Tahilin Sanchez Karver


2024

pdf
Gender Bias in Decision-Making with Large Language Models: A Study of Relationship Conflicts
Sharon Levy | William Adler | Tahilin Sanchez Karver | Mark Dredze | Michelle R Kaufman
Findings of the Association for Computational Linguistics: EMNLP 2024

Large language models (LLMs) acquire beliefs about gender from training data and can therefore generate text with stereotypical gender attitudes. Prior studies have demonstrated model generations favor one gender or exhibit stereotypes about gender, but have not investigated the complex dynamics that can influence model reasoning and decision-making involving gender. We study gender equity within LLMs through a decision-making lens with a new dataset, DeMET Prompts, containing scenarios related to intimate, romantic relationships. We explore nine relationship configurations through name pairs across three name lists (men, women, neutral). We investigate equity in the context of gender roles through numerous lenses: typical and gender-neutral names, with and without model safety enhancements, same and mixed-gender relationships, and egalitarian versus traditional scenarios across various topics. While all models exhibit the same biases (women favored, then those with gender-neutral names, and lastly men), safety guardrails reduce bias. In addition, models tend to circumvent traditional male dominance stereotypes and side with “traditionally female” individuals more often, suggesting relationships are viewed as a female domain by the models.

pdf
Evaluating Biases in Context-Dependent Sexual and Reproductive Health Questions
Sharon Levy | Tahilin Sanchez Karver | William Adler | Michelle R Kaufman | Mark Dredze
Findings of the Association for Computational Linguistics: EMNLP 2024

Chat-based large language models have the opportunity to empower individuals lacking high-quality healthcare access to receive personalized information across a variety of topics. However, users may ask underspecified questions that require additional context for a model to correctly answer. We study how large language model biases are exhibited through these contextual questions in the healthcare domain. To accomplish this, we curate a dataset of sexual and reproductive healthcare questions (ContextSRH) that are dependent on age, sex, and location attributes. We compare models’ outputs with and without demographic context to determine answer alignment among our contextual questions. Our experiments reveal biases in each of these attributes, where young adult female users are favored.