-
tion matrices are not the object of optimization in
the model, so it is incorporated into the model in
the form of a parameter-free matrix.

4 Experiments and Analysis

Experimental Setup We establish seven distinct
sets of experiments, refer to Table 1. To be
specific, we will conduct particular experiments
to validate the empirical performance under both
medium size and small size training parallel cor-
pora. Apart from the different network structures
used in the models, the number of network lay-
ers are identical in the same language pair trans-
lation experiments for all models. Additionally,
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Figure 2: Labeled dependency distribution sub-layer (LDD'¢ for head h.)

the seven models in each experiment will use the
same parameter settings, loss function, and opti-
mizer algorithm. Experiments will employ BLEU-
{1,4} score (Papineni et al., 2002), RIBES score
(Isozaki et al., 2010), TER score (Snover et al.,
2006), and BEER score (Stanojevic and Sima’an,,
2014) as criteria for evaluating the model’s effec-
tiveness.

Parser: We employ an external dependency
parser SuPar (Zhang et al., 2020) to automatically
parse the source sentences. Since this parser was
trained using the biaffine method (Dozat and Man-
ning, 2016), we can extract dependency distribu-
tions by changing its source code.

Data: We evaluate the translation tasks for
three language pairs from three different language
families: English-Chinese (En—Zh), English-
Italian (En—1It), and English-German (En—De).
We chose dev2010 and test2010 as our validation
and test datasets from IWSLT2017 En—De and
En—It tasks. In En—Zh, we randomly selected a
110K subset from the IWSLT2015 dataset as train-
ing set and used dev2010 as validation set, tst2010
as test set. Table 2 exhibits the division and statis-
tics of the datasets.

For training only, we first filtered out the source
sentences that SuPar cannot parse and sentences
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that exceed 256 tokens in length. And then, we
used SuPar* to parse each source language sen-
tence to obtain the labeled dependency distribu-
tions and applied Spacy to tokenize the source and
target languages, respectively. Finally, we replaced
words in the corpus with “<unk>" for words with
frequency less than two counts, and for each mini-
batch sentences, added “<bos>",“<eos>" tokens
at the beginning and end, and for sentences with
inconsistent lengths per mini-batch, added a corre-
sponding number of “<pad>" tokens at the end of
the sentences to keep the batch length consistent.

Hyperparameters: In the low-resource ex-
periments, the batch size was 256, the number
of layers for the encoder and decoder was 4, and
the number of warm-up steps was 400. In the
medium-resource experiments, their values were
512, 6, 4000, respectively. For the rest, we use the
base configuration of the Transformer (Vaswani et
al., 2017): All experiments were optimized using
Adam (Kingma and Ba, 2015) (where 31 was 0.9,
B2 was 0.98, € was 10-9) and the initial learning
rate was set to 0.0001, gradually reduced during
training as follows:

*https://github.com/yzhangcs/parser
Shttps://spacy.io/



Table 1: Five sets of experimental group description

Experimental group

Description

Baseline (BL)

+Labeled dependency attention only (LDA)

The original Transformer model.

Replace S matrix directly with the labeled dependency distributions.

+1-best labeled dependency parse (LDP)
+1-best unlabeled dependency parse (UDP)

Incorporate 1-best dependency tree with specific (e.g. 1) label.
Incorporate 1-best (regardless the type of dependency relations) dependency tree.

+Uniform labeled dependency distributions (ULDD)
+Uniform unlabeled dependency distributions (UUDD)

Incorporate uniform labeled dependency distributions.

Incorporate uniform unlabeled dependency distributions.

+Labeled dependency distributions (LDD)

Incorporate labeled dependency distributions with standard Transformer self-attention.

Table 2: Datasets statistics

Table 3: Multi30k evaluation results (En — De)

Task Corpus Training set  Validation set  Test set
Enelish —> German Multi30k 29000 1014 1000
&l AN WSLT 2017 206112 888 1568
English — Italian  IWSLT 2017 231619 929 1566
English — Chinese IWSLT 2015 107860 802 1408

Ir = d—0.5

: 0.5
nodel - Min(step_num™°, step_num

)]
- warmup_steps %)

The number of heads in multi-head attention
was set to 8 (16 in LDD layer), the dimension of
the model was 512, the dimension of inner fully-
connected layers was set to 2048, and the loss
function was the cross-entropy loss function. The
checkpoint with the highest BLEU-4 score on the
validation set was saved for model testing during
training. The number of epochs was set to 50 (one
epoch represents a complete training produce). In
order to prevent over-fitting, we set the dropout
rate (also in our LDD layer) to 0.1.

4.1 Experimental Results

The experimental results for each model under
low- and medium-resource scenarios are shown in
Tables 3 to 6. The first group represents the base-
line model, while the remaining groups represent
the control models. It is necessary to note that the
last group is the model proposed in this paper.

As compared to the baseline model, either form
of modeling the syntactic knowledge of the source
language could be beneficial to the NMT models.
Whether it was in the choice of lexical (BLEU-
1) or in the order of word (RIBES), there was a
certain degree of improvement, which also sup-
ports the validity and rationality of incorporating
syntactic knowledge. The proposed model (LDD)
achieved the best score in at least three of the five
different evaluation metrics, regardless of the lan-
guage translation tasks. The proposed model con-
sistently reached the highest results on BLEU-4,
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Model BLEU-1 RIBES BLEU-4 TER BEER
BL 5813  78.86 30.14 6295 0.59
””” 4LDA | 5410 © 80.10 | 3049 ~ 6347  0.61
+LDP 5426  79.58 30.71 79.58 0.61
+UDP 5584  78.96 31.05 63.38 0.60
+ULDD 5220  79.50 2780  63.02 0.59
+UUDD 53.38 79.75 2909 6334 0.60
+LDD 55.65 7997 || 31.29F  62.66'  0.61
LDD compared to BL | —A2.48 +ALII | +A1.15 +A029 +A0.02
LDD compared to UDP | —®0.19 +®1.01 || +90.24 +90.72 +$0.01

! The black bold in the table represents the best experimental
results under the same test set.

2 A and @ represent the improvement of our model compared
to baseline and 1-best unlabeled parse system respectively.

3t and ! indicate statistical significance (p<0.05) against
baseline and 1-best unlabeled parse system via T-test and
Kolmogorov-Smirnov test respectively.

Table 4: IWSLT2017 evaluation results (En — De)

Model BLEU-1 RIBES BLEU-4 TER  BEER

BL 51.63 68.64 26.13 8334 0.53
T +LDA | ¢ 4980  69.04 | 2616 8353 053

+LDP 5112 6891 26.38 83.93 0.53
+UDP 5090  69.20 2639  84.65 0.53
+ULDD 50.80  69.56 2510 8276 0.53
+UUDD 48.85 68.90 25.41 86.19 0.53
+LDD 54981t 68.831 | 27781t 81.85  0.54

LDD compared to BL || +A3.35 +A0.19 || +A1.65 +A1.49 +A0.01

LDD compared to UDP | +®4.08 —®037 | +®1.39 +®280 +0.01

I'The black bold in the table represents the best experimental
results under the same test set.

2 A and ® represent the improvement of our model compared
to baseline and 1-best unlabeled parse system respectively.

3T and * indicate statistical significance (p<0.05) against
baseline and 1-best unlabeled parse system via T-test and
Kolmogorov-Smirnov test respectively.

which increased by at least one point when com-
pared to the baseline model, with an average in-
crease rate of more than 5%. Furthermore, in most
translation experiments, incorporating labeled de-
pendency distributions provided better outcomes
than the 1-best unlabeled dependency parse system
(UDP)°. This indicates the efficacy of providing
more parsing information, particularly the depen-
dency probabilities. In the low resource scenarios,
the models of incorporating syntactic knowledge

6 All previous work uses only 1-best unlabeled parse, which is
also our main comparison object. We will refer to it as 1-best
parse or 1-best tree below.



Table 5: IWSLT2017 evaluation results (En — It)

Model BLEU-1 RIBES BLEU-4 TER BEER
BL 54.14 68.58 27.11 77.52 0.56
T +LDA | 5125 69.90 || 2613 8123 056
+LDP 51.72 68.26 25.65 80.03 0.55
+UDP 53.17 69.90 28.13 76.18 0.56
+ULDD 51.30 67.83 2523 80.62 0.54
+UUDD 54.00 66.83 25.23 78.41 0.55
+LDD 567311 69.69" || 29.341t 76341 0.57
LDD compared to BL || +A2.59 +AlL1l | +A223 +A1.18 +A0.01
LDD compared to UDP || +®3.56 —®0.21 || +®1.21 —®0.16 +®0.01

"'The black bold in the table represents the best experimental
results under the same test set.

2 A and ® represent the improvement of our model compared
to baseline and 1-best unlabeled parse system respectively.

3% and ? indicate statistical significance (p<0.05) against
baseline and 1-best unlabeled parse system via T-test and
Kolmogorov-Smirnov test respectively.

Table 6: IWSLT2015 evaluation results (En — Zh)

Model BLEU-1 BLEU-4 TER BEER
BL 46.53 1831 67.96 0.20
T +LDA || ¢ 4491 || 1825 7096 020
+LDP 4734 18.85 70.02 0.20
+UDP 46.92 19.71 67.29 0.20
+ULDD 40.67 17.89 77.04 0.19
+UUDD 34.14 18.05 79.27 0.18
+LDD 47.6211 | 20.251%  67.38F 0.20
LDD compared to BL +A1.09 | +A1.94 +A0.58 +A0.00
LDD compared to UDP || +®0.70 | +®0.54 —®0.09 +®0.00

!'The black bold in the table represents the best exper-
imental results under the same test set.

2A and ® represent the improvement of our model
compared to baseline and 1-best unlabeled parse sys-
tem respectively.

3t and ' indicate statistical significance (p<0.05)
against baseline and 1-best unlabeled parse sys-
tem via T-test and Kolmogorov-Smirnov test respec-
tively.

paid less attention to the neighboring words in
the corpus sentence because syntactic knowledge
may assist models in focusing on distant words
with syntactic relations, which was reflected in the
decrease of BLEU-1 scores. This problem was
alleviated in the richer-resource scenarios, which
also showed that the robustness of the models im-
proved.

For ablation experiments, passing the uniform
dependency distributions verifies our hypothesis.
A uniform probability tensor cannot provide valu-
able information to the Transformer model and
risks misleading the model, resulting in the worst
performance. Another notable finding is that sim-
ply incorporating labeled dependency distributions
(replacing the K and Q matrices in the attention
matrices) as dependency attention outperformed
the baseline model on average. The benefit of this
strategy is that by replacing K and Q matrices and
their associated calculation process can drastically
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decrease the number of parameters and computing
requirements.

4.2 Qualitative Analysis

BLEU-4 Scores Comparison: We also at-
tempted to visualize the results to understand the
performance of the proposed model better. In Fig-
ure 3, although the 1-best parse model performs
better than the baseline model, the model we pro-
pose has higher scores than the baseline model
and the 1-best parse model in all the median, up-
per and lower quartile scores. From the original
scatter diagram, we can observe the scatter distri-
bution of the proposed model at the upper posi-
tion in general, indicating that, our model can earn
higher scores for translated results than the base-
line model and 1-best parse model.

1.0
0.8
0.6
0.4
0.2
Al
Baseline 1-best tree model Proposed model

Figure 3: Box plot of baseline model, 1-best tree model and
proposed model results

Impact of Sentence Length: We investigated
translation performance for different target sen-
tence lengths, by grouping the target sentences in
the IWSLT datasets by sentence length intervals.
We choose to group the target sentence lengths
rather than source sentence lengths because, cf.
Moore (2002), the source sentence and target sen-
tence lengths are proportional. Second, since the
target languages are different, and the source lan-
guage is English, we are particularly concerned
about the change in the length of sentences across
different target languages.

Overall, our model outperformed the baseline
system and 1-best parse system, as shown in Fig-
ure 4. Among them, the increase in the length
range (20,30], (30,40] and (40,50] were more pro-
nounced over the baseline system and 1-best parse
system. The BLEU-4 scores of both our model
and 1-best parse model were in danger of slipping
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Figure 4: BLEU-4 comparison in sentences length

below the baseline model in the sentence length
interval (0,10]. Corpus analysis shows that this
length interval contains many fragments, remain-
ing after slicing long sentences. Because the syn-
tactic structures of these fragments were incom-
plete, they may negatively impact on the model’s
translation performance. As sentence length in-
creased further, all models saw substantial declines
in BLEU-4 scores, following similar downward
patterns. When the sentence length exceeds 50,
the BLEU-4 scores of our method remained sig-
nificantly different from both the baseline model
and the 1-best parse model. These showed that
our proposed model has better translation perfor-
mance in lengthy sentences, but BLEU-4 scores
were still relatively low, indicating that the NMT
models have much room for improvement.

Attention Weights Visualization: The final
layer’s attention weights of the 1-best parse model
and the model we proposed are depicted in Figures
5 and 6, respectively. Judging from the compar-
ison of the figures, we find that there are certain
consistencies; for example, each word has higher
attention weights to the words around it. However,
the distinction is also discernible.

Specifically, for the word “A”, the word “A” and
the word “man” have a syntactic relation, which
was represented in both figures. However, the 1-
best parse model also provided “staring” a higher
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1-best tree model's attention weights heatmap

g v R §& & O F
e & o e

token

Figure 5:
weights

An example of 1-best parse model’s attention

Proposed model's attention weights heatmap

token

g v SR & RS SIS
< & & S

token

Figure 6: An example of proposed model’s attention weights

attention weight, which is contrary to the syntac-
tic structures, and the model we proposed resolved
this problem. For the word “man”, the 1-best parse
model did not pay proper attention to distance but
with syntactic relation word “staring”, on the con-
trary, in the proposed model, “staring” was paid at-
tention with a very high value. In a nutshell, both
the 1-best parse model and the proposed model are
better than the baseline model in terms of attention
alignment which demonstrates that the syntactic
knowledge contained in dependency distributions
can guide the weight computation of the attention
mechanism, directing it to pay more attention to
words with syntactic relations, thereby improving
the alignment quality to a certain extent.

5 Conclusion

This paper presented a novel supervised con-
ditional labeled dependency distributions Trans-



former network (LDD-Seq). This method primar-
ily improves the self-attention mechanism in the
Transformer model by converting the dependency
forest to conditional probability distributions; each
self-attention head in the Transformer learns a de-
pendency relation distribution, allowing the Trans-
former to learn source language’s dependency con-
straints, and generates attention weights that are
more in line with the syntactic structures. The
experimental outcomes demonstrated that the pro-
posed method was straightforward, and it could
effectively leverage the source language depen-
dency syntactic structures to improve the Trans-
former’s translation performance without increas-
ing the complexity of the Transformer network or
interfering with the highly parallelized character-
istic of the Transformer model.
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A Appendix: Dependency group labels

Table A: 16 alternative dependency group labels

Dependency group labels  Original dependency labels

root
aux, auxpass, cop
acomp, ccomp, pcomp, Xcomp
dobj, iobj, pobj
csubj, csubjpass
nsubj, nsubjpass
cc
conj, preconj
advcl
amod
advmod
npadvmod, tmod
det, predet
num, number, quantmod
appos
punct
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Abstract

Although more and more professionals are
using real-time machine translation during
dialogues with interlocutors who speak a
different language, the performance of
real-time MT apps has received only lim-
ited attention in the academic literature.
This study summarizes the findings of
prior studies (N = 34) reporting an evalu-
ation of one or more real-time MT apps in
a professional setting. Our findings show
that real-time MT apps are often tested in
realistic circumstances and that users are
more frequently employed as judges of
performance than professional translators.
Furthermore, most studies report overall
positive results with regard to perfor-
mance, particularly when apps are tested
in real-life situations.

1 Introduction

In 1997, Mark Seligman wrote that “the Internet
offers a tremendous opportunity for experiments
with real-time machine translation (MT) of
dialogues” (Seligman, 1997). In December of the
same year, SYSTRAN and AltaVista launched
“the first widely available, real-time, high-speed
and free translation service on the Internet” (Yang
& Lange, 1998). Now, 25 years later, the Google
Translate app has been downloaded more than 1
billion times from the Google App Store (Pitman,
2021). Since 2011, the app offers a conversation
mode, which enables users to have utterances
within a dialogue translated in real-time so that
their conversation partners can understand them.
Other apps such as iTranslate, TripLingo and

© 2022 The author. This article is licensed under a
Creative Commons 3.0 licence, no derivative works,
attribution, CC-BY-ND.

Microsoft Translator can also be used to support
synchronous dialogue between interlocutors who
do not speak the same language (Tao, 2022).

To the best of our knowledge, there are no
publicly available data on the frequency with
which MT apps are used for real-time translation
and the contexts in which this occurs. However,
given the popularity of these apps, it can be
expected that a large number of synchronous
dialogues are translated every day, and that this
happens not only in informal situations, but also
in professional contexts. This raises the question
of how well real-time MT apps perform in these
kinds of situations. Traditionally, the academic
literature has paid more attention to the quality of
written translations that have been produced using
MT than to the output of real-time MT apps. This
study aims to boost research into the performance
of real-time MT apps by summarizing the findings
of earlier studies in which the performance of such
apps was evaluated in a professional context.

2 MT quality assessment

The quality of MT output has been a hotly debated
topic for decades, and a wide variety of methods
for its assessment have been proposed (cf.
Castilho et al., 2018). When classifying these
methods, authors commonly distinguish between
automated metrics and human metrics (e.g.,
Rivera-Trigueros, 2021; Chatzikoumi, 2020).
Automated metrics include Word Error Rates
(WERSs), precision, recall, and BLEU scores, all
of which are calculated on the basis of a
comparison between MT output and a reference
translation created by a professional human
translator.

Macken, Rufener, Van den Bogaert, Daems, Tezcan, Vanroy, Fonteyne, Barrault, Costa-jussa, Kemp, Pilos, Declercq, Koponen, Forcada,

Scarton, Moniz (eds.)
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Human metrics are further subdivided by
Chatzikoumi (2020) into metrics in which human
experts express a direct judgement concerning the
translation quality and metrics in which no direct
judgement is expressed. When experts are asked
to indicate the adequacy or fluency of a machine
translated text on a 5-point scale, for example,
they make an explicit quality judgement. When,
on the other hand, they classify the translation
errors occurring in the MT output, they provide
useful information for improving the application

without explicitly judging the quality of the output.

Measuring the post-editing effort required to
reach an acceptable quality level for the target text
(e.g. Lacruz et al., 2014) also provides an indirect
indication of MT quality.

There are several reasons why most of the
metrics discussed above can be considered less
suitable for assessing real-time MT that is used to
support synchronous dialogues. First of all, post-
editing does not occur in such situations, so post-
editing effort cannot be used as a quality indicator.
In the absence of a human-generated reference
translation, automated metrics can also not be
calculated. Technically speaking, human experts
could judge the quality of the output after the
dialogue has taken place, but they would be at a
disadvantage due to the limited length and
disfluent nature of the source texts, particularly
when speech input is used (Przybocki et al., 2011).

Moreover, it is important to acknowledge that
MT quality assessment can have different
purposes. Many of the metrics above were
primarily developed to identify areas of
improvement for MT applications that are ‘under
construction’ (Dorr et al., 2011). For professionals
contemplating the use of real-time MT in their
daily professional routines, however, improving
the application is not the main priority. They want
to know whether using MT will enhance the
quality of their interactions with patients, students
or business partners who speak a different
language. In some cases, they might even wonder
whether the use of MT is ethically responsible
given the prevalence of errors in MT output and
the potentially damaging consequences of such
errors in certain contexts (Vieira et al., 2020).

Taken together, these considerations suggest
that the evaluation of real-time MT might best be
approached from the perspective of ‘fitness for
purpose’, which is achieved when the quality of a
translation is ‘good enough’ for the end user to
understand the information content and pragmatic
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intent of a translated message (Moorkens et al.,
2018; Directorate General for Translation, 2016).
Although this concept has featured prominently in
both practical and academic discourse about
translation quality for quite some time (Jiménez-
Crespo, 2018), it is not yet standard practice to ask
end users to assess the quality of (post-edited) MT
output (cf. Van Egdom & Pluymaekers, 2019).

This raises the question to what extent existing
studies into the performance of real-time MT apps
are guided by the concept of fitness for purpose,
and how fitness for purpose is operationalized in
evaluation methods used in these studies. For the
current paper, we are specifically interested in the
answers to the following questions:

RQ1: To what extent are real-time MT appli-
cations tested in authentic professional situations?

RQ2: Which quality indicators are most common-
ly used and how are they operationalized?

RQ3: Who judges the performance of real-time
MT apps?

RQ4: Which overall picture concerning the
performance of real-time MT apps emerges from
the research conducted so far?

We hope to find these answers by conducting a
systematic literature review of prior studies (N =
34) which report an evaluation of a real-time MT
app that was or could be used to facilitate a
synchronous dialogue between interlocutors who
did not speak the same language. More
information about our methodology is provided in
the next chapter.

3

For our literature review, we collected papers
published in peer-reviewed journals or conference
proceedings which assessed the quality of
linguistic material that was translated in real-time
by an MT application and that was related to ac-
tual or potential dialogues in professional settings
(e.g., healthcare, education or tourism). Studies
that focused on other types of linguistic material
(e.g., websites or leaflets) or only described a real-
time MT system without reporting an evaluation
were excluded from the sample. Subsequently, the
studies included in the sample were coded on a
number of key variables derived from the research
questions stated above. The following sections
describe the sampling method, the coding
procedure and the statistical analyses.

Method



3.1 Sampling

In compiling the sample, we followed a multi-step
approach (see Figure 1). First, we conducted an
initial search in four scientific databases (EBSCO-
host, PubMed, Web of Science and Google
Scholar), which were selected for reasons of
practicality (i.e., accessibility via the university
library) as well as quality (cf. Creswell, 2014;
Gusenbauer & Haddaway, 2020). In each data-
base, we used the following Boolean combination
of search words:

("mobile translat*" OR "real-time translat*" OR
"automatic translat*") OR ("translat* tool" OR
"translat* app") AND ("quality" OR "evaluation"
OR "usability™) NOT "knowledge translation”

Depending on the search functionalities of the
database, this query was applied to the abstract,
the title and the abstract, or the entire text. The
relevance of the articles that came up in the search
results was assessed in two steps. On the basis of
the abstracts, 23 articles were marked as poten-
tially relevant. After reading the complete articles,
we decided that 10 of them indeed corresponded
to the inclusion criteria outlined above.

« EBSCOhost, PubMed, Web of
Science, Google Scholar

* 23 potentially relevant
articles identified across
databases

Initial search

~

* 10 articles met the inclusion
criteria = initial set (N = 10)

S

* 4 articles manually included\
= expanded set (N =14)

* 28 potentially relevant
articles identified via
reference lists and Google
Scholar's 'cited by’ function J

¢ 18 articles met the inclusion
criteria = expanded set (N=
32)

* 2 articles identified via
reference lists and Google
Scholar's 'cited by' function
= final set (N = 34)

Figure 1: Overview of the sampling process

In the next step, we expanded the sample by (1)
manually adding 4 articles that we had found
earlier and (2) investigating studies that were
either included in the reference list of one of the
articles in the initial set or that referred to one of
the articles in the initial set. By doing so, we iden-
tified 28 potential additions to the sample, 18 of
which met the screening criteria. For the newly
added articles (4+18), we repeated the reference
check described above, which led to the identifi-
cation of 2 more articles. After this, saturation was
achieved, resulting in a final sample of 34 articles
(see Appendix A). More information about the
characteristics of these articles (year of publica-
tion, the number and types of applications tested,
language combinations etc.) will be provided in
section 4.1 below.

3.2 Caoding

All articles were coded by two independent coders
using the coding scheme presented in Table 1.

Year of
publication

Publication type O Conference paper

O Journal article

Professional
domain

[0 Healthcare
alIcT

0 Education

1 Tourism

O Other, namely:

# of applications

Application type O Existing generic
O Existing domain-specific

O Tailor-made

Modality [ Text-to-text
O Text-to-speech
O Speech-to-text
O Speech-to-speech
Language
combination(s)
Test type(s) O Real-life situation

[ Scenario-based simulation
O Corpus-based simulation

Data collection
method(s)

O Survey

O Interview

O Focus group

O Content analysis
O Observation

1 Other, namely:

Judge(s) O Provider

O Recipient

O User (no provider-recipient
relationship)

O Professional translator

O Native speaker / bilingual

O Other, namely:




Quality #
indicator(s)

Variable Operatio-

nalization

1
2
3
O Positive
[ Negative
O Mixed

Overall evaluation

Table 1: Coding scheme

Any disagreements between the two coders
were discussed until consensus was reached. Most
variables in the table are more or less self-
explanatory, but there are three variables we wish
to elaborate on here. First of all, application type
was included to be able to distinguish between
MT applications created for general purposes (e.g.,
Google Translate), MT applications created for
specific professional domains (e.g., Canopy
Medical Translator) and MT applications created
by the authors of the article. With respect to test
type, we noticed during the screening process that
not all applications are tested in situations that in-
volve actual dialogue; Sometimes, frequently
occurring utterances from professional dialogues
are provided to the application to assess the
quality of the translation (referred to as ‘corpus-
based simulation’ in Table 1). If actual dialogues
are involved in the test, they can be either real-life
dialogues or dialogues from a role-playing
scenario scripted by the researchers. Finally, for
the variable judge we decided to distinguish
between providers and recipients of care, service
or education, as our initial observations suggested
that providers may be asked more frequently to
assess the performance of MT apps than recipients.

3.3

The outcomes of the coding process were entered
into an SPSS data file containing mainly nominal
variables recording the presence or absence of
certain methodological features (e.g., whether
recipients were asked to judge the performance of
the app or whether focus groups were used to col-
lect data). To gain insight into the sample charac-
teristics and answer the research questions,
frequency tables were created. To assess whether
the overall judgement regarding the performance
of the app differed as a function of methodological
choices made, we used Chi-squared tests.

Analysis
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4  Results

4.1 Sample characteristics

All studies in the sample were published between
2005 and 2022. Figure 2 shows how the studies
were distributed over the years. 28 studies (82%)
were published in peer-reviewed journals, while 6
(18%) appeared in conference proceedings. The
majority of the studies (27 or 79%) focused on one
real-time MT application; 5 studies (15%) made a
comparison between two applications while only
2 studies (Hwang et al., 2022 and Panayiotou et
al., 2020) included three applications in their
evaluation. Existing general-purpose applications
were tested most frequently (18 studies or 53%),
followed by apps that were created by the authors
themselves and existing domain-specific applica-
tions, which were tested in 12 (35%) and 8 (24%)
studies respectively. Most evaluations were
conducted in the context of healthcare (28 studies
or 82%). A wide variety of tested language
combinations could be observed in the sample,
although the majority of studies (24 or 71%)
looked at one or two combinations, and English
was part of the tested language combinations in 25

of the 34 studies (74%).

Figure 2: Number of studies by year of publication

4.2

Of the 34 studies in the sample, 32 used a single
test type. The two exceptions were Calefato et al.
(2016) and Haith-Cooper (2014), who conducted
both a scenario-based and a corpus-based simula-
tion. Far more common was the use of multiple
data collection methods, which was observed in
18 of the 34 studies (53%). Tables 2 and 3 show
which test types and data collection methods were
used most frequently.

Number of studies
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Test types and data collection methods

As Table 2 shows, most studies made an
attempt to conduct a test in more or less authentic
circumstances, be it in real life or during a
scenario-based simulation. As can be seen in



Table 3, quantitative data collection methods such
as surveys, content analysis (e.g., counting the
number of correctly translated words or sentences)
and observation (e.g., measuring how long it took
participants to accomplish a certain task) were
more popular than qualitative data collection
methods, such as interviews and focus groups.

Test type Number of studies
Real-life situation 16 (47%)
Scenario-based simulation 15 (44%)
Corpus-based simulation 5 (15%)

Table 2: Test types and the number of studies they
were used in (including percentages)

Data collection method Number of studies
Surveys 23 (68%)

Content analysis 13 (38%)
Observation 12 (35%)
Interviews 8 (24%)

Focus groups 3 (9%)

professional translators were involved in only a
handful of studies.

Quality indicator Number of studies
Usability / ease of use 17 (50%)
Accuracy / adequacy / 16 (47%)
acceptability

Satisfaction / meeting needs 11 (32%)
Usefulness / helpfulness / 10 (29%)
effectiveness

Intention to use / actual use 8 (24%)
Time / efficiency / duration 7 (21%)
Comprehensibility / 5 (15%)
intelligibility

Objective outcome quality 4 (12%)
Other 16 (47%)

Table 4: Quality indicators and the number of studies
they were used in (including percentages)

Table 3: Data collection methods and the humber of
studies they were used in (including percentages)

4.3

The majority of the studies (27 or 79%) employed
multiple quality indicators to assess the perfor-
mance of the MT app(s) under study. For judges,
this was not the case, as 20 studies (59%) relied
on a single category of judges. The quality indica-
tor used most often was usability or ease of use,
although it was used in only half of the studies in
the sample. Similarly, providers were the most
frequently employed judges, but they were still
only involved in 18 out of the 34 studies (53%).
Tables 4 and 5 summarize the frequency infor-
mation for the different quality indicators and
categories of judges.

Quality indicators and judges

Table 4 shows that many different quality
indicators were used, some of which showed
conceptual overlap even though they were
referred to using different terms. That is why we
decided to group them together in the table. It
should be noted, however, that many studies did
not provide explicit definitions of their quality
indicators and that there was little uniformity in
the way that variables such as ease of use or
accuracy were measured. With respect to the
judges, providers were more frequently asked to
provide their opinion than recipients, and
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Judge Number of studies
Provider 18 (53%)
Recipient 13 (38%)

Native speaker / bilingual 8 (24%)

Translator / translation student 3 (9%)

User 3 (9%)

Other 5 (15%)

Table 5: Categories of judges and the number of
studies they were used in (including percentages)

4.4 Overall performance

Of the 34 studies in the sample, 22 (65%) reported
overall positive results with regard to the perfor-
mance of the MT app(s) under study. 8 studies
(24%) yielded mixed results, while only 4 studies
(12%) were unequivocally negative in their final
judgement. Mixed results mainly stemmed from
differences between tested apps or variants of
apps (e.g., Bouillon et al., 2017; Turner et al.,
2019; Starlander et al., 2005) or different
outcomes for different quality indicators (e.g.,
Seligman & Dillinger, 2015; Herrmann-Werner et
al., 2021; Calefato et al., 2016).

Because of small cell sizes, the number of
meaningful Chi-squared tests that we could run
was limited. However, the outcomes of the tests
that we did conduct show that an overall positive
evaluation occurred more often than expected if
the app was created by the authors themselves
(¢*(2) = 6.09, p < 0.05) and if the test involved
real-life situations (x?(2) = 7.55, p < 0.05). Con-
versely, a negative overall evaluation occurred
more often than expected if accuracy was used as
a quality indicator (¥*(2) = 7.32, p < 0.05).
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The aim of this study was to gain insight into (1)
how the performance of real-time MT apps has
been evaluated in previous research and (2) which
overall picture concerning the performance of
real-time MT apps emerges from the research
conducted so far. To this end, we conducted a
literature review in which we coded 34 published
studies reporting an evaluation of real-time MT
apps and their output.

Conclusions and discussion

Based on the results, we can conclude that the
vast majority of studies have tested the app(s)
during actual dialogues between interlocutors
who did not speak each other's language (RQ1).
In about half of those studies, a predefined
scenario was used; in the other half, participants
used the app(s) during their daily work. The most
commonly used quality indicators were the
perceived ease of use, the accuracy of the trans-
lations, the satisfaction with the user experience,
and the perceived usefulness (RQ2). Therefore, it
should not come as a surprise that users (both
providers and recipients) were frequently
employed as judges. Professional translators were
involved in only a handful of studies (RQS3).
Finally, 22 of the 34 studies came to a positive
overall conclusion regarding the performance of
the tested app(s). Only 4 studies reported mainly
negative results (RQ4).

These outcomes suggest that fitness-for-
purpose has indeed been an important guiding
principle in previous studies that evaluated real-
time MT apps. This is understandable, as many
quality indicators used for the evaluation of
written MT output are less applicable when MT is
used to support synchronous dialogue. In addition,
many studies were conducted with a view to a
concrete professional context (e.g., communi-
cation between doctors and patients), which can
explain why the focus was mainly on the course
and the outcome of the dialogue as a whole, and
less on the literal content of individual utterances
within that dialogue.

At the same time, there are a number of obser-
vations that are cause for concern, both from a
methodological as well as from a practical point
of view. First of all, many studies are not clear
about the definitions of their quality indicators,
and even the most commonly used dependent
variables are operationalized in many different
ways. This not only reduces the comparability of
studies, but also the possibility for professionals
to make an evidence-based decision regarding the
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best app for their specific purpose. A similar point
can be made with regard to the wide variety of
language combinations examined and the lack of
standardization in test scenarios. These methodo-
logical choices also add variance to the data that
can obscure insight into the overall performance
of the apps under investigation.

Another striking finding is that providers of
care, education or services are asked about their
experiences more often than recipients. One could
argue that real-time MT apps are more likely to
benefit recipients, as they can remove language
barriers and increase the likelihood that recipients’
wishes and concerns are well understood by
providers. However, if a doctor or teacher feels
that a dialogue that was supported by a real-time
MT app has gone well, that does not necessarily
mean that the other party involved in the dialogue
has also experienced it that way. Therefore, it is
advisable to always involve both parties in future
evaluations.

Finally, only a few studies have attempted to
establish objectively whether the translated
dialogue also led to the desired outcome — in most
cases, a correct diagnosis (e.g., Bouillon et al.,
2017; Leite et al., 2016; Spechbach et al., 2019;
Starlander et al., 2005). Although determining the
correctness or objective desirability of an outcome
is not possible in all professional situations,
especially in contexts such as healthcare and
education, one would expect that more attention
would be devoted to what ultimately matters: A
patient who recovers and a student who learns.

Of course, our study also has its limitations.
Because reference lists played an important role
in identifying potentially relevant studies, it is
possible that we have overlooked previous
research from certain professional domains. Since
the majority of the studies in our sample (82%)
were conducted in the context of healthcare, we
could not compare the performance of real-time
MT apps — nor the expectations of their users —
across professional domains. In addition, some
features of previous studies were not explicitly
coded, such as the distinction between fixed-
phrase translators and MT apps that can handle
unrestricted input. Moreover, because the final
sample was relatively small, we were only able to
make a limited number of comparisons in our
statistical analyses.

Therefore, we hope that future studies can
investigate more systematically which variables
explain the differences in performance between



real-time MT apps. In addition, the various
definitions and operationalizations of quality
indicators can be mapped, so that more insight is
gained into their interrelationships and conceptual
overlap. Finally, it may be possible to develop and
validate a more or less standardized test protocol
that can increase the comparability of future
studies.
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Abstract

Recently proposed neural-based machine
translation evaluation metrics, such as
COMET and BLEURT, exhibit much higher
correlations with human judgments than
traditional lexical overlap metrics. How-
ever, they require large models and are
computationally very costly, preventing
their application in scenarios where one
has to score thousands of translation hy-
potheses (e.g. outputs of multiple sys-
tems or different hypotheses of the same
system, as in minimum Bayes risk decod-
ing). In this paper, we introduce several
techniques, based on pruning and knowl-
edge distillation, to create more compact
and faster COMET versions—which we
dub COMETINHO. First, we show that
just by optimizing the code through the
use of caching and length batching we
can reduce inference time between 39%
and 65% when scoring multiple systems.
Second, we show that pruning COMET
can lead to a 21% model reduction with-
out affecting the model’s accuracy be-
yond 0.015 Kendall 7 correlation. Finally,
we present DISTIL-COMET, a lightweight
distilled version that is 80% smaller and
2.128x faster while attaining a perfor-
mance close to the original model. Our
code is available at: https://github.
com/Unbabel/COMET
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1 Introduction

Traditional metrics for machine translation (MT)
evaluation rely on lexical similarity between a
given hypothesis and a reference translation. Met-
rics such as BLEU (Papineni et al., 2002) and
CHRF (Popovié, 2015) remain popular due to ef-
ficient memory usage and fast computational per-
formance, even though several studies have shown
that they correlate poorly with human judgements,
specially for high quality MT (Ma et al., 2019;
Mathur et al., 2020a).

In contrast, neural fine-tuned metrics on top of
pre-trained models such as mBERT (Devlin et al.,
2019) and XLM-R (Conneau et al., 2020) (e.g
BLEURT (Sellam et al., 2020) and COMET (Rei et
al., 2020) have demonstrated significant improve-
ments in comparison to other metrics (Mathur et
al., 2020b; Kocmi et al., 2021; Freitag et al.,
2021b). The improvements made them good can-
didates for revisiting promising research directions
where the metric plays a more central role in can-
didate selection during decoding, such as N-best
reranking (Ng et al., 2019; Bhattacharyya et al.,
2021; Fernandes et al., 2022) and minimum Bayes
risk (MBR) decoding (Eikema and Aziz, 2021;
Miiller and Sennrich, 2021). Nonetheless, the
complexity of such strategies using metrics based
on large transformer models can become impracti-
cal for a large set of MT hypotheses.

In this paper, we describe several experiments
that attempt to reduce COMET computational cost
and model size to make it more efficient at in-
ference. Our techniques are particularly useful in
settings where we have multiple translations from
different systems on the same source sentences.
Since the models are based on triplet encoders, we
will first analyse the impact of embedding caching
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Figure 1: Comparison between the vanilla COMET, COMET
with caching and length batching, PRUNE-COMET and
DisTIL-COMET. We report the average of 5 runs for each
model/metric for a varying number of systems. All experi-
ments were performed using the German—English WMT20
Newstest, withaNVIDIA GeForce GTX 1080 TI GPU
and a constant batch size of 16. For comparison we also
plot the runtime of BLEU in a Intel (R) Core (TM)
17-6850K CPU @ 3.60GHz.

and length batching. Then, we will try to fur-
ther reduce the computational cost by using weight
pruning and knowledge distillation. Our results
show that embedding caching and length batch-
ing alone can boost COMET performance 39.19%
when scoring one system and 65.44% when scor-
ing 8 systems over the same test set. Furthermore,
with knowledge distillation we are able to create a
model that is 80% smaller and 2.128x faster with a
performance close to the original model and above
strong baselines such as BERTSCORE and PRISM.
Figure 1 shows time differences for all proposed
methods when evaluating a varying number of sys-
tems.

2 Related Work

In the last couple of years, learned metrics such
as COMET (Rei et al., 2020) and BLEURT (Sel-
lam et al., 2020) proved to achieve high cor-
relations with human judgments (Mathur et al.,
2020b; Freitag et al., 2021a; Kocmi et al., 2021).
They are cast as a regression problem and cap-
ture the semantic similarity between the translated
text and a reference text, going beyond the sim-
ple surface/lexical similarities—the base of popu-
lar metrics like BLEU (Papineni et al., 2002) and
CHRF (Popovi¢, 2015). The fact that COMET and
BLEURT metrics leverage large pre-trained multi-
lingual models was a huge turning point. By using
contextual embeddings trained on a different task,
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researchers were able to overcome the scarcity of
data in MT evaluation (as well as in other tasks in
which data is also limited). With such multilin-
gual models, high-quality MT evaluation is now a
possibility, even for language pairs without labeled
data available (i.e. zero-shot scenarios). How-
ever, this multilingual property usually comes with
a trade-off. For example, for cross-lingual transfer
task, gains in performance (higher accuracy with
human labels) only occur by adding new language
pairs until a certain point, after which adding more
languages actually decreases the performance, un-
less the model capacity is also increased (a phe-
nomena called “the curse of multilinguality” (Con-
neau et al., 2020).

Besides the curse of multilinguality phenomena,
the NLP community has been motivated to build
larger and larger transformer models because, gen-
erally, the bigger the model the better it performs.
This was demonstrated in several tasks like the
ones in the GLUE benchmark (Goyal et al., 2021)
and in multilingual translation tasks (Fan et al.,
2020). Hence, models are achieving astonish-
ing sizes like BERT with 340M parameters (De-
vlin et al., 2019), XLM-R x x 1, with 10.7B param-
eters (Goyal et al., 2021), M2M-100 with 12B
parameters (Fan et al., 2020), and GPT-3 with
175B parameters (Brown et al., 2020). However,
this growth comes with computational, monetary
and environmental costs. For example, training a
model with 1.5B parameters costs from 80k dollars
up to 1.6M dollars' when doing hyper-parameter
tuning and performing multiple runs per setting
(Sharir et al., 2020). Such scale makes running
similar experiments impractical to the majority of
research groups, and the high energy and high re-
sponse latency of such models are preventing them
from being deployed in production (e.g. (Sun et
al., 2020)).

To deal with the above problem, it is neces-
sary to apply techniques for making models more
compact, such as pruning, distillation, quantiza-
tion, among others. In a recent review (Gupta
and Agrawal, 2022) summarizes these techniques
for increasing inference efficiency, i.e., for mak-
ing the model faster, consuming fewer computa-
tional resources, using less memory, and less disk
space. DistilBERT (Sanh et al., 2019) is a success-
ful example: using distillation with BERT as the
"Estimates from (Sharir et al., 2020) calculated using internal

AI21 Labs data; cloud solutions such as GCP or AWS can
differ.
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Figure 2: Runtime (in seconds) varying number of exam-
ples, with a NVIDIA GeForce GTX 1080 TI GPU and
a constant batch size of 16. The time is calculated with
the average of 10 runs using the default COMET model
wmt 20-comet—da. For comparison we also plot the run-
time of BLEU in a Intel (R) Core (TM) 1i7-6850K
CPU @ 3.60GHz.

teacher and reducing the amount of layers from
the regular 12 to only 6, the model retains 97%
of BERT’s performance while reducing the size
by 40% and being 60% faster. The authors have
also shown that when used for a mobile appli-
cation (iPhone), the DistilBERT was 71% faster
than BERT. Another example, closer to our re-
search, is the metric obtained from using synthetic
data and performing distillation using a new vari-
ation of BLEURT as the teacher (Pu et al., 2021).
The resulting metric obtains up to 10.5% improve-
ment over vanilla fine-tuning and reaches 92.6%
of teacher’s performance using only a third of
its parameters. Nonetheless, the architecture of
BLEURT-based models requires that the reference
is always encoded together with MT hypothesis
which is extremely inefficient in use cases such as
MBR, where the metric has a O(N?) complexity
(with N being the number of hypotheses), and sys-
tem scoring where for a fixed source and reference
we can have several translations being compared.

3 Length Sorting and Caching

Before exploring approaches that reduce the num-
ber of model parameters, we experiment with tech-
niques to optimize the inference time computa-
tional load. One which is commonly used is to sort
the batches according to sentence length to reduce
tensor padding (Pu et al., 2021). Since COMET
receives three input texts (source, hypothesis and
reference), for simplicity, we do length sorting ac-
cording to the source length. Figure 2 shows the
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Figure 3: Runtime (in seconds) varying number of sys-
tems for the de—en WMT20 Newstest, with a NVIDIA
GeForce GTX 1080 TI GPU and a constant batch size
of 16. The time is calculated with the average of 5 runs using
the default COMET model wmt 20-comet-da. For com-
parison we also plot the runtime of BLEU in a Intel (R)
Core(TM) 1i7-6850K CPU @ 3.60GHz.

speed difference between an unsorted test set with
varying size and length-based sorting.

As previously pointed out, COMET metrics are
based on triplet encoders’> which means that the
source and reference encoding does not depend on
the provided MT hypothesis as opposed to other
recent metrics such as BLEURT (Sellam et al.,
2020) which have to repetitively encode the ref-
erence for every hypotheses. With that said, using
COMET we only need to encode each unique sen-
tence (source, hypothesis translation or reference
translation) once. This means that we can cache
previously encoded batches and reuse their repre-
sentations. In Figure 3, we show the speed gains,
in seconds, when scoring multiple systems over the
same test set. This reflects the typical MT develop-
ment use case in which we want to select the best
among several MT systems.

These two optimizations altogether are respon-
sible for reducing the inference time of COMET
from 34.7 seconds to 21.1 seconds while scoring
1 system (39.19% faster) and from 265.9 seconds
to 91.9 seconds when scoring 8 systems (65.44%
faster). For all experiments performed along the
rest of the paper we always use both optimization
on all COMET models being compared.

2A triplet encoder, is a model architecture where three sen-
tences are encoded independently and in parallel. Architec-
tures such as this have been extensively explored for sentence
retrieval applications due to its efficiency (e.g. Sentence-
BERT (Reimers and Gurevych, 2019))
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Figure 4: Normalized weights distribution for the COMET
default model (wmt 20-comet—-da). As we can observe lay-
ers between 15-19 are the most relevant ones with a normal-
ized weight between 0.75 and 1. The representations learnt by
layers 15-19 depend on previous layers but we can prune the
top layers (20-25) without impacting the layers that the model
deemed more relevant.

4 Model Pruning

Model pruning has been widely used in natural lan-
guage processing to remove non-informative con-
nections and thus reducing model size (Zhu and
Gupta, 2018). Since most COMET parameters
come from the XLM-R model, we attempt to re-
duce its size. We start with layer pruning by re-
moving the top layers of XLM-R. Then we experi-
ment with making its encoder blocks smaller either
by reducing the size of the feed-forward hidden
layers or by removing attention heads. The main
advantage of these approaches is their simplicity:
within minutes we are able to obtain a new model
with reduced size and memory footprint with min-
imal performance impact.

For all the experiments in this section, we
used the development set from the Metrics shared
task of WMT 2020. This set contains di-
rect assessment annotations (DA; (Graham et al.,
2013)) for English—German, English—Czech,
English—Polish and English—Russian. We use
these language pairs because they were anno-
tated by experts exploring document context and
in a bilingual setup (without access to a reference
translation)?. Nonetheless, in Section 6 we show
the resulting model performance on all language

3In the WMT 2020 findings paper (Mathur et al., 2020b),
most metrics showed suspiciously low correlations with hu-
man judgements based on crowd-sourcing platforms such as
Mechanical Turk. Thus, we decided to focus just on 4 lan-
guage pairs in which annotations are deemed as trustworthy.
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Figure 5: Impacts in performance of Layer Pruning for the
WMT 2020 development set. We can observe that removing
up to 5 layers does not affect model performance but provides
a 10% reduction in model size.

pairs from WMT 2021 for both DA and multi-
dimensional quality metric annotations (MQM;
(Lommel et al., 2014)).

4.1 Layer Pruning

In large pre-trained language models, different lay-
ers learn representations that capture different lev-
els of linguistic abstractions, which can impact a
downstream task in different ways (Peters et al.,
2018; Tenney et al., 2019). In order to let the
model learn the relevance of each layer during
training, (Peters et al., 2018) proposed a layer-
wise attention mechanism that pools information
from all layers. This method has been adopted in
COMET.

After analyzing the weights learnt by COMET
(wmt20-comet—da) for each layer of XLM-R
(Figure 4), we realized that the topmost layers (20-
25) are not the most relevant ones. This means
that we can prune those layers without having an
impact on the most relevant features.

Each removed layer decreases the number of
total parameters by 2.16%. Figure 5 shows the
impacts in performance after removing a varying
number of layers. As we can observe, performance
starts to decrease only after removing 5 layers.
Yet, removing 5 layers already produces a 10.8%
reduction in model parameters. Surprisingly, re-
moving the last layer (pruning 1 layer) slightly
improves the performance in terms of Kendall-
tau (Kendall, 1938).

4.2 Transformer Block Pruning

The Transformer architecture is composed of sev-
eral encoder blocks (layers) stacked on top of the
other. In the previous section, we reduce model
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Figure 6: Impact of gradient based pruning techniques on model size (in blue) and performance on the WMT 2020 development
set (in green). Note that in Figure (a) we apply pruning just for the feed-forward hidden size. In Figure (b) pruning is applied
to several heads while freezing the hidden size to 3072 (3/4 of the original hidden size of XLM-R).

size by removing the topmost blocks (depth prun-
ing). In this section we reduce the size of each
block instead (width pruning).

Each transformer block is made of two com-
ponents: a self-attention (composed of several at-
tention heads) and a feed-forward neural network.
In XLM-R-large, each block is made of 16 self-
attention heads followed by a feed-forward of a
single hidden layer with 4092 parameters.

Using the TextPruner toolkit*, we can eas-
ily prune both the attention heads and the feed-
forward hidden sizes. Figure 6a shows the im-
pact of pruning the hidden sizes from 4096— {512,
1024, 2048, 3072} while Figure 6b shows the im-
pact of reducing the attention heads from 16—{4,
6,8, 10, 12, 14}.

4.3 PRUNED-COMET

After experimenting with these three different
pruning techniques, we created a pruned version
of COMET in which we keep only 19 XLM-R lay-
ers, we reduced the feed-forward hidden size by
3/4 (3072 hidden size) and we removed 2 heads
(out of 16). According to our experiments above,
the resulting model’s performance drop should be
almost the same as the original model but the re-
sulting model is 21.1% smaller.

The resulting model is able to score 1000 sam-
ples in just 19.74 seconds, while the original model
takes around 31.32 seconds. It is important to
notice that most of the XLLM-R parameters come
from its huge embedding layer. Since the em-
bedding size memory does not affect the infer-
ence time, the obtained 20% reduction in param-

*https://textpruner.readthedocs.io/en/
latest/
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eters translates into speed improvements of around
36.97%.

5 Distillation

Another commonly used way to compress neu-
ral networks is through knowledge distilation (Bu-
cilua et al., 2006; Hinton et al., 2015) in which, for
large amounts of unlabeled data, a smaller neural
network (the student) is trained to mimic a more
complex model (the teacher).

As the teacher network, we used an ensem-
ble of 5 COMET models trained with different
seeds (Glushkova et al., 2021). The student net-
work follows the same architecture as the origi-
nal model and the same hyper-parameters. How-
ever, instead of using XLM-R-large, it uses a dis-
tilled version with only 12 layers, 12 heads, em-
beddings of 384 features, and intermediate hidden
sizes of 1536. This model has only 117M param-
eters compared to the 560M parameters from the
large model.

Regarding the unlabeled data for distillation, we
extracted 25M sentence pairs from OPUS (Tiede-
mann, 2012) ranging a total of 15 language pairs.
To guarantee high quality parallel data we used Bi-
cleaner tool (Ramirez-Sanchez et al., 2020) with
a threshold of 0.8. Then, using pre-trained MT
models available in Hugging Face Transformers,
we created 2 different translations for each source:
one using a bilingual model (in theory a high
quality translation) and another using pivoting
(which can be thought as lower quality). Finally,
we scored all the data using our teacher ensem-

SExperiments performed in a NVIDIA GeForce GTX
1080 TI GPU and a constant batch size of 16. The resulting
time is the average of 5 runs.



Table 1: Kendall’s tau correlation on high resource language pairs using the MQM annotations for both News and TED talks

domain collected for the WMT 2021 Metrics Task.

zh-en en-de en-ru
Metric # Params News TED News TED News TED avg.
BLEU - 0.166 0.056 0.082 0.093 0.115 0.067 0.097
CHRF - 0.171 0.081 0.101 0.134 0.182 0.255 0.154
BERTSCORE 179M 0.230 0.131 0.154 0.184 0.185 0.275 0.193
PrIsSM 745M 0.265 0.139 0.182 0.264 0.219 0.292 0.229
BLEURT 579M 0.345 0.166 0.253 0.332 0.296 0.347 0.290
COMET 582M 0.336  0.159 0.227 0.290 0.284 0.329 0.271
PRUNE-COMET 460M 0.333 0.157 0.219 0.293 0.274 0.319 0.266
DISTIL-COMET 119M 0.321 0.161 0.202 0.274 0.263 0.326 0.258

Table 2: Kendall’s tau-like correlations on low resource language pairs using the DARR data from WMT 2021 Metrics task.

Metric # Params zu-xh xh-zu bn-hi hi-bn en-ja en-ha en-is avg.
BLEU - 0.381 0.1887 0.070 0.246 0315 0.124 0.278 0.229
CHRF - 0.530 0.301 0.071 0.327 0371 0.186 0.373 0.308
BERTSCORE 179M 0488 0.267 0.074 0365 0413 0.161 0.354 0.303
BLEURT 579M 0.563 0.362 0.179 0.498 0483 0.186 0.469 0.391
COMET 582M 0.550 0.285 0.156 0.526 0.521 0.234 0474 0.392
PRUNE-COMET 460M 0.541 0.264 0.163 0.519 0.513 0.197 0439 0.377
DiSTIL-COMET 119M 0488 0.254 0.135 0498 0471 0.145 0419 0.344

ble. The resulting corpus contains 45M tuples
with (source, translation, reference,
score).

