This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
The dynamic nature of real-world information necessitates knowledge editing (KE) in large language models (LLMs). The edited knowledge should propagate and facilitate the deduction of new information based on existing model knowledge. We term the existing related knowledge in LLM serving as the origination of knowledge propagation as ”deduction anchors”. However, current KE approaches, which only operate on (subject, relation, object) triple. We both theoretically and empirically observe that this simplified setting often leads to uncertainty when determining the deduction anchors, causing low confidence in their answers. To mitigate this issue, we propose a novel task of event-based knowledge editing that pairs facts with event descriptions. This task manifests not only a closer simulation of real-world editing scenarios but also a more logically sound setting, implicitly defining the deduction anchor and enabling LLMs to propagate knowledge confidently. We curate a new benchmark dataset Evedit derived from the CounterFact dataset and validate its superiority in improving model confidence. Moreover, while we observe that the event-based setting is significantly challenging for existing approaches, we propose a novel approach Self-Edit that showcases stronger performance, achieving 55.6% consistency improvement while maintaining the naturalness of generation.
Complex news events, such as natural disasters and socio-political conflicts, require swift responses from the government and society. Relying on historical events to project the future is insufficient as such events are sparse and do not cover all possible conditions and nuanced situations. Simulation of these complex events can help better prepare and reduce the negative impact. We develop a controllable complex news event simulator guided by both the event schema representing domain knowledge about the scenario and user-provided assumptions representing case-specific conditions.As event dynamics depend on the fine-grained social and cultural context, we further introduce a geo-diverse commonsense and cultural norm-aware knowledge enhancement component.To enhance the coherence of the simulation, apart from the global timeline of events,we take an agent-based approach to simulate the individual character states, plans, and actions. By incorporating the schema and cultural norms, our generated simulations achieve much higher coherence and appropriateness and are received favorably by participants from a humanitarian assistance organization.
The task of information extraction (IE) is to extract structured knowledge from text. However, it is often not straightforward to utilize IE output due to the mismatch between the IE ontology and the downstream application needs. We propose a new formulation of IE, Text2DB, that emphasizes the integration of IE output and the target database (or knowledge base). Given a user instruction, a document set, and a database, our task requires the model to update the database with values from the document set to satisfy the user instruction. This task requires understanding user instructions for what to extract and adapting to the given DB/KB schema for how to extract on the fly. To evaluate this new task, we introduce a new benchmark featuring common demands such as data infilling, row population, and column addition. In addition, we propose an LLM agent framework OPAL (Observe-Plan-Analyze LLM) which includes an Observer component that interacts with the database, the Planner component that generates a code-based plan with calls to IE models, and the Analyzer component that provides feedback regarding code quality before execution. Experiments show that OPAL can successfully adapt to diverse database schemas by generating different code plans and calling the required IE models. We also highlight difficult cases such as dealing with large databases with complex dependencies and extraction hallucination, which we believe deserve further investigation.
Large vision-language models (LVLMs), while proficient in following instructions and responding to diverse questions, invariably generate detailed responses even when questions are ambiguous or unanswerable, leading to hallucinations and bias issues. Thus, it is essential for LVLMs to proactively engage with humans to ask for clarifications or additional information for better responses. In this study, we aim to shift LVLMs from passive answer providers to proactive engaged partners. We begin by establishing a three-tiered hierarchy for questions of invalid, ambiguous, and personalizable nature to measure the proactive engagement capabilities of LVLMs. Utilizing this hierarchy, we create PIE, (ProactIve Engagement Evaluation) through GPT-4o and human annotators, consisting of 853 questions across six distinct, fine-grained question types that are verified by human annotators and accompanied with well-defined metrics. Our evaluations on indicate poor performance of existing LVLMs, with the best-performing open-weights model only achieving an Aggregate Align Rate (AAR) of 0.28. In response, we introduce MACAROON, self-iMaginAtion for ContrAstive pReference OptimizatiON, which instructs LVLMs to autonomously generate contrastive response pairs for unlabeled questions given the task description and human-crafted criteria. Then, the self-imagined data is formatted for conditional reinforcement learning. Experimental results show MACAROON effectively improves LVLMs’ capabilities to be proactively engaged (0.84 AAR) while maintaining comparable performance on general tasks.
