While preliminary findings indicate that multilingual LLMs exhibit reduced bias compared to monolingual ones, a comprehensive understanding of the effect of multilingual training on bias mitigation, is lacking. This study addresses this gap by systematically training six LLMs of identical size (2.6B parameters) and architecture: five monolingual models (English, German, French, Italian, and Spanish) and one multilingual model trained on an equal distribution of data across these languages, all using publicly available data. To ensure robust evaluation, standard bias benchmarks were automatically translated into the five target languages and verified for both translation quality and bias preservation by human annotators. Our results consistently demonstrate that multilingual training effectively mitigates bias. Moreover, we observe that multilingual models achieve not only lower bias but also superior prediction accuracy when compared to monolingual models with the same amount of training data, model architecture, and size.
The adaption of multilingual pre-trained LLMs into eloquent and helpful assistants is essential to facilitate their use across different language regions. In that spirit, we are the first to conduct an extensive study of the performance of multilingual models instruction-tuned on different language compositions on parallel instruction-tuning benchmarks across a selection of the most spoken Indo-European languages. We systematically examine the effects of language and instruction dataset size on a mid-sized and a large, multilingual LLMs by instruction-tuning them on parallel instruction-tuning datasets. Our results demonstrate that instruction-tuning on parallel instead of monolingual corpora benefits cross-lingual instruction following capabilities by up to 9.9%. Furthermore, we show that the Superficial Alignment Hypothesis does not hold in general, as the investigated multilingual 7B parameter model presents a counter-example requiring large-scale instruction-tuning datasets. Finally, we conduct a human annotation study to understand the alignment between human-based and GPT-4-based evaluation within multilingual chat scenarios.
The recent success of large language models (LLMs) has been predominantly driven by curating the training dataset composition, scaling of model architectures and dataset sizes and advancements in pretraining objectives, leaving tokenizer influence as a blind spot.Shedding light on this underexplored area, we conduct a comprehensive study on the influence of tokenizer choice on LLM downstream performance by training 24 mono- and multilingual LLMs at a 2.6B parameter scale, ablating different tokenizer algorithms and parameterizations. Our studies highlight that the tokenizer choice can significantly impact the model’s downstream performance and training costs. In particular, we find that the common tokenizer evaluation metrics fertility and parity are not always predictive of model downstream performance, rendering these metrics a questionable proxy for the model’s downstream performance. Furthermore, we show that multilingual tokenizers trained on the five most frequent European languages require vocabulary size increases of factor three in comparison to English. While English-centric tokenizers have been applied to the training of multi-lingual LLMs in the past, we find that this approach results in a severe downstream performance degradation and additional training costs of up to 68%, due to an inefficient tokenization vocabulary.