Vivek Gupta


2024

pdf
Enhancing Question Answering on Charts Through Effective Pre-training Tasks
Ashim Gupta | Vivek Gupta | Shuo Zhang | Yujie He | Ning Zhang | Shalin Shah
Proceedings of the 7th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP

To completely understand a document, the use of textual information is not enough. Understanding visual cues, such as layouts and charts, is also required. While the current state-of-the-art approaches for document understanding (both OCR-based and OCR-free) work well, a thorough analysis of their capabilities and limitations has not yet been performed. Therefore, in this work, we addresses the limitation of current VisualQA models when applied to charts and plots. To investigate shortcomings of the state-of-the-art models, we conduct a comprehensive behavioral analysis, using ChartQA as a case study. Our findings indicate that existing models particularly underperform in answering questions related to the chart’s structural and visual context, as well as numerical information. To address these issues, we propose three simple pre-training tasks that enforce the existing model in terms of both structural-visual knowledge, as well as its understanding of numerical questions. We evaluate our pre-trained model (called MatCha-v2) on three chart datasets - both extractive and abstractive question datasets - and observe that it achieves an average improvement of 1.7 % over the baseline model.

pdf
Evaluating Concurrent Robustness of Language Models Across Diverse Challenge Sets
Vatsal Gupta | Pranshu Pandya | Tushar Kataria | Vivek Gupta | Dan Roth
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Language models, characterized by their black-box nature, often hallucinate and display sensitivity to input perturbations, causing concerns about trust. To enhance trust, it is imperative to gain a comprehensive understanding of the model’s failure modes and develop effective strategies to improve their performance. In this study, we introduce a methodology designed to examine how input perturbations affect language models across various scales, including pre-trained models and large language models (LLMs). Utilizing fine-tuning, we enhance the model’s robustness to input perturbations. Additionally, we investigate whether exposure to one perturbation enhances or diminishes the model’s performance with respect to other perturbations. To address robustness against multiple perturbations, we present three distinct fine-tuning strategies. Furthermore, we broaden the scope of our methodology to encompass large language models (LLMs) by leveraging a chain of thought (CoT) prompting approach augmented with exemplars. We employ the Tabular-NLI task to showcase how our proposed strategies adeptly train a robust model, enabling it to address diverse perturbations while maintaining accuracy on the original dataset.

pdf
FlowVQA: Mapping Multimodal Logic in Visual Question Answering with Flowcharts
Shubhankar Singh | Purvi Chaurasia | Yerram Varun | Pranshu Pandya | Vatsal Gupta | Vivek Gupta | Dan Roth
Findings of the Association for Computational Linguistics: ACL 2024

Existing benchmarks for visual question answering lack in visual grounding and complexity, particularly in evaluating spatial reasoning skills. We introduce FlowVQA, a novel benchmark aimed at assessing the capabilities of visual question-answering multimodal language models in reasoning with flowcharts as visual contexts. FlowVQA comprises 2,272 carefully generated and human-verified flowchart images from three distinct content sources, along with 22,413 diverse question-answer pairs, to test a spectrum of reasoning tasks, including information localization, decision-making, and logical progression. We conduct a thorough baseline evaluation on a suite of both open-source and proprietary multimodal language models using various strategies, followed by an analysis of directional bias. The results underscore the benchmark’s potential as a vital tool for advancing the field of multimodal modeling, providing a focused and challenging environment for enhancing model performance in visual and logical reasoning tasks.

pdf
Evaluating LLMs’ Mathematical Reasoning in Financial Document Question Answering
Pragya Srivastava | Manuj Malik | Vivek Gupta | Tanuja Ganu | Dan Roth
Findings of the Association for Computational Linguistics: ACL 2024

Large Language Models (LLMs), excel in natural language understanding, but their capability for complex mathematical reasoning with a hybrid of structured tables and unstructured text remain uncertain. This study explores LLMs’ mathematical reasoning on four financial tabular question-answering datasets: TATQA, FinQA, ConvFinQA, and Multihiertt. Through extensive experiments with various models and prompting techniques, we assess how LLMs adapt to complex tables and mathematical tasks. We focus on sensitivity to table complexity and performance variations with an increasing number of arithmetic reasoning steps. The results provide insights into LLMs’ capabilities and limitations in handling complex mathematical scenarios for semi-structured tables. Ultimately, we introduce a novel prompting technique EEDP tailored to semi-structured documents, matching or outperforming baselines performance while providing a nuanced understanding of LLMs abilities.

