Tsu-Jui Fu


2023

pdf
EDIS: Entity-Driven Image Search over Multimodal Web Content
Siqi Liu | Weixi Feng | Tsu-Jui Fu | Wenhu Chen | William Wang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Making image retrieval methods practical for real-world search applications requires significant progress in dataset scales, entity comprehension, and multimodal information fusion. In this work, we introduce Entity-Driven Image Search (EDIS), a challenging dataset for cross-modal image search in the news domain. EDIS consists of 1 million web images from actual search engine results and curated datasets, with each image paired with a textual description. Unlike datasets that assume a small set of single-modality candidates, EDIS reflects real-world web image search scenarios by including a million multimodal image-text pairs as candidates. EDIS encourages the development of retrieval models that simultaneously address cross-modal information fusion and matching. To achieve accurate ranking results, a model must: 1) understand named entities and events from text queries, 2) ground entities onto images or text descriptions, and 3) effectively fuse textual and visual representations. Our experimental results show that EDIS challenges state-of-the-art methods with dense entities and the large-scale candidate set. The ablation study also proves that fusing textual features with visual features is critical in improving retrieval results.

pdf
Collaborative Generative AI: Integrating GPT-k for Efficient Editing in Text-to-Image Generation
Wanrong Zhu | Xinyi Wang | Yujie Lu | Tsu-Jui Fu | Xin Wang | Miguel Eckstein | William Wang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

The field of text-to-image (T2I) generation has garnered significant attention both within the research community and among everyday users. Despite the advancements of T2I models, a common issue encountered by users is the need for repetitive editing of input prompts in order to receive a satisfactory image, which is time-consuming and labor-intensive. Given the demonstrated text generation power of large-scale language models, such as GPT-k, we investigate the potential of utilizing such models to improve the prompt editing process for T2I generation. We conduct a series of experiments to compare the common edits made by humans and GPT-k, evaluate the performance of GPT-k in prompting T2I, and examine factors that may influence this process. We found that GPT-k models focus more on inserting modifiers while humans tend to replace words and phrases, which includes changes to the subject matter. Experimental results show that GPT-k are more effective in adjusting modifiers rather than predicting spontaneous changes in the primary subject matters. Adopting the edit suggested by GPT-k models may reduce the percentage of remaining edits by 20-30%.

pdf
Text-guided 3D Human Generation from 2D Collections
Tsu-Jui Fu | Wenhan Xiong | Yixin Nie | Jingyu Liu | Barlas Oguz | William Wang
Findings of the Association for Computational Linguistics: EMNLP 2023

3D human modeling has been widely used for engaging interaction in gaming, film, and animation. The customization of these characters is crucial for creativity and scalability, which highlights the importance of controllability. In this work, we introduce Text-guided 3D Human Generation (T3H), where a model is to generate a 3D human, guided by the fashion description. There are two goals: 1) the 3D human should render articulately, and 2) its outfit is controlled by the given text. To address this T3H task, we propose Compositional Cross-modal Human (CCH). CCH adopts cross-modal attention to fuse compositional human rendering with the extracted fashion semantics. Each human body part perceives relevant textual guidance as its visual patterns. We incorporate the human prior and semantic discrimination to enhance 3D geometry transformation and fine-grained consistency, enabling it to learn from 2D collections for data efficiency. We conduct evaluations on DeepFashion and SHHQ with diverse fashion attributes covering the shape, fabric, and color of upper and lower clothing. Extensive experiments demonstrate that CCH achieves superior results for T3H with high efficiency.

