This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Recent generalist vision-language models (VLMs) have demonstrated impressive reasoning capabilities across diverse multimodal tasks. However, these models still struggle with fine-grained object-level understanding and grounding. In terms of modeling, existing VLMs implicitly align text tokens with image patch tokens, which is ineffective for embedding alignment at the same granularity and inevitably introduces noisy spurious background features. Additionally, these models struggle when generalizing to unseen visual concepts and may not be reliable for domain-specific tasks without further fine-tuning. To address these limitations, we propose a novel method to prompt large language models with in-context visual object vectors, thereby enabling controllable object-level reasoning. This eliminates the necessity of fusing a lengthy array of image patch features and significantly speeds up training. Furthermore, we propose region-level retrieval using our object representations, facilitating rapid adaptation to new objects without additional training. Our experiments reveal that our method achieves competitive referring object classification and captioning performance, while also offering zero-shot generalization and robustness to visually challenging contexts.
Supervised contrastive learning (SCL) frameworks treat each class as independent and thus consider all classes to be equally important. This neglects the common scenario in which label hierarchy exists, where fine-grained classes under the same category show more similarity than very different ones. This paper introduces a family of Label-Aware SCL methods (LA-SCL) that incorporates hierarchical information to SCL by leveraging similarities between classes, resulting in creating a more well-structured and discriminative feature space. This is achieved by first adjusting the distance between instances based on measures of the proximity of their classes with the scaled instance-instance-wise contrastive. An additional instance-center-wise contrastive is introduced to move within-class examples closer to their centers, which are represented by a set of learnable label parameters. The learned label parameters can be directly used as a nearest neighbor classifier without further finetuning. In this way, a better feature representation is generated with improvements of intra-cluster compactness and inter-cluster separation. Experiments on three datasets show that the proposed LA-SCL works well on text classification of distinguishing a single label among multi-labels, outperforming the baseline supervised approaches. Our code is publicly available 1.
Accurately simulating human opinion dynamics is crucial for understanding a variety of societal phenomena, including polarization and the spread of misinformation. However, the agent-based models (ABMs) commonly used for such simulations often over-simplify human behavior. We propose a new approach to simulating opinion dynamics based on populations of Large Language Models (LLMs). Our findings reveal a strong inherent bias in LLM agents towards producing accurate information, leading simulated agents to consensus in line with scientific reality. This bias limits their utility for understanding resistance to consensus views on issues like climate change. After inducing confirmation bias through prompt engineering, however, we observed opinion fragmentation in line with existing agent-based modeling and opinion dynamics research. These insights highlight the promise and limitations of LLM agents in this domain and suggest a path forward: refining LLMs with real-world discourse to better simulate the evolution of human beliefs.
In the rapidly evolving field of large language models (LLMs), data augmentation (DA) has emerged as a pivotal technique for enhancing model performance by diversifying training examples without the need for additional data collection. This survey explores the transformative impact of LLMs on DA, particularly addressing the unique challenges and opportunities they present in the context of natural language processing (NLP) and beyond. From both data and learning perspectives, we examine various strategies that utilize LLMs for data augmentation, including a novel exploration of learning paradigms where LLM-generated data is used for diverse forms of further training. Additionally, this paper highlights the primary open challenges faced in this domain, ranging from controllable data augmentation to multi-modal data augmentation. This survey highlights a paradigm shift introduced by LLMs in DA, and aims to serve as a comprehensive guide for researchers and practitioners.
Translating culture-related content is vital for effective cross-cultural communication. However, many culture-specific items (CSIs) often lack literal translation across languages, making it challenging to collect high-quality, diverse parallel corpora with CSI annotations. This difficulty hinders the analysis of cultural awareness of machine translation (MT) systems, including traditional neural MT and the emerging MT paradigm using large language models (LLM). To address this gap, we introduce a novel parallel corpus, enriched with CSI annotations in 6 language pairs for investigating Cultural-Aware Machine Translation—CAMT. Furthermore, we design two evaluation metrics to assess CSI translations, focusing on their pragmatic translation quality. Our findings show the superior ability of LLMs over neural MTs in leveraging external cultural knowledge for translating CSIs, especially those lacking translations in the target culture.