pdf
ChartCheck: Explainable Fact-Checking over Real-World Chart Images
Mubashara Akhtar | Nikesh Subedi | Vivek Gupta | Sahar Tahmasebi | Oana Cocarascu | Elena Simperl
Findings of the Association for Computational Linguistics: ACL 2024

Whilst fact verification has attracted substantial interest in the natural language processing community, verifying misinforming statements against data visualizations such as charts has so far been overlooked. Charts are commonly used in the real-world to summarize and com municate key information, but they can also be easily misused to spread misinformation and promote certain agendas. In this paper, we introduce ChartCheck, a novel, large-scale dataset for explainable fact-checking against real-world charts, consisting of 1.7k charts and 10.5k human-written claims and explanations. We systematically evaluate ChartCheck using vision-language and chart-to-table models, and propose a baseline to the community. Finally, we study chart reasoning types and visual attributes that pose a challenge to these models.

pdf
Knowledge-Aware Reasoning over Multimodal Semi-structured Tables
Suyash Vardhan Mathur | Jainit Sushil Bafna | Kunal Kartik | Harshita Khandelwal | Manish Shrivastava | Vivek Gupta | Mohit Bansal | Dan Roth
Findings of the Association for Computational Linguistics: EMNLP 2024

Existing datasets for tabular question answering typically focus exclusively on text within cells. However, real-world data is inherently multimodal, often blending images such as symbols, faces, icons, patterns, and charts with textual content in tables. With the evolution of AI models capable of multimodal reasoning, it is pertinent to assess their efficacy in handling such structured data. This study investigates whether current AI models can perform knowledge-aware reasoning on multimodal structured data. We explore their ability to reason on tables that integrate both images and text, introducing MMTabQA, a new dataset designed for this purpose. Our experiments highlight substantial challenges for current AI models in effectively integrating and interpreting multiple text and image inputs, understanding visual context, and comparing visual content across images. These findings establish our dataset as a robust benchmark for advancing AI’s comprehension and capabilities in analyzing multimodal structured data.

pdf
Unraveling the Truth: Do VLMs really Understand Charts? A Deep Dive into Consistency and Robustness
Srija Mukhopadhyay | Adnan Qidwai | Aparna Garimella | Pritika Ramu | Vivek Gupta | Dan Roth
Findings of the Association for Computational Linguistics: EMNLP 2024

Chart question answering (CQA) is a crucial area of Visual Language Understanding. However, the robustness and consistency of current Visual Language Models (VLMs) in this field remain under-explored. This paper evaluates state-of-the-art VLMs on comprehensive datasets, developed specifically for this study, encompassing diverse question categories and chart formats. We investigate two key aspects: 1) the models’ ability to handle varying levels of chart and question complexity, and 2) their robustness across different visual representations of the same underlying data. Our analysis reveals significant performance variations based on question and chart types, highlighting both strengths and weaknesses of current models. Additionally, we identify areas for improvement and propose future research directions to build more robust and reliable CQA systems. This study sheds light on the limitations of current models and paves the way for future advancements in the field.

2023

pdf
TempTabQA: Temporal Question Answering for Semi-Structured Tables
Vivek Gupta | Pranshu Kandoi | Mahek Vora | Shuo Zhang | Yujie He | Ridho Reinanda | Vivek Srikumar
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Semi-structured data, such as Infobox tables, often include temporal information about entities, either implicitly or explicitly. Can current NLP systems reason about such information in semi-structured tables? To tackle this question, we introduce the task of temporal question answering on semi-structured tables. We present a dataset, TEMPTABQA, which comprises 11,454 question-answer pairs extracted from 1,208 Wikipedia Infobox tables spanning more than 90 distinct domains. Using this dataset, we evaluate several state-of-the-art models for temporal reasoning. We observe that even the top-performing LLMs lag behind human performance by more than 13.5 F1 points. Given these results, our dataset has the potential to serve as a challenging benchmark to improve the temporal reasoning capabilities of NLP models.

