Michael Ogezi


2024

pdf
Semantically-Prompted Language Models Improve Visual Descriptions
Michael Ogezi | Bradley Hauer | Grzegorz Kondrak
Findings of the Association for Computational Linguistics: NAACL 2024

Language-vision models like CLIP have made significant strides in vision tasks, such as zero-shot image classification (ZSIC). However, generating specific and expressive visual descriptions remains challenging; descriptions produced by current methods are often ambiguous and lacking in granularity. To tackle these issues, we propose V-GLOSS: Visual Glosses, a novel method built upon two key ideas. The first is Semantic Prompting, which conditions a language model on structured semantic knowledge. The second is a new contrastive algorithm that elicits fine-grained distinctions between similar concepts. With both ideas, we demonstrate that V-GLOSS improves visual descriptions and achieves strong results in the zero-shot setting on general and fine-grained image-classification datasets, including ImageNet, STL-10, FGVC Aircraft, and Flowers 102. Moreover, these descriptive capabilities contribute to enhancing image-generation performance. Finally, we introduce a quality-tested silver dataset with descriptions generated with V-GLOSS for all ImageNet classes.

2023

pdf
UAlberta at SemEval-2023 Task 1: Context Augmentation and Translation for Multilingual Visual Word Sense Disambiguation
Michael Ogezi | Bradley Hauer | Talgat Omarov | Ning Shi | Grzegorz Kondrak
Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)

We describe the systems of the University of Alberta team for the SemEval-2023 Visual Word Sense Disambiguation (V-WSD) Task. We present a novel algorithm that leverages glosses retrieved from BabelNet, in combination with text and image encoders. Furthermore, we compare language-specific encoders against the application of English encoders to translated texts. As the contexts given in the task datasets are extremely short, we also experiment with augmenting these contexts with descriptions generated by a language model. This yields substantial improvements in accuracy. We describe and evaluate additional V-WSD methods which use image generation and text-conditioned image segmentation. Some of our experimental results exceed those of our official submissions on the test set. Our code is publicly available at https://github.com/UAlberta-NLP/v-wsd.