The resulting model which name DISTIL-
COMET, scores 1000 sentences in 14.72 seconds
resulting in a 53% speed improvement over the
original model?.

6 Correlation with Human Judgements

In this section, we show results for {PRUNE
and DISTIL}-COMET in terms of correlations
with MQM annotations from WMT 2021 Met-
rics task for two different domains: News and
TED talks. Since these annotations only cover
high-resource language pairs (English—German,
English—Russian, Chinese—English), we
also evaluate models on low resource lan-
guage pairs using DA Relative Ranks from
WMT 2021, namely we test these models for:
Hindi<»Bengali, Zulu<>Xhosa, English—Hausa,
English—Icelandic, English—Japanese. For
a detailed comparison, we also present results
for CHRF (Popovi¢, 2015) and BLEU (Pa-
pineni et al, 2002), two computationally
efficient lexical metrics, and other neural met-
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rics such as PRISM® (Thompson and Post,
2020), BLEURT (Sellam et al., 2020) and
BERTSCORE (Zhang et al., 2020).

From Table 1, we can observe that PRUNE-
COMET has minimal performance drops compared
with vanilla COMET with only 80% of its pa-
rameters. DISTIL-COMET performance is on av-
erage 0.013 Kendall’s bellow vanilla COMET for
high resources languages, which is impressive for
a model that only has 20% of COMET’s parame-
ters. For low-resource languages, we can observe
bigger performance differences between COMET,
PRUNE-COMET, and DISTIL-COMET which con-
firm results by (Pu et al., 2021) that shows that
smaller MT evaluation models are limited in their
ability to generalize to several language pairs.
Nonetheless, when comparing with other recently
proposed metrics such as PRISM and BERTSCORE,
{PRUNE and DISTIL }-COMET have higher corre-
lations with human judgements for both high and
low resource language pairs. The only exception
is BLEURT which shows stronger correlations than
COMET on high-resource language pairs and com-

SPrRISM does not support the low-resource language pairs
used in our experiments, thus we only report PRISM corre-
lations with MQM data



petitive performance in low-resource ones.’

7 Use Case: Minimum Bayes Risk
Decoding

In minimum Bayes risk (MBR) decoding, a ma-
chine translation evaluation metric can be used as
the utility function for comparing the translation
hypotheses. This kind of approach, also known as
“consensus decoding”, derived from the idea that
the top ranked translation is the one with the high-
est average score when compared to all other hy-
potheses. This process requires that each hypothe-
sis translation be compared to every other hypothe-
ses in an hypotheses candidate list. Having faster
neural metrics could directly impact research and
computational performance of using MBR decod-
ing approaches with such metrics.

—— COMET
Distil.
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Figure 7: Runtime for performing MBR with a differ-
ent number of samples using one NVIDIA GeForce GTX
1080 TI GPU.

Using COMET models with distillation or prun-
ing can have a considerable effect at the perfor-
mance of MBR decoding using such models as
the utility function. Figure 7 shows that DISTIL-
COMET is always substantially faster than the orig-
inal COMET model especially for larger candi-
date list sizes such as 200 candidates. Likewise,
PRUNE-COMET performs better than the original
model but its performance is also considerably
higher than DISTIL-COMET.

Regarding the two COMET variants there is a
clear trade-off that needs to be taken into consid-
eration, as evidenced by the results in Section 6:
while DISTIL-COMET is faster, PRUNE-COMET is

"For a more detailed comparison between COMET and
BLEURT metrics we refer the reader to the WMT 2021 Met-
rics shared task results paper (Freitag et al., 2021b) where
both metrics ended up statistically tied for most language
pairs and domains.
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more accurate, leaving the choice of each model to
use up to the most important aspect for the appli-
cation. In the case of MBR decoding, this might
depend on the hardware available for performing
the computations.

8 Conclusion and Future Work

In this paper we presented two simple optimiza-
tions that lead to significant performance gains
on neural metrics such as COMET and two ap-
proaches to reduce its number of parameters. To-
gether these techniques achieve impressive gains
in performance (both speed and memory) at a very
small cost in performance.

To showcase the effectiveness of our meth-
ods, we presented DISTIL-COMET and PRUNE-
COMET. These models were obtained using
COMET knowledge distillation and pruning re-
spectively. To test the proposed models, we used
the data from the WMT 2021 Metrics task which
covers low resource languages as well as high re-
source languages. Overall the results of PRUNE-
COMET are stable across the board with only a
small degradation compared to the original met-
ric. Knowledge distillation leads to much higher
compression rates but seems to confirm previous
findings (Pu et al., 2021) which suggest the lack of
model capacity when it comes to the multilingual
generalization for low resource languages.

A primary avenue for future work is to study
how decreasing the model size can further impact
on robustness of the metric, inspired by recent
studies which identified weaknesses of COMET
metrics when dealing with numbers and named en-
tities (Freitag et al., 2021b; Amrhein and Sennrich,
2022). Also, in this work we explored knowl-
edge distillation directly from the teacher output
but an interesting avenue for improving the qual-
ity of the student model is to explore alternative
distillation approaches that learn directly from in-
ternal representations of the teacher model such as
self-attention distillation (Wang et al., 2020).
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Abstract

The past few years have seen the multipli-
cation of studies on post-editese, follow-
ing the massive adoption of post-editing in
professional translation workflows. These
studies mainly rely on the comparison of
post-edited machine translation and hu-
man translation on artificial parallel cor-
pora. By contrast, we investigate here
post-editese on comparable corpora of au-
thentic translation jobs for the language di-
rection English into French. We explore
commonly used scores and also proposes
the use of a novel metric. Our analy-
sis shows that post-edited machine trans-
lation is not only lexically poorer than hu-
man translation, but also less dense and
less varied in terms of translation solu-
tions. It also tends to be more prolific than
human translation for our language direc-
tion. Finally, our study highlights some of
the challenges of working with comparable
corpora in post-editese research.

1 Introduction

Much progress has been made since the seminal
paper by Baker (1993) introduced the notion of
translation universals and suggesting “to capture”
the differences between original and translated lan-
guage using comparable electronic corpora. Cor-
pora of translated texts have been widely stud-
ied since then and research by Olohan and Baker
(2000), Cappelle and Loock (2013) and Volan-
sky et al. (2019), among others, have revealed
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the existence of translationese features. Following
this, a new type of corpus-based translation stud-
ies has recently emerged together with the boom
of neural machine translation (NMT) systems and
their large integration into professional translation
workflows. Those new studies are interested in the
phenomenon of machine translationese and post-
editese, the latter being defined as “the expected
unique characteristics of a post-edited text that set
it apart from a [human] translated text” (Daems et
al., 2017). Our study falls within this area of re-
search and focuses of post-editese in professional
context.

First, we provide a short literature review of
previous work on post-editese that will allow us
to highlight the novel aspects of our research, as
well as the common components that could consti-
tute the basis for the development of a consistent
methodology for the study of post-editese. Subse-
quently, we present the main goals of our study, as
well as our research questions. We then describe
the comparable corpus used for our pilot study
and discuss the main advantages and drawbacks of
such a corpus for the study of post-editese. Follow-
ing this, we describe the experiments conducted
and results obtained. Finally, we provide a sum-
mary of our findings and some perspectives for the
future continuation of this work.

2 Related work

This section presents some of the recent studies in-
vestigating the differences between human and raw
and/or post-edited machine translation output.
Culo and Nitzke (2016) conducted a study on
terminological variation and cognate translations
in human translation (HT) and post-edited machine
translation (PEMT) produced by students on a text
of approximately 150 words. They observed less
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variation in PEMT than in HT and a priming ef-
fect of machine translation (MT) in PEMT on the
terminological level. They also found that PEMT
tends to contain more cognate translations.

Similar results were observed by Martikainen
and Kiibler (2016) in their study comparing two
different corpora (each approximately 500 000
words) of medical summaries translated from En-
glish into French with or without statistical ma-
chine translation (SMT). They noted differences
between HT and PEMT regarding the frequen-
cies of certain words or phrases, as well as a ten-
dency towards standardization of the translations
in PEMT, as indicated by an over-representation
of the most frequent translation solutions. They
also observed a higher number of cognate transla-
tion or formal equivalences in PEMT. Finally, they
pointed out that HT had a greater expanding ra-
tio than PEMT, meaning that HT tends to produce
longer translations.

Daems et al. (2017) attempted to investigate if
HT and PEMT could be identified as such by hu-
man evaluators as well as by a classifier, which
would indicate the existence of a post-editese phe-
nomenon. Neither the human evaluators, nor the
classifier were able to accurately distinguish HT
from PEMT. However, the methodology applied to
build the classifier brought to light some features
that might be useful to discriminate HT and PEMT,
such as type-token ratio, average word length, ratio
of long words or the percentage of frequent words.

In his study conducted with translation students
between 2016 and 2018, Farrel (2018) compared
HT and PEMT of Wikipedia abstracts from En-
glish into Italian. While analyzing a set of 41
source n-grams, he noted that the most frequent
HT solutions tend to be over-represented in PEMT
showing “an apparent normalization and homoge-
nization of the choices made by post-editors” com-
pared to HT.

In consecutive studies, Castilho et al. (2019) and
Castilho and Resende (2022) investigated post-
editese features on a news corpus and two lit-
erary excerpts (approximately 5000 to 6000 to-
kens each) by comparing the source, MT, HT and
PEMT versions for the language direction English
into Brazilian Portuguese. Three translation uni-
versals (simplification, explicitation and conver-
gence) were investigated through features such as
lexical richness, lexical density, mean sentence
length, length ratio, number of pronouns and vari-
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ance scores for the different features. Some sig-
nificant differences between HT and PEMT were
observed for certain features, but the results were
not homogeneous across the different datasets. For
the variance scores, they observed that MT and
PEMT tended to converge for the scores investi-
gated, meaning that they are more similar to each
other than they are to the source or HT. Although
they are good indicators of the existence of a form
of post-editese, these mixed results demonstrate
that the candidate features of post-editese can be
highly influenced by the corpus under investiga-
tion.

Toral (2019) also investigated the simplifica-
tion translation universal, together with normaliza-
tion and interference, using lexical richness, lexi-
cal density, length ratio and comparison of part-of-
speech (PoS) sequences. The experiment was con-
ducted on three different datasets (ranging from
100 to 1000 sentence pairs), five language direc-
tions (involving EN, DE, ES, FR, ZH) and three
types of MT architectures (rule-based, SMT and
NMT). He observed that PEMT texts tended to be
lexically simpler, to have a lower lexical density
and to have sentences closer to the source text in
terms of length. PoS sequences also tended to be
more similar to the typical PoS sequences of the
source language. According to the author, these
results are evidences of the existence of the post-
editese that is a form of exacerbated translationese.

The above-mentioned studies present a certain
number of similarities both in terms of the corpora
or the features under investigation. For instance, it
can be noted that they are all, except for one, based
on parallel target corpora, i.e., translations of the
same source text produced with different transla-
tion modes (MT/PEMT and HT). As for the fea-
tures under investigation, we remark a strong rep-
resentation of features related to lexical richness
and diversity (i.e., type/token ratio or the variation
of translation solutions), as well as to target text
length (i.e., word length, sentence length ratio, text
length).

3 Goals and research questions

The aim of our study is to investigate whether
some of the findings of previous studies on post-
editese can be confirmed on a corpora of authen-
tic HT and PEMT translation projects for the lan-
guage direction English into French. We intend to
apply some of the metrics that have proven to be



good indicators of post-editese so far and compare
our results with the existing hypothesis on post-
editese. We also propose the use of a novel met-
ric borrowed from translation process research to
study post-editese through the lens of translation
variation between HT and PEMT. With this work,
we hope to contribute to the development of a con-
sistent and reliable methodology for the study of
post-editese and to encourage additional work on
authentic data in this domain.

The following research questions have guided
our work:

Does the use of PEMT instead of HT affect the
final translation in terms of:

* Lexical richness and lexical density?
* Sentence length ratio?

* Diversity of translation solutions?

4 Corpus

4.1 Choice of corpus design

As described in the previous section, many stud-
ies on post-editese rely on parallel target corpora
(i.e., a HT and a PEMT of one single source cor-
pora). Such corpora have to be (at least partially)
artificially created for research purposes, as no one
would produce twice a translation of the same text
with two different translation modes in a profes-
sional context. Results obtained on such datasets
might be difficult to generalize and may not accu-
rately reflect the phenomena as it occurs in the pro-
fessional context. An example of this issue can be
seen in Castilho et al. (2019) and Castilho and Re-
sende (2022) where the results exhibit a large di-
vergence for certain metrics depending on the text
genre of the dataset. Furthermore, some artificially
created parallel datasets may not be homogeneous
in terms of translators/post-editors profile (profes-
sional vs non-professionals) or of source language
quality (original vs translated language) such as
in Toral (2019). Finally, artificial parallel corpora
might contain data that would not be translated
with the help of NMT in a professional context

To avoid such issues, we decided to use com-
parable corpora, i.e. a HT and a PEMT of two
different, but comparable, source corpora. This
choice of working with comparable corpora allows
us to work on authentic data produced in a profes-
sional context by translators in their usual work-
ing conditions, instead of data especially created
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for research purposes. With this design, we en-
sure the reliability and the coherence of our cor-
pora in terms of the MT system used, the pro-
fessional status and the experience of the post-
editors/translators, as well as the level of post-
editing (light or full) , with aim to gain insights into
post-editese features as they may appear in pro-
duction scenarios. However, these advantages go
hand in hand with a number of challenges. First,
such corpora are difficult to obtain, languages ser-
vices being often reluctant to share their translation
memories. Second, comparability of the corpora
cannot be guaranteed as sources are different and
the comparison between HT and PEMT has to be
carefully conducted to avoid any misinterpretation
of results. Finally, the corpus should ideally in-
clude data of several language services and several
domains to allow generalization of the results.

4.2 Building of the corpus

The corpus was built from a collection of authen-
tic translation/post-editing projects handled by the
language service of the European Investment Bank
(EIB). We limited our selection to the “press re-
lease” domain where NMT is now systematically
used in combination with full post-editing. We ex-
tracted a number of projects handled before (i.e.,
human translated in a CAT-tool with translation
memory) and after NMT integration (i.e., NMT
post-edited in the same CAT-tool also with trans-
lation memory). For all projects, the language di-
rection was English into French.

Translation units were extracted for both trans-
lation modes to obtain two corpora each compris-
ing two sub-corpora (source and target). Fuzzy
matched segments were removed from PEMT
projects to exclude any eventual human translated
segment. For this pilot experiment, we studied HT
and PEMT output as they were before the final re-
vision stage that is normally performed before de-
livery of the translation. In future studies, we also
plan to study the corpora of revised HT and PEMT.

We performed several cleaning steps such as re-
moving URLs, non-alphabetical segments and du-
plicates segment pairs. Statistics on the corpora
at this stage are presented in Table 1. Apart from
the corpora length difference, a large discrepancy
in the average source segments length between HT
and PEMT can be observed, with PEMT having
on average longer segments. This difference can
be easily explained by the fact that short segments



Sub-corpus | Trans. mode | # segments | # tokens | av. sent. length
Source HT 3,440 47,781 13.91
PEMT 1,981 41,577 21.01
Target HT 3,440 62,588 18.20
PEMT 1,981 56,734 28.64

Table 1: Number of segments, number of tokens and average sentence length (in tokens, excl. punctuation) for each sub-corpus

and each translation mode before the sampling by length.

Sub-corpus | Trans. mode | # segments | # tokens | av. sent. length
Source HT 1,894 40,518 21.43
PEMT 1,814 40,830 22.53
Target HT 1,894 52,772 27.87
PEMT 1,814 55,585 30.64

Table 2: Number of segments, number of tokens and average sentence length (in tokens, excl. punctuation) for each sub-corpus

and each translation mode after the sampling by length.

have higher chances of being matched in the trans-
lation memory and thus less likely to be sent to
MT. Short and very short segments (less than 6
tokens) are then almost systematically “human-
translated” and therefore under-represented in the
PEMT corpora as illustrated by the source seg-
ments length distribution presented in Figure 1. In
this distribution, we also observed that segments
with a length between 6 and 15 tokens are twice as
many in the HT compared to PEMT. To make our
corpora more comparable, we decided to sample
them according to source segments length. Seg-
ment pairs with a source shorter than 6 tokens were
removed from both corpora (apart from the issue
of comparability, these segments are mainly head-
ers, and therefore not particularly interesting for
our analysis). Then, half of the segment pairs for
which the source contained between 6 and 15 to-
kens were randomly selected and removed from
the HT corpora. Finally, we also removed segment
pairs with a source longer that 60 tokens as they
are over-represented in the PEMT corpus. This
sampling step resulted in two corpora of compa-
rable size with comparable source segments length
distribution as shown in Table 2 and Figure 2.

4.3 Corpus analysis
4.3.1 Lexical richness

Lexical richness (or lexical diversity) was inves-
tigated in post-editese research using type/token
ratio (TTR) by Toral (2019), Castilho et al. (2019)
and Castilho and Resende (2022), who all formu-
lated the hypothesis that it would be lower for
PEMT texts due to the influence of the MT output,

74

500

Source - HT
Source - PEMT
400 1

# segments
w
o
o

N
=]
S)

20 30 40 50 60
segment length (in tokens)

10 70

Figure 1: Source segment length distribution before sam-
pling by length.
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Figure 2: Source segment length distribution after sampling
by length.

which tends to be less lexically diverse than HT, as
pointed out by Vanmassenhove et al. (2019). This
hypothesis was confirmed by Toral (2019), but
only partially confirmed by Castilho et al. (2019)
and Castilho and Resende (2022). Considering
these results, we also expected PEMT to be lexi-



cally poorer than HT. In our study, we measured
lexical richness using standardized type/token ra-
tio (STTR) (Scott, 2019) (also called MSTTR
(Malvern and Richards, 2002)) that has the ad-
vantage of being less sensitive to corpus size and
therefore allows a comparison of corpora of differ-
ent lengths (Brezina, 2018). This score is obtained
by averaging all TTR scores computed for every
non-overlapping window of 1000 words in the cor-
pus (Brezina, 2018).

STTR was computed for HT and PEMT target
corpora but also for their respective sources in or-
der to ensure that any potential difference between
PEMT and HT was not due to a difference in the
sources.

Table 3 presents the STTR scores for source and
target HT and PEMT as well as the relative differ-

ence between HT and PEMT.
Sub-corpus | HT | PEMT | Rel. diff.
Source 0.44 0.42 -4.38%
Target 0.44 041 | *-6.08%

Table 3: STTR scores for HT and PEMT corpora for source
and target and relative difference between each translation
mode for each sub-corpus. The higher the score the higher the
lexical richness. *Indicates significance at p < 0.001, sig-
nificance was tested on successive TTR scores using Mann-
Whitney non-parametric test, as data were not normally dis-
tributed.

Looking at the target corpora only, STTR was
significantly lower for PEMT, which is in line
with our hypothesis that PEMT tends to be lexi-
cally poorer compared to HT, similar the results of
other studies. However, this difference has to be
considered together with the relative difference in
STTR scores on the source side. Indeed, the PEMT
source sub-corpora had also a lower STTR than the
HT source corpora. This difference in source could
explain the difference observed in the target, but
only to a certain extent, as the STTR difference
was more pronounced in the target. Even if the
difference in lexical richness in the source corpora
makes it difficult to measure with precision the in-
fluence of the translation mode on the lexical rich-
ness in the target, our results are in favour of the
hypothesis that PEMT produces lexically poorer
translations compared to HT.

4.3.2 Lexical density

Lexical density is a commonly used metric in
post-editese research for the measurement of the
amount of information present in a text, but with
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contradictory outcomes (see Toral, 2019; Castilho
et al., 2019 and Castilho and Resende, 2022).
It corresponds to the ratio between the number
of content words (adjectives, adverbs, nouns and
verbs) and the total number of words. We used
SpaCy'! English and French small models to tag
our corpora and identify the content words. Table
4 shows lexical density scores for HT and PEMT
as well as their relative difference.

Sub-corpus | HT | PEMT | Rel. diff.
Source 0.58 0.61 | *+4.55%
Target 0.56 0.56 | +0.34%

Table 4: Lexical density scores for HT and PEMT cor-
pora for source and target and relative difference between
each translation mode for each sub-corpus. The higher the
score the higher the lexical density. *Indicates significance at
p < 0.001, Significance was tested with a permutation test as
described in Koplenig (2019), with 10 000 permutations.

The lexical density score was slightly higher
for PEMT than for HT in the target sub-corpora,
but this difference was not statistically significant.
However, the difference between HT and PEMT
sources is statistically significant (p < 0.001) with
a lexical density lower for the HT source. A com-
parison of source and target for both translation
modes showed that lexical density was lower in
the target for both translation modes, but the loss
in lexical density was more important in PEMT.
These results indicate a tendency toward a lower
lexical density in PEMT compared to HT, similar
to the results of Toral (2019) and partially to those
of Castilho et al. (2019) and Castilho and Resende
(2022).

4.3.3 Expanding ratio

Expanding and length ratios are commonly used
metrics to identify post-editese features (see Toral,
2019; Castilho et al., 2019 and Castilho and Re-
sende, 2022). Toral (2019) computed the absolute
value of the length ratio (with the length measured
in characters) and found out that MT and PEMT
are closer to the source text than HT in terms of
length for all but one dataset, thus indicating that
PEMT exhibits signs of an interference from the
source text in terms of length. Martikainen and
Kiibler (2016) reached a similar conclusion when
computing the so-called expanding ratio (“‘coeffi-
cient de foisonnement”) on their corpora of HT,
statistical machine translation (SMT) and post-

Ihttps://spacy.io/models, accessed on 14th march 2022



edited SMT (PESMT). Similarly to the length ra-
tio, the expanding ratio represents the length vari-
ation between source and target but is computed
from the length measured in words (Cochrane,
1995; Cochrane, 2000). On their corpora, Mar-
tikainen and Kiibler (2016) noted that SMT and
PESMT have a lower expanding ratio than HT,
meaning that they are shorter and therefore closer
to the length of the source. This can be interpreted
as a sign of interference of MT as SMT systems
are known to produce output with a length simi-
lar to the source (Toral, 2019). However, this is
not the case with NMT, which tends to reproduce
the target length seen in the training data (Lakew
et al., 2019). Therefore, we do not expect to find
a significant difference between the expanding ra-
tio of HT and PEMT. We computed the expanding
ratio at sentence level with the length measured in
characters according to the following formula:

- Lengthtmget — Lengthsource

ER x 100

Lengthsource

Table 5 presents the average expanding ratio for
HT and PEMT and the relative difference between
both.

HT
30.77%

PEMT
37.18%

Rel. diff.
*+21.11%

Table 5: Average expanding ratios for HT and PEMT cor-
pora and relative difference. The higher the ratio, the longer
the translated segment compared to its source. *Indicates sig-
nificance at p < 0.001. Significance was tested using Mann-
Whitney non-parametric test, as data were not normally dis-
tributed.

The obtained expanding ratio for HT is not sur-
prising as translations from English into French are
typically longer than the source and can exhibit an
expanding ratio from 10% to 30%, depending on
the type of texts (Cochrane, 2000). However, for
PEMT this ratio is much higher (+21.11% com-
pared to HT), meaning that PEMT, for the same
source segment length, tends to produce longer
translations than HT?.

We propose two possible explanations that re-
quire further investigation: 1) either the NMT sys-

ZAs source segments are on average slightly longer in the
PEMT subcorpora, we tested the correlation between source
segments length and expanding ratio. Pearson’s correlation
coefficient revealed a very weak negative correlation (-0.07)
between source segment length and expanding ratio, therefore
discarding the potential bias from the source segment length
differences between HT and PEMT subcorpora.
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tem produces a raw MT close to the HT in terms
of length (i.e., it reproduces the length observed
in the training data) and the post-editors tend to
add elements rather than to remove some, or 2) this
particular NMT system tends to favor longer target
segments.

4.3.4 Adverb word translation entropy

Several studies have shown that the use of MT
and PE can lead to an overrepresentation of the
most frequent translation solutions compared to
HT (Martikainen and Kiibler, 2016; Farrel, 2018).
As already highlighted by several authors (Farrel,
2018; Culo and Nitzke, 2016; Toral, 2019), this
homogenization of the translation solutions could
be the result of a priming effect of the raw MT out-
put as MT systems tend to favour the most fre-
quent translation solutions found in the training
data (Vanmassenhove et al., 2019).

To measure the eventual loss in translation so-
lutions variation we use a metric borrowed from
translation process research, the word translation
entropy (HTra), introduced by Carl et al. (2016) as
part of a methodology to measure translation lit-
erality (Carl and Schaeffer, 2017). This metric is
used to assess how many different translations a
given source text word has across different target
texts (Carl and Schaeffer, 2017). Htra is computed
as the sum over all observed word translation prob-
abilities p(s — t;) of a given source text word s
into target text word ¢;...n multiplied with their in-
formation content I(p) = —loga(p) (Carl et al.,
2016) as shown in the following equation:

HTra(s) = =XI'=1p(s = t;) x loga(p(s — t;))

According to Carl and Schaeffer (2017), HTra
measures the entropy of the lexical variation in
the translation. This metric was used by several
authors in translation process research to measure
translation variation of a source word across dif-
ferent target translations and to draw correlations
between HTra and different cognitive effort mea-
sures (see for instance Carl and Schaeffer 2017,
Wei 2021). We consider that HTra could be a
good measure to compare translation solution vari-
ation between HT and PEMT as it reflects the
amount of translation alternatives, while also cap-
turing the weight of these alternatives (Bangalore
et al., 2016). As translation solutions have to be
partially manually extracted, computing HTra for
all content word categories is a time-consuming



task. For this reason, we started by computing the
entropy for a number of frequent adverbs in the
corpus. We chose the adverbs as it is a category
in which several translation equivalences are gen-
erally available.

To select the adverbs for which the entropy will
be computed, we extracted all the adverbs occur-
ring at least once in both source corpora (HT and
PEMT). From this list, we selected the top 30 most
frequent adverbs (in both corpora combined) and
computed the HTra for the 20 adverbs with the
closest incidence in HT and PEMT source corpora
to avoid any HTra discrepancy due to a large pres-
ence of a certain adverbs in one corpus but not in
the other. Using the SketchEngine® corpus tool we
extracted all segment pairs in which a selected ad-
verb occurs in the source for HT and PEMT and
manually extracted all the possible translations and
their frequency in each sub-corpora. Table 6 shows
the HT and PEMT entropy scores for all selected
adverbs as well as the average HTra obtained in
both sub-corpora for the sample of adverbs.

Adverb HT | PEMT
currently 1.22 | 0.44
especially 1.75 1.56
fully 1.28 1.69
particularly | 1.75 | 0.95
already 0.67 1.31
forward 1.55 1.81
only 223 | 2.09
nearly 1.31 | 0.72
therefore 2.46 1.66
here 1.30 1.39
just 2.41 1.66
now 2.36 | 2.01
further 342 | 246
often 0.00 | 0.00
also 1.58 1.46
very 1.02 1.16
most 047 | 035
about 2.82 | 242
all 0.00 | 1.92
more 1.80 1.30
Average \ 1.57 \ 1.42

Table 6: HTra scores for the selected adverbs for HT and
PEMT. The higher the HTra, the higher the variation of trans-
lation solutions, a score of 0 indicates that there is only one
translation solution in the whole corpus.

3https://www.sketchengine.eu/

7

The average HTra for the selected adverbs was
lower for PEMT than for HT, indicating that trans-
lation solutions were less varied in PEMT. How-
ever, this difference was not statistically signifi-
cant, possibly due to the reduced number of ad-
verbs considered and their relatively low frequency
in the corpora. Nevertheless, this difference can
be considered as an indication of a tendency of
PEMT to produce less varied translations. Further
research on the HTra of adverbs and other cate-
gories is needed to confirm these observations.

5 Conclusion and Future Work

In this study, we applied some of the metrics com-
monly used in post-editese research to comparable
corpora of authentic HT and PEMT jobs for the
language direction English into French. The aim
of our study was to investigate if findings of previ-
ous studies could be confirmed on such a corpora.
We studied the effect of the translation mode (HT
or PEMT) on lexical richness, lexical density, ex-
panding ratio and adverb translation entropy. Be-
low is a summary of our main findings:

Lexical richness: PEMT exhibits lower lexi-
cal richness than HT. This difference can partly be
explained by the difference in lexical richness ob-
served in the source corpora. However, the ampli-
tude of these differences suggests an effect of the
translation mode on lexical richness, with PEMT
producing lexically poorer translations. Those re-
sults are coherent with previous finding on ma-
chine translationese and post-editese (see for in-
stance Toral, 2019; Vanmassenhove et al., 2019)

Lexical density: our results indicate a tendency
toward a lower lexical density in PEMT compared
to HT. This is in line with the findings of Toral
(2019), but, once again, the differences between
target corpora are difficult to interpret due to the
differences already existing in the source corpora.

Expanding ratio: the expanding ratio is much
higher for PEMT than HT, which means that for a
given source sentence length, PEMT tends to pro-
duce longer target sentences. Further investigation
with access to raw MT output is needed to uncover
the reasons behind this target length discrepancy
between HT and PEMT.

Adverb word translation entropy: the HTra
computed for the list of selected adverbs reveals
that PEMT presents less variation in the transla-
tion solutions of adverbs, supporting the conclu-
sion made by Farrel (2018) or Culo and Nitzke



(2016) that PEMT leads to more uniform transla-
tions.

This pilot study shows that some of the previ-
ously identified post-editese features can be found
in authentic PEMT jobs and proposes the use of
a novel metric for measuring the translation varia-
tion in PEMT. In addition, our study highlights the
complexity of investigating post-editese on paral-
lel corpora. Apart from the difficulty of gaining
access to authentic data (including raw MT), the
question of the comparability of the corpora rep-
resents a major challenge. The fact that HT and
PEMT are not obtained from the same source cor-
pus complicates the interpretation and the gener-
alization of the results. Increasing the size and
the diversity of the corpora, as well as develop-
ing techniques to increase corpus comparability,
might be interesting options to overcome these
challenges. Access to raw MT output could also
be very helpful to facilitate the interpretation of the
results. Despite the challenges faced, we are still
convinced that the study of post-editese on authen-
tic data is essential to fully understand the implica-
tions and potential consequences on the language
use of the currently massive adoption of NMT in
the translation industry. In the next stage of our re-
search, we will increase the size of our corpora by
adding data from other language services and other
domains. We also plan to investigate the HTra met-
ric more in depth by calculating scores for other
categories and by checking their correlation with
human judgement.
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Abstract
Autoregressive (AR) and Non-
autoregressive  (NAR) models have

their own superiority on the performance
and latency, combining them into one
model may take advantage of both. Cur-
rent combination frameworks focus more
on the integration of multiple decoding
paradigms with a unified generative
model, e.g. Masked Language Model.
However, the generalization can be harm-
ful on the performance due to the gap
between training objective and inference.
In this paper, we aim to close the gap
by preserving the original objective of
AR and NAR under a unified framework.
Specifically, we propose the Directional
Transformer (Diformer) by jointly mod-
elling AR and NAR into three generation
directions (left-to-right, right-to-left and
straight) with a newly introduced direction
variable, which works by controlling the
prediction of each token to have specific
dependencies under that direction. The
unification achieved by direction success-
fully preserves the original dependency
assumption used in AR and NAR, retain-
ing both generalization and performance.
Experiments on 4 WMT benchmarks
demonstrate that Diformer outperforms
current united-modelling works with more
than 1.5 BLEU points for both AR and
NAR decoding, and is also competitive to
the state-of-the-art independent AR and
NAR models.

© 2022 The authors. This article is licensed under a Creative
Commons 3.0 licence, no derivative works, attribution, CC-
BY-ND.

1 Introduction

Machine translation can be considered as a condi-
tional generation task, which has been dominated
by neural networks, especially after Transformer
(Vaswani et al., 2017). Conventional autoregres-
sive (AR) NMT models obtain the impressive per-
formance, but it’s time-consuming to decode token
one by one sequentially (Sutskever et al., 2014;
Bahdanau et al., 2015). Aiming at fast inference,
non-autoregressive (NAR) NMT models enhance
the parallelizability by reducing or removing the
sequential dependency on the translation prefix in-
side the decoder, but suffering from performance
degradation owing to the multi-modality problem,
which is still an open-question (Gu et al., 2018;
Shu et al., 2020; Ghazvininejad et al., 2020; Lee et
al., 2018; Ghazvininejad et al., 2019; Stern et al.,
2019; Welleck et al., 2019; Gu et al., 2019a; Gu et
al., 2019b).

It’s always non-trivial to balance high perfor-
mance and low latency in a single model perfectly.
Therefore, another branch focuses on the unified-
modeling of multiple decoding paradigms so that
decoding with AR or NAR in different scenar-
i0s (AR for quality-first and NAR for speed-first)
with one model can be achieved (Mansimov et al.,
2020; Tian et al., 2020; Qi et al., 2021), making
the performance and speed can be pursued more
practically.

Whereas, challenges still exist. For example,
a generalized conditional language model is often
required to support the generation with customized
orders or positions (Mansimov et al., 2020; Tian et
al., 2020), which actually prevents the model from
being fully trained on specific decoding method,
leading to the declines in overall performance. In
addition, in some works, AR and NAR decoding

Macken, Rufener, Van den Bogaert, Daems, Tezcan, Vanroy, Fonteyne, Barrault, Costa-jussa, Kemp, Pilos, Declercq, Koponen, Forcada,

Scarton, Moniz (eds.)
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may needs to be trained separately in the stage of
pretraining or fine-tuning (Qi et al., 2021), making
the training more expensive.

To ameliorate these issues, we propose Direc-
tional Transformer (Diformer) which resolve the
unification of AR and NAR in a more practi-
cal way. First of all, we abandon the compat-
ible of multiple flexible decoding strategies, but
focusing on the modeling of some commonly
used strategies that have good performance. For
the AR decoding, it has been proved that mono-
tonic linear generation is still considered as the
best strategy (Mansimov et al., 2020; Tian et al.,
2020), so we choose to only model the left-to-right
(L2R) and right-to-left (R2L) generation. For the
NAR decoding, we choose to follow the stream
of masked-language model, like mask-predict in
CMLM (Ghazvininejad et al., 2019) or parallel
easy-first in Disco (Kasai et al., 2020), since they
are simpler than insertion-based method but still
being effective.

To this end, we unify two decoding paradigms
into three generation directions — L2R, R2L and
straight, and formulate it through a new objective
named as Directional Language Model (DLM),
making the prediction of tokens conditioned on
contexts controlled by a newly introduced direc-
tion variable. It ties AR and NAR into a uni-
fied generation framework while still preserving
the original dependency assumptions of AR and
NAR, retaining both generalization and perfor-
mance. Meanwhile, all directions can be trained
simultaneously with the time spent equally to the
training of an independent NAR model, which
greatly reduces the training cost compared to two-
stages methods.

Experimental results on the WMT14 En«De
and WMT16 En<«>Ro datasets for all three direc-
tions indicate that Diformer performs better than
previous unification-based works by more than 1.5
BLEU points. Comparing to other state-of-the-
art independent AR and NAR models, Diformer is
also competitive when decoding in the same mode.
We summarize contributions of our work as:

* We unify the AR and NAR decoding into
three generation direction and formulate it
with the Directional Language Model.

* We propose the Diformer, a Transformer-
based model that can be trained with DLM,
where all direction can be trained simultane-
ously.
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* Experiments on WMTI14 En<De and
WMT16 En<»Ro demonstrate the ability of
Diformer with competitive results compared
to unified or independent models.

1.1 Related Work

(Mansimov et al., 2020) unifies decoding in di-
rected and undirected models by a generalized
framework, in which the generating process is fac-
torized as the position selection and the symbol
replacement, where the first step is achieved by
Gibbs sampling or learned adaptive strategies, the
second step can be handled by a masked language
model pretrained on monolingual corpora and fine-
tuned on the NMT task. Their model supports at
least 5 decoding strategies including hand-crafted
and learned, all of them can be used for both lin-
ear time decoding (AR) and constant time decod-
ing (NAR).

Similarly, (Tian et al., 2020) unified AR and
NAR by adapting permutation language model-
ing objective of XL Net to conditional generation,
making it possible to generate a sentence in any
order. The model is evaluated to decode in mono-
tonic and non-monotonic AR, semi-AR and NAR
with at least 8 position selection strategies includ-
ing pre-defined and adaptive.

Both of them achieves the compatible to cus-
tomized decoding through position selection and
applying the selected positions/orders on a gener-
alized generative model, which leads to the gap
between training and inference. In contrast to the
position selection, we directly model the decoding
process with three generation directions in a task-
specific manner, thereby without introducing ad-
ditional complexity to the task and close the gap
between training objective and inference strategy.
We consider it is worthwhile to obtain performance
improvements by abandon some flexibility.

2 Method

2.1 Background

Before the description of Diformer, the conven-
tional AR model and the iterative mask prediction
based NAR model that applied in Diformer will be
introduced first.

The likelihood of an AR model is a factorization
following the product rule, assuming each token
is conditioned on all previous generated context.



Taking the L2R and R2L AR model as examples:

N

Lig =) log P(yilyri—1, X;0) (1)
i=1
N

LroL =Y log P(yilyis1n, X;0)  (2)
i=1

where X is the source text, y;.;—1 and y;41.y are
previous outputs in opposite direction, ¢ is the
learnable parameters, [V is the target length.

In the iterative-refinement based NAR model
like CMLM (Ghazvininejad et al., 2019), the con-
ditional dependency is loosed, assuming the pre-
diction of target token can be independent with
each other, but conditioned on the output tokens
(context) from last iteration:

Lovm= Y logP(yi| X, Y ;0).  (3)
V€Y

where t is the iteration step t = {1,...,T}, Yobs
are observable tokens (context), Yiask = Y\ Yobs
are masked tokens for predicting. In each itera-
tion, N % of predicted tokens with low confi-
dence will be re-masked and predicted again in
the next iteration, conditioned on remaining high-
confidence predictions as observable context until
the last iteration. At the initial iteration, the model
determines the target length NV based on the source
text P(N|X) and makes the first step prediction
with N — 2 mask symbols as well as [BOS] and
[EOS] input to the decoder, equivalent to merely
conditioned on the source.

Instead of using the global context, in DisCo
(Kasai et al., 2020), the target token at each po-
sition is predicted with different context, namely,
the disentangled context. In such case, all tokens
can be used for training and updated at each itera-
tion during inference:

1:7t .
Y;)bs7

N
EDisCo = ZZOQP(Z/’L|X’
=1

), @

where ngi is the context only for g;. The parallel
easy-first decoding strategy is proposed (we call
it easy first in following sections for simplicity) to
improve the decoding efficiency, where the context
of each token is composed by predictions at easier
positions determined in the first iteration:

Yo = {y7Y20) < =)}, )
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where z(i) denotes the descending ordered rank of
the probability P; computed in the first iteration.
During the training of CMLM and DisCo, a sub-
set of tokens are selected as the context, CMLM
updates parameters only with the loss on masked
tokens while DisCO uses all tokens for updating.

In the Diformer, we aim to unify the two exclu-
sive dependency assumptions (Yang et al., 2019)
of AR and NAR essentially by proposing a new
training objective and model architecture that can
make them trained jointly.

2.2 Directional Language Model

We aim to unify the AR and NAR decoding
into three generation directions — L2R, R2L and
straight, i.e. making prediction on the target token
at the rightward, leftward and the original position.
How to realize this goal is an open-question. In
this work, we achieve it by explicitly providing a
direction instruction and corresponded contexts to
the model. Taking an example on the target se-
quence Y = [A, B,C, D, E], the probability of
ys = C generated from three directions can be ex-
pressed as:

P3 =4 P(y3 = C|X,{D, E}) R2L
P(ys = C|X,{A,B,?,D,E}) straight

where 7 can be a mask symbol performing like a
placeholder.

Formally, given the target sequence Y
[y1, ..., YN ], token y; can be generated from direc-
tion z; € Z = {R,S,L} (i.e. L2R, straight and
R2L) given the context Y, and X:

P(yzz |X’ }/Zz)’

where Y, is determined by the direction z;:

Yii-1  zi=R
Y. =¥y z=1L
1/()st Zi = S

When z; = R or L, the model works exactly same
to the conventional AR model by conditioning on
previously generated tokens at leftwards or right-
wards. When z; = S, the model works in an
iterative-refinement manner (e.g. mask-predict in
CMLM or parallel easy-first in DisCO) by condi-
tioning on a partially observed sequence Y(fbs with

multiple tokens being masked including y;, same
as the disentangled context in DisCo.



We can thereby formulate the objective of direc-
tional language model as the expectation over all
possible generation directions on each token:

N

P(Y|X) = Esez[ [ [ P(y:1X, Y2,)]
i=1

(6)

The expectation can be approximated with sam-
pling, similar to the permutation language model
in (Yang et al., 2019; Tian et al., 2020), where
a permutation of the sequence is sampled during
training, we, instead, sample the direction for each
token. In this way, the factorization of DLM in-
corporates both conditional dependency assump-
tion of AR, and conditional independence assump-
tion of NAR, thereby makes the training objective
closely related to the decoding methods.

Training The sampling of direction in DLM al-
lows us to train the generation of all directions si-
multaneously, we introduce the detailed method in
this section.

As we all know that the training of Trans-
former (Vaswani et al., 2017) can be paralleled
with teacher forcing, achieved by feeding y1.n—1
(context) to the model at once and computing the
loss on yo.xv (target). The context and target se-
quence can be easily created by a shifting opera-
tion that aligns y;_1 to y;.

Diformer can also be trained in a similar way,
but before that, we have to make a slight change
when implementing the computation of the likeli-
hood in Eq 6 due to the difficulty of creating the
context sequence Y, with complicated dependen-
cies. The original equation aims to compute the
likelihood on the ground-truth sequence Y where
each token is conditioned on a customized context
determined by the sampled direction, meaning that
the context sequence cannot be shared as Trans-
former does. Creating specialized context for ev-
ery token is non-trivial especially when encoun-
tered with position changing caused by the shifting
when z; = Ror L.

For the convenience of the implementation, we
fix the input sequence y;.y and create a new target
sequence Y* where tokens are accordingly shifted
with the sampled directions:

N
PY*X) =[] Pyl X, Y20),
=1

(7

where j =1+ 1forz; =R, j=1—1forz; =L
and j = i for z; = S. When training on large cor-
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pus with random sampling on directions, we can
say that P(Y*|X) ~ P(Y|X) theoretically.

Formally, let the source and target sequence as
X = [r1,...,7x)] and Y = [y1, ..., yn] where N
is the target length. Then, we uniformly sample
a direction instruction sequence Z = [z1, ..., 2N]
with N elements, where z; and zy are fixed to be
R and L as they are [BOS] and [EOS], which can
only be used to predict tokens inside the sequence
for the AR setting, and can never be masked in the
NAR setting.

The input sequence Yj, is created by directly
copying from ground-truth Y, which will be
masked accordingly in the decoder to create the
disentangled context.

According to the sampled direction sequence Z,
we can now create the modified target sequence
Y™ by shifting tokens in Y based on z;, which is
shown in Figure 1.

To be compatible with the NAR decoding, we
also predict the target length P(N|X) with the
same way as (Ghazvininejad et al., 2019). Note
that the predicted length is only used for NAR
decoding, the AR decoding still terminates when
[EOS] or [BOS] is generated for L2R and R2L set-
ting.

Finally, the cross-entropy loss is used for both
generation (Lprym) and length prediction (LigN)
task, the overall loss can be obtained by adding
them together:
®)

Lpitormer = LpiMm + ALLEN,

where A is the factor on which the best perfor-
mance can be obtained with the value of 0.1, after
searched from 0.1 to 1.0 in the experiment.

2.3 Directional Transformer

Diformer is mainly built upon the Transformer
(Vaswani et al., 2017) architecture but with sev-
eral modifications for the compatible of the multi-
directional generation, especially for avoiding the
information leakage during training.

Specifically, we directly use the standard Trans-
former encoder in the Diformer, except that an ad-
ditional MLP layer is added on top of it for length
prediction. For the decoder, several modifications
are performed: 1) We introduce an additional em-
bedding matrix to encode the direction instruction.
2) The original uni-directed positional embedding
is expended to a bi-directed positional embedding.
3) We follow the work in DisCo to disentangle
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Figure 1: An example of training Diformer with DLM, where
values in grids are the relative distance of K,V w.r.t @, atten-
tion masks are indicated by dark grids.

the context by de-contextualizing K,V only with
word embedding, and replacing the input of @) in
the first layer only with direction and position sig-
nal. 4) To compensate the removed positional in-
formation in K, V, we integrate the relative posi-
tional embedding in the self-attention, successfully
resolved the problem on information leakage and
the compatible of bi-directional generation.

Directional Embeddings An embedding matrix
is used to map the categorical variable z; into the
hidden space, denoted as d, §(z;) € R%mosel where
dmodel 18 hidden size of the model. For simplicity,
we directly use z; to represent the embedded direc-
tion at position ¢ in following sections.

The joint training of L2R and R2L can be prob-
lematic with the positional embedding of the orig-
inal Transformer since the index is counted in a
uni-directed order, which can be used for cheating
under the bi-directional scenario since future posi-
tional index can leak information of the sentence
length.

To solve this, we propose to make the positional
embedding directed, achieved by encoding the po-
sition index counted oppositely based on the direc-
tion with separate parameters:

— —

Pe(i) z=Rorz=>=5
Pe(T) u=1L

where ]7(; and IS_e are different embedding matrics

to encode £osition indices counting from L2R ( 7 )

or R2L (7 ) accordingly. More detailed descrip-

tion can be found in Figure 1.
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Finally, we add encoded position and direc-
tion embeddings together as the initial hidden-state
hézo for the computation of Q'=? in the first self-
attention layer h? =D + 2t

Directional Self-Attention In DisCo, to prevent
the information leakage from the disentangled con-
text, the input representation for computing K, V'
is de-contextualized by directly reusing the projec-
tion of input embeddings k;, v; = Proj(w; +p;). In
Diformer, we have to further remove the positional
information since the directed positional embed-
ding can still be used for cheating in the computa-
tion of self-attention across layers.

Completely removing the the positional in-
formation on K,V and only using the word-
embedding w; can be harmful to the performance.
Therefore, we propose an alternative solution by
replacing the removed absolute positional embed-
ding with the relative positional embedding pro-
posed in (Shaw et al., 2018) for two reasons: 1)
The relative position is computed in a 2 dimen-
sional space, meaning that p;; and py; for token
y; s not shared between y; and yj, which satis-
fies our requirements that each token in the context
should have the position information only used for
y; but not shared for y;. 2) The position infor-
mation is only injected during the computation of
self-attention without affecting the original word
embedding used in K, V.

Formally, we directly use the method in (Shaw
et al., 2018) but replace the hidden representation
for computing K, V' with word embeddings:

N
hé/ = Z O[ij(ijV +p};)

©)
j=1
€XDP €5
Qij = — (10)
TN epen
hTIWR(w WK 4 pE)T
oy — NIy

Vv dhead

where h! is the output of the self-attention in
current layer, w; is the word embedding, pz‘g, pf]{
are embedded relative positions, W< WX WV
are parameters for (), K and V, hé_l is the last
layer’s hidden state, dpeaq is the hidden size of a
single head. Two parameter matrics are used as
embeddings — Re’® and Re"’, with the shape of
[2k + 1, dhead], where k is the max length. p;; is
obtained by embedding the distance between ¢ and
j clipped by the maximum length k.



Finally, a customized attention mask (see Fig-
ure 1) is created during training to simulate spe-
cific dependencies based on the sampled direction
sequence Z with following rules:

 If z; = R, all tokens for j > ¢ will be masked.
e If z; = L, all tokens for 7 < ¢ will be masked.

o If z; = S, y; and a subset of randomly se-
lected tokens will be masked following the
method in (Ghazvininejad et al., 2020), ex-
cluding [BOS] and [EOS].

Inference Diformer can generate a sequence
with 4 modes including L2R and R2L for AR
decoding, mask-predict and parallel easy-first for
NAR decoding.

For the AR decoding, the model works exactly
same as the conventional Transformer, except that
for each step, a fixed direction z; = R or L should
also be also be given, together with previously gen-
erated tokens, making it a pure-linear autoregres-
sive generation. Beam search can be directly used
in both L2R and R2L decoding. For the NAR
decoding, the model uses mask-predict or easy-
first by applying specific masking operation dur-
ing each iteration, where all tokens are assigned
with z = S. Length beam can be used to further
improve the performance. Detailed examples are
shown in the Appendix.

More importantly, we find that the multi-
directional property of Diformer can be used for
reranking, which is quite beneficial for the NAR
decoding. Specifically, compared to other NAR
models that uses an external AR model for rerank-
ing, Diformer can do it all by its own without in-
troducing additional computational costs. For ex-
ample, it first refines 5 candidates with 8 iterations
and performs reranking with the rest of 2 iterations
by re-using the encoder states and scoring candi-
dates with L2R and R2L modes, which is equiva-
lent to the computational cost of a 10-stepped re-
finement reported in CMLM. The scores computed
in two directions are averaged to obtain the final
rank. Experimental results show that 8 steps of re-
finement + 2 steps of reranking obtains significant
performance improvements compared to 10 steps
of refinement without re-ranking. It can also be
used for AR decoding, where all tokens are scored
under the reversed direction, e.g. generating with
L2R and scoring with R2L. We name this method
as self-reranking.
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3 Experiments

3.1 Experimental Setup

Data We evaluate Diformer on 4 benchmarks in-
cluding WMT14 En<»De (4.5M sentence pairs)
and WMT16 En<Ro (610k sentence pairs). The
data is preprocessed in the same way with
(Vaswani et al., 2017; Lee et al., 2018), where each
sentence is tokenized with Moses toolkit (Koehn
et al., 2007) and encoded into subwords using
BPE (Sennrich et al., 2016). We follow (Gu et
al., 2018; Ghazvininejad et al., 2019; Zhou et
al., 2020) to create the knowledge distilled (KD)
data with L2R Transformer-big and Transformer-
base for En<+De and En«+Ro, the reported per-
formance in the overall results are all obtained by
training on the KD data.

Configuration We follow the same con-
figurations with previous works (Vaswani
et al., 2017; Ghazvininejad et al., 2019;

Ghazvininejad et al., 2020) on hyperparame-
ters: N(encoder+decoder) layers = 6 + 6, Nheads =
8, dnidden = 512, dppn = 2048. For customized
components in Diformer, we tune the max relative
distance k in [1,8,16,256] and find that &k = 256
obtains best performance. Adam (Kingma and
Ba, 2015) is used for optimization with 128k
tokens per batch on 8 V100 GPUs. The learning
rate warms up for 10k steps to 5e-4 and decays
with inversed-sqrt.  Models for En<+De and
En«>Ro are trained for 300k and 100k steps, last
5 checkpoints are averaged for final evaluation.
We set beam size as 4 and 5 for AR and NAR
decoding. When decoding in NAR mode, we set
the max iteration for mask-predict and easy-fist
decoding as 10 without using any early-stopping
strategy. For fair comparison, we reduce the max
iteration to 8 when decoding with self-reranking
in NAR model. Our model is implemented with
PyTorch and fairseq (Ott et al., 2019). BLEU
(Papineni et al., 2002) is used for evaluation.