pdf
InfoSync: Information Synchronization across Multilingual Semi-structured Tables
Siddharth Khincha | Chelsi Jain | Vivek Gupta | Tushar Kataria | Shuo Zhang
Findings of the Association for Computational Linguistics: ACL 2023

Information Synchronization of semi-structured data across languages is challenging. For example, Wikipedia tables in one language need to be synchronized with others. To address this problem, we introduce a new dataset InfoSync and a two-step method for tabular synchronization. InfoSync contains 100K entity-centric tables (Wikipedia Infoboxes) across 14 languages, of which a subset (~3.5K pairs) are manually annotated. The proposed method includes 1) Information Alignment to map rows and 2) Information Update for updating missing/outdated information for aligned tables across multilingual tables. When evaluated on InfoSync, information alignment achieves an F1 score of 87.91 (en <-> non-en). To evaluate information updation, we perform human-assisted Wikipedia edits on Infoboxes for 532 table pairs. Our approach obtains an acceptance rate of 77.28% on Wikipedia, showing the effectiveness of the proposed method.

pdf
Exploring the Numerical Reasoning Capabilities of Language Models: A Comprehensive Analysis on Tabular Data
Mubashara Akhtar | Abhilash Shankarampeta | Vivek Gupta | Arpit Patil | Oana Cocarascu | Elena Simperl
Findings of the Association for Computational Linguistics: EMNLP 2023

Numerical data plays a crucial role in various real-world domains like finance, economics, and science. Thus, understanding and reasoning with numbers are essential in these fields. Recent benchmarks have assessed the numerical reasoning abilities of language models, revealing their limitations in limited and specific numerical aspects. In this paper, we propose a complete hierarchical taxonomy for numerical reasoning skills, encompassing over ten reasoning types across four levels: representation, number sense, manipulation, and complex reasoning. We conduct a comprehensive evaluation of state-of-the-art models on all reasoning types. To identify challenging reasoning types for different model types, we develop a diverse and extensive set of numerical probes and measure performance shifts. By employing a semi-automated approach, we focus on the tabular Natural Language Inference (TNLI) task as a case study. While no single model excels in all reasoning types, FlanT5 (few-/zero-shot) and GPT3.5 (few-shot) demonstrate strong overall numerical reasoning skills compared to other models in our probes.

pdf
Evaluating Inter-Bilingual Semantic Parsing for Indian Languages
Divyanshu Aggarwal | Vivek Gupta | Anoop Kunchukuttan
Proceedings of the 5th Workshop on NLP for Conversational AI (NLP4ConvAI 2023)

Despite significant progress in Natural Language Generation for Indian languages (IndicNLP), there is a lack of datasets around complex structured tasks such as semantic parsing. One reason for this imminent gap is the complexity of the logical form, which makes English to multilingual translation difficult. The process involves alignment of logical forms, intents and slots with translated unstructured utterance. To address this, we propose an Inter-bilingual Seq2seq Semantic parsing dataset IE-SemParse Suite for 11 distinct Indian languages. We highlight the proposed task’s practicality, and evaluate existing multilingual seq2seq models across several train-test strategies. Our experiment reveals a high correlation across performance of original multilingual semantic parsing datasets (such as mTOP, multilingual TOP and multiATIS++) and our proposed IE-SemParse suite.

2022

pdf
Enhancing Tabular Reasoning with Pattern Exploiting Training
Abhilash Shankarampeta | Vivek Gupta | Shuo Zhang
Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Recent methods based on pre-trained language models have exhibited superior performance over tabular tasks (e.g., tabular NLI), despite showing inherent problems such as not using the right evidence and inconsistent predictions across inputs while reasoning over the tabular data (Gupta et al., 2021). In this work, we utilize Pattern-Exploiting Training (PET) (i.e., strategic MLM) on pre-trained language models to strengthen these tabular reasoning models’ pre-existing knowledge and reasoning abilities. Our upgraded model exhibits a superior understanding of knowledge facts and tabular reasoning compared to current baselines. Additionally, we demonstrate that such models are more effective for underlying downstream tasks of tabular inference on INFOTABS. Furthermore, we show our model’s robustness against adversarial sets generated through various character and word level perturbations.

