Linlin Liu


2023

pdf
Towards Robust Low-Resource Fine-Tuning with Multi-View Compressed Representations
Linlin Liu | Xingxuan Li | Megh Thakkar | Xin Li | Shafiq Joty | Luo Si | Lidong Bing
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Due to the huge amount of parameters, finetuning of pretrained language models (PLMs) is prone to overfitting in the low resource scenarios. In this work, we present a novel method that operates on the hidden representations of a PLM to reduce overfitting. During fine-tuning, our method inserts random autoencoders between the hidden layers of a PLM, which transform activations from the previous layers into multi-view compressed representations before feeding them into the upper layers. The autoencoders are plugged out after fine-tuning, so our method does not add extra parameters or increase computation cost during inference. Our method demonstrates promising performance improvement across a wide range of sequence- and token-level lowresource NLP tasks.

pdf
Is GPT-3 a Good Data Annotator?
Bosheng Ding | Chengwei Qin | Linlin Liu | Yew Ken Chia | Boyang Li | Shafiq Joty | Lidong Bing
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Data annotation is the process of labeling data that could be used to train machine learning models. Having high quality annotation is crucial, as it allows the model to learn the relationship between the input data and the desired output. GPT-3, a large-scale language model developed by OpenAI, has demonstrated im- impressive zero- and few-shot performance on a wide range of NLP tasks. It is therefore natural to wonder whether it can be used to effectively annotate data for NLP tasks. In this paper, we evaluate the performance of GPT-3 as a data annotator by comparing it with traditional data annotation methods and analyzing its output on a range of tasks. Through this analysis, we aim to provide insight into the potential of GPT-3 as a general-purpose data annotator in NLP.

2022

pdf
Towards Multi-Sense Cross-Lingual Alignment of Contextual Embeddings
Linlin Liu | Thien Hai Nguyen | Shafiq Joty | Lidong Bing | Luo Si
Proceedings of the 29th International Conference on Computational Linguistics

Cross-lingual word embeddings (CLWE) have been proven useful in many cross-lingual tasks. However, most existing approaches to learn CLWE including the ones with contextual embeddings are sense agnostic. In this work, we propose a novel framework to align contextual embeddings at the sense level by leveraging cross-lingual signal from bilingual dictionaries only. We operationalize our framework by first proposing a novel sense-aware cross entropy loss to model word senses explicitly. The monolingual ELMo and BERT models pretrained with our sense-aware cross entropy loss demonstrate significant performance improvement for word sense disambiguation tasks. We then propose a sense alignment objective on top of the sense-aware cross entropy loss for cross-lingual model pretraining, and pretrain cross-lingual models for several language pairs (English to German/Spanish/Japanese/Chinese). Compared with the best baseline results, our cross-lingual models achieve 0.52%, 2.09% and 1.29% average performance improvements on zero-shot cross-lingual NER, sentiment classification and XNLI tasks, respectively.

pdf
Enhancing Multilingual Language Model with Massive Multilingual Knowledge Triples
Linlin Liu | Xin Li | Ruidan He | Lidong Bing | Shafiq Joty | Luo Si
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Knowledge-enhanced language representation learning has shown promising results across various knowledge-intensive NLP tasks. However, prior methods are limited in efficient utilization of multilingual knowledge graph (KG) data for language model (LM) pretraining. They often train LMs with KGs in indirect ways, relying on extra entity/relation embeddings to facilitate knowledge injection. In this work, we explore methods to make better use of the multilingual annotation and language agnostic property of KG triples, and present novel knowledge based multilingual language models (KMLMs) trained directly on the knowledge triples. We first generate a large amount of multilingual synthetic sentences using the Wikidata KG triples. Then based on the intra- and inter-sentence structures of the generated data, we design pretraining tasks to enable the LMs to not only memorize the factual knowledge but also learn useful logical patterns. Our pretrained KMLMs demonstrate significant performance improvements on a wide range of knowledge-intensive cross-lingual tasks, including named entity recognition (NER), factual knowledge retrieval, relation classification, and a newly designed logical reasoning task.