3.2 Results & Analysis

We perform experiments on Diformer to evaluate
its performance on three generation directions with
four decoding strategies. We mainly compare Di-
former to three types of models: 1) the unified-
models that is able to decode with multiple strate-
gies, 2) pure AR model, i.e. standard Transformer,
3) pure NAR models. (see Table 1)



En-De De-En En-Ro Ro-En
AR NAR AR NAR AR NAR AR NAR
AR Models
T-big (Vaswani et al., 2017) 28.4 - - - - -
T-base (Vaswani et al., 2017) 27.3 - - - - - - -
T-big (our impl, En<+De teacher) 28.52 - 32.10 - - - - -
T-base (our impl, En<>Ro teacher) 27.67 - 31.12 - 35.29 - 34.02 -
T-base + distill 28.41 - 31.69 - 35.21 - 33.87 -
NAR models
NAT (Gu et al., 2018) 19.17 23.20 - 29.79 - 31.44
iNAT (Lee et al., 2018) - 21.61 25.48 - 29.32 - 30.19
InsT (Stern et al., 2019) 27.29 27.41 - - - - -
CMLM (Ghazvininejad et al., 2019) - 27.03 30.53 - 33.08 - 33.31
LevT (Gu et al., 2019b) 27.27 - - - - 33.26
DisCO (Kasai et al., 2020) 27.34 31.31 - 33.22 - 33.25
Unified models

(Mansimoyv et al., 2020) 25.66 24.53 30.58 28.63 - - - -
(Tian et al., 2020) 27.23 26.35 - - - - - -
Diformer (ours)
-L2R 28.35/28.68 - 31.58/31.76 - 35.06/35.16 - 33.84/33.92 -
-R2L 28.58/28.50 - 32.00/31.78 - 35.17/35.13 - 33.90/33.90 -
- mask-predict 27.51/27.99 31.05/31.35 33.62/34.37 - 32.68/33.11
- easy-first 27.35/27.84 31.21/31.68 33.58/34.23 - 32.97/33.34

Table 1: This table shows the overall performance of Diformer compared to the AR, NAR and unified models when decoding
with AR or NAR strategies. T-big/-base is the abbreviation of Transformer-big/-base. The BLEU score using self-rerank (right)

or not (left) is separated by /.

Comparison with unified models For the com-
parison to unified-models (Mansimov et al., 2020;
Tian et al., 2020), Diformer outperforms others in
all generation directions, by obtaining more than
1.5 BLEU.

As discussed in the section 1, their support on
multiple generation strategies is achieved by ap-
plying certain position selection strategy on the
masked language model or generating with certain
permutation with the permutation language model.
This creates the gap between the training and in-
ference since a specific decoding strategy might
not be fully trained with the generalized objective
as analyzed in (Mansimov et al., 2020). So, com-
pared to both, we use the task-specific modelling in
exchange for better performance by abandon cer-
tain flexibility, thus makes the learned distribution
to be same with the one used in decoding, which
answers why Diformer performs better.

Comparison with AR models For the En<sDe
dataset, since we use a larger teacher model
(Transformer-big), therefore, we only compare Di-
former with same sized Transformer-base trained
on the raw and distilled data. The Diformer out-
performs Transformer trained on the raw data with
a large margin and reaches the same level to the
one trained on distilled data. Interesting, the best
performance of Diformer are usually obtained by
the R2L decoding and the reranked results on L2R,
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the reason of it will be further discussed in ablation
study sections. For the En<+Ro dataset, Diformer
can also obtain similar performance compared to
the same sized Transformer trained on the distilled
data produced by a same sized teacher.

Comparison with NAR models Diformer is
also competitive to a series of NAR models in-
cluding iterative-refinement based and fully NAR
models. We speculate the strong performance of
Diformer comes from the joint training of AR and
NAR, since it is similar to the multi-task scenario,
where tasks are closely correlated but not same.
This could be beneficial for the task that is more
difficult i.e. NAR, because the learned common
knowledge on AR tasks could be directly used in it.
By applying the self-reranking method, Diformer
could obtain additional 0.5 BLEU over the strong
baseline.

3.3 Ablation Study

In this section, we perform extra experiments to
investigate factors that could influence the perfor-
mance of Diformer and the mechanism behind it.
All experiments of ablation study are performed on
the WMT14 En—De dataset.

The influence of Knowledge Distillation We
train Diformer not only with distilled data but also
with raw data as shown in table 2. The degrada-



Data Condition R L mask-predict easy-first
T-base (our impl)

Raw data 27.67 - - -
Distilled data 28.41 - - -
Diformer

Raw data 27.21 27.08 24.12 24.18
Raw data (fixed right) 27.63 - - -
Distilled data 28.35 28.55 27.51 27.35

Table 2: This table shows the performance of Transformer
and Diformer trained on raw and distilled data where T-base
represents for Transformer-base. An additional experiment
with fixed z; = R for all tokens is also presented.

max k R L mask-predict easy-first
256 28.35 28.58 27.51 27.35
16 28.51 28.48 27.25 27.32
8 28.13 28.25 26.58 26.71
1 26.81 26.85 18.78 19.53

Table 3: This table shows the performance of Diformer with
different max k.

tion of NAR decoding when training on raw data
is not surprising which is a common problem faced
by all NAR models. However, the performance of
AR decoding also degrades. We speculate that on
the raw data, the difficulty of learning to gener-
ate from straight and R2L increased significantly,
making the model to allocate more capacity to fit
them, resulting in the negative influence on the per-
formance of L2R. We verify this by fixing z; = R
for all tokens and train the model on raw data. The
result confirms it because the performance recov-
ers to its original level. On the contrary, the knowl-
edge distilled data is cleaner and more monotonous
(Zhou et al., 2020), making it easier to learn for all
directions, and allows the model to allocate bal-
anced capacity on each direction. As for the better
performance obtained by R2L decoding, we con-
sider the reason is that, the R2L is able to learn
the distilled data generated by the L2R teacher in
a complementary manner, making it more efficient
to learn the knowledge that cannot be learned by
L2R due to the same modeling method.

The Importance of Relative Position We also
demonstrate the importance of the relative posi-
tional embedding by evaluating the model with dif-
ferent maximum relative distance & and obtain the
same conclusion (Shaw et al., 2018) — the dis-
tance should be at least 8. Meanwhile, we observe
that NAR is more sensitive to the positional infor-
mation, which is reasonable, since the decoding of
NAR is conditioned on the bi-directional context,
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Without self-rerank With self-rerank

26.71 26.81 26.79 26.86 26.75 26.81 26.48

27.04 27.25 27.64 27.60 27.78 27.78 27.83

7

26.91 26.91 27.08 27.10 26.97 27.04 26.72 27.28 27.39 27.77 27.75 27.82 27.82 27.89

8

27.18 27.29 27.36 27.40 27.20 27.24 26.97

9

27.22 27.33 27.46 27.49 27.19 27.21 26.86

max iteration number

10

27.34 27.45 27.51 27.51 27.26 27.34 26.98

27.38 27.44 27.48 27.51 27.26 27.31 26.79

1"

beam size beam size

Figure 2: The heatmap shows the BLEU score decoded with
mask-predict when using self-reranking or not under different
max iteration number and length beam size.

where the positional information contains both dis-
tance and direction thereby is more important com-
pared to that in AR.

Improvements of Self-Reranking As shown
in the overall results, self-reranking is a useful
method to improve the performance especially for
NAR decoding. For the AR decoding, the im-
provements is not that significant since the out-
puts are already good enough for L2R or R2L, the
tiny gap between reranking and generation direc-
tion cannot provide enough help, which indicates
that using self-reranking for AR is not that prof-
itable compared to NAR.

We further investigate its ability on NAR de-
coding (mask-predict) given different max itera-
tion number and length beam size, as shown in Fig-
ure 2. It clearly shows that without reranking, the
incorrect selection on beam candidates may even
reduce the performance with larger beam size. The
use of self-reranking actually lets the performance
and beam-size positively correlated, meaning that
exchanging 2 steps of iteration with self-reranking
can be profitable with larger beam size. In practi-
cal usage of self-reranking, it is critical to find the
optimal combination by balancing the beam size
and max iteration number so that both high perfor-
mance and low latency can be obtained.

Efficiency of the Model Since our model in-
volves both AR and NAR decoding, we also make
a compression on the decoding speed with CMLM.
We evaluate this on a single V100 GPU, the de-
coding speed is computed by generated sentences
per second recorded by the fairseq. Table 4 shows
the result including the speed up under different
iteration number and beam-size compared with
AR baseline. When decoding with mask-predict
and with same configurations, Diformer has sim-



Model Beam Size Iteration Speed Up BLEU
Transformer 5 T 1.0 28.41
CMLM (MP) 1 4 13.21 25.12
CMLM (MP) 5 4 3.39 25.94
CMLM (MP) 5 10 1.49 27.09
Diformer (MP) 1 4 14.82 25.25
Diformer (MP) 5 4 3.27 26.48
Diformer (MP) 5 10 1.58 27.51
Diformer (MP+SR) 5 442 2.4 27.60
Diformer (MP+SR) 5 8+2 1.57 27.99

Table 4: This table presents the compression of the Diformer
and CMLM on the decoding efficiency as well as the per-
formance. MP represents for mask-predict and SR stands
for self-reranking. For the Diformer decoding with MP+SR,
number of iteration is composed with real generation steps
and reranking steps.

ilar decoding speed and performance compared
with CMLM. With the help of self-reranking,
the performance of Diformer can be significantly
improved without introducing additional latency
compared to decoding with equivalent iterations
without self-reranking.

4 Conclusion

In this paper, we present Directional Transformer
which is able to model the autoregressive and non-
autoregressive generation with a unified frame-
work named Directional Language Model which
essentially links two types of conditional language
model with three generation directions. Compared
to previous works, Diformer exchanges the gener-
alization on decoding strategies for better perfor-
mance and thereby only support 4 decoding strate-
gies. Experimental results on WMT14 En<De
and WMT16 En<Ro demonstrate that the unifi-
cation of AR and NAR can be achieved by Di-
former without losing any performance. The bi-
directional property of Diformer allows it to per-
form self-reranking which is especially useful for
NAR decoding to improve performance with no
additional computational cost.

Except from machine translation, Diformer can
be easily extended to other tasks like language
modeling by removing the dependency on X. It
has the potential to unify the representation learn-
ing and generation with a single model, which is
actually our ongoing work.
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Abstract

Large multilingual Transformer-based ma-
chine translation models have had a pivotal
role in making translation systems avail-
able for hundreds of languages with good
zero-shot translation performance. One
such example is the universal model with
shared encoder-decoder architecture. Ad-
ditionally, jointly trained language-specific
encoder-decoder systems have been pro-
posed for multilingual neural machine
translation (NMT) models. This work in-
vestigates various knowledge-sharing ap-
proaches on the encoder side while keep-
ing the decoder language- or language-
group-specific. We propose a novel ap-
proach, where we use universal, language-
group-specific and language-specific mod-
ules to solve the shortcomings of both
the universal models and models with
language-specific encoders-decoders. Ex-
periments on a multilingual dataset set
up to model real-world scenarios, includ-
ing zero-shot and low-resource translation,
show that our proposed models achieve
higher translation quality compared to
purely universal and language-specific ap-
proaches.

1 Introduction

Multilingual neural machine translation has been a
fundamental topic in recent years, especially for
zero- and few-shot translation scenarios. Tradi-
tionally, universal NMT models (see Fig. 1a) have
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Figure 1: Different granularities of the modular architecture.
roa — Romance; gem — Germanic; tgt lang — Target language
token added to indicate the language of the output sentence.

been used to produce zero-shot or low-resource
translations (Johnson et al., 2016). However, pre-
vious research has established that universal NMT
models with shared encoder-decoder architecture
have some disadvantages: (1) high-resource lan-
guage pairs tend to suffer loss in translation qual-
ity (Arivazhagan et al., 2019); (2) the vocabulary
of the model increases greatly, especially for lan-
guages that do not share an alphabet such as En-
glish and Japanese; (3) the need to retrain from
scratch when a new language does not share the
model’s vocabulary.

Recently, there has been renewed interest in
multilingual systems, which have jointly trained
language-specific encoders-decoders (see Fig. 1c)
which we call the modular architecture (Lyu et
al., 2020). The goal of these models has been to
achieve a better overall translation quality com-
pared to universal or uni-directional NMT models.
However, there is a disadvantage: lower zero-shot
translation quality compared to universal models.
To combat this problem, shared encoder/decoder
layers (also called interlingua layers) have been
proposed (Liao et al., 2021).

Macken, Rufener, Van den Bogaert, Daems, Tezcan, Vanroy, Fonteyne, Barrault, Costa-jussa, Kemp, Pilos, Declercq, Koponen, Forcada,

Scarton, Moniz (eds.)

Proceedings of the 23rd Annual Conference of the FEuropean Association for Machine Translation, p. 91-100

Ghent, Belgium, June 2022.
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Figure 2: Different types of encoder layer sharing in the mod-
ular architecture. Note that the width of layers in the figure
does not correspond to the actual width but rather reflects the
sharing extent, i.e. all layers in the encoder have the same
width dimension. U —universal, G — Germanic, R — Romance.

In this paper, we focus on improving the overall
translation quality by using different knowledge-
and layer-sharing methods. More specifically, we
investigate the effect of sharing encoder layers to
improve the generalizability and quality of NMT
models. Secondly, we present novel language
group based models that are inspired by the univer-
sal and modular systems. We propose (1) various
degrees of granularity (or specificity) of modules
(illustrated in Fig. 1); (2) layer sharing, includ-
ing combining layers of various granularities into
a tiered architecture (illustrated by Fig. 2). Our
methods show better translation quality in all test-
ing scenarions compared to the universal model
without increasing training or inference time by
having variable degrees of modularity or sharing
in the encoder.

Our research looks beyond zero-shot and high-
resource NMT performance — we set up our ex-
periments to investigate model performance for
many data scenarios like zero-shot and low- to
high-resource settings. We use a combination
of Europarl (Koehn, 2005), EMEA (Tiedemann,
2012), and JRC-Acquis (Steinberger et al., 2006)
datasets for training and evaluation and six lan-
guages grouped into two language groups: Ger-
manic (German, English, Danish) and Romance
(French, Spanish, Portuguese). The results show
that our approaches can provide an improvement
to universal models in all data scenarios. Further-
more, our approaches improve the zero-shot and
low-resource translation quality of the modular ar-
chitecture without harming the high-resource lan-
guage translation quality.
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The main contributions of our paper are:

* We introduce a novel language-group-
specific modular encoder and decoder
architecture (Fig. 1b).

Showing that different architectures of shared
encoder layers (Fig. 2) improve the low-
resource MT quality of the modular model
while also improving the high-resource MT
quality that suffers in the universal NMT set-
ting.

We empirically show what effect sharing en-
coder layers has and present a detailed analy-
sis that supports layer sharing.

2 Related Works

Multilingual neural machine translation models
follow the encoder-decoder architecture and ap-
proaches following this architecture can vary in the
amount of parameter sharing (Dabre et al., 2020).

The most straightforward approach with no pa-
rameter sharing would be having a system of uni-
directional models. While it is feasible with a
small amount of high-resource languages, it be-
comes problematic in scenarios with low-resource
languages or a large number of languages. Firstly,
the number of uni-directional models in the sys-
tem grows quadratically with the number of lan-
guages, harming maintainability. Secondly, there
is no transfer learning between language pairs due
to separate models, which means that low-resource
languages generally have low translation quality.
These issues are addressed by pivoting with some
success, however, it does not come without trade-
offs (Habash and Hu, 2009). The main problem
with pivoting is that it is not possible to fully uti-
lize all the training data since we only use training
data that contains the pivot language. Furthermore,
due to multiple models being potentially used for
a translation, the translation is slower, and there is
a chance of error propagation and loss of informa-
tion.

The most widely used approach in multilingual
NMT uses a fully shared (universal) model, which
has a single encoder and decoder shared between
all the languages and uses a token added to the in-
put sentence to indicate the target language (John-
son et al., 2016). Arivazhagan et al. (2019) iden-
tified that the universal model suffers from the
capacity bottleneck: with many languages in the
model, the translation quality begins to deteriorate.



This especially harms the translation quality of
high-resource language pairs. Zhang et al. (2020)
further confirmed this and suggested deeper and
language-aware models as an improvement. Still,
the problem of low maintainability remains, since
adding the languages to the model is not possible
without retraining the whole model. Furthermore,
adding languages with different scripts likely re-
sults in lower translation quality since the vocabu-
lary can not be altered.

Escolano et al. (2019) suggested a proof-of-
concept model with language-specific encoders
and decoders that started bilingual and was in-
crementally trained to include other languages.
Escolano et al. (2020) further improved on it
and proposed a joint training procedure that pro-
duced a model that outperformed the universal
model in translation quality. Furthermore, their
proposed model is expandable by incrementally
adding new languages without affecting the ex-
isting languages’ translation quality. Lyu et al.
(2020) investigated the performance of the mod-
ular model from the industry perspective. They
found that the modular model often outperforms
single direction models thanks to transfer learning
while being a competitor to the universal model
as well due to the additional capacity of language-
specific modules.

Modular models can contain shared modules as
well. Liao et al. (2021) set out to improve the zero-
shot performance of modular models, which is of-
ten worse than the zero-shot performance of uni-
versal models. They achieve this by sharing up-
per layers of language-specific encoders between
all languages. The current paper is an extension of
that work. While Liao et al. (2021) used English-
centric training data and denoising autoencoder
task to achieve universal interlingua, in this paper
we are not using an autoencoder task, since our
data is not one language centric.

Introducing language-specific modules into a
universal model can be a good way to increase
the capacity of the model without significantly in-
creasing training or inference time. An example of
a system that utilizes this is described in Fan et al.
(2020). They use language-specific and language
group layers in the decoder of the model following
the universal architecture model to provide more
capacity. They also note that language-specific
layers are more effective when applied to the de-
coder. Liao et al. (2021) also found that sharing
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in decoder is not beneficial when there are shared
layers in the encoder. These are also the main mo-
tivations for focusing on sharing encoder layers in
this paper.

3 Experiment setup

3.1 Data

Our aim was to create a dataset that resembles
a real-world scenario where language pairs with
varying amounts of data are encountered. The data
is collected from Europarl (Koehn, 2005), EMEA
(Tiedemann, 2012), and JRC-Acquis (Steinberger
et al., 2006). The training dataset is created by
sampling from the aforementioned datasets so that
the training dataset is composed of 70% Europarl,
15% EMEA, and 15% JRC-Acquis. The test set is
composed of completely multi-parallel sentences.

Language
combination

Direction (lang. group)

intra inter

high-high 1,000,000 1,000,000
high-mid 500,000 500,000
mid-mid 500,000 100,000
low-high 100,000 10,000
low—mid 100,000 0

low—low 0 0

Table 1: Dataset size rules per language type pair and lan-
guage group. intra — translation within language group, inter
— translating between language groups

The dataset is composed of English, German,
Danish, French, Spanish, and Portuguese. For cre-
ating the dataset and defining models, these are
divided into Germanic (English, German, Dan-
ish) and Romance (French, Spanish, Portugese)
language groups. We define high-resource (En-
glish, German, French), medium-resource (Span-
ish), and low-resource (Danish, Portuguese) lan-
guages that produce high-resource (1,000,000
lines), higher medium resource (500,000 lines),
lower medium resource (100,000 lines), low-
resource (10,000 lines), and zero-shot (0 lines)
language pairs when combined according to the
rules in Table 1. With these rules, we also give
low and medium resource language directions less
training sentences if they consist of languages
from different language groups compared to the
pairs consisting of the same language group lan-
guages. The resulting dataset composition from
these rules is visible in Table 2. The test set
consists of 2000 multi-parallel sentences for each
language pair from the same distribution as the
training data. Since the training dataset is cre-
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en - 1,000,000 100,000 1,000,000 500,000 10,000 2,610,000
de 1,000,000 - 100,000 1,000,000 500,000 10,000 2,610,000
da 100,000 100,000 - 10,000 0 0 210,000

fr 1,000,000 1,000,000 10,000 - 500,000 100,000 2,610,000
es 500,000 500,000 0 500,000 - 100,000 1,600,000
pt 10,000 10,000 0 100,000 100,000 - 220,000

all 2,610,000 2,610,000 210,000 2,610,000 1,600,000 220,000 9,860,000

Table 2: Dataset sizes (number of sentence pairs) per language pair.

ated by randomly sampling data for each lan-
guage pair, it is not completely multi-parallel,
however, it probably contains many multi-parallel
lines. The validation dataset is created for all
non-zero-shot pairs with size per language pair de-
fined by nyest (langpair) = max(nirain (langpair)-
0.0006, 100).

The dataset size is quite small compared to data
used for training state-of-the-art models mainly
due to limited computational resources. However,
we believe that it still allows us to draw conclu-
sions that can be applied at larger scales.

3.2 Model architecture

Previous research has investigated sharing layers
of the modular architecture (Liao et al., 2021). In
this work, we mainly focus on layer sharing in the
encoders. The layers are shared in 2 ways: (1) in-
side language groups (Fig. 2a), and (2) between all
languages (universally, Fig. 2c). These two meth-
ods are also combined into a tiered architecture
(Fig. 2b). We also experiment with different levels
of granularity of modules and introduce language-
group-specific modules referred to as group mod-
ular model (Fig. 1b).

As baselines, we use a modular architecture
without layer sharing (Fig. 1¢) and a universal ar-
chitecture with one encoder and decoder shared
between all languages (Fig. 1a).

All of the models in our experiments follow
the transformer base architecture (Vaswani et al.,
2017) (6 encoder layers, 6 decoder layers). In
addition to dropout of 0.1, attention and activa-
tion dropout of 0.1 are used. The embeddings
are shared within a language module (encoder-
decoder) for language-specific modular models
and within a language group module for group
modular models. For the universal model, all em-
beddings are shared.

94

3.3 Segmentation model training

We use Byte Pair Encoding (BPE) (Sennrich et
al., 2016) implemented in SentencePiece (Kudo
and Richardson, 2018) as the segmentation algo-
rithm. For the language-specific encoder-decoder
approach, we train a BPE model with a vocabu-
lary size of 16,000 for each of the languages. In
the group-specific approach, we have a BPE model
for each of the language groups with a vocabulary
size of 32,000. For the universal model, we have a
single unified BPE model with vocabulary size of
32,000. For training the BPE models, we use char-
acter coverage of 1.0 and training data consisting
of the training set of the corresponding languages.

3.4 Model training

Fairseq (Ott et al., 2019) is used to implement
training and models. We made the code for our
custom implementations publicly available!.

For the following experiments, we set the con-
vergence criteria to be 5 epochs of no improvement
in the validation set loss. To evaluate the experi-
ments, we always use the best epoch according to
the validation loss.

The learning rate is selected from {0.0002,
0.0004, 0.0008} by the highest BLEU score on the
validation set after 20 training epochs. Gradient
accumulation frequency is selected using BLEU
score on the validation set after convergence from
8, 16, 32, 48. For all experiments in this paper, the
total maximum batch size is 384,000 tokens (max
tokens in a batch multiplied by the gradient accu-
mulation frequency and the number of GPUs).

From the initial experiments, learning rate of
0.0004 and gradient accumulation frequency of
48 is selected. For all experiments, Adam opti-
mizer (Kingma and Ba, 2015), inverse square root
learning-rate scheduler with 4,000 warm-up steps,
and label smoothing (Szegedy et al., 2016) of 0.1

1https ://github.com/TartuNLP/fairseq/
tree/modular-layer-sharing



Architecture

Language pair resource

zero-shot low medium-low  medium-high high all
Universal 33.62 38.12 39.64 43.64 4232 39.87
Group modular (GM)
EA3-6 35.03 39.48 40.89 44.66 43.31 41.06
EA5-6 34.52 39.23 40.78 44.59 43.19  40.88
No sharing 33.76 38.90 40.75 44.60 4332 40.73
Language modular (LM)
EA3-6 34.73 38.79 40.91 44.68 4336 40.90
EG3-4 EA5-6 34.57 38.61 40.76 44.91 4359  40.90
EG 3-6 34.37 38.56 40.56 44.90 4342 40.78
EA5-6 33.81 38.28 40.32 44.75 4338  40.54
EGS5 EA6 33.51 38.07 40.33 44.72 4341 4046
EG5-6 33.59 37.85 40.32 44.69 4344 4043
No sharing 32.14 37.19 39.92 44.74 4350  40.02

Table 3: Average test set BLEU scores per language pair resource. EG - encoder layer shared within language group, EA -
encoder layer shared between all languages. Best score(s) per resource (column) in bold.

are used.

The training approach is similar to the propor-
tional approach in Lyu et al. (2020). The batches
are created according to the granularity of the
modules, so that the correct module can be cho-
sen for each batch. For the modular models with
language-specific encoders-decoders, each batch
contains only samples from one language pair. For
the group-specific models, the batch contains data
from one group pair. We determined by prelim-
inary experiments that gradient accumulation is
necessary for the modular models to learn, which
we speculate is due to language-specific modules
and the aforementioned batch creation strategy.
Since the universal model does not have that con-
straint, a lower gradient accumulation frequency of
8 is used. For group-specific and universal models,
target language tokens are added to the input sen-
tence.

We used one NVIDIA A100 GPU for training
the models. All models were trained with mixed
precision.

3.5 Evaluation

BLEU (Papineni et al., 2001) score is used as the
primary metric for translation quality. It is cal-
culated using SacreBLEU? (Post, 2018). Beam
search with beam size of 5 is used for decoding.
Since there are 30 language pairs in total, we group
the languages depending on the size of the lan-
guage pair dataset and mostly look at average test
set BLEU scores for analysis.
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4 Results

4.1 Main results

As a baseline, we trained a universal and a modu-
lar model. We then trained modular models with
2 uppermost or 4 uppermost layers of the encoder
shared universally, language-group-specifically or
tiered (bottom half of the shared layers shared
group-specifically, the rest universally). We also
explore language-group-specific modules (group
modular model). The main results are visible in
Table 3 (evaluation results of individual directions
are in Appendix B). Note that the ordering of rows
in the table corresponds to the increasing order of
total number of parameters which can be found in
Appendix A.

4.1.1 No sharing

We can firstly observe that the modular model
without any sharing (LM No sharing) performs
worse on zero-shot and low-resource language
pairs than the universal model (by 1.48 and 0.93
BLEU points, respectively). However, when look-
ing at the medium-high and high resource di-
rections, the modular model performs achieves a
higher translation quality (by 1.10 and 1.18 BLEU
points, respectively). The translation quality in the
medium-low language pairs is similar between the
universal and baseline modular model.

4.1.2 Sharing 2 layers

Compared to the baseline modular model (LM
No sharing), the modular model with 2 shared
encoder layers (LM EAS5-6) performs better on

Zsignature: refs:1|case:mixed|eff:no|tok:13al|
smooth:exp|version:2.0.0



zero-shot, low, and medium-low resource language
pairs on average, with medium-high and high re-
source language translation quality only slightly
decreasing. Overall, we can observe 0.52 BLEU
point increase in translation quality of the shared
layer model compared to the modular model.

We can also see that with sharing 2 upper lay-
ers in language groups (LM EG5-6) or tiered (LM
EG5 EAG6), the results are similar, but on average
lower by 0.11 and 0.08 BLEU points, respectively.
Sharing layers group-specifically gives a similar
effect to sharing layers between all languages on
average. With group-specific sharing, the lower
resource languages have a slightly lower BLEU
score, and the higher resource languages have a
slightly higher BLEU score compared to the uni-
versal layer sharing. We can see the same trend
with tiered sharing.

Comparing the language modular models with
2 shared layers to the universal model, the group
sharing (LM EG5-6) and tiered (LM EGS5 EA6)
have slightly worse translation quality in zero- and
low-resource language pairs on average, however
they outperform the universal model in all of the
other higher resource directions. The model with
2 universally shared layers outperforms the uni-
versal model in all resource levels. On average,
the universally shared modular model (LM EAS5-
6) outperforms the universal model by 0.67 BLEU
points.

4.1.3 Sharing 4 layers

We can see that sharing 4 layers provides better
translation quality on average than sharing 2 lay-
ers. All of the models (LM EG3-6, LM EG3-
4 EA5-6, LM EA3-6) outperform the universal
model in all resource types. The universally shared
model (LM EA3-6) performs the best out of the
three on average in the zero, low, and medium-low
resource directions, while the tiered model (LM
EG3—4 EAS5-6) has the best higher resource per-
formance, even outperforming the baseline modu-
lar model, although only by a small margin. Over-
all, the two aforementioned models have the high-
est average BLEU score of the language modu-
lar models, outperforming the baseline modular
model by 0.88 points and the universal model by
1.03 points. Both of them outperform the univer-
sal model in the zero-shot direction: the univer-
sally shared modular model (LM EA3-6) by 1.11
BLEU points and the tiered modular model (LM
EG3—4 EA5-6) by 0.95 BLEU points.
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4.1.4 Group modules

When looking at models with group-specific
modules (group modular in Table 3), we can see
that they outperform the universal model and the
baseline language modular model (LM No shar-
ing) on average. The improvement over the base-
line modular model comes mostly from the in-
crease in translation quality in low-resource di-
rections and the improvement over the universal
model from higher-resource directions, as we also
observed in the previous results. We can also ob-
serve that the group modular models outperform
the universal model at all resource levels.

The group modular model also benefits from
having layers shared between all languages. The
average BLEU score increases when shared lay-
ers are added to the group modular model, which
can mainly be attributed to the increase in zero-
shot and low resource translation quality.

The group modular model with 4 encoder lay-
ers (GM EA3-6) shared is the best performing
model in zero-shot and low-resource directions,
outperforming the universal model by 1.41 BLEU
points in zero-shot and 1.36 BLEU points in low-
resource directions on average. On average, it
outperforms the baseline language modular model
by 1.04 BLEU points and the baseline universal
model by 1.19 BLEU points. Complete evaluation
results are presented in Appendix B.

Although we used language group modules and
language group sharing in our experiments, we
failed to find any meaningful effect on the trans-
lation quality when translating between language
groups versus translating between languages in the
same group.

4.2 Sharing between all languages

The previous experiments have shown that group
sharing and tiered architectures were only slightly
different from sharing between all languages. Fur-
thermore, the number of shared layers affects the
result more than the type of sharing. Hence, we
continue with experiments on sharing the language
modular model layers between all languages to
further study the effect of number of encoder lay-
ers shared on BLEU scores. The results can be
seen in Table 4.

We can see that, on average, sharing more lay-
ers increases the BLEU score steadily until 5 up-
per encoder layers are shared. Compared to shar-
ing 5 upper layers, sharing all 6 layers slightly de-



Enc. shared layer(s)

Language pair resource

zero-shot low medium-low  medium-high high all

No sharing 32.14 37.19 39.92 44.74 4350  40.02
6 33.07 37.63 40.09 44.67 4335 4023
5-6 33.81 38.28 40.32 44.75 4338  40.54
4-6 34.16 3843 40.41 44.85 4343 40.68
3-6 34.73 38.79 40.91 44.68 4336  40.90
2-6 34.97 39.03 40.81 44.94 4344  41.03
1-6 34.61 38.70 40.79 44.60 4323 40.80

Table 4: Average test set BLEU scores for experiments with encoder layer sharing between all languages in the language

modular model.

creases the BLEU scores in all language resource
types. This could be attributed to: (1) 1 language-
specific layer can better transform the language-
specific embeddings to a joint representation than
none or (2) more capacity with 5 layers shared and
1 language-specific compared to sharing all 6.

The modular model with encoder layers 2-6
shared provides a very close BLEU score to the
best performing model from the previous set of ex-
periments (GM EA3-6). It should be noted how-
ever that none of the shared layer models outper-
form the plain modular model in high resource lan-
guages on average, although the difference is quite
small. Detailed evaluation results with all transla-
tion directions for this model are available in Ap-
pendix B.

4.3 Effect of joint embeddings

Since the universal model uses joint embed-
dings and vocabulary and the modular model
uses language-specific embeddings, we investigate
whether this could be the reason for the better
performance of the latter. We train a modular
model with shared embeddings, vocabulary, and
encoder layers while still using language-specific
decoders. The results in Table 5 show that on av-
erage the modular model with shared encoder lay-
ers still outperforms the universal model in all re-
source types even with shared vocabulary and em-
beddings. Although the selection of training data
for the SentencePiece model did not take the lan-
guage data imbalance into account, we can see that
using a unified segmentation model and vocabu-
lary does not significantly decrease the translation
quality.

5 Discussion and future work

Multilingual NMT is a complex problem. On
the one hand, we face the problem of poor low-
resource MT performance of the fully modular
model, and on the other hand, we have the capac-
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ity issues of the universal model. Our experiments
show that we can achieve the best of both worlds
with models that combine aspects of both universal
and modular NMT architectures.

Although including shared layers in the modu-
lar model has kept the translation quality of higher
resource language pairs the same or slightly de-
creased it, there has been a substantial improve-
ment in the translation quality of low and zero re-
source language pairs compared to the plain mod-
ular model. Furthermore, compared to the univer-
sal model, these shared layer modular models sub-
stantially increase translation quality in all types of
language resource directions.

Language-group-specific modules are worth
considering as an architecture, as they provide
better translation quality in all language resource
types compared to the universal model while hav-
ing fewer parameters in total than models with
language-specific modules. Even with language
group modules, the zero-shot and low-resource
translation quality benefits from layers shared be-
tween all languages.

The layer sharing strategy ultimately depends
on the available computational and data resources.
Having language-specific modules could become
memory inefficient in massively multilingual sce-
narios. Hence, having language group modules or
layer sharing is a good compromise between ca-
pacity and model size. Approaching the problem
from the perspective of the universal model, using
some degree of modularization is a good way of
increasing capacity without sacrificing zero-shot
performance or training time.

Our work also leaves room for future research.
While we focused on encoder layer sharing, de-
coder layer sharing is a direction that we want to
investigate in future work comprehensively. In-
crementally adding languages is also an important
aspect of modular models and should be inves-
tigated. In our work, we had a relatively small



Architecture

Language pair resource

zero-shot low medium-low  medium-high high all
Universal 33.62 38.12 39.64 43.64 4232 39.87
Language modular
shared enc. + emb. + voc. 34.65 39.01 40.67 44.43 43.06  40.77
shared enc. 34.61 38.70 40.79 44.60 43.23  40.80

Table 5: Average test set BLEU scores for embedding sharing experiments. shared enc. — shared encoder; shared enc. + emb.
+ voc. — shared encoder, shared embeddings (incl. decoder embeddings) and joint vocabulary.

dataset compared to many state-of-the-art systems,
so it would be beneficial to see how our approaches
work in a scenario with significantly more data.
As previously mentioned, using significantly more
languages in the system could also set more con-
straints on our approaches and would be a promis-
ing direction for future works since it could high-
light differences between our proposed methods
better.

6 Conclusion

In this paper, we propose multiple ways of improv-
ing universal models and models with language-
specific encoders-decoders by combining features
of both. We experimented with language- and
language-group-specific modules and sharing lay-
ers of the encoders between all languages, groups
of languages, or combining them into a tiered ar-
chitecture. We found that having some layers uni-
versally shared (between all languages) benefits
the zero-shot and low-resource translation qual-
ity of the modular architectures while not hurt-
ing the translation quality of high-resource direc-
tions. The modular models with some universally
shared layers outperform the universal models in
all language-resource types (from zero to high).
Our best model outperforms the baseline language
modular model by 1.04 BLEU points and the uni-
versal model by 1.19 BLEU points on average.

References

Arivazhagan, Naveen, Ankur Bapna, Orhan Firat,
Dmitry Lepikhin, Melvin Johnson, Maxim Krikun,
Mia Xu Chen, Yuan Cao, George Foster, Colin
Cherry, Wolfgang Macherey, Zhifeng Chen, and
Yonghui Wu. 2019. Massively Multilingual Neu-
ral Machine Translation in the Wild: Findings and
Challenges. 7.

Dabre, Raj, Chenhui Chu, and Anoop Kunchukuttan.
2020. A Survey of Multilingual Neural Machine
Translation. ACM Computing Surveys, 53(5).

Escolano, Carlos, Marta R. Costa-jussa, and José A. R.

98

Fonollosa. 2019. From Bilingual to Multilingual
Neural Machine Translation by Incremental Train-
ing. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics: Stu-
dent Research Workshop, pages 236-242, Strouds-
burg, PA, USA. Association for Computational Lin-
guistics.

Escolano, Carlos, Marta R. Costa-jussa, José A. R.
Fonollosa, and Mikel Artetxe. 2020. Multilin-
gual Machine Translation: Closing the Gap between
Shared and Language-specific Encoder-Decoders. 4.

Fan, Angela, Shruti Bhosale, Holger Schwenk, Zhiyi
Ma, Ahmed El-Kishky, Siddharth Goyal, Man-
deep Baines, Onur Celebi, Guillaume Wenzek,
Vishrav Chaudhary, Naman Goyal, Tom Birch, Vi-
taliy Liptchinsky, Sergey Edunov, Edouard Grave,
Michael Auli, and Armand Joulin. 2020. Beyond
English-Centric Multilingual Machine Translation.
10.

Habash, Nizar and Jun Hu. 2009. Improving Arabic-
Chinese Statistical Machine Translation using En-
glish as Pivot Language. In EACL 2009 - 4th Work-
shop on Statistical Machine Translation, Proceed-
ings of theWorkshop.

Johnson, Melvin, Mike Schuster, Quoc V. Le, Maxim
Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Tho-
rat, Fernanda Viégas, Martin Wattenberg, Greg Cor-
rado, Macduff Hughes, and Jeffrey Dean. 2016.
Google’s Multilingual Neural Machine Translation
System: Enabling Zero-Shot Translation. 11.

Kingma, Diederik P. and Jimmy Lei Ba. 2015. Adam:
A method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015 - Conference Track Proceedings.

Koehn, Philipp. 2005. Europarl : A Parallel Corpus for
Statistical Machine Translation. MT Summit, 11.

Kudo, Taku and John Richardson. 2018. Sentence-
Piece: A simple and language independent subword
tokenizer and detokenizer for neural text processing.
In EMNLP 2018 - Conference on Empirical Methods
in Natural Language Processing: System Demon-
strations, Proceedings.

Liao, Junwei, Yu Shi, Ming Gong, Linjun Shou, Hong
Qu, and Michael Zeng. 2021. Improving Zero-shot
Neural Machine Translation on Language-specific
Encoders- Decoders. In 2021 International Joint



Conference on Neural Networks (IJCNN), pages 1—
8. IEEE, 7.

Lyu, Sungwon, Bokyung Son, Kichang Yang, and
Jaekyoung Bae. 2020. Revisiting Modularized
Multilingual NMT to Meet Industrial Demands. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 5905-5918, Online, 11. Association for Com-
putational Linguistics.

Ott, Myle, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. Fairseq: A fast, extensible
toolkit for sequence modeling. In NAACL HLT 2019
- 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies - Proceedings of the
Demonstrations Session.

Papineni, Kishore, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2001. BLEU: a Method for Automatic
Evaluation of Machine Translation. In Proceedings
of the 40th Annual Meeting on Association for Com-
putational Linguistics - ACL ’02, page 311, Morris-
town, NJ, USA. Association for Computational Lin-
guistics.

Post, Matt. 2018. A Call for Clarity in Reporting
BLEU Scores. In WMT 2018 - 3rd Conference
on Machine Translation, Proceedings of the Confer-
ence, volume 1.

Sennrich, Rico, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In 54th Annual Meeting of the As-
sociation for Computational Linguistics, ACL 2016 -
Long Papers, volume 3.

Steinberger, Ralf, Bruno Pouliquen, Anna Widiger,
Camelia Ignat, TomaZ Erjavec, Dan Tufis, and
Daéniel Varga. 2006. The JRC-Acquis: A multilin-
gual aligned parallel corpus with 20+ languages. In
Proceedings of the 5th International Conference on
Language Resources and Evaluation, LREC 2006.

Szegedy, Christian, Vincent Vanhoucke, Sergey Ioffe,
Jon Shlens, and Zbigniew Wojna. 2016. Rethinking
the Inception Architecture for Computer Vision. In
Proceedings of the IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition,
volume 2016-December.

Tiedemann, Jorg. 2012. Parallel data, tools and inter-
faces in OPUS. In Proceedings of the 8th Interna-
tional Conference on Language Resources and Eval-
uation, LREC 2012.

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, fLukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 2017-December.

99

Zhang, Biao, Philip Williams, Ivan Titov, and Rico
Sennrich. 2020. Improving Massively Multilingual
Neural Machine Translation and Zero-Shot Transla-
tion.

A Number of parameters

The number of parameters of the models can be
seen in Table 6.

Architecture Total params. Inference params.

Universal 60,526,080 60,526,080
Group modular
EA3-6 108,442,624 60,526,080
EA5-6 114,747,392 60,526,080
No sharing 121,052,160 60,526,080
Language modular
EA3-6 250,938,368 52,331,008
EAS5-6 EG3-4 257,243,136 52,331,008
EG3-6 263,547,904 52,331,008
EAS5-6 282,462,208 52,331,008
EA6 EG5 285,614,592 52,331,008
EG5-6 288,766,976 52,331,008
No sharing 313,986,048 52,331,008

Table 6: Number of parameters

B Detailed evaluation results

Tables 7, 8, 9, 10, and 11 provide detailed evalua-
tion results for selected experiments.

tgt
Src &

en de da fr es pt
en - 38.84  40.39 4860 5107 4532
de  46.41 - 32.44 3860 39.08  34.41
da 4560  30.57 - 3677 3732 3277
fr 4928 3219  31.65 - 4295  39.65
es 5206 3266 3263 44.02 - 41.13
pt  49.17 3137 3174 4325 44.09 -
Table 7: Universal model test set BLEU scores.

tgt
Src &

en de da fr es pt
en - 1.30 2.14 1.25 .30 -0.30
de 1.44 - 0.98 1.31 1.15 -0.38
da 056  -0.32 - -1.56  -1.60  -2.93
fr 1.07 0.73 1.03 - 1.04 0.16
es 1.61 0.98 117 0.50 - 0.12
pt -149 284  -255 -0.77  -0.60 -

Table 8: Improvement of the baseline language modular
model over the universal model on test set in BLEU points.



src et

en de da fr es pt
en - 076 178 1.44 055 1.29
de 1.00 - 152 112 113 1.37
da 098 091 - 141 087 128
fr 079  0.82 1.62 - 075 1.51
es 1.31 1.11 1.87 1.25 - 098
pt 138  1.14  1.65 134 095 -

Table 9: Improvement of the group modular model with layers 3—6 shared (group modular EA3-6) over the universal model
on test set in BLEU points.

src tet

en de da fr es pt
en - 084 175 149 110  -0.62
de 140 - 1.30 1.19 143  -044
da 230 125 - 193 159 035
fr 094 088 210 - 126 0.18
es 170 106  1.79 1.26 - 0.22
pt 173 080 1.70 1.07 133 -

Table 10: Improvement of the modular model with layers 2—6 shared (EA2-6) over the universal model on test set in BLEU
points.

Lang. pair  Universal Group modular Language modular
EA3-6  EA5-6 - EA3-6 EG3-4EA5-6 EG3-6 EA56 EG5EA6 EG5-6 -

en—de 38.84 39.6 39.57 39.77 39.96 40.11 39.8 39.67 39.96 39.83 40.14
de—en 46.41 47.41 47.25 47.32 47.76 47.8 47.78 47.88 47.56 47.72 47.85
en—da 40.39 42.17 41.99 42.37 42.36 42.65 42.5 42.52 42.45 42.68 42.53
da—en 45.6 46.58 46.77 46.62 47.86 4791 47.52 46.93 47 47.23 46.16
en—fr 48.6 50.04 50.04 49.9 49.78 50.15 49.78 49.77 50.08 49.84 49.85
fr-en 49.28 50.07 49.84 50.32 50.43 50.56 50.49 50.57 50.27 50.45 50.35
en—es 51.07 51.62 52.03 52.01 51.92 52.22 52.34 52.18 52.03 52.07 52.37
es—en 52.06 53.37 53.27 53.58 53.72 53.77 53.84 53.89 53.69 53.7 53.67
en—pt 45.32 46.61 46.49 46.12 45.11 4473 44.58 45.04 45.07 44.54 45.02
pt—en 49.17 50.55 50.39 50.53 50.13 49.95 49.95 48.97 48.82 48.87 47.68
de—da 32.44 33.96 33.66 33.56 34.08 34.11 33.67 33.93 33.75 33.58 33.42
da—de 30.57 31.48 31.42 31.21 31.89 31.53 31.27 30.85 30.8 30.95 30.25
de—fr 38.6 39.72 39.7 39.7 39.56 39.92 39.72 39.77 39.72 39.97 39.91
fr—de 32.19 33.01 32.72 32.93 32.68 32.98 32.97 32.64 32.89 32.83 32.92
de—es 39.08 40.21 40.12 40.2 39.94 40.44 40.28 40.18 40.07 40.06 40.23
es—de 32.66 33.77 33.61 33.29 33.44 33.63 33.76 33.66 33.55 3345 33.64
de—pt 34.41 35.78 35.72 35.14 34.27 3435 34.28 34.59 34.33 34.18 34.03
pt—de 31.37 32.51 3235 32.17 31.55 31.51 31.52 30.38 30.03 30.02 28.53
da—fr 36.77 38.18 3791 37.94 37.99 38 38.26 37.03 36.78 36.82 35.21
fr—da 31.65 33.27 32.54 31.49 33.67 33.11 32.8 33.65 33.37 32.66 32.68
da—es 37.32 38.19 38.31 37.84 38.47 38.56 38.59 37.39 37.09 37.52 35.72
es—da 32.63 345 3341 32.46 34.52 34.81 33.78 34.62 34.14 34.23 33.8
da—pt 32.77 34.05 33.78 335 33.19 32.57 32.72 31.79 31.66 31.74 29.84
pt—da 31.74 33.39 32.57 31.24 32.76 3234 32.38 31.44 31.13 30.86 29.19
fr—es 42.95 43.7 43.78 43.78 43.86 44.18 44.09 43.73 43.83 43.86 43.99
es—r 44.02 45.27 44.74 44.76 45.18 45.21 45.08 44.88 45.14 44.98 44.52
fr—pt 39.65 41.16 41.08 40.84 40.13 39.57 39.79 39.88 39.97 39.64 39.81
pt—Afr 43.25 44.59 44.27 44.24 44.19 43.94 43.79 43.16 43.14 42.99 42.48
es—pt 41.13 42.11 42.15 42.38 41.65 41.39 41.36 41.19 41.42 41.04 41.25
pt-es 44.09 45.04 44.88 44.78 45.09 44.95 44.61 44.06 44.1 44.46 43.49

Table 11: Test set BLEU scores for the main experiments. The best result of each row is in bold.
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Abstract

This study focuses on English-Dutch lit-
erary translations that were created in a
professional environment using an MT-
enhanced workflow consisting of a three-
stage process of automatic translation fol-
lowed by post-editing and (mainly) mono-
lingual revision. We compare the three
successive versions of the target texts. We
used different automatic metrics to mea-
sure the (dis)similarity between the con-
secutive versions and analyzed the linguis-
tic characteristics of the three translation
variants. Additionally, on a subset of 200
segments, we manually annotated all er-
rors in the machine translation output and
classified the different editing actions that
were carried out. The results show that
more editing occurred during revision than
during post-editing and that the types of
editing actions were different.

1 Introduction

With the current quality of neural machine trans-
lation (NMT) systems, the question arises whether
post-editing NMT output is a viable alternative to
human translation for real large-scale translation
tasks. In this paper, we present the results of a
case study on literary translations. We collabo-
rated with Nuanxed, a book translation company,
which uses an MT-enhanced workflow consisting
of a three-stage process of automatic translation
followed by post-editing and revision.

In this case study, we compare three successive
versions of the target texts as they proceed through
© 2022 The authors. This article is licensed under a Creative

Commons 3.0 licence, no derivative works, attribution, CC-
BY-ND.

the translation process: the machine translation,
the post-edited and the (mainly) monolingually re-
vised translation. We used different automatic
metrics to measure the (dis)similarity between the
consecutive versions and to analyze the linguistic
characteristics of the three translation variants. To
assess the quality of the MT output and to get an
insight into the editing actions that were carried
out, a fine-grained manual annotation was carried
out on a subset of 200 segments.

2 Related research

Although employing Machine Translation (MT)
for more creative text types such as literature may
not seem to be a natural fit, several researchers
looked into the feasibility of using MT for literary
texts, first with statistical (Besacier and Schwartz,
2015; Toral and Way, 2015) and later with neural
machine translation systems (Toral and Way, 2018;
Kuzman et al., 2019; Toral et al., 2020).

To assess the usefulness of MT for literary texts,
researchers often compare raw (unedited) machine
translations of literary texts with their human-
translated (HT) counterparts. Three successive
studies were conducted to assess the quality of
generic NMT systems for English-Dutch literary
texts, the language pair we also focus on in this
study (Tezcan et al., 2019; Fonteyne et al., 2020;
Webster et al., 2020). According to these studies,
the main issues found in literary NMT are differ-
ent types of mistranslations, coherence issues, and
style & register problems. The percentage of NMT
sentences that were free of errors varied and aver-
ages ranged from 44% to 25% in different studies,
with a notable exception of the NMT version of
Jane Austen’s Sense and Sensibility in which only
5% of all machine-translated sentences were error-
free. It thus seems that NMT quality is highly de-

Macken, Rufener, Van den Bogaert, Daems, Tezcan, Vanroy, Fonteyne, Barrault, Costa-jussa, Kemp, Pilos, Declercq, Koponen, Forcada,
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pendent on the source text and that some literary
texts are more challenging for automatic transla-
tion systems than others. When comparing lin-
guistic characteristics of NMT and HT, the ma-
chine translations were less lexically rich, showed
a lower level of lexical and semantic cohesion and
tended to follow the structures of the source sen-
tences more closely, whereas the human transla-
tions showed the ability to deviate from the source
structure (Webster et al., 2020). It is thus clear that
in order to obtain high-quality literary translations,
human intervention in the form of a post-editing
(PE) step is needed.

Daems and colleagues investigated whether
post-edited MT output differs from HT in
English-to-Dutch texts (2017), and called this
(dis)similarity between PE and HT ‘post-editese’.
The authors did not find proof of this. Neither
humans nor computer systems were able to dis-
tinguish between the two types of translation, al-
though the authors note that this may be due to a
rather limited dataset size. They considered fea-
tures such as average word and sentence length,
average tf-idf, perplexity, type-token ratio, num-
ber of verb phrases/passives, parse tree depth, and
so on. Working with different language combi-
nations and architectures, Toral (2019) came to a
different conclusion. He found that PE is indeed
notably different from HT in terms of a limited
set of features, namely lower lexical variety (type-
token ratio) and density (content words ratio), sen-
tence length inference of ST, and POS sequence
perplexity. It must be noted however, that not only
the language pairs differed in the studies of Daems
et al. (2017) and Toral (2019), and hence the MT
quality, but also the proficiency level and the de-
gree of postediting that was requested (light or
full). It is thus difficult to draw conclusions about
the existence of post-editese.

Neither Daems and colleagues nor Toral investi-
gated post-editese in literary texts. Castilho and
Resende (2022), however, found some evidence
for post-editese in literary translation of English
into Brazilian Portuguese but note that such ob-
servations depend on the literary genre. Statistical
differences between HT and PE were found, espe-
cially in the thriller genre (The Girl on the Train;
TGOTT) and only barely in children’s literature
(Alice’s Adventures in Wonderland; AW), which is
explained by the emphasis on the author’s figura-
tive style in the latter book. Post-editese effects for
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lexical density (simplification), length ratio (text
length of PE vs HT; explicitation), personal pro-
noun ratio (explicitation), and convergence (trans-
lated texts are more similar to each other than orig-
inal texts are to each other) (partially) were found
for TGOTT, but only evidence for convergence
was discovered in AW.

Guerberof-Arenas and Toral (2020) focused on
creativity, one of the distinguishing features of lit-
erary texts. They analyzed both creativity and ac-
ceptability in MT, PE and HT texts. The trans-
lation and post-edited version were created by
two professional translators specialized in literary
translation. To quantify acceptability they counted
the number of errors in the different translations.
Interestingly, they found that the HT translations
contained slightly more errors than the PE transla-
tions, with HT having lowest number fluency er-
rors and PE having the lowest number of accuracy
errors. To measure translational creativity they se-
lected 48 English source sentences that contained
units of high creativity potential (in which transla-
tors most likely depart from the source text struc-
ture): metaphorical expressions, imagery and ab-
straction, idioms, comparisons, verbal phrases or
complex syntactic structures. They quantified cre-
ativity by investigating creative shifts, which can
be defined as “abstracting, modifying or concretis-
ing source text ideas in the target text” (Bayer-
Hohenwarter, 2011, p. 663). When comparing the
three types of shifts in the HT and PE condition, no
major differences were found for abstractness and
modification, but the HT contained more instances
of concretisation.