In recent years, Large Language Models (LLMs) have demonstrated exceptional performance in code-generation tasks. However, under enterprise scenarios where private APIs are pre-built, general LLMs often fail to meet expectations. Existing approaches are confronted with drawbacks of high resource consumption and inadequate handling of multi-API tasks. To address these challenges, we propose EpiGEN, an Efficient multi-Api code GENeration framework under enterprise scenario. It consists of three core modules: Task Decomposition Module (TDM), API Retrieval Module (ARM), and Code Generation Module (CGM), in which Langchain played an important role. Through a series of experiments, EpiGEN shows good acceptability and readability, compared to fully fine-tuned LLM with a larger number of parameters. Particularly, in medium and hard level tasks, the performance of EpiGEN on a single-GPU machine even surpasses that of a fully fine-tuned LLM that requires multi-GPU configuration. Generally, EpiGEN is model-size agnostic, facilitating a balance between the performance of code generation and computational requirements.
LLM-driven dialog systems are used in a diverse set of applications, ranging from healthcare to customer service. However, given their generalization capability, it is difficult to ensure that these chatbots stay within the boundaries of the specialized domains, potentially resulting in inaccurate information and irrelevant responses. This paper introduces an unsupervised approach for automatically inducing domain-specific dialog flows that can be used to constrain LLM-based chatbots. We introduce two variants of dialog flow based on the availability of in-domain conversation instances. Through human and automatic evaluation over 24 dialog domains, we demonstrate that our high-quality data-guided dialog flows achieve better domain coverage, thereby overcoming the need for extensive manual crafting of such flows.
Large Language Model (LLM) trained on a mixture of text and code has demonstrated impressive capability in translating natural language (NL) into structured code. We observe that semantic structures can be conveniently translated into code and propose Code4Struct to leverage such text-to-structure translation capability to tackle structured prediction tasks. As a case study, we formulate Event Argument Extraction (EAE) as converting text into event-argument structures that can be represented as a class object using code. This alignment between structures and code enables us to take advantage of Programming Language (PL) features such as inheritance and type annotation to introduce external knowledge or add constraints. We show that, with sufficient in-context examples, formulating EAE as a code generation problem is advantageous over using variants of text-based prompts. Despite only using 20 training event instances for each event type, Code4Struct is comparable to supervised models trained on 4,202 instances and outperforms current state-of-the-art (SOTA) trained on 20-shot data by 29.5% absolute F1. Code4Struct can use 10-shot training data from a sibling event type to predict arguments for zero-resource event types and outperforms the zero-shot baseline by 12% absolute F1.
Online resources such as WikiHow compile a wide range of scripts for performing everyday tasks, which can assist models in learning to reason about procedures. However, the scripts are always presented in a linear manner, which does not reflect the flexibility displayed by people executing tasks in real life. For example, in the CrossTask Dataset, 64.5% of consecutive step pairs are also observed in the reverse order, suggesting their ordering is not fixed. In addition, each step has an average of 2.56 frequent next steps, demonstrating “branching”. In this paper, we propose the new challenging task of non-sequential graph script induction, aiming to capture optional and interchangeable steps in procedural planning. To automate the induction of such graph scripts for given tasks, we propose to take advantage of loosely aligned videos of people performing the tasks. In particular, we design a multimodal framework to ground procedural videos to WikiHow textual steps and thus transform each video into an observed step path on the latent ground truth graph script. This key transformation enables us to train a script knowledge model capable of both generating explicit graph scripts for learnt tasks and predicting future steps given a partial step sequence. Our best model outperforms the strongest pure text/vision baselines by 17.52% absolute gains on F1@3 for next step prediction and 13.8% absolute gains on Acc@1 for partial sequence completion. Human evaluation shows our model outperforming the WikiHow linear baseline by 48.76% absolute gains in capturing sequential and non-sequential step relationships.