pdf
Right for the Right Reason: Evidence Extraction for Trustworthy Tabular Reasoning
Vivek Gupta | Shuo Zhang | Alakananda Vempala | Yujie He | Temma Choji | Vivek Srikumar
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

When pre-trained contextualized embedding-based models developed for unstructured data are adapted for structured tabular data, they perform admirably. However, recent probing studies show that these models use spurious correlations, and often predict inference labels by focusing on false evidence or ignoring it altogether. To study this issue, we introduce the task of Trustworthy Tabular Reasoning, where a model needs to extract evidence to be used for reasoning, in addition to predicting the label. As a case study, we propose a two-stage sequential prediction approach, which includes an evidence extraction and an inference stage. First, we crowdsource evidence row labels and develop several unsupervised and supervised evidence extraction strategies for InfoTabS, a tabular NLI benchmark. Our evidence extraction strategy outperforms earlier baselines. On the downstream tabular inference task, using only the automatically extracted evidence as the premise, our approach outperforms prior benchmarks.

pdf
Trans-KBLSTM: An External Knowledge Enhanced Transformer BiLSTM Model for Tabular Reasoning
Yerram Varun | Aayush Sharma | Vivek Gupta
Proceedings of Deep Learning Inside Out (DeeLIO 2022): The 3rd Workshop on Knowledge Extraction and Integration for Deep Learning Architectures

Natural language inference on tabular data is a challenging task. Existing approaches lack the world and common sense knowledge required to perform at a human level. While massive amounts of KG data exist, approaches to integrate them with deep learning models to enhance tabular reasoning are uncommon. In this paper, we investigate a new approach using BiLSTMs to incorporate knowledge effectively into language models. Through extensive analysis, we show that our proposed architecture, Trans-KBLSTM improves the benchmark performance on InfoTabS, a tabular NLI dataset.

pdf
IndicXNLI: Evaluating Multilingual Inference for Indian Languages
Divyanshu Aggarwal | Vivek Gupta | Anoop Kunchukuttan
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

While Indic NLP has made rapid advances recently in terms of the availability of corpora and pre-trained models, benchmark datasets on standard NLU tasks are limited. To this end, we introduce INDICXNLI, an NLI dataset for 11 Indic languages. It has been created by high-quality machine translation of the original English XNLI dataset and our analysis attests to the quality of INDICXNLI. By finetuning different pre-trained LMs on this INDICXNLI, we analyze various cross-lingual transfer techniques with respect to the impact of the choice of language models, languages, multi-linguality, mix-language input, etc. These experiments provide us with useful insights into the behaviour of pre-trained models for a diverse set of languages.

pdf
XInfoTabS: Evaluating Multilingual Tabular Natural Language Inference
Bhavnick Minhas | Anant Shankhdhar | Vivek Gupta | Divyanshu Aggarwal | Shuo Zhang
Proceedings of the Fifth Fact Extraction and VERification Workshop (FEVER)

The ability to reason about tabular or semi-structured knowledge is a fundamental problem for today’s Natural Language Processing (NLP) systems. While significant progress has been achieved in the direction of tabular reasoning, these advances are limited to English due to the absence of multilingual benchmark datasets for semi-structured data. In this paper, we use machine translation methods to construct a multilingual tabular NLI dataset, namely XINFOTABS, which expands the English tabular NLI dataset of INFOTABS to ten diverse languages. We also present several baselines for multilingual tabular reasoning, e.g., machine translation-based methods and cross-lingual. We discover that the XINFOTABS evaluation suite is both practical and challenging. As a result, this dataset will contribute to increased linguistic inclusion in tabular reasoning research and applications.

pdf
Realistic Data Augmentation Framework for Enhancing Tabular Reasoning
Dibyakanti Kumar | Vivek Gupta | Soumya Sharma | Shuo Zhang
Findings of the Association for Computational Linguistics: EMNLP 2022

Existing approaches to constructing training data for Natural Language Inference (NLI) tasks, such as for semi-structured table reasoning, are either via crowdsourcing or fully automatic methods. However, the former is expensive and time consuming and thus limits scale, and the latter often produces naive examples that may lack complex reasoning. This paper develops a realistic semi-automated framework for data augmentation for tabular inference. Instead of manually generating a hypothesis for each table, our methodology generates hypothesis templates transferable to similar tables. In addition, our framework entails the creation of rational counterfactual tables based on human written logical constraints and premise paraphrasing. For our case study, we use the INFOTABS (Gupta et al., 2020), which is an entity centric tabular inference dataset. We observed that our framework could generate human-like tabular inference examples, which could benefit training data augmentation, especially in the scenario with limited supervision.