The work of Daems et al. (2017) mentioned
above built on earlier work on ‘translationese’
(Gellerstam, 1986). In the field of translation
studies, it is generally accepted that a translated
text is different from an original text in the same
language, almost as if it is a genre on its own.
Baker (1993, p. 243-245) discusses six “universal
features of translation” that may mark translated
texts: explicitness, disambiguation and simplifica-
tion, a focus on grammaticality (especially in in-
terpreting), avoiding repetitions by omission or re-
wording, exaggeration of target language features,
and finally unexpected distributions of certain lan-
guage features with respect to the source text (ST)
and original texts in the target language. This phe-
nomenon where translation is considered different
from original text is often referred to as ‘transla-



tionese’, and researchers have investigated its ex-
istence, both via human perception and computer
models.

Kruger (2017), however, made an interesting
point by suggesting that some of these transla-
tionese features might also be the consequence of
the editorial intervention subsequent to translation.
Evidence for features commonly denoted as trans-
lationese such as increased explicitness, simplifi-
cation and normalisation were also found in a par-
allel corpus of monolingual edited texts and their
unedited counterparts. It thus seems that transla-
tion and linguistic editing share certain similari-
ties.

In the publishing sector, it is quite common that
many actors play a role in the production of a trans-
lation. For example, Moe and colleagues (2021)
explain that in Slovenia language revisors cor-
rect the grammar and style of translations, usually
without having access to the source texts. They
may change the text’s structure, syntax and word
order and replace words and phrases to make the
text more suitable. Different terms are used to refer
to this process: linguistic revision/editing, copy-
editing and translation revision. Mossop states that
both editing and revision “involve checking lin-
guistic correctness as well as the suitability of a
text’s style for its future readers and for the use
they will make of it” (Mossop et al., 2020, p. 1).
Translation revision can be considered the broader
term as it also comprises a bilingual component,
although different revision procedures exist (Ipsen
and Dam, 2016) and the process can be predomi-
nantly monolingual (the revisor focuses on the tar-
get text and only refers back to the source text if
a passage is problematic) or bilingual (the revi-
sor systematically compares the source and target
text).

3 Method
3.1 Data

The data we received from the company consists of
an English novel (68,762 source words) and three
Dutch translations: the machine translation gener-
ated by DeepL!, the post-edited (PE) version and
the revised (REV) version. An NDA was signed
between the researchers and the company. The
post-editor worked in a standard CAT tool that di-
vides the text in sentences and displays both the

"https://www.deepl.com/, translations created end
2021
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source and target segments side-by-side. The post-
editor thus worked on a segment-by-segment basis
to edit the machine translation suggestions. The
revisor received the post-edited translation in Mi-
crosoft Word. Revision in this case is mainly a
monolingual process, which aims at improving the
reading experience or, in the case of audio-books,
the listening experience. The revisor could consult
the source text whenever there was a need. The
post-editor was Flemish, the revisor Dutch. Both
the post-editor and the revisor were paid by the
hour, so there was no real time pressure. For this
study, we used the first chapter of the book. We
used YouAlign? to align all versions at sentence
level and manually verified the sentence align-
ments. The data set consists of 578 aligned seg-
ments (7,921 source words; 9,419 source tokens).

3.2 Automated evaluation

Automatic evaluation metrics for MT play a cen-
tral role in rapid assessment of MT quality. A
key characteristic of almost all automatic MT eval-
uation metrics is that they assess MT quality by
calculating the similarity between the MT output
to a reference translation. We use automatic MT
evaluation metrics with a different goal, namely to
measure the (dis)similarity between the consecu-
tive versions of the texts produced in the target lan-
guage, i.e. the machine translations (MT), the post-
edited (PE) and the revised translations (REV).

In literature, we can find various metrics that
differ with regard to the approach they take to mea-
sure the similarity between two texts. To obtain a
nuanced picture, we use a variety of MT evalua-
tion metrics, which focus on different dimensions,
such as Translation Edit Rate (TER) (Snover et
al., 2006), CharCut (Lardilleux and Lepage, 2017),
COMET (Rei et al., 2020) and BERTScore (Zhang
et al., 2019). While CharCut and TER measure
the amount of editing required to transform one
text into another in terms of character- and token-
level edit operations respectively, COMET and
BERTScore target the semantic aspect of transla-
tion quality by calculating the distance between
vector representations of sentences and tokens, re-
spectively. Additionally, we use ASTrED (Van-
roy, 2021), which has been originally proposed to
quantify syntactic similarity between a source sen-
tence and its (human) translation. By working on
a deeper linguistic level, ASTrED compares the

https://youalign.com/



edit distance between the dependency structures of
two sentences, while also taking word alignment
information into account. Word alignments were
automatically created with AwesomeAlign (Dou
and Neubig, 2021). For this metric, we only used
sentences that were translated as single sentences,
without splitting or merging (156 in total of the
manually verified subset, see below).

Besides analysing the degree of similarity be-
tween the different versions of the target texts, we
were also interested in how well the lexical rich-
ness of the original novel was captured in the three
versions. With the assumption that an increase in
number of types with respect to number of tokens
indicates a greater lexical richness in a given text,
we calculated type-token ratio (TTR) and Mass in-
dex (Mass, 1972), which, unlike TTR, is not sensi-
tive to text variations in text length. We calculated
TTR and Mass index values of each document sep-
arately.

Word translation entropy, finally, is a formula
to measure lexical variation by taking into account
for each source word how many translations it has
or can have in a given corpus based on its word
alignments, and the distribution of those transla-
tions (Schaeffer et al., 2016). Put differently, it
quantifies how certain or unambiguous the trans-
lation of a token is. A higher value indicates
more uncertainty, i.e., a less straightforward lexi-
cal choice. In this study, we use this formula to
measure average word translation entropy (AWTE)
on document level, by measuring entropy for each
source word (English) of the first chapter of the
novel taking into account the three different trans-
lations in Dutch.

All data sets were tokenized prior to performing
automatic measurements, using the Stanza Toolkit
(Qi et al., 2020). While the MT metrics were cal-
culated using the data with the original casing, to
obtain more accurate results, we used the lower-
cased version of each document to measure lexical
richness.

3.3 Manual evaluation

The first 200 segments (3,222 source tokens) of the
data set were manually annotated. The manual an-
notation task consists of three separate sub-tasks:
labelling of errors in the MT output, labelling of
PE and REV actions and labelling of remaining er-
rors in the final translation. The first sub-task al-
lows us to assess the quality of the NMT system

on the literary text; the second and third sub-tasks
give us insights in the post-editing and revision ac-
tions and allow us to assess the quality of the final
translation.

To label the MT errors we used the SCATE MT
error taxonomy tailored to the annotation of liter-
ary MT on document level (Tezcan et al., 2019).
This taxonomy is based on the well-known dis-
tinction between accuracy and fluency and is hi-
erarchical in nature. According to this taxonomy
accuracy and fluency errors can be annotated on
the same text span, e.g. when a mistranslation error
(accuracy error) causes a logical problem (fluency
error). However, to minimize the annotation work-
load, we decided to only label the accuracy errors
in this case. We also reduced the number of error
labels by merging a number of error categories that
were present in the original taxonomy.

To classify the PE and REV actions from a lin-
guistic perspective, a classification scheme was
devised based on the work of Desmet (2021)
and Vandevoorde et al. (2021). The categoriza-
tion scheme contains four main categories (lexico-
semantic, syntax & morphology, style and spelling
& punctuation), which are further subdivided in
subcategories (see Table 1). All PE and REV ac-
tions were also labelled from a translation qual-
ity perspective. We distinguished the following
four categories to label a post-editing action for
its correctness and necessity: MT error correction,
consistency, preferential and undesirable change.
When labelling revision actions, the label PE error
correction was added to this list to indicate unde-
sirable changes made by the post-editor that were
corrected by the revisor. In the final translation we
also labelled all MT and PE errors that were not
corrected.

Detailed annotation guidelines were drafted to
ensure consistency between annotators. To facili-
tate the manual annotation process, the WebAnno>
annotation tool was used. Figure 1 shows a full
example of the annotation process. Two errors
were labelled in the MT version: the phrase met
een opgewonden glimlach (with an excited smile)
is placed in a wrong position in the clause and glin-
steren is a wrong translation for glimpse. The post-
editor corrected these two MT errors and made
two preferential changes: zojuist was replaced by
a synonym (net) and the red of Rudolph’s nose
is changed into Rudolph’s red nose. The revisor

*https://webanno.github.io/webanno/
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Lexico-semantic

Syntax & morphology

Addition Agreement
Coherence marker Number
Explicitation Diminutive
Implicitation Comparison
Deletion Tense
Synonym Other
Collocation & idiom
Specific Spelling & punctuation
Vague Capitalization
Other Compound

Linking word punctuation
Style Punctuation linking word
Word order Punctuation added
Structural change Punctuation deleted
Shorter Other

Split sentence
Merged sentence
Other

Table 1: Linguistic typology

made additional changes: glimlach was replaced
by a diminutive lachje, the proper name Rudolph
was spelled in Dutch, and the preposition fussen
was replaced by another preposition door. The re-
visor also made some structural changes and split
the long sentence and rephrased the last clause
making it a less literal translation.

Aunty Alex whispered that she was almost certain she had just glimpsed the
red of Rudolph 's nose though the clouds with an excited smile , but Alfie
thought that her eyes seemed a little bit sad .

Tante Alex fluisterde dat ze er bijna zeker van was dat ze zojuist

[Gra-Synt 1 Fiu
met een opgewonden glimlach het rood van Rudolphs neus door de wolken
Mistra-Gth | Ace
had zien glinsteren , maar Alfie vond dat haar ogen een beetje droevig leken

TrarsCual | MT-arr
Style | Order

Tante Alex fluisterde met een opgewonden glimlach dat ze er bijna zeker van

TransCual | Pref TransQual | Praf TransQual | MT-arr

Lex-Sem | Syn Style | Structural Lex-Serm | Impl
was dat ze net Rudolphs rode neus door de wolken had gezien
maar Alfie vond dat haar ogen een beetje droevig leken .

Syni-Morp | Oim
Lex-Sem | Vague

Tante Alex fluisterde met een opgewonden lachje dat ze er bijna zeker

Spel-Punct | Other
Rudolfs

Lex-Sem | Other

van was dat ze net rode neus  tussen de wolken had

Style | Spiit
gezien

Style | Struciural|
Alfie vond dat ze er een beetje droevig uitzag .

Figure 1: Example of annotations made in Webanno

To help the annotators to spot the differences be-
tween the MT output and the PE version or the
PE and the REV, we used Charcut (Lardilleux and
Lepage, 2017), which creates an HTML document
in which differences between two versions are vi-
sualized (see Figure 2).
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S2_EP1-DeepL.tok.txt

Tante Alex fluisterde dat ze er bijna zeker van was dat ze
zojuist met een opgewonden glimlach het rood van Rudolphs neus
door de wolken had zien glinsteren , maar Alfie vond dat haar
ogen een beetje droevig leken .

S2_EP1-PE.tok.txt

Tante Alex fluisterde met een opgewonden glimlach dat ze er bijna

zeker van was dat ze net Rudolphs rode neus door de wolken had

gezien , maar Alfie vond dat haar ogen een beetje droevig leken .

Figure 2: Example of Charcut visualizations (MT-PE)

4 Results

4.1 Automated evaluation

First, we use five automatic metrics that target dif-
ferent aspects of (dis)similarity, as described in
Section 3.2, between the consecutive versions of
the texts produced in the target language. The re-
sults are presented in Table 2.

MT-PE PE-REV MT-REV
CharCut | 0.126 0.148 0.240
TER | 0.215 0.251 0.355
BERTScore 1 0.941 0.936 0.900
COMET 1 0.835 0.765 0.620
ASTrED | 0.305 0.307 0.332

Table 2: Overview of automated evaluation results. Up ar-
row: higher value means more similar; down arrow: lower
value means more similar.

According to all automatic metrics used in this
analysis, each consecutive modification made to
the MT output, i.e. post-editing and revision, re-
sults in observable differences for all measured as-
pects, namely the degree of editing (CharCut and
TER), semantic (BERTScore and COMET) and
syntactic (ASTrED) similarity. Moreover, the level
of (dis)similarity between the different document
pairs seems to be different. As shown by the re-
sults of all five metrics, the similarity between
the MT output and post-edited version (MT-PE)
is higher compared to the similarity between post-
edited and revised translations (PE-REV). More-
over, the similarity between the MT output and the
revised translations is the lowest in comparison to
the analyses made on other document pairs.

To measure lexical richness, we calculated TTR
and Mass index for the chapter in English (SRC)
and all three versions of the translated text in
Dutch. These results are provided in Table 3, to-
gether with the unique and total number of tokens
for each text.

These results show that, compared to the origi-
nal text in English, all three translations in Dutch
have a higher number of tokens and unique tokens.



SRC MT PE REV
#unique tokens 1820 1922 1962 2022
# tokens 9419 9285 9429 9632
TTR 0.182 0.196 0.198 0.199
MASS 0.020 0.020 0.019 0.019

Table 3: Summary of lexical richness measures

Moreover, these numbers increase with a similar
ratio after each consecutive modification made on
the MT output, resulting in a difference of 347 to-
kens and 100 unique tokens between the revised
translations and the MT output. The post-editing
and revision steps also make the translations lexi-
cally more rich, as observed by the TTR measure-
ments. TTR is also observed to be higher in all
three versions of the target text compared to the
original novel. However, these observations are
not confirmed by the Mass index scores, which in-
dicate similar levels of lexical richness in all four
documents.

In a final analysis we measure AWTE by com-
paring the MT output, the PE and REV trans-
lations to the original novel in English. To in-
crease our confidence about the differences be-
tween the AWTE values (as word alignment was
an automatic process), for each comparison, we
use translation options with the minimum proba-
bility threshold of 0.01 and we repeat the calcula-
tions by increasing the minimum frequency thresh-
old for the set of source words (up to 10, which
covers 64% of all source tokens) we take into con-
sideration. While a minimum threshold frequency
of 1 covers all the source words in the source text,
a threshold of n calculates AWTE only for the sub-
set of source words that appear at least n times in
the source text. The AWTE measurements made
on the three document pairs are shown in Figure 3.

1.60

1.40

1.00
0.80
0.60
040 @

0.20

—e—SRC-MT SRC-PE —e=—SRC-Rev

Figure 3: Average word translation entropy values

These results show that, for all minimum fre-

quency thresholds, AWTE increases with each
consecutive modification made to the MT output.
Furthermore, the revision step increases AWTE to
a larger extent, compared to post-editing, resulting
in a higher level of uncertainty on average for the
lexical choices made for translating source words
during this operation.

4.2 Manual evaluation

Given that DeepL is a generic MT system and thus
not tailored to literary texts, the overall quality of
the machine-translated text can be deemed rela-
tively good. The subset contained 275 MT errors,
which is on average 1.38 error per sentence. Fifty-
five sentences (27.5%) were free of errors. Ta-
ble 4 shows the distribution of the 275 MT errors.
In terms of accuracy, 152 errors were found, half
of which were mistranslations. The NMT system
wrongly translated words (e.g. short crust pastry —
korstdeeg) and tenses (e.g. was rolling out — rolde
... uit), or used a translation of a word or phrase
that was incorrect in the given context (word sense
e.g. ports — poorten (meaning: porto’s)), which
sometimes led to illogical constructions, or even
changed the meaning of the entire sentence. The
machine moreover appeared to have difficulties
translating multiword expressions and idioms as
well (e.g. going to see a man about a dog was
translated literally). The second largest category
was capitalization and punctuation errors, which
almost solely consisted of missing quotation marks
that were not copied from source to target text by
the machine. Also quite often, source text infor-
mation was omitted (e.g. the verb fo sprinkle was
deleted in as Fergus reminded him to sprinkle —
zoals Fergus hem herinnerde); additions, on the
other hand, did not occur in the subset.

In terms of fluency, the most problematic cat-
egory was spelling and punctuation. The ma-
jority of these errors were related to quotation
marks, missing commas and capitalization prob-
lems (kerstman (Santa) starts with a lowercase let-
ter whereas Kerstmis (Christmas) starts with a cap-
ital letter in Dutch, which is confusing for the
NMT system). Stylistic problems were often-
occurring as well, when the MT contained dis-
fluent constructions that are not wrong from a
grammatical point of view, but could nonetheless
be translated in a more idiomatic and fluent way.
These were in most cases very literal translations
of English constructions (e.g. said Fergus with a
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laugh — zei Fergus met een lach). Lastly, a num-
ber of lexical problems were found: when a word
was not an entirely wrong translation of the source
word in the context, but nevertheless did not en-
tirely fit in the Dutch sentence either (e.g. the glow
of his screen — het schijnsel van zijn scherm vs. de
gloed van zijn scherm).

Accuracy 152  Fluency 123
Mistranslation 77 Coherence 13
Multiword 15 Discourse marker 1
Word sense 15 Coreference 2
Other 47 Tense 0
Addition Other 10
Omission 21 Lexicon 18
Untranslated Grammar & syntax 10
Do not translate 1 Style 35
Capitalization & punctuation 46 Disfluent 33
Repetition 0
Other 2
Spelling & punctuation 47
Capitalisation 13
Compound 4
Punctuation 23
Other 7

Table 4: MT errors in the manually annotated subset of 200
segments

Table 5 shows the PE and REV quality label dis-
tribution. The revisor carried out more editing ac-
tions (569) than the post-editor (501), and these
in themselves were of a different nature. While
the post-editor focused on correcting MT errors
(219; 44% of all post-edits), e.g. by adding ST
information missing from the MT output, and on
making preferential improvements (224), the re-
visor mainly sought to further improve the over-
all quality and readability of the text: 492 (86%)
of the revisor’s edits were preferential changes to
make the text more coherent and understandable
(by means of explicitations and structural changes
as well as splitting of sentences; see Figure 4 for
details). Often an MT error was corrected by the
post-editor and further improved by the revisor, as
can be seen in the example in Figure 1: the post-
editor corrected the word order error of the MT
and made sure that phrase met een opgewonden
glimlach correctly modifies the verb. The revisor
further improved the translation by replacing glim-
lach by the diminutive lachje.

Some MT errors were not spotted by the post-
editor but corrected by the revisor, and most of
the errors introduced during post-editing were cor-
rected in the revision step as well. A very small
number of MT errors (7) seeped through into the fi-
nal text (e.g. Christmas play — kerstspel (Christmas

game)), and 6 post-editor errors were left uncor-
rected (e.g. buddy up — vrienden worden (became
friends; ST meaning: to pair together with some-
one)). Finally, 8 revisor changes were deemed un-
desirable, mostly due to the information presented
in the final target text no longer being consistent
with the information in the source text. As always
some of these are, however, debatable. In the fol-
lowing example the subject of saw has been made
implicit by the post-editor and was wrongly inter-
preted by the revisor:

* ST: Aunty Alex also understood about all the
things that Alfie could see and hear, like when
he saw the lady who used to live upstairs at
their old flat, until she died.

* PE: Tante Alex begreep ook alles wat Alfie kon
zien en horen, zoals de mevrouw die boven in
hun oude flat woonde, tot ze stierf.

(Aunty Alex also understood everything that
Alfie could see and hear, like the lady who
lived upstairs in their old flat, until she died.)

e REV: Bovendien kon tante Alex alles horen

en zien wat Alfie kon zien en horen, net zoals
de mevrouw die boven hun oude flat gewoond
had tot ze doodging.
(Moreover, aunty Alex could hear and see ev-
erything that Alfie could see and hear, just
like the lady who had lived upstairs from their
old flat until she died.)

As can be seen in Figure 4 both the post-editor
and the revisor made lexico-semantic changes for
the most part (45% and 44% respectively), of
which using synonyms or other words are in the
lead. Spelling and punctuation changes represent
24% of all post-edits and were mainly corrections
of MT errors; of the revisor changes, 21% were
spelling and punctuation changes, although these
largely consisted of mama/papa being preferen-
tially spelled into mamma/pappa. When we look
in more detail at the different editing actions, it
is clear that the revisor carried out different types
of editing actions and made a lot of explicitations,
split long sentences, made more structural changes
(compared to the post-editor), added more coher-
ence markers and made the translation sometimes
more specific and sometimes more vague. These
edits greatly improve the readability of the transla-
tion and tailor it to the target audience.
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Figure 4: Linguistic classification of the post-editing (PE) and revision (REV) actions

Quality Label PE REV

Consistency 13 0
MT error correction 219 32
PE error correction NA 37
Preferential 224 492
Undesirable 45 8
Total 501 569

Table 5: Quality labels assigned to the post-editing (PE) and
revision (REV) actions

5 Discussion

In this paper, we examined the possibility of us-
ing an MT-enhanced translation workflow for the
translation of literary texts in a real-life profes-
sional translation scenario. We examined three dif-
ferent versions of the target texts as they proceed
through the translation process: the MT output, the
post-edited version and the revised translation.

DeepL was used as MT engine to translate an
English novel into Dutch. MT quality was in
line with expectations with 27.5% error-free sen-
tences. The three main error types were various
kinds of mistranslations, disfluent sentence con-
structions and different types of spelling and punc-
tuation problems. DeepL failed to correctly copy
quotation marks from source to target, a problem
that can potentially be fixed by applying a number
of post-processing rules. Mistranslations and dis-
fluent constructions have been reported in earlier
research as the main error types and require more
attention from the post-editor.

Forty-four percent of all post-editing actions

were corrections of MT errors, 24% of all post-
edits were preferential changes, 9% of all post-
edits were labelled as ‘undesirable’. Apart from
adding missing punctuation marks, the post-editor
mainly carried out lexico-semantic changes (re-
placing words with better alternatives or syn-
onyms) and stylistic operations (restructuring MT
fragments or coming up with shorter translation
solutions). Most MT errors were solved in the
post-editing step. Only 5.6% of all editing ac-
tions during revision were related to MT errors;
another 5.5% were corrections of problems intro-
duced during post-editing. The majority of the re-
visor’s edits (86%) were thus preferential in na-
ture. The revisor made slightly more edits than the
post-editor. The revisor, just like the post-editor,
mainly made lexico-semantic changes, but the sub-
categories were different. The revisor often made
information and relations that the reader might be
able to infer from the context explicit as can be
seen from subcategories ‘explicitation’ and ‘coher-
ence marker’ in Figure 4. The revisor also made a
lot of stylistic changes and restructured fragments
and even split sentences in 23% of all segments.

Post-editing and revision can be considered two
different cognitive processes. Post-editing is by
nature a bilingual process in which the post-editor
can be primed both by the MT suggestion and
the source segment. Moreover, as the post-editor
worked in a traditional CAT tool, in which the text
is segmented at sentence level, it might be more
difficult to focus on the flow of the target text.
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Revision was mainly a monolingual process, car-
ried out in Microsoft Word, in which it is easier to
focus on the translated text as a standalone prod-
uct. It is remarkable, however, that the revisor car-
ried out many edits that fall within two subcate-
gories that are often considered as ‘translationese’,
e.g. increased explictness (subcategories ‘explici-
tation” and ‘coherence marker’) and simplification
(subcategory ’split sentence’). We consider this as
an indication that monolingual editing and trans-
lation indeed share certain similarities as Kruger
(2017) suggested.

The automatic evaluation confirmed that more
editing took place in the revision step than in the
post-editing step. The degree of similarity between
the MT, the PE and the REV version was assessed
based on the amount of editing, and semantic and
syntactic similarity measures. All measures con-
firmed that the degree of similarity between MT
and PE was higher than the degree of similarity
between PE and REV. The lowest similarity scores
were obtained when comparing the MT with the
revised version. As a side note we would like to
point out that in MT research it is common practice
to use automatic evaluation metrics to compare the
MT output with an independent reference trans-
lation, often without knowing how this reference
translation was created. It might as well be that the
reference translation being used is the output of a
two-stage process of human translation followed
by revision, which, depending on the amount of
editing that took place, may have altered the hu-
man translation to a large extent.

Another feature that has been widely studied in
previous research is lexical richness. In this study,
we quantified lexical richness by means of TTR,
Mass index and average word translation entropy.
Some results were inconclusive (higher TTR val-
ues, but lower or similar Mass index values). Av-
erage word translation entropy showed a clearer
picture, with the revised version having the high-
est values. It thus seems that the revised version
exhibits many characteristics that have been at-
tributed to human translations: a higher degree of
explicitation and simplification, more lexical va-
riety and translations that deviate more from the
source structure (compared to MT). This study,
however, cannot provide a conclusive answer to
the question of whether the implemented three-
stage process of automatic translation followed by
post-editing and revision is a viable alternative to
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human translation followed by revision. This can
only be measured by means of comparative trans-
lation reception studies in which the reading (or
listening) experience is measured.

One of the major limitations of this study is
that we only had data of one post-editor and one
revisor. Moreover, the post-editor and the revi-
sor had different experience levels, with the post-
editor having less experience in the literary do-
main. Studying the edits of two different persons
most probably changes the distribution of the edits.
It would therefore be interesting to replicate this
study with more post-editors and more revisors and
on different language pairs. In future work we also
intend to zoom in on the sentences with high cre-
ativity potential as was done by Guerberof-Arenas
and Toral (2020) and examine in more detail the
creative shifts in the post-edited and revised ver-
sion.
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Abstract

We explore the roles and interactions of
the hyper-parameters governing regulari-
zation, and propose a range of values ap-
plicable to low-resource neural machine
translation. We demonstrate that default
or recommended values for high-resource
settings are not optimal for low-resource
ones, and that more aggressive regulariza-
tion is needed when resources are scarce,
in proportion to their scarcity. We ex-
plain our observations by the generaliza-
tion abilities of sharp vs. flat basins in the
loss landscape of a neural network. Re-
sults for four regularization factors corrob-
orate our claim: batch size, learning rate,
dropout rate, and gradient clipping. More-
over, we show that optimal results are ob-
tained when using several of these fac-
tors, and that our findings generalize across
datasets of different sizes and languages.

1 Introduction

The training of neural machine translation (NMT)
models is governed by many hyper-parameters,
which play a central role in the performances of
the trained models, especially their generalization
abilities. While most of the NMT frameworks rec-
ommend default values for the hyper-parameters,
when it comes to low-resource settings, fewer
guidelines are available.

This study systematically explores the roles and
interactions of a subset of hyper-parameters in
low-resource NMT settings, namely those acting

© 2022 The authors. This article is licensed under a Creative
Commons 3.0 licence, no derivative works, attribution, CC-
BY-ND.

as regularization factors. Regularizers do not fall
under a single theoretical definition: Goodfellow
et al. (2016, page 224) view them as a collection
of methods “intended to reduce generalization er-
ror but not training error.” We present here a uni-
fied perspective on several regularizers which act
upon the estimation of the gradients during back-
propagation. Using the distinction made by Keskar
et al. (2016) between flat and sharp basins in the
loss landscape, we argue that noisier estimates of
the gradients can increase the likelihood of find-
ing flatter minima, which have better generaliza-
tion abilities. Specifically, we defend three claims:

1. NMT models benefit from more aggressive re-
gularization when the amount of training data is
small. We demonstrate this for four different reg-
ularizers: batch size, learning rate, dropout, and
gradient clipping. We compare the default regu-
larization hyper-parameters of the OpenNMT-py
framework for mid-to-high resources — compara-
ble to those of the original Transformer (Vaswani
et al., 2017) — with the ones we optimized for a
low-resource setting (Sections 4-7).

2. The combination of different regularization
sources is preferable over their individual use.
When used together, an amount of regularization
from each of the four factors under study outper-
forms the use of any single one alone, and the best
scores are robust with respect to the variation of
each factor (Section 8).

3. Regularization factors optimized on one low-
resource dataset are beneficial for low-resource
datasets in other languages, and benefit from more
aggressive regularization as the amount of training
data decreases. We demonstrate this by comparing
our default and optimized settings on data samples
of varying sizes from our main corpus and four ad-
ditional low-size datasets (Section 9).
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2 Background and Related Work

2.1 Regularizers and the Loss Landscape

In the absence of a general treatment of regula-
rization factors, most studies combine them em-
pirically and search only a very small part of the
hyper-parameter space. Kukacka et al. (2017) pro-
vide a taxonomy of regularization factors, but con-
tinue to define them simply as techniques to im-
prove generalization. Similarly, in their survey,
Moradi et al. (2020) consider as regularization any
“component of the learning process or prediction
procedure that is added to alleviate data shortage,”
but do not provide a common measure of regulari-
zation or consider the combination of factors.

Peng et al. (2015) study regularization tech-
niques independently as well as in combination,
still without a common theoretical underpinning.
On two NLP tasks, they observe that using two
factors — namely, L2 norm of weights and embed-
dings, and dropout — is better than using either by
itself. Moreover, when using both factors, if one is
set to its optimal value obtained when used alone,
the other one must be lowered.

We adopt here the perspective put forward by
Keskar et al. (2016), among others, who explain
the generalization gap between values of regulari-
zation factors in terms of the topography of the loss
landscape. Given a minimum of the loss function,
the slower this function varies around its neighbor-
hood (hence creating flat basins in the topography),
the flatter (or less sharp) is the region. Models that
are optimized in flatter regions tend to generalize
better, and moderately less accurate gradients give
models a higher probability of finding these flatter
regions.

Here, we narrow down our perspective to a set of
regularization factors that concern the estimation
of the gradients of the loss function, as they are
used during training with back-propagation. Ac-
cording to the above perspective, models trained
with noisier gradient estimates are more likely than
models trained with precise ones to find flat min-
ima of the loss function, as their identification
requires less precision. Additionally, a moder-
ate amount of noise confers “exploratory abilities”
that allow the search to exit sharper basins. There-
fore, there is an optimal amount of noise in the gra-
dient estimation: with too much noise, training is
hampered or becomes impossible, but with too lit-
tle noise, the model is likely to get trapped into
sharp minimizers with low generalization abilities.
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For instance, in the case of batch size (a fre-
quently studied regularization factor), Goodfellow
et al. (2016, Chapter 8.1.3) explain that models
trained with smaller batch sizes tend to optimize
into low-precision regions because they use noisier
gradient estimates than when training with larger
batch sizes.

Hypothesizing that noisier gradients improve
the chance of a model to optimize into flatter re-
gions, Smith and Le (2017) and Smith et al. (2017)
propose a gradient noise scale to measure how
learning rate (another regularization factor) should
be adjusted to the batch size, on image data. They
estimate the average gradient noise g for each
batch as g = ¢(IN/B —1) ~ eN/B where € is
the learning rate, IV the size of the training set, and
B the batch size, assuming that N > B. This
shows that “increasing the batch size and decay-
ing the learning rate are quantitatively equivalent”
(Smith et al., 2017, Sec. 1).

Jastrzebski et al. (2018) also note that the pro-
portionality of batch size and learning rate is cru-
cial for gradient descent convergence, and the abil-
ity of the resulting model to generalize well. In
particular, higher ratios seem to lead to flatter min-
ima, which lead to better generalization, similar to
what Keskar et al. (2016) observed. Specifically
whether the relation between batch size and learn-
ing rate is linear, squared, or otherwise, has not
been conclusively determined (Krizhevsky, 2014;
Hoffer et al., 2017; Popel and Bojar, 2018). The
roles of the batch size and learning rate have often
been discussed from the perspective of computer
vision, but different studies have made different
observations, and the debate has not been settled
yet (Dinh et al., 2017; Hoffer et al., 2017; Goyal et
al., 2017; Li et al., 2017; Kawaguchi et al., 2017).
As for dropout and gradient clipping, which are ad-
ditional regularization factors, they have not been
considered yet in relation to flat and sharp mini-
mizers. We will consider here that the claim that
less accurate gradients lead to flatter minima ap-
plies to them too: for dropout, due to removing
some components of the sums; and for clipping,
by affecting the norm of the gradient.

2.2 Regularization Factors for NMT

Recent NMT models are based on the Trans-
former (Vaswani et al., 2017), a deep encoder-
decoder neural network which is quite sensitive to
the hyper-parameters governing regularization fac-



tors during training. We discuss here the four pa-
rameters that we study in this paper.

Batch size. As we saw, models trained with
smaller batch sizes have better generalization ca-
pabilities. However, batch size is not only a regu-
larization factor, but has an influence on training
speed: larger batches accelerate training by mak-
ing a better use of the GPU memory.

Learning rate is a positive scalar that con-
trols how much the weights are updated. We use
the dynamic learning schedule known as ‘noam’
(Vaswani et al., 2017, Eq. 3). During its ini-
tial steps, known as warmup, the learning rate
increases linearly from zero, reaching its highest
value at the last warmup step w. Afterwards, it de-
cays proportionally to the inverse square root of the
step number s. At each step, this is multiplied by a
factor based on the output size of the embedding
layer dpoder (512 in Transformer-Base). More-
over, following OpenNMT-py’s recommendation,
we include a scaling factor (sf), which we set by
default to 2. The learning rate /7 at each step s:

Ir(s) = sf -d %5

. —0.5 —1.5
el T AT (s , S w ) (D)

Dropout (Srivastava et al., 2014) consists of a
masking noise: a probability that a unit is ran-
domly turned off during training. It is applied on
the output of each hidden layer, including the out-
put of the attention layers, but not the embedding
layer, so no loss of input or output data occurs.
This encourages each hidden unit to perform well
regardless of other units (Goodfellow et al., 2016,
Chapter 7.12).

Gradient clipping consists of renormalizing the
gradient g to a threshold v if it exceeds it, i.e. if
llg|| > v, then g < gv/||g|| (same direction but
bounded norm). Therefore, the smaller the value
of v, the more aggressively we clip the gradients,
and the more regularization is applied (Goodfellow
et al., 2016, Chapter 10.11.1).

2.3 Role of Regularization for NMT

Popel and Bojar (2018) report that BLEU scores
increase with batch size in a Transformer-based
NMT system, although with diminishing returns,
and recommend setting a large batch size. They
observed moderate changes across a large range of
learning rates, and found thresholds beyond which
training was much slower or diverged. They made
similar observations for warmup steps, concluding
that the search space for learning rate and warmup
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steps was wide. Their experiments were performed
on large datasets, leaving their questions open for
low-resource settings.

Ott et al. (2018) observe that training time with
very large datasets can be shortened when using
larger batch sizes: they accumulate batches from
25k tokens per batch to 400k. When paired with
an increased learning rate schedule (noam’s times
two) they do not report performance loss.

Sennrich and Zhang (2019) found that smaller
batch sizes (1k-4k) were beneficial for low-
resource NMT, and studied a variety of regulari-
zation factors for recurrent neural networks. How-
ever, the regularization factors were not disentan-
gled, and their effects on Transformer-based NMT
are difficult to extrapolate.

Araabi and Monz (2020) studied the Trans-
former’s hyper-parameters in several low-resource
settings. They observed improvements for larger
batch sizes on the larger datasets, but did not ob-
serve improvements with smaller batch sizes on
smaller datasets, or changes to optimal number of
warmup steps or learning rate. They concluded to
the need for larger batches from the Transformer.
However, due to the late position of the batch size
and learning rate in their order of optimization
of the hyper-parameters, their regularizing effects
cannot be precisely determined.

Xu et al. (2020) computed gradients while accu-
mulating minibatches, and observed that increas-
ing batch size stabilizes gradient direction up to a
certain point, which allowed them to dynamically
adjust batch sizes while training. Miceli Barone et
al. (2017) observed improvements when combin-
ing dropout with L2-norm during fine-tuning, and
concluded that “multiple regularizers outperform a
single one.”

In previous work, we observed improvements of
scores and training time when using smaller batch
sizes, with a Transformer on a low-resource dataset
(Atrio and Popescu-Belis, 2021). We found a min-
imum value of the batch size below which train-
ing diverged, but did not study other regularization
factors and interactions between them.

Studies on the optimization and effects of re-
gularization factors thus remain scarce. Many
previous studies optimize parameters in sequence.
While this strategy is certainly a faster approach
to optimization, it does not shed full light on each
factor in isolation, as we do below in Sections 4
to 7, or in combination, as we study in Sections 8



Dataset Srec-tgt Lines Words (tgt)
WMT20 Low-res HSB-DE 60k 823k
= = 40k 550k
= = 20k 273k
NewsComm. vl3 DE-EN 120k 3M
TED Talks SK-EN 61k 1.3M
= SL-EN 19k 443k
= GL-EN 10k 214k

Table 1: Numbers of lines of the original corpora used in
our experiments. Sections 4-8 use only the first dataset. We
do not use monolingual or back-translated data, and train our
tokenizers using only each parallel corpus.

and 9.

3 Data and Systems

We train our NMT systems with the Upper Sor-
bian (HSB) to German (DE) training data of
the WMT 2020 Low-Resource Translation Task
(Fraser, 2020). We also use the HSB-DE devel-
opment and test sets provided by the WMT 2020
and 2021 Low-Resource Translation Tasks (Fraser,
2020; Libovicky and Fraser, 2021), each consist-
ing of 2k sentences. As length-based filtering does
not show significant differences, we do not filter
our data. Additionally, in Section 9, we train sys-
tems for translation from Galician (GL), Slovenian
(SL), and Slovak (SK) into English (EN), using to-
kenized and cleaned transcriptions of TED Talks
(Qi et al., 2018).! Finally, we train a larger Ger-
man to English system using 120k lines from News
Commentary v13 (Bojar et al., 2018), and sample
1,500 lines each for development and testing. Ta-
ble 1 presents these resources.

Tokenization into subwords is done with a Un-
igram LM model (Kudo, 2018) from Sentence-
Piece.” For each language pair we build a shared
vocabulary of 10k subwords using only the paral-
lel corpus, with character coverage of 0.98, nbest
of 1 and alpha of 0.

We use the Transformer-Base architecture
(Vaswani et al., 2017) implemented in OpenNMT-
py (Klein et al., 2017; Klein et al., 2020).3 Our
default setting of hyper-parameters is the one rec-
ommended by OpenNMT-py* which is close to the
original Transformer (Vaswani et al., 2017). The

"https://github.com/neulab/
word—embeddings—for—nmt
https://github.com/google/sentencepiece
3We make public our configuration files and package re-
quirements at https://github.com/AlexRAtrio/
reg-factors.
*nttps://opennmt.net/OpenNMT-py/FAQ.html#
how-do-i-use-the-transformer-model
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regularization factors appear with relatively low
strengths in this setting, as is usual when large
datasets are available. The setting includes the
‘noam’ learning rate schedule with a scaling fac-
tor of 2 and a dropout rate of 0.1. For Adam,
B =0.9, fo =0.998 and ¢ = 1078,

We train our models for a maximum of 100
hours, although they generally converge earlier.
When comparing batch sizes in Section 4, it could
be argued that epochs might provide a fairer com-
parison, but we measure real clock time as the most
relevant measure for practitioners.

A batch consists of lines (tokenized sentences)
that are translated one by one, with a fixed maxi-
mum length of 512 tokens for Transformer-Base.
Lines are padded if shorter, and filtered out if
longer. We train all models on two GPUs with
11 GB of memory each (GeForce RTX 1080Ti).
Each device processes several batches, depending
on the batch size, which are afterwards accumu-
lated and used to update the model. The effec-
tive batch size and the batch_size parameter of
OpenNMT-py are two different values: the former
is G X A x batch_size, where (G is the number of
GPUs and A the number of accumulated batches,
here equal to two.? Throughout the paper, we re-
port the batch_size parameter, but the effective
batch size is in fact four times larger.

We generate translations with a beam size of
seven, with consecutive ensembles of four check-
points. For each model we report the highest
BLEU score (Papineni et al., 2002) calculated with
SacreBLEU (Post, 2018) on detokenized text® as
well as the chrF score (Popovi¢, 2015). We test
the statistical significance of differences in scores
at the 95% confidence level using paired bootstrap
resampling from SacreBLEU.

4 Batch Size

In this section we train models with batch sizes
ranging from 500 to 10,000, with all other hyper-
parameters set to default. Models with batch sizes
of 100 and 250 were also trained, but did not con-
verge. The largest tested batch size is the largest
value supported by our GPUs.

The BLEU and chrF scores in Table 2 show that
lowering the batch size improves quality of NMT,

Shttps://forum.opennmt .net/t/
epochs—determination/3119
*https://github.com/mjpost/sacrebleu with
the signature nrefs:1|bs:1000|seed:12345|case:mixed|eff:no
|tok:13a|smooth:exp|version:2.0.0.



Batch train dev test

Size Xent Acc. | BLEU chrF | BLEU chrF
0.5k | 0.02 99.93 73.35 | 43.95" 69.25
1k 0.01 99.94 | 52.02 74.63 | 44.40" 70.02
3k 0.01 99.96 73.38 | 43917 69.16
6k 0.01 99.97 | 49.66+ 73.09 | 42.55— 68.85
9k 0.01 99.96 | 49.42+ 73.10 | 42.22— 68.40
10k 0.01 99.97 | 4846 7249 | 42.19— 68.38

Table 2: HSB-DE scores with various batch sizes, all other
settings being default ones. Values with the same color or
symbol are not significantly different. The highest scores are
in bold.

likely due to the regularizing effect of a less ac-
curate gradient, according to our theoretical per-
spective. In particular, we observe improved re-
sults with a batch size smaller than 3,000 (+1.71
BLEU) and an optimal size around 1,000 (+2.21),
with scores gradually decreasing as batch size in-
creases. These results are in line with previous ob-
servations (Sennrich and Zhang, 2019; Atrio and
Popescu-Belis, 2021).

There is no clear correlation between the train-
ing accuracy or cross-entropy loss and the general-
ization capacity, i.e. the scores on the development
and test sets. The lower scores of models trained
with larger batch sizes are likely not due to over-
fitting, because the testing curves of these models
do not show any decrease late in the training. This
further supports the claim that better generaliza-
tion abilities are due to flat minima (Keskar et al.,
2016, Section 2.1).

100 14000
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...... - epochs/hour 6000
—— subwords/second

01000 2000 3000 4000 5000 6000 7000 8000 900010000 4000

batch size

Figure 1: Throughput (subwords/second, in blue) and speed
(epochs/hour, in green) for the tested batch sizes.

Our results are competitive with the compara-
ble baselines from the WMT20 shared task on low-
resource NMT for HSB-DE (Fraser, 2020), which
used the same parallel data.” The baseline BLEU
"Some of these systems used in fact larger monolingual HSB,

DE and/or CS datasets for training their tokenizers, while we
only used 60k lines of parallel HSB-DE text.

scores of Knowles et al. (2020), Libovicky et al.
(2020) and Kvapilikova et al. (2020) were respec-
tively 44.1, 43.4, and 38.7 on the test set.

Regularization through smaller batch sizes thus
provides visible improvements with respect to the
default setting. Larger batch sizes, however, ex-
ploit more fully the memory of the GPUs, which
enables higher throughput in terms of subwords
processed per second, as illustrated in Figure 1,
although this does not increase linearly: instead,
we observe diminishing returns as batch size in-
creases. Still, while a batch size of 10k has
the lowest BLEU scores, it nearly doubles the
throughput with respect to the highest-scoring
batch size (1k). Due to differences in hardware
and software, these values are difficult to compare
to other studies, but the trends are similar to those
observed by Popel and Bojar (2018, Section 4.1).

If the regularization attained with lower batch
sizes can also be obtained by using other regula-
rization factors, this would allow the use of larger
batch sizes for a more efficient training. Therefore,
in the next sections, we will compare a large batch
size (10k) and the optimal, regularized one (1k),
and verify that none of the other regularization
factors that will be optimized have an impact on
speed.

5 Learning Rate

Previous studies by Smith et al. (2017) and Smith
and Le (2017) have shown that the regularization
effects of the batch size and of the learning rate
may be comparable. In this section, we study the
role of varying schedules of the learning rate (5.1)
and the effect of resetting the schedule in mid-
training, i.e. suddenly increasing the learning rate
before another decrease (5.2).

5.1 Regularization through Learning Rate

Since all our models have the same dimension of
embeddings (d,,.4e¢; in Eq. 1 above), the only vari-
ables influencing the learning rate in the ‘noam’
schedule are the number of warmup steps and the
scaling factor (Vaswani et al., 2017, Eq. 3). We test
two different values for the former: 8k (default)
and 16k. For the latter, we test even values from
2 (default) to 14. Figure 2 displays some tested
schedules, including our default one (8k, 2) and
the ‘noam’ original one (4k, 1).

The results in Table 3 show that both batch sizes
reach similar maximal scores (46.20 and 46.29),
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Figure 2: ‘Noam’ learning rate schedules with different scal-
ing factors (sf) and numbers of warmup steps (w).

although with different scaling factors: 6 for a
batch size of 1k vs. 10 for a batch size of 10k.
The improvement is 1.8 BLEU points for a batch
size of 1k, and 4.1 for 10k. As a batch size of 1k
is already a strong regularization factor, a smaller
value of the learning rate (hence less regulariza-
tion through this factor) is sufficient, compared to
the case of a larger batch size.

War Scaling factor

mup | 2 4 6 8 10 12 14

8k 44.40 4542 38.90 0.65 0.18 0.05 0.60
16k 43.96 45.74 42.24
8k 42.19 44.59 45.27x45.93-45.87-45.34%x4531%
16k 41.70 44.36 45.32+45.89" 46.29" 45.69+45.69+

Table 3: BLEU scores on the HSB-DE test set for batch sizes
of 1k (top) and 10k (bottom) and various learning schedules.
We denote scores that are not significantly different row-wise
with the same color or symbol.

The models trained with the larger batch size
(10k) are more stable when learning rates increase
(larger scaling factors) likely due to more accurate
estimates of the gradients (compare lines 1 vs. 3,
and 2 vs. 4). Similarly, these models have a higher
maximal learning rate beyond which they diverge
(compare in Table 3 the large difference between
lines 1 and 2 with the small difference between
lines 3 and 4). This shows the importance of in-
creasing the number of warmup steps as the scal-
ing factor increases, to avoid reaching high max-
ima of the learning rate (the peaks visible on the
schedules in Figure 2). Moreover, the regulariza-
tion provided by other factors (in this case, batch
size) needs to be taken into account when increas-
ing the amount of regularization from the learn-
ing rate. Finally, as long as the maximal learning
rate remains below the values that make a model
diverge, the BLEU scores do not change signifi-
cantly when the scaling factor increases above a

certain value, as also observed by Popel and Bojar
(2018, 4.6, Fig. 7).

5.2 Resetting the LR during Training

From the perspective of the loss landscape, we
hypothesize that introducing more noise into the
gradient when the scores have already leveled-
off, namely by resetting the learning rate schedule,
should increase the probability for the weights to
escape the sharp minima basins and avoid falling
back into them, which should improve the gen-
eralization abilities of the trained model. Since
a model trained with a smaller batch size has a
higher chance, during the first part of training, to
fall into flat minima due to an increased gradient
noise (Smith et al., 2017), we expect the larger
batch sizes to benefit more from this strategy than
the smaller ones.

Hours
50 100 100
Batch size no Irreset  reset Ir
1k BLEU 44.25 44.40 45.85
chrF 69.78 70.02 70.84
Train. Acc. | 99.93 99.94 99.84
Xent 0.02 0.01 0.02
A +0.15 +1.60
10k BLEU 41.60 42.19 45.25
chrF 68.03 68.38 70.57
Train. Acc. 99.94 99.97 99.92
Xent 0.01 0.01 0.01
A +0.59 +3.65

Table 4: BLEU and chrF scores on the HSB-DE test set,
training accuracy and cross-entropy on the training set, and
change of BLEU scores when continuing training until 100
hours vs. resetting the learning rate at 50h.

In Table 4 we provide the scores after train-
ing for 50 hours (half of their training time); the
scores after 100 hours when continuing to train
from the 50-hour checkpoint; and the final score
after training for 50 hours with a schedule reset at
the 50-hour checkpoint. The results corroborate
our hypothesis: both batch sizes benefit signifi-
cantly from the strategy of resetting the learning
rate, and the large batch size more than the smaller
one ((+3.65 vs. +1.6 BLEU points). As both mod-
els reached their highest BLEU scores before 25
hours, the difference is likely not due to that fact
that the first model saw more times the training
data thanks to its higher throughput. Furthermore,
after increasing the learning rate mid-training, both
the loss and training accuracy worsen or remain
stable, while BLEU scores improve, likely due to
reaching flatter basins, not lower minima.
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6 Dropout Rate

The dropout of a certain proportion of neurons dur-
ing training is another frequent source of regulari-
zation. As this amounts to removing certain terms
from the summation of gradients, its role can also
be considered from the perspective of flat vs. sharp
minimizers.

Dropout
0.1 02 03 04 05 06 07 08

44.40% 45.35+45.39+44.87% 44.54*% 42.58 37.69 19.83
42.19 4376 44.74 4291 35.52

Table 5: Dropout scores on the HSB-DE test set for 1k (top)
and 10k (bottom) batch sizes. We denote row-wise lack of sig-
nificant differences with the same color or symbol. Dropout
rates of 0.9 have considerably lower scores.

BLEU scores in Table 5 show that the model
trained with a larger batch size — hence subject
to less regularization — requires a more aggres-
sive dropout of around 0.4-0.6 in order to reach
its highest scores, with respect to a model trained
with a smaller batch size, which reaches its highest
score for 0.2-0.3. This is consistent with our pre-
vious findings from Section 5.1 and Table 3, which
also showed that the model subject to less regula-
rization from a factor (larger batch size) required
more regularization from another factor in order to
reach its highest scores.

7 Gradient Clipping

Finally, we experiment with our fourth regulariza-
tion factor: gradient clipping. Since it directly in-
volves constraining the norm of the gradient, the
perspective based on flat vs. sharp basins in the
loss landscape also holds for it.

Batch Drop Gradient Clipping
size out None 20 10 5 2.5
1k 0.1 4440 4475 4492 4474 4454
10k 0.1 42.19 4241 4201 4230 4220
77777 02 | 4376 44.15 4434 4398 4385
0.3 4474 4536 4472 4475 4499
0.4 4540 4556 4530 4545 4548

Table 6: BLEU scores on the HSB-DE test set for batch sizes
of 10k and 1k on the test set, with a dropout rate of 0.1 (de-
fault), for several upper limits of the gradients.

As in the previous sections, we compare mod-
els trained with batch sizes of 1k and 10k, but
observe no statistically significant differences be-
tween them when using default values for other
hyper-parameters, with BLEU scores shown in Ta-
ble 6 — although values of 10 or 20 are always

among the best. This is likely because default
settings do not feature enough regularization (i.e.,
they do not increase enough the gradient’s norm)
for the gradients to be affected by clipping. For this
reason, we perform additional experiments with a
batch size of 10k (due to its advantage for speed)
with more regularizing dropout values of 0.2, 0.3,
and 0.4, and scaling factor of 6 and 10. Regard-
ing the models with increasing dropout rate, we
only observe a statistically significant difference
between the best and worst results (for dropout of
0.2), the best and two worst results (for 0.3), and
no differences at all (for 0.4). We conclude that
gradient clipping only marginally affects training
in these settings.

8 Combining Regularization Factors

We will now show that a combination of regulari-
zation factors can produce higher scores than in-
dividual factors used separately, and that the maxi-
mal scores are stable when varying the strengths of
regularizers around their optimal values. The batch
size is fixed at 10k, since this enables a higher
training speed than 1k with similar best scores,
provided that other regularization factors are used,
as shown in Tables 3, 4 and 5. The number of
warmup steps is fixed at 16k since we showed in
Section 5.1 that this parameter mainly limits the
peaks of the learning rate and thus prevents mod-
els from diverging early in the training. Our search
space for the other regularization factors is shown
in Table 8.

Factor Value | Xent Tr. BLEUchrF A
acc.

Defaults 0.01 9997 42.19 6838 -

Batch size 1k 0.02 9994 4440 7002 +2.21
S.f. 10 0.01 9994 4593 7074 +3.74
S.f. +w.s. 10+16k | 0.01 9994 46.29 7122 +4.10
L.r. reset 50% 0.01 9992 45.25 7057 +3.06
Dropout 0.4 0.07 9946 45.40 7100 +3.21
Clipping 10 0.01 9996 42.41 6843 +0.22
Combination Tables | 0.03 9978 47.11 71.88 +4.92
+ L.r. reset 0.06 9930 47.20 71.80 +5.01

Table 7: HSB-DE scores on the test set when the regulari-
zation factors are used either independently (lines 2—6) or in
combination (line 7), in the latter case with the optimal val-
ues from Table 8. The last column shows increases in BLEU
scores over the default settings.

