This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Are multimodal inputs necessary for grammar induction? Recent work has shown that multimodal training inputs can improve grammar induction. However, these improvements are based on comparisons to weak text-only baselines that were trained on relatively little textual data. To determine whether multimodal inputs are needed in regimes with large amounts of textual training data, we design a stronger text-only baseline, which we refer to as LC-PCFG. LC-PCFG is a C-PFCG that incorporates embeddings from text-only large language models (LLMs). We use a fixed grammar family to directly compare LC-PCFG to various multimodal grammar induction methods. We compare performance on four benchmark datasets. LC-PCFG provides an up to 17% relative improvement in Corpus-F1 compared to state-of-the-art multimodal grammar induction methods. LC-PCFG is also more computationally efficient, providing an up to 85% reduction in parameter count and 8.8× reduction in training time compared to multimodal approaches. These results suggest that multimodal inputs may not be necessary for grammar induction, and emphasize the importance of strong vision-free baselines for evaluating the benefit of multimodal approaches.
When connecting objects and their language referents in an embodied 3D environment, it is important to note that: (1) an object can be better characterized by leveraging comparative information between itself and other objects, and (2) an object’s appearance can vary with camera position. As such, we present the Multi-view Approach to Grounding in Context (MAGiC) model, which selects an object referent based on language that distinguishes between two similar objects. By pragmatically reasoning over both objects and across multiple views of those objects, MAGiC improves over the state-of-the-art model on the SNARE object reference task with a relative error reduction of 12.9% (representing an absolute improvement of 2.7%). Ablation studies show that reasoning jointly over object referent candidates and multiple views of each object both contribute to improved accuracy. Code: https://github.com/rcorona/magic_snare/
Natural language applied to natural 2D images describes a fundamentally 3D world. We present the Voxel-informed Language Grounder (VLG), a language grounding model that leverages 3D geometric information in the form of voxel maps derived from the visual input using a volumetric reconstruction model. We show that VLG significantly improves grounding accuracy on SNARE, an object reference game task. At the time of writing, VLG holds the top place on the SNARE leaderboard, achieving SOTA results with a 2.0% absolute improvement.
Standard architectures used in instruction following often struggle on novel compositions of subgoals (e.g. navigating to landmarks or picking up objects) observed during training. We propose a modular architecture for following natural language instructions that describe sequences of diverse subgoals. In our approach, subgoal modules each carry out natural language instructions for a specific subgoal type. A sequence of modules to execute is chosen by learning to segment the instructions and predicting a subgoal type for each segment. When compared to standard, non-modular sequence-to-sequence approaches on ALFRED, a challenging instruction following benchmark, we find that modularization improves generalization to novel subgoal compositions, as well as to environments unseen in training.
We present a set of assignments for a graduate-level NLP course. Assignments are designed to be interactive, easily gradable, and to give students hands-on experience with several key types of structure (sequences, tags, parse trees, and logical forms), modern neural architectures (LSTMs and Transformers), inference algorithms (dynamic programs and approximate search) and training methods (full and weak supervision). We designed assignments to build incrementally both within each assignment and across assignments, with the goal of enabling students to undertake graduate-level research in NLP by the end of the course.
Speech is a natural channel for human-computer interaction in robotics and consumer applications. Natural language understanding pipelines that start with speech can have trouble recovering from speech recognition errors. Black-box automatic speech recognition (ASR) systems, built for general purpose use, are unable to take advantage of in-domain language models that could otherwise ameliorate these errors. In this work, we present a method for re-ranking black-box ASR hypotheses using an in-domain language model and semantic parser trained for a particular task. Our re-ranking method significantly improves both transcription accuracy and semantic understanding over a state-of-the-art ASR’s vanilla output.