This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Given the widespread dissemination of misinformation on social media, implementing fact-checking mechanisms for online claims is essential. Manually verifying every claim is very challenging, underscoring the need for an automated fact-checking system. This paper presents our system designed to address this issue. We utilize the Averitec dataset (Schlichtkrull et al., 2023) to assess the performance of our fact-checking system. In addition to veracity prediction, our system provides supporting evidence, which is extracted from the dataset. We develop a Retrieve and Generate (RAG) pipeline to extract relevant evidence sentences from a knowledge base, which are then inputted along with the claim into a large language model (LLM) for classification. We also evaluate the few-shot In-Context Learning (ICL) capabilities of multiple LLMs. Our system achieves an ‘Averitec’ score of 0.33, which is a 22% absolute improvement over the baseline. Our Code is publicly available on https://github.com/ronit-singhal/evidence-backed-fact-checking-using-rag-and-few-shot-in-context-learning-with-llms.
Large Language Models (LLMs) operating in 0-shot or few-shot settings achieve competitive results in Text Classification tasks. In-Context Learning (ICL) typically achieves better accuracy than the 0-shot setting, but it pays in terms of efficiency, due to the longer input prompt. In this paper, we propose a strategy to make LLMs as efficient as 0-shot text classifiers, while getting comparable or better accuracy than ICL. Our solution targets the low resource setting, i.e., when only 4 examples per class are available. Using a single LLM and few-shot real data we perform a sequence of generation, filtering and Parameter-Efficient Fine-Tuning steps to create a robust and efficient classifier. Experimental results show that our approach leads to competitive results on multiple text classification datasets.
The mixing of two or more languages is called Code-Mixing (CM). CM is a social norm in multilingual societies. Neural Language Models (NLMs) like transformers have been effective on many NLP tasks. However, NLM for CM is an under-explored area. Though transformers are capable and powerful, they cannot always encode positional information since they are non-recurrent. Therefore, to enrich word information and incorporate positional information, positional encoding is defined. We hypothesize that Switching Points (SPs), i.e., junctions in the text where the language switches (L1 -> L2 or L2 -> L1), pose a challenge for CM Language Models (LMs), and hence give special emphasis to SPs in the modeling process. We experiment with several positional encoding mechanisms and show that rotatory positional encodings along with switching point information yield the best results.We introduce CONFLATOR: a neural language modeling approach for code-mixed languages. CONFLATOR tries to learn to emphasize switching points using smarter positional encoding, both at unigram and bigram levels. CONFLATOR outperforms the state-of-the-art on two tasks based on code-mixed Hindi and English (Hinglish): (i) sentiment analysis and (ii) machine translation.
Word embeddings, i.e., semantically meaningful vector representation of words, are largely influenced by the distributional hypothesis You shall know a word by the company it keeps (Harris, 1954), whereas modern prediction- based neural network embeddings rely on de- sign choices and hyperparameter optimization. Word embeddings like Word2Vec, GloVe etc. well capture the contextuality and real-world analogies but contemporary convolution-based image embeddings such as VGGNet, AlexNet, etc. do not capture contextual knowledge. The popular king-queen analogy does not hold true for most commonly used vision embeddings. In this paper, we introduce a pre-trained joint embedding (JE), named IMAGINATOR, trained on 21K distinct image objects. JE is a way to encode multimodal data into a vec- tor space where the text modality serves as the grounding key, which the complementary modality (in this case, the image) is anchored with. IMAGINATOR encapsulates three in- dividual representations: (i) object-object co- location, (ii) word-object co-location, and (iii) word-object correlation. These three ways cap- ture complementary aspects of the two modal- ities which are further combined to obtain the final object-word JEs. Generated JEs are intrinsically evaluated to assess how well they capture the contextual- ity and real-world analogies. We also evalu- ate pre-trained IMAGINATOR JEs on three downstream tasks: (i) image captioning, (ii) Im- age2Tweet, and (iii) text-based image retrieval. IMAGINATOR establishes a new standard on the aforementioned downstream tasks by out- performing the current SoTA on all the selected tasks. The code is available at https:// github.com/varunakk/IMAGINATOR.