pdf
Leveraging Data Recasting to Enhance Tabular Reasoning
Aashna Jena | Vivek Gupta | Manish Shrivastava | Julian Eisenschlos
Findings of the Association for Computational Linguistics: EMNLP 2022

Creating challenging tabular inference data is essential for learning complex reasoning. Prior work has mostly relied on two data generation strategies. The first is human annotation, which yields linguistically diverse data but is difficult to scale. The second category for creation is synthetic generation, which is scalable and cost effective but lacks inventiveness. In this research, we present a framework for semi-automatically recasting existing tabular data to make use of the benefits of both approaches. We utilize our framework to build tabular NLI instances from five datasets that were initially intended for tasks like table2text creation, tabular Q/A, and semantic parsing. We demonstrate that recasted data could be used as evaluation benchmarks as well as augmentation data to enhance performance on tabular NLI tasks. Furthermore, we investigate the effectiveness of models trained on recasted data in the zero-shot scenario, and analyse trends in performance across different recasted datasets types.

pdf
Bilingual Tabular Inference: A Case Study on Indic Languages
Chaitanya Agarwal | Vivek Gupta | Anoop Kunchukuttan | Manish Shrivastava
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Existing research on Tabular Natural Language Inference (TNLI) exclusively examines the task in a monolingual setting where the tabular premise and hypothesis are in the same language. However, due to the uneven distribution of text resources on the web across languages, it is common to have the tabular premise in a high resource language and the hypothesis in a low resource language. As a result, we present the challenging task of bilingual Tabular Natural Language Inference (bTNLI), in which the tabular premise and a hypothesis over it are in two separate languages. We construct EI-InfoTabS: an English-Indic bTNLI dataset by translating the textual hypotheses of the English TNLI dataset InfoTabS into eleven major Indian languages. We thoroughly investigate how pre-trained multilingual models learn and perform on EI-InfoTabS. Our study shows that the performance on bTNLI can be close to its monolingual counterpart, with translate-train, translate-test and unified-train being strongly competitive baselines.

pdf
RetroNLU: Retrieval Augmented Task-Oriented Semantic Parsing
Vivek Gupta | Akshat Shrivastava | Adithya Sagar | Armen Aghajanyan | Denis Savenkov
Proceedings of the 4th Workshop on NLP for Conversational AI

While large pre-trained language models accumulate a lot of knowledge in their parameters, it has been demonstrated that augmenting it with non-parametric retrieval-based memory has a number of benefits ranging from improved accuracy to data efficiency for knowledge-focused tasks such as question answering. In this work, we apply retrieval-based modeling ideas to the challenging complex task of multi-domain task-oriented semantic parsing for conversational assistants. Our technique, RetroNLU, extends a sequence-to-sequence model architecture with a retrieval component, which is used to retrieve existing similar samples and present them as an additional context to the model. In particular, we analyze two settings, where we augment an input with (a) retrieved nearest neighbor utterances (utterance-nn), and (b) ground-truth semantic parses of nearest neighbor utterances (semparse-nn). Our technique outperforms the baseline method by 1.5% absolute macro-F1, especially at the low resource setting, matching the baseline model accuracy with only 40% of the complete data. Furthermore, we analyse the quality, model sensitivity, and performance of the nearest neighbor retrieval component’s for semantic parses of varied utterance complexity.

pdf
Is My Model Using the Right Evidence? Systematic Probes for Examining Evidence-Based Tabular Reasoning
Vivek Gupta | Riyaz A. Bhat | Atreya Ghosal | Manish Shrivastava | Maneesh Singh | Vivek Srikumar
Transactions of the Association for Computational Linguistics, Volume 10