We present in Table 7 the highest scores
achieved using individual regularization factors,
along with those from the default setup (first line)
and from the combination of factors (last two
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lines). Regularization factors are already present
in the default setup, but at low strengths.

The comparison of scores in Table 7 shows
that each factor used independently allows the
model to outperform the default setting by 24
BLEU points. However, the use of a combina-
tion of factors achieves the highest score of 47.20
BLEU points (+ 5.01), which is significantly above
all others. In the case of resetting the learning
rate, although this has a visible effect when used
with default parameters, its effect is much smaller
when used jointly with other regularization factors,
likely because a flat basin is found before the reset.
Moreover, the combination of factors results in a
higher loss and a lower accuracy on the train set
than the default setup or factors used individually,
which supports our interpretation of the improve-
ment based on flatter minima.

Table 8 shows that the best scores reached
with increased regularization are quite stable when
varying the intensity of the factors. The optimal
region of the scaling factor is around 10, with a rel-
atively flat neighborhood, similar to the case when
it was optimized individually (Section 5). Optimal
dropout rates are now around 0.3-0.5, compared
to 0.4-0.6 when used individually (Section 6). Fi-
nally, gradient clipping has only a marginal effect
in combination with other factors, presumably be-
cause it cannot help to increase the gradients.

9 Testing on Additional Corpora

In this section, we confirm our claims using ad-
ditional low-resource datasets. We consider two
smaller samples with 40k and 20k lines from the
HSB-DE corpus, as well as parallel datasets for
Galician, German, Slovak and Slovenian (see Sec-
tion 3). We do not optimize regularization fac-
tors on each dataset, but only use the optimal
hyper-parameters found above on HSB-DE with
60k lines.

Table 9 demonstrates that these hyper-parameter

Grad Scaling Dropout

clipping factor 0.1 0.3 0.5 0.7

None 2 42.19 4474 4539 4291
6 4532 46770 4622 43.66
10 46.29 47.06 4693 43.18
14 45.69 46.84 47.07 43.61
18 4526 46.89 46.67 43.19

5 2 41.39 4447 4505 4348
6 4520 46.62 46.70 43.88
10 45.65 4711 46.76 44.04
14 4557 4711 47.06 43.63
18 4472 4659 47.02 4272

Table 8: HSB-DE BLEU scores for a combination of the scal-
ing factor, gradient clipping, and dropout rate, for a batch size
of 10k and 16k warmup steps. The highest scores are in bold.

values bring significant improvements of BLEU
and chrF scores over the baseline for all datasets
(four different source languages). When compar-
ing HSB-DE datasets of different sizes, we find
that as the amount of data decreases, the positive
effects of our regularization parameters increase,
with up to 21% improvement in BLEU scores for
the smallest subset. Furthermore, we also observe
an increase in the loss over all datasets with the
optimized setup, which shows that the reason why
their less accurate gradients generalize better is not
due to finding lower but rather flatter minima of
loss.

10 Conclusion

We presented a unified perspective on the role
of four regularization factors in low-resource set-
tings: batch size, learning schedule, gradient clip-
ping and dropout rate. The results support our
claim that more regularization is beneficial in such
settings, with respect to the default values that are
recommended for high-resource settings. We first
substantiated the claim for each factor taken indi-
vidually, and then showed that a combination of
factors leads to improved scores and is robust when
factors vary. Finally, we showed that our findings
generalize across different low-resource sizes and

Corpus  Lines Default Optimized % A
Xent Tr. Acc. BLEU chrF | Xent Tr. Acc. BLEU chrF | BLEU
HSB-DE 60k | 0.01 99.97 42.19 6838 | 0.06 99.30 47.20 7180 | +11.87
HSB-DE 40k | 0.01 99.98 3238 6068 | 0.03 99.80 37.63 6512 | +16.21
HSB-DE 20k | 0.01 99.98 2293 5142 | 0.02 99.93 27.84 5627 | +21.41
DE-EN 120k | 0.10 98.20 2994 5681 | 0.60 84.71 35.77 6144 | +19.47
SK-EN 61k | 0.02 99.89 25.61 4642 | 0.40 89.29 29.71 4967 | +16.01
SL-EN 19k | 0.01 99.93 15.53 3499 | 0.09 98.89 18.43 3775 | +18.67
GL-EN 10k | 0.01 99.98 16.00 3452 | 0.04 99.69 19.04 3784 | +19.00

Table 9: BLEU scores on test sets of different corpora and subsets of our main HSB-DE corpus (first line), comparing our

default setup and our optimized setup as presented in Section 8.
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languages. Overall, we interpreted the results from
the perspective of the loss landscape, and argued
that more regularization is beneficial because the
noise it introduces in the estimation of gradients
leads to finding flatter minima of the loss, which
have better generalization abilities. We hope that
better insights on the loss landscape of the Trans-
former will confirm our theoretical interpretation,
and that the observations put forward in this pa-
per will also help practitioners with setting hyper-
parameters for low-resource NMT systems.
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Abstract

Unlike English, morphologically rich lan-
guages can reveal characteristics of speak-
ers or their conversational partners, such
as gender and number, via pronouns, mor-
phological endings of words and syntax.
When translating from English to such
languages, a machine translation model
needs to opt for a certain interpretation of
textual context, which may lead to seri-
ous translation errors if extra-textual in-
formation is unavailable. We investigate
this challenge in the English-to-Polish lan-
guage direction. We focus on the un-
derresearched problem of utilising exter-
nal metadata in automatic translation of
TV dialogue, proposing a case study where
a wide range of approaches for control-
ling attributes in translation is employed
in a multi-attribute scenario. The best
model achieves an improvement of +5.81
chrF++/+6.03 BLEU, with other models
achieving competitive performance. We
additionally contribute a novel attribute-
annotated dataset of Polish TV dialogue
and a morphological analysis script used to
evaluate attribute control in models.

1 Introduction

In some languages, dialogue explicitly expresses
certain information about the interlocutors: for
example, while in English words describing the
speaker “I” and the interlocutor “you” are ambigu-
ous w.r.t. their gender, number and formality, lan-
guages such as Polish, German or Spanish will
© 2022 The authors. This article is licensed under a Creative

Commons 3.0 licence, no derivative works, attribution, CC-
BY-ND.

l.barrault,

c.scarton}@shef.ac.uk

mark for one or more of these attributes. In in-
dustrial settings such as dubbing and speech trans-
lation, there is an abundance of available metadata
about the interlocutors, such as their genders, that
could be used to help resolve these ambiguities.

Field Value
source "Are you blind?"
spoken by (=speaker) "Anne"
speaker’s gender "feminine"
spoken to (=interlocutor(s)) ["Mark", "Colin"]
interlocutor(s)’ gender "masculine"
formality "informal"

Table 1: A TV segment along with available metadata.

Table 1 shows an example of such a TV seg-
ment: the English sentence ‘Are you blind?’,
should translate to Polish as ‘Jestescie slepi?’ as
the addressee is a group of men and the setting is
informal; however, when spoken e.g. formally to a
mixed-gender group of people, the correct transla-
tion would read ‘Sq paristwo Slepi?’, using a differ-
ent verb inflection and an honorific paristwo. Since
the contextual information required to resolve the
ambiguity in this example does not belong to the
text itself, traditional models do not use it. This
yields hypotheses which introduce some assump-
tions about that context, typically reflecting biases
present in the (often unbalanced) training data. To
avoid this, a better solution is to resolve such am-
biguities by using both the available metadata and
the source text as translation input. Alternatively,
when such information is unavailable, all possible
contextual variants could be provided as output,
passing the choice from the model to the user (Ja-
covi et al., 2021; Schioppa et al., 2021).

In the context of the gender of the speaker and
interlocutor, prior research has explored two ways
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Figure 1: Example of an ambiguous English sentence with all plausible translations to Polish. There are a total of 18 equally
plausible possible hypotheses based on the combination of contexts.

in which such information influences a text (Rabi-
novich et al., 2017; Vanmassenhove et al., 2018).
Firstly, naturally occurring texts satisfy grammat-
ical agreement between the gender of the speaker
and interlocutor and the utterances which describe
them. How this agreement is expressed in speech
varies among different languages (Stahlberg et al.,
2007). Polish is a grammatical gender language:
every noun is assigned a gender, and grammatical
forms must agree with that noun. In contrast, En-
glish is a natural gender language, with “no gram-
matical markings of sex” (Stahlberg et al., 2007,
p. 165). Secondly, gender can be seen as a demo-
graphic factor that influences the way people ex-
press themselves (e.g. word choice). Hereinafter
we refer to the former as grammatical agreement
and the latter as behavioural agreement.

In this work, we seek to build machine transla-
tion (MT) models that satisfy grammatical agree-
ment. Given an English sentence and a set of at-
tributes (e.g. the gender of the speaker and num-
ber of interlocutors), an MT system must translate
this sentence into Polish with a correct grammat-
ical agreement to all attributes but introduce no
markings of behavioural agreement.

We explore the agreement to one SPEAKER at-
tribute: the gender of the speaker (SPGENDER),
and three INTERLOCUTOR attributes: the gen-
der(s) and number of interlocutor(s) (ILGENDER,
ILNUMBER), as well as the desired FORMALITY
of addressing the interlocutor(s). Figure 1 exem-
plifies the extent of ambiguity these attributes in-
troduce in English-to-Polish translation.

The main contributions of our work are: (1)
a novel English-Polish parallel corpus of TV di-
alogue annotated for SPGENDER, ILGENDER,
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ILNUMBER and FORMALITY; (2) a tool for
analysing attributes expressed in Polish utterances;
(3) the examination of a wide range of approaches
to attribute control in NMT, showing that at least
four of them can be reliably used for incorporat-
ing extra-linguistic information within English-to-
Polish translation of dialogue.

The paper is structured as follows. Section 2 dis-
cusses previous work. Section 3 presents the prob-
lem definition, focusing on Polish as the target lan-
guage. The creation of the parallel English-Polish
corpus of dialogue utterances that mark subsets of
the investigated attributes is presented in Section
4.1. How the MT models are trained to control the
four extra-textual attributes is discussed in Section
4.3, whilst the results are presented in Section 4.2.
Finally, we describe conclusions and potential di-
rections for future work in Section 6.

2 Related Work

The state-of-the-art in MT is currently represented
by neural MT (NMT) (Sutskever et al., 2014; Bah-
danau et al., 2015) implemented via the Trans-
former architecture (Vaswani et al., 2017). De-
spite their unparalleled performance, these mod-
els are limited by ignoring the extra-textual con-
text (e.g. speaker’s gender). Consequently, much
recent work aims to control NMT with various at-
tributes. In particular, attention has been paid to
tasks such as multilingual NMT (Johnson et al.,
2017), by specifying the target language in the in-
put; formality or politeness transfer (e.g. Sennrich
et al. (2016)); controlling the gender of the speaker
and/or interlocutor (Elaraby et al., 2018; Van-
massenhove et al., 2018; Moryossef et al., 2019);
length and verbosity (Lakew et al., 2019; Lakew et



al., 2021); or constraining the vocabulary (Ailem
etal., 2021).

Attribute control in NMT is most commonly fa-
cilitated with a tagging (or side constraints) ap-
proach, whereby a set of terms is added to the vo-
cabulary, each embedding a certain type. These are
trained alongside token embeddings and used in
various ways during inference. Controlling mul-
tiple attributes with this approach has not been
excessively studied (Schioppa et al., 2021), but
can be facilitated by simply concatenating the
tags (Takeno et al., 2017). However, for a set of
equally important attributes, their ordering should
not matter, but a tagging approach by design re-
quires tags to be ordered in a specific way. Com-
bining attributes by averaging their embeddings
has also been explored in previous work (cf. Lam-
ple et al. (2019), Schioppa et al. (2021)), where
authors incorporated the resulting vectors either
into the input of the Encoder or the Decoder or di-
rectly into the model (Michel and Neubig, 2018;
Schioppa et al., 2021).

Typically, attribute-controlling neural models
are fully supervised, requiring annotated training
data. Such annotations can be obtained directly,
e.g. from metadata (Vanmassenhove et al., 2018);
although most available corpora are unannotated.
Sennrich et al. (2016) and Elaraby et al. (2018)
automatically annotate the data using morphosyn-
tactic parsers based on rules, validating agree-
ment to the attribute in question in target-side sen-
tences. To verify that the rules capture the attribute
completely, a precision/recall score is computed
against a manually labelled test set.

3 Problem Specification

Recognising the small number of studies within
machine translation research on the English-to-
Polish language direction, as well as our capacity
(thanks to the available parsers and native speak-
ers to validate their performance), we decide to
focus the study on this language pair. Polish is a
West Slavic language spoken by over 50M people
over the world (Jassem, 2003). It uses an expanded
version of the Latin alphabet and is characterised
by a complex inflectional morphology (Feldstein,
2001). It is a grammatical gender language (Ko-
niuszaniec and Btaszkowska, 2003) meaning all
forms dependent on pronouns must agree to their
gender and number. It uses a West Slavic system
of honorifics pani, pan, panie, panowie, paristwo

(henceforth Pan+) (Stone, 1977). Being a null-
subject language (Sigurdsson and Egerland, 2009),
it does not require that pronouns signifying the
speaker or the interlocutor are explicit, unless they
belong to the Pan+ group (Keown, 2003).

English lacks a grammatical gender or a system
of honorifics, and the pronoun “you” is used for
both plural and singular second person addressees.
It is therefore ambiguous w.r.t. some expressions
describing the speaker or the interlocutor, which
we capture into four attributes, as follows (the at-
tributes are summarised in Table 2).

SPEAKER attributes The gender of all
forms dependent on the pronoun ja “I” must
match the gender of the speaker SPGENDER
€ {feminine, masculine}. This includes past
and future verbal expressions (e.g. bylam ‘I
wasSgem,” VS.  bytem ‘1 waspas’), adjectives (e.g.
pigkna ‘prettygem’ VS. pigkny ‘prettymase’) and
nouns (e.g. wariatka ‘lunaticgn’ Vvs. wariat
‘lunaticyyg.”) that describe the speaker.

INTERLOCUTOR attributes All word forms de-
pendent on the pronoun ty/wy/Pan+ “you”, includ-
ing the pronoun itself, must match:

* the gender of the interlocutor (ILGENDER); this
includes cases analogous to SPGENDER, ex-
tended to e.g. vocatives (e.g. Ty wariatko/cie!
“You lunaticfem/masc!’);

¢ the number of interlocutors (ILNUMBER); this
includes verbs and pronouns in second person;

» the formality in addressing the interlocutor
(FORMALITY)'; this entails using an inflection
of the pronoun Pan+ consistent with ILGENDER
and ILNUMBER where applicable, or using po-

z

lite forms (e.g. Prosze wejs¢é. ‘Come in.’).

Attribute Abbreviation Type
SPEAKER
<sp:feminine> Feminine speaker
SPGENDER pif . 1¢ 5P
<sp:masculine> Masculine speaker
INTERLOCUTOR
<il:feminine> Feminine interlocutor(s)
ILGENDER <il:masculine> Masculine interlocutor(s)
<il:mixed> Mixed-gender interlocutor(s)
<singular>  One interlocutor
ILNUMBER L
<plural> Multiple interlocutors
<informal> Informal
FORMALITY
<formal> Formal

Table 2: Attributes and types controlled in the experiment.

'While we define formality as binary, it can be more complex
e.g. Japanese in Feely et al. (2019).
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Throughout this paper, when discussing gender
we refer solely to grammatical gender rendered in
utterances. In the Polish language, the grammati-
cal system of gender in first and second person is
a dichotomy of masculine and feminine variants,
lacking alternatives for people who identify as nei-
ther. We discuss potential solutions to this issue in
directions for future work (§6).

4 Experimental Setup
4.1 Data Collection

We collect pre-training data from two corpora: the
English-to-Polish part of OpenSubtitles18 (Lison
and Tiedemann, 2016) and the Europarl (Koehn,
2005) corpus. The data quantities can be found in
Table 3 (column “pretrain”).

pretrain finetune amb_test
train #sents 10.8M 2.9M —
#tokens 82.1M 26M —
dev #sents 3K 3.5K —
#tokens 23.3K 48.7K -
test #sents — 3.5K 1K
#tokens — 47.7K 10.3K

Table 3: Quantities of unique data used for: model pre-
training (pretrain), model fine-tuning (finetune) and
the test set for calculation of restricted impact (amb_test).
Values are averaged for source and target text.

Corpus Extraction for Fine-tuning We extract
the fine-tuning data directly from the pre-training
corpus; each sample is paired with an annotation
of up to four types of attributes. For that purpose
we implement a set of morphosyntactic rules for
the Polish SpaCy model (Tuora and Kobylifiski,
2019) which uses the Morfeusz2 morphological
analyser (Kieras and Wolinski, 2017).2 Since at-
tribute annotations vary at sentence level, we pro-
duce sentence-level annotations (instead of word-
or scene-level). For both speaker and interlocu-
tor gender attributes, the masculine gender makes
up over 60% of the corpus. Altogether, a total of
34.33% of the corpus marks at least one of the at-
tributes. Figure 2 shows how linguistic categories
contributed to extracting each attribute.

Similarly to Elaraby et al. (2018) and Gonen
and Webster (2020), we observe that certain nouns
marked as describing the speaker or interlocutor
have a fixed gender irrespective of that person’s

The code is available at https://github.com/
st-vincentl/grammatical_agreement_eamt/.

SPGENDER
ILGENDER
ILNUMBER
FORMALITY
0% 20% 40% 60% 80% 100%
I Verbs W Non-honorific Pronouns
Nouns I Honorifics
Adjectives W Requests

Figure 2: Contributions of each grammatical category to each
attribute in the extracted corpus.

gender and are therefore inadequate determinants
of their gender (e.g. coward “tchérz” is always
masculine). We could not find a reliable (complete
nor heuristic) method to resolve this other than cre-
ating a “stopwords” list of all inflexible nouns. The
process is now performed in two steps: we first ex-
tract a list of sentences containing gender-marked
words and then filter out those that were selected
based on our “stopwords” list of inflexible nouns.

We extract 223.0K noun-dependent sentences
with 9K unique lemmatised nouns in the first pass,
build the “stopwords” list of 6.8K words and end
up with 67.3K sentences.

Parser Rules We identify sentences marking for
SPGENDER by finding tokens in first person sin-
gular and verifying that their head marks feminine
or masculine gender. FORMALITY is identified
through the use of the inflected pronouns in the
Pan+ set (unless it is used as a title, e.g. in ‘Ms
Smith’). Formal requests are selected by finding
prosze (‘please’) in the target sentence but not in
the source. ILGENDER is trivially inferred in for-
mal cases; for informal language, we match struc-
tures analogous to those for the SPGENDER and
extend them to comparative phrases and vocatives.
ILNUMBER follows from the plurality of second-
person verbs as well as the use of the pronoun ty
(‘you’, singular) or wy (‘you’, plural).

Parser Performance To measure the effective-
ness of the parser, a native Polish speaker with ex-
pertise in NLP manually annotated a random sam-
ple of 1K sentence pairs from the training cor-
pus for the provided attribute types. Given a sam-
ple, the annotator was instructed to identify a type
from each attribute, and then highlight a part of
the Polish sentence proving its occurrence. Preci-
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Count Context Example

train dev test SPGENDER ILGENDER ILNUMBER FORMALITY English Polish
419.9K 0.8K 0.8K  sp:feminine * * * I’m an amateur. Jestem amatorka.
743.6K 08K 0.8K sp:masculine * * * I’'m all alone. Jestem catkiem sam.

93K 0.2K 0.2K * il:feminine plural informal You’re smitten. JesteScie odurzone.
73.8K 0.2K 0.2K * il:masculine plural informal Have you met Pete? Poznaliscie Pete’a?
31569K 0.2K 0.2K * X plural informal You need to leave. Musicie wyjsé.
326.8K 0.2K 0.2K * X singular informal I got you something. Przyniostem ci cos.
273.0K 0.2K 0.2K * il:feminine singular informal Are you sick? Jeste$ chora?
498.7K 0.2K 0.2K * il:masculine singular informal Understand? Zrozumiate§?

0.7K  0.1K 0.1K * il:feminine plural formal Please, let me explain.  Wyjasni¢ paniom.

2.7K 02K 0.2K * il:masculine plural formal Aren’t you? Panowie nie sa?

57K  0.2K 0.2K * il:mixed plural formal You are wrong. Myla si¢ parstwo.
63.0K 0.2K 0.2K * il:feminine singular formal Martini for you? Dla pani martini?
144.0K 0.2K 0.2K * il:masculine singular formal Let me have your coat. Wezme panski plaszcz.
33.5K  0.2K 0.2K * X X formal Go ahead. Prosze¢ kontynuowac.

Table 4: Training data quantities for all combinations of contexts with examples for each combination, with relevant grammat-
ical expressions highlighted. Since SPEAKER and INTERLOCUTOR contexts are always independent, the counts include cases

where they co-occur. * = this attribute may occur in this place; X = this attribute is never expressed within this category.

sion and recall scores were measured between the
judgements of the parser and the annotator. The
parser (hereinafter Detector) scored near-perfectly
(99.82% precision and 99.17% recall averaged
over all attributes) and proved suitable for the tasks
of both extracting the corpus and evaluating at-
tribute controlling. Beyond input errors leading
to incorrect parsing, we observed two consistent
cases of failure:

* when the interlocutor is addressed in plural but
is in fact singular (in cases like “Gogjngular help
her. Maybe you [two] will,jy figure it out to-
gether.” the addressee may be interpreted as plu-
ral instead of singular depending on the majority
of grammatical matches for each type);

* some tag questions (e.g. “prawda?”’) or expres-
sions (e.g. the words “kim§” (‘someonein.’),

“czym$” (‘something;,g,.’)) are consistently in-

correctly analysed for dependencies, which

sometimes leads to triggering of incorrect rules.

Data Selection and Annotation Table 4 shows
particular groups of contexts, their typical expres-
sion, and total count in the corpus.> Similarly to
Sennrich et al. (2016), we mask the annotations of
half the training samples every epoch at random
and give half of the unannotated sentence pairs a
random set of attributes. This helps preserve the
translation quality of the model’s outputs when in-
sufficient context is given.

Our development and test sets are balanced

*Note that ILGENDER, ILNUMBER, FORMALITY are co-
dependent, since they all concern the same entity (the inter-
locutor), and thus different combinations of their types lead
to different grammatical expressions.
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across the 14 context groups (cf. table 4). We
gather a total of 4K unique examples for each
set. When evaluating each implemented approach,
we provide two results: when complete context
is given, or when an isolated attribute type is
provided. Consider a complete-context test case
within the ILNUMBER group of

<il:feminine>,<plural>,<formal> 1 like you.
The input for the isolated attribute is as follows:
<plural> 1 like you.

that is, we omit all types but those belonging to
the examined attribute. For the complete context
case we provide the full input. To evaluate each
individual type (e.g. <il:feminine> or <formal>),
in the isolated attribute case we gather all devel-
opment/test cases which match the selected type,
with a total count of minimum 200 examples (for
<il:mixed>) up to 1200 (for <plural>).

4.2 Model Settings

We use the Transformer architecture (Vaswani et
al., 2017) implemented in PyTorch (Paszke et al.,
2019). Similarly to Lakew et al. (2021), we test a
range of model alterations.

We split them into two categories: Types as Tags
(TAG*) and Embedded Types (EMB*). We scale
each approach that was originally proposed as a
way of controlling a single attribute to a multi-
attribute scenario: for TAG*, we supply multiple
tags in a random order, and for EMB* we average
the embeddings (see Table 5).



Approach

Multi-attribute solution

Embedding size  Input space occupied

Types as Tags

TAGENC* (Sennrich et al., 2016) Niypes
TAGDEC (Takeno et al., 2017) ++ Ntypes * Amodel Ntypes + 1
TAGENCDECA (Lakew et al., 2021) 2 % Nyypes + 1
Embedded Types
EMBPWSUM (Lakew et al., 2021) 0
EMBADD (Schioppa et al., 2021) 0
EMBENC (Ours) % Ntypes * Amodel 1
EMBSOS (Lample et al., 2019) 0
EMBENCSOS (Ours) 1
OUTBIAS* (Michel and Neubig, 2018) 2. types Ntypes * L€Nocab 0

Ntypes

Table 5: Comparison of examined approaches. ++ = concatenation.

control and extended by us.

Types as Tags We encode each type of each
attribute as a special vocabulary token (e.g.
<singular>, cf. Table 2). During fine-tuning,
these fags are concatenated to the source or target*
sentences and trained like other tokens. We use
three settings:

* TAGENC: appending the tags to the source sen-
tence (Sennrich et al., 2016).

* TAGDEC: prepending the tag to the target sen-
tence (Takeno et al., 2017).

* TAGENCDEC: applying tags to both sen-
tences (Niu and Carpuat, 2020).

Average Embedding As an alternative to se-
quential tagging, embedded types 7' can be aver-
aged and supplied as a single vector E(7T") (Lample
et al., 2019). We test five settings:

« EMBPWSUM: adding E(T) position-wise to
each input token (Lakew et al., 2021).

* EMBADD: adding E(T) position-wise to En-
coder outputs (Schioppa et al., 2021).

* EMBENC: concatenating E(7T') to the input (cf.
Dai et al. (2019), but in our approach the embed-
ding is not trained adversarially).

« EMBSOS: replace the start-of-sequence
(<sos>) token in the Decoder input with
E(T) (Lample et al., 2019).

* EMBENCSOS: as an additional setting, we test
combining EMBENC and EMBSOS.

As a special case, we test OUTBIAS: adding
a type embedding as a bias on the final layer of
the Decoder (Michel and Neubig, 2018). We omit

“During inference, we supply tags by forcibly decoding the
relevant type tokens, followed by a <null> token, before the
main decoding step commences.
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4 = Approach originally proposed for single-attribute

the black-box injection method of Moryossef et al.
(2019) due to its inapplicability to ILGENDER in
plural and to FORMALITY. Our baseline is the pre-
trained model without attribute information.

4.3 Training Details

We preprocess the corpus with Moses tools for
detokenisation and normalising punctuation’, and
by running a short set of custom rules. We train
a joint sub-word segmentation model of 16K to-
kens with SentencePiece (Kudo and Richardson,
2018) and encode both sides of the corpus. We
follow the standard training regimen for a 6-layer
Transformer (Vaswani et al., 2017) with an input
length limit of 100 tokens; this model has just over
52.3M trainable parameters. All training is done
on a single 32GB GPU. As the decoding algorithm,
we use beam search with a beam size of 5. We
pre-train the model until a patience criterion of the
chrF++ (Popovié¢, 2017) validation score not in-
creasing for 5 consecutive validation steps (which
occur every 3/4th epoch). This happens around
the 24th epoch, or after 66 hours of training.

Each of the nine architectural upgrades is a copy
of the pre-trained model expanded with the rele-
vant component and fine-tuned. The fine-tuning
process exposes the model to the fine-tuning cor-
pus in 10 epochs; performance is validated every
half epoch. We select the best checkpoint based on
the highest chrF++ score on the development set.

4.4 Evaluation

We consider the following criteria in evaluation:

1. Translation Quality. Attribute-controlled

Shttps://github.com/alvations/sacremoses



isolated attribute

complete context

Model chrF++" BLEU" Agree’ (%) chrF++T  BLEUT Agree’ (%) AMBID'
Baseline  46.60  23.13 74.35 46.60  23.13 74.35 —
TAGENC 4895  25.52 99.03 5241  29.16 99.39 95.87
TAGDEC  48.65  25.40 99.21 50.83  27.65 96.84 93.15
TAGENCDEC 4828  25.26 99.35 51.01  28.15 99.26 82.66
EMBPWSUM  46.03  22.37 100 51.90  28.69 97.90 88.67
EMBADD  47.45  23.61 99.96 51.77  28.56 98.24 87.76
EMBENC  47.72  24.39 83.42 52.23  28.98 99.30 95.58
EMBSOS  48.28  24.90 99.91 5238  29.09 98.47 92.07
EMBENCSOS  48.60  25.08 99.87 51.94  28.77 98.55 92.37
OUTBIAS 4859  24.98 96.71 49.32  26.11 86.25 94.05

Table 6: Translation performance of all models; “isolated attribute” means that only one (the investigated) attribute was
revealed to the model. The highlighted scores include the best one in the column and all statistically equivalent results according

to a bootstrap resampling method (p < 0.05).

translations should be of quality no worse than
translations of the non-specialised model.

2. Grammatical Agreement. Attribute-
controlled hypotheses should completely
agree to the specified type where necessary.

3. Restricted Impact. Grammatical agreement
should only affect words that explicitly render
the attributes. Therefore, if no attribute is to be
expressed in the hypotheses, then they should
be no different from baseline hypotheses.

We evaluate translation quality  with
chrF++ (Popovic, 2017)° and BLEU (Pap-
ineni et al., 2002). Grammatical agreement is
quantified with the help of the Detector. For every
attribute, we calculate how many hypotheses agree
to the correct type ¢ and to the incorrect type .
Let hyp; be a hypothesis translated using type
t as context, and agree(hyp,t) denote that the
Detector has found evidence of type t expressed

in hyp. We express the total agreement score as:

agree(hypt,t)
agree(hyps, t) + agree(hypy, )
Finally, we quantify restricted impact with a
custom metric, which measures that attribute-
independent sentences do not carry any attribute-
reliant artifacts; we define this metric, AMBID, as:

-~

chrF++(NMT(srcq, A), NMT(src,, A))

Agree =

where A is a set of attribute types and A is the
reverse set.” We use an attribute-ambivalent test
set of a 1K sentences to calculate this score (Table
3, column “amb_test”).

SFor clarity, we normalise chrF++ scores to a [0, 100] range.

"For the type triplet ILGENDER we assume that
il:masculine = il:feminine, il:mixed = il:feminine,

il:feminine = il:masculine.
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S5 Results
We report quantitative results in Table 6.

Grammatical Agreement The Agree column in
Table 6 shows the agreement scores given by
the Detector. In the isolated attribute scenario,
all methods but OUTBIAS and EMBENC achieve
near-perfect agreement scores. The agreement
scores in the complete context scenario remain
high for other models except TAGDEC, and pick
up for EMBENC, suggesting that controlling sev-
eral attributes generally has no negative impact on
individual attributes.

Translation Quality Attribute-controlling mod-
els achieve significant gains over baseline for both
the isolated attribute and complete context sce-
narios, and the gains are consistently higher in
the latter, suggesting that exposing the models to
more context yields better translations. TAGENC
achieves the highest improvement over the base-
line in terms of chrF++/BLEU for complete con-
text (+5.81 chrF++/+6.03 BLEU). The gains in
translation quality are correlated with agreement
scores, except for EMBPWSUM, for which the
isolated attribute scenario leads to a near-perfect
agreement but low quality scores. Further inves-
tigation shows that this model learned to overpro-
duce context-sensitive words when given a context
of only a subset of types (e.g. translating “you” as
“I” to introduce SPGENDER marking), leading to
high agreement scores but degradation in quality.
This highlights the importance of pairing an accu-
racy measure with a translation quality metric.

To investigate how successful the models are
at modelling each context group individually, we
report the mean chrF++ scores obtained for each
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Figure 3: Translation quality (chrF++) for each contextual group.

group’s test set (Figure 3). All contextual models
bring significant improvements over the baseline
except in the Formal plural feminine interlocutor
group, for which there was little training data (cf.
Table 4); improvements are consistently greater for
feminine than masculine groups. No single model
performs consistently better than others than oth-
ers, but TAGDEc, EMBPWSUM and OUTBIAS
fall behind on most groups. Finally, we observe
no significant gain generally from including infor-
mation in both the Encoder and the Decoder.

Restricted Impact The AMBID scores shown in
Table 6 reveal that TAGENC and EMBENC intro-
duce the least variation in attribute-ambivalent ut-
terances, suggesting that adding contextual infor-
mation to the Encoder input only helps limit cre-
ation of unwanted artifacts. The distance of only
4.13 chrF++ points to the ideal score of 100 for the
highest-scoring model suggests good separation of
grammatical and behavioural agreement. Some
separation-specific modelling may further improve
this score, but it was outside the scope of this work.

General Discussion The results suggest that
TAGENC is the most reliable approach to the pre-
sented problem, followed by EMBSOS and EM-
BENC. Notably, we find other methods dubbed as
superior to TAGENC in previous work (EMBADD,
TAGDEC and TAGENCDEC) to underperform in
our case.

6 Conclusions and Future Work

In this work, we have highlighted the problem of
grammatical agreement in translation of TV dia-

logue in the English-to-Polish language direction.
We have created and described a dataset annotated
for four speaker and interlocutor attributes that di-
rectly influence grammar in dialogue: speaker’s
gender, interlocutor’s gender and number and for-
mality relations between them. We have presented
a selection of models capable of controlling these
attributes in translation, yielding a performance
gain of up to +5.81chrF++/4+-6.03BLEU over the
baseline (non-controlling) model. Finally, we have
produced a tool that produces an accuracy score for
agreement to each type.

Considering all criteria of evaluation, we have
identified TAGENC as the best performing ap-
proach, with EMBENC, and EMBSOS also achiev-
ing competitive performance. TAGENC may be
more attractive in scenarios where interventions in
the model architecture are impossible as it can be
implemented via data preprocessing alone, but the
other two have a more scalable design (cf. §2). Fi-
nally, contrary to some previous work, we found
no advantages stemming from including the con-
textual information in the Decoder as well as the
Encoder.

Future Work NMT research should strive to
move beyond seeing gender as a dichotomous phe-
nomenon (Savoldi et al., 2021). Within this paper
we did not consider the scenarios with non-binary
interlocutors due to i) lack of available data and
ii) lack of consensus regarding non-binary gender
expression in the Polish language (Misiek, 2020).
However, our work can be applied to non-binary
expression once data and more studies are avail-
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able. Furthermore, the influence in NMT of other
extra-textual attributes (e.g. multimodal ones, like
spatial information, or emergent ones, such as per-
sonal attributes) is yet to be explored. It remains an
open question whether such attributes should all be
considered individually, or whether there is a way
of identifying and/or using them implicitly.
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Abstract

We propose a novel technique of combin-
ing multiple subword tokenizations of a
single source-target language pair for use
with multilingual neural translation train-
ing methods. These alternate segmenta-
tions function like related languages in
multilingual translation, improving trans-
lation accuracy for low-resource languages
and producing translations that are lex-
ically diverse and morphologically rich.
We also introduce a cross-teaching tech-
nique which yields further improvements
in translation accuracy and cross-lingual
transfer between high- and low-resource
language pairs. Compared to other strong
multilingual baselines, our approach yields
average gains of +1.7 BLEU across the
four low-resource datasets from the multi-
lingual TED-talks dataset. Our technique
does not require additional training data
and is a drop-in improvement for any ex-
isting neural translation system.

1 Introduction

Multilingual neural machine translation (NMT,
Dong et al. 2015; Johnson et al. 2017) models are
capable of translating from multiple source and
target languages. Besides allowing efficient pa-
rameter sharing (Aharoni et al., 2019) these mod-
els facilitate inherent transfer learning (Zoph et al.,
2016; Firat et al., 2016) that can especially bene-
fit low resource languages (Nguyen and Chiang,
2017; Gu et al., 2018; Neubig and Hu, 2018;

© 2022 The authors. This article is licensed under a Creative
Commons 3.0 licence, no derivative works, attribution, CC-
BY-ND.

Tan et al., 2019). A common technique to ad-
dress lexical sharing and complex morphology in
multilingual NMT is to decompose longer words
into shorter subword units (Sennrich et al., 2016).
Since subword units are produced using heuris-
tic methods, not all subwords are created equally.
This can put low- and extremely low-resource lan-
guages at a disadvantage, even when these lan-
guages are paired with a suitable high resource lan-
guage. To diminish the impact of rare subwords
in NMT, Kambhatla et al. (2022) leverage cipher-
texts to augment the training data by constructing
multiple-views of the source text. “Soft” decom-
position methods based on transfer learning (Wang
et al., 2018) address the problem of sub-optimal
word segmentation with shared character-level lex-
ical and sentence representations across multiple
source languages (Gu et al., 2018). Wang et al.
(2021) addressed this problem with a multiview-
subword regularization technique that also im-
proves the effectiveness of cross-lingual transfer
in pretrained multilingual representations by si-
multaneously finetuning on different input seg-
mentations from a heuristic and a probabilistic to-
kenizer. While subword-regularization methods
(Kudo, 2018; Provilkov et al., 2020) have been
widely explored in NMT, this work is the first
to study them together with multilingual training
methods.

Concretely, we construct pairs of “related lan-
guages’” by segmenting an input corpus twice, each
time with a different vocabulary size and algorithm
for finding subwords; we use these “languages”
(really, views of the same language) for multi-
lingual training of an NMT model. We propose
Multi-Sub training, a method that combines multi-
lingual NMT training methods with a diverse set
of auxiliary subword segmentations which func-
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Figure 1: An illustration of the interaction between the primary (BPE) and auxiliary (SP) subwords for the same sample from
the be—en dev set where each type of segmentation is treated as a separate language. The model is taught to translate into

a specific segmentation via multilingual training using the target
type font shows both variants of the source sentence translating t
segmentations of the same word(s) in source/target.

tion like related languages in a multilingual setting
since they have distinct but partially-overlapping
vocabularies and share the same underlying lexi-
cal and grammatical features. Our model is able to
transfer information between segmentations analo-
gous to the way information is transferred between
typologically similar languages.

We also introduce a cross-teaching technique in
which a model is trained to translate source sen-
tences from one subword tokenization into target
sentences from a different subword tokenization.
By using Multi-Sub training together with cross-
teaching, we obtain strong results on four low-
resource languages in the multilingual TED talks
dataset outperforming strong multilingual base-
lines, with the most significant improvements in
the lowest-resource languages. In addition to im-
proving the BLEU scores, our technique captures
word compositionality better leading to improved
lexical diversity and morphological richness in the
target language. Multi-Sub with cross-teaching is
better at clustering different languages in the sen-
tence embedding space than previous methods in-
cluding Multi-Sub without cross-teaching.

2 Auxiliary Segmentation as a Related
Language

Pairing related languages is common in multilin-
gual NMT!: Nguyen and Chiang (2017) combine
Uzbek/Turkish and Uzbek/Uyghur; Johnson et al.
(2017) study multilingual translation to and from
English with pairs such as Spanish/Portuguese or
Japanese/Korean. Neubig and Hu (2018) pair low
resource languages like Azerbaijani with a related

"Here we do not distinguish between languages which are re-
lated in the linguistic sense (having some genetic affiliation)
and those which are related in a more pragmatic sense of hav-
ing high lexical overlap.
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“language” tags [2bpe] and [2sp]. The sentence in bold
o the same target sentence. The colored spans show different

“helper” language like Turkish.

We take these techniques as motivation for the
present work. Our principal contribution is to re-
think what it means to use “related” languages in
a multilingual translation model. Beyond simply
employing other languages from the same fam-
ily, or those with high lexical overlap, we show
that a model trained on different segmentations of
the same language can produce improvements in
translation quality.

Rather than segmenting a corpus with a single
tokenizer prior to training a translation model, we
produce multiple segmentations using different to-
kenizers. Consider the example sentences in Fig-
ure 1. On both the source and target sides, the same
sentence is represented using both Byte-pair En-
codings (BPEs, Sennrich et al. 2016, with a “@ @”
separator) and in parallel as sentencepieces (SP,
Kudo 2018, with a “_” separator). Each segmenta-
tion uses a different vocabulary size, which guar-
antees that their subword sequences are to some
extent distinct. The two tokenizations still resem-
ble one other in many ways: (i) they have a non-
trivial degree of lexical overlap (mostly between
subwords which do not fall along word bound-
aries); (ii) they share the same grammatical struc-
ture, as both represent the same underlying lan-
guage; and (iii) both sequences have the same se-
mantic interpretation. We thus refer to the two seg-
mentations as a pair of “related languages”.

Applying two segmentations to a parallel cor-
pus yields a total of four “languages”: the source
and target represented as BPE subwords, and the
same represented using SP subwords. We obtain
two source “languages” (each containing data from
both high and low resource languages) and two tar-
get “languages”. Using this four way configura-
tion, we train a model following a common multi-



lingual training method (Johnson et al., 2017): de-
pending on the segmentation we want to translate
into, we prepend a target token [2bpe] or [2sp]
to the source side. We explore two different multi-
lingual training configurations:

[BPE+SP]: In this setting, a source sentence in
a particular segmentation is translated into the tar-
get with the same segmentation. Specifically, this
model is trained multilingually on the pairs

BPE [src] — BPE [tgt]

SP [src] — SP [tgt]
Cross-teaching: In addition to [BPE+SP], in
this setting, each source sentence with a particu-
lar segmentation is translated into the target with
alternate segmentation. This multilingual model is
therefore trained on the following pairs:

BPE [src] — SP [tgt]

SP [src] — BPE [tgt]

Using multilingual training, our model is able to
transfer information between BPE and SP segmen-
tations in much the same way that conventional
multilingual models transfer information between
languages with a shared linguistic affiliation. Un-
like data augmentation techniques which gener-
ate synthetic training data, Multi-Sub training uses
only the content of the original training corpus.
Furthermore, contrary to other works which em-
ploy multiple segmentations (Wang et al., 2018;
Wu et al., 2020), Multi-Sub training and cross-
teaching do not affect model architecture and do
not require specialised training. Thus Multi-Sub
training can be used as a simple, drop-in improve-
ment to an existing neural translation model.

3 Experiments

3.1 Experimental Setup

Data Following prior work on low-resource and
multilingual NMT (Neubig and Hu, 2018; Wang
et al.,, 2018) we use the multilingual Ted talks
dataset (Qi et al., 2018). We use four low re-
source languages (LRL): Azerbaijani (az), Belaru-
sian (be), Galician (gl) and Slovak (sk), and four
high resource languages (HRL): Turkish (tr), Rus-
sian (ru), Brazilian-Portuguese (pt), and Czech
(cs). In all experiments and baselines, each LRL
is paired with the related HRL and English is the
target language.

Table 1 shows general statistics for each dataset.
Based on the size of the training data, we consider
az, be and gl as extremely low-resource while sk is
a slightly higher-resource dataset.
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LRL | #train #dev #test | HRL #train
az 5.9k 671 903 tr 182k
be 4.5k 248 664 ru 208k
o | 100k 682 1007 | pt 185k
sk 61.5k 2271 2445 cs 103k

Table 1: Statistics from our low resource language (LRL) and
high resource language (HRL) datasets.

Model Details Our model comprises a single
bi-directional LSTM as encoder and decoder,
with 128-dimensional word embeddings and 512-
dimensional hidden states. We are careful to
keep this configuration consistent with our base-
line model (Neubig and Hu, 2018) to ensure a fair
comparison. We use fairseqg?® to implement the
baseline as well as our proposed models. We set
dropout probability to 0.3, and use an adam opti-
mizer with a learning rate of 0.001. In practice,
we train a Multi-Sub model until convergence,
and then use this model to continue training on
cross-teaching data until convergence. For infer-
ence, we use beam size 5 with length penalty. We
use sacrebleu® (Post, 2018) to report BLEU
(Papineni et al., 2002) scores on the detokenized
translations. We perform statistical significance
tests for our results based on bootstrap resampling
(Koehn, 2004) using compare-mt toolkit.*

For fair comparison with prior work, we use
BPE (Subword-nmt, Sennrich et al. 2016) as our
primary segmentation toolkit and sentencepiece
(SP, Kudo 2018) as our auxiliary tokenizer. We
only use the BPE segmentations to tune our model
via validation. In other words, while we train on
both BPE and SP, we save model checkpoints that
are optimized for BPE tokenized inputs.’

Following Neubig and Hu (2018), we separately
learn 8k BPE subwords on each of the source and
target languages. When combining an LRL and a
HRL, we take the union of the vocabulary on the
source side and the target side separately. We use
the same procedure with the SP tokenizer using a
subword vocabulary size of 4k. To train BPE and
SP together, we take the union of the vocabularies

2https ://github.com/pytorch/fairseq
3SacreBLEU signature: BLEU+CASE.MIXED+NUMREFS. |
+SMOOTH.EXP+TOK.13A+VERSION.1.4.14
*https://github.com/neulab/compare-mt

50ur model can handle sentencepiece inputs as well. For a
model that performs equally well on BPE and SP, construct
a validation set with equal number of source sentences with
both segmentations and save the checkpoints optimized for
the validation metric. We chose BPE segments for validation
to be comparable with previous work.



Lex Unit | Model | tr/az ru/be  pt/gl cs/sk
Word Lookup 7.66 13.03 28.65 2524
Sub-joint Lookup 9.40 1172 22.67 2497
Sub-sep UniEnc (Gu et al., 2018) 4.80 8.13 1458  12.09
Sub-sep Lookup (Neubig and Hu, 2018)° 10.8 16.2 27.7 28.4
Sub-sep Adaptation (All—Bi) (ibid.) 11.7 18.3 28.8 28.2
‘Word SDE (Wang et al., 2018) 11.82 18.71 30.30 28.77
Sub-sep SDE (ibid.) 12.35 1630  28.94 2835
Multi-Sub Lookup [BPE + SP] (Ours) 12.0° 185"  28.6* 28.8'
(BPE 8k + SP 4k) | Lookup + Cross-teaching (Ours) | 12.7** 18.8** 29.6** 28.61

Table 2: All models are trained on a LRL and a related HRL with English as the target language with LSTMs. BLEU scores
are reported on the test set of the LRL. The sub-sep lookup model (Neubig and Hu, 2018) is our primary baseline (shaded in
grey). Our best results compared to the baseline are underlined. Bolding indicates best overall results on the datasets. We
indicate statistical significance w.r.t primary baseline with T (p < 0.05), * (p < 0.001) and ** (p < 0.0001).

of the source and target sides separately, resulting
in a vocabulary which is union of the BPE and SP
subword vocabularies of each side.

3.2 Main results

We compare the results of our Multi-Sub models
against various baselines in Table 2. Sub-sep mod-
els use a union of subword vocabularies learned
separately for each of the source and target lan-
guages; the union is performed separately for the
source and target sides yielding two separate vo-
cabularies. Sub-joint refers to subword vocabular-
ies learned jointly on the concatenation of all of
the source and target languages. Such models con-
sistently perform worse than their sub-sep counter-
parts for all datasets, as the HRL tends to occupy a
larger share of the vocabulary and leaves the LRL
with both a smaller vocabulary as well as smaller
subwords. Our reimplementation of the sub-sep
model (Neubig and Hu, 2018) mitigates this by
(separately) learning the same number of subwords
for the HRL and LRL. Using words instead of sub-
words performs on par with the sub-sep model for
gl — en but worse for other languages.

We see that our model, Multi-Sub, handily out-
performs all of these baselines. Compared to
the de-facto sub-sep model (highlighted in grey,
and used as the baseline in the rest of the pa-
per), Multi-Sub without cross-teaching gains +1.2
BLEU points on az and be, and +0.9 on g1. The
improvement on cs is not large, but is significant
at +0.4 BLEU.

The numbers are from our reimplementation of Neubig and
Hu (2018). Original BLEU scores on this dataset were az:
10.9, be: 15.8, gl: 27.3, sk: 25.5 while a reimplementation
by Wang et al. (2018) yields az: 10.9, be: 16.17, gl: 28.1,

sk: 28.5. Our implementation matches the performance on all
test sets except for gl where we lag by 0.5 points.

We also compare our approach against more so-
phisticated models, such as soft decoupled encod-
ing (SDE, Wang et al. 2018) which shares lexi-
cal and latent semantic representations across mul-
tiple source languages. Our modest Multi-Sub
model with cross-teaching outperforms SDE (with
words as lexical units) on three out of four lan-
guages, with the largest gain being +0.9 BLEU
on az — en. Multi-Sub consistently and signif-
icantly outperforms subword-level SDE on all lan-
guage pairs with gains ranging from +0.4 BLEU to
+2.5 BLEU. Note that although Multi-Sub is -0.7
BLEU behind word-level SDE on g1, it outper-
forms sub-sep by +2.6 BLEU and subword-level
SDE by +2.5 BLEU.

Overall, our models are consistently better than
the sub-sep baseline. For most languages, substan-
tial improvements over the baseline come when the
Multi-Sub model is combined with cross-teaching.

3.3 Comparison with Subword
Regularization

Table 3 contrasts Multi-Sub against BPE-dropout
(Provilkov et al., 2020), a subword regularization
technique.” For comparison we report results from
the baseline sub-sep model with and without sub-
word regularization. Our implementation applies
BPE-dropout to the training data with probability
p = 0.1, and the model and training are otherwise
identical to sub-sep.

Although subword regularization improves
upon the baseline model, the difference is small,
likely because of the small amount of data avail-

"Using only one tokenizer (either BPE or SP) with different
subword sizes closely resembles subword regularization. Us-
ing SP and BPE, on the other hand, results in different word-
boundary markers that makes our technique distinct.
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tr/az  ru/be pt/gl cs/sk

Sub-sep | 10.8 162 277 284
+SR | 11.0 16.6 284 282
Multi-sub | 12.7 188 29.6 28.8

Table 3: Comparing subword regularization (SR) with our
best results. We use BPE-dropout (Provilkov et al., 2020) at
p=0.1.

able for the LRLs. By contrast our Multi-Sub tech-
nique yields much larger gains.

Discussion BPE-dropout (Provilkov et al., 2020)
is a subword regularization technique that exposes
the model to learn better word compositionalities
by probabilistically producing multiple segmenta-
tions for each word. Multi-Sub, on the other hand,
uses a secondary subword segmentation of lower
vocabulary size and leverages its compositional-
ities as a related language to learn better repre-
sentations. In Multi-Sub with cross-teaching, the
model learns to produce four way translations on
the same source and target languages: BPE [src]
— {BPE [tgt] , SP [tgt]} and SP [src] — {BPE
[tgt], SP [tgt]}. Although this method is determin-
istic, and the model learns from only two unique
subword sequences instead of one (e.g. sub-sep),
this inter-segmentation interaction through multi-
lingual training helps the model learn better com-
positionalities and morphology. See Section 4.2
for a discussion on the linguistic complexity of the
output translations.

3.4 Choice of Auxiliary Subwords

Our primary subword tokenizer is BPE with 8000
subwords; we use sentencepiece (SP) as our auxil-
iary subword tokenizer. To choose the right auxil-
iary subword vocabulary size, we experiment with
three different sizes (6k, 4k and 2k) on tr/az and
ru/be datasets. To determine the optimal vocab-
ulary size, we focus on two key aspects of the can-
didate segmentations: translation quality and aver-
age sentence length. Figure 2 presents a summary
of our results.

On both datasets, subword vocabularies of sizes
6k and 4k yield slightly lower BLEU scores than
the baseline with 8k subwords; the drop is mini-
mal (az: 10.4 vs. 10.1, be: 15.6 vs. 15.5 for 6k
and 4k). Performance is substantially worse on the
same datasets with 2k subwords (7.2 for az and
14.1 for be) so we reject the 2k setting.

Next, we compare the average sentence lengths
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Figure 2: Effect of auxiliary subword vocabulary size on
BLEU (a) and sentence length (b, ¢) in tr/az and ru/be.

in the subword-tokenized training data (both
source and target sides) across different subword
vocabulary sizes. At a vocabulary size of 6k, sen-
tence length does not vary substantially from the
length found with 8k subwords (Figure 2(b, c)). 4k
subwords yield a more significant increase in sen-
tence length on both source (tr/az: +9, ru/be:
+10) and target sides for both datasets. This is
favourable since this guarantees as many new sub-
words as possible in the sentence without increas-
ing its length dramatically. On the basis of these
results, we have chosen 4k SP subwords for our
auxiliary segmentations.

4 Analysis

4.1 Correlation to Data Availability

Using a secondary subword model as a related lan-
guage yields different degrees of improvement in
different languages. We investigate whether these
variations correlate with the degree to which the
LRL is “low-resource”.

We report (Table 4) the amount of training data
available for the LRL, the word-level vocabulary
size of each LRL (v gy,), and the ratio of this size
to the vocabulary size of the corresponding HRL

#train VLRL “’,Iljlrl;t BLEU A
az 5.94k 13.1k 11.29 +1.90
be 4.50k 9.9k 11.43 +2.61
gl 10.03k 109k  27.69 +1.90
sk 61.50k 48.5k  80.01 +0.40

Table 4: Comparison of size of training data in LRL with the
BLEU improvements. Column 4 shows the ratio of the word
vocabularies of LRL (v, rr) to HRL (vgrr). The ratios are
multiplied by 100 for readability.



