Ulya Bayram


2022

pdf
Emotionally-Informed Models for Detecting Moments of Change and Suicide Risk Levels in Longitudinal Social Media Data
Ulya Bayram | Lamia Benhiba
Proceedings of the Eighth Workshop on Computational Linguistics and Clinical Psychology

In this shared task, we focus on detecting mental health signals in Reddit users’ posts through two main challenges: A) capturing mood changes (anomalies) from the longitudinal set of posts (called timelines), and B) assessing the users’ suicide risk-levels. Our approaches leverage emotion recognition on linguistic content by computing emotion/sentiment scores using pre-trained BERTs on users’ posts and feeding them to machine learning models, including XGBoost, Bi-LSTM, and logistic regression. For Task-A, we detect longitudinal anomalies using a sequence-to-sequence (seq2seq) autoencoder and capture regions of mood deviations. For Task-B, our two models utilize the BERT emotion/sentiment scores. The first computes emotion bandwidths and merges them with n-gram features, and employs logistic regression to detect users’ suicide risk levels. The second model predicts suicide risk on the timeline level using a Bi-LSTM on Task-A results and sentiment scores. Our results outperformed most participating teams and ranked in the top three in Task-A. In Task-B, our methods surpass all others and return the best macro and micro F1 scores.

2021

pdf
Determining a Person’s Suicide Risk by Voting on the Short-Term History of Tweets for the CLPsych 2021 Shared Task
Ulya Bayram | Lamia Benhiba
Proceedings of the Seventh Workshop on Computational Linguistics and Clinical Psychology: Improving Access

In this shared task, we accept the challenge of constructing models to identify Twitter users who attempted suicide based on their tweets 30 and 182 days before the adverse event’s occurrence. We explore multiple machine learning and deep learning methods to identify a person’s suicide risk based on the short-term history of their tweets. Taking the real-life applicability of the model into account, we make the design choice of classifying on the tweet level. By voting the tweet-level suicide risk scores through an ensemble of classifiers, we predict the suicidal users 30-days before the event with an 81.8% true-positives rate. Meanwhile, the tweet-level voting falls short on the six-month-long data as the number of tweets with weak suicidal ideation levels weakens the overall suicidal signals in the long term.
Search
Co-authors
Venues