Sungsoo Ha
2024
BASS: Batched Attention-optimized Speculative Sampling
Haifeng Qian
|
Sujan Kumar Gonugondla
|
Sungsoo Ha
|
Mingyue Shang
|
Sanjay Krishna Gouda
|
Ramesh Nallapati
|
Sudipta Sengupta
|
Xiaofei Ma
|
Anoop Deoras
Findings of the Association for Computational Linguistics: ACL 2024
Speculative decoding has emerged as a powerful method to improve latency and throughput in hosting large language models. However, most existing implementations focus on generating a single sequence. Real-world generative AI applications often require multiple responses and how to perform speculative decoding in a batched setting while preserving its latency benefits poses non-trivial challenges. This paper describes a system of batched speculative decoding that sets a new state of the art in multi-sequence generation latency and that demonstrates superior GPU utilization as well as quality of generations within a time budget. For example, for a 7.8B-size model on a single A100 GPU and with a batch size of 8, each sequence is generated at an average speed of 5.8ms per token, the overall throughput being 1.1K tokens per second. These results represent state-of-the-art latency and a 2.15× speed-up over optimized regular decoding. Within a time budget that regular decoding does not finish, our system is able to generate sequences with HumanEval Pass@First of 43% and Pass@All of 61%, far exceeding what’s feasible with single-sequence speculative decoding. Our peak GPU utilization during decoding reaches as high as 15.8%, more than 3× the highest of that of regular decoding and around 10× of single-sequence speculative decoding.
Search
Co-authors
- Anoop Deoras 1
- Haifeng Qian 1
- Mingyue Shang 1
- Ramesh Nallapati 1
- Sanjay Krishna Gouda 1
- show all...