Neural models command state-of-the-art performance across NLP tasks, including ones involving “reasoning”. Models claiming to reason about the evidence presented to them should attend to the correct parts of the input while avoiding spurious patterns therein, be self-consistent in their predictions across inputs, and be immune to biases derived from their pre-training in a nuanced, context- sensitive fashion. Do the prevalent *BERT- family of models do so? In this paper, we study this question using the problem of reasoning on tabular data. Tabular inputs are especially well-suited for the study—they admit systematic probes targeting the properties listed above. Our experiments demonstrate that a RoBERTa-based model, representative of the current state-of-the-art, fails at reasoning on the following counts: it (a) ignores relevant parts of the evidence, (b) is over- sensitive to annotation artifacts, and (c) relies on the knowledge encoded in the pre-trained language model rather than the evidence presented in its tabular inputs. Finally, through inoculation experiments, we show that fine- tuning the model on perturbed data does not help it overcome the above challenges.

2021

pdf
SumPubMed: Summarization Dataset of PubMed Scientific Articles
Vivek Gupta | Prerna Bharti | Pegah Nokhiz | Harish Karnick
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing: Student Research Workshop

Most earlier work on text summarization is carried out on news article datasets. The summary in these datasets is naturally located at the beginning of the text. Hence, a model can spuriously utilize this correlation for summary generation instead of truly learning to summarize. To address this issue, we constructed a new dataset, SumPubMed , using scientific articles from the PubMed archive. We conducted a human analysis of summary coverage, redundancy, readability, coherence, and informativeness on SumPubMed . SumPubMed is challenging because (a) the summary is distributed throughout the text (not-localized on top), and (b) it contains rare domain-specific scientific terms. We observe that seq2seq models that adequately summarize news articles struggle to summarize SumPubMed . Thus, SumPubMed opens new avenues for the future improvement of models as well as the development of new evaluation metrics.

pdf
TabPert : An Effective Platform for Tabular Perturbation
Nupur Jain | Vivek Gupta | Anshul Rai | Gaurav Kumar
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

To grasp the true reasoning ability, the Natural Language Inference model should be evaluated on counterfactual data. TabPert facilitates this by generation of such counterfactual data for assessing model tabular reasoning issues. TabPert allows the user to update a table, change the hypothesis, change the labels, and highlight rows that are important for hypothesis classification. TabPert also details the technique used to automatically produce the table, as well as the strategies employed to generate the challenging hypothesis. These counterfactual tables and hypotheses, as well as the metadata, is then used to explore the existing model’s shortcomings methodically and quantitatively.

pdf
Incorporating External Knowledge to Enhance Tabular Reasoning
J. Neeraja | Vivek Gupta | Vivek Srikumar
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Reasoning about tabular information presents unique challenges to modern NLP approaches which largely rely on pre-trained contextualized embeddings of text. In this paper, we study these challenges through the problem of tabular natural language inference. We propose easy and effective modifications to how information is presented to a model for this task. We show via systematic experiments that these strategies substantially improve tabular inference performance.

pdf bib
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Student Research Workshop
Esin Durmus | Vivek Gupta | Nelson Liu | Nanyun Peng | Yu Su
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Student Research Workshop

pdf
Unsupervised Contextualized Document Representation
Ankur Gupta | Vivek Gupta
Proceedings of the Second Workshop on Simple and Efficient Natural Language Processing

Several NLP tasks need the effective repre-sentation of text documents.Arora et al.,2017 demonstrate that simple weighted aver-aging of word vectors frequently outperformsneural models. SCDV (Mekala et al., 2017)further extends this from sentences to docu-ments by employing soft and sparse cluster-ing over pre-computed word vectors. How-ever, both techniques ignore the polysemyand contextual character of words. In thispaper, we address this issue by proposingSCDV+BERT(ctxd), a simple and effective un-supervised representation that combines con-textualized BERT (Devlin et al., 2019) basedword embedding for word sense disambigua-tion with SCDV soft clustering approach. Weshow that our embeddings outperform origi-nal SCDV, pre-train BERT, and several otherbaselines on many classification datasets. Wealso demonstrate our embeddings effective-ness on other tasks, such as concept match-ing and sentence similarity. In addition,we show that SCDV+BERT(ctxd) outperformsfine-tune BERT and different embedding ap-proaches in scenarios with limited data andonly few shots examples.

