This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
For several NLP tasks, an important substep is the identification of noun phrases in running text. This has typically been done by “chunking” – a way of finding minimal noun phrases by token classification. However, chunking-like methods do not represent the fact that noun phrases can be nested. This paper presents a novel method of finding all noun phrases in a sentence, nested to an arbitrary depth, using the BERT model for token classification. We show that our proposed method achieves very good results for both Swedish and English.
This paper describes the creation and evaluation of a synthetic dataset of Swedish multiple-choice questions (MCQs) for reading comprehension using GPT-3. Although GPT-3 is trained mostly on English data, with only 0.11% of Swedish texts in its training material, the model still managed to generate MCQs in Swedish. About 44% of the generated MCQs turned out to be of sufficient quality, i.e. they were grammatically correct and relevant, with exactly one answer alternative being correct and the others being plausible but wrong. We provide a detailed analysis of the errors and shortcomings of the rejected MCQs, as well an analysis of the level of difficulty of the accepted MCQs. In addition to giving insights into GPT-3, the synthetic dataset could be used for training and evaluation of special-purpose MCQ-generating models.
We release an internationalized annotation and human evaluation bundle, called Textinator, along with documentation and video tutorials. Textinator allows annotating data for a wide variety of NLP tasks, and its user interface is offered in multiple languages, lowering the entry threshold for domain experts. The latter is, in fact, quite a rare feature among the annotation tools, that allows controlling for possible unintended biases introduced due to hiring only English-speaking annotators. We illustrate the rarity of this feature by presenting a thorough systematic comparison of Textinator to previously published annotation tools along 9 different axes (with internationalization being one of them). To encourage researchers to design their human evaluation before starting to annotate data, Textinator offers an easy-to-use tool for human evaluations allowing importing surveys with potentially hundreds of evaluation items in one click. We finish by presenting several use cases of annotation and evaluation projects conducted using pre-release versions of Textinator. The presented use cases do not represent Textinator’s full annotation or evaluation capabilities, and interested readers are referred to the online documentation for more information.
An important part when constructing multiple-choice questions (MCQs) for reading comprehension assessment are the distractors, the incorrect but preferably plausible answer options. In this paper, we present a new BERT-based method for automatically generating distractors using only a small-scale dataset. We also release a new such dataset of Swedish MCQs (used for training the model), and propose a methodology for assessing the generated distractors. Evaluation shows that from a student’s perspective, our method generated one or more plausible distractors for more than 50% of the MCQs in our test set. From a teacher’s perspective, about 50% of the generated distractors were deemed appropriate. We also do a thorough analysis of the results.
UDon2 is an open-source library for manipulating dependency trees represented in the CoNLL-U format. The library is compatible with the Universal Dependencies. UDon2 is aimed at developers of downstream Natural Language Processing applications that require manipulating dependency trees on the sentence level (in addition to other available tools geared towards working with treebanks).
Adding interactive capabilities to pedestrian wayfinding systems in the form of spoken dialogue will make them more natural to humans. Such an interactive wayfinding system needs to continuously understand and interpret pedestrian’s utterances referring to the spatial context. Achieving this requires the system to identify exophoric referring expressions in the utterances, and link these expressions to the geographic entities in the vicinity. This exophoric spatial reference resolution problem is difficult, as there are often several dozens of candidate referents. We present a neural network-based approach for identifying pedestrian’s references (using a network called RefNet) and resolving them to appropriate geographic objects (using a network called SpaceRefNet). Both methods show promising results beating the respective baselines and earlier reported results in the literature.
This article describes SPACEREF, a corpus of street-level geographic descriptions. Pedestrians are walking a route in a (real) urban environment, describing their actions. Their position is automatically logged, their speech is manually transcribed, and their references to objects are manually annotated with respect to a crowdsourced geographic database. We describe how the data was collected and annotated, and how it has been used in the context of creating resources for an automatic pedestrian navigation system.