Creating human-like large language model (LLM) agents is crucial for faithful social simulation. Having LLMs role-play based on demographic information sometimes improves human likeness but often does not. This study assessed whether LLM alignment with human behavior can be improved by integrating information from empirically-derived human belief networks. Using data from a human survey, we estimated a belief network encompassing 64 topics loading on nine non-overlapping latent factors. We then seeded LLM-based agents with an opinion on one topic, and assessed the alignment of its expressed opinions on remaining test topics with corresponding human data. Role-playing based on demographic information alone did not align LLM and human opinions, but seeding the agent with a single belief greatly improved alignment for topics related in the belief network, and not for topics outside the network. These results suggest a novel path for human-LLM belief alignment in work seeking to simulate and understand patterns of belief distributions in society.
Large language models (LLM) have recently shown the extraordinary ability to perform unseen tasks based on few-shot examples provided as text, also known as in-context learning (ICL). While recent works have attempted to understand the mechanisms driving ICL, few have explored training strategies that incentivize these models to generalize to multiple tasks. Multi-task learning (MTL) for generalist models is a promising direction that offers transfer learning potential, enabling large parameterized models to be trained from simpler, related tasks. In this work, we investigate the combination of MTL with ICL to build models that efficiently learn tasks while being robust to out-of-distribution examples. We propose several effective curriculum learning strategies that allow ICL models to achieve higher data efficiency and more stable convergence. Our experiments reveal that ICL models can effectively learn difficult tasks by training on progressively harder tasks while mixing in prior tasks, denoted as mixed curriculum in this work.
Recent breakthroughs in scale have enabled the emergence of powerful generative language models, and the ability to fine-tune these models on various tasks by casting them into prompts or instructions. In this landscape, the problem of Unsupervised Domain Adaptation (UDA), or the problem of leveraging knowledge from a labeled source domain to an unlabeled target domain, has been left behind, with recent UDA methods still addressing discriminative classification. In particular, two popular UDA approaches, involving Continued Pre-Training (CPT) and learning domain invariant representations, have been under-explored in the generative setting, signaling a gap. In this work, we evaluate the utility of CPT for generative UDA. We first perform an empirical evaluation to measure the trade-offs between CPT and strong methods promoting domain invariance. We further evaluate how well the benefits of CPT extend to different architectures, tuning methods and data regimes. We then motivate the use of CPT by studying to what degree it benefits classification performance on the target domain. Finally, we attempt to understand the mechanism behind which CPT improves classification performance on the unlabeled target domain. Our findings suggest that a implicitly learns the downstream task while predicting masked words informative to that task. Our work connects the body of UDA research with that of instruction tuning, enabling an initial step towards a wider applicability of modern language models.
Subword tokenization schemes are the dominant technique used in current NLP models. However, such schemes can be rigid and tokenizers built on one corpus may not adapt well to other parallel corpora. It has also been observed that in multilingual corpora, subword tokenization schemes oversegment low-resource languages, leading to a drop in translation performance. An alternative to subword tokenizers is byte-based tokenization, i.e., tokenization into byte sequences using the UTF-8 encoding scheme. Byte tokens often represent inputs at a sub-character granularity, i.e., one character can be represented by a span of byte tokens. This results in much longer byte sequences that are hard to interpret without aggregating local information from multiple byte tokens. In this paper, we propose a Local Byte Fusion (LOBEF) method for byte-based machine translation—utilizing byte n-gram and word boundaries—to aggregate local semantic information. Extensive experiments on multilingual translation, zero-shot cross-lingual transfer, and domain adaptation reveal a consistent improvement over vanilla byte-based models. Further analysis also indicates that our byte-based models are parameter-efficient and perform competitive to subword models.