2020

pdf
Two-Step Classification using Recasted Data for Low Resource Settings
Shagun Uppal | Vivek Gupta | Avinash Swaminathan | Haimin Zhang | Debanjan Mahata | Rakesh Gosangi | Rajiv Ratn Shah | Amanda Stent
Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing

An NLP model’s ability to reason should be independent of language. Previous works utilize Natural Language Inference (NLI) to understand the reasoning ability of models, mostly focusing on high resource languages like English. To address scarcity of data in low-resource languages such as Hindi, we use data recasting to create NLI datasets for four existing text classification datasets. Through experiments, we show that our recasted dataset is devoid of statistical irregularities and spurious patterns. We further study the consistency in predictions of the textual entailment models and propose a consistency regulariser to remove pairwise-inconsistencies in predictions. We propose a novel two-step classification method which uses textual-entailment predictions for classification task. We further improve the performance by using a joint-objective for classification and textual entailment. We therefore highlight the benefits of data recasting and improvements on classification performance using our approach with supporting experimental results.

pdf
Unbiasing Review Ratings with Tendency Based Collaborative Filtering
Pranshi Yadav | Priya Yadav | Pegah Nokhiz | Vivek Gupta
Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing: Student Research Workshop

User-generated contents’ score-based prediction and item recommendation has become an inseparable part of the online recommendation systems. The ratings allow people to express their opinions and may affect the market value of items and consumer confidence in e-commerce decisions. A major problem with the models designed for user review prediction is that they unknowingly neglect the rating bias occurring due to personal user bias preferences. We propose a tendency-based approach that models the user and item tendency for score prediction along with text review analysis with respect to ratings.

pdf
INFOTABS: Inference on Tables as Semi-structured Data
Vivek Gupta | Maitrey Mehta | Pegah Nokhiz | Vivek Srikumar
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

In this paper, we observe that semi-structured tabulated text is ubiquitous; understanding them requires not only comprehending the meaning of text fragments, but also implicit relationships between them. We argue that such data can prove as a testing ground for understanding how we reason about information. To study this, we introduce a new dataset called INFOTABS, comprising of human-written textual hypotheses based on premises that are tables extracted from Wikipedia info-boxes. Our analysis shows that the semi-structured, multi-domain and heterogeneous nature of the premises admits complex, multi-faceted reasoning. Experiments reveal that, while human annotators agree on the relationships between a table-hypothesis pair, several standard modeling strategies are unsuccessful at the task, suggesting that reasoning about tables can pose a difficult modeling challenge.

pdf
On Long-Tailed Phenomena in Neural Machine Translation
Vikas Raunak | Siddharth Dalmia | Vivek Gupta | Florian Metze
Findings of the Association for Computational Linguistics: EMNLP 2020

State-of-the-art Neural Machine Translation (NMT) models struggle with generating low-frequency tokens, tackling which remains a major challenge. The analysis of long-tailed phenomena in the context of structured prediction tasks is further hindered by the added complexities of search during inference. In this work, we quantitatively characterize such long-tailed phenomena at two levels of abstraction, namely, token classification and sequence generation. We propose a new loss function, the Anti-Focal loss, to better adapt model training to the structural dependencies of conditional text generation by incorporating the inductive biases of beam search in the training process. We show the efficacy of the proposed technique on a number of Machine Translation (MT) datasets, demonstrating that it leads to significant gains over cross-entropy across different language pairs, especially on the generation of low-frequency words. We have released the code to reproduce our results.

pdf
On Dimensional Linguistic Properties of the Word Embedding Space
Vikas Raunak | Vaibhav Kumar | Vivek Gupta | Florian Metze
Proceedings of the 5th Workshop on Representation Learning for NLP

Word embeddings have become a staple of several natural language processing tasks, yet much remains to be understood about their properties. In this work, we analyze word embeddings in terms of their principal components and arrive at a number of novel and counterintuitive observations. In particular, we characterize the utility of variance explained by the principal components as a proxy for downstream performance. Furthermore, through syntactic probing of the principal embedding space, we show that the syntactic information captured by a principal component does not correlate with the amount of variance it explains. Consequently, we investigate the limitations of variance based embedding post-processing algorithms and demonstrate that such post-processing is counter-productive in sentence classification and machine translation tasks. Finally, we offer a few precautionary guidelines on applying variance based embedding post-processing and explain why non-isotropic geometry might be integral to word embedding performance.