Model BLEU TTR RTTR LTTR MTTR| HD-D MTLD MTLD-A  MTLD-Bi Yule’sK |

Az—En  Reference - 0.1845  22.98 0.8248 0.0417 0.8738 106.60 108.47 108.17 80.68
1 Base 10.8 0.0855 10.9615  0.7466 0.0600 0.7750  33.9342 38.3466 38.1259 170.4321

2 BPE 8k + SP 4k 12.0 0.0971 12.2866  0.7591 0.0572 0.7936  40.0937 44.7958 44.8005 152.0778

3 2 + Cross-teach 12.7 0.0993 124746  0.7610 0.0569 0.7961  41.3529 45.4622 45.3590 149.4563
Be—En  Reference - 0.1863  20.83 0.8219 0.0434 0.8687 102.95 104.44 104.3692 85.73
1 Base 16.2 0.1149 13.0503  0.7714 0.0556 0.8045  51.1452 52.4293 52.6571 139.7345

2 BPE 8k + SP 4k 18.5 0.1225 13.7806  0.7777 0.0542 0.8017  51.9363 52.9719 53.0382 147.5613

3 2 + Cross-teach 18.8 0.1249  14.0746  0.7799 0.0536 0.8071  54.8368 55.6391 55.7884 142.6042
Gl—En  Reference - 0.1484 1945 0.8043 0.0462 0.8643 91.22 94.81 94.67 87.92
1 Base 27.7 0.1329  17.1629  0.7924 0.0492 0.8312  72.9798 73.9316 73.8523 120.5782

2 BPE 8k + SP 4k 28.6 0.1365 17.6551  0.7952 0.0485 0.8328  76.0790 75.5915 75.5815 119.1850

3 2 + Cross-teach 29.6 0.1366  17.7624  0.7955 0.0484 0.8307  74.6902 73.7315 73.7201 112.5075
Sk—En  Reference - 0.1253 255328  0.8047 0.0423 0.8689 95.38 102.52 102.24 86.20
1 Base 28.4 0.0935 18.9185  0.7769 0.0484 0.8383  72.7529 74.8386 749117 112.8484

2 BPE 8k + SP 4k 28.8 0.0954 19.3010  0.7787 0.0480 0.8411  74.5821 76.1596 76.2799 110.8807

3 2 + Cross-teach 28.6 0.0947  19.3118  0.7784 0.0480 0.8379  72.8657 74.7803 74.8770 114.8330

Table S: Lexical diversity of the reference human translations vs. model outputs in different settings for each LRL.

(vgrr). The ratio vprr/vgrr is directly pro-
portional to the number of training samples in the
LRLs. This ratio has a generally negative correla-
tion to the BLEU gains in our models—the more
training data is available, the smaller the improve-
ments. This strongly suggests that using auxiliary
subwords as a foreign language is a technique best
suited to low resource languages.

4.2 Linguistic Complexity

While estimating linguistic complexity is a mul-
tifarious task, lexical and morphological diversity
are two of its major components. In this section we
perform an exhaustive assessment of our models’
translations using lexical diversity metrics (Sec-
tion 4.2.1) and morphological inflectional diversity
metrics (Section 4.2.2).

4.2.1 Lexical Richness

We use several metrics to quantify lexical diver-
sity across translations from different models.®
The metrics include type-token ratio (TTR) and its
variants—Root TTR (RTTR, Guiraud 1960), Log
TTR (LTTR), and (MATTR, Covington and Mc-
Fall 2010)—hypergeometric distribution D (HDD,
McCarthy and Jarvis 2007), measure of textual,
lexical diversity (MTLD, McCarthy 2005) and
Yule’s K (Yule, 2014). The scores for these mea-
sures are presented in Table 5 for our model out-
puts and for the reference human translations.

On average, Multi-Sub training with cross-
teaching significantly improves the lexical diver-
8The intent of this section is not to claim that LD metrics are
potential indicators of proficiency, quality or sophistication;

they simply represent qualities which may be desirable for
certain applications, cf. Vanmassenhove et al. (2021)

sity of the generated translations. Improvements
in lexical diversity correlate with BLEU scores in
all languages (which need not be the case, cf. Van-
massenhove et al. 2021), implying that our meth-
ods produce translations which are not only more
accurate, but also richer and more varied in terms
of vocabulary. These effects are most pronounced
in the lowest-resource languages, az and be,
where cross-teaching yields improvements in ev-
ery metric relative to both the baseline and Multi-
Sub training without cross-teaching. In g1, cross-
teaching yields improvements in all metrics ex-
cept MTLD and its variants, which are optimized
by Multi-Sub training without cross-teaching. Sk
is unique in that the greatest improvements for
most metrics come from Multi-Sub training with-
out cross-teaching. This parallels the pattern ob-
served in the BLEU scores (Table 4), and confirms
our earlier claim that cross-teaching is most effec-
tive in cases of extreme data scarcity, while Multi-
Sub training without cross-teaching works better
for high resource languages.

4.2.2 Morphological Richness

To examine the morphological complexity of the
translations produced by our models, we averaged
the inflectional diversity of the lemmas. Following
Vanmassenhove et al. (2021), we used the Spacy-
udpipe lemmatizer to retrieve all lemmas.’

Shannon Entropy (H, Shannon 1948) is used to
measure the variety of inflected forms associated
with a given lemma (higher entropy means more
variation). Entropy is averaged across each lemma

*https://github.com/TakeLab/spacy-udpipe
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Model BLEU HT D]

Az—En Reference - 69.26 54.75
1 Base 10.8 64.12  59.14
BPE 8k + SP 4k 12.0 63.67  59.67
3 2 + Cross-teach 12.7 65.62 5797
Be—En Reference - 71.24 53.97
1 Base 16.2 64.12 59.14
2 BPE 8k + SP 4k 18.5 6732  67.78
3 2 + Cross-teach 18.8 67.78 57.52
Gl—En Reference - 68.27 55.88
1 Base 27.7 66.64  56.95
BPE 8k + SP 4k 28.6 6693  56.95
3 2 + Cross-teach 29.6 66.20  56.92
Sk—En Reference - 69.03 55.41
1 Base 28.4 6296  59.18

2 BPE 8k + SP 4k 28.8 6341 5891
3 2 + Cross-teach 28.6 62.50 59.37

Table 6: Morphological diversity measures comparing our
model outputs against the human references.

in the model outputs.

Simpson’s Diversity Index (D, Simpson 1949)
measures the probability that two randomly-
sampled items have the same label; large values
imply homogeneity (most items belong to the same
category). We measure morphological diversity by
computing the probability that two instances of a
given lemma represent the same inflected form.

The results in Table 6 parallel the lexical diver-
sity evaluation: in the extremely low-resource lan-
guages az and be, cross-teaching yields a clear
improvement in both the entropy and diversity in-
dex of the output translations. The model thus em-
ploys a greater variety of inflectional forms, which
provides more choices to the decoder (Vanmassen-
hove et al., 2021) (c.f. Fig. 8). In slightly higher-
resource languages like sk, the impact of cross-
teaching is less pronounced: the best diversity in-
dex is in g1, but Multi-Sub training without cross-
teaching yields the best entropy. Multi-Sub train-
ing without cross-teaching also yields the greatest
degree of morphological diversity in sk.

Model gl sk

0.39 0.11
0.51*  0.12f

Base
Multi-Sub/Cross-teaching

Table 7: F1 scores on zero-shot NER in sk and g1.  means
the best result comes from cross-teaching; * means the best
result comes without cross-teaching.

4.3 Improved Cross-lingual Transfer

Downstream Task: NER Multi-Sub training
improves the usefulness of subword embeddings
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Gl Baseline Gl BPE 8k + SP 4k + Cross-teach

bpe -> bpe
sp -> sp

bpe -> bpe
sp -> sp

bpe -> bpe
sp -> sp

(a) BPE [src]—BPE [tgt] (red) and SP [src] —SP [tgt] (blue)

Gl Baseline Gl BPE 8k + SP 4k + Cross-teach
bpe -> sp bpe -> sp bpe -> sp
sp -> bpe sp -> bpe sp -> bpe

(b) BPE [src]—SP [tgt] (red) and SP [src] —BPE [tgt] (blue)

Figure 3: PCA decomposition of Galician sentence represen-
tations in the baseline (left), Multi-Sub (center), and cross-
teaching (right) settings. Multi-Sub training can reduce sep-
aration between tokenizations, while the addition of cross-
teaching eliminates separation entirely.

for downstream tasks. We train NER models on pt
and cs using the pre-trained embeddings from our
translation models; then, following Sharoff 2017,
we evaluate each of these models on the corre-
sponding LRL.!? Since the NER models are never
trained on LRL data, this is a zero-shot evaluation
where model performance should reflect the de-
gree of multilinguality in the pre-trained embed-
dings. Table 7 reports F1 scores for this task.
We observe that Multi-Sub training on its own
can yield significant performance improvements
(as in gl), but cross-teaching is sometimes re-
quired to obtain optimal results (as in sk). To-
gether with the results in Figure 3, this suggests
that cross-teaching can play a crucial role in facil-
itating cross-lingual transfer.

Visualizations of Sentence Embeddings We
find that cross-teaching significantly reduces the
separation between different tokenizations in the
sentence representations of certain languages. Fig-
ure 3 shows the distribution of sentence represen-
tations produced by our two tokenizers. In the
baseline, BPE-tokenized sentences are clearly sep-
arated from (parallel) SP-tokenized sentences; in
the Multi-Sub setting we observe less separation,
although distinct clusters of BPE and SP inputs
are still clearly visible. By contrast, in the cross-
teaching setting, there is significant overlap be-

0¢s training data taken from Sevcikovi et al. 2007, sk test
data from Piskorski et al. 2017, and pt /g1 training and test
data from Garcia and Gamallo 2014



gl (src) | en (ref.) | sub-sep | SDE | multi-sub+cross-teach
Se queres saber | If youwanttoknow | If you want to | If you want to know | If you want to know
sobre o clima, | about climate, you | know about cli- | about climate, they | about the climat, you
preguntas a un | ask aclimatologist. | mate, you're asking a | ask for a weather. ask a climatologist.
climatélogo. college friend.

Table 8: Example of translations of the same source sentence from gl —en test set with different models.

tween the representations of BPE and SP inputs.

This suggests that cross-teaching serves to elim-
inate “monolingual” subspaces (that is, subspaces
representing a single tokenization) in favor of rep-
resenting all input languages in the same joint
space. On the basis of this result, we argue that
cross-teaching is an effective technique for in-
creasing the degree of multilinguality in a trans-
lation model.!!

5 Qualitative Analysis

We list translations for the baseline sub-sep and
SDE models along with our Multi-Sub model in
Table 8. While sub-sep results in an entirely unre-
lated translation of the g1 word climat6logo, SDE
produces a related word weather. Multi-Sub, how-
ever, produces an accurate translation of the word
which is climatologist.

6 Related Work

Several techniques have been proposed to improve
lexical representations for multilingual machine
translation. Zoph et al. (2016) propose to first train
a HRL parent model, then transfer some of the
learned parameters to the LRL child model to ini-
tialize and constrain training. Similarly, Nguyen
and Chiang (2017) pair related languages together
and transfer source word embeddings from parent-
HRL words to their child-LRL equivalents. John-
son et al. (2017); Neubig and Hu (2018), on the
other hand, learn a joint vocabulary over several
languages and train a single NMT model on the
concatenated data. Gu et al. (2018) introduce a la-
tent embedding space shared by all languages to
enhance parameter sharing in lexical representa-
tion. Wang et al. (2018); Gao et al. (2020) use a
similar idea but use character n-gram encodings
(SDE) instead of the conventional subword/word
embeddings. By contrast Multi-Sub does not in-

"n this respect, cross-teaching has a similar effect to BPE-
dropout (Provilkov et al., 2020), which serves to eliminate
monolingual subspaces at the level of subword embeddings
(but recall our prior comments on the distinction between
BPE-dropout and Multi-Sub in Section 3.3).
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volve any architectural changes and improves the
representation of low-resource languages by train-
ing on multiple segmentations of the same corpus.

Subword-regularization methods (Kudo, 2018;
Provilkov et al., 2020) share the motivation of
alleviating sub-optimal subwords by exposing a
model to multiple segmentations of the same word.
However, our method is substantially different in
that (i) we use two completely different subword
algorithms with different vocabulary sizes (con-
tra Wang et al. 2021), and (ii)) we do not rely
on expensive sampling procedures (contra Kudo
2018) or additional data to learn an LM. Especially
for low-resource languages, our method not only
improves translation quality but also enhances a
model’s cross-lingual transfer capabilities. Finally,
this simple architecture-agnostic technique can act
as drop-in improvement for existing methods.

7 Conclusion

This work introduces Multi-Sub training with
cross-teaching—a novel technique that combines
multiple alternative subword tokenizations of a
source-target language pair—to improve the rep-
resentation of low-resource languages. Our pro-
posed methods obtain significant gains on low-
resource datasets from multilingual TED-talks.
We performed exhaustive analysis to show that our
methods also increase the lexical and morpholog-
ical diversity of the output translations, and pro-
duce better multilingual representations which we
demonstrate by performing zero-shot NER by ex-
ploiting representations from a high resource lan-
guage. Multi-Sub training and cross-teaching are
simple architecture-agnostic steps which can be
easily applied to existing single or multilingual
neural machine translation models and do not re-
quire any external data.
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Abstract

In this work, we propose a Named Entity
(NE) handling approach to improve trans-
lation quality within an existing Natural
Language Processing (NLP) pipeline with-
out modifying the Neural Machine Trans-
lation (NMT) component. Our approach
seeks to enable fast delivery of such im-
provements and alleviate user experience
problems related to NE distortion. We
implement separate NE recognition and
translation steps. Then, a combination
of standard entity masking technique and
a novel semantic equivalent placeholder
guarantees that both NE translation is re-
spected and the best overall quality is
obtained from NMT. The experiments
show that translation quality improves in
38.6% of the test cases when compared to
a version of the NLP pipeline with less-
developed NE handling capability.

1 Introduction

NE play a crucial role in many downstream NLP
tasks. There is extensive research showing that
properly handling NE improves the performance
of systems performing Question Answering (Tal-
mor and Berant, 2019), Summarization (Zhou et
al., 2021), and Information Retrieval (Wang et al.,
2021). In this paper, we focus on NMT, another
task that benefits from NE modeling (Shavarani
and Sarkar, 2021). NMT models are prone to dis-
turb NE, leading to critical quality issues in the
translation. Overcoming such problems is chal-
lenging since it is hard to have good coverage
© 2022 The authors. This article is licensed under a Creative

Commons 3.0 licence, no derivative works, attribution, CC-
BY-ND.

eduardo.farah}@unbabel.com

of all possible entities in the training data. This
is due to the open-ended nature of NE as well
as their domain specificity. For example, for the
Organization (ORG) category, new entities
appear daily in a variety of domains. Moreover,
NE are linguistically complex structures that can
occur in ambiguous contexts. This impairs the
ability of models to generalize and instead learn
unwanted biases (Hassan Awadalla et al., 2018;
Modrzejewski et al., 2020). This causes NE to be
hallucinated towards frequent realizations, omit-
ted, or incorrectly translated. Figure 1 shows some
examples of this issue in the output translation of
an English — French NMT model. This occurs
despite the model having 65 x 10% parameters and
being trained with 100 million sentence pairs.

The NMT community has long been famil-
iar with the NE handling problem (Koehn and
Knowles, 2017). This has spurred research on how
to address such model limitations. Invariably, all
works resort to either incorporating new model-
ing features in existing NMT architectures (Li et
al., 2019; Modrzejewski et al., 2020) or integrat-
ing with external knowledge sources to bridge the
NE gap (Zhao et al., 2020a; Feng et al., 2021).

In spite of the achievements of the previously
mentioned works, they have the drawback of re-
quiring a model-specific solution. In a commercial
setting, this is problematic since NE handling, at
least for some categories, might come only as an
afterthought. Having the NLP pipeline already in
place entails that rolling out changes can be slow
due to the high number of existing models. It
should be noted that there are also time and budget
constraints regarding the model size and volume of
training data in order to make a NMT system eco-
nomically viable. This blocks translation quality
improvements related to NE handling.

Macken, Rufener, Van den Bogaert, Daems, Tezcan, Vanroy, Fonteyne, Barrault, Costa-jussa, Kemp, Pilos, Declercq, Koponen, Forcada,

Scarton, Moniz (eds.)

Proceedings of the 23rd Annual Conference of the European Association for Machine Translation, p. 141-149

Ghent, Belgium, June 2022.



DATE distortion

Input:
Translation:

However, on I8 February 2022 you again contacted us.
Cependant, le /8 février, vous nous avez a nouveau contactés.

PERSON distortion

Input:
Translation:

Hi Zéphyrin
Bonjour Zécerin

Figure 1: Examples of NE distortions by NMT.

In this paper, we propose an alternative perspec-
tive to NE handling. We argue that it is important
to deliver, as fast as possible, translation quality
improvements to end-users, avoiding critical com-
munication issues. To achieve this, we describe a
process that enables NE handling to be deployed in
an NLP pipeline without changing the NMT com-
ponent. In an NMT industry scenario, this is rele-
vant since flexibility in model architecture is nec-
essary to accommodate different use cases. Thus,
the decoupling of NE handling is desirable to not
add extra requirements to the NMT component.

In particular, we first carry out a NE recogni-
tion pre-processing step. Then, we obtain the cor-
responding translation for that entity. Finally, we
resort to a semantically-equivalent mask that the
NMT can properly handle. When it is not possi-
ble to generate a semantically-equivalent entity, we
default to the standard placeholding method from
NMT. This affords a good trade-off between trans-
lation quality and the NLP pipeline run-time.

2 Related Work

The standard approach to NE handling within a
NLP pipeline corresponds to introducing NE infor-
mation and forwarding it to the NMT component.
The end goal is to allow the model to improve the
NE translation quality. In previous work, there are
different approaches to make use of this NE infor-
mation, which we summarize below.

A possible approach is the placeholder
method (Wang et al., 2017; Post et al., 2019),
where source sentences are masked by a generic
entity token, exposed to the NMT model during
training. After translation, the masks are placed
back into the target sentence, based on an index
or alignment. Li et al. (2016; 2019) extend this
approach to overcome the limitation of dealing
with rare words in this setting. This is done with
a dedicated character-level sequence-to-sequence
model for NE translation. A NE recognition
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step is also added to enable the use of category-
specific entity tokens. NEs are crawled from the
training data and their translation extracted from
Wikipedia. The NE translation pairs are then used
to train both the character-level and NMT models.

Another line of research uses entity embeddings
to convey word-level NE category information to
guide the NMT model. An example is source
factors (Sennrich and Haddow, 2016), which take
the form of supplementary embeddings that are
added or concatenated to existing word embed-
dings in the model. Ugawa (2018) combines
this with an additional Long Short-Term Mem-
ory (LSTM) (Hochreiter and Schmidhuber, 1996)
layer to better handle NE. This contrasts with
the work from Modrzejewski et al. (2020), where
better translation quality is achieved by directly
combining source factors in a Transformer net-
work (Vaswani et al.,, 2017). SemKGE (Mous-
sallem et al., 2019) take a similar approach but
construct the embeddings differently. These map
subject-relation-object triples from a Knowledge
Graph (KG) (Vrandeci¢ and Krétzsch, 2014) into
a continuous vector space to obtain Knowledge
Graph Embeddings (KGE) (Bordes et al., 2013).
To this end, a supervised fastText (Joulin et al.,
2017) classifier determines a set of referring ex-
pressions of NE from the KG and uses them to ini-
tialize the embedding weights of the NMT model.
Zhao et al. (2020b) use a similar methodology but
focus on dealing with the drawback of only tak-
ing into account NE that appear in both the KG
and the training dataset. To leverage the remaining
relevant information in the KG, phrase translation
pairs are first extracted from the training data. The
pairs that appear in the KGs are considered seed
pairs in a KGEs semantic space. This semantic
space is then used to compare new NE with the
seed pairs. If KGE are close, then a synthetic sen-
tence pair is generated by replacing the original NE
with the new ones.



Continuing the entity embedding research line,
Xie et al. (2022) take it a step further and pro-
vide a generic recipe to achieve a single end-to-end
NE-aware NMT model, which avoids the overhead
of separate NE handling steps. Moreover, there is
no extra cost at inference time since the NE com-
ponents can be disabled. To achieve this, an en-
hanced encoder and decoder are trained in a multi-
task framework by combining translation and NE
recognition in a focal loss (Lin et al., 2017).

Given the current state-of-the-art, we conclude
that previous approaches introduce coupling to the
NMT architecture by either changing it or jointly
training new embeddings. While this brings ad-
vantages in many scenarios, we argue that it is also
valuable to address the use case where a large NLP
pipeline already exists and fast incremental im-
provements to NE need to be delivered by means
of new categories. In this context, we build upon
the placeholder approach, where we are willing to
sacrifice translation quality for a translation guar-
antee that certain words are perfectly translated.
We extend this approach to better reconcile these
two competing aspects as well as study the more
complex case where the NE require translation.

3 Named Entity Handling

In our approach, we first start by performing a
NE recognition pre-processing step (Section 3.1).
Then, we obtain the corresponding translation for a
given target language (Section 3.2). We forward all
the previous information to a NE handler step that
obtains the best possible quality from the existing
NMT model while guaranteeing that the expected
translation appears in the output translation.

3.1 Recognition

For this step, we combined regex and neural
network-based approaches to identify NE in a
source sentence. This way we can capture NE with
a structured format as well as context dependent
ones. We support the following categories:

* Regex: GLOSSARY, IP-ADDRESS, EMATL,
ALPHANUMERIC-ID, PHONE-NUMBER,
BANK-NUMBER, CURRENCY, NUMBER,
PERCENTAGE, URL, and DATE (numerical).

* Neural:
& Organizations
DATE (alphanumerical).

PERSON, COUNTRY, Products
(PRO-ORG), and
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The GLOSSARY category is a manually curated
list of terminology that must be enforced in a par-
ticular domain. The ALPHANUMERIC-ID cap-
tures NEs such as promotional codes. The regex
DATE category matches numerical dates (e.g.:
yy/mm/dd). The neural DATE covers the num-
bers and text case such as “January 15¢, 2022”. The
PRO-ORG is a merge between two different cate-
gories, Products, and Organizations since it is of-
ten the case that they are almost indistinguishable.!
The remaining categories are self-explanatory.

3.2 Translation

Different translation needs stem from the dif-
ferent possible NE categories as well as the
language pair. For a set of categories, the NE
should be kept as in the original text and should
not be translated. This is the case for URL,
PRO-ORG, PHONE-NUMBER, IP-ADDRESS,
BANK-NUMBER, (generally) PERSON, NUMBER,
PERCENTAGE, DATE (numerical), CURRENCY,
ALPHANUMERIC-ID, and EMATIL.

When the NE cannot be copied, it is necessary to
provide a suitable translation. For cases where the
NE can be translated without context, a dictionary-
based approach can be suitable. This is the case
for the COUNTRY category since there is a lim-
ited number of possible realizations. Moreover,
building the dictionaries for a variety of language
pairs is feasible through available resources such
as KGs. Another option can be to outsource the
NE translation to an external NMT provider such
as Google, Amazon, or Microsoft. A use case for
this is the DATE (alphanumerical) category since
there is some variety in the day, month, and year
structure as well as language-specific punctuation
rules that make it hard to translate. Using an exter-
nal service can be a solution in this case, because
the provider can afford to have very large generic
models (trained on large amounts of data), making
them more robust to some NE categories.

Depending on the target language, a category
might require or not translation. This is the case
of PERSON, which requires transliteration if the
source and target scripts do not match, namely in
Arabic, Russian, and Greek. The strategies de-
scribed above can still be applied. The dictionary
approach can be supported by character transliter-
ation tools when a name cannot be found.

'For example, the search engine Google is also the name of
the organization.



3.3 Neural Machine Translation Integration

The output of the previous steps is a set of word
spans with the NE category and expected transla-
tion. In the next section, we describe how to inte-
grate this output with NMT to obtain a more robust
NE handling strategy.

3.3.1 Named Entity Masking

It is plausible that a particular realization of a
NE will not be present in the training data of the
NMT model, leading to a poor quality translation.
For example, the PERSON category has a wide va-
riety of realizations since it varies according to the
language, can have abbreviations, and many possi-
ble combinations of first, second, and last names.

To overcome the previous problem, we propose
the use of a semantic equivalent version to mask
the original NE. This is akin to the standard mask-
ing in NMT, which corresponds to a context-free
replacement of a class of input tokens with a single
mask token. The idea is to collapse distributionally
similar tokens into a single token that the decoder
can then be trained to reliably copy to the trans-
lation. Then, a demasking step replaces the token
placeholder with either a copy of the source match
value or the translation obtained from a dictionary.
This feature is commonly available in NMT in-
dustry to satisfy the requirement of being able to
enforce domain-specific terminology. The advan-
tage of using a semantic equivalent mask is that
it does not change the underlying meaning of the
sentence. Thus, we can avoid degrading the trans-
lation quality in other parts of the sentence since
the NMT has access to all the necessary linguis-
tic information. To achieve this we only need to
search for a semantic equivalent that the NMT is
likely to correctly translate. To this end, we came
up with a list of plausible candidates and empiri-
cally observe if NMT was able to translate them.

Despite increased translation robustness, there
is still no guarantee that the NMT will output the
semantic equivalent mask. When this is the case,
we argue that it is likely that NMT distorted the
mask. To repair the translation we trigger an en-
tity fallback mechanism. This mechanism resorts
to standard masking using the available default en-
tity token placeholder. This is also useful in situa-
tions where generating a semantic equivalent is not
possible. For example, for the COUNTRY category,
one can easily find the necessary translation for a
variety of languages. The obstacle is that gender
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is hard to obtain, especially because it depends on
the target language. Thus, we can first check if the
raw sentence translation contains the expected NE
translation; if it does not, then resort to entity fall-
back. The drawback of this strategy is that it will
hide linguistic information from the NMT. Thus,
errors such as agreement in gender are expected.
The previously described strategy achieves im-
provements on both translation quality and trans-
lation guarantee aspects. This occurs because we
use a semantic equivalent mask to have the best
possible quality from the existing NMT and only
resort to the entity fallback guarantee after check-
ing that the expected translation was not output.

3.3.2 Semantic Equivalent Generation

To apply the previous strategy, it is necessary to
define a semantic equivalent NE generation pro-
cess. This is not straightforward since the required
linguistic features might not be available and vary
across categories and languages. For example, for
the PERSON category, we need to determine the
gender (female, male, or unisex). Despite being an
open-ended NE, it is still possible to get good cov-
erage by leveraging resources available online.”
From these resources, we can build a name lookup
table with the gender information. For PERSON
NE containing more than one word, we heuristi-
cally check each word in the lookup table and re-
turn the first match. Another linguistic feature that
the PERSON category can have is if it corresponds
to a family name. Although we do not try to iden-
tify this feature, we generate a semantic equivalent
family name if we find a title (e.g.: “Mr.”; “Mrs.”).

Putting all NE handling steps together, we pro-
vide two examples of our approach in Figure 2.
In the PERSON category example, the semantic
equivalent masking was able to repair the NE dis-
tortion described in the beginning of this paper
(Figure 1). In the COUNTRY category example,
the NMT did not output the expected translation,
causing a critical error. After re-translating with
the default entity token SMASK, we were able to
guarantee that “Japao” appeared in the final output.
It should be noted that there is an agreement error:
the preposition “na” is in the feminine form and it
should be in the masculine one (“no”). Despite this
error, this is less critical than omitting the NE, and,
thus, the overall translation quality was improved.

ZFor example, https://github.com/
lead-ratings/gender—guesser



PERSON Example

Input: Hi Zéphyrin
NE Recognition: Hi Zéphyrin
NE Translation: Hi [Zéphyrin— Zéphyrin]
Semantic Equivalent: Hi [Thomas— Thomas]
NMT: Bonjour Thomas
Output: Bonjour Zéphyrin
COUNTRY Example
Input: I understand that currently you are in Japan
NE Recognition: I understand that currently you are in Japan
NE Translation: I understand that currently you are in [Japan— Japao]
NMT: Entendo que, atualmente, estd no pais
Retranslation: I understand that currently you are in [$MASK— Japao]
Entendo que, atualmente, estd na $SMASK
Output: Entendo que, atualmente, estd na Japao

Figure 2: NE handling pipeline.

4 Experiments

We carry experiments in all NE handling steps,
namely: recognition (Section 4.1), NE translation
(Section 4.2), and NMT integration (Section 4.3).

4.1 Named Entity Recognition Experiments

The following sections describe the evaluation of
NE recognition step.

4.1.1 Experimental Setup

Our NLP pipeline is deployed in a commercial
setting, thus, there are requirements constraining
the model to have a small memory footprint and
fast inference time. The architecture of the neural
network is a stack combining GloVe word embed-
dings (Pennington et al., 2014), an LSTM layer, a
hierarchical character-level BiLSTM-CRF (Lam-
ple et al., 2016), and a final CRF (Lafferty et al.,
2001) layer on top. We use word embeddings of
size 100 and the remaining layers have 256 hidden
units. Training runs for up to 120 epochs, on batch
size 32, and learning rate 0.1.

The training data is from the customer support
domain, in the travel, technology, and education
topics. The data was annotated by a linguist expert,
taking approximately 3 weeks. In total, 46168 En-
glish sentences were annotated. This experiment
focuses on the following categories: PERSON,
COUNTRY, PRO-ORG, and DATE. The number of
instances for each categories is: 5968, 397, 695,
17057, and 2178, respectively.
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We compare our performance with two out-
of-the-box models: spaCy 3.2.1 (Honnibal et
al., 2020), en_core_web_sm model, and Stanza
1.3.0 (Qi et al., 2020), OntoNotes-based model.
To measure performance, we use precision, recall,
and F metrics in a 10-fold cross-validation setup.

4.1.2 Experimental Results

The results are depicted in Table 1 and show
that our custom model performs significantly bet-
ter than the out-of-the-box models, with differ-
ences up to 72.6 in F;. Between spaCy and Stanza,
we observe that the latter generally performs bet-
ter. It is also possible to observe that there are some
NE categories that are easier to recognize for our
custom model. This is the case of PERSON, and
DATE, which shows that there is a lot of structure
for these categories in our domain. In the remain-
ing categories, the main issues we detected were
variance in context (PRO-ORG), making it hard
for the model to generalize, and a low number of
occurrences (COUNTRY, and DATE), limiting the
ability to learn the category during training.

Given the previous results, we conclude that
in our use case of customer support domain it is
worth paying the acquisition cost of the manually
annotated NE data since it provides a great perfor-
mance boost over out-of-the-box models.

4.2 Named Entity Translation Experiments

We now report the experimental results for the NE
translation step.



Category Metric spaCy Stanza Custom

PERSON Pre 35.7+19 71.1+3.4 97.4+08
Rec 57.1+2.4 56.8+1.4 97.4+238

Fy 43.941.9 63.1+1.8 96.3+1.6

COUNTRY Pre 23.4+57 61.9+53 93.1+4.0
Rec 7.5+19 6.2+25 76.5+8.9

Fy 11.242.4 11.1+4.2 83.7+5.9

PRO-ORG Pre 40.8+29 62.4+38 85.9+1.6
Rec 30.8+1.3 36.2+1.5 88.4+2.5

Fy 35.0+1.2 45.841.8 7.1+1.4

DATE Pre 25.4+23 31.4+28 87.7+9.1
Rec 78.6+45 63.7+2.7 95.3+2.3

Fy 38.4+2.8 41.9+2.6 91.0+5.1

Table 1: NE recognition experimental results.

4.2.1 Experimental Setup

As mentioned in Section 3.2, in language pairs
with different scripts, like English — Russian,
the PERSON category might need translation. In
this context, we collected 784 sentences contain-
ing the PERSON category and asked a Russian na-
tive speaker to provide the transliteration. Then,
we measured the accuracy performance for the fol-
lowing approaches: one-to-one character mapping,
Polyglot (Chen and Skiena, 2016), name dictio-
nary (Merhav and Ash, 2018), and NMT providers
(Google, Amazon, and Microsoft). In the name
dictionary approach, we fallback to character map-
ping if the name is not in the dictionary.

4.2.2 Experimental Results

The results in Table 2 show that the most com-
petitive approaches are the name dictionary and
Google, with an accuracy up to 31.9% higher. For
the name dictionary approach, we observe that
the majority of the errors occur (95.3%) when the
name was not present in the dictionary, resulting to
a fall back to the character mapping strategy.

% Accuracy
Character Mapping 50.4
Polyglot 46.2
Name Dictionary 82.3
Google 81.3
Amazon 75.8
Microsoft 74.5

Table 2: Name translation results.

The main difficulty we observed in this task
stems from the fact that name transliteration needs
to follow very specific rules. These introduce
many exceptions to the standard character map-
ping, which explains its low results. An example
of such rules is that the character “v1”” can never go
at the end of a name (“it” should be used instead).
This makes the standard mapping from “y” fail for

names like “Rey”.

4.3 Neural Machine Translation Experiments

To understand the impact on quality of extend-
ing our NLP pipeline with new categories, we
performed several experiments for the PERSON,
COUNTRY and DATE (alphanumerical) categories.

4.3.1 Experimental Setup

The datasets are from the same domain as in pre-
vious experiments and the evaluations were done
by expert linguists with fluent knowledge of the
language pairs evaluated. To this end, we marked
if the translation was better, the same, or worse
than the previous version of the pipeline. We con-
sider that the quality is better if errors in the origi-
nal NMT are corrected or if the translation is more
adequate. We consider translations as the same
if both are equivalent. Finally, we consider that
translations are worse if new errors are introduced.
The experiments were carried out in a total of 2130
sentences in 7 language pairs (English source).

Regarding the baseline NMT, we trained bilin-
gual models following the training procedure for
the Transformer-base architecture (Vaswani et al.,
2017). We first train a generic model using data
available in the Opus platform (Tiedemann, 2012);
the data volume is in the order of magnitude of
hundreds of millions. Then, the model is fine-
tuned with domain data; the data volume is in the
order of magnitude of hundreds of thousands. The
improved NE handling used the semantic equiv-
alent (PERSON), Google NMT provider (DATE),
and dictionary (COUNTRY) translation strategies.

4.3.2 Experimental Results

The obtained results are described in Table 3.
Overall, it can be observed that the percentage of
improved sentences is higher than the percentage
of damaged sentences across all categories and
languages. This validates that our NE handling
strategy is beneficial. The majority of the cases
marked as worse are due to incorrectly identified
NE in the recognition step.
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Category Target %Better %Same % Worse #Sentences
PERSON German 14.9 80.1 49 141
French 22.5 77.4 0.0 31
Dutch 45.4 38.3 16.1 99
Brazilian 933 5.15 1.52 330
DATE German 59.5 25.6 14.8 168
French 68.5 21.1 10.3 194
Portuguese 65.0 20.4 14.5 240
COUNTRY German 8.3 87.9 3.8 346
French 3.5 96.3 0.3 400
Dutch 5.0 95.0 0.0 40
Italian 2.7 97.3 0.0 73
Brazilian 9.7 90.3 0.0 31
Portuguese 6.3 87.5 6.3 16
Turkish 4.8 95.2 0.0 21

Table 3: NMT quality experimental results.

The highest improvements were obtained for the
PERSON category in Brazilian Portuguese with
98% of sentences showing better quality. In
this particular case, the majority of these im-
provements are related to punctuation and register.
For the other languages, the main difference was
avoiding name omissions and hallucinations.

For the DATE category, the improvements were
similar across all evaluated languages with gains
up to 68.5% in the test cases. This shows that
this category is prone to be distorted by the
NMT. Looking at the sentences where it per-
formed worse, a more in-depth analysis showed
that the main issues were related to the translation
of ordinal numbers, as well as the wrong prepo-
sition before the date, a consequence of using the
generic entity token mask.

In what respects COUNTRY, it is possible to con-
clude that this is the category with the lowest per-
centage of improvements. The majority of sen-
tences remained the same. This is because the en-
tity fallback mechanism was not triggered often,
which is in line with the fact that this is a NE with
a limited number of realizations. This highlights
the importance of entity fallback since otherwise,
we could be introducing many agreement errors
unnecessarily. In the few cases where the quality
slightly decreased, the root cause was mainly the
use of wrong prepositions before the NE when a
valid translation did not match the dictionary.
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5 Conclusions and Future Work

In this work, we presented a NE handling process,
with the ultimate goal of bootstrapping an exist-
ing NLP pipeline to improve translation quality.
This problem was tackled from a perspective of
allowing such improvements to be delivered with-
out having to change one of the main components
of the pipeline, the NMT. By having this decou-
pling, the improvements can be delivered fast, en-
hancing the user experience in situations where NE
translation errors can lead to catastrophic commu-
nication errors. Our process is based on dedicated
recognition and NE translation steps. Integration
into the existing NMT is done through semantic
equivalent masking and an entity fallback mecha-
nism. To evaluate NE recognition, we compared
our domain custom model against two out-of-the-
box models. The results show that the trade-off
between recognition performance and data acqui-
sition costs justifies a custom model for our use
case. To evaluate our overall approach, we com-
pared the translation quality of NE of the existing
pipeline with the improved version. It was possible
to observe that we achieved translation quality im-
provements while affording translation guarantee
at the same time, validating our approach.

We also want to highlight that our approach al-
lows us to easily anonymize Personally Identifi-
able Information (PII) data by exposing the NE
mask rather than its original text. This is a con-
cern for us since our NLP pipeline supports a feed-



back loop between NMT and human post-edition.
The semantic equivalent mask is advantageous in
this scenario since it allows editors to review more
natural-looking sentences and without the cogni-
tive overhead of processing a generic placeholder.

Regarding future work, one of the concerns is
how to extend the generation of semantic equiv-
alent NE to categories other than PERSON. The
main obstacle is identifying the necessary linguis-
tic properties for the generation in all necessary
target languages. Another concern is the scalabil-
ity of the NE recognition component. Thus far,
our solution has been efficient since we have an
overarching domain that ties in otherwise differ-
ent topics. When moving to a completely different
domain, we want to investigate how to keep this
efficiency in collecting new data while leveraging
the existing model.
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Abstract

Deep learning models have significantly
advanced the state of the art of question
answering systems. However, the majority
of datasets available for training such mod-
els have been annotated by humans, are
open-domain, and are composed primarily
in English. To deal with these limitations,
we introduce a pipeline that creates syn-
thetic data from natural text. To illustrate
the domain-adaptability of our approach,
as well as its multilingual potential, we use
our pipeline to obtain synthetic data in En-
glish and Dutch. We combine the synthetic
data with non-synthetic data (SQuAD 2.0)
and fine-tune multilingual BERT models
on the question answering task. Models
trained with synthetically augmented data
demonstrate a clear improvement in per-
formance when evaluated on the domain-
specific test set, compared to the models
trained exclusively on SQuAD 2.0. We ex-
pect our work to be beneficial for training
domain-specific question-answering sys-
tems when the amount of available data is
limited.

1 Introduction

Recent advances in tackling the problem of ques-
tion answering (QA) rely on large-scale, open-
domain datasets (Bartolo et al., 2021), annotated
by humans and composed primarily in English
(e.g. SQuAD 1.0 (Rajpurkar et al., 2016), and
SQuAD 2.0 (Rajpurkar et al., 2018)). Despite

© 2022 The authors. This article is licensed under a Creative
Commons 3.0 licence, no derivative works, attribution, CC-
BY-ND.

some indications of poor robustness and gener-
alisation (Bartolo et al., 2021), models trained
on such datasets are capable of providing topic-
agnostic, general-purpose assistance to their users
(Ruder and Sil, 2021).

Nevertheless, most industrial applications of
QA systems are domain-specific, and often need
to be able to operate in multilingual environ-
ments. Data collection and manual composition of
datasets for each domain and language is most def-
initely a laborious task, not to mention that certain
domains are of little academic or commercial inter-
est and are only of use for some low-resource com-
munities (Rogers et al., 2021). Moreover, while
the current synthetic data generation systems focus
on augmenting QA data in the SQuAD format,' lit-
tle research has been done on either the generation
of synthetic data from natural plain text, or in mul-
tiple languages.

Furthermore, most machine reading comprehen-
sion (MRC) benchmarks focus primarily on the
creation of questions with multi-word factoid an-
swers (e.g. SQuAD 2.0 pairs each factoid question
with a Wikipedia paragraph), as well as unanswer-
able questions (Liu et al., 2020). However, in a
real-world scenario, a QA system should ideally
be able to provide a response on semantically com-
plex questions such as “I am an EU citizen living in
the UK. What changes for me after Brexit?”, and
questions containing grammar and spelling errors
(e.g. questions asked by a non-native speaker, or
containing mistakes caused by dyslexia).

In this work, we introduce a domain-adaptable
end-to-end pipeline for generic synthetic data
generation that requires no manual textual pre-
processing, and allows for the integration of mul-

'A tuple (¢, g, a) where c refers to the context—text segment
in which the answer a to the question ¢ should be found.
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tilingual features. We utilise this pipeline to cre-
ate domain-specific training sets in English (EN)
and Dutch (NL) from the web scraped data of the
Single Digital Gateway and Your Europe portal,?
which provides information on rules and proce-
dures for citizens and businesses in the EU, in all
European languages. We combine the obtained
data with SQuAD 2.0 in English and its machine-
translated-into-Dutch version to fine-tune multiple
instances of a BERT (Bidirectional Encoder Rep-
resentations from Transformers) model (Devlin et
al., 2019) on the QA task. We then cross-evaluate
the performance of these models on the relevant
test sets, and observe improvements on the QA
task when evaluated on the domain-specific test
sets, while remaining competitive against models
trained on the SQuAD-only counterparts in both
languages.

2 Related Work

Existing approaches to synthetic data generation
often view question and answer generation as dual
tasks (Tang et al., 2017; Shakeri et al., 2020),
where one task can improve the other and vice-
versa. Roundtrip consistency (Alberti et al., 2019)
is one of the methods that combines question gen-
eration and question answering models to, first,
generate a question conditioned on a pre-selected
answer span and its context, and then match
against it an answer predicted by a QA system. If
there is a match, the triplet (i.e. context, question
and answer) is considered valid.

Cloze generation (Dhingra et al., 2018) is a
more intuitive approach: it logically splits a docu-
ment in ratio of 20:80, with the introduction being
the first 20% of the input text. It is assumed that the
introduction contains answer candidates that are
likely to occur in the remainder of the document.
Potential answer candidates are consequently se-
lected by matching multi-word spans between in-
troductory sentences and the rest of the text.

These approaches, however, focus on potential
answers that are primarily named entities or noun
phrases (Tang et al., 2017; Alberti et al., 2019;
Puri et al., 2020; Shakeri et al., 2020). For our
use-case, we are interested in finding answers of
longer spans that might contain administrative pro-
cedures in a multilingual setting (e.g. answers to
such questions as “how do I request an interna-

https://ec.europa.eu/growth/single—
market/single-digital-gateway_en
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Results tend to be scattered across different
websites that often lack any guarantee of
OG | quality or reliability, and significant infor-
mation gaps remain in many areas, leaving
important questions unanswered

Resultaten zijn meestal verspreid over ver-
schillende websites die vaak geen enkele
garantie voor kwaliteit of betrouwbaarheid
hebben, en er blijven op veel gebieden
aanzienlijke informatielacunes, waardoor
belangrijke vragen onbeantwoord blijven

MT

OG | information gaps
MT | informatie hiaten

Table 1: Translation of Segments via Google Translate

tional passport?” or “Waar kan ik mijn wagen
registreren?” - “Where can I register my car?”).
Moreover, we are interested in finding right an-
swers in a document that might contain multiple
procedures, i.e. the introduction might not match
the subsequent content at all, unlike the assump-
tion of the methods proposed in (Dhingra et al.,
2018).

In this work we propose the use of a combina-
tion of question generation (QG), question para-
phrasing (QP) and unsupervised filtering methods
to solve these limitations of previous work. We
present techniques for building models and filter-
ing methods in any language using machine trans-
lation (MT). For both QP and QG we rely on a TS
model (Raffel et al., 2019) fine-tuned on the re-
spective downstream task (we refer to Section 3).

With regard to the sub-task of QP, we note that
on its own it is not an area of active research, al-
though paraphrasing as a data augmentation tech-
nique has been explored in both academic (Wit-
teveen and Andrews., 2019) and applied contexts.
For instance, Rasa Open Source,> a framework
for building chatbots and voice-based virtual assis-
tance, researches paraphrasing as a data augmenta-
tion technique, to ensure the recognition and antic-
ipation of different variations of the same intent,*
as small variations in questions, e.g. the use of
synonyms, may yield different answers (Dong et
al., 2017).

Although multilingual QA remains a relatively
unexplored problem, there exist various datasets
for the fine-tuning and evaluation of multilingual

Shttps://rasa.com/open-source
*https://forum.rasa.com/t/paraphrasing-
for-nlu-data-augmentation-experimental/
27744



QA systems, such as the human-composed TyDi
QA (Clark et al., 2020), or MLQA (Lewis et al.,
2020) that was created using translation align-
ments.

Whereas MT may appear as a possible solution
to the scarcity of the data for each domain and lan-
guage, three issues remain. First, and the most ev-
ident one, is the quality of MT output, e.g. such
problems as the preservation of the word order
of the source language might occur (Clark et al.,
2020). The second issue lies in the potential mis-
alignment of answer spans (Carrino et al., 2020;
Lee et al., 2018) caused by differences between
translations of answer segments within the context,
and outside of it (see Table 1 where ‘OG’ stands
for ‘original’ and ‘MT’ for ‘machine-translated’).
The bigram “information gaps” was translated to
“informatielacunes” within context, but to “infor-
matie hiaten” as a standalone term.> As a con-
sequence, it becomes more difficult to determine
the offsets (i.e. the position in the context) of such
answer spans, and potentially renders the segment
useless. Lastly, it must be noted that even though
there exist large language models that can gener-
alise across languages, language similarity (Pires
et al., 2019) is an important factor that affects the
performance of certain architectures across multi-
ple languages.

3 Methodology

We developed a synthetic data generation pipeline
that converts plain text into question answering
pairs via the following steps: passage detection,
keyword filtering, question generation and ques-
tion paraphrasing.

3.1 Passage Detection

For our use-case, we extracted text from html
pages scraped from the web using the Trafilatura®
library. Next, a rule-based approach was used to
parse plain text into chunks (paragraphs and sen-
tences) that can be used as input for the ques-
tion generator (see Section 3.3). First, we split
the text extracted via the Trafilatura library us-
ing the newline delimiter, after which we evalu-
ated the start and end characters of each result-
ing text chunk: if a chunk ends with a question
mark or colon, we concatenated the chunk with
SSimilarly, in morphologically rich languages, standalone
terms could be translated to their base forms while inflected

within a context.
*https://github.com/adbar/trafilatura
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What information can be covered by a trade secret?

v

Keyword Extraction

v

Keyword Filtering

"What kind of information will be covered by a trade T5 Question
secret?", "What are trade secrets? Can you share them?" Paraphrasing
J

v

"What information can be covered by a trade secret?", "What are some
trade secrets that can be covered by a law?", "What can be a trade
secret?", "What are trade secrets? What information can be
uncovered?", "What are trade secrets? Can you share them?"

T5 Question
Generation

Regex-based
Question Detection

r
"What kind of information will be covered by a trade
secret?", "What are trade secrets? Can you share

them?", "What is not protectable?"

Figure 1: Synthetic Data Generation Pipeline

the subsequent chunk; if it starts with a character
that indicates enumeration (e.g. a dash, an aster-
isk...), the chunk was concatenated with the previ-
ous chunk. Chunks containing less than one sen-
tence were discarded. This rule-based approach
discards any processing noise that might have oc-
curred during the extraction of text, and delivers
semantically charged, coherent paragraphs.
Consequently, via a sentence-splitter’ we split
the obtained paragraphs into sentences. Both para-
graphs and the sentences they contain are fed to
the QG model (see Section 3.3): in this way, due
to the length differences of sentences and para-
graphs, we generate QA pairs of different degrees
of complexity. To recreate the SQuAD format for
the composition of the synthetic data, for each re-
sulting QA pair, where the input to the QG model
is considered the answer, and the output the corre-
sponding question, we also add its context. If the
input (i.e. the resulting answer) to the QG model is
a paragraph, the context is the document contain-
ing that paragraph. If the input is a sentence, the
context is the paragraph containing that sentence.

3.2 Keyword Filtering

Once we have obtained the to-be-processed chunks
(sentences and paragraphs), we use the YAKE!
(Campos et al., 2020) library to extract the most
meaningful n-grams from each chunk, one at a

"Thttps://pypi.org/project/sentence-
splitter



time. The library implements an unsupervised ap-
proach that can be applicable to various languages,
without a need for external knowledge such as dic-
tionaries or corpora. YAKE! builds upon features
extracted from the document (or text chunk in our
case) such as casing, word frequency, word relat-
edness to the document, and how often a candidate
n-gram appears within different sentences. YAKE!
then heuristically combines these features to calcu-
late a score for each n-gram—the lower the score,
the more meaningful the keyword. From this list of
generated n-grams, we compute the average score
and select the entities with a lower than average
score. This final list for each text chunk is cached
and used to filter question candidates of the cor-
responding chunk, after both the QG (see Section
3.3) and QP (see Section 3.4) steps.

3.3 Question Generation

For question generation we used a pre-trained T5
model fine-tuned on the downstream task of QG.
For our English pipeline, we used an existing
and publicly available T5 based QG model®. For
QG in Dutch, we fine-tuned a pretrained multilin-
gual TS model (mT5) (Xue et al., 2020) on the
downstream task of QG on the following datasets
machine-translated (see Section 3.5) into Dutch’:
SQuAD 2.0 (Rajpurkar et al., 2018), RACE (Lao
et al., 2017), CoQA (Reddy et al., 2019), and
MSMARCO (Bajaj et al., 2016). The mT5-Base
model pre-trained on 101 languages, is a 580-
million parameter model, the fine-tuning of which
is very expensive memory-wise. To limit the re-
sources used, we pruned the model by removing
the unused vocabulary from other languages than
the desired one (Dutch) via an update of the tok-
enizer and embedding layer.

The potential answers (paragraphs and sen-
tences) obtained via the passage detection step
(Section 3.1) are used as input to these T5 based
QG models, resulting in a QA pair. By adding the
context (i.e. the document if the input chunk is a
paragraph, a paragraph if the input chunk is a sen-
tence, also see Section 3.1), we further obtain a
synthetic data point in the SQuAD format.

Although sometimes overlooked in the litera-
ture, we did not discard questions already present

$https://huggingface.co/valhalla/t5-
small-e2e—-qgg

See https://huggingface.co/datasets/
iarfmoose/question_generator for the origi-
nal EN dataset.
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Your Europe EN NL
Documents 308 171
Tgtal Q before Key. 57182 38.751
Filt.

Q via Regex 20 16
+ QG (sentence) 3,861 439
+ QP (sentence) 18,828 2,080
+ QG (paragraph) 701 86
+ QP (paragraph) 3,900 304
= Total Q after Key. 27.310 2.925

Filt.

Table 3: Synthetic data overview.

in the web scraped data, but extracted them using a
pre-defined regular expression (regex), e.g. “What
information can be covered by a trade secret?” in
Figure 1. If a question is detected in a given para-
graph, it is split into two at the end index of the
detected question, and the first part is cached as a
question instance, while the second part is consid-
ered being the answer to the question.

welke nationaliteit is verantwoordelijk
Q voor sociale zekerheid?

Welk land er verantwoordelijk is voor uw
sociale zekerheid, dus ook uw gezinstoe-
lagen (kinderbijslag, opvoedingstoelagen,
ouderschapsverlof enz.), hangt in de EU af
van uw economische situatie en uw woon-
plaats, niet van uw nationaliteit.

Table 2: Accepted semantically incorrect synthetic question

We then used the keyword filter, described in the
previous section, to decide which generated and/or
detected questions are kept and eventually para-
phrased (see Section 3.4). In other words, if a gen-
erated or detected question contains any word from
the keyword list, the question is considered valid.