Recent generative approaches for multi-hop question answering (QA) utilize the fusion-in-decoder method to generate a single sequence output which includes both a final answer and a reasoning path taken to arrive at that answer, such as passage titles and key facts from those passages. While such models can lead to better interpretability and high quantitative scores, they often have difficulty accurately identifying the passages corresponding to key entities in the context, resulting in incorrect passage hops and a lack of faithfulness in the reasoning path. To address this, we propose a single-sequence prediction method over a local reasoning graph that integrates a graph structure connecting key entities in each context passage to relevant subsequent passages for each question. We use a graph neural network to encode this graph structure and fuse the resulting representations into the entity representations of the model. Our experiments show significant improvements in answer exact-match/F1 scores and faithfulness of grounding in the reasoning path on the HotpotQA dataset and achieve state-of-the-art numbers on the Musique dataset with only up to a 4% increase in model parameters.
Out-of-distribution (OOD) detection is a critical task for reliable predictions over text. Fine-tuning with pre-trained language models has been a de facto procedure to derive OOD detectors with respect to in-distribution (ID) data. Despite its common use, the understanding of the role of fine-tuning and its necessity for OOD detection is largely unexplored. In this paper, we raise the question: is fine-tuning necessary for OOD detection? We present a study investigating the efficacy of directly leveraging pre-trained language models for OOD detection, without any model fine-tuning on the ID data. We compare the approach with several competitive fine-tuning objectives, and offer new insights under various types of distributional shifts. Extensive experiments demonstrate near-perfect OOD detection performance (with 0% FPR95 in many cases), strongly outperforming the fine-tuned counterpart.
Recent years have witnessed impressive results of pre-trained vision-language models on knowledge-intensive tasks such as visual question answering (VQA). Despite the recent advances in VQA, existing methods mainly adopt a discriminative formulation that predicts answers within a pre-defined label set, leading to easy overfitting on low-resource domains (e.g., medicine) and poor generalization under domain shift to another dataset. To tackle this limitation, we propose a novel generative model enhanced by multimodal prompt retrieval (MPR) that integrates retrieved prompts and multimodal features to generate answers in free text. Our generative model enables rapid zero-shot dataset adaptation to unseen data distributions and open-set answer labels across datasets. Our experiments on medical VQA tasks show that MPR outperforms its non-retrieval counterpart by up to 30% accuracy points in a few-shot domain adaptation setting.
Over the last few years, there has been a move towards data curation for multilingual task-oriented dialogue (ToD) systems that can serve people speaking different languages. However, existing multilingual ToD datasets either have a limited coverage of languages due to the high cost of data curation, or ignore the fact that dialogue entities barely exist in countries speaking these languages. To tackle these limitations, we introduce a novel data curation method that generates GlobalWoZ — a large-scale multilingual ToD dataset globalized from an English ToD dataset for three unexplored use cases of multilingual ToD systems. Our method is based on translating dialogue templates and filling them with local entities in the target-language countries. Besides, we extend the coverage of target languages to 20 languages. We will release our dataset and a set of strong baselines to encourage research on multilingual ToD systems for real use cases.
It has been shown that machine translation models usually generate poor translations for named entities that are infrequent in the training corpus. Earlier named entity translation methods mainly focus on phonetic transliteration, which ignores the sentence context for translation and is limited in domain and language coverage. To address this limitation, we propose DEEP, a DEnoising Entity Pre-training method that leverages large amounts of monolingual data and a knowledge base to improve named entity translation accuracy within sentences. Besides, we investigate a multi-task learning strategy that finetunes a pre-trained neural machine translation model on both entity-augmented monolingual data and parallel data to further improve entity translation. Experimental results on three language pairs demonstrate that DEEP results in significant improvements over strong denoising auto-encoding baselines, with a gain of up to 1.3 BLEU and up to 9.2 entity accuracy points for English-Russian translation.