2019

pdf
A Logic-Driven Framework for Consistency of Neural Models
Tao Li | Vivek Gupta | Maitrey Mehta | Vivek Srikumar
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

While neural models show remarkable accuracy on individual predictions, their internal beliefs can be inconsistent across examples. In this paper, we formalize such inconsistency as a generalization of prediction error. We propose a learning framework for constraining models using logic rules to regularize them away from inconsistency. Our framework can leverage both labeled and unlabeled examples and is directly compatible with off-the-shelf learning schemes without model redesign. We instantiate our framework on natural language inference, where experiments show that enforcing invariants stated in logic can help make the predictions of neural models both accurate and consistent.

pdf
Effective Dimensionality Reduction for Word Embeddings
Vikas Raunak | Vivek Gupta | Florian Metze
Proceedings of the 4th Workshop on Representation Learning for NLP (RepL4NLP-2019)

Pre-trained word embeddings are used in several downstream applications as well as for constructing representations for sentences, paragraphs and documents. Recently, there has been an emphasis on improving the pretrained word vectors through post-processing algorithms. One improvement area is reducing the dimensionality of word embeddings. Reducing the size of word embeddings can improve their utility in memory constrained devices, benefiting several real world applications. In this work, we present a novel technique that efficiently combines PCA based dimensionality reduction with a recently proposed post-processing algorithm (Mu and Viswanath, 2018), to construct effective word embeddings of lower dimensions. Empirical evaluations on several benchmarks show that our algorithm efficiently reduces the embedding size while achieving similar or (more often) better performance than original embeddings. We have released the source code along with this paper.

2018

pdf
Unsupervised Semantic Abstractive Summarization
Shibhansh Dohare | Vivek Gupta | Harish Karnick
Proceedings of ACL 2018, Student Research Workshop

Automatic abstractive summary generation remains a significant open problem for natural language processing. In this work, we develop a novel pipeline for Semantic Abstractive Summarization (SAS). SAS, as introduced by Liu et. al. (2015) first generates an AMR graph of an input story, through which it extracts a summary graph and finally, creates summary sentences from this summary graph. Compared to earlier approaches, we develop a more comprehensive method to generate the story AMR graph using state-of-the-art co-reference resolution and Meta Nodes. Which we then use in a novel unsupervised algorithm based on how humans summarize a piece of text to extract the summary sub-graph. Our algorithm outperforms the state of the art SAS method by 1.7% F1 score in node prediction.

2017

pdf
SCDV : Sparse Composite Document Vectors using soft clustering over distributional representations
Dheeraj Mekala | Vivek Gupta | Bhargavi Paranjape | Harish Karnick
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

We present a feature vector formation technique for documents - Sparse Composite Document Vector (SCDV) - which overcomes several shortcomings of the current distributional paragraph vector representations that are widely used for text representation. In SCDV, word embeddings are clustered to capture multiple semantic contexts in which words occur. They are then chained together to form document topic-vectors that can express complex, multi-topic documents. Through extensive experiments on multi-class and multi-label classification tasks, we outperform the previous state-of-the-art method, NTSG. We also show that SCDV embeddings perform well on heterogeneous tasks like Topic Coherence, context-sensitive Learning and Information Retrieval. Moreover, we achieve a significant reduction in training and prediction times compared to other representation methods. SCDV achieves best of both worlds - better performance with lower time and space complexity.

2016

pdf
Product Classification in E-Commerce using Distributional Semantics
Vivek Gupta | Harish Karnick | Ashendra Bansal | Pradhuman Jhala
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers

Product classification is the task of automatically predicting a taxonomy path for a product in a predefined taxonomy hierarchy given a textual product description or title. For efficient product classification we require a suitable representation for a document (the textual description of a product) feature vector and efficient and fast algorithms for prediction. To address the above challenges, we propose a new distributional semantics representation for document vector formation. We also develop a new two-level ensemble approach utilising (with respect to the taxonomy tree) path-wise, node-wise and depth-wise classifiers to reduce error in the final product classification task. Our experiments show the effectiveness of the distributional representation and the ensemble approach on data sets from a leading e-commerce platform and achieve improved results on various evaluation metrics compared to earlier approaches.
Search