With the advent of social media, we have seen a proliferation of data and public discourse. Unfortunately, this includes offensive content as well. The problem is exacerbated due to the sheer number of languages spoken on these platforms and the multiple other modalities used for sharing offensive content (images, gifs, videos and more). In this paper, we propose a multilingual ensemble-based model that can identify offensive content targeted against an individual (or group) in low resource Dravidian language. Our model is able to handle code-mixed data as well as instances where the script used is mixed (for instance, Tamil and Latin). Our solution ranked number one for the Malayalam dataset and ranked 4th and 5th for Tamil and Kannada, respectively.
Image Captioning as a task that has seen major updates over time. In recent methods, visual-linguistic grounding of the image-text pair is leveraged. This includes either generating the textual description of the objects and entities present within the image in constrained manner, or generating detailed description of these entities as a paragraph. But there is still a long way to go towards being able to generate text that is not only semantically richer, but also contains real world knowledge in it. This is the motivation behind exploring image2tweet generation through the lens of existing image-captioning approaches. At the same time, there is little research in image captioning in Indian languages like Hindi. In this paper, we release Hindi and English datasets for the task of tweet generation given an image. The aim is to generate a specialized text like a tweet, that is not a direct result of visual-linguistic grounding that is usually leveraged in similar tasks, but conveys a message that factors-in not only the visual content of the image, but also additional real world contextual information associated with the event described within the image as closely as possible. Further, We provide baseline DL models on our data and invite researchers to build more sophisticated systems for the problem.
Contending hate speech in social media is one of the most challenging social problems of our time. There are various types of anti-social behavior in social media. Foremost of them is aggressive behavior, which is causing many social issues such as affecting the social lives and mental health of social media users. In this paper, we propose an end-to-end ensemble-based architecture to automatically identify and classify aggressive tweets. Tweets are classified into three categories - Covertly Aggressive, Overtly Aggressive, and Non-Aggressive. The proposed architecture is an ensemble of smaller subnetworks that are able to characterize the feature embeddings effectively. We demonstrate qualitatively that each of the smaller subnetworks is able to learn unique features. Our best model is an ensemble of Capsule Networks and results in a 65.2% F1 score on the Facebook test set, which results in a performance gain of 0.95% over the TRAC-2018 winners. The code and the model weights are publicly available at https://github.com/parthpatwa/Hater-O-Genius-Aggression-Classification-using-Capsule-Networks.
In this paper, we present the results of the SemEval-2020 Task 9 on Sentiment Analysis of Code-Mixed Tweets (SentiMix 2020). We also release and describe our Hinglish (Hindi-English)and Spanglish (Spanish-English) corpora annotated with word-level language identification and sentence-level sentiment labels. These corpora are comprised of 20K and 19K examples, respectively. The sentiment labels are - Positive, Negative, and Neutral. SentiMix attracted 89 submissions in total including 61 teams that participated in the Hinglish contest and 28 submitted systems to the Spanglish competition. The best performance achieved was 75.0% F1 score for Hinglish and 80.6% F1 for Spanglish. We observe that BERT-like models and ensemble methods are the most common and successful approaches among the participants.
In recent times, the focus of the NLP community has increased towards offensive language, aggression, and hate-speech detection. This paper presents our system for TRAC-2 shared task on “Aggression Identification” (sub-task A) and “Misogynistic Aggression Identification” (sub-task B). The data for this shared task is provided in three different languages - English, Hindi, and Bengali. Each data instance is annotated into one of the three aggression classes - Not Aggressive, Covertly Aggressive, Overtly Aggressive, as well as one of the two misogyny classes - Gendered and Non-Gendered. We propose an end-to-end neural model using attention on top of BERT that incorporates a multi-task learning paradigm to address both the sub-tasks simultaneously. Our team, “na14”, scored 0.8579 weighted F1-measure on the English sub-task B and secured 3rd rank out of 15 teams for the task. The code and the model weights are publicly available at https://github.com/NiloofarSafi/TRAC-2. Keywords: Aggression, Misogyny, Abusive Language, Hate-Speech Detection, BERT, NLP, Neural Networks, Social Media