This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Building an AI assistant that can seamlessly converse and instruct humans, in a user-centric situated scenario, requires several essential abilities:(1) spatial and temporal understanding of the situated and real-time user scenes,(2) capability of grounding the actively perceived visuals of users to conversation contexts,and (3) conversational reasoning over past utterances to perform just-in-time assistance. However, we currently lack a large-scale benchmark that captures user–assistant interactions with all of the aforementioned features. To this end, we propose SIMMC-VR, an extension of the SIMMC-2.0 dataset, to a video-grounded task-oriented dialog dataset that captures real-world AI-assisted user scenarios in VR.We propose a novel data collection paradigm that involves(1) generating object-centric multimodal dialog flows with egocentric visual streams and visually-grounded templates,and (2) manually paraphrasing the simulated dialogs for naturalness and diversity while preserving multimodal dependencies. To measure meaningful progress in the field, we propose four tasks to address the new challenges in SIMMC-VR, which require complex spatial-temporal dialog reasoning in active egocentric scenes. We benchmark the proposed tasks with strong multimodal models, and highlight the key capabilities that current models lack for future research directions.
Searching troves of videos with textual descriptions is a core multimodal retrieval task. Owing to the lack of a purpose-built dataset for text-to-video retrieval, video captioning datasets have been re-purposed to evaluate models by (1) treating captions as positive matches to their respective videos and (2) assuming all other videos to be negatives. However, this methodology leads to a fundamental flaw during evaluation: since captions are marked as relevant only to their original video, many alternate videos also match the caption, which introduces false-negative caption-video pairs. We show that when these false negatives are corrected, a recent state-of-the-art model gains 25% recall points—a difference that threatens the validity of the benchmark itself. To diagnose and mitigate this issue, we annotate and release 683K additional caption-video pairs. Using these, we recompute effectiveness scores for three models on two standard benchmarks (MSR-VTT and MSVD). We find that (1) the recomputed metrics are up to 25% recall points higher for the best models, (2) these benchmarks are nearing saturation for Recall@10, (3) caption length (generality) is related to the number of positives, and (4) annotation costs can be mitigated through sampling. We recommend retiring these benchmarks in their current form, and we make recommendations for future text-to-video retrieval benchmarks.
Cross-modal contrastive learning has led the recent advances in multimodal retrieval with its simplicity and effectiveness. In this work, however, we reveal that cross-modal contrastive learning suffers from incorrect normalization of the sum retrieval probabilities of each text or video instance. Specifically, we show that many test instances are either over- or under-represented during retrieval, significantly hurting the retrieval performance. To address this problem, we propose Normalized Contrastive Learning (NCL) which utilizes the Sinkhorn-Knopp algorithm to compute the instance-wise biases that properly normalize the sum retrieval probabilities of each instance so that every text and video instance is fairly represented during cross-modal retrieval. Empirical study shows that NCL brings consistent and significant gains in text-video retrieval on different model architectures, with new state-of-the-art multimodal retrieval metrics on the ActivityNet, MSVD, and MSR-VTT datasets without any architecture engineering.
We introduce LifeQA, a benchmark dataset for video question answering that focuses on day-to-day real-life situations. Current video question answering datasets consist of movies and TV shows. However, it is well-known that these visual domains are not representative of our day-to-day lives. Movies and TV shows, for example, benefit from professional camera movements, clean editing, crisp audio recordings, and scripted dialog between professional actors. While these domains provide a large amount of data for training models, their properties make them unsuitable for testing real-life question answering systems. Our dataset, by contrast, consists of video clips that represent only real-life scenarios. We collect 275 such video clips and over 2.3k multiple-choice questions. In this paper, we analyze the challenging but realistic aspects of LifeQA, and we apply several state-of-the-art video question answering models to provide benchmarks for future research. The full dataset is publicly available at https://lit.eecs.umich.edu/lifeqa/.
We introduce a new dataset consisting of natural language interactions annotated with medical family histories, obtained during interactions with a genetic counselor and through crowdsourcing, following a questionnaire created by experts in the domain. We describe the data collection process and the annotations performed by medical professionals, including illness and personal attributes (name, age, gender, family relationships) for the patient and their family members. An initial system that performs argument identification and relation extraction shows promising results – average F-score of 0.87 on complex sentences on the targeted relations.
We introduce a new embedding model to represent movie characters and their interactions in a dialogue by encoding in the same representation the language used by these characters as well as information about the other participants in the dialogue. We evaluate the performance of these new character embeddings on two tasks: (1) character relatedness, using a dataset we introduce consisting of a dense character interaction matrix for 4,378 unique character pairs over 22 hours of dialogue from eighteen movies; and (2) character relation classification, for fine- and coarse-grained relations, as well as sentiment relations. Our experiments show that our model significantly outperforms the traditional Word2Vec continuous bag-of-words and skip-gram models, demonstrating the effectiveness of the character embeddings we introduce. We further show how these embeddings can be used in conjunction with a visual question answering system to improve over previous results.
We propose a new model for speaker naming in movies that leverages visual, textual, and acoustic modalities in an unified optimization framework. To evaluate the performance of our model, we introduce a new dataset consisting of six episodes of the Big Bang Theory TV show and eighteen full movies covering different genres. Our experiments show that our multimodal model significantly outperforms several competitive baselines on the average weighted F-score metric. To demonstrate the effectiveness of our framework, we design an end-to-end memory network model that leverages our speaker naming model and achieves state-of-the-art results on the subtitles task of the MovieQA 2017 Challenge.