This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Temporal knowledge graph question answering (TKGQA) poses a significant challenge task, due to the temporal constraints hidden in questions and the answers sought from dynamic structured knowledge. Although large language models (LLMs) have made considerable progress in their reasoning ability over structured data, their application to the TKGQA task is a relatively unexplored area. This paper first proposes a novel generative temporal knowledge graph question answering framework, GenTKGQA, which guides LLMs to answer temporal questions through two phases: Subgraph Retrieval and Answer Generation. First, we exploit LLM’s intrinsic knowledge to mine temporal constraints and structural links in the questions without extra training, thus narrowing down the subgraph search space in both temporal and structural dimensions. Next, we design virtual knowledge indicators to fuse the graph neural network signals of the subgraph and the text representations of the LLM in a non-shallow way, which helps the open-source LLM deeply understand the temporal order and structural dependencies among the retrieved facts through instruction tuning. Experimental results on two widely used datasets demonstrate the superiority of our model.
Temporal knowledge graph completion that predicts missing links for incomplete temporal knowledge graphs (TKG) is gaining increasing attention. Most existing works have achieved good results by incorporating time information into static knowledge graph embedding methods. However, they ignore the contextual nature of the TKG structure, i.e., query-specific subgraph contains both structural and temporal neighboring facts. This paper presents the SToKE, a novel method that employs the pre-trained language model (PLM) to learn joint Structural and Temporal Contextualized Knowledge Embeddings.Specifically, we first construct an event evolution tree (EET) for each query to enable PLMs to handle the TKG, which can be seen as a structured event sequence recording query-relevant structural and temporal contexts. We then propose a novel temporal embedding and structural matrix to learn the time information and structural dependencies of facts in EET.Finally, we formulate TKG completion as a mask prediction problem by masking the missing entity of the query to fine-tune pre-trained language models. Experimental results on three widely used datasets show the superiority of our model.
Fine-grained entity typing (FET) is an essential task in natural language processing that aims to assign semantic types to entities in text. However, FET poses a major challenge known as the noise labeling problem, whereby current methods rely on estimating noise distribution to identify noisy labels but are confused by diverse noise distribution deviation. To address this limitation, we introduce Co-Prediction Prompt Tuning for noise correction in FET, which leverages multiple prediction results to identify and correct noisy labels. Specifically, we integrate prediction results to recall labeled labels and utilize a differentiated margin to identify inaccurate labels. Moreover, we design an optimization objective concerning divergent co-predictions during fine-tuning, ensuring that the model captures sufficient information and maintains robustness in noise identification. Experimental results on three widely-used FET datasets demonstrate that our noise correction approach significantly enhances the quality of various types of training samples, including those annotated using distant supervision, ChatGPT, and crowdsourcing.
Named entity recognition (NER) is a fundamental task in natural language processing that aims to identify and classify named entities in text. However, span-based methods for NER typically assign entity types to text spans, resulting in an imbalanced sample space and neglecting the connections between non-entity and entity spans. To address these issues, we propose a novel approach for NER, named the Boundary Offset Prediction Network (BOPN), which predicts the boundary offsets between candidate spans and their nearest entity spans. By leveraging the guiding semantics of boundary offsets, BOPN establishes connections between non-entity and entity spans, enabling non-entity spans to function as additional positive samples for entity detection. Furthermore, our method integrates entity type and span representations to generate type-aware boundary offsets instead of using entity types as detection targets. We conduct experiments on eight widely-used NER datasets, and the results demonstrate that our proposed BOPN outperforms previous state-of-the-art methods.
Cross-domain named entity recognition aims to improve performance in a target domain with shared knowledge from a well-studied source domain. The previous sequence-labeling based method focuses on promoting model parameter sharing among domains. However, such a paradigm essentially ignores the domain-specific information and suffers from entity type conflicts. To address these issues, we propose a novel machine reading comprehension based framework, named DoSEA, which can identify domain-specific semantic differences and mitigate the subtype conflicts between domains. Concretely, we introduce an entity existence discrimination task and an entity-aware training setting, to recognize inconsistent entity annotations in the source domain and bring additional reference to better share information across domains. Experiments on six datasets prove the effectiveness of our DoSEA. Our source code can be obtained from https://github.com/mhtang1995/DoSEA.