Michael Tang


2024

pdf
Referral Augmentation for Zero-Shot Information Retrieval
Michael Tang | Shunyu Yao | John Yang | Karthik Narasimhan
Findings of the Association for Computational Linguistics: ACL 2024

We propose Referral-Augmented Retrieval (RAR), a simple technique that concatenates document indices with referrals: text from other documents that cite or link to the given document. We find that RAR provides significant performance gains for tasks across paper retrieval, entity retrieval, and open-domain question-answering in both zero-shot and in-domain (e.g., fine-tuned) settings. We examine how RAR provides especially strong improvements on more structured tasks, and can greatly outperform generative text expansion techniques such as DocT5Query and Query2Doc, with a 37% and 21% absolute improvement on ACL paper retrieval, respectively. We also compare three ways to aggregate referrals for RAR. Overall, we believe RAR can help revive and re-contextualize the classic information retrieval idea of using anchor texts to improve the representations of documents in a wide variety of corpuses in the age of neural retrieval.