Event schemas are a form of world knowledge about the typical progression of events. Recent methods for event schema induction use information extraction systems to construct a large number of event graph instances from documents, and then learn to generalize the schema from such instances. In contrast, we propose to treat event schemas as a form of commonsense knowledge that can be derived from large language models (LLMs). This new paradigm greatly simplifies the schema induction process and allows us to handle both hierarchical relations and temporal relations between events in a straightforward way. Since event schemas have complex graph structures, we design an incremental prompting and verification method IncPrompt to break down the construction of a complex event graph into three stages: event skeleton construction, event expansion, and event-event relation verification. Compared to directly using LLMs to generate a linearized graph, IncSchema can generate large and complex schemas with 7.2% F1 improvement in temporal relations and 31.0% F1 improvement in hierarchical relations. In addition, compared to the previous state-of-the-art closed-domain schema induction model, human assessors were able to cover ~10% more events when translating the schemas into coherent stories and rated our schemas 1.3 points higher (on a 5-point scale) in terms of readability.
Schema induction builds a graph representation explaining how events unfold in a scenario. Existing approaches have been based on information retrieval (IR) and information extraction (IE), often with limited human curation. We demonstrate a human-in-the-loop schema induction system powered by GPT-3. We first describe the different modules of our system, including prompting to generate schematic elements, manual edit of those elements, and conversion of those into a schema graph. By qualitatively comparing our system to previous ones, we show that our system not only transfers to new domains more easily than previous approaches, but also reduces efforts of human curation thanks to our interactive interface.
The progress of event extraction research has been hindered by the absence of wide-coverage, large-scale datasets. To make event extraction systems more accessible, we build a general-purpose event detection dataset GLEN, which covers 205K event mentions with 3,465 different types, making it more than 20x larger in ontology than today’s largest event dataset. GLEN is created by utilizing the DWD Overlay, which provides a mapping between Wikidata Qnodes and PropBank rolesets. This enables us to use the abundant existing annotation for PropBank as distant supervision. In addition, we also propose a new multi-stage event detection model specifically designed to handle the large ontology size in GLEN. We show that our model exhibits superior performance compared to a range of baselines including InstructGPT. Finally, we perform error analysis and show that label noise is still the largest challenge for improving performance for this new dataset.
Large language models with instruction-following capabilities open the door to a wider group of users. However, when it comes to information extraction – a classic task in natural language processing – most task-specific systems cannot align well with long-tail ad hoc extraction use cases for non-expert users. To address this, we propose a novel paradigm, termed On-Demand Information Extraction, to fulfill the personalized demands of real-world users. Our task aims to follow the instructions to extract the desired content from the associated text and present it in a structured tabular format. The table headers can either be user-specified or inferred contextually by the model. To facilitate research in this emerging area, we present a benchmark named InstructIE, inclusive of both automatically generated training data, as well as the human-annotated test set. Building on InstructIE, we further develop an On-Demand Information Extractor, ODIE. Comprehensive evaluations on our benchmark reveal that ODIE substantially outperforms the existing open-source models of similar size.
In this paper, we present RESIN-EDITOR, an interactive event graph visualizer and editor designed for analyzing complex events. Our RESIN-EDITOR system allows users to render and freely edit hierarchical event graphs extracted from multimedia and multi-document news clusters with guidance from human-curated event schemas. RESIN-EDITOR’s unique features include hierarchical graph visualization, comprehensive source tracing, and interactive user editing, which significantly outperforms existing Information Extraction (IE) visualization tools in both IE result analysis and general model improvements. In our evaluation of RESIN-EDITOR, we demonstrate ways in which our tool is effective in understanding complex events and enhancing system performances. The source code, a video demonstration, and a live website for RESIN-EDITOR have been made publicly available.
Procedure planning, or the ability to predict a series of steps that can achieve a given goal conditioned on the current observation, is critical for building intelligent embodied agents that can assist users in everyday tasks. Encouraged by the recent success of language models (LMs) for zero-shot and few-shot planning, we hypothesize that LMs may be equipped with stronger priors for planning compared to their visual counterparts. To this end, we propose a language-first procedure planning framework with a modularized design: we first align the current and goal observations with corresponding steps and then use a pre-trained LM to predict the intermediate steps. Under this framework, we find that using an image captioning model for alignment can already match state-of-the-art performance and by designing a double retrieval model conditioned over current and goal observations jointly, we can achieve large improvements (19.2%-98.9% relatively higher success rate than state-of-the-art) on both COIN and CrossTask benchmarks. Our work verifies the planning ability of LMs and demonstrates how LMs can serve as a powerful “reasoning engine” even when the input is provided in another modality.