We empirically observed that the quality of the
generated questions in Dutch is vastly dependent
on the quality of the translation. However, un-
like previous work that focuses on evaluating the
quality of generated questions (Chen et al., 2020),
(Chan and Fan, 2019), in our training set we al-
low questions that are grammatically incorrect or
contain made up or confusing words, e.g. the word
“land” (country) was replaced by the word “nation-
aliteit” (nationality) in Table 2.

3.4 Question Paraphrasing

In a similar way as for the QG sub-task, we used an
existing TS model fine-tuned on the downstream
task of QP. For English we used an existing QP



Type

Text

YES - A medicine available in one EU country might not be sold in another EU country, or it might be
sold under a different brand name. When asking for a prescription from your doctor that you intend to
dispense in another EU country, you should ensure they use the common name for the prescribed product
wherever possible. This will enable a pharmacist in another EU country to prescribe you the equivalent
product in that country. To find out if your medicine is available in other EU countries, you can check
with your country’s national contact point for cross-border healthcare. \n This depends on national law in
each European country and will therefore vary throughout the EU. Check with the National Enforcement
body in the country concerned or a national consumer centre for more information.\n YES — in all EU
countries. Switzerland still applies restrictions on Bulgarian, Croatian and Romanian nationals.\n Ask the
host-country liaison office for posted workers. \n Whenever certain conditions have to be fulfilled before
you become entitled to health coverage, the national health insurance body examining your claim must
take account of periods of insurance, residence or employment completed under the legislation of other EU
countries. This ensures that you will not lose your healthcare coverage when changing jobs or moving to
another country. \n You can get child benefits from Switzerland or Germany; you won’t get full benefits
from more than one country. If entitlement in both countries is based on work, even if your children live
in yet another country, you will get your benefits from whichever of the two countries where you work that

I am unemployed and I come from Bulgaria. Am I allowed to look for work in another EU country and have

YES — in all EU countries. Switzerland still applies restrictions on Bulgarian, Croatian and Romanian

Context

pays the most.
Question

my benefits transferred there?
Answer

nationals.
QAs, EN-NL Switzerland or Germany
QAscpennNL | YES —in all EU countries

Table 4: Your Europe test example.

model'” fine-tuned on the Quora Question Pairs
(QQP) dataset!!'. For Dutch, we fine-tuned a sep-
arate mT5 model on the machine-translated QQP
dataset.

The detected and/or generated questions that
have passed the keyword filter (see Section 3.3) are
fed to these QP models individually, without any
consideration for the answer or the context. We
once again applied the keyword filter to select the
most meaningful paraphrased questions.

3.5 Machine Translation

In order to obtain multilingual datasets for the QG
and QP task, we rely on transformer-based neu-
ral MT models provided via the CEF eTranslation
service.!?. The CEF eTranslation sevice provides
translation in 24 official European languages.

4 Experiments

We fine-tuned the multilingual distilled version
of BERT (Sanh et al., 2019) (mDistilBERT) on
the QA task using the synthetic data obtained us-
ing the methods described in Section 3 and the
SQuAD 2.0 datasets (we refer to Section 4.1). Full
overview of the training data, its sources and size,
can be found in Tables 3 and 5. As multilingual
BERT models are known to perform better on tasks

Yhttps://github.com/ramsrigouthamg/
Paraphrase-any-question-with-T5-Text-
To-Text-Transfer—-Transformer—
"https://quoradata.quora.com/First-
Quora—-Dataset—Release—-Question—-Pairs
Phttps://ec.europa.eu/cefdigital /wiki/
display/CEFDIGITAL/eTranslation
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in English (Riabi et al., 2021), we performed sep-
arate experiments with English and Dutch data, as
well as experiments with the bilingual data com-
bined. All models were tested on four test sets,
two in each language.

4.1 Datasets

Train sets SQuAD 2.0 is a benchmark dataset
for question-answering systems. In addition to
the 86,821 question answering pairs, the dataset
contains 43,498 unanswerable questions. As we
are interested in creating a robust QA model that
will be able to detect answers in a document, and
not interested in unanswerable questions, we omit
the latter type of questions, resulting in a non-
synthetic training set of length 86,821 for English.

For our Dutch experiments, we used the publicly
available machine-translated version of SQuAD
2.0. This dataset contains 53,376 positive and
41,768 negative examples, the latter being omitted.

We further create a synthetic dataset from the
web scraped data from the Your Europe portal us-
ing the pipeline described in Section 3. In Ta-
ble 3 we show statistics of our resulting synthetic
dataset, and the number of questions (and corre-
sponding answers and context) generated in each
step. The second row of Table 3 show the number
of documents scraped for both English and Dutch.
Next, the total number of questions generated via
QG, QP and regex is shown, before filtering via
keyword extraction (Total Q before Key. Filt.). The

Bhttps://gitlab.com/niels.rouws/dutch-
squad-v2.0



Dataset | QAs en  QAsg,eN QAsgpen QAsNL QAscent  QAs ennL  QAsGe EN-NL
SEN 114,131 86,821 86,821 - - 86,821 59,511
QGgN - 27,310 4,582 - - - 4,582
QPgn - - 22,728 - - - 22,728
SNL - - - 56,301 53,376 53,376 50,451
QGn1 - ; - ; 541 ; 541
QPnL - - - - 2,384 - 2,384
Total ‘ 114,131 114,131 114,131 56,301 56,301 140,197 140,197

Table 5: Overview of data composition per trained model. Numbers in bold refer to the randomly oversampled (columns
QAs, en, QAsg, En, QAs, L) and undersampled data (column QAsgp, ex-NL).

following rows show the resulting number of ques-
tions, after keyword filtering (see Section 3.2), cre-
ated in each step of the pipeline, both when using
sentences and paragraphs as input chunks to the
pipeline.

We may observe a difference in the number
of generated synthetic questions in English and
Dutch. This is primarily caused by the quality of
generated and paraphrased questions filtered via
keyword extraction: due to the compounding na-
ture of the Dutch language, a great number of ques-
tions were filtered out, e.g. if the word “huwelijk-
saanvraag” (marriage application) is in the original
text segment while the generated question might
contain the word ‘“huwelijksaangifte” (marriage
declaration).

Test sets We evaluate both on the SQuAD 2.0
dataset, and on a domain-specific test set. For
the evaluation on SQuAD in English, we held out
5,875 positive examples from the original dataset,
while for the evaluation in Dutch, 3,522 posi-
tive examples were selected from the machine-
translated-into-Dutch SQuAD 2.0 dataset.

To test our pipeline in a setting that would be as
close as possible to real-world scenarios, we used
a subset of the Your Europe data that was excluded
from the training set, and similarly not used as in-
put to the synthetic data generation pipeline. We
specifically chose the pages that contained Fre-
quently Asked Questions (FAQ) to retrieve 333
English questions and 265 Dutch questions, and
the corresponding answers. These questions were
not simplistic call-to-action questions, but mostly
compound questions such as “I work in Germany,
my husband works in Switzerland, and we live
with our children in Austria. Where can we get
child benefits from?” The QA pairs were then
manually evaluated to ensure that every question
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is paired with a semantically correct answer.

As the QA pairs were mostly gathered from the
FAQ pages of the Your Europe portal, we decided
to create an artificial context for each QA pair:
we randomly selected five potential answers from
other QA pairs, and randomly concatenated them
to the single right answer for the given question.
An example of such a context and its correspond-
ing QA pair can be seen in Table 4.

4.2 Models

For an objective evaluation of the impact of the
different steps of our pipeline for synthetic data
generation on the performance of QA models, we
have trained several QA models on various com-
binations of data (see Table 5). In the column
‘Dataset” we refer to SQUAD (S) and synthetic
training datasets that consist of generated (QG)
and paraphrased questions (QP) per language, as
indicated in the name of each dataset, we also re-
fer to Table 3.

The model names (first row of Table 5) equally
contain the language code of the corresponding
dataset, although every fine-tuned QA model uses
the same base language model (mDistilBERT) in
order to objectively compare the results of each
model.

In Table 5, the resulting English QA model
QAgsgpen is trained on both the English
SQuAD dataset (86,821 segments=Sgy) and
the full set of English synthetic data (27,310
segments=QGgpn+QPgN), where ‘S’ stands for
SQuAD, ‘G’ for segments obtained via QG and
regex, and ‘P’ for segments obtained via QP.
Similarly, QAs, gx was trained exclusively on the
non-synthetic SQuAD training data, randomly
oversampled to 114,131 segments to prevent po-
tential differences in performance due to the size
of the training data. To analyse the importance of



Context

Bills can be introduced to Parliament in a number of ways; the Scottish Government can introduce new laws
or amendments to existing laws as a bill; a committee of the Parliament can present a bill in one of the areas
under its remit; a member of the Scottish Parliament can introduce a bill as a private member; or a private bill
can be submitted to Parliament by an outside proposer. Most draft laws are government bills introduced by
ministers in the governing party. Bills pass through Parliament in a number of stages:

Question | A member of what parliament can introduce a bill as a public member?

QAs EN Scottish

QAsG, EN Scottish Government can introduce new laws or amendments to existing laws as a bill ; a committee of the
Parliament can present a bill in one of the areas under its remit ; a member of the Scottish Parliament can
introduce a bill as a private member

QAscp en | a member of the Scottish Parliament can introduce a bill as a private member

Table 6: Predictions of different QA models, trained only using SQuAD data (QAs, en) and QA models trained on a combina-
tion of SQuAD and synthetic data (QAsc, exn and QAscp, En), on a segment from the held out EN SQuAD test set.

Model BLEU Fl1 SemSim
QAs. EN 0.2033  0.2538 0.4420
QAsG. EN 0.1673  0.2120 0.4138
QAscp EN 0.1789  0.2272 0.4175
QAs, ENNL 0.2058 0.2580 0.4382
QAsgpennt. 0.1795  0.2293 0.4219

Table 7: Scores obtained by the various QA models on the
held out EN SQuAD test set

Model BLEU Fl SemSim
QAs. NL 0.1866  0.2315 0.4779
QAscp NL 0.1928 0.2369 0.4863
QAs, EN-NL 0.1733  0.2132 0.4559
QAscpennt.  0.1478  0.1828 0.4427

Table 8: Scores obtained by the various QA models on the
held out NL SQuAD test set

Model BLEU Fl SemSim
QAs En 0.0772  0.1165 0.1995
QAsG. EN 0.1438 0.1898 0.2813
QAsGp EN 0.1557 0.1997 0.3145
QAs, EN-NL 0.0712  0.1107 0.1734
QAsgpenn  0.1903  0.2588 0.4018

Table 9: Scores obtained by the various QA models on the
EN domain-specific (Your Europe) test set

Model BLEU Fl SemSim
QAs, L 0.0681 0.1033  0.1635
QAscp,NL 0.1650 0.2236  0.3320
QAs, EN-NL 0.0706  0.1001  0.1429
QAsge vt 0.1892  0.2556  0.3689

Table 10: Scores obtained by the various QA models on the
NL domain-specific (Your Europe) test set
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QP as a pipeline feature, we also performed an
ablation study, training QAsg, ey on SQUAD data
in combination with the oversampled synthetic
QGgy dataset.

An identical strategy was applied in order to ob-
tain the Dutch QA models QAg, N1, and QAsgp, NL-
Similarly, for our bilingual models, we combined
the English and Dutch versions of SQuAD, and
synthetic datasets to train the bilingual QAgs gN-NL
and QAsgp, en-NL models. Note that for a fair com-
parison of models trained exclusively on SQuAD
(QAS, EN-NL) With QASGP, EN-NL, We randomly un-
dersampled the English and Dutch SQuAD dataset
in this case.

4.3 Maetrics

The performance of the various QA models listed
in Table 5 was evaluated using the following
metrics: sentence BLEU (Papineni et al., 2002),
Rouge-L (Lin, 2004) that measures the longest
common subsequence to calculate f1-measure, and
the cosine similarity calculated using multilin-
gual Sentence-BERT embeddings (Reimers and
Gurevych, 2019). We use these metrics to measure
the predicted answer against the gold standard an-
SWer.

5 Discussion of Results

In this section we compare the performance of
the QA models trained on both non-synthetic
(i.e. SQuAD) and synthetic data, and models
trained exclusively on non-synthetic data. As dis-
cussed in Section 4.2, we present results for both
English and Dutch. We also evaluate the perfor-
mance of a bilingual QA model.

In Table 7 we show the scores of our QA mod-
els trained on EN and a combination of EN and
NL data obtained on the held out EN SQuAD
test set. We observe that QAg g trained on the



EN SQuAD data, achieved the best performance.
Nevertheless, despite slightly lower scores, mod-
els trained on the combination of SQuAD and syn-
thetic data, do not demonstrate a large regression
in performance. This is also illustrated by the ex-
ample shown in Table 6: we notice that predic-
tions by QAsg, en and QAsgp En tend to be of
longer spans, causing this small drop in perfor-
mance when evaluated on the gold standard an-
swer ‘Scottish’. Similar results are obtained for
the QA models trained on NL and a combination
of EN and NL data (Table 8), although in this case
the QAsgp, N model achieves slightly better scores
than the model trained on non-synthetic data only
(QAs, NL)-

More interestingly, in Tables 9 and 10, we
present the results on the domain-specific (Your
Europe) test sets for EN and NL. We observe
that models trained on non-synthetic data only
(QAs EN, QAs NL, QAg En.NL) demonstrate an
overall lower performance compared to the mod-
els also trained on synthetic data (QAsg, EN,
QAscgp EN, QAscp NL and QAsgp ennL). Com-
paring scores achieved by QAsg, gx and QAsgp, EN
we can also conclude that adding synthetic seg-
ments obtained via QP results in an increase in
performance, consistent across all metrics. Fi-
nally, from these results we also see that bilin-
gual models trained on synthetic and non-synthetic
data achieve better performance than their mono-
1ingua1 version (i.e. QASGP, EN and QASGP, NL ver-
sus QASGP, EN-NL )-

6 Conclusion

In this paper we presented a novel multilingual
domain-adaptable pipeline for the generation of
synthetic training data for QA models. Our ex-
periments demonstrate that models trained with
synthetic data achieved improved performance on
domain-specific test sets that included not solely
factual, but semantically complex questions, both
in English and Dutch. As our pipeline incorporates
two mT5 models fine-tuned on task- and language-
specific datasets, we demonstrate that it is possible
to make use of MT and apply our approach to any
language supported by mTS5.

One of the remaining challenges of this ap-
proach is the quality monitoring of the generated
synthetic questions, especially for languages other
than English. It would be useful to experiment
with more advanced filtering methods than the
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method based on keyword extraction proposed in
this work. For instance, a semantic similarity fea-
ture could potentially detect questions that might
not include specific keywords, but also questions
containing synonyms of extracted keywords or se-
mantically close paraphrases. We also assume that
it would be useful to introduce an additional fea-
ture to evaluate the chunks that are processed by
our pipeline for synthetic data generation, as not
every input paragraph or sentence would serve as
an answer to a potential question in a real-world
scenario.
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Automatic Discrimination of Human and Neural Machine Translation:
A Study with Multiple Pre-Trained Models and Longer Context
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Abstract

We address the task of automatically
distinguishing between human-translated
(HT) and machine translated (MT) texts.
Following recent work, we fine-tune pre-
trained language models (LMs) to perform
this task. Our work differs in that we use
state-of-the-art pre-trained LMs, as well
as the test sets of the WMT news shared
tasks as training data, to ensure the sen-
tences were not seen during training of the
MT system itself. Moreover, we analyse
performance for a number of different ex-
perimental setups, such as adding transla-
tionese data, going beyond the sentence-
level and normalizing punctuation. We
show that (i) choosing a state-of-the-art
LM can make quite a difference: our
best baseline system (DEBERTA) outper-
forms both BERT and ROBERTA by over
3% accuracy, (ii) adding translationese
data is only beneficial if there is not much
data available, (iii) considerable improve-
ments can be obtained by classifying at the
document-level and (iv) normalizing punc-
tuation and thus avoiding (some) shortcuts
has no impact on model performance.

1 Introduction

Generally speaking, translations are either per-
formed manually by a human, or performed au-
tomatically by a machine translation (MT) sys-
tem. There exist many use cases in Natural Lan-
guage Processing in which working with a human-
translated text is not a problem, as they are usually
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of high quality, but in which we would like to fil-
ter out automatically translated texts. For example,
consider training an MT system on a parallel cor-
pus crawled from the Internet: we would prefer-
ably only keep the high-quality human-translated
sentences.

In this paper, we will address this task of dis-
criminating between human-translated (HT) and
machine-translated texts automatically. Studies
that have analysed MT outputs and HTs compar-
atively have found evidence of systematic differ-
ences between the two (Ahrenberg, 2017; Van-
massenhove et al., 2019; Toral, 2019). These out-
comes provide indications that an automatic classi-
fier should in principle be able to discriminate be-
tween these two classes, at least to some extent.

There is previous related work in this direc-
tion (Arase and Zhou, 2013; Aharoni et al., 2014,
Li et al., 2015), but they used Statistical Machine
Translation (SMT) systems to get the translations,
while the introduction of Neural Machine Trans-
lation (NMT) has considerably improved general
translation quality and has led to more natural
translations (Toral and Sdnchez-Cartagena, 2017).
Arguably, the discrimination between MT and HT
is therefore more difficult with NMT systems than
it was with previous paradigms to MT.

We follow two recent publications that have
attempted to distinguish NMT outputs from
HTs (Bhardwaj et al., 2020; Fu and Nederhof,
2021) and work with MT outputs generated by
state-of-the-art online NMT systems. Addition-
ally, we also build a classifier by fine-tuning
a pre-trained language model (LM), given the
fact that this approach obtains state-of-the-art
performance in many text-based classification
tasks.

Macken, Rufener, Van den Bogaert, Daems, Tezcan, Vanroy, Fonteyne, Barrault, Costa-jussa, Kemp, Pilos, Declercq, Koponen, Forcada,

Scarton, Moniz (eds.)
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The main differences with previous work are:

* We experiment with state-of-the-art LMs, in-
stead of only using BERT- and ROBERTA-
based LMs;

* We empirically check the performance im-
pact of adding translationese training data;

* We go beyond sentence-level by training and
testing our best system on the document-
level;

* We analyse the impact of punctuation short-
cuts by normalizing the input texts;

* We use the test sets of WMT news shared task
as our data sets, to ensure reproducibility and
that the MT system did not see the transla-
tions during its training.

The rest of the paper is organised as follows.
Section 2 outlines previous work on the topic. Sec-
tion 3 details our methodology, focusing on the
data sets, classifiers and evaluation metrics. Sub-
sequently, Section 4 presents our experiments and
their results. These are complemented by a dis-
cussion and further analyses, in Section 5. Finally,
Section 6 presents our conclusions and suggestions
for future work. All our data, code and results is
publicly available at https://github.com/
tobiasvanderwerff/HT-vs-MT

2 Related Work

Analyses Previous work has dealt with finding
systematic and qualitative differences between HT
and MT. Ahrenberg (2017) compared manually an
NMT system and a HT for one text in the trans-
lation direction English-to-Swedish. They found
that the translation by NMT was closer to the
source and exhibited a more restricted repertoire of
translation procedures than the HT. Related, an au-
tomatic analysis by Vanmassenhove et al. (2019)
found that translations by NMT systems exhibit
less lexical diversity than HTs. A contemporary
automatic analysis corroborated the finding about
less lexical diversity and concluded also that MT
led to translation that had lower lexical density,
were more normalised and had more interference
from the source language (Toral, 2019).

SMT vs HT classification Given these findings,
it is no surprise that automatic classification to dis-
criminate between MT and HT has indeed been
attempted in the past. Most of this work targets
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SMT since it predates the introduction of NMT and
uses a variety of approaches. For example, Arase
and Zhou (2013) relied on fluency features, while
Aharoni et al. (2014) used part-of-speech tags and
function words, and Li et al. (2015) parse trees,
density and out-of-vocabulary words. Their meth-
ods reach quite high accuracies, though indeed rely
on SMT systems, which are of considerable lower
quality than the current NMT ones.

NMT vs HT classification To the best of our
knowledge only two publications have tackled this
classification with the state-of-the-art paradigm,
NMT (Bhardwaj et al., 2020; Fu and Nederhof,
2021). We now outline these two publications and
place our work with respect to them.

Bhardwaj et al. (2020) work on automatically
determining if a French sentence is HT or MT,
with the source sentences in English. They test
a variety of pre-trained language models, either
multilingual —XLM-R (Conneau et al., 2020) and
mBERT (Devlin et al., 2019a)— or monolingual for
French: CamemBERT (Martin et al., 2020) and
FlauBERT (Le et al., 2020). Moreover, they test
their trained models across different domains and
MT systems used during training. They find that
pre-trained LMs can perform this task quite well,
with accuracies of over 75% for both in-domain
and cross-domain evaluation. Our work follows
theirs quite closely, though there are a few impor-
tant differences. First, we use publicly available
WMT data, while they use a large private data set,
which unfortunately limits reproducibility. Sec-
ond, we analyze the impact of punctuation-type
“shortcuts”, while it is unclear to what extent this
gets done in Bhardwaj et al. (2020)." Third, we
also test our model on the document-level, instead
of just the sentence-level.

Fu and Nederhof (2021) work on the WMT18
news commentary data set for translating Czech,
German and Russian into English. By fine-tuning
BERT they obtain an accuracy of 78% on all lan-
guages. However, they use training sets from
WMT18, making it highly likely that Google
Translate (which they use to get the translations)
has seen these sentences during training.> This
means that the MT outputs they get are likely
of higher quality than it would be the case in a
1They do apply 12 conservative regular expressions, but, as
there is no code available, it is unclear what these are and
what impact this had on their results.

“This likely does not apply to Bhardwaj et al. (2020), as they
use a private data set.



real-world scenario, and thus closer to HT, which
would make the task unrealistically harder for the
classifiers. On the other hand, an accuracy of 78%
is quite high on this challenging task, so perhaps
this is not the case. This accuracy might even be
suspiciously high: it could be that the model over-
fit on the Google Translations, or that the data con-
tains artifacts that the model uses as a shortcut.

Original vs MT Finally, there are three related
works that attempt to discriminate between MT
and original texts written in a given language,
rather than human translations as is our focus.
Nguyen-Son et al. (2019a) tackles this by matching
similar words within paragraphs and subsequently
estimating paragraph-level coherence. Nguyen-
Son et al. (2019b) approaches this task by round-
trip translating original and machine-translated
texts and subsequently using the similarities be-
tween the original texts and their round-trip trans-
lated versions. Nguyen-Son et al. (2021) extends
the former work improving the detection of MT
even if a different system is used.

3 Method
3.1 Data

We will experiment with the test sets from the
WMT news shared tasks.> We choose this data set
mainly for these four reasons:

(1) it is publicly available so it guarantees repro-
ducibility;

(i1) it has the translation direction annotated,
hence we can inspect the impact of having
original text or human-translated text (i.e.
translationese) in the source side;

(iii) the data sets are also available at the
document-level, meaning we can train and
evaluate systems that go beyond sentence-
level;

(iv) these sets are commonly used as test sets, so it
is unlikely that they are used as training data
in online MT systems, which we use in our
experiments.

We will use the German-English data sets, and
will focus on the translation direction German-to-
English. This language pair has been present the
longest at WMT’s news shared task, from 2008
till the present day. Hence, it is the language pair

3For example, https://www.statmt.org/wmt20/
translation-task.html
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Data set #SNTo #SNTr #DOCp #DOCr
WMTO08 361 0 15 0
WMT09 432 448 17 21
WMTI10 500 505 15 22
WMTI11 601 598 16 18
WMTI12 611 604 14 18
WMT13 500 500 7 9
WMT14 1,500 1,503 96 68
WMT15 736 1,433 33 48
WMTI16 1,499 1,500 87 68
WMT17 1,502 1,502 66 64
WMTI18 (dev) 1,498 — 69 —
WMTI9 (test) 2,000 — 145 —
WMTO08-17 8242 8,593 366 336
WMTI14-17 5,237 5,938 282 248

Table 1: Statistics of the data sets. # SNT stands for number
of sentences, # DOC for number of documents, O for number
of sentences or documents in which the source side is original,
while T stands for translationese. WMTO08-17 and WMT14-
17 indicate the sizes of the two training sets used.

with the most test data available. We use 2008 to
2017 as training, 2018 as dev and 2019 as test. Full
statistics are shown in Table 1.

Translationese For each of these sets, roughly
half of the data was originally written in our source
language (German) and human-translated to our
target language (English), while the other half was
originally written in our target language (English)
and translated to our source language (German) by
a human translator. We thus make a distinction be-
tween text that originates from text written in the
source language (German), and text that originates
from a previous translation (i.e. English to Ger-
man). We will refer to the latter as translationese.

Half of the data can thus be considered a dif-
ferent category: the source sentences are actually
not original, but a translation, which means that
the machine-translated output will actually be an
automatic translation of a human translation, in-
stead of an automatic translation of original text.
In that part of the data, the texts in the HT cat-
egory are not human translations of original text,
but the original texts themselves. Since this data
might exhibit different characteristics, given that
the translation direction is the inverse, we only use
the sentences and documents that were originally
written in German for our dev and test sets (indi-
cated with O in Table 1). Moreover, we empiri-
cally evaluate in Section 4 whether removing the
extra translationese data from the training set is
actually beneficial for the classifier.



MT Since we are interested in contrasting HT
vs state-of-the-art NMT, we automatically trans-
late the sentences using a general-purpose and
widely used online MT system, DeepL.* We trans-
late from German to British English,’ specifically.
We use this MT system for the majority of our ex-
periments, though we do experiment with cross-
system classification by testing on data that was
translated with other MT systems, such as Google
Translate, using their paid APL® We manually
went through a subset of the translations by both
DeepL and Google Translate and indeed found
them to be of high quality.

To be clear, in our experiments, the machine
translations actually double the size of the train,
dev and test sets as indicated in Table 1. For each
German source sentence, the data set now contains
a human translation (HT, taken from WMT) and
a machine translated variant (MT, from DeepL or
Google), which are labelled as such. As an exam-
ple, if we train on both the original and transia-
tionese sentence-level data of WMTO08-17, we ac-
tually train on 8,242 - 2 4+ 8,593 - 2 = 33,670 in-
stances. Note that this also prevents a bias in topic
or domain towards either HT or MT.

Ceiling To get a sense of what the upper ceil-
ing performance of this task will be, we check
the number of cases where the machine translation
is the exact same as the human translation. For
DeepL, this happened for 3.0% of the WMTO8-
17 training set sentences, 3.1% of the dev set and
3.9% of the test set. For Google, the percent-
ages are 2.4%, 2.0% and 3.5%, respectively.” Of
course, in practice, it is likely impossible to get
anywhere near this ceiling, as the MT system also
sometimes offers arguably better translations (see
Section 5 for examples).

*https://www.deepl.com/translator - used in
November 2021.

SDeepL forces the user to choose a variety of English (either
British or American). This implies that the MT output could
be expected to be (mostly) British English while the HT is a
mix of both varieties. Hence, one could argue that variety is
an aspect that could be picked up by the classifier. We also
use Google Translate, which does not allow the user to select
an English variety.

SWe noticed that the free Python library googletrans had
clearly inferior translations. The paid APIs for Google and
DeepL obtain COMET (Rei et al., 2020) scores of 59.9 and
61.9, respectively, while the googletrans library obtains 21.0.
"If we apply a bit more fuzzy matching by only keeping ascii
letters and numbers for each sentence, the percentages go up
by around 0.5%.
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Parameter Range

Learning rate 5x107%,1075,3 x 107°
Batch size {32,64}

Warmup {0.06}

Label smoothing  {0.0,0.1,0.2}

Dropout {0.0,0.1}

Table 2: Hyperparameter range and final values (bold) for our
final DEBERTA models. Hyperparameters not included are left
at their default value.

3.2 Classifiers

SVM We will experiment with a number of dif-
ferent classifiers. As a baseline model, we use
a linear SVM with unigrams and bigrams as fea-
tures trained with scikit-learn (Pedregosa et
al., 2011), for which the data is tokenized with
Spacy.® The use of a SVM is mainly to find out
how far we can get by just looking at the superficial
lexical level. It also allows us to identify whether
the classifier uses any shortcuts, i.e. features that
are not necessarily indicative of a human or ma-
chine translation, but due to artifacts in the data
sets, which can still be picked up as such by our
models. An example of this is punctuation, which
was mentioned in previous work (Bhardwaj et al.,
2020). MT systems might normalize uncommon
punctuation,” while human translators might opt
for simply copying the originally specified punc-
tuation in the source sentence (e.g. quotations,
dashes). We analyse the importance of normaliza-
tion in Section 5.

Fine-tuning LMs Second, we will experiment
with fine-tuning pre-trained language models.!?
Fu and Nederhof (2021) only used BERT (Devlin
et al., 2019b) and Bhardwaj et al. (2020) used a
set of BERT- and ROBERTA-based LMs, but there
exist newer pre-trained LMs that generally obtain
better performance. We will empirically decide the
best model for this task, by experimenting with a
number of well-established LMs: BERT (Devlin et
al., 2019b), RoBERTa (Liu et al., 2019), DeBERTa
(He et al., 2021b; He et al., 2021a), XLNet (Yang
et al., 2019), BART (Lewis et al., 2020) and Long-
former (Beltagy et al., 2020). For all these models,
we only tune the batch size and learning rate. The

8https ://spacy.io/

°The normalisation of the punctuation as a pre-processing
step when training an MT system is a widespread technique,
so thate.g. «,»,”, “and ,, are all converted to e.g. .
"Implemented using HuggingFace (Wolf et al., 2020).



Acc.
BART-large Lewis et al. (2020) 64.9
BERT-large Devlin et al. (2019b) 61.9
DEBERTA-v3-large He et al. (2021a) 68.6
Longformer-large ~ Beltagy et al. (2020) 63.5
ROBERTA-large Liu et al. (2019) 65.5
XLNET-base Yang et al. (2019) 62.3
DEBERTA-v3-large (optim) 68.9

Table 3: Best development set results (all in %) for MT vs
HT classification for a number of pre-trained LMs. On the test
set, DEBERTA-v3-large (optim) obtains an accuracy of 66.1.

best model from these experiments is then tuned
further (on the dev set). We tune a single parameter
at a time and do not perform a full grid search due
to efficiency and environmental reasons. Hyperpa-
rameter settings and range of values experimented
with are shown in Table 2.

Evaluation We evaluate the models looking at
the accuracy and Fl-score. When standard de-
viation is reported, we averaged over three runs.
For brevity, we only report accuracy scores, as
we found them to correlate highly with the F-
scores. We include additional metrics, such as the
F-scores, on our GitHub repository.

4 Experiments

SVM The SVM classifier was trained on the
training set WMTO08-17o (i.e. part of the data set
with original source side), where the MT output
was generated with DeepL. It obtained an accu-
racy of 57.8 on dev and 54.9 on the test set. This is
in line with what would be expected: there is some
signal at the lexical level, but other than that the
task is quite difficult for a simple SVM classifier.

Finding the best LM As previously indicated,
we experimented with a number of pre-trained
LMs. For efficiency reasons, we perform these
experiments with a subset of the training data
(WMT14-170, i.e. with only translations from
original text). The results are shown in Table 3. We
find the best performance by using the DeBERTa-
v3 model, which quite clearly outperformed the
other LMs. We obtain a 6.7 point absolute increase
in accuracy over BERT (61.9 to 68.6), the LM
used by Fu and Nederhof (2021)), and a 3.7 point
increase over the second best performing model,
BART-large. We tune some of the remaining hyper-
parameters further (see Table 2) and obtain an ac-
curacy of 68.9. We will use this model in our next
experiments.
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Trained on — DeepL Google
| Evaluated on Acc. Acc.
DeepL 66.1 +1.1 56.3+0.3
Google 63.8+1.6 64.9+1.1
FAIR (Ng et al., 2019) 62.6+1.9 57.7+1.8
RWTH (Rosendahl et al., 2019) | 61.9+ 1.5 583+ 1.8
PROMT (Molchanov, 2019) 50.3+£0.9 52.1+3.3
online-X 57.5£1.1 56.6+3.4

Table 4: Test set scores (all in %) for training and testing
our best DEBERTA across different MT-systems (DeepL and
Google) and 4 WMT19 submissions. online-X refers to an
anonymous online MT system evaluated at WMT19.

Cross-system performance A robust classifier
that discriminates between HT and MT should
not only recognize MT output that is produced by
a particular MT system (the one the classifier is
trained on), but should also work across different
MT systems. Therefore, we test our DeepL-trained
classifier on the translations of Google Translate
(instead of DeepL) and vice versa. In this experi-
ment we train the classifier on all the training data
(i.e. WMTO08-17047) and evaluate on the test set.

In Table 4, we find that this cross-system eval-
uation leads to quite a drop in accuracy: 2.3% for
DeepL and even 8.6% for Google. It seems that
the classifier does not just pick up general features
that discriminate between HTs and NMT outputs,
but also MT-system specific features that do not al-
ways transfer to other MT systems.

In addition, we test both classifiers on a set of
MT systems submitted to WMT19. We pick the
two top and two bottom submissions according to
the human evaluation (Barrault et al., 2019). The
motivation is to find out how the classifiers per-
form on MT outputs of different levels of transla-
tion quality. We also notice a considerable drop in
performance here. Interestingly, the classifiers per-
form best on the high-quality translations of FAIR
and RWTH (81.6 and 81.5 human judgment scores
at WMT19, respectively), and perform consider-
ably worse on the two bottom-ranked WMT19 sys-
tems (71.8 and 69.7 human judgment scores). It
seems that the classifier does not learn to recognize
lower-quality MT outputs if it only saw higher-
quality ones during training.

This inability to deal with lower-quality MT
when trained only on high-quality MT seems
counterintuitive and was quite surprising to us. Af-
ter all, the difference between high-quality MT
and human translation tends to be more subtle
than in the case of low-quality MT. However,



| Dev Test
WMT14-17047 | 711+£13 64.9£0.6
WMT14-170 | 68.9+14 64.0£1.1
WMTO08-17047 | 71.2+0.9 66.1+£1.1
WMT08-17p | 71.5+0.8 66.3+£0.5
WMTO08-17p | 63.7+0.8 59.5+0.3

Table 5: Dev and test scores for training our best DEBERTA
model on either WMT14-17 or WMTO08-17 translated with
DeepL, compared with training on the same data sets but not
adding the translationese data (T") and only using 7.

the learned features most useful for distinguish-
ing high-quality MT from HT are likely differ-
ent in nature than the features that are most use-
ful for distinguishing low-quality MT from HT
(e.g., simple lexical features versus features related
to word ordering). From this perspective, feed-
ing low-quality MT to a system trained on high-
quality MT can be seen as an instance of out-of-
distribution data that is not modelled well during
the training stage. Nevertheless, this featural dis-
crepancy could likely be resolved by supplying ad-
ditional examples of low-quality MT to the classi-
fier at training time.

Removing translationese data In our previous
experiment we used the full training data (i.e.
WMTO08-1704+7). However, most of the WMT
data sets only consist for 50% of sentences that
were originally written in German; the other
half were originally written in English (see Sec-
tion 3.1). We ask the question whether this addi-
tional data (which we refer to as translationese)
is actually beneficial to the classifier. On the one
hand, it is in fact a different category than human
translations from original text. On the other, its us-
age allows us to double the amount of training data
(see Table 1).

In Table 5 we show that the extra data helps if
there is not much training data available (WMT14-
17), but that this effect disappears once we in-
crease the amount of training data (WMTO08-17).
In fact, the translationese data seems to be clearly
of lower quality (for this task), since a model
trained on only this data (WMTO08-177), which is
of the same size as the WMT08-17, experiments,
results in quite a drop in accuracy (59.5 vs 66.3 on
the test set). We have also experimented with pre-
training on WMTO08-17p47 and then fine-tuning
on WMTO08-17p. Our initial results were mixed,
but we plan on investigating this in future work.
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Beyond sentence-level In many practical use-
cases, we actually have access to full documents,
and thus do not have to restrict ourselves to look-
ing at just sentences. This could lead to better
performance, since certain problems of NMT sys-
tems only come to light in a multi-sentence set-
ting (Frankenberg-Garcia, 2021). Since WMT also
contains document-level information, we can sim-
ply use the same data set as before. Due to the
number of instances being very low at document
level (see Table 1), and to the fact that the addition
of translationese data showed to be beneficial with
limited amounts of training data (see Table 5), we
use all the data available for our document-level
experiments, i.e. WMTO08-1747.

We have four document-level classifiers: (i) a
SVM, similar to the one used in our sentence-level
experiments, but for which each training instance
is a document; (ii) majority voting atop our best
sentence-level classifier, DEBERTA, i.e. we aggre-
gate its sentence-level predictions for each docu-
ment by taking the majority class; (iii) DEBERTA
fine-tuned on the document-level data, truncated
to 512 tokens; and (iv) Longformer (Beltagy et
al., 2020) fine-tuned on the document-level data,
as this LM was designed to handle documents.

For document-level training, we use gradient ac-
cumulation and mixed precision to avoid out-of-
memory errors. Additionally, we truncate the input
to 512 subword tokens for the DEBERTA model.
For the dev and test set, this means discarding 11%
and 2% of the tokens per document on average, re-
spectively.!! A potential approach for dealing with
longer context without resorting to truncation is to
use a sliding window strategy, which we aim to ex-
plore in future work.

The results are presented in Table 6. First, we
observe that the document-level baselines obtain,
as expected, better accuracies than their sentence-
level counterparts (e.g. 60.7 vs 54.9 for SVM and
72.5 vs 66.1 for DEBERTA on test). Second, we
observe large differences between dev and test, as
well as large standard deviations. The instability
of the results could be due, to some extent, to the
low number of instances in these data sets (138 and
290, as shown in Table 1). Moreover, the test set is
likely harder in general than the dev set, since it on
average has fewer sentences per document (13.8 vs
21.7).

"'The median subword token count in the HT document-level
data is 376, with a minimum of 47 and maximum of 3,254.



DeepL Google
Dev Test Dev Test
SVM 74.8 60.7 84.7 64.8
DEBERTA (mc) | 84.7+8.0 72.54+5.2 93.2£1.1 67.6+£3.4
DEBERTA 91.1+24 76.8+4.4 959+ 1.5 60.84+1.2
Longformer 80.2 £2.7 82.0+£7.2 94.2+1.3 63.24+0.9

Table 6: Accuracies of training and evaluating on document-
level DeepL and Google data. For DEBERTA, we try two
versions: a sentence-level model applied to each sentence in
a document followed by majority classification (mc), and a
model trained on full documents (truncated to 512 tokens).

5 Discussion & Analysis

Thus far we have reported results in terms of an au-
tomatic evaluation metric: classification accuracy.
Now we would like to delve deeper by conducting
analyses that allow us to obtain further insights. To
this end, we exploit the fact that the SVM classifier
outputs the most discriminative features for each
class: HT and MT.

5.1 Punctuation Normalization

In this first analysis we looked at the best features
of the SVM to find out whether there is an obvious
indication of “shortcuts” that the pre-trained lan-
guage models can take. The best features for both
HT and MT are shown in Table 8.

For comparison, we also show the best features
after applying Moses’ (Koehn et al., 2007) punc-
tuation normalization,'? which is commonly used
as a preprocessing step when training MT systems.
Indeed, there are punctuation-level features that by
all accounts should not be indicative of either class,
but still show up as such. The backtick (") and dash
symbol (—) show up as the best unigram features
indicating HT, but are not present after the punctu-
ation is normalized.

Now, to be clear, one might make a case of still
including these features in HT vs MT experiments.
After all, if this is how MT sentences can be spot-
ted, why should we not consider them? On the
other hand, the shortcuts that work for this partic-
ular data set and MT system (DeepL) might not
work for texts in different domains or texts that are
translated by different MT systems. Moreover, the
shortcuts might obscure an analysis of the more in-
teresting differences between human and machine
translated texts.

Phttps://github.com/moses—smt/
mosesdecoder/blob/master/scripts/
tokenizer/normalize-punctuation.perl

Original Normalized

Sent-level

SVM 54.9 54.5

DEBERTA-V3 66.1+1.1 67.0£0.6
Doc-level

SVM 60.7 60.0

DEBERTA (majority) 72.5+5.2 72.0£4.1

DEBERTA 76.8+t4.4 T7.2+£4.7

Longformer 820+ 7.2 83.7+2.1

Table 7: Test set accuracies of training and evaluating on
sentence-level and document-level data on either the original
or normalized (by Moses) input texts, translated with DeepL.

In any case, we want to determine the impact
of punctuation-level shortcuts by comparing the
original scores versus the scores of our classi-
fiers trained on punctuation-normalized texts. The
results of our baseline and best sentence- and
document-level systems with and without normal-
ization are shown in Table 7. We observe that,
even if the two best unigram features were initially
punctuation, normalizing does not affect perfor-
mance in a major way. There is even a small in-
crease in performance for DEBERTA-v3 and Long-
former, though likely not significant.

5.2 Unigram Analysis

In our second analysis we manually went through
the data set to analyse the 10 most indicative uni-
gram features for MT (before normalization).' In-
terestingly, some are due to errors by the human
translator: the MT system correctly used school-
yard instead of the split school yard, and it also
used the correct name Olympiakos Piraeus instead
of the incorrect Olypiacos Piraeus (typo in the first
word). Some are indeed due to a different (and
likely better) lexical choice by the human transla-
tor, though the translation is not necessarily wrong:
competing gang instead of rival gang, espionage
scandal instead of spy affair, judging panel instead
of jury and radiation instead of rays. Finally, the
feature disclosure looks to be an error on the MT
side. It occurs a number of times in the machine-
translated version of a news article discussing Wik-
ileaks, in which the human translator chose the
correct Wikileaks publication instead of Wikileaks
disclosure and whistleblower activists instead of
disclosure activists.

BOf course, since we only look at unigrams here, and the per-
formance of the sentence-level SVM is not very high anyway,

all these features have in common that they do not necessarily
generalize to other domains or MT-systems.
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Before normalization

After normalization

Most indicative for MT | Most indicative for HT | Most indicative for MT | Most indicative for HT
1-grams 2-grams ‘ 1-grams 2-grams ‘ 1-grams 2-grams ‘ 1-grams 2-grams
olympiakos are said ) the riders olympiakos " proctor | u.s. the riders
affair " proctor - the 2015 affair are said program consequently ,
forsa 2010, u.s. consequently , | forsa book " nearly the 2015
rival per cent nearly projects , rays 2010, anticipated . the
rays almost the program . the rival per cent everybody  projects,
schoolyard  the flat anticipated life " disclosure  almost the | premier <93>the hunting
disclosure  in view <93>the - weiss jury be put lama <92>s  a part
jury with industry | premier a part succeed and later weiss as for

Table 8: Best features (1-gram and 2-gram models) in the SVM classifier per class, before and after normalizing punctuation.

For the best unigrams indicative of HT, there are
some signs of simplification by the MT system.
It never uses nearly or anticipate, instead gener-
ally opting for almost and expected. Similarly, hu-
man translators sometimes used U.S. to refer to the
United States, while the MT system always uses
US. The fact that we used British English for the
DeepL translations might also play arole: program
is indicative for HT since the MT system generally
used programme.

6 Conclusions

In this paper we trained classifiers to automat-
ically distinguish between human and machine
translations for German-to-English. Our classifiers
are built by pre-training state-of-the-art language
models. We use the test sets of the WMT shared
tasks, to ensure that the machine translation sys-
tems we use (DeepL and Google) did not see the
data already during training. Throughout a number
of experiments, we show that: (i) the task is quite
challenging, as our best sentence-level systems ob-
tain around 65% accuracy, (ii) using translationese
data during training is only beneficial if there is
limited data available, (iii) the accuracy drops con-
siderably when performing cross MT-system eval-
uating, (iv) accuracy improves when performing
the task on the document-level and (v) normalizing
punctuation (and thus avoiding certain shortcuts)
does not have an impact on model performance.

In future work, we aim to do a number of things.
For one, we want to experiment with both trans-
lation directions and different source languages
instead of just German. Second, we want to
perform cross-domain experiments (as in Bhard-
waj et al. (2020)), as we currently only looked

at news texts.!* Third, we want to look at the
effect of the source language: does a monolin-
gual model that is trained on English translations
from German still work on translations into En-
glish from different source languages? This can
shed on light on the question in what sense gen-
eral source language-independent features that dis-
criminate between HT and MT are actually identi-
fied by the model. Fourth, we plan to also use the
source sentence, with a multilingual pre-trained
LM, following Bhardwaj et al. (2020). This ad-
ditional information is expected to lead to better
results. While the source sentence is not always
available, there are real-world cases in which it is,
e.g. filtering crawled parallel corpora. Fifth, we
would like to expand the task to a 3-way classi-
fication, as in the least restrictive scenario, given
a text in a language, it could be either originally
written in that language, human translated from
another language or machine translated from an-
other language.
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“Note that this domain has a real-world application: the de-
tection of fake news, given the fact that MT could be use to
spread such news in other languages (Bonet-Jover, 2020).
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Abstract

Not all machine mistranslations are of
equal scale of severity. For example, mis-
translating a date or time in an appoint-
ment, mistranslating a number or currency
in a contract, or hallucinating profanity
may lead to catastrophic consequences for
the users. The severity of the errors is
an important but overlooked aspect of ma-
chine translation (MT) quality evaluation.
In this paper, we present the results of our
effort to bring awareness to the problem of
critical translation errors. We study, val-
idate and extend an initial taxonomy of
critical errors with the view of providing
guidance for critical error analysis, anno-
tation and mitigation. We test the extended
taxonomy for three language pairs to ex-
amine to what extent it generalises across
languages. We provide an account of fac-
tors that affect annotation tasks along with
recommendations on how to improve an-
notation practice in future work. We also
study patterns in the source text that can
lead to critical errors. Detecting such lin-
guistic patterns could be used to improve
the performance of MT systems, especially
for user-generated content.

1 Introduction

Machine Translation (MT) has now become ubig-
uitous in many online platforms (e.g. social net-
works) and generally used without any human
post-editing due to cost, timeliness, and accessi-
bility. The rapid development and adoption of MT
© 2022 The authors. This article is licensed under a Creative

Commons 3.0 licence, no derivative works, attribution, CC-
BY-ND.

l.specia}@imperial.ac.uk

has advanced efforts to improve and standardise
MT evaluation, and increased discussion on how
we should evaluate MT (Dorr et al., 2011; Garcia,
2014; Ulitkin et al., 2021). This need escalated
with the use of MT to translate user-generated con-
tent (UGC), e.g. in social media platforms. Un-
like formal text, UGC often has colloquial lan-
guage, including profanities, spelling errors, emo-
jis, hashtags and abbreviations, and is grammati-
cally ill-formed, which makes it hard for MT, of-
ten resulting in incorrect translations (Al Sharou
et al., 2021). Some of these incorrect translations
can contain critical errors. In this work, we refer
to critical errors as instances of translations where
the meaning in the target text deviates drastically
from the source text where such translations can
be misleading and may carry health, safety, legal,
reputation, religious or financial implications.

The volume of content shared by users means
that the MT-translated content cannot be manually
post-edited. Therefore, users have to rely on MT
as is and usually do not have the linguistic skills to
identify the errors. As a consequence, users may
be negatively affected if they misunderstand the
intention or sentiment of the source text or could
take inappropriate action if they act on critically
corrupted translations. There are many instances
where innocuous statements on social media have
been translated by the machine to say something
quite different, the opposite, or even turn a simple
greeting into hate speech - translating ‘good morn-
ing’ in Arabic into ‘attack them’ in Hebrew by
the machine, leading to the arrest of a Palestinian
worker who posted it on his social media profile by
Israeli police, as reported by the Guardian (Hern,
2017). Therefore, it is important that the issue of
critical error is directly addressed.

To mitigate such a problem, recent research has

Macken, Rufener, Van den Bogaert, Daems, Tezcan, Vanroy, Fonteyne, Barrault, Costa-jussa, Kemp, Pilos, Declercq, Koponen, Forcada,
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looked into automatic methods to detect critical er-
rors in machine translation, with a view to inform
users of such errors. This was framed as a track
in the WMT 2021 Shared Task on Quality Estima-
tion (Specia et al., 2021). A taxonomy was pro-
posed to annotate training and evaluation data for
this task. The annotation effort focused on critical
errors only, i.e. other errors were disregarded. This
differs from previous work, where critical errors —
if evaluated — are seen as an extra level of annota-
tion on general errors, i.e. as a severity judgement
on errors (Lommel et al., 2014). From a practi-
cal perspective, we believe this focused annotation
is a good strategy as it saves annotation effort and
allows gisting-oriented quality prediction models,
under the assumption that MT is still usable even
though it may contain minor (non-critical) errors.
According to Specia et al. (2021), however, the an-
notation of critical errors proved very challenging,
with low agreement amongst annotators.

A taxonomy is an important step as it establishes
which types of errors should be considered critical.
We revisit and extend the taxonomy proposed in
Specia et al. (2021) in order to (a) perform a more
focused, smaller-scale study with well-trained an-
notators to understand the general challenges in
annotating critical errors, and (b) validate the ex-
tended taxonomy on different languages. For that,
we commission the manual annotation of such er-
rors and conduct an in-depth analysis of their im-
pact on the translations. We reflect on the annota-
tion process as an essential part of any evaluation
task that aims to examine the performance and us-
ability of MT systems for better evaluation and an-
notation practices. We also show how the source
text can affect the quality of MT translations when
it comes to the presence of critical errors.

We start by presenting an overview of popular
quality evaluation taxonomies (Section 2) to then
introduce the taxonomy we study, developed in
Specia et al. (2021), with two additional categories
we propose to add to the taxonomy (Section 3).
We then explain our approach and criteria to vali-
dating the extended taxonomy and follow that with
a data analysis through which we show how the
taxonomy is validated (Section 4). We also reflect
on the annotation process for different languages
(Section 5). Finally, we explore how the quality or
lack of quality of the source text could contribute
to the generation of critical errors (Section 6).
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2 Related Work

With the rapid development and increasing adop-
tion of Machine Translation systems, evaluating
the quality has become a common practice. This
has led to advances in the area of translation qual-
ity assessment (TQA) and inspired initiatives that
aimed to standardise this practice.! TQA is used
to assess the performance of a system, and whether
its output fits to be used either as is or as a first draft
that requires some post-editing (O’Brien, 2012;
Han, 2022). TQA can also be utilised to enhance
the performance of systems, as a point of compari-
son between various systems, or to estimate the ef-
fort required to post-edit machine-translated con-
tent (Aziz et al., 2012; Popovié, 2018). Examining
the quality of the MT output has been conducted
through either the identification of errors, the over-
all assessment of MT quality or both.

Various classifications of errors have been de-
veloped, against which MT system outputs are as-
sessed (Lommel et al., 2014; Abu-Ayyash, 2017;
Popovi¢, 2018). The two most comprehensive
frameworks, which have been widely adopted in
industry, academia and by end-users, are (i) Mul-
tidimensional Quality Metrics (MQM), proposed
under the EU-funded QTLaunchPad project (Lom-
mel et al., 2014), and (ii) Dynamic Quality Frame-
work (DQF) by the Translation Automation User
Society (TAUS) (Lommel et al., 2015; Rivera-
Trigueros, 2021). These initiatives offering gen-
eral taxonomies are based on, and inspired by,
earlier error-specific models including LISA QA
Model, developed in the 1990s by the Localisa-
tion Industry Standards, and the SAE J2450 met-
ric, among others (Lommel et al., 2014).

Another group of individual error classifica-
tions includes language-related and linguistically-
motivated taxonomies that aim to evaluate the
quality of MT output according to specific linguis-
tic phenomena that occur in the translation and
are associated with certain languages. For exam-
ple, Costa et al. (2015)’s study classifies transla-
tion errors from English into European Portuguese.
Their work extends previous taxonomies to study
errors associated with morphologically rich lan-
guages. Some other studies focus specifically on
the impact of certain features of the text on the
output. For example, Abu-Ayyash (2017) explores
errors and non-errors for the English-Arabic pair
in MT-translated gender-bound constructs in tech-

'In this work, we only focus on human evaluation.



nical texts, and Han et al. (2020) proposes a cate-
gorisation of error types generated by MT systems
when translating multiword expressions.