Word translation without parallel corpora has become feasible, rivaling the performance of supervised methods. Recent findings have shown the improvement in accuracy and robustness of unsupervised word translation (UWT) by utilizing visual observations, which are universal representations across languages.Our work investigates the potential of using not only visual observations but also pretrained language-image models for enabling a more efficient and robust UWT. We develop a novel UWT method dubbed Word Alignment using Language-Image Pretraining (WALIP), leveraging visual observations via the shared image-text embedding space of CLIPs (Radford et al., 2021). WALIP has a two-step procedure. First, we retrieve word pairs with high confidences of similarity, computed using our proposed image-based fingerprints, which define the initial pivot for the alignment.Second, we apply our robust Procrustes algorithm to estimate the linear mapping between two embedding spaces, which iteratively corrects and refines the estimated alignment.Our extensive experiments show that WALIP improves upon the state-of-the-art performance of bilingual word alignment for a few language pairs across different word embeddings and displays great robustness to the dissimilarity of language pairs or training corpora for two word embeddings.
While the NLP community is generally aware of resource disparities among languages, we lack research that quantifies the extent and types of such disparity. Prior surveys estimating the availability of resources based on the number of datasets can be misleading as dataset quality varies: many datasets are automatically induced or translated from English data. To provide a more comprehensive picture of language resources, we examine the characteristics of 156 publicly available NLP datasets. We manually annotate how they are created, including input text and label sources and tools used to build them, and what they study, tasks they address and motivations for their creation. After quantifying the qualitative NLP resource gap across languages, we discuss how to improve data collection in low-resource languages. We survey language-proficient NLP researchers and crowd workers per language, finding that their estimated availability correlates with dataset availability. Through crowdsourcing experiments, we identify strategies for collecting high-quality multilingual data on the Mechanical Turk platform. We conclude by making macro and micro-level suggestions to the NLP community and individual researchers for future multilingual data development.
We present the results of the Workshop on Multilingual Information Access (MIA) 2022 Shared Task, evaluating cross-lingual open-retrieval question answering (QA) systems in 16 typologically diverse languages. In this task, we adapted two large-scale cross-lingual open-retrieval QA datasets in 14 typologically diverse languages, and newly annotated open-retrieval QA data in 2 underrepresented languages: Tagalog and Tamil. Four teams submitted their systems. The best constrained system uses entity-aware contextualized representations for document retrieval, thereby achieving an average F1 score of 31.6, which is 4.1 F1 absolute higher than the challenging baseline. The best system obtains particularly significant improvements in Tamil (20.8 F1), whereas most of the other systems yield nearly zero scores. The best unconstrained system achieves 32.2 F1, outperforming our baseline by 4.5 points.
Reproducible benchmarks are crucial in driving progress of machine translation research. However, existing machine translation benchmarks have been mostly limited to high-resource or well-represented languages. Despite an increasing interest in low-resource machine translation, there are no standardized reproducible benchmarks for many African languages, many of which are used by millions of speakers but have less digitized textual data. To tackle these challenges, we propose AfroMT, a standardized, clean, and reproducible machine translation benchmark for eight widely spoken African languages. We also develop a suite of analysis tools for system diagnosis taking into account the unique properties of these languages. Furthermore, we explore the newly considered case of low-resource focused pretraining and develop two novel data augmentation-based strategies, leveraging word-level alignment information and pseudo-monolingual data for pretraining multilingual sequence-to-sequence models. We demonstrate significant improvements when pretraining on 11 languages, with gains of up to 2 BLEU points over strong baselines. We also show gains of up to 12 BLEU points over cross-lingual transfer baselines in data-constrained scenarios. All code and pretrained models will be released as further steps towards larger reproducible benchmarks for African languages.
Machine learning has brought striking advances in multilingual natural language processing capabilities over the past year. For example, the latest techniques have improved the state-of-the-art performance on the XTREME multilingual benchmark by more than 13 points. While a sizeable gap to human-level performance remains, improvements have been easier to achieve in some tasks than in others. This paper analyzes the current state of cross-lingual transfer learning and summarizes some lessons learned. In order to catalyze meaningful progress, we extend XTREME to XTREME-R, which consists of an improved set of ten natural language understanding tasks, including challenging language-agnostic retrieval tasks, and covers 50 typologically diverse languages. In addition, we provide a massively multilingual diagnostic suite and fine-grained multi-dataset evaluation capabilities through an interactive public leaderboard to gain a better understanding of such models.