Open-vocabulary state tracking is a more practical version of state tracking that aims to track state changes of entities throughout a process without restricting the state space and entity space. OpenPI (Tandon et al., 2020) is to date the only dataset annotated for open-vocabulary state tracking. However, we identify issues with the dataset quality and evaluation metric. For the dataset, we categorize 3 types of problems on the procedure level, step level and state change level respectively, and build a clean dataset OpenPI-C using multiple rounds of human judgment. For the evaluation metric, we propose a cluster-based metric to fix the original metric’s preference for repetition. Model-wise, we enhance the seq2seq generation baseline by reinstating two key properties for state tracking: temporal dependency and entity awareness. The state of the world after an action is inherently dependent on the previous state. We model this dependency through a dynamic memory bank and allow the model to attend to the memory slots during decoding. On the other hand, the state of the world is naturally a union of the states of involved entities. Since the entities are unknown in the open-vocabulary setting, we propose a two-stage model that refines the state change prediction conditioned on entities predicted from the first stage. Empirical results show the effectiveness of our proposed model, especially on the cleaned dataset and the cluster-based metric. The code and data are released at https://github.com/shirley-wu/openpi-c
The recent explosion of performance of large language models (LLMs) has changed the field of Natural Language Processing (NLP) more abruptly and seismically than any other shift in the field’s 80 year history. This has resulted in concerns that the field will become homogenized and resource-intensive. This new status quo has put many academic researchers, especially PhD students, at a disadvantage. This paper aims to define a new NLP playground by proposing 20+ PhD-dissertation-worthy research directions, covering theoretical analysis, new and challenging problems, learning paradigms and interdisciplinary applications.
Extracting informative arguments of events from news articles is a challenging problem in information extraction, which requires a global contextual understanding of each document. While recent work on document-level extraction has gone beyond single-sentence and increased the cross-sentence inference capability of end-to-end models, they are still restricted by certain input sequence length constraints and usually ignore the global context between events. To tackle this issue, we introduce a new global neural generation-based framework for document-level event argument extraction by constructing a document memory store to record the contextual event information and leveraging it to implicitly and explicitly help with decoding of arguments for later events. Empirical results show that our framework outperforms prior methods substantially and it is more robust to adversarially annotated examples with our constrained decoding design.
Conventional “closed-world” information extraction (IE) approaches rely on human ontologies to define the scope for extraction. As a result, such approaches fall short when applied to new domains. This calls for systems that can automatically infer new types from given corpora, a task which we refer to as type discovery.To tackle this problem, we introduce the idea of type abstraction, where the model is prompted to generalize and name the type. Then we use the similarity between inferred names to induce clusters. Observing that this abstraction-based representation is often complementary to the entity/trigger token representation, we set up these two representations as two views and design our model as a co-training framework. Our experiments on multiple relation extraction and event extraction datasets consistently show the advantage of our type abstraction approach.
Document-level relation extraction (DocRE) aims to extract semantic relations among entity pairs in a document. Typical DocRE methods blindly take the full document as input, while a subset of the sentences in the document, noted as the evidence, are often sufficient for humans to predict the relation of an entity pair. In this paper, we propose an evidence-enhanced framework, Eider, that empowers DocRE by efficiently extracting evidence and effectively fusing the extracted evidence in inference. We first jointly train an RE model with a lightweight evidence extraction model, which is efficient in both memory and runtime. Empirically, even training the evidence model on silver labels constructed by our heuristic rules can lead to better RE performance. We further design a simple yet effective inference process that makes RE predictions on both extracted evidence and the full document, then fuses the predictions through a blending layer. This allows Eider to focus on important sentences while still having access to the complete information in the document. Extensive experiments show that Eider outperforms state-of-the-art methods on three benchmark datasets (e.g., by 1.37/1.26 Ign F1/F1 on DocRED).
