Muxi Diao
2024
DolphCoder: Echo-Locating Code Large Language Models with Diverse and Multi-Objective Instruction Tuning
Yejie Wang
|
Keqing He
|
Guanting Dong
|
Pei Wang
|
Weihao Zeng
|
Muxi Diao
|
Weiran Xu
|
Jingang Wang
|
Mengdi Zhang
|
Xunliang Cai
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Code Large Language Models (Code LLMs) have demonstrated outstanding performance in code-related tasks. Various instruction finetuning approaches have been proposed to boost the code generation performance of pre-trained Code LLMs. In this paper, we introduce a diverse instruction model DolphCoder with self-evaluating for code generation. It learns diverse instruction targets and combines a code evaluation objective to enhance its code generation ability. Our model achieves superior performance on the HumanEval and MBPP benchmarks, demonstrating new insights for future code instruction tuning work. Our key findings are: (1) Augmenting more diverse responses with more distinct reasoning paths increases the code capability of LLMs. (2) Improving one’s ability to evaluate the correctness of code also enhances their ability to create it.
How Do Your Code LLMs perform? Empowering Code Instruction Tuning with Really Good Data
Yejie Wang
|
Keqing He
|
Dayuan Fu
|
Zhuoma GongQue
|
Heyang Xu
|
Yanxu Chen
|
Zhexu Wang
|
Yujia Fu
|
Guanting Dong
|
Muxi Diao
|
Jingang Wang
|
Mengdi Zhang
|
Xunliang Cai
|
Weiran Xu
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Recently, there has been a growing interest in studying how to construct better code instruction tuning data. However, we observe Code models trained with these datasets exhibit high performance on HumanEval but perform worse on other benchmarks such as LiveCodeBench. Upon further investigation, we find that many datasets suffer from severe data leakage. After cleaning up most of the leaked data, some well-known high-quality datasets perform poorly. This discovery reveals a new challenge: identifying which dataset genuinely qualify as high-quality code instruction data. To address this, we propose an efficient code data pruning strategy for selecting good samples. Our approach is based on three dimensions: instruction complexity, response quality, and instruction diversity. Based on our selected data, we present XCoder, a family of models finetuned from LLaMA3. Our experiments show Xcoder achieves new state-of-the-art performance using fewer training data, which verify the effectiveness of our data strategy. Moreover, we perform a comprehensive analysis on the data composition and find existing code datasets have different characteristics according to their construction methods, which provide new insights for future code LLMs.
Search
Co-authors
- Dayuan Fu 1
- Guanting Dong 2
- Heyang Xu 1
- Jingang Wang 2
- Keqing He 2
- show all...