This paper studies zero-shot cross-lingual transfer of vision-language models. Specifically, we focus on multilingual text-to-video search and propose a Transformer-based model that learns contextual multilingual multimodal embeddings. Under a zero-shot setting, we empirically demonstrate that performance degrades significantly when we query the multilingual text-video model with non-English sentences. To address this problem, we introduce a multilingual multimodal pre-training strategy, and collect a new multilingual instructional video dataset (Multi-HowTo100M) for pre-training. Experiments on VTT show that our method significantly improves video search in non-English languages without additional annotations. Furthermore, when multilingual annotations are available, our method outperforms recent baselines by a large margin in multilingual text-to-video search on VTT and VATEX; as well as in multilingual text-to-image search on Multi30K. Our model and Multi-HowTo100M is available at http://github.com/berniebear/Multi-HT100M.
Pre-trained cross-lingual encoders such as mBERT (Devlin et al., 2019) and XLM-R (Conneau et al., 2020) have proven impressively effective at enabling transfer-learning of NLP systems from high-resource languages to low-resource languages. This success comes despite the fact that there is no explicit objective to align the contextual embeddings of words/sentences with similar meanings across languages together in the same space. In this paper, we present a new method for learning multilingual encoders, AMBER (Aligned Multilingual Bidirectional EncodeR). AMBER is trained on additional parallel data using two explicit alignment objectives that align the multilingual representations at different granularities. We conduct experiments on zero-shot cross-lingual transfer learning for different tasks including sequence tagging, sentence retrieval and sentence classification. Experimental results on the tasks in the XTREME benchmark (Hu et al., 2020) show that AMBER obtains gains of up to 1.1 average F1 score on sequence tagging and up to 27.3 average accuracy on retrieval over the XLM-R-large model which has 3.2x the parameters of AMBER. Our code and models are available at http://github.com/junjiehu/amber.
Neural machine translation (NMT) is sensitive to domain shift. In this paper, we address this problem in an active learning setting where we can spend a given budget on translating in-domain data, and gradually fine-tune a pre-trained out-of-domain NMT model on the newly translated data. Existing active learning methods for NMT usually select sentences based on uncertainty scores, but these methods require costly translation of full sentences even when only one or two key phrases within the sentence are informative. To address this limitation, we re-examine previous work from the phrase-based machine translation (PBMT) era that selected not full sentences, but rather individual phrases. However, while incorporating these phrases into PBMT systems was relatively simple, it is less trivial for NMT systems, which need to be trained on full sequences to capture larger structural properties of sentences unique to the new domain. To overcome these hurdles, we propose to select both full sentences and individual phrases from unlabelled data in the new domain for routing to human translators. In a German-English translation task, our active learning approach achieves consistent improvements over uncertainty-based sentence selection methods, improving up to 1.2 BLEU score over strong active learning baselines.
Unsupervised machine translation (MT) has recently achieved impressive results with monolingual corpora only. However, it is still challenging to associate source-target sentences in the latent space. As people speak different languages biologically share similar visual systems, the potential of achieving better alignment through visual content is promising yet under-explored in unsupervised multimodal MT (MMT). In this paper, we investigate how to utilize visual content for disambiguation and promoting latent space alignment in unsupervised MMT. Our model employs multimodal back-translation and features pseudo visual pivoting in which we learn a shared multilingual visual-semantic embedding space and incorporate visually-pivoted captioning as additional weak supervision. The experimental results on the widely used Multi30K dataset show that the proposed model significantly improves over the state-of-the-art methods and generalizes well when images are not available at the testing time.