2022

pdf
CPL: Counterfactual Prompt Learning for Vision and Language Models
Xuehai He | Diji Yang | Weixi Feng | Tsu-Jui Fu | Arjun Akula | Varun Jampani | Pradyumna Narayana | Sugato Basu | William Yang Wang | Xin Wang
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Prompt tuning is a new few-shot transfer learning technique that only tunes the learnable prompt for pre-trained vision and language models such as CLIP. However, existing prompt tuning methods tend to learn spurious or entangled representations, which leads to poor generalization to unseen concepts.Towards non-spurious and efficient prompt learning from limited examples, this paper presents a novel Counterfactual Prompt Learning (CPL) method for vision and language models, which simultaneously employs counterfactual generation and contrastive learning in a joint optimization framework.Particularly, CPL constructs counterfactual by identifying minimal non-spurious feature change between semantically-similar positive and negative samples that causes concept change, and learns more generalizable prompt representation from both factual and counterfactual examples via contrastive learning. Extensive experiments demonstrate that CPL can obtain superior few-shot performance on different vision and language tasks than previous prompt tuning methods on CLIP. On image classification, we achieve 3.55% average relative improvement on unseen classes across seven datasets; on image-text retrieval and visual question answering, we gain up to 4.09% and 25.08% relative improvements across three few-shot scenarios on unseen test sets respectively.

pdf
ULN: Towards Underspecified Vision-and-Language Navigation
Weixi Feng | Tsu-Jui Fu | Yujie Lu | William Yang Wang
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Vision-and-Language Navigation (VLN) is a task to guide an embodied agent moving to a target position using language instructions. Despite the significant performance improvement, the wide use of fine-grained instructions fails to characterize more practical linguistic variations in reality. To fill in this gap, we introduce a new setting, namely Underspecified vision-and-Language Navigation (ULN), and associated evaluation datasets. ULN evaluates agents using multi-level underspecified instructions instead of purely fine-grained or coarse-grained, which is a more realistic and general setting. As a primary step toward ULN, we propose a VLN framework that consists of a classification module, a navigation agent, and an Exploitation-to-Exploration (E2E) module. Specifically, we propose to learn Granularity Specific Sub-networks (GSS) for the agent to ground multi-level instructions with minimal additional parameters. Then, our E2E module estimates grounding uncertainty and conducts multi-step lookahead exploration to improve the success rate further. Experimental results show that existing VLN models are still brittle to multi-level language underspecification. Our framework is more robust and outperforms the baselines on ULN by ~10% relative success rate across all levels.

2021

pdf bib
Proceedings of the Second Workshop on Advances in Language and Vision Research
Xin | Ronghang Hu | Drew Hudson | Tsu-Jui Fu | Marcus Rohrbach | Daniel Fried
Proceedings of the Second Workshop on Advances in Language and Vision Research

pdf
Multimodal Text Style Transfer for Outdoor Vision-and-Language Navigation
Wanrong Zhu | Xin Wang | Tsu-Jui Fu | An Yan | Pradyumna Narayana | Kazoo Sone | Sugato Basu | William Yang Wang
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

One of the most challenging topics in Natural Language Processing (NLP) is visually-grounded language understanding and reasoning. Outdoor vision-and-language navigation (VLN) is such a task where an agent follows natural language instructions and navigates in real-life urban environments. With the lack of human-annotated instructions that illustrate the intricate urban scenes, outdoor VLN remains a challenging task to solve. In this paper, we introduce a Multimodal Text Style Transfer (MTST) learning approach and leverage external multimodal resources to mitigate data scarcity in outdoor navigation tasks. We first enrich the navigation data by transferring the style of the instructions generated by Google Maps API, then pre-train the navigator with the augmented external outdoor navigation dataset. Experimental results show that our MTST learning approach is model-agnostic, and our MTST approach significantly outperforms the baseline models on the outdoor VLN task, improving task completion rate by 8.7% relatively on the test set.

pdf
L2C: Describing Visual Differences Needs Semantic Understanding of Individuals
An Yan | Xin Wang | Tsu-Jui Fu | William Yang Wang
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

Recent advances in language and vision push forward the research of captioning a single image to describing visual differences between image pairs. Suppose there are two images, I_1 and I_2, and the task is to generate a description W_1,2 comparing them, existing methods directly model I_1, I_2 -> W_1,2 mapping without the semantic understanding of individuals. In this paper, we introduce a Learning-to-Compare (L2C) model, which learns to understand the semantic structures of these two images and compare them while learning to describe each one. We demonstrate that L2C benefits from a comparison between explicit semantic representations and single-image captions, and generalizes better on the new testing image pairs. It outperforms the baseline on both automatic evaluation and human evaluation for the Birds-to-Words dataset.

