Yibin Shen


2022

pdf
Seeking Diverse Reasoning Logic: Controlled Equation Expression Generation for Solving Math Word Problems
Yibin Shen | Qianying Liu | Zhuoyuan Mao | Zhen Wan | Fei Cheng | Sadao Kurohashi
Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

To solve Math Word Problems, human students leverage diverse reasoning logic that reaches different possible equation solutions. However, the mainstream sequence-to-sequence approach of automatic solvers aims to decode a fixed solution equation supervised by human annotation. In this paper, we propose a controlled equation generation solver by leveraging a set of control codes to guide the model to consider certain reasoning logic and decode the corresponding equations expressions transformed from the human reference. The empirical results suggest that our method universally improves the performance on single-unknown (Math23K) and multiple-unknown (DRAW1K, HMWP) benchmarks, with substantial improvements up to 13.2% accuracy on the challenging multiple-unknown datasets.

pdf
Textual Enhanced Contrastive Learning for Solving Math Word Problems
Yibin Shen | Qianying Liu | Zhuoyuan Mao | Fei Cheng | Sadao Kurohashi
Findings of the Association for Computational Linguistics: EMNLP 2022

Solving math word problems is the task that analyses the relation of quantities e and requires an accurate understanding of contextual natural language information. Recent studies show that current models rely on shallow heuristics to predict solutions and could be easily misled by small textual perturbations. To address this problem, we propose a Textual Enhanced Contrastive Learning framework, which enforces the models to distinguish semantically similar examples while holding different mathematical logic. We adopt a self-supervised manner strategy to enrich examples with subtle textual variance by textual reordering or problem re-construction. We then retrieve the hardest to differentiate samples from both equation and textual perspectives and guide the model to learn their representations. Experimental results show that our method achieves state-of-the-art on both widely used benchmark datasets and also exquisitely designed challenge datasets in English and Chinese.

2020

pdf
Solving Math Word Problems with Multi-Encoders and Multi-Decoders
Yibin Shen | Cheqing Jin
Proceedings of the 28th International Conference on Computational Linguistics

Math word problems solving remains a challenging task where potential semantic and mathematical logic need to be mined from natural language. Although previous researches employ the Seq2Seq technique to transform text descriptions into equation expressions, most of them achieve inferior performance due to insufficient consideration in the design of encoder and decoder. Specifically, these models only consider input/output objects as sequences, ignoring the important structural information contained in text descriptions and equation expressions. To overcome those defects, a model with multi-encoders and multi-decoders is proposed in this paper, which combines sequence-based encoder and graph-based encoder to enhance the representation of text descriptions, and generates different equation expressions via sequence-based decoder and tree-based decoder. Experimental results on the dataset Math23K show that our model outperforms existing state-of-the-art methods.

pdf
Meta Ensemble for Japanese-Chinese Neural Machine Translation: Kyoto-U+ECNU Participation to WAT 2020
Zhuoyuan Mao | Yibin Shen | Chenhui Chu | Sadao Kurohashi | Cheqing Jin
Proceedings of the 7th Workshop on Asian Translation

This paper describes the Japanese-Chinese Neural Machine Translation (NMT) system submitted by the joint team of Kyoto University and East China Normal University (Kyoto-U+ECNU) to WAT 2020 (Nakazawa et al.,2020). We participate in APSEC Japanese-Chinese translation task. We revisit several techniques for NMT including various architectures, different data selection and augmentation methods, denoising pre-training, and also some specific tricks for Japanese-Chinese translation. We eventually perform a meta ensemble to combine all of the models into a single model. BLEU results of this meta ensembled model rank the first both on 2 directions of ASPEC Japanese-Chinese translation.