The argument role in event extraction refers to the relation between an event and an argument participating in it. Despite the great progress in event extraction, existing studies still depend on roles pre-defined by domain experts. These studies expose obvious weakness when extending to emerging event types or new domains without available roles. Therefore, more attention and effort needs to be devoted to automatically customizing argument roles. In this paper, we define this essential but under-explored task: open-vocabulary argument role prediction. The goal of this task is to infer a set of argument roles for a given event type. We propose a novel unsupervised framework, RolePred for this task. Specifically, we formulate the role prediction problem as an in-filling task and construct prompts for a pre-trained language model to generate candidate roles. By extracting and analyzing the candidate arguments, the event-specific roles are further merged and selected. To standardize the research of this task, we collect a new human-annotated event extraction dataset including 143 customized argument roles with rich semantics. On this dataset, RolePred outperforms the existing methods by a large margin.
Providing conversation models with background knowledge has been shown to make open-domain dialogues more informative and engaging. Existing models treat knowledge selection as a sentence ranking or classification problem where each sentence is handled individually, ignoring the internal semantic connection between sentences. In this work, we propose to automatically convert the background knowledge documents into document semantic graphs and then perform knowledge selection over such graphs. Our document semantic graphs preserve sentence-level information through the use of sentence nodes and provide concept connections between sentences. We apply multi-task learning to perform sentence-level knowledge selection and concept-level knowledge selection, showing that it improves sentence-level selection. Our experiments show that our semantic graph-based knowledge selection improves over sentence selection baselines for both the knowledge selection task and the end-to-end response generation task on HollE and improves generalization on unseen topics in WoW.
We introduce RESIN-11, a new schema-guided event extraction&prediction framework that can be applied to a large variety of newsworthy scenarios. The framework consists of two parts: (1) an open-domain end-to-end multimedia multilingual information extraction system with weak-supervision and zero-shot learningbased techniques. (2) schema matching and schema-guided event prediction based on our curated schema library. We build a demo website based on our dockerized system and schema library publicly available for installation (https://github.com/RESIN-KAIROS/RESIN-11). We also include a video demonstrating the system.
Event schemas encode knowledge of stereotypical structures of events and their connections. As events unfold, schemas are crucial to act as a scaffolding. Previous work on event schema induction focuses either on atomic events or linear temporal event sequences, ignoring the interplay between events via arguments and argument relations. We introduce a new concept of Temporal Complex Event Schema: a graph-based schema representation that encompasses events, arguments, temporal connections and argument relations. In addition, we propose a Temporal Event Graph Model that predicts event instances following the temporal complex event schema. To build and evaluate such schemas, we release a new schema learning corpus containing 6,399 documents accompanied with event graphs, and we have manually constructed gold-standard schemas. Intrinsic evaluations by schema matching and instance graph perplexity, prove the superior quality of our probabilistic graph schema library compared to linear representations. Extrinsic evaluation on schema-guided future event prediction further demonstrates the predictive power of our event graph model, significantly outperforming human schemas and baselines by more than 17.8% on HITS@1.
Event extraction has long been treated as a sentence-level task in the IE community. We argue that this setting does not match human informative seeking behavior and leads to incomplete and uninformative extraction results. We propose a document-level neural event argument extraction model by formulating the task as conditional generation following event templates. We also compile a new document-level event extraction benchmark dataset WikiEvents which includes complete event and coreference annotation. On the task of argument extraction, we achieve an absolute gain of 7.6% F1 and 5.7% F1 over the next best model on the RAMS and WikiEvents dataset respectively. On the more challenging task of informative argument extraction, which requires implicit coreference reasoning, we achieve a 9.3% F1 gain over the best baseline. To demonstrate the portability of our model, we also create the first end-to-end zero-shot event extraction framework and achieve 97% of fully supervised model’s trigger extraction performance and 82% of the argument extraction performance given only access to 10 out of the 33 types on ACE.
We present a new information extraction system that can automatically construct temporal event graphs from a collection of news documents from multiple sources, multiple languages (English and Spanish for our experiment), and multiple data modalities (speech, text, image and video). The system advances state-of-the-art from two aspects: (1) extending from sentence-level event extraction to cross-document cross-lingual cross-media event extraction, coreference resolution and temporal event tracking; (2) using human curated event schema library to match and enhance the extraction output. We have made the dockerlized system publicly available for research purpose at GitHub, with a demo video.