Naama Zwerdling


2024

pdf
From Zero to Hero: Cold-Start Anomaly Detection
Tal Reiss | George Kour | Naama Zwerdling | Ateret Anaby Tavor | Yedid Hoshen
Findings of the Association for Computational Linguistics: ACL 2024

2023

pdf
Unveiling Safety Vulnerabilities of Large Language Models
George Kour | Marcel Zalmanovici | Naama Zwerdling | Esther Goldbraich | Ora Fandina | Ateret Anaby Tavor | Orna Raz | Eitan Farchi
Proceedings of the Third Workshop on Natural Language Generation, Evaluation, and Metrics (GEM)

As large language models become more prevalent, their possible harmful or inappropriate responses are a cause for concern. This paper introduces a unique dataset containing adversarial examples in the form of questions, we call AttaQ, designed to provoke such harmful or inappropriate responses. We assess the efficacy of our dataset by analyzing the vulnerabilities of various models when subjected to it. Additionally, we introduce a novel automatic approach for identifying and naming vulnerable semantic regions — input semantic areas for which the model is likely to produce harmful outputs. This is achieved through the application of specialized clustering techniques that consider both the semantic similarity of the input attacks and the harmfulness of the model’s responses.Automatically identifying vulnerable semantic regions enhances the evaluation of model weaknesses, facilitating targeted improvements to its safety mechanisms and overall reliability.

2020

pdf
Balancing via Generation for Multi-Class Text Classification Improvement
Naama Tepper | Esther Goldbraich | Naama Zwerdling | George Kour | Ateret Anaby Tavor | Boaz Carmeli
Findings of the Association for Computational Linguistics: EMNLP 2020

Data balancing is a known technique for improving the performance of classification tasks. In this work we define a novel balancing-viageneration framework termed BalaGen. BalaGen consists of a flexible balancing policy coupled with a text generation mechanism. Combined, these two techniques can be used to augment a dataset for more balanced distribution. We evaluate BalaGen on three publicly available semantic utterance classification (SUC) datasets. One of these is a new COVID-19 Q&A dataset published here for the first time. Our work demonstrates that optimal balancing policies can significantly improve classifier performance, while augmenting just part of the classes and under-sampling others. Furthermore, capitalizing on the advantages of balancing, we show its usefulness in all relevant BalaGen framework components. We validate the superiority of BalaGen on ten semantic utterance datasets taken from real-life goaloriented dialogue systems. Based on our results we encourage using data balancing prior to training for text classification tasks.

2014

pdf bib
Claims on demand – an initial demonstration of a system for automatic detection and polarity identification of context dependent claims in massive corpora
Noam Slonim | Ehud Aharoni | Carlos Alzate | Roy Bar-Haim | Yonatan Bilu | Lena Dankin | Iris Eiron | Daniel Hershcovich | Shay Hummel | Mitesh Khapra | Tamar Lavee | Ran Levy | Paul Matchen | Anatoly Polnarov | Vikas Raykar | Ruty Rinott | Amrita Saha | Naama Zwerdling | David Konopnicki | Dan Gutfreund
Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: System Demonstrations