The COVID-19 pandemic is the worst pandemic to strike the world in over a century. Crucial to stemming the tide of the SARS-CoV-2 virus is communicating to vulnerable populations the means by which they can protect themselves. To this end, the collaborators forming the Translation Initiative for COvid-19 (TICO-19) have made test and development data available to AI and MT researchers in 35 different languages in order to foster the development of tools and resources for improving access to information about COVID-19 in these languages. In addition to 9 high-resourced, ”pivot” languages, the team is targeting 26 lesser resourced languages, in particular languages of Africa, South Asia and South-East Asia, whose populations may be the most vulnerable to the spread of the virus. The same data is translated into all of the languages represented, meaning that testing or development can be done for any pairing of languages in the set. Further, the team is converting the test and development data into translation memories (TMXs) that can be used by localizers from and to any of the languages.
Despite impressive empirical successes of neural machine translation (NMT) on standard benchmarks, limited parallel data impedes the application of NMT models to many language pairs. Data augmentation methods such as back-translation make it possible to use monolingual data to help alleviate these issues, but back-translation itself fails in extreme low-resource scenarios, especially for syntactically divergent languages. In this paper, we propose a simple yet effective solution, whereby target-language sentences are re-ordered to match the order of the source and used as an additional source of training-time supervision. Experiments with simulated low-resource Japanese-to-English, and real low-resource Uyghur-to-English scenarios find significant improvements over other semi-supervised alternatives.
The recent success of neural machine translation models relies on the availability of high quality, in-domain data. Domain adaptation is required when domain-specific data is scarce or nonexistent. Previous unsupervised domain adaptation strategies include training the model with in-domain copied monolingual or back-translated data. However, these methods use generic representations for text regardless of domain shift, which makes it infeasible for translation models to control outputs conditional on a specific domain. In this work, we propose an approach that adapts models with domain-aware feature embeddings, which are learned via an auxiliary language modeling task. Our approach allows the model to assign domain-specific representations to words and output sentences in the desired domain. Our empirical results demonstrate the effectiveness of the proposed strategy, achieving consistent improvements in multiple experimental settings. In addition, we show that combining our method with back translation can further improve the performance of the model.
Popular metrics used for evaluating image captioning systems, such as BLEU and CIDEr, provide a single score to gauge the system’s overall effectiveness. This score is often not informative enough to indicate what specific errors are made by a given system. In this study, we present a fine-grained evaluation method REO for automatically measuring the performance of image captioning systems. REO assesses the quality of captions from three perspectives: 1) Relevance to the ground truth, 2) Extraness of the content that is irrelevant to the ground truth, and 3) Omission of the elements in the images and human references. Experiments on three benchmark datasets demonstrate that our method achieves a higher consistency with human judgments and provides more intuitive evaluation results than alternative metrics.
Neural networks are known to be data hungry and domain sensitive, but it is nearly impossible to obtain large quantities of labeled data for every domain we are interested in. This necessitates the use of domain adaptation strategies. One common strategy encourages generalization by aligning the global distribution statistics between source and target domains, but one drawback is that the statistics of different domains or tasks are inherently divergent, and smoothing over these differences can lead to sub-optimal performance. In this paper, we propose the framework of Domain Differential Adaptation (DDA), where instead of smoothing over these differences we embrace them, directly modeling the difference between domains using models in a related task. We then use these learned domain differentials to adapt models for the target task accordingly. Experimental results on domain adaptation for neural machine translation demonstrate the effectiveness of this strategy, achieving consistent improvements over other alternative adaptation strategies in multiple experimental settings.