In addition to classifying types of errors, other
aspects of quality evaluation are considered, i.e.
the importance and severity of the errors. Still,
these are optional criteria and considered depend-
ing on the task and the purpose of the translation.
In the MQM framework, importance is assigned to
categories of errors. For example, if one category
is considered as a priority for a given task, it is
deemed as important for that specific task. Sever-
ity, however, is applicable to individual errors, and
is related to their nature and their impact on the us-
ability of the translation. ‘The more severe an error
is, the more likely it is to negatively affect the user
in some fashion’ (Lommel, 2018). MQM identifies
four levels of severity: critical, major, minor, and
null that align to some extent with those adopted in
the DQF framework (Lommel, 2018).

More recent work has focused on classifying
only the most severe errors (referred to as criti-
cal errors). For example, the WMT 2021 Shared
Task on Quality Estimation (Specia et al., 2021)
organised a track on predicting the presence of
critical errors in sentence translations. As part of
this track, a taxonomy of critical errors was pro-
posed and a large amount of data was annotated
for such errors: 10K translations from English
into four languages (Chinese, Japanese, Czech and
German). Each translation was annotated by three
professional translators. However, the authors ob-
served that the annotation was problematic, with
overall low annotator agreement. It was not clear
from the effort whether this was because of the
general lack of understanding of the task by the
annotators, the complexity of the task or because
of other factors.

One interesting outcome of the report in Spe-
cia et al. (2021) was the high proportion of crit-
ical errors in UGC. It is clear that error-free MT
is still unattainable and that critical errors are not
rare. Therefore, further research towards under-
standing, formalising, and annotating such errors
is much needed before prediction and mitigation
strategies can be put in place. We, therefore, de-
vote this work to bring attention to this issue. We
study critical errors that have the same level of
severity (highest), and treat them as critical errors
because of their potential negative impact on those
who use the translations as they are. The assump-
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tion, which we test in this paper, is that the types of
critical errors should be applicable to any language
pair. As far as we know, this is the first work which
focuses on studying critical errors in UGC.

3 A Taxonomy of Critical Errors

In what follows, we present Specia et al. (2021)’s
taxonomy of critical errors a) to serve as the base
for a new extended taxonomy developed in this
work and b) to be tested and analysed in detail.
It recognises three ways in which meaning devia-
tions from the source sentence can happen:

* Mistranslation: content is translated incor-
rectly into a different meaning, copied to the
target text (i.e. it remains in the source lan-
guage), or translated into gibberish.

* Hallucination: content that is not in the
source is introduced into the translation. For
example, profanity words are introduced.

* Deletion: critical content that is in the source
sentence is not present in the translation. For
instance, the source sentence may contain a
negation that is removed from the translation.

In this taxonomy, there are five main categories

of critical errors:

1. Deviation in toxicity (TOX): This category
refers to instances where the translation may incite
hate, violence, profanity or abuse against an indi-
vidual or a group (areligion, race, gender, etc.) due
to incorrect translations. It covers cases where tox-
icity is introduced into the translation when it is not
in the source, deleted in the translation when it is
in the source, mistranslated into different (toxic or
not) words, or not translated at all (i.e. the toxicity
remains in the source language or transliterated).
2. Deviation in health/safety risks (SAF): This
category refers to instances where the translation
may bring a risk to the reader where the mean-
ing which has been changed has health and safety
implications. This issue can happen when content
is introduced into the translation, deleted from the
translation when it is in the source, or mistrans-
lated into different words, or not translated at all
(i.e. it remains in the source language).

3. Deviation in named entities (NAM): A named
entity (people, organisation, location) is deleted,
mistranslated by either another incorrect named
entity or acommon word or gibberish, left untrans-
lated when it should be translated, or introduced
when it is not in the source text.

4. Deviation in sentiment or negation (SEN):



The MT either introduces or removes a negation
(with or without an explicit negation word), or re-
verses the sentiment of the sentence (e.g. a nega-
tive sentence becomes positive or vice-versa).

5. Deviation in numbers, time, units, or date
(NUM): The MT mistranslates or removes a num-
ber, date, time or unit, causing misunderstanding
that could lead to an unpleasant, or major, conse-
quence such as missing an important appointment.
In this work, we propose two additional categories
to add to the taxonomy:

6. Deviation in instructions (INS): This cate-
gory refers to instances where the MT translates
instructions incorrectly, such that if one were to
follow them, they would not get to the intended
outcome (except for negation and reversal of sen-
timent cases - category SEN). This also includes
cases where pronouns are changed.

7. Other critical meaning deviation (OTH) -
specify: This category involves instances of trans-
lations where the meaning changes in a critical
way which does not come under any of the above-
mentioned categories. For example, the MT sys-
tem could change the meaning of a verb or a phrase
completely or distort the structure of a sentence,
affecting its intended meaning, e.g. by locating the
object of the sentence in the place of the subject.

4 Validating the Taxonomy

In this section, we report on a study we performed
on this extended taxonomy by means of an anno-
tation exercise with additional languages, followed
by an in-depth analysis.

4.1 Data Annotation

We have carried out the annotation process to val-
idate the extended taxonomy as follows: We have
manually selected 100 sentences (roughly 2000
words) from the WMT21 Critical Error Detection
task dataset. The original English data comes from
the Wikipedia Comments Corpus.? Our selection
was motivated and based on Al Sharou et al.
(2021)’s work on non-standard text and used their
categories of non-standard linguistic features that
can be challenging to the machine. Based on that,
half of the sentences selected included features
such as abbreviations, special characters, spelling
mistakes, wrong punctuation marks, among others.
We also chose sentences that contained offensive

https://meta.wikimedia.org/wiki/
Research:Detox
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language, which the MT system is less likely to
have been trained to handle it. The expectation is
that such sentences may lead to critical errors when
translated automatically. The other half did not in-
clude any of the said features. We targeted three
language pairs, i.e. English-Chinese, English—
Italian and English—Arabic, to test whether the
extended taxonomy of critical errors is applica-
ble to languages from different families. Still,
this annotation task is not merely about other lan-
guages, but it is also a more focused effort, car-
ried out with trained annotators. To translate the
data, we used three MT systems, Google Trans-
late, Bing and Systran.> The initial data in Spe-
cia et al. (2021) only used one translation system,
i.e. the ML50 fairseq multilingual Transformer
model (Tang et al., 2020)*. For each language,
we asked three translators who are native speak-
ers of these languages to carry out the manual an-
notation. Their professional translation experience
ranges from two to six years, and two of them have
experience carrying out annotation tasks. Anno-
tators were provided with the extended taxonomy
of critical errors. Online sessions were held with
them to explain the purpose of the study along with
the extended taxonomy and followed up by email
communications to solve any issues they had en-
countered while carrying out the task. Annotators
were provided with clear guidelines where they
had to strictly follow two main rules:

e This evaluation is NOT about flagging any
mistranslation/hallucination/deletion errors,
but only cases where such errors are criti-
cal and lead to catastrophic consequences, as
outlined in the Taxonomy of Errors.

e This evaluation is NOT about flagging toxi-
city (hate, profanity) in the translation, but
rather cases where the meaning in the trans-
lation differs from the content in the source in
a critical way.

We asked annotators to label the data at the
sentence-level with a binary label, where the oc-
currence of one or more errors means the sentence
has critical errors. We also requested them to as-
sign the type of error, selected from a drop-down
list, based on the extended taxonomy, to the first
critical error they find. We used multiple annota-
tors to measure agreement levels as one of our met-

3The online systems were used between November 2021 and
March 2022.
‘nttps://github.com/pytorch/fairseq/tree/
master/examples/multilingual



rics to validate the taxonomy and annotation task.
Given the small number of participants, which may
undermine the effectiveness of statistical analysis,
we also look at the results from a qualitative per-
spective. We also asked the annotators to complete
a questionnaire, reflecting on their experience car-
rying out the annotation task. The annotators were
instructed to conduct the annotation independently.

4.2 Data Analysis

In order to validate the extended taxonomy, we
looked at the annotation carried out for the three
languages in light of two criteria:

* Reproducibility (through agreement rate
among annotators): by confirming the pres-
ence or absence of critical errors in each
translation, regardless of the types of critical
error(s).

* Applicability to other languages: whether
the error types in the taxonomy are observed
for different language pairs.

4.2.1 Reproducibility

In this section, we present an analysis of the
inter-annotator agreement (IAA) ratings among
annotators, based on the set of 100 sentences,
for each of the three language combinations, i.e.
English—Chinese (EN-ZH), English-Italian (EN-
IT) and English—Arabic (EN-AR).

Sentence Level: We compute IAA on the
sentence-level binary labels, using Cohen’s
Kappa (Cohen, 1960), where raters agree on
whether or not the sentence has at least one critical
error, regardless of the type of critical error.

Table 1 displays the results for error mark-up,
presented in pair-wise comparisons to evaluate the
similarity between each pair of annotators.

Annot. | EN-ZH | EN-IT | EN-AR
1&2 0.802 0.906 0.840
2&3 0.825 0.652 0.640
1&3 0.872 0.699 0.640

Average 0.833 0.752 0.706

Table 1: Cohen’s Kappa IAA - Sentence Level

Table 1 shows a substantial agreement among
the annotators across the three languages, with
English—Arabic gaining the lowest agreement rat-
ing. This high rating could have been influenced
by the way the dataset was selected, described in
Section (4). It is of relevance to note that although
Arabic annotators (2&3) and (1&3) have the same
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agreement rating, their rating shows some discrep-
ancies when it comes to error types (see Table 2)
below. It is also important to clarify that we in-
tended to order annotators according to whether
they had received training on the taxonomy and
guidelines (annotators labelled as 1), followed by
those who did not attend but asked for clarifica-
tion (annotators labelled as 2), then the ones who
carried out the annotation using only the guide-
lines and the extended taxonomy (annotators la-
belled as 3). This explains why the agreement rate
among annotators (1&2) is higher, especially for
the English—Italian and English—Arabic language
pairs. These results serve our aim to examine fac-
tors such as training that can affect the annotation
task and annotators’ performance (for an in-depth
analysis of the annotation task, see Section 5).

Type Level: As a further step, we calculate the
IAA on a categorical scale. We use Fleiss’ kappa
in SPSS (Fleiss, 1971; Fleiss et al., 2003) that al-
lows determining the level of agreement on a cat-
egorical scale, i.e. agreement on individual cat-
egories of errors. Based on the extended taxon-
omy, we included in the annotation task, as a drop-
down menu for the annotators to use, the seven cat-
egories in addition to one more category, labelled
as ‘None’, to cover cases where no critical error(s)
were detected. Results presented in Table 2 show
that the average over all pairs of annotators and
all categories is lower in all languages, compared
with the sentence level agreement rating. Overall
categorical agreement rating can be described as
moderate for Italian and Arabic (0.548 and 0.424
respectively), and substantial for Chinese (0.624).
This reveals that annotators may have found it dif-
ficult to decide on the types of errors. Their assess-
ment may have been influenced by several factors.
Annotation is to some extent a subjective task and
is greatly influenced by how annotators treat and
understand the source and target sides of the data.
For example, some annotators were inclined to la-
bel errors as critical based on their own assessment
rather than according to what the guidelines say
(see discussion in Section 5).

It is interesting to see that Chinese has the high-
est agreement rate in both rating exercises, i.e. sen-
tence level (0.833) and type level (0.624). A closer
look shows that error types were assigned mainly
under three types, i.e. ‘TOX’, ‘Other’ and ‘None’.
This somehow explains why it has the highest av-
erage agreement rates at both levels. We also no-



| Error Type | Annot. | EN-ZH | EN-IT | EN-AR |

1&2 0.451 0.792 0.838
TOX [T 2&37 77 70.968 | 0452 | T0.552
| " 1&37 7770336 | 0435 7| T0.535

1&2 — -0.005 —

SAF [T 2&37 7 770.005 [T I ="
[T 1&3 77 -0.005 | -0.005 | T — T~

1&2 -0.005 -0.02 -0.015
NAM [T 2&37 =" 70490 | T-0.005 ~
|~ 1&3 77| -0.005 [ -0.01" | " -0.01"

1&2 — — -0.01
SEN | T2&3T T T =T 20.005 | 7-0.005 ~
| TI&3 T T = -0.005 " "-0.005 ~

1&2 — -0.005 —

NUM [ 2&3° | = "7[° 20005 | ="
TT&3 T =TT I ="

1&2 0.011 -0.015 -0.015
INS [T 2&37 7770795 [ -0.01 7| " 0.096 ~
| TT&3 T 0 " 7[7038 | -0.011 "

1&2 0.479 -0.005 -0.031
Other [ 2&37 7| 0740 | 002" | =~
| T 1&3 77 70.656 | -0.026 | -0.03T

1&2 0.757 0.906 0.640
None [T 2&37 7| 0.872° | T0.486 | " 0.880
[T 1&3 77| 70.944 [ T0.532 | T 0640

| Overall Agreement | 0.624 [ 0548 | 0424 |

Table 2: Fleiss’ kappa Agreement on Error Types

tice that annotators (2&3) are closer in their agree-
ment rates, especially when it comes to ‘Other’
and ‘None’ categories. These two annotators may
have collaborated on this task, although annotators
were told to work independently.

It is important to highlight that a high rate is
given to certain categories, e.g. ‘INS’ in Chinese,
achieving 0.795. When annotators (2&3) from this
group asked about the reason behind their selection
of the ‘INS’ type, their answer showed that they
interpreted sentences in the seemingly imperative
format as instructions, hence assigned errors as a
‘deviation in instructions’. In reality, this might not
have been the case, especially that the Chinese an-
notator 1 and the annotators for the other language
pairs did not label a similar number of critical er-
rors under the ‘INS’ category. This finding gives
an indication about how failure to understand what
each category implies by annotators could affect
the evaluation and annotation task and necessitates
that focused training is provided, especially when
more specific tasks are assigned to annotators.

4.2.2 Applicability

We carried out an analysis to validate the appli-

cability of the extended taxonomy. Namely, we
* present an analysis of the error distribution
for the language pairs, i.e. English—Chinese,
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English-Italian and English—Arabic;
* provide examples of the different types of er-
rors in the three selected language pairs.
Error distribution across the three languages is
presented in Table 3. We calculate the average of
the total number of each error type, selected by the
three annotators, for each language pair to show
how many times each error has been selected by
the annotators across the three languages.

Annot. | EN-ZH | EN-IT | EN-AR
TOX 16.33 24.33 38.7
SAF 0.33 0.67 —
NAM 0.33 1.67 1
SEN — 0.33 0.67
NUM — 0.67 —
INS 7.33 1.67 7.33
Other 3.67 1.67 2
None 72.00 69.00 50.3

Table 3: Error Distribution across Languages

The majority of types in the extended taxon-
omy have occurred in the dataset analysed for the
three language pairs. In a few cases, some types
did not occur at all as in the Chinese side of the
dataset, i.e. ‘SEN’ and ‘NUM’, and the Arabic
side, i.e. ‘SAF’ and ‘NUM'’. The two types with
the highest number of occurrences are ‘TOX’ and
‘None’, albeit with different proportions. The oc-
currence of “TOX’ type could be as a result of the
type of the annotated data which has a substantial
amount of offensive language. This aspect of the
text, when existing in large quantities, could lead
to the generation of critical errors. ‘None’ type
is the most selected type among the types across
the three languages. This could be attributed to
the fact that half of the dataset (50 sentences) did
not include features that are challenging to the ma-
chine (e.g. no offensive language or non-standard
features, hence, less causes of critical errors). This
finding shows the impact of the source text on the
output. We expand on this aspect extensively in a
separate Section (6), due to its importance in af-
fecting online communication and also for consid-
eration by any future work that aims to improve the
quality of MT systems and develop error and noise
analysis and detection models. Some types such as
‘NUM’ did not appear much as the sentences did
not have information that could lead to errors of
this type. These findings prove that the types in-
cluded in the extended taxonomy can occur in dif-
ferent languages. This also shows that MT systems
behave differently depending on the language. For



example, while the annotators did not find errors
that fall under ‘SAF’ and ‘NUM’ categories in the
Arabic side of the dataset, and under ‘SEN’ and
‘NUM'’ in the Chinese, that was not the case in the
Italian side of the dataset which covered all types
of errors.

Examples provided were chosen as an illustra-
tion for their clarity and strong manifestation of
deviation to show how far the machine can go in
generating critical errors when translating UGC.
These examples were obtained from the analysis of
the dataset, covering the three chosen languages.
The examples with their translations are provided
in English only, following the order of the types in
the extended taxonomy (see Section 3).

Deviation in toxicity (TOX)

ST Your Kkilling the fucking planet.
MT-ed text | May the damn planet kill you.
Translation into Arabic by Systran

Deviation in health/safety risks (SAF)

I Know two teenagers that suffer from

ST gerd it is a big problem for these people!
I Know two teenagers that suffer from
MT-ed text | root disease it is a big problem for these

people!
Translation into Chinese by GT

Deviation in named entities (NAM)

ST Your fucking ass doesn’t know shit
about it AT ALL.Rocky.
Your fucking ass doesn’t know shit
MT-ed text | hout it AT ALL rock.

Translation into Italian by Bing

Deviation in sentiment or negation (SEN)

Don’t the Yoshinoyasin Singapore and
Indonesia ALSO not serve pork?

Don’t the Yoshinoyasin in Singapore
and Indonesia ALSO serve pork?
[ranslation into Arabic by GT

ST

MT-ed text

G

Deviation in numbers/time/units/date (NUM)

Your signature is incredibly long. At
ST 632 characters, it’s about two and a half
times what the software allows.

Your signature is incredibly long. At
632 characters, it is double what the
software allows.

[ranslation into Arabic by GT

MT-ed text

Deviation in instructions (INS)

The link to wikibooks doesn’t work and
ST I don’t know how to fix it. Can anyone
help?

The link to wikibooks doesn’t work and
I don’t know how to fix it. Can I help
you?

[ranslation into Arabic by GT

MT-ed text
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Other critical meaning deviation (OTH)

ST Admin’s beware of him.
MT-ed text | Admin is aware of him.
Translation into Italian by Systran

As a further step in our effort to validate the tax-
onomy, we reflect on the annotation process, us-
ing data collected through post-annotation ques-
tionnaires and our own experience supervising the
annotation process. We also look at the impact of
the source text on the generation of critical errors.

5 Evaluation of the Annotation Task:
Challenges and Recommendations

Data was annotated for the three selected lan-
guages by professional translators. We provided
them with guidelines based on the extended tax-
onomy with clear instructions that they must only
annotate critical errors with catastrophic impact on
the translation. However, we have found that:

* Despite providing clear guidelines on critical
errors and how to detect and categorise them,
there was some disagreement among the an-
notators regarding what errors were consid-
ered critical. This led them to tagging errors
as critical when they were not, and vice versa.

* Annotators found it difficult to focus on criti-
cal errors versus annotating all errors.

These findings pose the following questions: (1)
how this task is conducted?, 2) what areas need to
be addressed for the annotation to be carried out
at a level that serves the purpose of the annotation
task?, and (3) what makes annotating critical er-
rors a difficult task? We reflect on these areas and
present a set of factors along with recommenda-
tions, based on empirical findings, with the aim to
improve the annotation process for future work.

* Training: Training is important to ensure
annotators understand the task. The role
of training is displayed in the differences in
the annotation between those who joined the
training and those who only followed the
guidelines without training. A follow-up dis-
cussion with the second group whose annota-
tion contained major differences revealed that
there was some misunderstanding regarding
what each category implied, failing to anal-
yse the translations correctly as a result.

* Difficulty and specificity of the task: Dis-
agreement among annotators occurred be-
cause the task was not easy for them. To clar-



ify further, some annotators found it difficult
to just focus on critical errors and disregard
other errors as a new practice they have not
experienced before. This finding highlights
that general training might not be enough to
understand the requirements of more specific
annotation tasks.

Prior attitude towards the annotation task:
Some annotators felt unsure about why such
translations with critical errors should be ac-
cepted and the purpose of carrying out the
annotation task. These annotators tended to
consider errors as critical when they did not
follow the general rules of a language (gram-
matical or stylistic rules), overlooking what
the guidelines stated, ending up annotating
both minor and critical errors. It is, therefore,
vital to not only provide clear instructions on
how to carry out the annotation task, but to
also highlight that they need to treat it as a
serious task similar to translating official doc-
uments and that they should always follow the
guidelines (i.e. annotation brief).

Time allocated to the task: Annotators were
involved on a voluntary basis which could
have limited the time they allocated to per-
forming the annotation task. Annotators re-
ported spending between 2-8 hours on this
task. Therefore, annotators who spent less
time might not have worked on it thoroughly,
affecting the quality of their annotation.
Subjectivity of the task: Although clear
guidelines were provided, annotators differed
in their interpretation of each type. Their un-
derstanding of the translations also affected
their judgement of whether the errors were
critical or not. Where disagreements oc-
curred, we asked them to provide their inter-
pretation of the source text and the transla-
tions and the reasons which influenced their
decision. This helped us understand whether
the guidelines or their understanding of the
translation contributed to the disagreement.
Communication with annotators: Some an-
notators were hesitant to ask for clarification,
fearing that might show them as less quali-
fied. It is, therefore, vital to establishing com-
munication with annotators while conducting
the annotation task for a better performance.
Misleading translations: Some instances of
disagreement occurred as the annotators only
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read the translations without referring back
to the source text. This happened where the
translation sounded fluent in the target lan-
guage. This finding highlights the need to
consider both source and target texts to de-
termine whether an error is critical.

6 Source-text Impact on the MT Output

This section presents an analysis of the source text
to show whether there is a correlation between the
quality of the source text and the generation of crit-
ical errors. For this purpose, we analyse trans-
lations produced by the three online MT systems
(Google Translate, Bing and Systran) for one lan-
guage combination, i.e. English-Arabic, using the
same dataset (100 sentences). Our focus on Ara-
bic was driven by the availability of language ex-
pertise (i.e. one of the authors is a native speaker
of Arabic). The assumption is that if the different
systems struggle with the same source sentences,
producing critical errors, it would give indications
about the potential output the machine could pro-
duce when handling such texts. Our aim is to de-
tect patterns in source sentences that can cause crit-
ical errors to be considered when developing MT
systems to improve the performance of such sys-
tems, especially for UGC. We use, as a point of
reference, Al Sharou et al. (2021)’s taxonomy of
aspects of non-standard text that could affect the
quality of the translation. For readability, back
translations of the errors are provided in English.

Offensive language The importance of looking
at this aspect of the data comes from its exten-
sive existence in UGC and its sever impact on
the output. Our analysis shows that most transla-
tions that have critical errors are those of sentences
which contain offensive language. When the sen-
tence has a large number of swearing/offensive
words and idiomatic phrases, the machine tends
to produce wrong translations that are unreadable
or completely different from the source. When it
comes to translating offensive language, we recog-
nise the use of different ‘strategies’ including lit-
eral translation, transliteration, omission, random
translation (hallucination) or substitution of one
strong word with another milder word and vice
versa. Sometimes, the machine uses a mix of these
strategies when translating the same sentence, fail-
ing to convey correct translations as a result. For
example, the three systems failed to provide cor-
rect translations of the offensive language in this



sentence ‘Piss off Homo, no one wants to hear
from you, also hahahahaha you can’t get married
#asshole’, leading to major errors which have af-
fected the original meaning. These systems vary in
how they handled this type of language. GT trans-
lated ‘piss off’ as ‘rape’, while Bing ignored ‘off’
as being part of the verb and translated ‘piss’ as
‘urinate’ and ‘off’ as ‘in front off’. ‘Homo’ was
transliterated by both GT and Bing, and Systran
mistranslated it as ‘human’, affecting the mean-
ing of the last part of the sentence ‘you can’t
get married’, which was deleted by GT but re-
served by Bing and Systran. The swearing word
‘asshole’ was left untranslated by Bing and Sys-
tran and deleted by GT.

Symbols and special characters The use of spe-
cial symbols/characters such as star signs (*) or
hashtags (#) can lead to erroneous translations.
MT tends to overlook words which contain such
special characters, render incorrect meaning or
leave it in its source language. Arabic translation
of the words that have been disguised by replac-
ing letters with star signs in the sentence ‘Stop be-
ing such an a**hole...you f***ing re***d’ shows
that the three systems have either preserved the
star signs and translated what left as another word,
e.g. rendering ‘a**hole’ as ‘hole’ with the two star
signs coming after it, or preserving it as random
letters, conveying no meaning, as in the translation
of ‘f***ing re***d’ by Bing as ‘**¥g’ “***d’; or
dropped completely by GT and Systran.

Punctuation marks Misusing punctuation
marks (e.g. deletion, addition, or use of wrong
punctuation marks), especially commas and full
stops, could lead to a mix up of the different parts
of the sentence or different sentences, generating
critical errors. For example, the translation of ‘I
give up Thanks for ruining the Lion King pages’
shows the impact a missing punctuation mark has
on the translation. The three systems translated the
first part as ‘I gave up thanking’. They, therefore,
do not deliver the original meaning where the
writer intended to say he/she is giving up trying to
keep the pages, and that the word ‘thanks’ is used
in a sarcastic way to express his/her frustration.

Negation Negation can lead to critical errors
when reversed from negative to positive or vice
versa; through e.g. dropping or reversing nega-
tive words (e.g. not, never, nobody); or reversing
the meaning of some words (for instance, the three
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systems translated the verb ‘reverting’ in ‘why
keep reverting my edits?’ as ‘bringing back’.

Named entities Named entities can be confusing
to the machine especially when the name has dif-
ferent meanings and the MT system fails to treat
it as a proper name, or when the names are un-
known to the machine. Names are either mistrans-
lated, left untranslated or deleted completely. For
instance, Bing translated the proper name ‘Rocky’
in the sentence ‘your fucking ass doesn’t know
shit about it AT ALL.Rocky’ as a noun rather than
transliterating it, resulting in a wrong translation,
while GT and Systran dropped it completely.

Spelling mistakes and contractions When
dealing with spelling mistakes and informal con-
tractions, the machine gives a translation that does
not reflect what the source text says. In other
cases, the machine preserves them in their origi-
nal language or transliterates them. For example,
the word ‘freakin’ is transliterated by GT and left
untranslated in the translations provided by Bing
and Systran when translating this sentence ‘Dude,
u got a stick in ur ass, lemme edit the freakin mon-
tana academy page!’. The short form of ‘let me’
‘lemme’ is left untranslated by Bing while translit-
erated by GT and Systran, making it sound like a
proper name where the translation in Arabic reads
as ‘Lemme edited montana academy page’.

Capital letters Random capitalisation seems to
affect the MT output. The analysis of the dataset
shows that the three systems treated words writ-
ten in capital letters as proper names. For exam-
ple, the linking verb ‘IS’ in the sentence ‘The fact
is ‘Irish’ is the commonly used term in Ireland
and Wiki seeks to reflect what IS rather than what
might be correct’ was translated by the three sys-
tems as ‘Islamic State (or Daesh)’. Such a trans-
lation could pose a potential risk if it were actually
used in a sensitive context.

Lack of pronouns The lack of pronouns can
lead to critical errors where the machine randomly
replaces one pronoun with another. In this exam-
ple, ‘didn’t forget, just been busy - will find the
time to look into it’, ‘didn’t forget’ was translated
as ‘don’t forget’ by GT, ‘he didn’t forget’ by
Bing, and only correctly translated by Systran as
‘I didn’t forget’; ‘just been busy’ was translated
as ‘I was busy’, ‘he was busy’ and ‘I was busy’
respectively. The three systems wrongly rendered



‘will find the time’ as ‘you will find the time’.

7 Conclusion

This work validated an extended taxonomy of crit-
ical errors developed to serve as a stand-alone tax-
onomy that can be used to evaluate or detect criti-
cal errors in machine-translated content. Findings
emphasise the need to address critical errors with
catastrophic impact on the output and for further
attention to be paid not only to developing guide-
lines on critical errors, but to also training annota-
tors on how to spot and assess them. It has proved
that critical errors are not rare, and they are not
specific to certain languages. It also underlines the
need to improve current MT systems to specifically
deal with user-generated content, considering as-
pects of the text that could lead to critical errors to
improve online communication and enhance MT’s
role in enabling, rather than hindering, communi-
cation among speakers of different languages.

Acknowledgement

Lucia Specia was supported by funding from the
Bergamot project (EU H2020 Grant No. 825303).

References

Abu-Ayyash, Emad AS. 2017. Errors and non-errors in
english-arabic machine translation of gender-bound
constructs in technical texts. Procedia Computer
Science, 117:73-80.

Al Sharou, Khetam, Zhenhao Li, and Lucia Specia.
2021. Towards a better understanding of noise in
natural language processing. In RANLP 2021, pages
53-62.

Aziz, Wilker, Sheila Castilho, and Lucia Specia. 2012.
Pet: a tool for post-editing and assessing machine
translation. In LREC-2012, pages 3982-3987.

Cohen, Jacob. 1960. A coefficient of agreement
for nominal scales. Educational and psychological
measurement, 20(1):37-46.

Costa, Angela, Wang Ling, Tiago Luis, Rui Correia,
and Luisa Coheur. 2015. A linguistically moti-
vated taxonomy for machine translation error anal-
ysis. Machine Translation, 29(2):127-161.

Dorr, Bonnie, Joseph Olive, John McCary, and Caitlin
Christianson. 2011. Machine translation evaluation
and optimization. In Handbook of natural language
processing and machine translation, pages 745-843.
Springer.

Fleiss, Joseph L, Bruce Levin, and Myunghee Cho
Paik. 2003. Statistical methods for rates and pro-
portions. john wiley & sons.

180

Fleiss, Joseph L. 1971. Measuring nominal scale
agreement among many raters. Psychological bul-
letin, 76(5):378.

Garcia, Ignacio. 2014. Training quality evaluators.
Revista Tradumatica: tecnologies de la traduccio,
(12):430-436.

Han, Lifeng, Gareth Jones, and Alan Smeaton. 2020.
Alphamwe: Construction of multilingual parallel

corpora with mwe annotations.  arXiv preprint
arXiv:2011.03783.

Han, Lifeng. 2022. An overview on machine transla-
tion evaluation. arXiv preprint arXiv:2202.11027.

Hern, Alex. 2017.  Facebook translates’ good
morning’into’attack them’, leading to arrest. the
Guardian, 24.

Lommel, Arle, Hans Uszkoreit, and Aljoscha Bur-
chardt. 2014. Multidimensional quality metrics
(mgm): A framework for declaring and describing
translation quality metrics. Revista Tradumatica:
tecnologies de la traduccio, (12):455-463.

Lommel, Arle, Attila Gordg, Alan Melby, Hans Uszko-
reit, Aljoscha Burchardt, and Maja Popovi¢. 2015.
Harmonised metric. Project Report, QT21 Project.

Lommel, Arle. 2018. Metrics for translation quality as-
sessment: a case for standardising error typologies.
In Translation Quality Assessment, pages 109-127.
Springer.

O’Brien, Sharon. 2012. Towards a dynamic quality
evaluation model for translation. The Journal of Spe-
cialised Translation, 17(1):55-77.

Popovi¢, Maja. 2018. Error classification and anal-
ysis for machine translation quality assessment.
In Translation quality assessment, pages 129-158.
Springer.

Rivera-Trigueros, Irene. 2021. Machine translation
systems and quality assessment: a systematic review.
Language Resources and Evaluation, pages 1-27.

Specia, Lucia, Frédéric Blain, Marina Fomicheva,
Chrysoula Zerva, Zhenhao Li, Vishrav Chaudhary,
and André Martins. 2021. Findings of the wmt 2021
shared task on quality estimation. Association for
Computational Linguistics.

Tang, Y., C. Tran, Xian Li, P. Chen, Naman Goyal,
Vishrav Chaudhary, Jiatao Gu, and Angela Fan.
2020.  Multilingual translation with extensible
multilingual pretraining and finetuning.  ArXiv,
abs/2008.00401.

Ulitkin, Ilya, Irina Filippova, Natalia Ivanova, and
Alexey Poroykov. 2021. Automatic evaluation of
the quality of machine translation of a scientific text:
the results of a five-year-long experiment. In E3S
Web of Conferences.



User papers






nEYron: Implementation and Deployment of an MT System for a Large
Audit & Consulting Corporation

Artur Nowakowski'?, Krzysztof Jassem'?, Maciej Lison', Rafal Jaworski?, Tomasz Dwojak>
! Poleng, Poznan, Poland
{name.surname}@poleng.pl
2 Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Poznan, Poland
{name.surname}@amu.edu.pl

Karolina Wiater, Olga Posesor
EY Poland, Warsaw, Poland
{name.surname}@pl.ey.com

Abstract

This paper reports on the implementa-
tion and deployment of an MT system
in the Polish branch of EY Global Lim-
ited. The system supports standard CAT
and MT functionalities such as translation
memory fuzzy search, document transla-
tion and post-editing, and meets less com-
mon, customer-specific expectations. The
deployment began in August 2018 with
a Proof-of-Concept, and ended with the
signing of the Final Version acceptance
certificate in October 2021. We present the
challenges that were faced during the de-
ployment, particularly in relation to the se-
curity check and installation processes in
the production environment.

1 Business Need

On March 6, 2018, the Polish parliament adopted
a law that laid down rules for the Polish Agency
of Audit Surveillance regarding the control of au-
diting companies. The law states that “Documents
presented by the audited company for the needs of
the surveillance are drawn up in Polish or the au-
dit company provides their translation into Polish.”
The law forced auditing companies to provide Pol-
ish translations for large volumes of English texts.
That triggered the idea, at the Polish branch of EY
Global Limited (EY Poland), that the cost of the
task might be reduced if it were assisted by a trans-
lation engine. EY Poland contacted the company
Poleng Ltd. (Poleng) to verify the possibility of us-
ing their product, TranslAide Workspace, for the

© 2022 The authors. This article is licensed under a Creative
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task. During initial discussions, EY Poland came
to the conclusion that it might be beneficial for the
company to have the software installed and run-
ning on site.

2 The Story of the Deployment

2.1 TranslAide Workspace

The first phase of the deployment began in
August 2018. The deployed system was
based on TranslAide Workspace, which combined
computer-aided translation (translation memory
with fuzzy search and segment-by-segment edit-
ing) with a generic machine translation engine, not
trained specifically on the in-domain data. The
task consisted in replacing the existing translation
engine with a new one, dedicated to the customer.

The deployment was divided into the Proof-of-
Concept (POC) and Final Version stages. The POC
machine was to be installed in the Linux environ-
ment to make the initial deployment easier for the
Poleng team. There were no explicit expectations
regarding the quality of the translation imposed on
the POC version. However, moving forward to the
Final Version stage was conditional on acceptance
of the POC by the customer — including transla-
tion quality, which would be checked by human
specialists from the EY corporation. The Final
Version — all of the system components, includ-
ing model training — was expected to run on the
Windows operating system to meet EY’s security
standards and internal regulations.

The expectations for the system were the fol-
lowing: The TranslAide Workspace system would
consist of three modules — Web Application,
Translation Memory, and Machine Translation
Service:

* Web Application would be the part of the sys-
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tem with which the user interacts;

* Translation Memory would provide trans-
lation of segments that were found in its
database;

* Machine Translation Service would provide
translation of all remaining sentences at a
speed not slower than a second per segment.

(Details on current expectations for the three mod-
ules are given in section 4.)

All system components, as well as the training
of the models, should be run on a PC machine with
the following specification: NVIDIA GTX 1080Ti
GPU, 32 GB RAM and an 8-core processor.

The POC phase ended on schedule (within
three months), but the translation quality was not
fully satisfactory, as the system sporadically pro-
duced incorrect translations of some acronyms and
rare words; the issue resulted from certain flaws
in subword handling by Marian NMT (Junczys-
Dowmunt et al., 2018). On rare occasions, the
system would also crash when importing a Power-
Point presentation, because of improper handling
of some XML tags specific to the PowerPoint doc-
ument’s internal structure. After the major issues
had been identified and fixed, the Final Version
was developed for the Windows operating system.
It was accepted with a three-month delay in March
2019.

2.2 Stand-alone nEYron

Once the POC deployment had been stabilized, the
system was given a new name: nEYron. For two
years, it was used by several EY employees on a
single PC machine that hosted all system compo-
nents. Meanwhile, nEYron acquired a new look,
consistent with the style of other applications ded-
icated to the same customer. New functional fea-
tures were developed to satisfy needs arising dur-
ing the use of the application. An up-to-date list of
functionalities is given in section 3.

2.3 Multi-user Solution

The final phase of deployment took place in 2021.
The agreement stated that the application must ad-
here to EY security standards. The customer ex-
pected to receive the following items:

* system installation package;

* system installation instructions;

* system backup policy;
* user’s guide;
* disaster recovery procedures.

The creation of the documentation was painless.
However, adhering to the security standards was
not (see 5.2). The process began in April 2021,
and the certificate of final acceptance was signed
in October 2021.

3 System Requirements for the Final
Version

3.1 EY User Feedback

During the POC stage, EY employees developed a
list of requirements that should be added to the sys-
tem in the Final Version stage. The following three
requirements were added after the POC stage: au-
tomatic deletion of documents from the user trans-
lation history after a specified time (for confiden-
tiality reasons), document sharing between multi-
ple users, and calculation of the approximate cost
of translation of a document by a human translator
before it is translated by a machine. Cost assess-
ment was intended to help determine to what ex-
tent machine translation reduced translation costs
over time, compared to human translation. It is
based on the number of words included in the doc-
ument. In addition to the updated list of require-
ments, EY employees in collaboration with the
Poleng team created a mockup of the user inter-
face that would correspond to the look and feel of
the other internal EY systems. The user interface
was further modified according to the EY guide-
lines during the development of the Final Version.

3.2 Final List of Requirements

The complete and up-to-date list of requirements
consists of the following:

e user registration and login, including SSO
(single sign-on) login, universal for all ser-
vices accessible by EY employees;

e document import in .txt, .docx, .pptx
and .x1sx formats;

e document editing in sentence-by-sentence
mode;

* machine translation in an editing window;

¢ machine translation of entire documents;
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* export of the translated document in a format
compatible with the imported document;

* pre-translation of documents using transla-
tion memory fuzzy search matches;

* ability to proofread and approve translations
of sentences;

* expanding translation memory with approved
translations;

e transfer of document formatting (fonts,
styling, text placement) between input and
output document;

* archiving of translated documents per user;

e automatic deletion of documents from user
translation history after a specified time;

* document sharing between multiple users;

* calculation of approximate cost of document
translation by a human translator.

4 System Components

The architecture of the system consists of the fol-
lowing components:

¢ Machine Translation Service;
* Translation Memory;
* Web Application.

4.1 Machine Translation Service

Machine Translation Service provides translations
of sentences in the English-Polish and Polish—
English directions without human intervention. It
is designed as a web service that is invoked by
the web application to produce document trans-
lations. It is based on the Marian NMT frame-
work (Junczys-Dowmunt et al., 2018). Internally,
the web service forwards source sentences from
HTTP requests to the Marian websocket server and
returns the translations to the web application.

4.1.1 Customer Training Data

In-domain business documents translated by hu-
mans were delivered to Poleng in pairs: each doc-
ument in Polish had its equivalent in English. The
document format was either PDF or Microsoft Of-
fice (.docx, .doc, .pptx, .xlIsx). We applied the fol-
lowing procedure to extract bilingual corpora from
business documents:
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1. Text extraction from business documents us-
ing the Apache Tika! toolkit.

2. Text segmentation into sentences using es-
erix? — an SRX rule-based sentence seg-
menter.

3. Text normalization, including punctuation,
quoting and commas, using Moses (Koehn et
al., 2007) scripts.

4. Alignment of a source text to a target text at
the sentence level using the hunalign (Varga
et al., 2007) sentence aligner.

This procedure initially allowed us to obtain
nearly 70,000 in-domain sentence pairs.

4.1.2 Model Training

Model training consisted of two steps: training
of general models on 10 million sentences derived
from the OPUS corpora (Tiedemann, 2012), and
use of the transfer learning paradigm to fine-tune
the general models on the in-domain data. In this
way, the system transfers the knowledge from the
general model, significantly increasing the trans-
lation quality on the in-domain data (such a pro-
cess has been described, for example, in Aji et al.
(2020)). As the general model can be reused for
future fine-tunings, this technique reduces the total
time to solution by a significant margin.

Data preprocessing, in addition to using the
Moses (Koehn et al., 2007) normalization scripts,
included subword segmentation. We applied sub-
word segmentation to the data using the Sentence-
Piece (Kudo and Richardson, 2018) tool with the
byte-pair encoding (BPE) (Sennrich et al., 2016)
algorithm. The vocabulary consisted of 32,000 en-
tries.

All NMT models were trained using the Marian
NMT (Junczys-Dowmunt et al., 2018) framework
on a single NVIDIA GTX 1080Ti GPU.

For the Proof-of-Concept stage, we trained
models based on an RNN-based encoder—decoder
architecture with the attention mechanism (Sen-
nrich et al., 2017). We manually assessed transla-
tion quality, comparing the model trained only on
openly available data with the model fine-tuned on
in-domain data as described in section 4.1.1. The
annotators evaluated the translations of a test set
consisting of 488 sentences, and provided scores

"https://tika.apache.org
https://github.com/emjotde/eserix



for accuracy and fluency by absolute grading on
a scale from O to 5. The average scores obtained
in all of these experiments are presented in Ta-
ble 1. The most significant improvement in the
fine-tuned version was achieved for translation ac-
curacy in the Polish—English direction.

Direction Data  Accuracy Fluency
PL-EN Open 347 3.61
EN-PL Open 3.48 3.62
PL-EN EY 4.23 3.94
EN-PL EY 3.90 3.74

Table 1: Results of manual evaluation of preliminary experi-
ments

The results of this manual assessment of the
POC version were considered good enough to pro-
ceed to the next stage of deployment.

In the final deployment, the NMT model
architecture was replaced by the base Trans-
former (Vaswani et al., 2017), which improved the
quality of translation while reducing the time re-
quired to train the model. In addition, another
10,000 sentence pairs were derived from new doc-
uments provided by the customer. These ad-
ditional sentences were used for training of the
Transformer models.

The results of automatic evaluation based on the
BLEU (Papineni et al., 2002) metric, calculated by
the SacreBLEU (Post, 2018) tool with default set-
tings, are presented in Table 2.

Direction Data  Architecture BLEU
PL-EN Open RNN 29.72
EN-PL Open RNN 26.36
PL-EN EY RNN 36.91
EN-PL EY RNN 32.99
PL-EN Open Transformer 31.13
EN-PL Open Transformer 28.34
PL-EN EY Transformer 39.92
EN-PL EY Transformer 35.55

Table 2: Results of automatic evaluation

4.2 Translation Memory

Translation Memory is a database of correspond-
ing segments in both languages. The translation of
a sentence is added to the memory upon approval
by the system user. Search is carried out by an
in-house solution: the Anubis system (Jaworski,
2013), which uses a suffix-array-based index for
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fuzzy matching. Anubis also features a unique
algorithm for the detection and recombination of
all sub-segment matches between a candidate sen-
tence and an example from the Translation Mem-
ory.

Translation Memory serves two functions in the
system: it is used during the translation process,
and it also serves as a collection of training data for
future fine-tuning of NMT models. During transla-
tion of a document, each sentence is first checked
in the Translation Memory. If a match is found,
the translation is returned as the result and the sen-
tence is not translated by the NMT model.

4.3 Web Application

Web Application is the part of the system with
which the user interacts. It consists of the follow-
ing components:

* a server application, following the REST API
design, written in the CakePHP framework;

* a user interface, written in the Vue.js frame-
work;

¢ an SQL database.

All features included in the web application are
listed in section 3.

Document translation process The main fea-
ture of the web application is the document trans-
lation process. It consists of the following steps:

1. User imports the document into System;
2. System extracts text from the document;

3. System segments text into sentences using
SRX-based rules;

4. System checks the Translation Memory for
the existence of each sentence;

5. System sets up batches of sentences whose
translations have not been found in the Trans-
lation Memory;

6. Batches are sent to the Machine Translation
Service;

7. System saves the translations in the database;

8. System prepares the document to be exported
at user’s request.



Translations found in the Translation Memory
and translations produced by the Machine Trans-
lation Service are presented to the user in a sin-
gle window. Once the document has been trans-
lated by the machine, the user can post-edit the
text segment-by-segment. Each translated segment
may be manually approved by the user for it to be
stored in the Translation Memory.

Document reconstruction process The system
is expected to transfer the document’s styling and
formatting from the source document to the trans-
lated document.

To this end, we make use of the Microsoft Of-
fice document structure: the document is unzipped
into a set of XML files and the files are iterated
in a search for text content. Each found text item
is stored in a database and replaced in the XML
file with a placeholder tag containing its identifier.
When the translation of text items has been com-
pleted, the XML files are iterated again, and the
placeholder tags are replaced by the translations.
Finally, the XML files are zipped back into the Mi-
crosoft Office document package.

S Deployment Challenges

5.1 Proof-of-Concept Deployment Challenges

During the POC stage, the entire system was in-
stalled on a single PC machine. The initial config-
uration of the machine and the installation of the
system was carried out at Poleng’s headquarters
in Poznan, Poland. After the system had been in-
stalled, the machine was transported to EY’s head-
quarters in Warsaw, Poland. For confidentiality
reasons, the machine could not be connected to
the Internet and any system updates had to be pro-
vided locally. Poleng prepared Docker? containers
for each of the system components and transported
them on a flash drive to the PC machine, when nec-
essary. The use of Docker containers significantly
simplified the process, as each deployment of a
system update consisted of replacing the Docker
container.

The only part of the system that could not be
updated in this way was the NMT models. For se-
curity reasons, training of the model on customer
data had to be performed on a PC machine at the
EY headquarters. Therefore, the models were not
part of the Machine Translation Services container.

3https://www.docker.com
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Instead, they were mounted as a volume in the con-
tainer so that they could be easily replaced.

5.2 Security Check

For the deployment of the multi-user version in the
EY infrastructure, each component of the system
had to meet a list of security requirements. The
necessary modifications to the Translation Mem-
ory and Machine Translation Service components
were minor, as they involved only changes to the
security of the Docker container (the main pro-
cess running in the container could not run as a
root user). The changes to Web Application were
more significant, as this component is exposed to
the user. The total number of security requirements
that the web application had to meet was close to
70. Most of the security requirements (such as the
setting of special headers in HTTP responses) were
easy to satisfy. However, some security standards
proved to be challenging. Among them were:

* replacement of the entire application logging
module;

* implementation of the single sign-on (SSO)
authentication procedure specific to the EY
corporation;

* implementation of database encryption.

A thorough security review was performed by
the EY Global technical team after the system had
been deployed.

5.3 Installation in the Production
Environment

Installation of the final version of the system in the
production environment included the creation of
the installation package and its deployment to the
EY infrastructure. The installation package con-
sisted of Docker containers with the system com-
ponents. Each of the system components was de-
ployed in Docker containers to enable system scal-
ability in the future. The deployment process was
executed through screen sharing. Poleng delivered
the installation package to the EY technical team
and guided them through the installation process.

6 Future Plans

Plans for the future include technical improve-
ments to the existing solution, as well as the in-
troduction of new features.



Small improvements may include replacing hu-
nalign (Varga et al., 2007) with vecalign (Thomp-
son and Koehn, 2019) in the bilingual corpus ex-
traction process described in section 4.1. We ex-
pect that the translation quality of NMT models
will improve as a result of better corpus alignment.

To further improve the quality of the NMT mod-
els, we intend to use existing monolingual cus-
tomer documents. We plan to apply the back-
translation (Edunov et al., 2018) technique itera-
tively (Hoang et al., 2018) to increase the quality
of our models.

As new terminology emerges, the user expects
MT systems to quickly adapt to them. In most
cases, data that would cover the new terminology
do not yet exist. To solve this problem, we intend
to use techniques for forced terminology transla-
tion (Nowakowski and Jassem, 2021; Bergmanis
and Pinnis, 2021) to ensure that specific termi-
nology is translated according to the needs of the
user. Additionally, providing a glossary with spe-
cific in-domain terminology would ensure the con-
sistent translation of such terminology when dif-
ferent sentences are translated.

To date, we have relied on the BLEU (Papineni
et al., 2002) metric for the evaluation of trained
NMT models. To follow current state-of-the-art
solutions in MT evaluation, we plan to use the MT
Telescope (Rei et al., 2021) to evaluate our mod-
els with the COMET (Rei et al., 2020) metric and
perform a fine-grained error analysis.

Business documents often have a complex lay-
out structure, whereas current NMT models oper-
ate only on sentence-level textual semantics. We
want to explore the idea of integrating NMT with
Computer Vision to create an end-to-end model
which would learn visual features, layout informa-
tion and textual semantics to produce document-
level translations better than the current state-of-
the-art methods. Such a model would be able to
simplify the process of text extraction, sentence
segmentation and document reconstruction, as it
would take all document information as an input.
To this end, we plan to base our model on the
TILT (Powalski et al., 2021) architecture. This was
created for the Question Answering task, but we
believe that it could be modified for NMT.

7 Conclusions

This paper has presented the deployment of an
English—Polish translation system at the Polish
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branch of EY Global Limited. The system sup-
ports standard CAT and MT functionalities such as
translation memory fuzzy search, document trans-
lation and post-editing, and meets less frequent ex-
pectations such as single sign-on login and calcu-
lation of the cost of human translation for a given
document. The paper has presented the challenges
that were faced during the deployment, particu-
larly adherence to security expectations and instal-
lation in the production environment. Ultimately,
the deployment took over three years. Meanwhile,
new technologies have been developed in the field
of Machine Translation. Once the security issues
have been overcome, we hope to be able to update
the system with emerging technologies, constantly
improving its performance.

References

Aji, Alham Fikri, Nikolay Bogoychev, Kenneth
Heafield, and Rico Sennrich. 2020. In neural ma-
chine translation, what does transfer learning trans-
fer? In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
7701-7710, Online, July. Association for Computa-
tional Linguistics.

Bergmanis, Toms and Marcis Pinnis. 2021. Facilitat-
ing terminology translation with target lemma anno-
tations. In Proceedings of the 16th Conference of
the European Chapter of the Association for Com-
putational Linguistics: Main Volume, pages 3105—
3111, Online, April. Association for Computational
Linguistics.

Edunov, Sergey, Myle Ott, Michael Auli, and David
Grangier. 2018. Understanding back-translation at
scale. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Process-
ing, pages 489-500, Brussels, Belgium, October-
November. Association for Computational Linguis-
tics.

Hoang, Vu Cong Duy, Philipp Koehn, Gholamreza
Haffari, and Trevor Cohn. 2018. Iterative back-
translation for neural machine translation. In Pro-
ceedings of the 2nd Workshop on Neural Machine
Translation and Generation, pages 18-24, Mel-
bourne, Australia, July. Association for Computa-
tional Linguistics.

Jaworski, Rafat.  2013.  Anubis — speeding up
computer-aided translation. In Computational Lin-
guistics, pages 263-280. Springer.

Junczys-Dowmunt, Marcin, Roman Grundkiewicz,
Tomasz Dwojak, Hieu Hoang, Kenneth Heafield,
Tom Neckermann, Frank Seide, Ulrich Germann,
Alham Fikri Aji, Nikolay Bogoychev, André F. T.
Martins, and Alexandra Birch. 2018. Marian: Fast



neural machine translation in C++. In Proceed-
ings of ACL 2018, System Demonstrations, pages
116-121, Melbourne, Australia, July. Association
for Computational Linguistics.

Koehn, Philipp, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondfej Bojar, Alexan-
dra Constantin, and Evan Herbst. 2007. Moses:
Open source toolkit for statistical machine transla-
tion. In Proceedings of the 45th Annual Meeting of
the Association for Computational Linguistics Com-
panion Volume Proceedings of the Demo and Poster
Sessions, pages 177-180, Prague, Czech Republic,
June. Association for Computational Linguistics.

Kudo, Taku and John Richardson. 2018. Sentence-
Piece: A simple and language independent subword
tokenizer and detokenizer for neural text processing.
In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66-71, Brussels, Belgium,
November. Association for Computational Linguis-
tics.

Nowakowski, Artur and Krzysztof Jassem. 2021. Neu-
ral machine translation with inflected lexicon. In
Proceedings of Machine Translation Summit XVIII:
Res