Mianqiu Huang
2024
Calibrating the Confidence of Large Language Models by Eliciting Fidelity
Mozhi Zhang
|
Mianqiu Huang
|
Rundong Shi
|
Linsen Guo
|
Chong Peng
|
Peng Yan
|
Yaqian Zhou
|
Xipeng Qiu
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Large language models optimized with techniques like RLHF have achieved good alignment in being helpful and harmless. However, post-alignment, these language models often exhibit overconfidence, where the expressed confidence does not accurately calibrate with their correctness rate. In this paper, we decompose the language model confidence into the Uncertainty about the question and the Fidelity to the answer generated by language models. Then, we propose a plug-and-play method, UF Calibration, to estimate the confidence of language models. Our method has shown good calibration performance by conducting experiments with 6 RLHF-LMs on four MCQA datasets. Moreover, we propose two novel metrics, IPR and CE, to evaluate the calibration of the model, and we have conducted a detailed discussion on Truly Well-Calibrated Confidence for large language models. Our method could serve as a strong baseline, and we hope that this work will provide some insights into the model confidence calibration.
Memorize Step by Step: Efficient Long-Context Prefilling with Incremental Memory and Decremental Chunk
Zhiyuan Zeng
|
Qipeng Guo
|
Xiaoran Liu
|
Zhangyue Yin
|
Wentao Shu
|
Mianqiu Huang
|
Bo Wang
|
Yunhua Zhou
|
Linlin Li
|
Qun Liu
|
Xipeng Qiu
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
The evolution of Large Language Models (LLMs) has led to significant advancements, with models like Claude and Gemini capable of processing contexts up to 1 million tokens. However, efficiently handling long sequences remains challenging, particularly during the prefilling stage when input lengths exceed GPU memory capacity. Traditional methods often segment sequence into chunks and compress them iteratively with fixed-size memory. However, our empirical analysis shows that the fixed-size memory results in wasted computational and GPU memory resources. Therefore, we introduces Incremental Memory (IM), a method that starts with a small memory size and gradually increases it, optimizing computational efficiency. Additionally, we propose Decremental Chunk based on Incremental Memory (IMDC), which reduces chunk size while increasing memory size, ensuring stable and lower GPU memory usage. Our experiments demonstrate that IMDC is consistently faster (1.45x) and reduces GPU memory consumption by 23.3% compared to fixed-size memory, achieving comparable performance on the LongBench Benchmark.
Search
Co-authors
- Bo Wang 1
- Chong Peng 1
- Linlin Li 1
- Linsen Guo 1
- Mozhi Zhang 1
- show all...