pdf
H-FND: Hierarchical False-Negative Denoising for Distant Supervision Relation Extraction
Jhih-wei Chen | Tsu-Jui Fu | Chen-Kang Lee | Wei-Yun Ma
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf
Semi-Supervised Policy Initialization for Playing Games with Language Hints
Tsu-Jui Fu | William Yang Wang
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Using natural language as a hint can supply an additional reward for playing sparse-reward games. Achieving a goal should involve several different hints, while the given hints are usually incomplete. Those unmentioned latent hints still rely on the sparse reward signal, and make the learning process difficult. In this paper, we propose semi-supervised initialization (SSI) that allows the agent to learn from various possible hints before training under different tasks. Experiments show that SSI not only helps to learn faster (1.2x) but also has a higher success rate (11% relative improvement) of the final policy.

2020

pdf
SSCR: Iterative Language-Based Image Editing via Self-Supervised Counterfactual Reasoning
Tsu-Jui Fu | Xin Wang | Scott Grafton | Miguel Eckstein | William Yang Wang
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Iterative Language-Based Image Editing (ILBIE) tasks follow iterative instructions to edit images step by step. Data scarcity is a significant issue for ILBIE as it is challenging to collect large-scale examples of images before and after instruction-based changes. Yet, humans still accomplish these editing tasks even when presented with an unfamiliar image-instruction pair. Such ability results from counterfactual thinking, the ability to think about possible alternatives to events that have happened already. In this paper, we introduce a Self-Supervised Counterfactual Reasoning (SSCR) framework that incorporates counterfactual thinking to overcome data scarcity. SSCR allows the model to consider out-of-distribution instructions paired with previous images. With the help of cross-task consistency (CTC), we train these counterfactual instructions in a self-supervised scenario. Extensive results show that SSCR improves the correctness of ILBIE in terms of both object identity and position, establishing a new state of the art (SOTA) on two IBLIE datasets (i-CLEVR and CoDraw). Even with only 50% of the training data, SSCR achieves a comparable result to using complete data.

2019

pdf
GraphRel: Modeling Text as Relational Graphs for Joint Entity and Relation Extraction
Tsu-Jui Fu | Peng-Hsuan Li | Wei-Yun Ma
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

In this paper, we present GraphRel, an end-to-end relation extraction model which uses graph convolutional networks (GCNs) to jointly learn named entities and relations. In contrast to previous baselines, we consider the interaction between named entities and relations via a 2nd-phase relation-weighted GCN to better extract relations. Linear and dependency structures are both used to extract both sequential and regional features of the text, and a complete word graph is further utilized to extract implicit features among all word pairs of the text. With the graph-based approach, the prediction for overlapping relations is substantially improved over previous sequential approaches. We evaluate GraphRel on two public datasets: NYT and WebNLG. Results show that GraphRel maintains high precision while increasing recall substantially. Also, GraphRel outperforms previous work by 3.2% and 5.8% (F1 score), achieving a new state-of-the-art for relation extraction.

2018

pdf
Speed Reading: Learning to Read ForBackward via Shuttle
Tsu-Jui Fu | Wei-Yun Ma
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

We present LSTM-Shuttle, which applies human speed reading techniques to natural language processing tasks for accurate and efficient comprehension. In contrast to previous work, LSTM-Shuttle not only reads shuttling forward but also goes back. Shuttling forward enables high efficiency, and going backward gives the model a chance to recover lost information, ensuring better prediction. We evaluate LSTM-Shuttle on sentiment analysis, news classification, and cloze on IMDB, Rotten Tomatoes, AG, and Children’s Book Test datasets. We show that LSTM-Shuttle predicts both better and more quickly. To demonstrate how LSTM-Shuttle actually behaves, we also analyze the shuttling operation and present a case study.