2021

pdf
On the Effectiveness of Adapter-based Tuning for Pretrained Language Model Adaptation
Ruidan He | Linlin Liu | Hai Ye | Qingyu Tan | Bosheng Ding | Liying Cheng | Jiawei Low | Lidong Bing | Luo Si
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Adapter-based tuning has recently arisen as an alternative to fine-tuning. It works by adding light-weight adapter modules to a pretrained language model (PrLM) and only updating the parameters of adapter modules when learning on a downstream task. As such, it adds only a few trainable parameters per new task, allowing a high degree of parameter sharing. Prior studies have shown that adapter-based tuning often achieves comparable results to fine-tuning. However, existing work only focuses on the parameter-efficient aspect of adapter-based tuning while lacking further investigation on its effectiveness. In this paper, we study the latter. We first show that adapter-based tuning better mitigates forgetting issues than fine-tuning since it yields representations with less deviation from those generated by the initial PrLM. We then empirically compare the two tuning methods on several downstream NLP tasks and settings. We demonstrate that 1) adapter-based tuning outperforms fine-tuning on low-resource and cross-lingual tasks; 2) it is more robust to overfitting and less sensitive to changes in learning rates.

pdf
MulDA: A Multilingual Data Augmentation Framework for Low-Resource Cross-Lingual NER
Linlin Liu | Bosheng Ding | Lidong Bing | Shafiq Joty | Luo Si | Chunyan Miao
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Named Entity Recognition (NER) for low-resource languages is a both practical and challenging research problem. This paper addresses zero-shot transfer for cross-lingual NER, especially when the amount of source-language training data is also limited. The paper first proposes a simple but effective labeled sequence translation method to translate source-language training data to target languages and avoids problems such as word order change and entity span determination. With the source-language data as well as the translated data, a generation-based multilingual data augmentation method is introduced to further increase diversity by generating synthetic labeled data in multiple languages. These augmented data enable the language model based NER models to generalize better with both the language-specific features from the target-language synthetic data and the language-independent features from multilingual synthetic data. An extensive set of experiments were conducted to demonstrate encouraging cross-lingual transfer performance of the new research on a wide variety of target languages.

2020

pdf
DAGA: Data Augmentation with a Generation Approach for Low-resource Tagging Tasks
Bosheng Ding | Linlin Liu | Lidong Bing | Canasai Kruengkrai | Thien Hai Nguyen | Shafiq Joty | Luo Si | Chunyan Miao
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Data augmentation techniques have been widely used to improve machine learning performance as they facilitate generalization. In this work, we propose a novel augmentation method to generate high quality synthetic data for low-resource tagging tasks with language models trained on the linearized labeled sentences. Our method is applicable to both supervised and semi-supervised settings. For the supervised settings, we conduct extensive experiments on named entity recognition (NER), part of speech (POS) tagging and end-to-end target based sentiment analysis (E2E-TBSA) tasks. For the semi-supervised settings, we evaluate our method on the NER task under the conditions of given unlabeled data only and unlabeled data plus a knowledge base. The results show that our method can consistently outperform the baselines, particularly when the given gold training data are less.

2019

pdf
Hierarchical Pointer Net Parsing
Linlin Liu | Xiang Lin | Shafiq Joty | Simeng Han | Lidong Bing
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Transition-based top-down parsing with pointer networks has achieved state-of-the-art results in multiple parsing tasks, while having a linear time complexity. However, the decoder of these parsers has a sequential structure, which does not yield the most appropriate inductive bias for deriving tree structures. In this paper, we propose hierarchical pointer network parsers, and apply them to dependency and sentence-level discourse parsing tasks. Our results on standard benchmark datasets demonstrate the effectiveness of our approach, outperforming existing methods and setting a new state-of-the-art.