In this paper, we describe compare-mt, a tool for holistic analysis and comparison of the results of systems for language generation tasks such as machine translation. The main goal of the tool is to give the user a high-level and coherent view of the salient differences between systems that can then be used to guide further analysis or system improvement. It implements a number of tools to do so, such as analysis of accuracy of generation of particular types of words, bucketed histograms of sentence accuracies or counts based on salient characteristics, and extraction of characteristic n-grams for each system. It also has a number of advanced features such as use of linguistic labels, source side data, or comparison of log likelihoods for probabilistic models, and also aims to be easily extensible by users to new types of analysis. compare-mt is a pure-Python open source package, that has already proven useful to generate analyses that have been used in our published papers. Demo Video: https://youtu.be/NyJEQT7t2CA
It has been previously noted that neural machine translation (NMT) is very sensitive to domain shift. In this paper, we argue that this is a dual effect of the highly lexicalized nature of NMT, resulting in failure for sentences with large numbers of unknown words, and lack of supervision for domain-specific words. To remedy this problem, we propose an unsupervised adaptation method which fine-tunes a pre-trained out-of-domain NMT model using a pseudo-in-domain corpus. Specifically, we perform lexicon induction to extract an in-domain lexicon, and construct a pseudo-parallel in-domain corpus by performing word-for-word back-translation of monolingual in-domain target sentences. In five domains over twenty pairwise adaptation settings and two model architectures, our method achieves consistent improvements without using any in-domain parallel sentences, improving up to 14 BLEU over unadapted models, and up to 2 BLEU over strong back-translation baselines.
This paper examines the problem of adapting neural machine translation systems to new, low-resourced languages (LRLs) as effectively and rapidly as possible. We propose methods based on starting with massively multilingual “seed models”, which can be trained ahead-of-time, and then continuing training on data related to the LRL. We contrast a number of strategies, leading to a novel, simple, yet effective method of “similar-language regularization”, where we jointly train on both a LRL of interest and a similar high-resourced language to prevent over-fitting to small LRL data. Experiments demonstrate that massively multilingual models, even without any explicit adaptation, are surprisingly effective, achieving BLEU scores of up to 15.5 with no data from the LRL, and that the proposed similar-language regularization method improves over other adaptation methods by 1.7 BLEU points average over 4 LRL settings.
Simultaneous interpretation, translation of the spoken word in real-time, is both highly challenging and physically demanding. Methods to predict interpreter confidence and the adequacy of the interpreted message have a number of potential applications, such as in computer-assisted interpretation interfaces or pedagogical tools. We propose the task of predicting simultaneous interpreter performance by building on existing methodology for quality estimation (QE) of machine translation output. In experiments over five settings in three language pairs, we extend a QE pipeline to estimate interpreter performance (as approximated by the METEOR evaluation metric) and propose novel features reflecting interpretation strategy and evaluation measures that further improve prediction accuracy.
The task of word-level quality estimation (QE) consists of taking a source sentence and machine-generated translation, and predicting which words in the output are correct and which are wrong. In this paper, propose a method to effectively encode the local and global contextual information for each target word using a three-part neural network approach. The first part uses an embedding layer to represent words and their part-of-speech tags in both languages. The second part leverages a one-dimensional convolution layer to integrate local context information for each target word. The third part applies a stack of feed-forward and recurrent neural networks to further encode the global context in the sentence before making the predictions. This model was submitted as the CMU entry to the WMT2018 shared task on QE, and achieves strong results, ranking first in three of the six tracks.
Deep neural networks for machine comprehension typically utilizes only word or character embeddings without explicitly taking advantage of structured linguistic information such as constituency trees and dependency trees. In this paper, we propose structural embedding of syntactic trees (SEST), an algorithm framework to utilize structured information and encode them into vector representations that can boost the performance of algorithms for the machine comprehension. We evaluate our approach using a state-of-the-art neural attention model on the SQuAD dataset. Experimental results demonstrate that our model can accurately identify the syntactic boundaries of the sentences and extract answers that are syntactically coherent over the baseline methods.
We study the problem of semi-supervised question answering—utilizing unlabeled text to boost the performance of question answering models. We propose a novel training framework, the Generative Domain-Adaptive Nets. In this framework, we train a generative model to generate questions based on the unlabeled text, and combine model-generated questions with human-generated questions for training question answering models. We develop novel domain adaptation algorithms, based on reinforcement learning, to alleviate the discrepancy between the model-generated data distribution and the human-generated data distribution. Experiments show that our proposed framework obtains substantial improvement from unlabeled text.